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COMMUTATORS, LEFSCHETZ FIBRATIONS AND

THE SIGNATURES OF SURFACE BUNDLES

H. ENDO, M. KORKMAZ, D. KOTSCHICK, B. OZBAGCI,
AND A. STIPSICZ

Abstract. We construct examples of Lefschetz fibrations with
prescribed singular fibers. By taking differences of pairs of such
fibrations with the same singular fibers, we obtain new examples of
surface bundles over surfaces with non-zero signature. From these
we derive new upper bounds for the minimal genus of a surface
representing a given element in the second homology of a mapping
class group.

1. Introduction

It is an elementary fact that the Euler characteristic is multiplicative
in fiber bundles. According to a classical result of Chern, Hirzebruch
and Serre [2] the same holds for the signature, provided that the funda-
mental group of the base acts trivially on the cohomology of the fiber.
Atiyah [1] and, independently, Kodaira [9] showed that this assump-
tion on the monodromy is necessary, by exhibiting surface bundles over
surfaces with non-zero signature.

In the case of bundles whose fiber is a sphere or torus, it is easy to
see that the signature must vanish. Therefore, only the signature of
surface bundles of higher genus is interesting. For a closed oriented
surface F of genus h ≥ 2, Teichmüller theory implies that the identity
component of the group of orientation-preserving diffeomorphisms is
contractible. It follows that every oriented bundle with fiber F over
a base B is determined by (the conjugacy class of) its monodromy
representation

ρ : π1(B) −→ Γh ,
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where Γh is the mapping class group of F , consisting of isotopy classes
of orientation-preserving diffeomorphisms. If the base B is also 2-
dimensional, then the signature of the total space X is four times the
first Chern number of the flat symplectic bundle obtained by composing
ρ with the action of Γh on the homology of F , see [1, 6]. In particular,
the signature vanishes if the genus of B is 0 or 1. The signature also
vanishes for all bundles with fiber genus 2, because of Igusa’s theorem
H2(Γ2, Q) = 0. Thus, we may assume that the fiber genus h is ≥ 3.

Combining the work of Meyer [15] and of Harer [5], one sees that the
signature of the total space X is given by the homology class of ρ∗[B] in
the homology of Γh. More precisely, the second integral homology of the
mapping class group is infinite cyclic, generated by the Meyer signature
cocycle corresponding to the signature of the total space. This means
that determining the maximal signature of a surface bundle with given
fiber and base genus is equivalent to calculating the Gromov-Thurston
norm in the second homology of the mapping class group. This is
essentially Problem 2.18 in Kirby’s list [8]. To address this problem,
consider the function

gh(n) = min{g | ∃ a Σh-bundle X → Σg with σ(X) = 4n} .

Using Seiberg-Witten gauge theory, the first nontrivial lower bound
for this function was proved in [11]:

gh(n) ≥
2|n|

h − 1
+ 1 .(1)

The only systematic upper bound for this function was proved in [3],
where it was shown that for every fiber genus h ≥ 3 there is a surface
bundle over a surface of genus 111 with signature 4. Pulling back to
coverings of the base, one has

gh(n) ≤ 110|n| + 1 .(2)

A non-explicit improvement of (2) in some cases was given in [19].
In this paper we obtain new upper bounds for the function gh(n)

by constructing examples of surface bundles in which the base genus
is comparatively small. We found these examples by first constructing
Lefschetz fibrations with singular fibers corresponding to expressions
of products of Dehn twists as products of commutators, and then tak-
ing differences of Lefschetz fibrations with the same singular fibers to
obtain smooth surface bundles. We have chosen to present the exam-
ples in the way we originally found them, although it would have been
possible, after the fact, to eliminate the Lefschetz fibrations from the
presentation and write down the monodromy representations of the
surface bundles directly. We believe that the subtraction of Lefschetz



SIGNATURES OF SURFACE BUNDLES 3

fibrations presented in Section 2, also used in [19], is of interest in its
own right, in addition to being a useful stepping stone in the construc-
tion of surface bundles.

Our first main theorem is the following improvement of (2):

Theorem 1. For every h ≥ 3 there is a surface bundle of genus h over
the surface of genus 9 with signature 4. In particular, gh(n) ≤ 8|n|+1.

Notice that all these examples over Σ9 have the same signature. By
considering sections of our fibrations we can construct surface bundles
with fiber genus h over Σ9 for which the signature grows linearly with
h. More precisely, we have:

Theorem 2. For every h ≥ 3 there are surface bundles of fiber genus
h over the surface of genus 9 with signature at least 4h−2

3
.

This result allows us to prove upper bounds for gh(n) which have
the same shape as the lower bound (1), in that the fiber genus appears
in the denominator. We only formulate these upper bounds in the
asymptotic case, when n becomes large. It is easy to see that the limit

Gh = lim
n→∞

gh(n)

n

exists and is finite for all h. The inequality (1) implies Gh ≥ 2
h−1

.
Using our new examples, we will prove:

Theorem 3. If h ≥ 3 is odd, then Gh ≤ 16
h−1

. If h ≥ 4 is even, then

Gh ≤ 16
h−2

.

