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Meyer’s signature cocycle and hyperelliptic fibrations
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Abstract. We show that the cohomology class represented by Meyer’s signature cocycle is of
order % + 1 in the 2-dimensional cohomology group of the hyperelliptic mapping class group of
genusg. By using the 1-cochain cobounding the signature cocycle, we extend the local signature
for singular fibers of genus 2 fibrations due to Y. Matsumoto [18] to that for singular fibers of
hyperelliptic fibrations of arbitrary genysand calculate its values on Lefschetz singular fibers.
Finally, we compare our local signature with another local signature which arises from algebraic
geometry.
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1. Introduction

Let ¥, be a closed oriented surface of genusnd M, the mapping class
group of X, namely the group of all isotopy classes of orientation-preserving
diffeomorphisms of,.

Meyer [21][22] introduced a cocyclg : M, x M, — Z (Meyer’'ssigna-
ture cocycl@ and gave a signature formula for surface bundles over surfaces. He
showed that the signatuségn (E) of the total spac& of an oriented”,-bundle
over an oriented surface is always zero whémnequal to 0, 1 or 2. Itis easily seen
that the signatur&ign(E) of any E is divisible by 4 becaus& has an almost
complex structure. Meyer also showed that every multiple of 4 is equal to the
signatureSign(E) of someE wheng > 3. These results are related to the order
of the cohomology class of the signature cocyglen the cohomology group
Hz(Mg, Z): namely the orders for; andt, are finite but that for,(g > 3) is
infinite (see also Hoster’s paper [13] for an elementary purely topological proof
of the fact that Meyer’s signature cocycle represents 4 times a generator of the
cohomology group?(M,, Z) and the author’s paper [7] for an improvement
of the proof of Meyer’s theorem using Wajnryb’s presentation [3Q)6f).
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Matsumoto [16][18] defined a ‘local signature’, which he calledth@umber
or the fractional signature, for singular fibers of genus 1 and 2 fibrations by
using the finiteness of the order of the cohomology class of the signature cocycle
7,(g = 1, 2). He calculated the values of the local signature for singular fibers
of good torus fibrations, elliptic surfaces and Lefschetz fibrations of genus 2.
The signature of the total space of such a fibration of genus 1 or 2 is equal to
the sum of local signatures of all the singular fibers in the fibration. He also
gave some remarkable examples of Lefschetz fibrations of genus 2 including
some ‘exotic’ phenomena (see [8]) and reproved theorems of Persson [28] and
Xiao-Ueno [31][29] with topological methods.

For g > 3, this kind of concentration of the signature were not expected be-
cause the order of the conomology class of the signature cogyiolé2(M,, Z)
is not finite. But on the hyperelliptic mapping class gr@up a certain subgroup
of M, which we explain in Sect. 2, the order of the cohomology class of the
signature cocycle, is actually finite.

In this paper we first show that the order of the cohomology class of the
signature cocyclegH restricted to the hyperelliptic mapping class gr@tp of
genusg is equal to 2 + 1 and we next define the local signature for singular
fibers of hyperelliptic fibrations of arbitrary gengsand calculate some values
of it. It turns out that the finiteness of the order of the cohomology class of the
signature cocycle, (g = 1, 2) comes from that of the order of the cohomology
class of the signature cocyd?’ restricted to the hyperelliptic mapping class
group#,.

In Sect. 2 we determine the order of the cohomology class of the signa-
ture cocyclefrgH restricted to the hyperelliptic mapping class gradp in the
cohomology groupd?(H,, Z) using Birman-Hilden's presentation &f,. We
calculate some values of the 1-coch@incobounding the signature cocycLé
restricted taH, in Sect. 3. Then we define the local signature of a singular fiber
of a hyperelliptic locally analytic fibration of arbitrary gengsand determine
its values on Lefschetz singular fibers in Sect. 4. We also give some examples
of (hyperelliptic) Lefschetz fibrations including Lefschetz fibrations with posi-
tive signature. And in the last section, Sect. 5, we compare our local signature
with another local signature which arises from a study about degeneration of hy-
perelliptic curves in algebraic geometry and present Terasoma'’s theorem which
asserts that the values of these two kinds of local signature always coincide.

Morifuji [24][25] gives a certain formula for the 1-cochag) cobounding
the signature cocycle;’ restricted to#, and studies a relation between the
1-cochaing, and the Atiyah-Patodi-Singerinvariant.

The author wishes to express his heartfelt gratitude to his adviser, K. Kawa-
kubo, for encouragement and many useful suggestions, to T. Terasoma for the
kindness to write the beautiful appendix (Proof of Theorem 5.3) for this paper
whichis based on the idea of approximating a local family of curves by global one
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and using Theorem 4.4 and Proposition 5.2, and to Y. Matsumoto, T. Ashikaga,
K. Kikuchi, T. Arakawa and T. Morifuji for helpful comments and discussions.

2. Meyer’s signature cocycle restricted
to the hyperelliptic mapping class group

In this section we first recall the definition of Meyer’s signature cocygl2]

and Birman-Hilden’s presentation [5] of the hyperelliptic mapping class group
H, of genusg and we next determine the order of the cohomology class of the
signature cocycle;’ restricted taH, in the cohomology groupi>(H,, Z).

