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Abstract
We show that a Gorenstein subcanonical codimension 3 subscheme Z ⊂ X = P

N ,
N ≥ 4, can be realized as the locus along which two Lagrangian subbundles of a
twisted orthogonal bundle meet degenerately and conversely. We extend this result
to singular Z and all quasi-projective ambient schemes X under the necessary hy-
pothesis that Z is strongly subcanonical in a sense defined below. A central point is
that a pair of Lagrangian subbundles can be transformed locally into an alternating
map. In the local case our structure theorem reduces to that of D. Buchsbaum and
D. Eisenbud [6] and says that Z is Pfaffian.

We also prove codimension 1 symmetric and skew-symmetric analogues of our
structure theorems.

0. Introduction
Smooth subvarieties of small codimension Z ⊂ X = P

N have been extensively
studied in recent years, especially in relation to R. Hartshorne’s conjecture that a
smooth subvariety of sufficiently small codimension in P

N is a complete intersection.
Although the conjecture remains open, any smooth subvarietyZ of small codimension
in P

N is known, by a theorem of W. Barth, M. Larsen, and S. Lefschetz, to have the
weaker property that it is subcanonical in the sense that its canonical class is a multiple
of its hyperplane class.

More generally, a subscheme Z of a nonsingular Noetherian scheme X is said
to be subcanonical if Z is Gorenstein and its canonical bundle is the restriction of
a bundle on X. There is a natural generalization to an arbitrary (possibly singular)
scheme X (see below).

In this paper we give a structure theorem for subcanonical subschemes of codi-
mension 3 in P

N and generalize it to subcanonical subschemes of codimension 3 in
an arbitrary quasi-projective scheme X satisfying a mild extra cohomological con-
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dition (strongly subcanonical subschemes). The construction works even without the
quasi-projective hypothesis.

There are well-known theorems describing the local structure of Gorenstein sub-
schemes of nonsingular Noetherian schemes in codimensions less than or equal to
3. In codimensions 1 and 2 all Gorenstein subschemes are locally complete inter-
sections. These results have been globalized. If X is nonsingular, any Z ⊂ X of
codimension 1 is the zero locus of a section of a line bundle, while a subcanonical
Z ⊂ X of codimension 2 is the zero locus of a section of a rank 2 vector bundle if a
certain obstruction in cohomology vanishes (as explained below). In both cases OZ
has a symmetric resolution by locally free OX-modules.

In codimension 3 both the local and the global cases become more complicated.
Locally, a Gorenstein subscheme of codimension 3 need not be a locally complete
intersection. Rather, Buchsbaum and Eisenbud [6] showed that such a subscheme is
cut out locally by the submaximal Pfaffians of an alternating matrix appearing in
a minimal free resolution. C. Okonek [29] asked whether this local result could be
generalized to show that codimension 3 subcanonical schemes are cut out by the
Pfaffians of an alternating map of vector bundles. C. Walter [35] gave a positive
answer to Okonek’s question in P

n under a mild additional hypothesis but left open
the question of whether this hypothesis is always satisfied.

In our paper [14] we will show that not every subcanonical subscheme of codi-
mension 3 in P

n is Pfaffian, settling Okonek’s question negatively. In the present
paper we show that a different way of looking at the Pfaffian construction does gen-
eralize and gives the desired structure theorem for all subcanonical subschemes of
codimension 3. (The question as to which subschemes are Pfaffian can be answered
in the derived Witt group of P. Balmer [2]; see Walter [36].)

In this paper a closed subscheme Z ⊂ X of a Noetherian scheme is called
subcanonical of codimension d if it satisfies the following two conditions.
(A) The subscheme Z is relatively Cohen-Macaulay of codimension d in X; that is,

E xtiOX(OZ,OX) = 0 for all i �= d .
(B) There exists a line bundle L on X such that the relative canonical sheaf ωZ/X :=

E xtdOX(OZ,OX) is isomorphic to the restriction of L−1 to Z.
These conditions are not enough for the Serre correspondence in codimension 2

nor for our structure theorem in codimension 3. Condition (B) asserts the existence
of an isomorphism

η : OZ ∼−−→ ωZ/X(L) = E xtdOX
(
OZ,L

)
which one can think of as an η ∈ H 0(E xtdOX(OZ,L)) = ExtdOX(OZ,L). In the
Yoneda Ext, this η defines a class of “resolutions of OZ by coherent sheaves”:

0 −→ L −→ Fd−1 −→ · · · −→ F1 −→ F0 −→ OZ −→ 0.



LAGRANGIAN SUBBUNDLES AND SUBCANONICAL SUBSCHEMES 429

In our structure theorem we require such resolutions with F0, . . . ,Fd−1 locally free.
Thus we need the following condition:
(C) The OX-module OZ is of finite local projective dimension (necessarily equal to

the codimension d).
This condition holds automatically if the ambient scheme X is nonsingular. We
also need F0 = OX, which means that we want η ∈ ExtdOX(OZ,L) to lift to

Extd−1OX
(IZ,L). Since these two groups are joined by a map in the long exact se-

quence obtained by applying Ext∗OX(−, L) to the short exact sequence 0 → IZ →
OX → OZ → 0, we see that the lifting exists if and only if η ∈ ExtdOX(OZ,L)

goes to zero in ExtdOX(OX,L)
∼= Hd(X,L). We are thus led to the following

condition:
(D) The isomorphism class η ∈ ExtdOX(OZ,L) of (2) goes to zero under the map

ExtdOX
(
OZ,L

) −→ ExtdOX
(
OX,L

) = Hd(X,L)

induced by the surjection OX → OZ .
Condition (D) holds automatically if Hd(X,L) = 0. This is the case if X = P

n

with n ≥ d + 1 or if X is an affine scheme. In addition, if the ambient scheme X is
a Gorenstein variety over a field k, then condition (D) can be put into a dual form
that looks more natural. For in that case Z ⊂ X is subcanonical (of dimension r) if
and only if it is Cohen-Macaulay and there exists a line bundle M on X such that
ωZ ∼= M|Z , and condition (D) holds if and only if the following composite map
vanishes:

Hr(X,M)
rest−−−→ Hr(Z,M|Z) η−−→∼= Hr(Z, ωZ)

tr−→ k. (1)

In these terms we may give the following central definition of this paper.

Definition 0.1
A subscheme Z ⊂ X is strongly subcanonical if it satisfies conditions (A)–(D).

The Serre construction shows that a subscheme of codimension 2 is the zero
locus of a rank 2 vector bundle if and only if it is strongly subcanonical. (P. Griffiths
and J. Harris [20, Proposition 1.33], J. Vogelaar [34, Theorem 2.1], and C. Bănică
and M. Putinar [3, §2.1] state variants of condition (D) explicitly.)

Our main results show that a codimension 3 subscheme Z of a quasi-projective
schemeX is strongly subcanonical if and only if it can be expressed as an appropriate
“Lagrangian degeneracy scheme,” defined as follows. Let V be a vector bundle on X
of even rank 2n equipped with a nonsingular quadratic form q with values in a line
bundle L. Let E and F be a pair of Lagrangian subbundles of (V , q) (i.e., totally
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isotropic subbundles of rank n). It is then well known that dim[E (x) ∩ F (x)] is
locally constant modulo 2.

Now suppose that m is an integer such that dim[E (x) ∩F (x)] ≡ m (mod 2) for
all x ∈ X. Then there is a degeneracy locus that as a set is given by

Zm(E ,F )red :=
{
x ∈ X | dimk(x)

[
E (x) ∩F (x)

] ≥ m}.
In §2 we define a scheme structure on this set in roughly the following manner. Using
the data E ,F ⊂ (V , q), one defines a composite map

λ : E −→ V ∼= V ∗(L) −→ F ∗(L)

such that ker(λ(x)) = E (x) ∩F (x) for all x ∈ X. Even if E ∼= F , the map λ may
not be alternating, but (perhaps after modifying λ slightly to make it have even rank
everywhere) we show that it is possible to find local bases in which the matrix of λ
is alternating (see Proposition 2.3). Although these alternating matrices do not glue
together, they are sufficiently compatible that we can define Zm(E ,F ) as the locus
defined by their Pfaffians of order rk(E ) − m + 2. This scheme structure is natural
in the sense that in a suitably generic setting it is reduced, and it is stable under base
change.

The following structure theorem for strongly subcanonical codimension 3 sub-
schemes collects the main results of this paper.

theorem 0.2
Let X be a quasi-projective scheme over a Noetherian ring, and let Z ⊂ X be a
closed subscheme of grade 3. The following conditions are equivalent.
(a) Z ⊂ X is strongly subcanonical.
(b) There exists a twisted orthogonal bundle (V , q) and Lagrangian subbundles

E ,F ⊂ (V , q), with dimk(x)[E (x) ∩F (x)] odd for all x ∈ X, such that Z =
Z3(E ,F ).

(c) There exists a vector bundle F , a line bundle L, and a Lagrangian subbundle E

of the hyperbolic bundle F ⊕F ∗(L) such that the composite map

λ : E ↪→ F ⊕F ∗(L)� F ∗(L)

has kernel of odd rank and such that Z = Z3(E ,F
∗(L)).

(d) Z has symmetrically quasi-isomorphic locally free resolutions

0 L H

φ

ψ
G

φ∗

OX OZ

η∼=

0

0 L G ∗(L)
−ψ∗

H ∗(L) OX E xt3OX(OZ,L) 0
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where L is a line bundle on X, and φ∗ψ : E → E ∗(L) is an alternating map.

The structure theorem is proved in several parts (see Theorems 3.1, 4.1, 6.1).
One way to look at the structure theorem is as follows. The existence of the

symmetric isomorphism

η : OZ ∼−−→ E xt3OX
(
OZ,L

)
(2)

means that there should be a symmetric isomorphism in the derived category from
the locally free resolution of OZ ,

0 −→ L
q−→ E

ψ−−→ G
p−→ OX −→ OZ −→ 0, (3)

into its twisted shifted dual. In general, morphisms in the derived category are com-
plicated objects involving homotopy classes of maps and a calculus of fractions.
Nevertheless, in Theorem 6.1 we show that there exist such locally free resolutions of
OZ (which depend on the choice of η) for which the symmetric isomorphism in the
derived category is induced by a symmetric chain map which is a quasi-isomorphism
and therefore becomes an isomorphism in the derived category. Okonek’s Pfaffian
subschemes correspond to situations where this quasi-isomorphism is an isomor-
phism.

The philosophy that (skew)-symmetric sheaves should have locally free resolu-
tions that are (skew)-symmetric up to quasi-isomorphism is also pursued in [15] and
[36]. The former deals primarily with methods for constructing explicit locally free
resolutions for (skew)-symmetric sheaves on P

n. The latter studies the obstructions
(in Balmer’s derived Witt groups; see [2]) to the existence of a genuinely (skew)-
symmetric resolution.

The results of this paper give a full characterization of codimension 3 subcanon-
ical subschemes. In [14] we use this machinery to construct various geometric exam-
ples of subcanonical subschemes of codimension 3 which are not Pfaffian.