This paper is organized as follows. In Section 2 we review the basic
facts about Lefschetz fibrations and describe the “subtraction opera-
tion” for them in detail. Section 3 is devoted to the proof of various
identities in the mapping class group expressing certain products of
Dehn twists as products of commutators. In Section 4 we calculate the
signatures of the corresponding Lefschetz fibrations using the Meyer
signature cocycle [15]. In the last Section we give the proofs of the
Theorems stated above.

2. Subtracting Lefschetz fibrations

We begin by recalling the definition and basic properties of Lefschetz
fibrations. More details can be found in [4, 12]. Let X be a compact
oriented 4-manifold, and B a compact oriented surface.

Definition 1. A smooth map f : X → B is called a Lefschetz fibration
if it is surjective and if for each critical point p ∈ X there are local
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complex coordinates (z1, z2) on X around p and z on B around f(p)
compatible with the orientations and such that f(z1, z2) = z2

1 + z2
2 .

It follows that a Lefschetz fibration has at most finitely many critical
points p1, . . . , pk. It is easy to see that by a slight perturbation one
can achieve that f is injective on its critical set C = {p1, . . . , pk}. We
will always assume that this additional property holds.

The genus of f is defined to be the genus of a regular fiber. If B is
connected, the genus is well-defined. Even when B is not connected,
we will assume that all regular fibers have the same genus. Fibers of
f passing through elements of C are singular fibers. Notice that if
ν(f(C)) denotes an open tubular neighborhood of the set of critical
values f(C), then the restriction of f to f−1(B \ ν(f(C))) is a smooth
surface bundle over the surface-with-boundary B \ ν(f(C)).

A singular fiber f−1(qi), where qi = f(pi), can be described by its
monodromy, which is an element in the mapping class group Γh. To
determine this element, however, we need to fix a base point τ ∈ B \
f(C), an identification of f−1(τ) with the closed oriented surface F of
genus h, and a loop ci in B based at τ which has linking number +1
with qi. The restriction of f to the preimage of this loop is an F -bundle
over S1 which can be described by a single element ti ∈ Γh. In fact,
by performing this procedure for all loops in B \ f(C) we get a map
ϕ : π1(B \ f(C)) → Γh. It can be shown that ti is a right-handed Dehn
twist along a simple closed curve vi ⊂ f−1(τ) called the vanishing cycle
corresponding to the singular fiber f−1(qi). Notice that, even after
fixing τ ∈ B and the identification F ≈ f−1(τ), both ti and vi depend
on the chosen loop ci.

It is convenient to fix the following conventions. Suppose that all
qi lie on the boundary of a disk D ⊂ B centered at τ ∈ B. Let ai

denote the radial curve in D connecting τ with qi and form ci as the
boundary of an appropriate neighborhood of ai, cf. Figure 1. By fixing
a generating system {a1, b1, . . . , ag, bg} of π1(B \ D), the map ϕ can
be encoded by a sequence (t1, . . . , ts, α1, β1, . . . , αg, βg), where αi and
βi ∈ Γh tell us the monodromy of the fibration along ai and bi. It is easy
to see that these elements satisfy the relation Πg

j=1[αi, βi] · Π
s
i=1ti = 1

in the mapping class group. Conversely, for h ≥ 2 a word of the form
Πg

j=1[αi, βi] · Πs
i=1ti representing 1 in Γh (with ti being right-handed

Dehn twists) gives rise to a Lefschetz fibration of genus h over a surface
B of genus g.

As we noted already, the vanishing cycles and the corresponding
Dehn twists depend on the chosen loops ci. It is easy to see that a
cyclic permutation of the indices can be compensated by changing the
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Figure 1. Choice for loops defining vanishing cycles.

identification F ≈ f−1(τ), so the resulting Lefschetz fibration remains
the same. One can also change the word by elementary transforma-
tions without changing the Lefschetz fibration, i. e. the path ci can be
changed as indicated by Figure 2. By applying an elementary trans-

q
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Figure 2. Elementary transformation.

formation as shown by the figure, we replace ti and ti+1 by ti+1 and
t−1
i+1titi+1. (Notice that this change has no effect on the product of these

elements.) The new vanishing cycles are easy to determine since for
any mapping class g the conjugate g−1tvg of the Dehn twist tv is simply
the Dehn twist tg(v). It is not hard to prove that if two words give rise
to equivalent fibrations then the words can be transformed into each
other by applying combinations of the two operations just described.