(1) Meyer's signature cocycle,

Forapain A, B) of symplectic matriciedl, B € Sp(2g, Z), the vector space
V4 g is defined by:

Vap:i={(x,y) eR¥ xR® | (A~ x + (B — 1)y =0},

where [ is the identity matrix. Consider the (possibly degenerate) symmetric
bilinear form
< , >A,B:VA,BXVA,B_)R

on V, p defined by:
< (-xlv y1)7 ()CZ, yZ) >A,B =< X1 + yi, (1 - B))’Z >,
(xi,y)) € Vap (i =12),
where< , > isthe standard symplectic form @?¢ given by:

<x,y>='xJy (x,yeR%®),

017
J = <—I O) € M (R).
Meyer’'ssignature cocycl§21][22]
T, 1 Sp(2g,7Z) x Sp(2g,Z) — Z
is defined by:
T(A, B) :=sign(Vap, < , >aB)
(A, B € Sp(2g, Z)).

From the Novikov additivityz, is a 2-cocycle ofSp(2g, Z) and represents the
cohomology classé = [t,] € H*(Sp(2g, Z), Z) (cf. [26]).

Lemma 2.1 (Meyer[21][22]). The signature cocycle, satisfies the following
properties:
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Fig. 1.

(1) 7,(A, B) + 1,(AB, C) = 1,(A, BC) + 1,(B, C);
(2) if ABC = I,thent, (A, B) = 1,(B, C) = 7,(C, A);
() T,(A, 1) = 1,(A,A™H =0;

(4) 7o(B, A) = 74(A, B);

(5) To(A™Y B™Y) = —14(A, B);

(6) T,(CAC™1,CBC™) =1,(A, B),

whereA, B, C € Sp(2g, 7).
(2) The hyperelliptic mapping class grogy,

Let X, be a closed oriented surface of gegusmbedded iR andYq, ...,
Yo, Ur, ... Uy, Zy, ..., Z,_1 Simple closed curves embeddedin in the man-
nerillustrated in Fig. 1 (see [5] Sect. 2). We can definényperelliptic involution
1 ¥, — X, asinFig. 1.

Let M, be the mapping class group of the surfageof genusg, namely the
group of all isotopy classes of orientation-preserving diffeomorphisms aind
H, thehyperelliptic mapping class groug genusg, namely the subgroup o1,
which consists of all isotopy classes of orientation-preserving diffeomorphisms
of ¥, commuting with the isotopy class of

Theorem 2.2 ((1) Lickorish[15], (2) Birman-Hilden [5]).

(1) The groupM, is generated by negative Dehntwists. .. , yo, u1, ... , g,
71, ..., 241 along simple closed curveg,,...Y,, Uy, ... U, Zy, ...,
Z,_, illustrated in Fig. 1.

(2) The groupH, is the subgroup oM, generated by1, u1, z1, ua, ... , 241,
u,, y, and a complete set of defining relators fy, are given as follows:
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"= [y1, Yl
of i=Dyul (=18 1<j<g.i#),
o=zl (=1g1<j<g-1,
of ji=luu;]l A<i<j<y),
@ i=luiz] A<i<gl<j<g-1j#ii+D),
@ i=lz 7] A<i<j<g-1,

1

Bl = yiuiyu;tyTut (=1, 9),

B = MiZiMiZ;ll/l;lZ;l 1l<i<g-1,
B = Ziui+1Ziuer11Z;lu;jl 1l<i<g-1J,

y© o= (y1u1z1uz - - -Zg_lugyg)zg+2,

8t = (ywuazauz - 'Zg—lugygzugzg—l - u2z1u1y1)’,

€ = [yu1ziuo - - 'nglugysugzgfl - U2ZIULYT, V1]
Particularly, the group#, is equal to the group\, if g = 1 or 2.

By choosing a suitable symplectic basis #f(X,; Z), we fix an explicit
representation : M, — Sp(2g; Z) by:

oy —> <_1Eii?) 1l<i<yg),

o U —> <(I)E]”> 1=<i<yg),

1 0

L7 1< _1’
o Zl}—)<_Eii_Ei+13i+1+Ei,i+l+Ei+l’i I) l<ic<g )

whereE;; € M,(Z) is the(i, j)-matrix unit (see [22]). For simplicity, we often
denoter, o (0 x o) by 7,.

(3) The order of the cohomology classwmfin H*(H,, Z)
Let G be a finitely presentable group and G x G —> Z a 2-cocycle of

G (i.e.z(x, y) + z(xy, w) = z(x, yw) + z(y, w) for everyx, y, w € G) which
satisfies

z(x,1) =z(1, x) = z(x, x_l) =0

for arbitrary element of G (cf. [6]). The order of the cohomology claks= [z]
of z in H?(G, Z) can be calculated as follows.
There exists an exact sequence:

1—>R—>FL>G—>1,
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where F is the free group of finite rank generated by a free basis =
{e1, ..., e}. For each generata;(i = 1,...,r), the homomorphisne; :
F — Zis defined by:

ef(ej):=68; G, j=1...,r).

The mapc : F — Z is defined by:

m

c(x) = Z z(m(Xj-1), 7w (x;))

j=1

m J
(x = l_[xi, xi € EUE™, X :l_[x,-).
i=1

i=1

It can be checked that the restrictionz: R — 7Z of ¢ to R is actually a
homomorphism.

