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Meyer’s signature cocycle and hyperelliptic fibrations
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Abstract. We show that the cohomology class represented by Meyer’s signature cocycle is of
order 2g + 1 in the 2-dimensional cohomology group of the hyperelliptic mapping class group of
genusg. By using the 1-cochain cobounding the signature cocycle, we extend the local signature
for singular fibers of genus 2 fibrations due to Y. Matsumoto [18] to that for singular fibers of
hyperelliptic fibrations of arbitrary genusg and calculate its values on Lefschetz singular fibers.
Finally, we compare our local signature with another local signature which arises from algebraic
geometry.
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1. Introduction

Let Σg be a closed oriented surface of genusg and Mg the mapping class
group ofΣg, namely the group of all isotopy classes of orientation-preserving
diffeomorphisms ofΣg.

Meyer [21][22] introduced a cocycleτg : Mg ×Mg −→ Z (Meyer’ssigna-
ture cocycle) and gave a signature formula for surface bundles over surfaces. He
showed that the signatureSign(E) of the total spaceE of an orientedΣg-bundle
over an oriented surface is always zero wheng is equal to 0, 1 or 2. It is easily seen
that the signatureSign(E) of anyE is divisible by 4 becauseE has an almost
complex structure. Meyer also showed that every multiple of 4 is equal to the
signatureSign(E) of someE wheng ≥ 3. These results are related to the order
of the cohomology class of the signature cocycleτg in the cohomology group
H 2(Mg, Z): namely the orders forτ1 andτ2 are finite but that forτg(g ≥ 3) is
infinite (see also Hoster’s paper [13] for an elementary purely topological proof
of the fact that Meyer’s signature cocycle represents 4 times a generator of the
cohomology groupH 2(Mg, Z) and the author’s paper [7] for an improvement
of the proof of Meyer’s theorem using Wajnryb’s presentation [30] ofMg).
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Matsumoto [16][18] defined a ‘local signature’, which he called theσ -number
or the fractional signature, for singular fibers of genus 1 and 2 fibrations by
using the finiteness of the order of the cohomology class of the signature cocycle
τg(g = 1, 2). He calculated the values of the local signature for singular fibers
of good torus fibrations, elliptic surfaces and Lefschetz fibrations of genus 2.
The signature of the total space of such a fibration of genus 1 or 2 is equal to
the sum of local signatures of all the singular fibers in the fibration. He also
gave some remarkable examples of Lefschetz fibrations of genus 2 including
some ‘exotic’ phenomena (see [8]) and reproved theorems of Persson [28] and
Xiao-Ueno [31][29] with topological methods.

Forg ≥ 3, this kind of concentration of the signature were not expected be-
cause the order of the cohomology class of the signature cocycleτg inH 2(Mg, Z)

is not finite. But on the hyperelliptic mapping class groupHg, a certain subgroup
of Mg which we explain in Sect. 2, the order of the cohomology class of the
signature cocycleτg is actually finite.

In this paper we first show that the order of the cohomology class of the
signature cocycleτH

g restricted to the hyperelliptic mapping class groupHg of
genusg is equal to 2g + 1 and we next define the local signature for singular
fibers of hyperelliptic fibrations of arbitrary genusg and calculate some values
of it. It turns out that the finiteness of the order of the cohomology class of the
signature cocycleτg(g = 1, 2) comes from that of the order of the cohomology
class of the signature cocycleτH

g restricted to the hyperelliptic mapping class
groupHg.

In Sect. 2 we determine the order of the cohomology class of the signa-
ture cocycleτH

g restricted to the hyperelliptic mapping class groupHg in the
cohomology groupH 2(Hg, Z) using Birman-Hilden’s presentation ofHg. We
calculate some values of the 1-cochainφg cobounding the signature cocycleτH

g

restricted toHg in Sect. 3. Then we define the local signature of a singular fiber
of a hyperelliptic locally analytic fibration of arbitrary genusg and determine
its values on Lefschetz singular fibers in Sect. 4. We also give some examples
of (hyperelliptic) Lefschetz fibrations including Lefschetz fibrations with posi-
tive signature. And in the last section, Sect. 5, we compare our local signature
with another local signature which arises from a study about degeneration of hy-
perelliptic curves in algebraic geometry and present Terasoma’s theorem which
asserts that the values of these two kinds of local signature always coincide.