A singular fiber f−1(qi) is nonseparating if the corresponding vanish-
ing cycle vi is nonseparating, equivalently its homology class is nonzero
in H1(f

−1(τ); Z). If vi is a separating curve, equivalently its homology
class is zero, then f−1(qi) is called separating. A vanishing cycle vi

and the corresponding singular fiber are of type 0 if vi is nonseparat-
ing; they are of type j ∈ {1, . . . , [h

2
]} if the vanishing cycle separates
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the surface of genus h into two components with genera j and h − j.
Although the vanishing cycle depends on the chosen path ci, its type is
independent of this choice. From the classification of surfaces, one can
prove that for two simple closed curves of the same type there exists
a diffeomorphism of the ambient surface mapping one into the other.
This implies that two singular fibers of the same type have fiber- and
orientation-preservingly diffeomorphic tubular neighborhoods.

The combinatorial data of a Lefschetz fibration can be encoded as
follows:

Definition 2. The vector µcomb(X) = (µ0, . . . , µ[ h
2
]) ∈ Z[ h

2
]+1 associ-

ated to the Lefschetz fibration f : X → B is constructed by taking
µj to be the number of singular fibers of type j (j = 0, 1, . . . , [h

2
]).

Following [18] we say that two fibrations fi : Xi → Bi (i = 1, 2) are
combinatorially equivalent if µcomb(X1) = µcomb(X2).

The construction we use to produce new examples of surface bundles
is a procedure for taking the difference of two combinatorially equiva-
lent Lefschetz fibrations. If X1 and X2 are combinatorially equivalent
as in Definition 2, with critical values {q1

i }
s
i=1 and {q2

i }
s
i=1 respectively,

then a surface bundle X1 − X2 → B1 − B2 can be constructed in
the following way: order the q1

i ’s and q2
j ’s so that singular fibers with

coinciding lower index have the same type. Fix an orientation- and
fiber-preserving diffeomorphism φi between the boundaries of tubular
neighborhoods of fibers with lower index i (i = 1, . . . , s). The union
of these maps will be denoted by φ. Now glue X1 \ (∪s

i=1ν(f1(q
1
i ))) to

X2 \ (∪s
i=1ν(f2(q2

i ))) using φ. Notice that by reversing the orientation
on X2, the map φ becomes orientation-reversing, hence the resulting
manifold Y = X1 − X2 inherits a natural orientation. Since φ is fiber-
preserving, Y admits a smooth fibration with fibers of genus h over a
compact surface B which we will denote by B1 − B2.

Lemma 4. If X1 → B1 and X2 → B2 are combinatorially equivalent
Lefschetz fibrations with s singular fibers, then Y = X1−X2 is a smooth
surface bundle with signature σ(Y ) = σ(X1) − σ(X2) over the surface
B = B1 − B2 with Euler characteristic χ(B) = χ(B1) + χ(B2) − 2s.

Proof. By construction, Y is an oriented smooth surface bundle over
a surface B. The claim about the Euler characteristic of the base
is obvious. The claim about the signature is an instance of Novikov
additivity.

Note that we did not assume X1 and X2 to be connected. This means
that basepoints have to be chosen in each component of Bi, and the
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vectors of combinatorial data have to be summed over all components
to determine combinatorial equivalence. If X1 or X2 happens to be
connected, then so is X1 − X2.

The main property we used in the above construction is that the
manifolds X1 \ (

⋃s
i=1 ν(f1(q

1
i ))) and X2 \ (

⋃s
i=1 ν(f2(q

2
i ))) have dif-

feomorphic boundaries and, after reversing the orientation of one of
them, this diffeomorphism can be chosen to be fiber-preserving and
orientation-reversing. A variation of this construction goes as follows:
Suppose that partitions of the critical values {q1

i }
s
i=1 and {q2

i }
s
i=1 are

given together with a system of disjoint disks Dk
j ⊂ Bk (k = 1, 2 and

j = 1, . . . , m) such that each disk contains exactly one equivalence
class of the partitions. Suppose furthermore that we can pair up these
disks in a way that the surface bundles X1|D1

j
are isomorphic to X2|D2

j

for all j = 1, . . . , m. Then X2 can be subtracted from X1 along the
disks Dk

j , i. e. the manifold

Y = (X1 \ (

m⋃

j=1

f−1
1 (intD1

j )))
⋃

(X2 \ (

m⋃

j=1

f−1
2 (intD2

j )))

admits the structure of a surface bundle. The signature σ(Y ) is again
given by σ(X1) − σ(X2), while the Euler characteristic of the base is
equal to χ(B1) + χ(B2) − 2m.

Remark 1. The definition of X1−X2 is a special case of this latter con-
struction, corresponding to the situation when each equivalence class
of the partition consists of a unique critical value. By considering a
partition with larger equivalence classes we get smaller m which re-
sults in a smaller genus for the base. Notice that in the special case
of X1 − X2 the assumption X1|D1

j
≈ X2|D2

j
can be easily checked by

determining the type of the singular fibers over the disks. In general,
however, the types of the singular fibers over the disks do not specify
the diffeomorphism type of the above fibration, since fibers of the same
type can be glued together in many different ways resulting various
fibrations over Dk

j .