Proposition 2.3 (Meyer[22] p.249).A positive integer is divided by the order
ord (k) of the cohomology class = [z] in H?(G, Z) if and only if there exist
integersny, ... , n, such that the following holds:

r

ne |g= Znie?‘ I -

i=1

Furthermore, if the abelianizatio /[G, G] of G is finite, then such integers
n,ni,...,n,areuniquely determined underthe condition.d. (n, ny, ... , n,)
= 1 and the ordewrd (k) of k is exactly equal ta.

Now we use Proposition 2.3 in the case that= H,, z = 1}/ 1= 7, 0 (5 x
o) |Hg><ng Zz(Hg, 7)), F =< y1,u1, 21, Uz, ..., Zg—1,Ug, Yg > andR is the
normal closure of the set of the Birman-Hilden relatfrs, g/, y*, 8%, '} in F.

Lemma 2.4.The values of the homomorphisniz: R —> 7Z on the relators of
Birman-Hilden’s presentation ¢, (g > 1) are calculated as follows:

(1) c(ef;) = O (for everyl, i, j);
(2) c(B)) = 0 (for everyl, i);
(3) cyh =2(g + 1%

(4) c(8H) =4 +D);

(5) c(eh) = 0.

Proof. (1),(2) and (5) follow from a formula of Meyer ([22] p.254-1.2). (3) and
(4) are formulae (30) and (31) in [22]. O
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Proposition 2.5.The Orderord([ng]) of the cohomology cla$sg”] of the signa-
ture cocyclergH restricted to the hyperelliptic mapping class grotp of genus
g in the cohomology groupl?(H,, Z) is exactly equal t@g + 1.

Proof.Lemma 2.4 implies
(2g+Dclr=(g+DO] +uyj+ztuz+-+z, g tu, +,) Iz -

It can be easily checked that,/[H,, H,] is a finite cyclic group by using
Birman-Hilden’s presentation dof,. Thereforeord([t;’]) = 2g + 1 follows
from Proposition 2.3. O

Corollary 2.6 (Meyer [22]). The order ofir;] in H?(M., Z) is equal to3 and
the order of{ o] in H2(M5, Z) is equal to5.

3. The 1-cochain cobounding the signature cocycle

In this section we calculate some values of the 1-cochaitsobounding the
signature cocyclef restricted to the hyperelliptic mapping class grddp
(1) The class functiog, on?H,

Proposition 3.1.There exists a unique function

Pg: Hg —>

1
7 (¢>1
2er1. =1

with the following properties:

(1) o, y) = dg () + de (¥) — by (xy);
(2) ¢,(1) =0;

(3) ¢ (x™hH = —¢(x);

(4) ¢g(yxy_1) = ¢g(x)7

wherex, y € H,.

Proof. The existence o, and property (1) are assured by Proposition 2.5 and
its uniqueness follows from the finiteness#f/[H,, #,]. Properties (2)(3)(4)
are easily shown by using property (1) and Lemma 2.1(3)(4). O

Lemma 3.2.1f an elemenk of H, satisfiest? = 1, then the value, (x) is equal
to 0.

Proof. The statement immediately follows fram= x ! and Lemma 2.1(3).0

(2) The values op, on the Lickorish generators
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Lemma 3.3.The values of the functiap), on the Lickorish generators;, u1, z1,
up, ..., Zg-1, Ug, y, Of the hyperelliptic mapping class grod, are calculated
as follows:

¢g(yl) = ¢g(yg) = ¢g(”i) = ¢g(Zj)

g+1 . .
= =1...,¢,.j=1...,g—1.
2¢+1 (i 8, J g—1

Proof. By using Proposition 3.1 fop, (81 (i = 1, g), we have

0= ¢ (1) = ¢ (BY) = g ity yiur “y  u)
= G iuryite; y D) + o (i D) — o oy yiu; v up )
= o (i) — Beur) — T (wiyine;t ui v ui )
= () — p(ur) (i =1,8).

By combining with similar calculation fag, (82)(i = 1,... , g) and¢g(/3j3)(j =
1,...,¢g—1), weobtain

De(y1) = P (Vo) = Po(ui) = de(z;) (=1,...,8,j=L1...,g—-1

and putk := ¢,(y1). Next we use Proposition 3.1 far, (y1). (We putp =
VIULZAUZ - - - Zg—1Ugg.)

8
0= () = ¢ () = ¢, (p*™®) = (g + D, (P> — >_ /' (p*. p*¥)
i=1

= (g + D29 (p) — 1, (P, P)) = 2(g + V(9 (p) — 8,

wheret (p?, p*) =0G =1,..., g) andz/ (p, p) = 2g ([22] p.255). Thus
we haveg,(p) = g. From direct computation of the signature cocyc;é. it
follows thatt (yiuaza - - - wizi, uira) = 0, tff (yiuaza - - zi—ami, i) = 0G0 =
1,...,g -1, r;{(ylulzl---zg_lug, ye) =1 andt;’(yl, u1) = 0. Therefore
we get

g (P) = Pg(y1urzauz - - - Zg_1Ugyg)
g—1
= g+ DA — Y _(xf (auaza - wizi, wipn) + T (auaza - 21t 20)
i=1
— ng(ylulm- - Zg_1llg, Yg) — TgH()’l» u)
=Q2g+DHr—-1
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Lg

Fig. 2.
Hence we obtain
1
=37
2g+1
and this completes the proof. O

Remark 3.4T. Morifuji spoke about a purely algebraic proof of Corollary 3.7 of
[18] and the author about Proposition 2.5 of this paper at Hokkaido University
in September 1997. They arrived at the same conclusion (Lemma 3.3 above and
corresponding theorems in [24][25]) independently by slightly different calcu-
lations.