Porteous-type formulas for the fundamental classes of degeneracy loci for skew-
symmetric maps φ : E → E ∗(L) were found by Harris and L. Tu [21], T. Józefiak,
A. Lascoux, and P. Pragacz [23], and Pragacz [32]. Harris asked for similar
formulas for degeneracy loci related to pairs of Lagrangian subbundles, and they
were provided by W. Fulton [16], [17] and by Pragacz and J. Ratajski [33] (see Ful-
ton and Pragacz [18] for more details). (A scheme structure on these degeneracy loci
and their generalizations with isotropic flag conditions can be defined in a manner
similar to (12).)

Fulton and Pragacz (see [18, §9.4]) also ask whether one can find “natural” res-
olutions for the structure sheaves of these kinds of symmetric and skew-symmetric
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degeneracy loci. From such a resolution one can read off formulas in K0(X). Theo-
rem 3.1 provides an explicit answer in one simple case.

Structure of the paper
In §§1 and 2 we review basic facts about Lagrangian subbundles of twisted orthogonal
bundles and define the scheme structure on the degeneracy loci Zm(E ,F ). In §3 we
prove that Lagrangian degeneracy loci of codimension 3 are strongly subcanonical
(see Theorem 3.1). In §4 we discuss “split” Lagrangian degeneracy loci (see Theorem
4.1), which are often more practical for constructing codimension 3 subcanonical
subschemes. The computation of local equations for these degeneracy loci is discussed
in §5.

In §6 we complete the proof of the structure Theorem 0.2 by showing that strongly
subcanonical subschemes of codimension 3 are split Lagrangian degeneracy loci (see
Theorem 6.1). In §§7 and 8 we discuss at length various examples of codimension 3
subcanonical subschemes, particularly the case of points in P

3. Further examples can
be found in our paper [14].

Finally, in §9 we prove codimension 1 symmetric and skew-symmetric analogues
of all previous results. In particular, we state G. Casnati and F. Catanese’s structural
result (see [7, Remark 2.2]) and give an example of a self-linked threefold of degree
18 in P

5 which does not have a symmetric resolution because the parity condition
fails.

1. Quadratic forms on vector bundles
In this section we recall the basic definitions of twisted orthogonal bundles and
Lagrangian subbundles. The definitions and results can be found in many standard
references, such as Fulton and Pragacz [18, Chapter 6], M.-A. Knus [25], and S.
Mukai [26, §1].

Quadratic forms
Suppose that V is a finite-dimensional vector space over a field k. (We impose no
restrictions on k; it may have characteristic 2 and need not be algebraically closed.)
A quadratic form on V is a homogeneous quadratic polynomial in the linear forms
on V , that is, a member q ∈ S2(V ∗). The symmetric bilinear form b : V × V → k

associated to q is given by the formula

b(x, y) := q(x + y)− q(x)− q(y). (4)

The quadratic form q is nondegenerate if b is a perfect pairing.
Now suppose that V is a locally free sheaf of constant finite rank over a schemeX.

A quadratic form on V with values in a line bundle L is a global section q of
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S2(V ∗)⊗L. Such a quadratic form is nonsingular if the induced symmetric bilinear
form is a perfect pairing. Equivalently, a quadratic form q on V is nonsingular if for
each point x ∈ X the induced quadratic form q(x) on the fiber vector space V (x)

is nondegenerate. A twisted orthogonal bundle on X is a vector bundle V equipped
with a nonsingular quadratic form q with values in some line bundle L.

Lagrangian subbundles
If V is a vector space of even dimension 2n equipped with a nondegenerate quadratic
form, then a Lagrangian subspaceE ⊂ (V , q) is a subspace of V of dimension n such
that q|E ≡ 0. If the characteristic is not equal to 2, then E ⊂ (V , q) is Lagrangian
if and only if E = E⊥ := {x ∈ V | b(x, y) = 0 for all y ∈ E}. In characteristic 2
this condition is necessary but not sufficient for q to vanish on E, that is, for E to be
Lagrangian.

Similarly, a Lagrangian subbundle E ⊂ (V , q) of a twisted orthogonal bundle
of even rank 2n is a subbundle (with locally free quotient sheaf) of rank n such that
q|E ≡ 0.

The following result is well known (cf. N. Bourbaki [5, §6, exercice 18(d)],
D. Mumford [27], Mukai [26, Proposition 1.6]).

proposition 1.1
If E and F are Lagrangian subbundles of a twisted orthogonal bundle over a scheme
X, then the function on X given by x �→ dimk(x)[E (x) ∩F (x)] is locally constant
modulo 2.

Hyperbolic bundles
If F is any vector bundle of constant rank, and L is any line bundle, then F⊕F ∗(L)
may be endowed with the hyperbolic quadratic form qh(e ⊕ α) := α(e) with values
inL. (This qh is bilinear onF×F ∗(L) but quadratic onF⊕F ∗(L).) The associated
hyperbolic symmetric bilinear form has matrix

(
0 I
I 0

)
.

We use the following notation for graph subbundles. If ψ : A → B and α :
B→ A are morphisms of vector bundles, then we write

%ψ := im

A

(
1
ψ

)
↪→ A ⊕B

 , %α := im

(
B

(α
1
)

↪→ A ⊕B

)
.

These graphs are to be regarded as subbundles of A ⊕B.

lemma 1.2
A subbundle E ⊂ (F⊕F ∗(L), qh) is a Lagrangian subbundle complementary to the
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direct summand F ∗(L) if and only if there is an alternating map ζ : F → F ∗(L)
such that E = %ζ .

Any Lagrangian subbundle of a twisted orthogonal bundle over an affine scheme
has a Lagrangian complement (cf. [25, Remark I.5.5.4]), although this is not always
true over a general scheme. However, if a Lagrangian subbundle F ⊂ (V , q) has
a Lagrangian complement M , then the symmetric bilinear form induces a natural
isomorphism M ∼= F ∗(L). This defines an isometry

(V , q)
φF,M−−−−→∼=

(
F ⊕F ∗(L), qh

)
(5)

which is the identity on F and which identifies the complementary Lagrangian sub-
bundles F ,M ⊂ V with the two direct summands of F ⊕F ∗(L). Lemma 1.2 has
the following corollary.

corollary 1.3
If E ,F⊂ (V , q) are Lagrangian subbundles with a common Lagrangian complement
M , then there is an alternating map ζ : F → F ∗(L) such that φF ,M (E ) = %ζ .

2. Locally alternating maps and Lagrangian degeneracy loci
In this section we show how to use Corollary 1.3 to define scheme-theoretic degen-
eracy loci for pairs of Lagrangian subbundles of a twisted orthogonal bundle which
generalize the degeneracy loci for alternating maps defined by ideals of Pfaffians.
We also show how to turn a pair of Lagrangian subbundles into a locally alternating
map. Several steps are required in order to make sure that common Lagrangian com-
plements exist locally and to show that our degeneracy loci are independent of the
choice of common Lagrangian complement. Our scheme structure defined by local
equations coincides with that given by a universal construction in C. De Concini and
Pragacz [11].

Existence of local common Lagrangian complements
The result we need is standard if the residue field is infinite, but if the residue field
is very small, care is required. We are interested in when two Lagrangian subbundles
E ,F of a twisted orthogonal bundle (V , q) have a common Lagrangian complement
locally. If one recalls that an even-dimensional quadratic vector space (V (x), q(x))
has two families of Lagrangian subspaces, and that in order for two Lagrangian
subspaces to have a common Lagrangian complement they must lie in the same
family, and that this is measured by the dimension of the intersection modulo 2, we
see that in order for E and F to have a common Lagrangian complement to E and
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F , we must have dimk(x)[E (x)∩F (x)] ≡ rk(E ) (mod 2). We now show that locally
this condition is also sufficient.

proposition 2.1
Let E ,F ⊂ (V , q) be Lagrangian subbundles of a twisted orthogonal bundle on
a scheme X. Suppose that dimk(x)[E (x) ∩ F (x)] ≡ rk(E ) (mod 2) for all x ∈ X.
Then any x ∈ X has a neighborhood U over which E |U and F |U have a common
Lagrangian complement MU .

Proof
It is easy to see that any common Lagrangian complement at x extends to a common
Lagrangian complement in a neighborhood U . The existence at x of such a com-
plement is standard if the residue field is infinite. The following lemma proves the
existence of such a complement in general.

lemma 2.2
Suppose that q is a nondegenerate quadratic form on an even-dimensional vec-
tor space V and that U,U ′ ⊂ (V , q) are two Lagrangian subspaces such that
dim(U ∩ U ′) ≡ dim(U) (mod 2). Then there exists a Lagrangian subspace L ⊂
(V , q) complementary to U and to U ′.

Proof
Let K = U ∩ U ′. Then U = U⊥ ⊂ K⊥, and similarly U ′ ⊂ K⊥. On dimensional
grounds, we must indeed have U + U ′ = K⊥. As a result, U/K and U ′/K are
complementary Lagrangian subspaces of K⊥/K . Moreover, by hypothesis they are
even-dimensional.

Let f1, . . . , f2m be a system of vectors in U mapping onto a basis of U/K . Since
U/K and U ′/K are complementary Lagrangian subspaces of K⊥/K , the symmetric
bilinear form b associated to q induces a perfect pairing between them. So there exists
a system of vectors g1, . . . , g2m in U ′ such that b(fi, gj ) = δij for all i, j .

Let N be the subspace spanned by the fi and gj . Then q|N is nondegenerate, so
there is an orthogonal direct sum decomposition V = N⊕N⊥ such that q|N and q|N⊥
are both nondegenerate. Moreover, K ⊂ (N⊥, q|N⊥) is a Lagrangian subspace, for
which there exists a complementary Lagrangian subspace P by our previous remarks.
Let p1, . . . , pr be a basis of P . One may now check that

f1 + g2, f2 − g1, f3 + g4, f4 − g3, . . . , f2m−1 + g2m, f2m − g2m−1, p1, . . . , pr
form a basis for a Lagrangian subspace L ⊂ (V , q) complementary to both U and U ′.
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The following example shows that Lemma 2.2 does not always extend to three
Lagrangian subspaces. Suppose that k = Z/2Z, that V = k4, and that q = x1x3 +
x2x4. Let U , U ′, and U ′′ be the Lagrangian subspaces given by x1 = x2 = 0, by
x3 = x4 = 0, and by x1 + x3 = x2 + x4 = 0, respectively. Each subspace is of
dimension 2, and each pair of subspaces has intersection of dimension zero. But there
is no Lagrangian subspace of V which is simultaneously complementary to U , U ′,
and U ′′.

Locally alternating maps
Suppose that f : E ↪→ (V , q) and g : F ↪→ (V , q) are Lagrangian subbundles of a
twisted orthogonal bundle. Consider the composite map

λ : E f−−→ V
β−→ V ∗(L) g∗−−→ F ∗(L), (6)

where β : V ∼=−→ V ∗(L) is the isomorphism induced by the quadratic form q. In the
special case of Lemma 1.2, λ is the alternating map ζ : F → F ∗(L). In the general
case, the rank of λ may not be even, and thus λ may not be locally alternating. But
this is the only obstruction; when the rank of λ is even, we show that λ is locally
alternating, and we show how to reduce to the even rank case.