Remark 2. There is a generalisation of Lefschetz fibrations, called achi-
ral Lefschetz fibrations, where one allows singular fibers whose mon-
odromies are left-handed Dehn twists, cf. [4]. Keeping track of the
chirality of the singular fibers, it is clear that the subtraction opera-
tion described above generalises to the category of achiral Lefschetz
fibrations.

We conclude this section by discussing the relation between the word
specifying a Lefschetz fibration and sections of the fibration. Suppose
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that f : X → B is a given Lefschetz fibration. A map σ : B → X is
called a section if f ◦ σ = idB. The self-intersection (or square) of the
section σ is simply the self-intersection number of the homology class
[σ(B)] ∈ H2(X; Z). In the following Γh,1 denotes the mapping class
group of the closed oriented surface of genus h with one marked point
and Γ1

h denotes the mapping class group with respect to one boundary
component (fixed pointwise). Notice that by collapsing the boundary
circle to a point we get a natural surjection ϕ : Γ1

h → Γh,1 with kernel
the subgroup generated by the Dehn twist ∆∂ along a curve isotopic
to the boundary circle (cf. [20], for example). Moreover, by forgetting
the marked point we have an obvious map Γh,1 → Γh.

The following two well-known facts show how the existence of a sec-
tion (and its square) is reflected in the monodromy representation of
a Lefschetz fibration. Suppose that the monodromy representation of
f : X → B is given by the relator Πg

j=1[ai, bi] · Π
s
i=1ti representing 1 in

Γh.

Proposition 5. The fibration admits a section if and only if ti and
aj, bj ∈ Γh admit lifts t̃i, ãj, b̃j ∈ Γh,1 such that Πg

j=1[ãj , b̃j] · Πs
i=1t̃i

represents 1 in Γh,1. A section of f : X → B is given once such a lift
is fixed.

Suppose now that a fibration f : X → B with a section is given, so
a lift Πg

j=1[ãj , b̃j] ·Π
s
i=1t̃i of Πg

j=1[aj , bj] ·Π
s
i=1ti is fixed. Take a lift t′i of

t̃i (and a′

j , b
′

j of ãj, b̃j) in Γ1
h and consider Πg

j=1[a
′

j, b
′

j ] · Π
s
i=1t

′

i ∈ Γ1
h. By

the discussion above, this product is in ker ϕ, hence it is equal to ∆n
∂

for some n ∈ Z.

Proposition 6. (cf. [18]) The self-intersection number of the section
given by the above lift is equal to −n.

Next we would like to show that after subtracting Lefschetz fibra-
tions with sections, under favourable circumstances the resulting fibra-
tion admits a section whose self-intersection number is equal to the
difference of the self-intersection numbers of the sections of the indi-
vidual fibrations. For this, suppose that two fibrations fi : Xi → Bi

(i = 1, 2) are given by their monodromy representations Π[aj , bj ] · Πti
and Π[cj , dj] · Πsj respectively. Suppose furthermore that the disks
Di ⊂ Bi along which the subtraction operation will be performed con-
tain the singular fibers corresponding to the Dehn twists ti1 . . . tik (and
si1 . . . sik resp.).

Proposition 7. If the lifts t̃in giving rise to the sections coincide with
s̃in (n = 1, . . . , k) in Γh,1, then the difference of the two fibrations
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admits a section. The self-intersection of this section is given by the
difference of the self-intersection of the individual pieces.

Proof. The assumption shows that there is a diffeomorphism f−1
1 (D1) →

f−1
2 (D2) mapping the sections into each other. Now the statement is

obvious — notice that the self-intersection is the difference of the two
self-intersections since in the subtracting operation we change the ori-
entation of X2.

Remark 3. The assumption on coinciding lifts cannot be relaxed, as
the following example shows. Take two copies of the trivial bundle
Σ× S2 → S2, fix two sections in each and blow up one section in each
copy. In this way we get two Lefschetz fibrations (each with a single
singular fiber) for which the subtraction operation (along the singular
fibers) applies and gives Σh × S2 → S2 back. The section blown up,
however, can be glued only to the section in the other copy also blown
up, because otherwise we would find a homology class in Σh × S2 with
odd square, which is clearly impossible.

Surface bundles with sections of self-intersection zero can be summed
along their sections by performing a fiberwise connected sum. This is
an instance of Gompf’s symplectic sum operation, but for our purposes
the symplectic aspect is irrelevant.

Lemma 8. If Xi → B with i = 1, 2 are two surface bundles with fiber
genera hi over the same base surface and both fibrations admit sections
with self-intersection zero, then there is a surface bundle over B with
fiber genus h1 + h2 and signature σ(X1) + σ(X2).

Proof. The signature is additive when summing along embedded sur-
faces of self-intersection zero.