(3) The values od, on the BSCC maps

On the surfaceX, in Fig. 1 we draw simple closed curves, ..., Q,_1 as
in Fig. 2 and denote by, the negative Dehn twistalon@,(h =1, ..., g —1).
Eachg,(h = 1,..., g — 1) belongs to#, andg,_, is conjugate tay, in #,.
This g, is often called BSCC mapf genush, where BSCC means ‘bounding
simple closed curve’ (see [14]).

Lemma 3.5.The value of the functios, on the BSCC map, of genus: are
calculated as follows:

belan) = — 2By 1)
e\qn) = 2g+l =4...,8 .
. 2(2h+1) .
Proof.As an element of.,, g is equal tgp;, ,wherepy, := yiuizaus -+ - 751

up (h = 1,..., g — 1(cf. Lemma 4.13). From direct computation ﬂf it
follows thatrgH(ph, pr) = 2h, ‘ch(p,f, pih) = 2h andrgH(p,f, pﬁh) = 0. Then
we have
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Go(pn) = Qg (yrur1z1uz - - - Zp—1Up)

e +1 h—1
— H . . .
- 2g +1 x 2h — i:Zl(rg (ylulzl S Zisali, Zi)
+ 1) (yaaza - wizi, wit1)) — 75 (i, u)
1
= g+ x 2h,
2g+1

Do (qn) = pg (pr?*Y)

h—1
= (2h + Do, (pD) — > _ 1 (ph. pB) — Tl (PR, pP")
i=1

2h—1
D IR SRR
i=h+1
= (2h + 1) (2ps(p) — ) (pns pi)) — 2h — 20(g, h)
4dh(g — h
= —% — 2)(g, h),
where we put
h—1 2h—1
Mg =Y i ph =Y ok pi) (g>h> 1),
i=1 i=h+1

Ag, D) :=0 (g=>2).

By virtue of Proposition 3.1(4), we hayg (g,—1) = ¢,(gn)(h =1,...,g—
1) becausg,_; is conjugate tg; in H,. timmediately follows that (g, g—h) =
rMg,h)(g = 2,h =1,...¢g —1). On the other hand, it can be observed that
Mg+1h) =A(g,h)(g=>2h=1,...,g—1) byusing formula (13) in [22].
Therefore we conclude that(g,h) = 0(g > 2,h = 1,...,¢g — 1) and this
completes the proof. 0

4. The local signature for hyperelliptic fibrations

In this section we define the local signatutefor singular fibers of hyperelliptic
fibrations and calculate its values on Lefschetz singular fibers.
We follow the notation and terminology of [18].

(1) The local signatures,

Definition 4.1(18]). Let M and B be compact oriented (not necessarily closed)
smooth manifolds of dimension 4 and 2, respectively. A smooth fnap/ —
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B is called alocally analytic fibrationof genusg if it satisfies the following
conditions:

(1) oM = f~10B);

(2) there is a finite set of points, ... , b, (called thecritical valuesof f)
in Int B (= B — dB) such thatf|f~X(B — {b1,...,b,}) : f~X(B —
{by,...,b,}) — B —{bq,...,b,}is asmooth fiber bundle with the fiber
diffeomorphic toX,;

(3) for eachi (1 < i < n) and at each poinp € f~1(b;), the germ(f, p) is
conjugate via (not necessarilly orientation-preserving) diffeomorphism to
the germ a0 of a holomorphic functior£? — C. Moreover, there exists
at least one critical point of on the fiberf —1(b;).

We call a fiberf~1(b) asingular fiberif b € {b4, ...b,} or else ayeneral fiber
Also we call M thetotal space B thebase spacand f the projection

Let f : M — B be alocally analytic fibration of genysandbs, ... , b,
the critical values off. Take a base poiniy € Int B — {b4,...,b,}, and
identify the general fibeFy := f~1(bo) with X, by an orientation-preserving
diffeomorphisme : ¥, — Fy. Then we obtain the monodromy representation

p (B — (b1, ..., by}, bo) — M,
of f : M — B associated witl® : ¥, — Fj.

Definition 4.2. A locally analytic fibrationf : M — B of genusg is said
to behyperellipticif there exists an orientation-preserving diffeomorphigm
XY, — Fp such that the imagém p of the monodromy representatignof
the fibrationf associated witl® is included in the hyperelliptic mapping class
group#,.

Definition 4.3(18]). Let F andF’ be (singular or non-singular) fibers in locally
analytic fibrationsf : M — B andf’' : M’ — B’, respectivelyF and F’
are said to béopologically equivalenif there exist neighborhood$(c B) and
N'(Cc B) of pointsb = f(F) andb’ = f'(F’), respectively, and orientation-
preserving homeomorphisnis: (f)"*(N) — (f)"Y(N)andh : N — N’
sothath(b) =b'andf o H =ho f.