Morifuji [24][25] gives a certain formula for the 1-cochainφg cobounding
the signature cocycleτH

g restricted toHg and studies a relation between the
1-cochainφg and the Atiyah-Patodi-Singerη-invariant.

The author wishes to express his heartfelt gratitude to his adviser, K. Kawa-
kubo, for encouragement and many useful suggestions, to T. Terasoma for the
kindness to write the beautiful appendix (Proof of Theorem 5.3) for this paper
which is based on the idea of approximating a local family of curves by global one
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and using Theorem 4.4 and Proposition 5.2, and to Y. Matsumoto, T. Ashikaga,
K. Kikuchi, T. Arakawa and T. Morifuji for helpful comments and discussions.

2. Meyer’s signature cocycle restricted
to the hyperelliptic mapping class group

In this section we first recall the definition of Meyer’s signature cocycleτg [22]
and Birman-Hilden’s presentation [5] of the hyperelliptic mapping class group
Hg of genusg and we next determine the order of the cohomology class of the
signature cocycleτH

g restricted toHg in the cohomology groupH 2(Hg, Z).

(1) Meyer’s signature cocycleτg

For a pair(A, B) of symplectic matriciesA, B ∈ Sp(2g, Z), the vector space
VA,B is defined by:

VA,B := {(x, y) ∈ R
2g × R

2g | (A−1 − I )x + (B − I )y = 0},
whereI is the identity matrix. Consider the (possibly degenerate) symmetric
bilinear form

< , >A,B : VA,B × VA,B −→ R

onVA,B defined by:

< (x1, y1), (x2, y2) >A,B :=< x1 + y1, (I − B)y2 >,

(xi, yi) ∈ VA,B (i = 1, 2),

where< , > is the standard symplectic form onR2g given by:

< x, y >= t xJy (x, y ∈ R
2g),

J =
(

0 I

−I 0

)
∈ M2g(R).

Meyer’ssignature cocycle[21][22]

τg : Sp(2g, Z) × Sp(2g, Z) −→ Z

is defined by:
τg(A, B) := sign(VA,B , < , >A,B)

(A, B ∈ Sp(2g, Z)).

From the Novikov additivity,τg is a 2-cocycle ofSp(2g, Z) and represents the
cohomology class 4c1 = [τg] ∈ H 2(Sp(2g, Z), Z) (cf. [26]).

Lemma 2.1 (Meyer [21][22]). The signature cocycleτg satisfies the following
properties:
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Fig. 1.

(1) τg(A, B) + τg(AB, C) = τg(A, BC) + τg(B, C);
(2) if ABC = I , thenτg(A, B) = τg(B, C) = τg(C, A);
(3) τg(A, I) = τg(A, A−1) = 0;
(4) τg(B, A) = τg(A, B);
(5) τg(A

−1, B−1) = −τg(A, B);
(6) τg(CAC−1, CBC−1) = τg(A, B),

whereA, B, C ∈ Sp(2g, Z).

(2) The hyperelliptic mapping class groupHg

Let Σg be a closed oriented surface of genusg embedded inR3 andY1, . . . ,

Yg, U1, . . . Ug, Z1, . . . , Zg−1 simple closed curves embedded inΣg in the man-
ner illustrated in Fig. 1 (see [5] Sect. 2).We can define thehyperelliptic involution
ι : Σg −→ Σg as in Fig. 1.

LetMg be the mapping class group of the surfaceΣg of genusg, namely the
group of all isotopy classes of orientation-preserving diffeomorphisms ofΣg and
Hg thehyperelliptic mapping class groupof genusg, namely the subgroup ofMg

which consists of all isotopy classes of orientation-preserving diffeomorphisms
of Σg commuting with the isotopy class ofι.

Theorem 2.2 ((1) Lickorish [15], (2) Birman-Hilden [5]).