3. Commutators in mapping class groups

Let F r
h,s be an oriented surface of genus h with s marked points and

r boundary components. The mapping class group Γr
h,s of F consists

of the isotopy classes of orientation-preserving diffeomorphisms of F

which are the identity on each boundary component and preserve the
set of marked points. The isotopies are not allowed to permute marked
points or to rotate boundary components. The groups Γ0

h,s, Γr
h,0 and

Γ0
h,0 will be denoted by Γh,s, Γr

h and Γh, respectively.
We say that two simple closed curves a and b on F are topologically

equivalent if there exists a diffeomorphism of F mapping a to b. For
a group G and x, y ∈ G, the commutator [x, y] denotes the element
xyx−1y−1 and xy denotes the conjugate yxy−1.
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It follows easily from the definition of a Dehn twist that if a is a
simple closed curve on F and f is an orientation-preserving diffeomor-
phism of F , then ftaf

−1 = tf(a) in Γr
h,s.

If a and b are two topologically equivalent simple closed curves on F ,
then tat

−1
b is a commutator. More precisely, if f(a) = b then tat

−1
b =

[ta, f ].
Let a and b be two simple closed curves on F . If a is disjoint from

b, then the supports of the Dehn twists ta and tb can be chosen to be
disjoint. Hence, ta commutes with tb. If a intersects b transversely at
one point, then it is easy to see that tatb(a) = b. It follows that ta and
tb satisfy the braid relation tatbta = tbtatb.

The following two relations in the mapping class group are also well-
known. The first one is the lantern relation (cf. [7]). Let S be a sphere
with four boundary components d1, d2, d3 and d4. Suppose that S is
embedded in F . Then there are three simple closed curves α, β, γ on
S, as illustrated in Figure 3 (i), which satisfy the lantern relation

td1
td2

td3
td4

= tαtβtγ .

dd

d d

α

β

γ

(  )i ii(   )

a

a
a

a
a

a
1

2
3

4

5

6

4

32

1

Figure 3. Curves of the lantern and two-holed torus relation.

The second relation is the two-holed torus relation or chain relation.
Let a1, a2, a3 be three nonseparating simple closed curves on F such
that a2 intersects a1 and a3 transversely only once, a1 is disjoint from
a3 and a1 ∪ a3 does not disconnect F . A regular neighbourhood of
a1 ∪ a2 ∪ a3 is a torus with two nonseparating boundary components,
say a4 and a5 (cf. Figure 3 (ii)). Clearly, a4 and a5 are disjoint from a1,
a2, a3, and from each other. By using the braid relation and the fact
that ta1

commutes with ta3
, the relation given by Proposition 3 in [13]

is easily shown to be equivalent to the two-holed torus relation

ta4
ta5

= (ta1
ta2

ta3
)4 .

Now we describe various commutator relations in mapping class
groups. These relations will be used in the next Section to construct
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the Lefschetz fibrations used in the course of the proofs of the Theorems
stated in Section 1.

Lemma 9. Let a, b, c and d be four simple closed curves on F such
that a is disjoint from b, c is disjoint from d, and the complements of
a ∪ b and c ∪ d in F are connected. Then tat

−1
b tct

−1
d is a commutator.

Proof. By the classification of surfaces, there exists a diffeomorphism
g of F such that g(a) = d and g(b) = c. Then

tat
−1
b tct

−1
d = tat

−1
b tg(b)t

−1
g(a) = tat

−1
b gtbt

−1
a g−1 = [tat

−1
b , g] .

Proposition 10. Let h ≥ 3 and let a be a simple closed curve on F .
In the mapping class group Γr

h,s of F

(a) t2a can be written as a product of two commutators,
(b) if a is nonseparating, then t4a can be written as a product of three

commutators.

Proof. Suppose that the surface of genus 3 with two holes in Figure 4
is embedded in F . Consider the curves on F given in the figure. The

1

2

3

4

5

6

a

a
a

a

a
a

a

x y

a

7

8

b b
1 6

bb2 3

5

4

7

8b

bbb

bb

i

ii iii

iv v(  )(   )

(    )(   )

(  )

Figure 4.
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sphere S with four holes of the lantern relation, see Figure 3, can
be embedded in F so that the curves d1, d2, d3, d4, α, β, γ become
respectively a2, a1, a4, a5, x, a3, b1. This gives us the relation

ta1
ta2

ta4
ta5

= txta3
tb1 .(3)

Similarly, two other embeddings of S give the relations

txta4
ta6

ta8
= ta5

tb2tb3(4)

and

txta5
ta6

ta7
= ta4

tb4tb5 .(5)

If we multiply both sides of (3) by tb2tb3 , use (4) and cancel tx, we
obtain

t2a4
ta1

ta2
ta6

ta8
= ta3

tb1tb2tb3 ,(6)

or, equivalently,

t2a4
= ta3

t−1
a6

tb1t
−1
a8

tb2t
−1
a1

tb3t
−1
a2

.(7)

Similarly, the equalities (4) and (5) yield the equality

t2x = tb2t
−1
a6

tb3t
−1
a7

tb4t
−1
a6

tb5t
−1
a8

.(8)

Applying Lemma 9 to (7) and (8) proves that t2a4
and t2x are products

of two commutators. Any nonseparating simple closed curve is topo-
logically equivalent to a4. If a is a separating simple closed curve on
F , then the surface of genus 2 on the right hand side of x can be em-
bedded in F so that x is topologically equivalent to a. Now, the proof
of (a) follows from the fact that a conjugate of a commutator is again
a commutator.