We denote bys, the set of topological equivalence classes of all fibers which
appear in locally analytic fibrations of gengiand bySf the subset af, which
consists of all equivalence classes of hyperelliptic fibers.

Theorem 4.4.There exists a unique function

1

with the following properties:



248 H. Endo

(1) if F e S} is non-singular, them, (F) = 0;

(2) if f: M — Bis ahyperelliptic locally analytic fibration of gengsover a
closed surfaceB, and if 1, ... , F, are all singular fibers in this fibration,
then

Sign(M) = ng(Fi),
im1

whereSign(M)(e Z) is the signature oM. We callo, (F;) thelocal signature
of the singular fiberr;.

Proof.Let {b4, ... , b,} be the set of critical values ¢f, D; a small 2-disk orB
centered ab; andF; = f~1(b;). We putMo for M —J!_, f~(Int D;). We give
an orientation t@ D; from the inside ofD; and leto; € H, be the monodromy
of the bundlef (3 D;) — 9 D; in this direction ofd D;. By virtue of Meyer’s
signature formula ([22] Satz 1) and Proposition 3.1, we obtain

Sign(Mp) = — Z¢g(ai)-
i=1

If we defineo, (F;) by

0o (F}) = —¢o(a;) + Sign(f~H(Dy)),

then we get the formula above from Novikov's additivity.

Leto, be another function satisfying properties (1) and (2. & #, is the
monodromy of a singular fibeF € S}, thena***Y is included in[#,, H,]
because the order 6{,/[H,, H,] divides 42g + 1). Thus there exists a hy-
perelliptic locally analytic fibrationf : M — B of genusg over a closed
surfaceB which has 42¢g + 1) times F as the singular fibers. Then we have
428 + Do, (F) = 4(2g + Do, (F) from property (2). Hence,; must be equal
too,. O

Remark 4.5The value ofo, is independent of a choice @f becausep, is a
class function ort, (Proposition 3.1(4)).

We recall the Euler contribution of a fiber of locally analytic fibrations (see
[18] Definition 3.8).

ForF € S,(g = 1), e(F) := e(F) — e(X,) is called theEuler contribution
of F.If f : M — B be a locally analytic fibration of genysover a closed
surfaceB, and if 1, ... , F, are all singular fibers in this fibratiofi, then

e(M) = e(B)e(Z) + ) e(F).

i=1
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Remark 4.6The local signaturer,(F) and the Euler contributioa(F) of a
singular fiberF e S;’ are conserved at splitting &f.

(2) The local signature for Lefschetz singular fibers

Definition 4.7(18]). A locally analytic fibrationf : M — B of genusg is
called aLefschetz fibratiowmf genusg if the following conditions are satisfied:

(1) foreachcriticalvalué; (1 < i < n), there exists asingle poipt € f~1(b;)
suchthat(iXdf), : T,(M) — Ty (B)isontoforany e o) —{pi},
(ii) about p; (resp.b;), there exist local complex coordinatesg z, with
z1(p;) = z2(p;) = 0 (resp. local complex coordina¢ewith &(b;) = 0), so
that f is locally written ast = f(z1, z2) = z122;

(2) no fiber contains &-1)-sphere.

In Condition (1)(ii), we require the orientation &f (resp.B) to coincide with the
canonical orientation determined by the local complex coordinates (resp.
local canonical coordinatg) about the critical poinp; (resp.b;).

Y. Matsumoto proved that the global monodromy of a Lefschetz fibration
determines the fibering structure up to isomorphism ([18] Theorem 2.4 and The-
orem 2.6).

There are exactly5] + 1 topological types of Lefschetz singular fibers of
genusg, which we call singular fibers of typeand typel I,(h = 1, ... , [§]).

All of these singular fibers are hyperelliptit: /1y, ... , 113 € Sf. The mon-
odromy of a singular fiber of typé is the negative Dehn twist along a non-
separating simple closed curve 8y and that of a singular fiber of typl), is

the negative Dehn twist along a separating (or bounding) simple closed curve of
genush on X,. We can easily see thatl) = e(Il;) =1(h =1,... ,[5].

Theorem 4.8.The local signature, for Lefschetz singular fibers are calculated
as follows:

oo (1) = —%, oo (1) = % —1 (h =1, [5]).

Proof. These values are easily computed from the definitioa,pt.emma 3.3
and Lemma 3.5. O

Remark 4.9The valueo,(I1,)(h =1, ..., [%]) is always positive fog > 3.

We are interested in the number of singular fibers in a hyperelliptic Lefschetz
fibration.