We may assume that X is connected. Then λ is either everywhere of even rank
or everywhere of odd rank because the kernel of λ(x) : E (x)→F ∗(L)(x) is E (x)∩
F (x), which is of constant rank modulo 2 by Proposition 1.1. If λ is everywhere
of odd rank, then replace the Lagrangian subbundles E , F of V by the Lagrangian
subbundles E1 := E ⊕ OX and F1 := F ⊕ L of the orthogonal bundle V1 :=
V ⊕ OX ⊕ L. This replaces λ by

λ1 : E1 = E ⊕ OX

(
λ 0
0 1

)
−−−→ F ∗(L)⊕ OX = F ∗1 (L). (7)

The rank of λ1 is everywhere even, but its kernel and cokernel are the same as those
of λ. Notice also that E1(x)∩F1(x) = E (x)∩F (x) for all x ∈ X. Thus by replacing
λ by λ1 if necessary, we can reduce to the case where the rank is everywhere even.

proposition 2.3
The following are equivalent:
(a) the rank of λ is everywhere even;
(b) dimk(x)[E (x) ∩F (x)] ≡ rk(E ) (mod 2) for all x ∈ X;
(c) λ is locally alternating; that is, there exists a cover of X by open subsets U

and isomorphisms ιU : F |U ∼= E |U such that the compositions λ|U ◦ ιU are
alternating.
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Proof
The equivalence of (a) and (b) follows from the fact that ker λ(x) = E (x)∩F (x). The
implication (c) ⇒ (a) is standard. To prove (a) ⇒ (c), use Proposition 2.1 to cover
X by open subsets U over each of which E |U , F |U have a common Lagrangian
complement MU . Then by Corollary 1.3 there exist alternating maps ζU : F |U →
F ∗(L)|U such that φF |U ,MU

(E |U) = %ζU . Let α : E |U ∼= %ζU be the isomorphism
induced by φF |U ,MU

, and let π1 : %ζU ∼= F |U and π2 : %ζU → F ∗(L)|U be the two
projections from %ζU ⊂ (F ⊕F ∗(L))|U :

E |U
λ|U

∼=
α

%ζU

π2

∼=
π1

F |U
ζU

F ∗(L)|U

(8)

Then ιU := (π1 ◦ α)−1 is an isomorphism such that ζU = λ|U ◦ ιU is alternating.

Independence of the common Lagrangian complement
Unfortunately, the construction that makes λ locally alternating depends on choices of
local common Lagrangian complements. We now look at what happens if we replace
one choice by another.

lemma 2.4
Let E ,F ⊂ (V , q) be Lagrangian subbundles, and let M and N both be common
Lagrangian complements to E and F . Suppose that the map φF ,M of (5) sends E to
the graph of ζ : F → F ∗(L) and sends N to the graph of h : F ∗(L)→ F . Then
(a) the maps ζ and h are alternating;
(b) the map u := 1− hζ and its transpose u∗ = 1− ζh are both invertible;
(c) the isometry φF ,N sends E to the graph of the morphism

ζu−1 = (u−1)∗(ζ − ζhζ )u−1.
Proof
Part (a) follows from Corollary 1.3.

(b) Since N and E are complementary, their images %ζ , %h ⊂ F ⊕F ∗(L) are
also complementary. Thus the map

F ⊕F ∗(L)

(
1 h
ζ 1

)
−−−−→ F ⊕F ∗(L)

is an isomorphism. This is equivalent to the composition(
1 −h
0 1

)(
1 h

ζ 1

)
=
(
1− hζ 0
ζ 1

)



438 EISENBUD, POPESCU, AND WALTER

being invertible or to u = 1− hζ being invertible. It follows that u∗ = 1− ζh is also
invertible.

(c) We now have isometries

F ⊕F ∗(L)
φF,M←−−−−∼= V

φF,N−−−−→∼= F ⊕F ∗(L). (9)

The left-to-right composition is the identity on the first summand F and sends %h
(corresponding to N on the left) onto the second summand F ∗(L) (corresponding
to N on the right) compatibly with the hyperbolic quadratic form on F ⊕F ∗(L).
Consequently, the left-to-right composition is

(
1 −h
0 1

)
. To find the image of E on the

right, one first goes to the left (where its image is %ζ ) and then applies the left-to-right
composition. Therefore the image of E on the right is the composite image

F

(
1
ζ

)
F ⊕F ∗(L)

(
1 −h
0 1

)
left-to-right

F ⊕F ∗(L).

E

∼=
left|E

The above composite map is
(
1 −h
0 1

) ( 1
ζ

) = ( u
ζ

) = ( 1
ζu−1

)
u, so the image of E on

the right is %ζu−1 . But

ζu−1 = (u−1)∗ (u∗ζ ) u−1 = (u−1)∗(ζ − ζhζ )u−1,
and this completes the proof.

Degeneracy loci
Let F be a vector bundle of constant rank on a scheme X, let L be a line bundle,
and let ζ : F → F ∗(L) be an alternating map. If k ≥ 0 is an integer and if
m := rk(F )− 2k, then the degeneracy locus

Zm(ζ ) :=
{
x ∈ X | rk(ζ(x)) ≤ rk(F )−m = 2k

}
(10)

has codimension at most m(m − 1)/2, its “expected” value. The natural scheme
structure on Zm(ζ ) is defined locally by the ideal Pf2k+2(ζ ) generated by the (2k +
2)×(2k+ 2) Pfaffians of the alternating map ζ . These loci have been studied notably
in Harris and Tu [21] and from a different point of view in Okonek [29] and Walter
[35].

We need to extend this notion to the case of a locally alternating map, as described
in Proposition 2.3. Let E ,F ⊂ (V , q) be Lagrangian subbundles of a twisted or-
thogonal bundle, let m be an integer such that m ≡ dimk(x)[E (x) ∩F (x)] (mod 2)
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for all x ∈ X, and let

Zm(E ,F ) := {x ∈ X | dimk(x) [E (x) ∩F (x)
] ≥ m}. (11)

The fundamental classes of these loci are discussed in Fulton and Pragacz [18, Chapter
6], where they are given as polynomials in the Chern classes of E , F , and L.

We now define a scheme structure on these Lagrangian degeneracy loci. Replac-
ing λ by the λ1 of (7) if necessary, we may assume that λ is everywhere of even
rank. By Proposition 2.3, λ is then locally alternating; that is, there exists a cover of
X by open subsets U and isomorphisms ιU : F |U ∼= E |U such that the compositions
ζU = λ|U ◦ ιU are alternating. The scheme Zm(E ,F )|U is then defined by

IZm(E ,F )|U := Pfrk(E )−m+2(ζU ). (12)

Since Zm(E ,F )|U is the degeneracy locus of an alternating map, its codimension is
at mostm(m−1)/2. Now the construction of the maps ζU in Proposition 2.3 depends
on the choice of a common Lagrangian complement to E |U and F |U . Nevertheless,
the local degeneracy loci Zm(E ,F )|U are independent of this choice and therefore
glue together to form a scheme Zm(E ,F ) because of Lemma 2.4 and the following
lemma.

lemma 2.5
LetF be a vector bundle of constant rank, and letL be a line bundle over a schemeX.
If ζ : F → F ∗(L) and h : F ∗(L)→ F are alternating maps such that u := 1−hζ
is invertible, then Pf2k(ζ ) = Pf2k(ζ − ζhζ ) for all integers k.

Proof
It is enough to prove the lemma in the case where L = OX and where X is universal.
So let r := rk(F ), and letR := Z[Xij , Yij ] be the polynomial ring in the independent
variables Xij , Yij (1 ≤ i < j ≤ r). Let ζ and h be the r×r matrices with coefficients
in R given by

ζij :=


Xij if i < j,

0 if i = j,
−Xji if i > j,

hij :=


Yij if i < j,

0 if i = j,
−Yji if i > j,

let u := 1 − hζ , let δ := det(u), and set Rδ := R[1/δ]. Thus X := Spec(Rδ). We
have to show that the two ideals

I := Pf2k(ζ ), J := Pf2k(ζ − ζhζ )
in Rδ coincide. However, we may notice the following three facts.



440 EISENBUD, POPESCU, AND WALTER

The ideal I ⊂ Rδ is prime. This is because the ideal of Z[Xij ] generated by the
2k×2k Pfaffians of ζ is prime (cf. S. Abeasis and A. Del Fra [1, §3]), so its extensions
to R (which is a polynomial algebra over Z[Xij ]) and to Rδ are also prime.

There is an involution of Rδ exchanging I and J . Since R is a polynomial algebra
over Z in variables that are the entries of ζ and h, one can specify a morphism
f : R→ Rδ by specifying alternating matrices f (ζ ) and f (h). Thus we may define
f by

f (ζ ) := ζ − ζhζ = ζu = u∗ζ, f (h) := −u−1h(u∗)−1.
One computes that f (u) = u−1, so f (δ) is the invertible element 1/δ ∈ Rδ . Hence
f extends uniquely to a morphism f : Rδ → Rδ . One checks that f (f (ζ )) = ζ

and that f (f (h)) = h, so f is an involution. Since f exchanges ζ and ζ − ζhζ , it
exchanges I and J .

The ideals I and J define the same algebraic subset of Spec(Rδ). This is equiva-
lent to showing that a morphism g : Rδ → K , with K a field, factors through Rδ/I if
and only if it factors through Rδ/J . But giving such a g is equivalent to giving alter-
nating matrices g(ζ ) and g(h) with coefficients in K such that g(u) = 1− g(h)g(ζ )
is invertible. Such a g factors through Rδ/I if and only if rk[g(ζ )] < 2k, and it factors
through Rδ/J if and only if

rk
[
g(ζ − ζhζ )] = rk

[
g(ζ )g(u)

]
< 2k.

Since g(u) is invertible, the two conditions are equivalent.
These three facts show that (in the generic case) I and J are prime ideals defining

the same algebraic subsets. This proves that I and J are equal in the generic case and
therefore equal in all cases. This proves the lemma.

The definition of Zm(E ,F ) generalizes the definition of Zm(ζ ).

lemma 2.6
Let ζ : F → F ∗(L) be an alternating map of vector bundles, and let %ζ (F ) ⊂
F ⊕F ∗(L) be its graph. For any m such that m ≡ rk(F ) (mod 2), the degeneracy
loci Zm(ζ ) and Zm(F , %ζ (F )) are identical schemes.

Finally, we may verify that our scheme-theoretic degeneracy loci do not change if we
invert the order of our pair of Lagrangian subbundles; that is,

Zm(E ,F ) = Zm(F , E )

for all m ≡ rk(E ) (mod 2). Essentially, if MU is a common Lagrangian comple-
ment of E |U and of F |U which leads to a ζU as in (12) such that Zm(E ,F )|U =
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Zm(ζU ), then a computation similar to Lemma 2.4(c) leads to a natural identification
Zm(F , E )|U = Zm(−ζU ). We leave the details to the reader.

In this paper our interest is in the locus Z := Z3(E ,F ) in the case when it has
codimension 3, the largest possible (and expected) value. The fundamental classes
computed in [17], [16], and [18] agree with the scheme structures introduced here,
which coincide with the scheme structures defined in [11].

All the results of this section have analogues for pairs of Lagrangian subbundles
of twisted symplectic bundles. Degeneracy loci for such pairs are the degeneracy
loci of locally symmetric maps. The symplectic case is slightly simpler than the
orthogonal case because one does not need to worry about the parity of m or of
dimk(x)[E (x) ∩ F (x)]. (There is no symplectic analogue of Proposition 1.1.) The
details are left to the reader.