Similarly, two more embeddings of the lantern give the relations

ta4
ta5

ta7
ta8

= tb6ta6
ty(9)

tyta2
ta3

ta4
= ta5

tb7tb8 .(10)

Multiplying (9) by tb7tb8 from the left and using (10) gives

t2a4
ta2

ta3
ta7

ta8
= tb7tb8tb6ta6

.(11)

By combining (6) and (11), we get

t2a4
ta1

ta2
ta6

ta8
t2a4

ta2
ta3

ta7
ta8

= ta3
tb1tb2tb3tb7tb8tb6ta6

.

Cancelling ta3
and ta6

yields

t4a4
ta1

t2a2
ta7

t2a8
= tb1tb2tb3tb7tb8tb6 .

Any simple closed curve on the left hand side is disjoint from each closed
curve on the right. Notice also that the complements of a1∪ b1, a2∪ b2,
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a2 ∪ b3, a7 ∪ b7, a7 ∪ b8 and of a8 ∪ b6 are all connected. Lemma 9 now
implies that t4a4

is a product of three commutators, implying (b).

Proposition 11. Let h ≥ 2 and let a and b be two simple closed curves
intersecting each other transversely at one point on F . Then t4at

4
b is a

product of three commutators.

Proof. Suppose that the two-holed torus of Figure 3 (ii) is embedded in
F in such a way that a4 and a5 are nonseparating on F . The curve a2

intersects ta1
(a2) transversely at one point. Since a intersects b trans-

versely at one point also and since any two such pairs are topologically
equivalent, we can assume that a = a2 and b = ta1

(a2). By the two-
holed torus relation, we have ta4

ta5
= (ta1

ta2
ta3

)4. Let us denote tai
by

ti. Then, we obtain

t4t5 = (t1t2t3t1t2t3)(t1t2t3t1t2t3)

= (t1t2t1t3t2t3)(t1t2t1t3t2t3)

= (t2t1t2t2t3t2)(t2t1t2t2t3t2)

= t2t2t3t2t2t1t2t2t3t2t2t1

= (t2t2t3t
−1
2 t−1

2 )t2t2t2t2(t1t2t2t2t2t
−1
1 )t1t1(t

−1
1 t−1

2 t−1
2 t3t2t2t1).

If v = t2a2
(a3) and w = t−1

a1
t−2
a2

(a3), we have the equality

(ta4
t−1
v ta5

t−1
w ) = t4at

4
bt

2
a1

.

Now, ta4
t−1
v ta5

t−1
w is a commutator and t2a1

is a product of two commu-
tators. This observation completes the proof of Proposition 11.

4. Signature computations

The relations expressing certain products of Dehn twists as products
of commutators proved in Section 3 allow us to construct correspond-
ing Lefschetz fibrations. These fibrations, and their signatures, depend
on the choices we make for the diffeomorpisms occurring in the com-
mutator relations.

In this section the genus of the fiber F is h ≥ 3. The base B of
genus g will be denoted by Σg if it is closed, and by Σr

g if it has r

boundary components. For a smooth surface bundle X → Σr
g, the

signature is completely determined by the corresponding monodromy
representation. We shall pass back and forth between surface bundles
over bases with boundary and Lefschetz fibrations over closed bases
using the following well-known fact, see [4, 14, 17]:

Proposition 12. The signature of a fibered neighbourhood of a non-
separating, respectively separating, singular fiber in a Lefschetz fibration
is equal to 0, respectively to −1.



14H. ENDO, M. KORKMAZ, D. KOTSCHICK, B. OZBAGCI, AND A. STIPSICZ

Now fix a symplectic basis for H1(F, Z), so that the monodromy
representation

ρ : π1(Σ
r
g) → Γh

of X composed with the action of the mapping class group on homology

φ : Γh → Sp(2h, Z)

yields a symplectic representation χ of the fundamental group of the
base. The following result of Meyer [15] allows us to calculate the
signature:

Theorem 13. Let f : X → Σr
g be an oriented surface bundle with mon-

odromy representation ρ : π1(Σ
r
g) → Γh. Fix a standard presentation of

π1(Σ
r
g) as follows:

π1(Σ
r
g) = 〈a1, b1, . . . , ag, bg, c1, . . . , cr |

g∏

i=1

[ai, bi]

r∏

j=1

cj = 1〉 ,

and let τh : Sp(2h, Z) × Sp(2h, Z) → Z by the cocycle defined in [15].
Then the signature of X is given by the formula

σ(X) =

g∑

i=1

τh(κi, βi) −

g∑

i=2

τh(κ1 . . . κi−1, κi)

−

r−1∑

j=1

τh(κ1 . . . κgγ1 . . . γj−1, γj) ,

where αi = χ(ai), βi = χ(bi), γi = χ(ci) and κi = [αi, βi].