Proposition 4.10.Let f : M — B be a hyperelliptic Lefschetz fibration of
genusg over a closed surfacg anda, by, . . . , bys) numbers of Lefschetz singu-
lar fibers of typel, I'14, ..., gy, respectively. Then the following congruences
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hold:

(5]

(¢+Da—4) h(g—hb,=0 (mod 2g+1) (1)
h=1
(5]

_ 2(2g + 1) (g : even)
a +4;h(2h +1)b, =0 <mod{ 42g + 1) (g : 0dd) }) )

Proof. (1) This congruence follows from Theorem 4.4, Theorem 4.8 and the
integrality of the signature o/:

Sign(M) =

(5]
1 4h(g — h
R it S Ny
1

2¢ +1° 2g + 1

(2) The abelianizatiorﬂg” = H/[H,, H,] of H, isisomorphic tdZ/2(2g + 1)
(resp.Z/4(2¢ + 1)) if g is even (resp. odd)(see [5]). Under the identifica-
tion Hg” = 7Z/2(2g + 1) (resp.Z/4(2g + 1)), each of Lickorish generators
V1, U1, 21, U2, . .. , Zg—1, Ug, Y, COrresponds to 1 and

qn = (V1U1Z1u2 - - - T 11y, ) 23T
todh2h+1)(h =1,... ,[%]). Thus the total monodromy of : M — B
corresponds to

151

a+ 4Zh(2h + 1by,.

h=1
Since the total monodromy gf : M — B must be freely equal to a commu-
tator of H,, the abelianized total monodromy is equal to 0. Thus we obtain the
congruence above. O

The next corollary corresponds to Noether’s conditi®r- ¢, = O(mod 12)
on complex manifolds (cf. [4]).

Corollary 4.11.1f f : M — B be a hyperelliptic Lefschetz fibration of genus
g over a closed surfac®, then the integeSign(M) + e(M) is divisible by4,
wheree(M) is the Euler characteristic of/.

Proof.1f a, b1, ... , b5, are numbers of Lefschetz singular fibers of typé 1,

, II[§] in this fibraztionf, then we have

Z 4h(g T Doyt eBy2-20).
h=

Sign(M) +e(M) =
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Both 4h(g—h)b, ande(B)(2—2g) are clearly divisible by 4. By using Proposition
4.10(2), we can show thgt: is also divisible by 4. O

Remark 4.12The congruenc8ign(M) +e(M) = 0 (mod 4) holds for any (not
necessarily hyperelliptic) Lefschetz fibratigh: M — B of genusg over a
closed surfacé® becauseM has an almost complex structure (see [10] Chapter
8).

(3) Examples of Lefschetz fibrations
We need the following lemma.

Lemma 4.13.1In the hyperelliptic mapping class groud,, the next relation
holds:

2g+1
g)g :lv

(yiuizauz - zg_1u

where is the hyperelliptic involution.

Proof.We denotey, uy, z1, Uz, ... , Zg—1, Ug, Yo BY L1, $2, 83, 84, .. ., $2g-1, L2g,
Cog+1 aNd Seta = 10203+ - L2g0241 ANAD = (20203 {25L2e11. Then by
Theorem 2.2(2)a%%? = 1 and¢; = ba™! = ba?*1. We can verify; =
altai(i =2, ...,2¢ +1). We obtain

G=aa®? (=2 ...,2¢+1)
by substitutingba?** for 1. We rewrite the known relation
018283+ + $2gUhy182g + + Lalal1 = L
(cf. [5]) using the above expression gfin terms ofa andb, then we obtain
a Y(ba®)*a = ..

Since: belongs to the center &, we have(ba®)%*! = (. We will further
rewriteba®¢ as follows:

ba®® =b-a®ba-a bt = b{zﬁla_lb_l
= b(Log41 Logialog -+ b3 4o 4y Db
= b({18283 " -+ {og-1820) TH T

Then we have ({18283 - - - {2g-182,) " #TPb~1 = 1. Using the fact thatbelongs
to the center o, and that? = 1, we finally obtain

(018283 - - Log12) T =1
as asserted. O

We generalize Example D of [18] to examples in higher genara.
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Example 4.14(Homeomorphic but non-isomorphic Lefschetz fibrations)
From Theorem 2.2(2) and Lemma 4.13, we have the following relations in
H,:
(yru1ziuz - - 'nglugygzrugzgfl - upziugyn)® = 1,

4g+2
(yiuazaup - - 2g_1Ug) 8te — 1,

which produce two hyperelliptic Lefschetz fibratials — S?andM, —> §?

of type 4¢(2g+1)I ([18] Theorem 2.6). By computing the local signatugeand

the Euler contributiom, both of M; and M, have the same signaturelg(g + 1)

and the same Euler characteristi@d? + 1). If g = 1 or Amod 4), then M,

and M, are homeomorphic t62g? — 2g + 1)CP?1(6g% + 2g + 1)CP’ from
Freedman’s theorem. However, they are not isomorphic as Lefschetz fibrations
because the monodromy representatioMgfs surjective onto the whole map-
ping class groupM, while that of M, is not so. In the casg = 2, itis shown that

M; and M, are not diffeomorphic to each other by using Kirby calculus ([8]).

We can also construct Lefschetz fibrations of gepus 3) with positive
signature.