(1) The groupMg is generated by negative Dehn twistsy1, . . . , yg, u1, . . . , ug,

z1, . . . , zg−1 along simple closed curvesY1, . . . Yg, U1, . . . Ug, Z1, . . . ,

Zg−1 illustrated in Fig. 1.
(2) The groupHg is the subgroup ofMg generated byy1, u1, z1, u2, . . . , zg−1,

ug, yg and a complete set of defining relators forHg are given as follows:
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α1 : = [y1, yg],
α2

i,j : = [yi, uj ] (i = 1, g, 1 ≤ j ≤ g, i 6= j),

α3
i,j : = [yi, zj ] (i = 1, g, 1 ≤ j ≤ g − 1),

α4
i,j : = [ui, uj ] (1 ≤ i < j ≤ g),

α5
i,j : = [ui, zj ] (1 ≤ i ≤ g, 1 ≤ j ≤ g − 1, j 6= i, i + 1),

α6
i,j : = [zi, zj ] (1 ≤ i < j ≤ g − 1),

β1
i : = yiuiyiu

−1
i y−1

i u−1
i (i = 1, g),

β2
i : = uiziuiz

−1
i u−1

i z−1
i (1 ≤ i ≤ g − 1),

β3
i : = ziui+1ziu

−1
i+1z

−1
i u−1

i+1 (1 ≤ i ≤ g − 1),

γ 1 : = (y1u1z1u2 · · · zg−1ugyg)
2g+2,

δ1 : = (y1u1z1u2 · · · zg−1ugy
2
gugzg−1 · · · u2z1u1y1)

2,

ε1 : = [y1u1z1u2 · · · zg−1ugy
2
gugzg−1 · · · u2z1u1y1, y1].

Particularly, the groupHg is equal to the groupMg if g = 1 or 2.

By choosing a suitable symplectic basis ofH1(Σg; Z), we fix an explicit
representationσ : Mg −→ Sp(2g; Z) by:

σ : yi 7−→
(

I 0
−Eii I

)
(1 ≤ i ≤ g),

σ : ui 7−→
(

I Eii

0 I

)
(1 ≤ i ≤ g),

σ : zi 7−→
(

I 0
−Eii − Ei+1,i+1 + Ei,i+1 + Ei+1,i I

)
(1 ≤ i ≤ g − 1),

whereEij ∈ Mg(Z) is the(i, j)-matrix unit (see [22]). For simplicity, we often
denoteτg ◦ (σ × σ) by τg.

(3) The order of the cohomology class ofτg in H 2(Hg, Z)

Let G be a finitely presentable group andz : G × G −→ Z a 2-cocycle of
G (i.e. z(x, y) + z(xy, w) = z(x, yw) + z(y, w) for everyx, y, w ∈ G) which
satisfies

z(x, 1) = z(1, x) = z(x, x−1) = 0

for arbitrary elementx of G (cf. [6]). The order of the cohomology classk := [z]
of z in H 2(G, Z) can be calculated as follows.

There exists an exact sequence:

1 −→ R −→ F
π−→ G −→ 1,
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where F is the free group of finite rankr generated by a free basisE =
{e1, . . . , er}. For each generatorei(i = 1, . . . , r), the homomorphisme∗

i :
F −→ Z is defined by:

e∗
i (ej ) := δij (i, j = 1, . . . , r).

The mapc : F −→ Z is defined by:

c(x) :=
m∑

j=1

z(π(̃xj−1), π(xj ))

(
x =

m∏
i=1

xi, xi ∈ E ∪ E−1, x̃j =
j∏

i=1

xi

)
.

It can be checked that the restrictionc |R : R −→ Z of c to R is actually a
homomorphism.

Proposition 2.3 (Meyer[22] p.249).A positive integern is divided by the order
ord(k) of the cohomology classk = [z] in H 2(G, Z) if and only if there exist
integersn1, . . . , nr such that the following holds:

nc |R≡
r∑

i=1

nie
∗
i |R .

Furthermore, if the abelianizationG/[G, G] of G is finite, then such integers
n, n1, . . . , nr are uniquely determined under the conditiong.c.d. (n, n1, . . . , nr)

= 1 and the orderord(k) of k is exactly equal ton.

Now we use Proposition 2.3 in the case thatG = Hg, z = τH
g := τg ◦ (σ ×

σ) |Hg×Hg
∈ Z2(Hg, Z), F =< y1, u1, z1, u2, . . . , zg−1, ug, yg > andR is the

normal closure of the set of the Birman-Hilden relators{αl
ij , β

l
i , γ

1, δ1, ε1} in F .

Lemma 2.4.The values of the homomorphismc |R: R −→ Z on the relators of
Birman-Hilden’s presentation ofHg(g ≥ 1) are calculated as follows:

(1) c(αl
ij ) = 0 (for everyl, i, j);

(2) c(βl
i ) = 0 (for everyl, i);

(3) c(γ 1) = 2(g + 1)2;
(4) c(δ1) = 4(g + 1);
(5) c(ε1) = 0.