Here is a first application of this formula:

Proposition 14. There is a Lefschetz fibration X → Σ2 with a unique
singular fiber and with signature −1, whether the vanishing cycle is
separating or not.

Proof. It is well-known that a Dehn twist can be written as a product
of two commutators, see [10]. We need to make explicit choices for
these commutators. To this end we consider curves a, a1, a2, a3, b1,
b2 and b3 on a genus 3 subsurface of F as in Figure 5. Further, we
add curves according to Figure 6. If we choose the genus 3 subsurface
suitably, the vanishing cycle v is topologically equivalent to the curve
a.

Define diffeomorphisms φ1 and φ2 of F as follows. If a is nonsepa-
rating, set

φ1 = tc1tb2tc2ta2
tb1tc2ta1

tc1
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1

2

b

1 2

3

a a

a

a

b

i(  )

1

2

b1

2

3

a

a

a

a

b

(   )ii

3b

if a is nonseparating

if a is separating

3b

Figure 5.

21 3c c c

Figure 6.

and

φ2 = tc3tb3ta3
tc3 .

If a is separating, set

φ1 = tc2ta2
tc1tb2ta1

tc1tb1tc2

and

φ2 = tc2ta3
tb3tc2 .

One can check that φ1(a1) = b2, φ1(b1) = a2 and φ2(a3) = b3.
The lantern relation as in Theorem 2 of [10] implies that

ta3
t−1
b3

ta2
t−1
b2

ta1
t−1
b1

ta = 1 .

The monodromy representation of the complement of the singular
fiber is given by mapping the standard generators of π1(Σ

1
2) to ta3

, φ2,
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φ1, t−1
a1

tb1 and ta respectively, as

[ta3
, φ2][φ1, t

−1
a1

tb1 ]ta = 1 .

Evaluating the signature cocycle, Theorem 13 shows that the comple-
ment of the singular fiber has signature −1 if v is nonseparating, and
has signature 0 if v is separating. Now Proposition 12 and Novikov
additivity complete the proof.

Mutatis mutandis, this calculation generalizes to prove the next three
Propositions:

Proposition 15. There is a Lefschetz fibration X → Σ2 with two sin-
gular fibers whose monodromies are Dehn twists with the same nonsep-
arating vanishing cycle and signature equal to −2.

Proposition 16. There is a Lefschetz fibration X → Σ3 with four
singular fibers whose monodromies are Dehn twists with the same non-
separating vanishing cycle and signature equal to −4.

Proposition 17. Let a and b be two nonseparating simple closed curves
on F which intersect transversely and precisely at one point. There is a
Lefschetz fibration X → Σ3 with signature −4 which has eight singular
fibers, four of which have monodromy a Dehn twist along a and four of
which have monodromy a Dehn twist along b.

Proof of Propositions 15-17. In all these proofs the signature of the
Lefschetz fibration is the same as that of the complement of the singu-
lar fibers, because all the vanishing cycles are nonseparating, cf. Propo-
sition 12.

We take curves x, y, a1, . . . , a8, b1, . . . , b8 on a genus 3 subsurface
of F as in Figure 4. We also add curves c1, c2, c3 as in Figure 6, and d

and e as in Figure 7.

d
e

Figure 7.

For each of the Propositions, the vanishing cycles a and b are topo-
logically equivalent to certain curves a0 and b0. We fix the latter ex-
plicitly, and construct some diffeomorphisms as required by the proofs
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in Section 3, so that we can write the monodromy representation of
the complement of the singular fibers as a relator in the mapping class
group. Then the calculation is done by implementing the formula in
Theorem 13 with the following data.

For Proposition 15 the base is Σ2
2 and a0 is taken to be a4. The

relator giving the monodromy representation is

[t−1
b3

ta1
, φ1][t

−1
b1

ta2
, φ2]t

2
a4

= 1 ,

with

φ1 = tetb2ta1
tetc2ta6

tb3tc2

and

φ2 = tc1ta3
ta2

tc1tdta8
tb1td .