Example 4.1%Lefschetz fibrations with positive signature)

We assumg > 3. The total monodromgyu1)°¢+Y of 2¢+1 singular fibers
of type 11, with monodromy(y,u1)%(= ¢1) is included iN[#,, H,] because the
order ofH, /[H,, H,] divides 42g +1). Thus(y1u1)%?*+? is equal to a product
of kK commutators of{, for somek(> 0) and we obtain a Lefschetz fibration
f : M — B of genusg of type (2¢g + 1)1, over a closed surfack of genus
k ([18] Theorem 2.6). Then we have

Sign(M) = (2¢ + Do (I11) = (2g + 1) x (42 J_r 1) — 1)
=2g —5.
We compute a concrete value/of
Let denote byW, the product of(y;u1)%%+D with
g—1 g—1
(ﬂ%)76(2g+1)(ﬂ;.)12 1_[(1[31_2)712(2g72i+l) H(ﬂia)flz(zgfzi)(al)fs (=1).
i=1 i=1

The word W,, which is actually equal tdy;u1)%%*Y as an element of,,
is of length 122¢ + 1)(6g — 1) and the algebraic number of each generator
included inW, is equal to zero. Such a woidl, is decomposed to a product of
at most 32¢ + 1)(6g — 1) commutators ([9] Sect. 3 Corollary 2) and we can set
k=3(2g+ 1(6g - 1.

We can construct a non-hyperelliptic Lefschetz fibration of geqigs 3)
with positive signature (cf. [3] Introduction).
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Let f : M — B be a Lefschetz fibration of gengsobtained above and
f'+M' — B’ aX,-bundle over a closed surfaé with zero signature whose
monodromy representation is surjective ont6,. (Such a¥,-bundle is easily
constructed in the smooth category.) The desired Lefschetz fibration is the fiber
connected sumof : M — B with f': M’ —> B’.

Y. Matsumoto remarked about the construction of Example 4.15 as follows.

Remark 4.16(See [17] Sect. 5 Remark(1) for genus 1 case)

A similar construction to Example 4.15 in genus 2 case Yields a Lefschetz
fibration f : M — B of genus 2 of type BI; over a closed surfacg. The
total monodromy of all singular fibers gfis equal ta(y111)%°(= (¢1)°) and the
signatureSign (M) of the total spacé/ is equal to—1. This Lefschetz fibration
is not isomorphic to any fiber connected sum of a Lefschetz fibration $tver
with a X,-bundle overB because such a Lefschetz fibration of genus 2 sver
does not exist. If such a Lefschetz fibration o§éexists, the total monodromy
(q1)° of it must be equal to 1. But this contradicts a result of Mess [20].

5. Another local signature

In this section we work in the complex category.

For (holomorphic) hyperelliptic fibrations, another local signature can be
defined with a quite different method from ours.

The next theorem is known.

Theorem 5.1 (Horikawa[12], Persson[27] and Arakawa-Ashikaga[2]). Let
f : 8§ — C be a relatively minimal (holomorphic) hyperelliptic fibration of
genusg over a compact Riemann surfa€eof genusr and Fy, ... , F, all the
singular fibers of this fibration. There exists a non-negative rational number
Ind(F;) € 17 called the Horikawa index of the singular fib&r(i = 1, ... , n)
such that the next equality holds:
4g—1) .
S+ @+ D — DY+ Y Ind(Fy),

i=1
where K is the canonical bundle ang is the holomorphic Euler-Poincar”
characteristic of the compact complex surfate

Ké=

Arakawa and Ashikaga [2] (and the author) noticed the following proposition.

Proposition 5.2 (Arakawa-Ashikaga[2]). If f : § — C is a relatively min-
imal (holomorphic) hyperelliptic fibration of genygsover a compact Riemann
surfaceB of genust and F, ... , F, all the singular fibers of it, then

Sign(S) =) &4(F),
i=1
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where Ind(F, De(F; 1
6g(Fi):g n ( l)_(g+ )6( l)E
2g+1 2g+1
is called thelocal signatureof the singular fiberF; (i = 1, ... ,n) ande(F;) is

the Euler contribution of;.

Proof. The statement follows from Theorem 5.1 and relations among invariants
of S, namelyK?2 = ¢2, 12x = ¢2 + ¢5, ¢2 = 2¢(S) + 3Sign(S) andcy = e(S).
O

Let us denote our local signatusg by o, and Arakawa-Ashikaga’s local
signatures, by o/ We callo,” (respo ') thetopological(respholomorphig
local signature

When the author spoke about Proposition 5.2 above and Example 5.4 below at
Hokkaido University in September 1998, T. Terasoma told him the next theorem.

Theorem 5.3 (Terasoma)Llet F be a singular fiber of a relatively minimal
(holomorphic) hyperelliptic fibratiory : § — C of genusg over a Riemann
surfaceC. Then the topological local signatueg” (F) of F is always equal to
the holomorphic local signature)” (F) of F: namely

ol = gl
The proof of Theorem 5.3 due to Terasoma is given in Appendix below. We
observe the coincidence of these two kinds of local signa:tgﬁ"eandcr;’”l in

several cases.

Example 5.4(The local signature for ‘atomic fibers’)

Theorem 5.3 can be easily checked wiger 4. Any singular fiber of rela-
tively minimal (holomorphic) hyperelliptic fibrations of genus 1 (resp3 2nd
4) splits into singular fibers of 1 type (resp. 2 types, 5 types and 5 types), which
are called ‘atomic fibers’, under the conservation of local signatuf#sand
ol ([1][2]) and itis easily seen that,”” (F) = o/ (F) if F is an ‘atomic fiber’
(see [2] Example 4.8).