Proof. (1),(2) and (5) follow from a formula of Meyer ([22] p.254-l.2). (3) and
(4) are formulae (30) and (31) in [22]. ut
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Proposition 2.5.The orderord([τH
g ]) of the cohomology class[τH

g ] of the signa-
ture cocycleτH

g restricted to the hyperelliptic mapping class groupHg of genus
g in the cohomology groupH 2(Hg, Z) is exactly equal to2g + 1.

Proof.Lemma 2.4 implies

(2g + 1)c |R≡ (g + 1)(y∗
1 + u∗

1 + z∗
1 + u∗

2 + · · · + z∗
g−1 + u∗

g + y∗
g) |R .

It can be easily checked thatHg/[Hg, Hg] is a finite cyclic group by using
Birman-Hilden’s presentation ofHg. Thereforeord([τH

g ]) = 2g + 1 follows
from Proposition 2.3. ut
Corollary 2.6 (Meyer [22]). The order of[τ1] in H 2(M1, Z) is equal to3 and
the order of[τ2] in H 2(M2, Z) is equal to5.

3. The 1-cochain cobounding the signature cocycle

In this section we calculate some values of the 1-cochainφg cobounding the
signature cocycleτH

g restricted to the hyperelliptic mapping class groupHg.

(1) The class functionφg onHg

Proposition 3.1.There exists a unique function

φg : Hg −→ 1

2g + 1
Z (g ≥ 1)

with the following properties:

(1) τH
g (x, y) = φg(x) + φg(y) − φg(xy);

(2) φg(1) = 0;
(3) φg(x

−1) = −φg(x);
(4) φg(yxy−1) = φg(x),

wherex, y ∈ Hg.

Proof.The existence ofφg and property (1) are assured by Proposition 2.5 and
its uniqueness follows from the finiteness ofHg/[Hg, Hg]. Properties (2)(3)(4)
are easily shown by using property (1) and Lemma 2.1(3)(4). ut
Lemma 3.2.If an elementx ofHg satisfiesx2 = 1, then the valueφg(x) is equal
to 0.

Proof.The statement immediately follows fromx = x−1 and Lemma 2.1(3).ut
(2) The values ofφg on the Lickorish generators



244 H. Endo

Lemma 3.3.The values of the functionφg on the Lickorish generatorsy1, u1, z1,

u2, . . . , zg−1, ug, yg of the hyperelliptic mapping class groupHg are calculated
as follows:

φg(y1) = φg(yg) = φg(ui) = φg(zj )

= g + 1

2g + 1
(i = 1, . . . , g, j = 1, . . . , g − 1).

Proof.By using Proposition 3.1 forφg(β
1
i )(i = 1, g), we have

0 = φg(1) = φg(β
1
i ) = φg(yiuiyiu

−1
i y−1

i u−1
i )

= φg(yiuiyiu
−1
i y−1

i ) + φg(u
−1
i ) − τH

g (yiuiyiu
−1
i y−1

i , u−1
i )

= φg(yi) − φg(ui) − τH
g (uiyiu

−1
i , uiy

−1
i u−1

i )

= φg(yi) − φg(ui) (i = 1, g).

By combining with similar calculation forφg(β
2
i )(i = 1, . . . , g)andφg(β

3
j )(j =

1, . . . , g − 1), we obtain

φg(y1) = φg(yg) = φg(ui) = φg(zj ) (i = 1, . . . , g, j = 1, . . . , g − 1)

and putλ := φg(y1). Next we use Proposition 3.1 forφg(γ
1). (We putp :=

y1u1z1u2 · · · zg−1ugyg.)

0 = φg(1) = φg(γ
1) = φg(p

2g+2) = (g + 1)φg(p
2) −

g∑
i=1

τH
g (p2, p2i)

= (g + 1)(2φg(p) − τH
g (p, p)) = 2(g + 1)(φg(p) − g),

whereτH
g (p2, p2i) = 0 (i = 1, . . . , g) andτH

g (p, p) = 2g ([22] p.255). Thus
we haveφg(p) = g. From direct computation of the signature cocycleτH

g , it
follows thatτH

g (y1u1z1 · · · uizi, ui+1) = 0, τH
g (y1u1z1 · · · zi−1ui, zi) = 0(i =

1, . . . , g − 1), τH
g (y1u1z1 · · · zg−1ug, yg) = 1 andτH

g (y1, u1) = 0. Therefore
we get

φg(p) = φg(y1u1z1u2 · · · zg−1ugyg)

= (2g + 1)λ −
g−1∑
i=1

(τH
g (y1u1z1 · · · uizi, ui+1) + τH

g (y1u1z1 · · · zi−1ui, zi))

− τH
g (y1u1z1 · · · zg−1ug, yg) − τH

g (y1, u1)

= (2g + 1)λ − 1.
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Fig. 2.