For Proposition 16 the base is Σ4
3 and a0 is taken to be a4 again. The

relator giving the monodromy representation is

[t−1
b6

ta2
, φ1][t

−1
b7

ta8
, φ2][t

−1
b2

ta1
, φ3]t

4
a4

= 1

with

φ1 = tc1tb8ta2
tc1tc3ta8

tb6tc3 ,

φ2 = tc3tb3ta8
tc3tc1ta2

tb7tc1

and

φ3 = tc1tb1ta1
tc1tc3ta7

tb2tc3 .

For Proposition 17 consider the curves a1, . . . , a6 on a genus 2 sub-
surface of the fiber as in Figure 3 (ii). The base surface is Σ8

3 and
the curve a0 is taken to be a2 and b0 is taken to be ta1

(a2). We first
compute the signature corresponding to the relator

[t−1
a1

t−2
a2

ta3
t2a2

ta1
t−1
a5

, φ]t4a2
(ta1

ta2
t−1
a1

)4t2a1
= 1 ,

with

φ = t3a2
ta3

ta6
ta4

ta5
ta6

ta3
ta2

ta6
ta5

ta3
ta6

t2a2
ta1

,

which is the monodromy of a fibration X ′ → T 2 with 10 singular fibers.
The signature of X ′ is equal to −6. Subtracting off the fibration of
Proposition 15 from X ′ gives the claim.

As the expression of a given element in Γh as a product of commu-
tators is not unique, it is conceivable that the signature of the corre-
sponding Lefschetz fibrations might be different for different choices of
commutators. Then a surface bundle of nonzero signature could be
constructed by subtracting the Lefschetz fibrations corresponding to
different choices from each other.
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5. Bounds on the genus function gh(n)

We now prove the theorems about the minimal genus function gh(n)
stated in the Introduction.

Proof of Theorem 1. We apply the subtraction operation to the Lef-
schetz fibrations X1 → Σ3 and X2 → Σ3 as in Proposition 17 and 16,
respectively. In X1 we group the singular fibers into two groups each
containing four singular fibers with coinciding vanishing cycles; in X2

the singular fibers form one group. Now subtracting two copies of X2

according to the above pattern we get a surface bundle Yh → Σ9 of fiber
genus h with σ(Yh) = σ(X1)− 2σ(X2) = −4 − 2(−4) = 4 (cf. Proposi-
tions 16 and 17). Thus gh(1) ≤ 9, and the claim now follows by pulling
Yh back to unramified coverings of Σ9 of degree |n|.

Surface bundles over Σ9 with higher signature can be constructed as
follows.

Proof of Theorem 2. Notice that the relators defining the fibrations
we used in the proof of Theorem 1 represent 1 in the mapping class
group Γ1

h of a surface with one boundary component. According to
Proposition 6, this fact shows that the fibrations given by the rela-
tors Π3

i=1[ai, bi]t
4
at

4
b and Π3

i=1[ci, di]t
4
a admit sections with vanishing self-

intersection. Since the lifts of the various Dehn twists are chosen to be
Dehn twists in Γ1

h, Proposition 7 implies that Yh → Σ9 also admits a
section with zero self-intersection for all h. Now write h as 3k+ l where
l ∈ {0, 1, 2}, and apply Lemma 8 to k copies of Y3 together with the
product Σl × Σ9 → Σ9. The resulting surface bundle Sh → Σ9 of fiber
genus h has σ(Sh) = 4k = 4h−l

3
≥ 4h−2

3
.

Now we turn to the study of the asymptotic behaviour of the genus
function.

Proof of Theorem 3. First notice that the proof of Theorem 2 immedi-

ately yields Gh = limn→∞

gh(n)
n

≤ 24
h−l

for all h. (As before, l ∈ {0, 1, 2}
is the mod 3 residue of h.)

Now every surface of odd genus is a covering of a genus 3 surface. It
was shown in Lemma 4.1 of [16], that after replacing a given surface
bundle by a pullback to some covering of the base, the resulting sur-
face bundle admits fiberwise coverings of any given degree. From the
multiplicativity of the signature in coverings and the multiplicativity
of the Euler characteristic of the fiber in fiberwise coverings, for odd h

we obtain

lim
n→∞

gh(n)

n
≤

2

h − 1
lim

n→∞

g3(n)

n
≤

16

h − 1
.(12)
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For even h consider the fibration Z → Σ8n+1 of fiber genus h−1 with
signature 2n(h − 2) we got by taking fiberwise coverings. It is easy to
see that since Y3 → Σ9 admits a section of zero self-intersection, so does
Z → Σ8n+1. Summing Z and the product fibration Σ1×Σ8n+1 → Σ8n+1

along their sections (as in Lemma 8), we get a fibration over Σ8n+1 with
fiber genus h and signature 2n(h−2). These examples yield the bound
Gh ≤ 16

h−2
once h is even. Consequently the proof of Theorem 3 is

complete.

Remark 4. For certain values of h, the examples of Kodaira [9] give a
better upper bound, namely Gh ≤ 44

5(h−1)
. Our construction has the

advantage of covering all possible values of h (and n).
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