(1) g=1: oiltype @) = —2/3;
(2) g =2: ou(type @) = —3/5, oy(class ll-(i) = —1/5;
(3) g =3: o3(type Q) = —4/7, oz(classl g’ =1)) = —-6/7,
os(class ll-(i) = 1/7, os(class ll-(ii)) = —6/7 , oz(class llI-(iii)) = 0 ;
(4) g =4: o4(type Q) = —5/9, ou(classl g’ =1)) = —-2/3,
og(class ll-(i) = 1/3, ou(class lI-(ii)) = 7/9, os(class lI-(iii)) = —1,

where type g, class | and class Il are classes of singular fibers defined in [2]. A
singular fiber of type §corresponds to a Lefschetz singular fiber of typg/pe
Op=Lefschetz/. It can be observed that” (Lefschetz/) = ol (type ) =
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—(g+1/(2g + 1) for everyg(> 1) (see Theorem 4.8 and [2] Example 4.8).
If ¢ < 4, all Lefschetz singular fibers of tygd,(h =1, ..., [%]) are included
in class Il: class lI-(i))=LefschetZl; (g = 2, 3, 4); class lI-(ii)=Lefschetz I,

(g=4%.

Because the coincidence of two local signaturé¥ and o' (Theorem

5.3) is proven by using the uniquenessodf’ and that ofa;”’, conceptual
reason of this coincidence is still not clear. If one wants to clarify more of the
relation between these two local signatures, it might be important to study the
correspondence of singular fibers to their monodromies (cf. [19]).

Appendix. Proof of Theorem 5.3 (by T. Terasoma)

LetA={zeC||lz|<e}andf :C — A be afamily of hyperelliptic curves
over A. Let 6’ ando"’' be the topological and holomorphic invariant. Let

n € C such that 0<| 5 |< . If the geomeric monodromy af on w1 (f~1(n))

is equal to the Dehn twist by a simple closed curve which does not separate the
surfacef~1(n) into two components, then we havé&” = ¢"° (see Example

5.4).

Definition. Such a familyC — A is calledirreducible Lefschetz type
Theorem. For any family of hyperelliptic cirv€ — A, we haver'” = o"*'.

Proof.We denoteZ, by the fiber product of andSpec(C[t]/¢"*1) over A. First

we note that there exists a sufficiently largsuch that for ang” — A such that

C! =~ C, over Spec(C[t]/t"*1), then (1y (C")'P = o (C)"? and (2p (C)"! =

o (C)"'. For the statement (1), the conjugacy class of the geometric monodromy
representation depends only on the data for a stable reduction and the action of
the Galois group for the covering af corresponding to the stabilization on the
stable graph and skrew numbers defined in [19]. This impiles the existence of
a sufficiently large number with the property (1). For (2), one can prove this
statement using formal function theorem (cf. [11] lll,Sect. 11) and the definiton
of Ind(C).

Lemma. We can construct a relatively minimal hyperelliptic fibratigpn S —
P! such that

(1) S xp1 Spec(C[t]/t"+1) is isomorphic taC,, whereSpec(C[t]/t"1) — P!
is then-th infinitesimal neibourhood df € P.

(2) The restricitonS |;-1p1_op— P* — {0} of ¢ has at most singularities of
irreducible Lefschetz type.
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Proof. SinceC is a relatively minimal hyperellipic fibration, we can take 2
coveringC — f~1(0) — P x (A — {0}) branching at2g + 2)-multisectionx®°.
The closure of2° in P! x A is denoted byX. ThenC is bimeromorphically
equivalent to the double covering branchingzapr X U (P! x {0}). Let ¥ be the
branching divisor oP* x A. Then for any: there exists a divisaE,; in P* x P*
suchthatthe image & ; in P* x p1 Spec(C[¢]/¢"*1) corresponds that & under
the isomorphism betwed?" xp1 Spec(C[z]/1"+h) andP* x 4 Spec(C[]/1" ).
Next we claim that there exists a divisa, ;. C P* x P! such that

(1) Z:gl,Lef |P1><Spec(C[t]/t”+l): Egl |P1><Spec(C[t]/t”+l) .
(2) X4 1.5 has at most nodes and each nodes does not lay on the same fiber for
PL x (PL— {0} — P! — {0}
3) The divisor class ot ;. is divisible by 2.
gl Lef

The type ofigl is denoted by2¢g + 2, m). Let m’ be an integer such that
m+m' > n+1andm + m’ is divisible by 2. LetF be the defining equation
of igz,Lef + m’ (P! x {o0}). Fix a sectiorr € Op1(1) such that (0) = 0 andG
be a generic member 61(2g + 2+ m + m’ —n — 1). Then for a generig, the
zero locus ofF + k - pri(t)"+1G satisfies the required properties. Note that the
condition (2) is open condition far which is satisfied fok = co

To show the existence &f in Lemma, we takeS as the relatively minimal
model of the double covering & x P branching at,; .. O

We can finish the proof of Theorem by using Theorem 4.4 and Proposition
5.2. Actually,

Sign(S) =a"(C | 4,) + > o' (C |a,)
p#0,C— Plis singular atp
=6"(C | a0) + > " (C |4,),

p#0,C— Plis singular atp

where A, is a sufficienly small neighourhood gfin P*. Sinces’*?(C la,) =
o"l(C |4,) for p # 0, we haver"? (C | 4,) = 0" (C | 49)- o
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