3. Lagrangian degeneracy loci are strongly subcanonical
We now prove the implication (b)⇒ (a) of our main Theorem 0.2.

theorem 3.1
Suppose that (V , q) is a twisted orthogonal bundle over a locally Noetherian scheme
X with values in a line bundle L. Suppose that E ,F ⊂ (V , q) are Lagrangian
subbundles such that dimk(x)[E (x) ∩F (x)] is odd for all x ∈ X. Write LE ,F ,V :=
det(E )⊗ det(F )⊗ det(V )−1. Suppose that the submaximal minors of the composite
map λ : E ↪→ V ∼= V ∗(L) � F ∗(L) generate an ideal sheaf I of grade 3 (the
expected value).

Then the ideal sheaf of the closed subscheme (cf. (12)),

Z = Z3(E ,F ) = {x ∈ X | dimk(x) [E (x) ∩F (x)
] ≥ 3

}
,

has grade 3 and satisfies I 2
Z = I . The sheaf OZ has locally free resolutions

0 −→ LE ,F ,V −→ E (M)
λ−−→ F ∗(L⊗M) −→ OX −→ OZ −→ 0, (13a)

0 −→ LE ,F ,V −→ F (M)
−λ∗−−→ E ∗(L⊗M) −→ OX −→ OZ −→ 0, (13b)

with M a line bundle such that M⊗2 ∼= LE ,F ,V ⊗ L−1. Moreover, the natural
isomorphism between (13b) and the dual of (13a) defines an isomorphism

η : OZ
∼=−−→ E xt3OX

(
OZ,LE ,F ,V

) =: ωZ/X(LE ,F ,V

)
,

with respect to which Z is strongly subcanonical of codimension 3 in X (cf. Defini-
tion 0.1).
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corollary 3.2
If, in the situation of the theorem, X is locally Gorenstein, then so is Z, and ωZ ∼=
ωX(L

−1
E ,F ,V )|Z .

The statement of the theorem remains true even if X is not Noetherian, provided
one defines grade as in J. Eagon and D. Northcott [12] and Northcott [28]. The only
difference in the proofs is that one uses the non-Noetherian generalizations of the
Buchsbaum-Eisenbud structure theorems found in these references.

Proof of Theorem 3.1
Let f : E → V and g : F → V be the inclusions, and let N = E ∩F be the kernel
in the natural sequence

0 −→ N

(
i
j

)
−−−→ E ⊕F

( f −g )−−−−→ V .

If β : V
∼−→ V ∗(L) is the isomorphism induced by the quadratic form q, and

λ := g∗βf , then we get a commutative diagram

E
f

λ
F ∗(L)

j∗

N

i

j

V

g∗β

f ∗β
N−1 ⊗ L

F

g

λ∗
E ∗(L)

i∗

(14)

Since the diagonals are short exact sequences, the kernels of λ and of λ∗ are both
equal to N . In addition, f i = gj .

We claim that N is a line bundle and that the complexes

0 −→ N
i−→ E

λ−→ F ∗(L) j∗−−→ N−1 ⊗ L, (15a)

0 −→ N
j−→ F

−λ∗−−→ E ∗(L) i∗−−→ N−1 ⊗ L (15b)

are exact and are locally free resolutions of OZ(N
−1 ⊗ L) for the subscheme Z =

Z3(E ,F ) ⊂ X of grade 3, with I 2
Z = I . We prove these claims locally by making

λ locally alternating and applying the Buchsbaum-Eisenbud structure theorem [6].
Now the vector bundles E and F may be of even or odd rank. If the rank is even,

we use the same trick as in (7) and replace λ by

E ⊕ OX

(
λ 0
0 1

)
−−−→ F ∗(L)⊕ OX
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without changing the kernel and cokernel of λ. Thus we may assume that E and F

are of odd rank.
By hypothesis, dimk(x)[E (x) ∩F (x)] is also odd for all x ∈ X. Therefore, by

Proposition 2.3, λ is locally alternating; that is, X is covered by open subsets U over
which there are isomorphisms ιU : F |U ∼= E |U such that ζU = λ|U ◦ιU is alternating.
Thus we see that our complexes (15a) and (15b) are locally isomorphic to complexes

0 −→ N |U
j |U−−→ F

ζU−−→ F ∗(L)
j∗|U−−−→ (

N−1 ⊗ L)|U (16)

such that ζU is alternating with kernel j |U = ι−1U ◦i|U in the notation of diagram (14).
Now F is of odd rank, ζU is alternating, and the ideal I generated by its submaxi-
mal minors is of grade 3. So the Buchsbaum-Eisenbud structure theorem [6] applies.
Therefore the kernel N |U is a line bundle, the map j |U is given by the submaximal
Pfaffians of ζU , and the complex (16) is exact and is a resolution of OZ(N

−1⊗L)|U .
We can also identify the ideal sheaf I generated by the submaximal minors of λ
with I 2

Z . This works because on U the sheaf IZ|U is generated by the submaximal
Pfaffians p1, . . . , pn of the alternating map ζU , while I |U is generated by the sub-
maximal minors. Since the (i, j)th submaximal minor is ±pipj (see [6, appendix]),
we do indeed get I 2

Z|U = I |U . This verifies our claims.
Now we set M := N ⊗ L−1 and twist. We get two dual resolutions:

0 −→ M⊗2 ⊗ L −→ E (M)
λ−→ F ∗(L⊗M) −→ OX −→ OZ −→ 0, (17a)

0 −→ M⊗2 ⊗ L −→ F (M)
−λ∗−−→ E ∗(L⊗M) −→ OX −→ OZ −→ 0. (17b)

The alternating product of the determinant line bundles in each resolution is trivial,
and therefore M⊗2 ⊗ L ∼= LE ,F ,V .

Let us now verify that Z ⊂ X satisfies conditions (A)–(D) of Definition 0.1. The
duality between the two resolutions of OZ shows that Z ⊂ X is relatively Cohen-
Macaulay of codimension 3. The duality also induces an isomorphism η : OZ ∼−→
E xt3OX(OZ,LE ,F ,V ), making Z ⊂ X subcanonical. Clearly OZ is of finite local
projective dimension. Moreover, η is the Yoneda extension class of (17a) and is thus
the image of the class in Ext2OX(IZ,M

⊗2 ⊗ L) of

0 −→ M⊗2 ⊗ L −→ E (M) −→ F ∗(L⊗M) −→ IZ −→ 0.

So Z ⊂ X is strongly subcanonical with respect to η.

4. Degeneracy loci for split Lagrangian subbundles
In this section we discuss Lagrangian degeneracy loci in the “split” case where the
bundles are E ,F ⊂ (F ⊕ F ∗(L), qh). We prove the implications (c) ⇔ (d) ⇒
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(a) of our main Theorem 0.2. We discuss the relation between this case and Pfaffian
subschemes, and we show how the general case can be transformed into the split case.
In [14] we use this split case to construct non-Pfaffian subcanonical subschemes of
codimension 3 in P

n.

theorem 4.1
Let F be a vector bundle of rank n, and let L be a line bundle on a locally Noetherian
scheme X. Let F ⊕F ∗(L) be the hyperbolic twisted orthogonal bundle.

(a) Suppose that

E

(
ψ
φ

)
↪→ F ⊕F ∗(L) (18)

is a Lagrangian subbundle such that dimk(x)[E (x)∩F ∗(L)(x)] is odd for all x ∈ X.
Let LE ,F := det(E )⊗ det(F )−1.

If the sheaf of ideals I generated by the submaximal minors of ψ is of grade 3
(the expected value), then the ideal sheaf of the closed subscheme

Z = Z3(E ,F
∗(L)) = {x ∈ X | dimk(x) [E (x) ∩F ∗(L)(x)

] ≥ 3
}

has grade 3 and satisfies I 2
Z = I . There is a commutative diagram with exact rows

0 LE ,F E (M)

φ

ψ
F (M)

φ∗

OX OZ

η∼=

0 LE ,F F ∗(L⊗M) −ψ
∗

E ∗(L⊗M) OX E xt3OX
(
OZ,LE ,F

)
(19)

withM a line bundle on X such thatM⊗2 ∼= L−1⊗LE ,F and with φ∗ψ alternating.
Moreover, ωZ/X ∼= L−1E ,F |Z , and Z is strongly subcanonical of codimension 3 in X
with respect to η.

(b) Conversely, given a subscheme Z with locally free resolutions as in (19) and
with φ∗ψ alternating, then E ⊂ F ⊕F ∗(L) is a Lagrangian subbundle, and thus
Z ⊂ X is strongly subcanonical of codimension 3.

corollary 4.2
If, in the situation of the theorem, X is locally Gorenstein, then so is Z, and ωZ ∼=
ωX(L

−1
E ,F )|Z .

Proof of Theorem 4.1
The only things we need to show for part (a) which do not already follow from
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Theorem 3.1 are that (19) commutes and that φ∗ψ is alternating. But E is a totally
isotropic subbundle, so any local section e ∈ %(U, E ) satisfies

0 = qh
(
ψ(e)⊕ φ(e)) = 〈ψ(e), φ(e)〉 = 〈φ∗ψ(e), e〉. (20)

Thus φ∗ψ is alternating, and the central part of diagram (19) commutes. The rest
is easy and left to the reader. For part (b) the fact that (19) is a quasi-isomorphism
implies that E is a subbundle of F ⊕ F ∗(L). It is totally isotropic by the same
calculation (20).

Pfaffian subschemes
Okonek’s Pfaffian subschemes (see [29]) are the special case of the construction of
Theorem 4.1 with E = F ∗(L) and φ = 1. For if

E

(
ψ
1

)
↪→ E ∗(L)⊕ E

is a Lagrangian subbundle, then ψ is alternating by Lemma 1.2 or by (20). So in this
case the two resolutions of (19) reduce to

0 −→ L⊗M⊗2 −→ E (M)
ψ−−→ E ∗(L⊗M) −→ OX −→ OZ −→ 0,

with ψ alternating. Thus Z ⊂ X is one of Okonek’s Pfaffian subschemes.

From nonsplit to split bundles
When the orthogonal bundle (V , q) of Theorem 3.1 does not split as F ⊕F ∗(L),
we cannot fill in the diagram (19) with direct arrows:

0 LE ,F ,V
i

E (M)
λ

F ∗(L⊗M) j∗
OX OZ

η∼=

0 LE ,F ,V
j

F (M)
−λ∗

E ∗(L⊗M) i∗
OX E xt3OX

(
OZ,LE ,G

)
(21)

Nevertheless, by modifying the orthogonal bundle and its Lagrangian subbundles, we
can usually realize the same degeneracy locus as a Lagrangian degeneracy locus of a
split orthogonal bundle.

We know two strategies to accomplish this under different hypotheses. One is to
apply the converse structure theorem (Theorem 6.1). The other strategy works when-
ever the quadratic form q ∈ %(X, (S2V ∗)(L)) is the image of an α ∈ %(X, (V ∗ ⊗
V ∗)(L)), for instance, if 2 ∈ %(X,OX)×. Then the orthogonal direct sum (V , q) ⊥
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(V ,−q) is hyperbolic because of the inverse isometries

(V , q) ⊥ (V ,−q)
(
1 1
α −α∗

)
V ⊕ V ∗(L)(

β−1α∗ β−1
β−1α −β−1

)

with β := α + α∗ the nonsingular symmetric bilinear form associated to q.
The composite map E ⊕ F ↪→ (V , q) ⊥ (V ,−q) ∼= V ⊕ V ∗(L), or, more

explicitly,

E ⊕F

(
f g

αf −α∗g
)

−−−−−−−→ V ⊕ V ∗(L),

embeds E ⊕F as a Lagrangian subbundle of the hyperbolic bundle V ⊕V ∗(L). We
may then fill in the diagram (21) with a sequence of quasi-isomorphisms going in
both directions:

0 LE ,F ,V E (M)
g∗βf

F ∗(L⊗M) OX

0 LE ,F ,V (E ⊕F )(M)

(αf−α∗g)

( 1 0 )

( f g )
V (M)(

f ∗α∗
−g∗α∗

)
g∗β

OX

0 LE ,F ,V V ∗(L⊗M)(−f ∗
−g∗

) (E ∗ ⊕F ∗)(L⊗M) OX

0 LE ,F ,V F (M)

βg

−f ∗βg E ∗(L⊗M)

(
1
0

)
OX

Another way of looking at this is as follows. Let P� and Q� denote the first two
lines of the last diagram. If one has V ∼= F ⊕F ∗(L) as in Theorem 4.1, then the
chain map of that theorem is induced by a twisted shifted nonsingular quadratic form
on the chain complex P� given by a chain map D2(P�)→ LE ,F ,V [3]. In general,
no such chain map exists, but if we can lift q to α as above, then there is a pair of
chain maps

D2
(
P�
) ∼←−− D2

(
Q�
) −→ LE ,F ,V [3] (22)

with the first arrow a quasi-isomorphism. This means that in Theorem 3.1 we are also
dealing with a sort of twisted shifted nonsingular quadratic form on P�, but only in
the derived category.

5. Local equations for the degeneracy locus
LetZ ⊂ X be a subcanonical subscheme of codimension 3 which is a split Lagrangian
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degeneracy locus as in diagram (19). We give two strategies for computing equations
that define this degeneracy locus locally. The first is based on the idea of using a
common Lagrangian complement to make λ alternating as in Proposition 2.3. The
second is based on finding standard local forms for a pair of Lagrangian submodules.

Strategy 1: Alternating homotopies
We start with a pair of Lagrangian subbundles E and F ∗(L) of a twisted orthogonal
bundle. We may reduce to the case where the rank of both E and F is odd using
(7). Also, since we are working locally, we may assume that the orthogonal bundle
splits as F ⊕F ∗(L) because over an affine scheme any Lagrangian subbundle has
a Lagrangian complement (see, e.g., Knus [25, Remark I.5.5.4]). Then locally E and
F ∗(L) have a common Lagrangian complement M according to Proposition 2.1.
This M is necessarily the graph of an alternating map h : F → F ∗(L) by Lemma
1.2. We use this h as an alternating local homotopy to transform the commutative
diagram on the left below into the one on the right:

E
ψ

φ

F
h

φ∗

F ∗(L) −ψ∗ E ∗(L)

E
ψ

φ−hψ
F

φ∗+ψ∗h

F ∗(L) −ψ∗ E ∗(L)

(23)

Then φ − hψ is an isomorphism because it is the projection of E onto F ∗(L) along
their common complement M . The dual map φ∗+ψ∗h is also an isomorphism. Thus
diagram (19), with a symmetric quasi-isomorphism between the resolutions of OZ ,
can be modified locally by an alternating homotopy to get a diagram (valid locally)
with a symmetric isomorphism from the resolution into its dual:

0 LE ,F E (M)

φ−hψ

ψ
F (M)

φ∗+ψ∗h

OX OZ

η∼=

0 LE ,F F ∗(L⊗M)−ψ
∗

E ∗(L⊗M) OX E xt3OX(OZ,LE ,F )

Thus locally OZ has a symmetric resolution

0 −→ LE ,F −→ E (M)
µ−−→ E ∗(L⊗M) −→ OX −→ OZ −→ 0,

where µ = φ∗ψ + ψ∗hψ is alternating (and is essentially the map µM of (16)
and Proposition 2.1). The submaximal Pfaffians of µ give local equations for the
degeneracy locus Z.

The choice of another common Lagrangian complement M gives a different
alternating homotopy h, and vice versa. These calculations are similar to Lemma 2.4.
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Strategy 2: Standard local forms
Suppose that R is a commutative local ring with maximal ideal m and residue field
k := R/m. Let F be a free R-module of finite rank, and equip F ⊕ F ∗ with the
hyperbolic quadratic form. Suppose that E ⊂ F ⊕ F ∗ is a Lagrangian submodule,
that is, a totally isotropic direct summand of rank equal to that of F . Let ψ : E→ F

and φ : E→ F ∗ be the two components of the inclusion.

lemma 5.1
In the above situation there exist bases of E and F and a dual basis of F ∗ in which
the matrices of ψ and φ are of the form

ψ =
(
β 0
0 I

)
, φ =

(
I 0
0 γ

)
with the blocks in the two matrices of the same size, and with β and γ alternating.

Proof
We begin by choosing bases for E and F and the dual basis of F ∗, so that we can
treat ψ and φ as matrices. Since E is a direct summand of F ⊕F ∗, the columns of the
total matrix

( ψ
φ

)
are linearly independent even modulo m. Moreover, by (20), φ∗ψ

is an alternating matrix because E ⊂ F ⊕ F ∗ is a totally isotropic submodule.
We now begin a series of row and column operations onψ and φ which puts them

into the required form. The column operations (resp., row operations) correspond to
changes of basis of E (resp., of F and F ∗) and to the action of invertible matrices P
(resp., Q) on ψ and φ via ψ � Q−1ψP and φ � Q∗φP .

Choose a maximal invertible minor of φ. After row and column operations, we
can assume that the corresponding submatrix is an identity block lying in the upper
left corner of φ and that the blocks below and to the right of it are zero. Thus we can
assume that

φ =
(
I 0
0 δ

)
, ψ =

(
ψ11 ψ12

ψ21 ψ22

)
,

where the blocks of the two matrices are of the same size, the on-diagonal blocks are
square, and the coefficients of δ lie in m. Since

φ∗ψ =
(
ψ11 ψ12

δ∗ψ21 δ∗ψ22

)
is alternating, we see that all the coefficients of ψ12 also lie in m. Hence all the
coefficients in the last block of columns of

( ψ
φ

)
lie in m except those in ψ22. Since

these columns must be linearly independent modulo m, it follows that ψ22 must be
invertible. Applying a new set of column operations to φ and ψ , we may assume that
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ψ = ( ψ11 ε
ψ21 I

)
and that φ = ( I 0

0 γ

)
. Moreover, φ∗ψ remains alternating, which actually

means that ψ11 and γ are alternating, and ε = −ψ∗21γ . A final set of row and column

operations using the matrices Q = (
I ψ∗21γ
0 I

)
and P = (

I 0−ψ21 I

)
puts ψ and φ into

the form required by the lemma.

corollary 5.2
Let R be a commutative local ring with residue field k, let F be a free R-module of
odd rank, and let E ⊂ F ⊕ F ∗ be a Lagrangian submodule such that dimk[(E ⊗
k) ∩ (F ⊗ k)] is odd. Let ψ : E→ F and φ : E→ F be the two components of the
inclusion.

(a) The determinant of φ is of the form det φ = af 2 with a invertible.

(b) If det(φ) is not a zero-divisor, and if ψ degenerates along an ideal I of height
and grade 3 (as expected), then this ideal is I = (Pf(φ∗ψ) : f ), where Pf(φ∗ψ) is
the ideal generated by the submaximal Pfaffians of φ∗ψ and where f is as in part (a).

Proof
(a) We put the matrices of φ and of ψ in the special form of Lemma 5.1, and we
set f := Pf(γ ). The determinant of the matrix of φ is then f 2. Consequently, the
determinant of the matrix of φ with respect to any bases of E and F is of the form
af 2, with a an invertible element of R coming from the determinants of the change-
of-basis matrices.

(b) Using the special forms for φ and ψ given in Lemma 5.1, we find that I is
generated by the submaximal Pfaffians p1, . . . , p2s+1 of β, while the ideal Pf(φ∗ψ)
is generated by fp1, . . . , fp2s+1. Since we suppose det(φ) and therefore f are not
zero-divisors, this gives (b).

6. Subcanonical subschemes are Lagrangian degeneracy loci
In this section we prove the implication (a)⇒ (d) of our main Theorem 0.2. Taken
together with Theorems 3.1 and 4.1, this proves the main theorem because the impli-
cation (c)⇒ (b) is trivial.

theorem 6.1
Let A be a Noetherian ring, and let X ⊂ P

N
A be a locally closed subscheme. If

Z ⊂ X is a codimension 3 strongly subcanonical subscheme (cf. Definition 0.1),
then there exist vector bundles E and G , a line bundle L on X, and an embedding
of E as a Lagrangian subbundle of the twisted hyperbolic bundle G ⊕ G ∗(L) such
that Z = Z3(E ,G

∗(L)) and OZ has symmetrically quasi-isomorphic locally free
resolutions
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0 L E

φ

ψ
G

φ∗

OX OZ

η∼=

0

0 L G ∗(L)
−ψ∗

E ∗(L) OX E xt3OX(OZ,L) 0

(24)
with φ∗ψ : E → E ∗(L) an alternating map.

We need the following two lemmas in the proof of the theorem.

lemma 6.2
Let A be a Noetherian ring, let X ⊂ P

N
A be a locally closed subscheme, let F ,G be

coherent sheaves on X, let M be a vector bundle on X, and let p > 0.
(a) If ξ ∈ ExtpOX(F ,G ), then there exists a vector bundle E on X and a surjection

f : E � F such that the pullback class f ∗ξ ∈ ExtpOX(E ,G ) vanishes.

(b) If ζ ∈ ExtpOX(@
2M ,G ), then there exists a surjection of vector bundlesP �M

such that the pullback of ζ to ExtpOX(@
2P,G ) vanishes.

Proof
(a) Extending F to a coherent sheaf on the closureX ⊂ P

N
A and then applying Serre’s

Theorem A, we see that there exists a surjection of the form g : OX(−n)r � F .
Pulling back gives us a class g∗ξ ∈ Hp(X,G (n))r .

Let R be the homogeneous coordinate ring of X, and let I ⊂ R be the ho-
mogeneous ideal of strictly positive degree elements vanishing on the closed subset
X\X. Extend G to a coherent sheaf onX, and letG be a finitely generated graded R-
module whose associated sheaf is this extension of G . ThenHp∗ (X,G )r ∼= Hp+1

I (G)r .
Consequently, g∗ξ , as a member of a local cohomology module, is annihilated by
some power Im of I . A finite set of homogeneous generators of Im gives surjections⊕

i R(−ai) � Im and
⊕

i OX(−ai) � OX such that the pullback of g∗ξ along the
induced map

⊕
i OX(−ai − n)r � OX(−n)r vanishes.

(b) For the same reasons as in part (a), ζ is killed by some power of I . For
convenience we assume that the same Im as in part (a) kills ζ . Let

⊕
i OX(−ai)� OX

be the surjection used in part (a). Then the surjection
⊕

i M (−ai) � M kills ζ
because the exterior square factors as @2(

⊕
i M (−ai)) � ⊕

i≤j (@2M )(−ai −
aj )� @2M .

lemma 6.3 (Serre; see [30, Lemma 5.1.2])
Let A be a Noetherian local ring, and let M be a finitely generated A-module of
projective dimension at most 1. Suppose that ζ ∈ Ext1A(M,A) corresponds to the
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extension 0 → A → N → M → 0. Then N is a free A-module if and only if ζ
generates the A-module Ext1A(M,A).

Proof of Theorem 6.1
By hypothesis, η lifts to a class in Ext2OX(IZ,L). By Lemma 6.2(a) there exists
a vector bundle M and a surjection and kernel 0 → K → M → IZ → 0
such that η lifts further to a class ζ ∈ Ext1OX(K , L). This defines an extension
0→ L→ E → K → 0. Attaching these extensions gives an acyclic complex

0 −→ L −→ E −→M −→ OX −→ OZ −→ 0. (25)

We claim that E is locally free. Our reasoning is as follows. Since the local
projective dimension of OZ is at most 3, the local projective dimension of K is at
most 1. By Lemma 6.3, E is locally free if ζ generates the sheaf E xt1OX(K , L).

Moreover, the sheaves OZ , E xt3OX(OZ,L)), and E xt1OX(K , L) are all isomorphic,
and their respective global sections 1, η, and ζ correspond under these isomorphisms:

ζ ∈ Ext1OX(K , L) H 0
(
E xt1OX(K , L)

)
∼=

η ∈ Ext3OX
(
OZ,L

) ∼=
H 0
(
E xt3OX(OZ,L)

)
H 0(OZ) " 1

∼=

Since 1 generates OZ , the section ζ generates E xt1OX(K , L). Thus E is locally free.
The complex

A� : 0 −→ L −→ E −→M −→ OX −→ 0 (26)

is now a locally free resolution of OZ . As in [6] and [35], we try to make this into a
commutative associative differential graded algebra resolution of OZ by constructing
a map D2(A�)→ A� from the divided square covering the identity in degree zero:

. . . M (L)⊕D2E L⊕ (E ⊗M ) E ⊕@2M M OX

. . . 0 L E M OX
(27)

Now @2M maps into the kernel K of M → OX. Hence the first problem in filling
in the dotted arrows above is to carry out a lifting

@2M

0 L E K 0
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The obstruction to carrying out the lifting is a class ζ ∈ Ext1OX(@
2M , L). There is

no reason for this class to vanish. So the liftings sought in (27) need not exist. But
there is a way around this.

By Lemma 6.2(b) there is a surjection from another vector bundle G �M such
that the pullback of ζ to Ext1OX(@

2G , L) vanishes. We now redo the construction of
the complex and get commutative diagrams with exact rows and columns:

R R

0 L F K ′

�

0

0 L E K 0

R R

0 K ′ G IZ 0

0 K M IZ 0

This allows us to construct a new complex

B� : 0 −→ L −→ F
ψ−→ G −→ OX −→ 0.

One sees easily that R and therefore F are also vector bundles. But this time the
composite map @2G → K ′ → K lifts to E since the obstruction is the class in
Ext1OX(@

2G , L)which we got to vanish using Lemma 6.2(b). Since the square marked

with the � is cartesian, we get a lifting @2G → F . The other liftings

. . . G (L)⊕D2F L⊕ (F ⊗ G ) F ⊕@2G G OX

. . . 0 L F G OX
(28)

now occur automatically. We therefore get a chain map D2B� → B� that makes B�
into a commutative associative differential graded algebra with divided powers.

We now claim that having this differential graded algebra structure gives us all
the properties we want and puts us into the situation of Theorem 4.1. Indeed, as in
[6], the multiplication gives pairings Bi ⊗ B3−i → B3 = L and therefore maps
Bi → B∗3−i (L). These maps are compatible with the differential, and, as a result,
the following diagram commutes:

0 L F

φ

ψ
G

φ∗

OX OZ

η#

0

0 L G ∗(L) −ψ∗ F ∗(L) OX E xt3OX(OZ,L) 0
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The top row is exact by construction, and the bottom row is exact because it is the dual
of the top row which is a resolution of a sheaf of grade 3. Since η is an isomorphism,
one sees that

0 −→ F

(
ψ
φ

)
−−−→ G ⊕ G ∗(L) ( φ∗ ψ∗ )−−−−−→ F ∗(L) −→ 0

is exact. Thus F embeds in G ⊕G ∗(L) as a subbundle that is totally isotropic for the
hyperbolic symmetric bilinear form on G ⊕ G ∗(L). The subbundle F is even totally
isotropic for the hyperbolic quadratic form since the restriction of this form to local
sections of F is the function e �→ 〈φ(e), ψ(e)〉, and this function vanishes because
the composite map from diagram (28),

D2F −→ F ⊗ G −→ L,

f ⊗ f �−→ f ⊗ ψ(f ) �−→ 〈
φ(f ), ψ(f )

〉
,

factors through zero and hence vanishes identically. Thus F is a Lagrangian subbun-
dle of G ⊕ G ∗(L). This completes the proof.

7. Points in P
3

In this and the following section we discuss several classes of examples which satisfy
some or all of the conditions (A)–(D) of the definition of a strongly subcanonical
subscheme; thus Theorems 0.2 and 6.1 may apply. Additional geometric applications
and examples can be found in [14].

Okonek [29, p. 429] has shown that any reduced set of points in P
3 is Pfaffian. By

carefully analyzing the constructions of Theorem 6.1, we describe Pfaffian resolutions
of locally Gorenstein zero-dimensional subschemes in P

3 (see Remark 7.4).
For a locally Gorenstein zero-dimensional subscheme Z ⊂ P

3
k over a field k,

there are many isomorphisms η : OZ ∼−→ ωZ(t). Which triples (Z, ωP3(t), η) satisfy
all the conditions of Definition 0.1, and which do not? In particular (and this is the
only condition that causes trouble), when does the image of η in H 3(P3, ωP3(t))

vanish?
We use the following notation (see, e.g., [13]). Let I ⊂ R := k[x0, x1, x2, x3] be

the homogeneous ideal of Z, let A := R/I be its homogeneous coordinate ring, and
let ωA := Ext3R(A,R(−4)) be its canonical module. Note that η ∈ H 0∗ (ωZ) ⊃ ωA.
Also, if M is a graded R-module, then let M ′ be its dual as a graded k-vector space,
endowed with the natural dual R-module structure.

proposition 7.1
Let Z ⊂ P

3 be a locally Gorenstein subscheme of dimension zero, and let η : OZ ∼−→
ωZ(t) be an isomorphism. Then the triple (Z, ωP3(t), η) is subcanonical and satisfies
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conditions (A)–(C) of Definition 0.1, and it satisfies condition (D) if and only if
η ∈ ωA.

Proof
The map η : OZ → ωZ(t) may be identified with an element of Ext3O

P3
(OZ, ωP3(t))

∼= H 0(OZ(−t))′. The subscheme Z ⊂ P
3 satisfies condition D for η if and only if η

is in the image of Ext2O
P3
(IZ, ωP3(t)) ∼= H 1(IZ(−t))′.

Local duality and Serre duality give identifications

ωA := Ext3R(A,R(−4)) ∼= H 1
m(A)

′ ∼= H 1∗ (IZ)
′

and H 0∗ (ωZ) ∼= H 0∗ (OZ)′ which are compatible with the inclusions. So η satisfies
Definition 0.1(D) if and only if η ∈ ωA.

theorem 7.2
Let Z ⊂ P

3 be a locally Gorenstein subscheme of dimension zero, and let η ∈
H 0(ωZ(t)). Suppose that
(a) η generates the sheaf ωZ ,
(b) η ∈ ωA, and
(c) if t = −2C is even, then the following nondegenerate symmetric bilinear form on

H 0(OZ(C)) is metabolic (i.e., contains a Lagrangian subspace):

H 0(OZ(C))×H 0(OZ(C)) −→ H 0(OZ(2C))
η−→ H 0(ωZ)

tr−→ k. (29)

Then there exists a locally free resolution

0 −→ OP3(t − 4) −→ F ∗(t − 4)
ψ−−→ F −→ OP3 −→ OZ −→ 0 (30)

with ψ alternating and IZ generated by the submaximal Pfaffians of ψ and such
that the Yoneda extension class of (30) is η ∈ Ext3O

P3
(OZ,OP3(t − 4)) ∼= H 0(ωZ(t)).

Conversely, if there exists a locally free resolution of OZ as in (30) with ψ
alternating, then its Yoneda extension class η satisfies conditions (a), (b), and (c).

In order for the symmetric bilinear form (29) to be metabolic, it is necessary for
deg(Z) to be even. If the base field k is closed under square roots, this is also sufficient.

In any case, the conditions of the theorem always hold if t is large and odd and
η is general. This proves the following result, which was proven for reduced sets of
points by Okonek [29, p. 429].

corollary 7.3
A zero-dimensional subscheme of P

3 is Pfaffian if and only if it is locally Gorenstein.
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Proof of Theorem 7.2
We show how to start the proof. But we stop when we reach the point where it
becomes identical to the proof of the main result of [35].

Suppose that Z, t , η satisfy conditions (a), (b), and (c) of Theorem 7.2. Condition
(a) implies that the map η : OZ → ωZ(t) is an isomorphism. So η and Serre duality
induce a symmetric perfect pairing

H 0∗ (OZ)×H 0∗ (OZ)
mult−−→ H 0∗ (OZ)

η−→ H 0∗ (ωZ(t))
tr−→ k(t) (31)

that pairs H 0(OZ(n)) with H 0(OZ(−n− t)) for all n.
Condition (c) implies that H 0∗ (OZ) contains a Lagrangian submoduleM for this

symmetric perfect pairing. Indeed, if t is odd, one can pick M :=⊕n>−t/2H 0(OZ

(n)). If t is even, then there exists a Lagrangian subspace W ⊂ H 0(OZ(−t/2)), and
one can pick M := W ⊕⊕n>−t/2H 0(OZ(n)).

The two submodules A ⊂ H 0∗ (OZ) and ωA ⊂ H 0∗ (ωZ) are orthogonal comple-
ments of each other under the Serre duality pairing (see, e.g., [13]). Hence condition
(b) (that η ∈ ωA) implies that ηA ⊂ ωA and therefore that A = ω⊥A ⊂ (ηA)⊥. Now
the orthogonal complement of ηA ⊂ H 0∗ (ωZ) under the Serre duality pairing corre-
sponds to the orthogonal complement of A ⊂ H 0∗ (OZ) under our pairing (31). So
condition (b) implies that A ⊂ A⊥. In other words, A ⊂ H 0∗ (OZ) is sub-Lagrangian.

It now follows that there exists a Lagrangian submodule L such that 0 ⊂ A ⊂
L = L⊥ ⊂ A⊥ ⊂ H 0∗ (OZ). For instance, pick L := A + (M ∩ A⊥) (cf. Knus [25,
Lemma I.6.1.2]).

One easily checks that An = (A⊥)n = H 0(OZ(n)) for n ' 0 and that An =
(A⊥)n = 0 for n ( 0. Consequently, A⊥/A is of finite length. It has an induced
nondegenerate symmetric bilinear form, and it has a Lagrangian submodule L/A.

We now claim that we can construct a locally free resolution

0 −→ OP3(t − 4)
α−→ F ∗(t − 4)

ψ−−→ F
β−→ OP3 −→ OZ −→ 0

with ψ alternating and such that H 1∗ (F ) ∼= L/A, and H 2∗ (F ) = 0. Moreover, β in-
duces a surjection H 0∗ (F ) � H 0∗ (IZ). Different pieces of the resolution contribute
different pieces of the cohomology moduleH 0∗ (OZ). The submodule A is contributed
by cokerH 0∗ (β); the piece L/A is contributed by H 1∗ (F ); the piece A⊥/L is con-
tributed by H 2∗ (F ∗(t − 4)); and the piece H 0∗ (OZ)/A⊥ is contributed by kerH 3∗ (α).

The construction of this resolution and the verification of its properties can be
done using the Horrocks correspondence by the same method as in [35]. It is quite
long, and we omit the details.

Remark 7.4
The graded moduleA⊥/A above can be thought of as the “intermediate cohomology”
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or deficiency module of (Z, t, η). To emphasize the dependence of this module on η,
one could write it as (ηA)⊥/A, where (ηA)⊥ ⊂ H 0∗ (OZ) means the orthogonal com-
plement of ηA ⊂ H 0∗ (ωZ) with respect to the Serre duality pairing. Now (ηA)⊥/A
is dual to (ωA/ηA), and it is also self-dual with a shift. Consequently, if η ∈ ωA is
of degree t , then the corresponding deficiency module is

(ηA)⊥

A
∼=
(
ωA

ηA

)′ ∼= (ωA
ηA

)
(t).

In Theorem 7.2 we split the deficiency module in half, and we put a Lagrangian
subhalf in F and the quotient half in F ∗(t − 4). The Pfaffian resolutions of OZ are
thus classified up to symmetric homotopy equivalence by pairs (η, L/A) with η ∈ ωA
generating the sheaf ωZ , and with L/A ⊂ (ηA)⊥/A a Lagrangian submodule.

An alternative strategy for dealing with this deficiency module is to construct a dia-
gram of the form of (19) in Theorem 4.1 (in which we write O := OP3 to try to stay
inside the margins):

0 O(t − 4) G

φ

ψ ⊕
O(−ai)

φ∗

O OZ

η∼=

0 O(t − 4)
⊕

O(ai + t − 4) −ψ∗ G ∗(t − 4) O ωZ(t)

(32)
with

⊕
O(−ai) corresponding to a minimal set of generators of the homogeneous

ideal of Z, with H 2∗ (G ) ∼= (ηA)⊥/A, the deficiency module, and with H 1∗ (G ) = 0.
We now give examples both of Pfaffian resolutions as in (30) which split the

deficiency module, and of resolutions as in (32) in the form of Theorem 4.1 which
gather the deficiency module up in one piece.

Example 1: One point
Consider a single rational pointQ. Its geometry is simple, but we can make its algebra
complicated.

The canonical module ofQ is ωA ∼=⊕n≥1H 0(ωQ(n)). If we pick a nonzero η of
degree 1, then it generates ωA, and its deficiency module vanishes. The constructions
described above both lead unsurprisingly to the Koszul resolution

0 −→ OP3(−3) −→ OP3(−2)⊕3 −→ OP3(−1)⊕3 −→ OP3 −→ OQ −→ 0.

However, if we let η ∈ ωA be a nonzero element of degree 2, then the deficiency
module is k concentrated in degree −1, and the construction (32) yields a diagram
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0 OP3(−2) E2
P3(1) OP3(−1)⊕3 OP3 OQ

η∼=

0 OP3(−2) OP3(−1)⊕3 EP3(1) OP3 ωQ(2)

More generally, if we let η ∈ ωA be a nonzero element of degree t , then the
deficiency module is

⊕−1
n=−(t−1) H 0(OQ(n)), and the construction (32) yields

0 OP3(t − 4) F ∗t (t − 4) OP3(−1)⊕3 OP3 OQ

0 OP3(t − 4) OP3(t − 3)⊕3 Ft OP3 OQ

with Ft a rank 3 locally free sheaf which is the sheafification of the kernel of the
presentation of the deficiency module

0 −→ Ft −→ OP3 ⊕ OP3(t − 2)⊕3 −→ OP3(t − 1) −→ 0.

If one lets η ∈ ωA be a nonzero element of degree 3, then applying the methods of
Theorem 7.2 yields a resolution that one recognizes as the Koszul complex associated
to the zero locus of a section of the rank 3 bundle TP3(−1):

0 −→ OP3(−1) −→ E2
P3(2) −→ EP3(1) −→ OP3 −→ OQ −→ 0.

Example 2: Three points
If Z is the union of three noncollinear rational points, then the module ωA has two
generators of degree zero, and Z is not arithmetically Gorenstein. If we pick a general
η ∈ ωA of degree zero, then the deficiency module is k, concentrated in degree zero,
and the construction (32) yields a diagram (in which we again write O := OP3 in
order to simplify the notation):

0 O(−4) O(−3)⊕E2
P3 O(−2)⊕3 ⊕ O(−1) O OZ

0 O(−4) O(−3)⊕ O(−2)⊕3 EP3 ⊕ O(−1) O OZ

If we pick a general η ∈ ωA of degree 1, then the deficiency module (ωA/ηA)(1)
is of length 4, concentrated in degrees zero and −1, and the methods of Theorem 7.2
yield a symmetric resolution (with alternating middle map ψ):

0 −→ O(−3) −→ ⊗2
P3(1)

⊕2 ⊕ O(−2) ψ−→ E⊕2
P3 ⊕ O(−1) −→ O −→ OZ −→ 0.
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8. Some weakly subcanonical subschemes
In this section we give some examples of weakly subcanonical subschemes. These
are examples of subschemes Z ⊂ X which satisfy conditions (A) and (B) of the
definition of a strongly subcanonical subscheme but fail one or both of conditions
(C) and (D). Thus the Serre construction (in codimension 2) and Theorem 6.1 (in
codimension 3) fail for these subschemes.

A weakly subcanonical curve
We construct a subcanonical curve C ⊂ P

1 × P
n for n ≥ 2 which fails the lifting

condition (D) of Definition 0.1.
Let C be a nonsingular projective curve of genus 2 over an algebraically closed

field k, let P be one of its Weierstrass points, and let D be a divisor of degree 4
on C. A base-point-free pencil in the linear system of divisors |D| defines a map
f : C → P

1, and a base-point-free net in |D + P | defines a map g : C → P
2.

Composing g with a linear embedding P
2 ↪→ P

n gives a map h : C → P
n. Let

i := (f, h) : C → P
1 × P

n. If the linear systems are chosen sufficiently generally,
then i is an embedding.

The restriction to C of a line bundle OP1×Pn(a, b) is OC((a + b)D + bP ). So
the canonical bundle ωC ∼= OC(2P) is the restriction of OP1×Pn(−2, 2). If the class
of D − 4P in Pic0(C) is not torsion, then OP1×Pn(−2, 2) is the only line bundle on
P
1×P

n whose restriction is ωC . Hence the subcanonical curveC ⊂ P
1×P

n definitely
fails such structure theorems as the Serre construction or Theorem 6.1 if the lifting
condition (D) of Definition 0.1 fails for the isomorphism η : ωC ∼= OP1×Pn(−2, 2)|C .

By (1) this failure is equivalent to the nonvanishing of the composite map

H 1(
P
1 × P

n,O(−2, 2)) rest−−→ H 1(C,O(−2, 2)|C) η−→∼= H 1(C, ωC)
tr−→∼= k. (33)

Now the image of g : C → P
2 is a singular quintic plane curve. If we resolve the

singularities, then g factors as an embedding followed by the blowdown C ↪→ P̃
2 →

P
2. The composite map of (33) now factors through the diagram

H 1
(
P
1 × P

n,O(−2, 2))

H 1
(
P
1 × P

2,O(−2, 2))
α

H 1
(
P
1 × P̃

2,O(−2, 2)) ∼= k6∼=

β

k ∼= H 1(C, ωC) H 1
(
P
1 × C,O(−2, 2(D + P))) ∼= k9γ
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The lifting condition (D) fails if and only if α is surjective and hence if and only if
im(β) �⊂ ker(γ ).

Now γ is part of the long exact sequence of cohomology for

0 −→ OP1×C(−3,D + 2P) −→ OP1×C(−2, 2D + 2P) −→ ωC −→ 0.

So γ is surjective, and ker(γ ) ⊂ k9 is a hyperplane.
The map g : C → P

2 is defined using a 3-dimensional subspace U3 ⊂ V4 :=
H 0(C,OC(D + P)). The complete linear system embeds C ↪→ P

3 as a curve of
degree 5 and genus 2 contained in a unique quadric surface Q. Then β is the natural
map from S2U3 ∼= k6 to S2V4/〈Q〉 ∼= k9. Now we have a range of choices for the
subspace U3 ⊂ V4 which vary in a Zariski open subset of P

3 = P(V ∗4 ). Hence we
have a family of possible subspaces S2U3 ⊂ S2V4 whose different members are not
all contained in any fixed hyperplane of S2V4. So if we choose a general U3 ⊂ V4,
then S2U3 = im(β) is not contained in the hyperplane ker(γ ) ⊂ S2V4/〈Q〉. In that
case, C ⊂ P

1 × P
n is a subcanonical curve that fails the lifting condition (D).

Singular points
Examples can easily be given of subcanonical subschemes Z ⊂ X which are not
covered by our construction because the finite projective dimension condition (C)
of Definition 0.1 breaks down. This may happen at the same time that the lifting
condition (D) breaks down, or it may happen independently. If (D) holds but (C)
breaks down, OZ still has resolutions fitting into diagrams such as (19) of Theorem
4.1, except that E or F or both are not locally free.

For instance, if X ⊂ P
4 is a singular hypersurface of degree d , and P ∈ X

is a singular point, then P is indeed subcanonical, but condition (C) fails because
OP is of infinite local projective dimension over OX. There exist isomorphisms η :
OP ∼= E xt3OX(OP ,OX(C)) for all C ∈ Z, but these satisfy condition (D) if and only if
C ≥ d − 4.

Similarly, if D is a line in P
5, and if Y ⊂ P

5 is a hypersurface containing D
which is singular in at least one point of D, then condition (C) fails for D ⊂ Y , but
all the other conditions hold (since H 3(Y, ωY (2)) = 0). So although D ⊂ Y may
be obtained as a degeneracy locus of a pair of Lagrangian subsheaves of a twisted
orthogonal bundle on Y , at least one of the Lagrangian subsheaves is not locally free.

A nonseparated example
We now give an example where there is no real choice about the η (becauseH 0(ωZ) =
k and there are no twists), where conditions (A)–(C) hold, but where condition (D)
fails. The real reason for the failure in this example is that we are doing something
silly on a nonseparated scheme. But the interesting thing is that the cohomological
obstruction (D) is able to detect our misbehavior.
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Let X be the nonseparated scheme consisting of two copies A
3 glued together

along A
3 − {0}. In other words, X is A

3 with the origin doubled up. Let P ′ ∈ X be
one of the two origins. It is a subcanonical subscheme ofX of codimension 3 of finite
local projective dimension; that is, it satisfies conditions (A)–(C) of Definition 0.1.
We claim that it does not satisfy condition (D).

The problem is to compute the map

Ext3OX(OP ′,OX) −→ Ext3OX(OX,OX) = H 3(X,OX). (34)

We use the following notation: U ′, U ′′ ⊂ X are the two copies of A
3; for α = 1, 2, 3,

let Uα ⊂ X be the open locus where xα �= 0; let Uαβ := Uα ∩ Uβ ; and let U123 :=
U1 ∩U2 ∩U3. For any inclusion of an affine open subscheme U ⊂ X, we denote by
i!OU the extension by zero ofOU to all ofX. We use the same letter i! whatever theU .

Then OX and OP ′ have resolutions of the form

0 i!OU123

⊕
α<β

i!OUαβ
⊕
α

i!OUα i!OU ′ ⊕ i!OU ′′ OX

0 i!OU ′ i!O⊕3U ′ i!O⊕3U ′ i!OU ′ OP ′

The horizontal maps in the first row are more or less taken from a Čech resolution,
while those from the second row are from a Koszul resolution. The vertical maps are,
from left to right,

(
1

x1x2x3

)
,


1

x1x2
0 0

0
1

x1x3
0

0 0
1

x2x3

 ,


1

x1
0 0

0
1

x2
0

0 0
1

x3

 ,
(
1 0

)
.

If we apply HomOX(−,OX) to the resolutions, we get complexes that compute the
ExtpOX(OP ′,OX) and the Hp(X,OX). (This is because OX is quasi-coherent, and
the i!OU are extensions by zero of locally free sheaves on affine open subschemes.)
Writing R := k[x1, x2, x3], these complexes are

0 R R⊕3 R⊕3 R 0

0 R ⊕ R
⊕
α

R
[
x−1α

] ⊕
α<β

R
[
x−1α x−1β

]
R
[
x−11 x−12 x−13

]
0
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with Koszul and Čech horizontal arrows. The vertical arrows are as before, but trans-
posed and in the reverse order.

The map (34) that we wish to compute may now be identified as k ↪→ H 3
m(R).

This map sends a nonzero η to a nonzero multiple of socle element x−11 x−12 x−13 of
H 3

m(R). So P
′ ⊂ X fails condition (D) of the definition of a strongly subcanonical

subscheme.
Actually, this example has additional pathologies that prevent OP ′ from having a

locally free resolution, whether symmetric or otherwise. For OP ′ does not even have
a locally free presentation. Indeed, for reasons of depth, any map E → F between
locally free sheaves on X is determined by what happens outside the two origins.
So the cokernel of such a map has the same fiber at the two origins. Therefore the
cokernel cannot be OP ′ .

9. Codimension 1 sheaves
In this section we consider the analogues of the results in the previous sections
for (skew)-symmetric sheaves of codimension 1. We include necessary and suffi-
cient conditions for such sheaves on P

N to have locally free resolutions that are
genuinely (skew)-symmetric, similar to those in [35]. We also prove that any such
sheaf on a quasi-projective variety has a resolution that is (skew)-symmetric up to
quasi-isomorphism, in analogy with Theorem 6.1. We finish the section with several
examples.

In this section we suppose that the characteristic is not 2, although all the theorems
have variants that are valid in characteristic 2.

Symmetric sheaves of codimension 1
Suppose F is a coherent sheaf on a scheme X which is of finite local projective
dimension and perfect of codimension 1. This means that locally F has free resolu-
tions 0 → L1 → L0 → F → 0 such that the dual complex 0 → L ∗0 → L ∗1 →
E xt1OX(F ,OX)→ 0 is also exact. The operation

F � F∨ := E xt1OX(F ,OX)

provides a duality on the category of such sheaves. A symmetric sheaf of codimen-
sion 1 is a pair (F , α), where F is a sheaf as above, and α : F → F∨(L) is
an isomorphism that is symmetric in the sense that α = α∨. (Here L is some line
bundle on X.) Skew-symmetric sheaves of codimension 1 on X are defined similarly.

Symmetric resolutions in codimension 1
Resolutions of codimension 1 symmetric sheaves on P

3 have been studied fairly
extensively by Barth [4], Casnati and Catanese [7], and Catanese [9], [10], in the
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context of surfaces with even sets of nodes and by S. Kleiman and B. Ulrich [24]
in the context of self-linked curves. The next theorem, conjectured by Barth and
Catanese, was proven by Casnati and Catanese for symmetric sheaves on P

3 (see [7,
Theorem 0.3]). They also remarked (see [7, Remark 2.2]) that essentially the same
proof works for codimension 1 symmetric sheaves on any P

n, which is true as long
as one remembers to include in one’s statement a parity condition analogous to that
in [35, Theorem 0.1]. For a case where the parity condition fails, see Example 9.3.

theorem 9.1 ([7], [10] with correction)
Let k be an algebraically closed field of characteristic different from 2. Suppose that
(F , α) is a symmetric sheaf of codimension 1 on P

n
k , with α : F

∼−→ F∨(C− n− 1).
Then F has a symmetric resolution, that is, a locally free resolution of the form

0 −→ G
f−→ G ∗(C− n− 1) −→ F −→ 0

with f symmetric, if and only if the following parity condition holds: if n ≡ 1 (mod 4)
and C is even, then χ(F (−C/2)) is also even.

A higher-codimension generalization of this theorem is proven in [15].
As the parity condition indicates, symmetric sheaves do not always possess

symmetric resolutions. The following structure theorem, analogous to Theorem 0.2,
shows that they do still have locally free resolutions that are symmetric up to quasi-
isomorphism.

theorem 9.2
Let X be a quasi-projective scheme over a Noetherian ring, and let F be a coherent
sheaf. The following are equivalent.
(a) F is perfect of codimension 1, and there exists a line bundle L on X and an

isomorphism α : F → F∨(L) making (F , α) a symmetric sheaf.
(b) The sheaf F has symmetrically quasi-isomorphic locally free resolutions

0 G

φ

ψ
H

φ∗

F

α∼=

0

0 H ∗(L)
ψ∗

G ∗(L) F∨(L) 0

(35)

with φ∗ψ : G → G ∗(L) a symmetric map and L a line bundle on X.
(c) There exists a line bundle L on X and a Lagrangian subbundle of a twisted

symplectic bundle

G

(
ψ
φ

)
↪→ H ⊕H ∗(L)
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such that
0 −→ G

ψ−→H −→ F −→ 0

is a resolution of F fitting into a commutative diagram as in (35).

Proof
The only delicate part is (a)⇒ (b). Because F is locally Cohen-Macaulay of codi-
mension 1, it has a locally free resolution 0 → P1 → P0 → F → 0. The
symmetric isomorphism α corresponds to a morphism in the derived category

S2(P�) :
α

0 @2P1 P1 ⊗P0 S2P0 0

L[1] : 0 0 L 0 0

This α is a member of the hyperext Ext1OX(S
2(P�), L), which in turn is the abutment

of the hyperext spectral sequence

E
pq

1 = ExtqOX
((
S2(P�

))
p
, L) =⇒ Extp+qOX

(
S2(P�), L

)
.

The differentials d1 define complexes (indexed by p = 0, 1, 2)

0 −→ ExtqOX
(
S2P0, L

) d1−→ ExtqOX(P1 ⊗P0, L)
d1−→ ExtqOX(@

2P1, L) −→ 0

whose cohomology groups are the Epq2 . In particular, E10
2 is the space of homotopy

classes of chain maps S2(P�)→ L[1]. Hence α is the class of an honest chain map
if and only if it comes from E10

2 . However, according to the 5-term exact sequence

0 −→ E10
2 −→ Ext1OX

(
S2(P�), L

) −→ E01
2 −→ · · · ,

the obstruction lies in E01
2 ⊂ Ext1OX(S

2P0, L). As in the proof of Theorem 6.1, this
obstruction may be nonzero, but it can be killed by pulling back along a suitable
epimorphism H � P0 (cf. Lemma 6.2). The proof may now be completed with
arguments taken from the proof of Theorem 6.1.

We now use this theorem to construct an example of a symmetric codimension 1
sheaf on P

5 for which the parity condition of Theorem 9.1 fails. The construction is
similar to the main examples of [14].

Example 9.3
Let V = H 0(O

P5(1))∗. The exterior product defines a symplectic form on the 20-
dimensional vector space @3V , which makes the trivial bundle @3V ⊗ O

P5 into a
symplectic bundle. If W,W ∗ ⊂ @3V are general Lagrangian subspaces, then we
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can identify the symplectic vector space @3V with hyperbolic symplectic vector
space W ⊕ W ∗. Moreover, one can see that E3

P5(3) is a Lagrangian subbundle of

@3V ⊗O
P5 (cf. [14, §5]). The construction of Theorem 9.2 then produces a symmetric

codimension 1 sheaf F on P
5 with resolutions

0 E3
P5(3)

φ

ψ
W ⊗ O

P5

φ∗

F

α∼=

0

0 W ∗ ⊗ O
P5

ψ∗
E2

P5(3) F∨ 0

(36)

The sheaf F fails the parity condition of Theorem 9.1 because C = 6 and χ(F (−3))
= 1.

The geometry of the sheaf F is best explained using the degeneracy loci of the
Lagrangian subbundles E3

P5(3) and W
∗ ⊗ O

P5 of @3V ⊗ O
P5 :

Di :=
{
x ∈ P

5 | dim [E3
P5(3)(x) ∩W ∗

] ≥ i}.
The sheaf F is supported on the sextic fourfold D1. If W ∗ is general, then D1

is smooth (cf. [14, Theorem 2.1] and the discussion following it) except along the
surface D2 where it has A1 singularities with local equations x21 + x22 + x23 = 0.
The surface D2 is of degree 40 according to the formulas of Fulton and Pragacz [18,
(6.7)].

Now choose a general 9-dimensional subspace U of the 10-dimensional space
W ∗. Then the composite map U ⊗ O

P5 ↪→ @3V ⊗ O
P5 � E2

P5(3) degenerates in
codimension 2 along a threefold Y of degree 18. Since

Y =
{
x ∈ P

5 | dim [E3
P5(3)(x) ∩ U

] ≥ 1
}
,

we have D2 ⊂ Y ⊂ D1. Moreover, F ∼= IY/D1(6). In addition, Y is self-linked by
the complete intersection of D1 and of another sextic hypersurface corresponding to
another Lagrangian subspace of @3V containing U .

Skew-symmetric sheaves of codimension 1
Analogues of Theorems 9.1 and 9.2 hold for skew-symmetric sheaves of codimen-
sion 1. The only significant change is in the parity condition of Theorem 9.1, which
in the skew-symmetric case has the form “if n ≡ 3 (mod 4) and C is even, then
χ(F (−C/2)) is also even.” We leave the exact formulation of these results to the
reader.

If S ⊂ P
3 is a smooth surface of degree d, then its cotangent bundle ES is a

skew-symmetric sheaf of codimension 1 on P
3 with twist C = 0. Since χ(ES) =
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−h11(S) ≡ d (mod 2), this skew-symmetric sheaf fails the parity condition when d
is odd.
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