Hence we obtain

λ = g + 1

2g + 1

and this completes the proof. ut

Remark 3.4.T. Morifuji spoke about a purely algebraic proof of Corollary 3.7 of
[18] and the author about Proposition 2.5 of this paper at Hokkaido University
in September 1997. They arrived at the same conclusion (Lemma 3.3 above and
corresponding theorems in [24][25]) independently by slightly different calcu-
lations.

(3) The values ofφg on the BSCC maps

On the surfaceΣg in Fig. 1 we draw simple closed curvesQ1, . . . , Qg−1 as
in Fig. 2 and denote byqh the negative Dehn twist alongQh(h = 1, . . . , g − 1).
Eachqh(h = 1, . . . , g − 1) belongs toHg andqg−h is conjugate toqh in Hg.
Thisqh is often called aBSCC mapof genush, where BSCC means ‘bounding
simple closed curve’ (see [14]).

Lemma 3.5.The value of the functionφg on the BSCC mapqh of genush are
calculated as follows:

φg(qh) = −4h(g − h)

2g + 1
(h = 1, . . . , g − 1).

Proof.As an element ofHg,qh is equal top2(2h+1)
h , whereph := y1u1z1u2 · · · zh−1

uh (h = 1, . . . , g − 1)(cf. Lemma 4.13). From direct computation ofτH
g , it

follows thatτH
g (ph, ph) = 2h, τH

g (p2
h, p

2h
h ) = 2h andτH

g (p2
h, p

4h
h ) = 0. Then

we have
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φg(ph) = φg(y1u1z1u2 · · · zh−1uh)

= g + 1

2g + 1
× 2h −

h−1∑
i=1

(τH
g (y1u1z1 · · · zi−1ui, zi)

+ τH
g (y1u1z1 · · · uizi, ui+1)) − τH

g (y1, u1)

= g + 1

2g + 1
× 2h,

φg(qh) = φg(p
2(2h+1)
h )

= (2h + 1)φg(p
2
h) −

h−1∑
i=1

τH
g (p2

h, p
2i
h ) − τH

g (p2
h, p

2h
h )

−
2h−1∑
i=h+1

τH
g (p2

h, p
2i
h ) − τH

g (p2
h, p

4h
h )

= (2h + 1)(2φg(ph) − τH
g (ph, ph)) − 2h − 2λ(g, h)

= −4h(g − h)

2g + 1
− 2λ(g, h),

where we put

λ(g, h) :=
h−1∑
i=1

τH
g (p2

h, p
2i
h ) =

2h−1∑
i=h+1

τH
g (p2

h, p
2i
h ) (g > h > 1),

λ(g, 1) := 0 (g ≥ 2).

By virtue of Proposition 3.1(4), we haveφg(qg−h) = φg(qh)(h = 1, . . . , g−
1)becauseqg−h is conjugate toqh inHg. It immediately follows thatλ(g, g−h) =
λ(g, h)(g ≥ 2, h = 1, . . . g − 1). On the other hand, it can be observed that
λ(g + 1, h) = λ(g, h)(g ≥ 2, h = 1, . . . , g − 1) by using formula (13) in [22].
Therefore we conclude thatλ(g, h) = 0(g ≥ 2, h = 1, . . . , g − 1) and this
completes the proof. ut

4. The local signature for hyperelliptic fibrations

In this section we define the local signatureσg for singular fibers of hyperelliptic
fibrations and calculate its values on Lefschetz singular fibers.

We follow the notation and terminology of [18].

(1) The local signatureσg

Definition 4.1([18]). Let M andB be compact oriented (not necessarily closed)
smooth manifolds of dimension 4 and 2, respectively. A smooth mapf : M −→
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B is called alocally analytic fibrationof genusg if it satisfies the following
conditions:

(1) ∂M = f −1(∂B);
(2) there is a finite set of pointsb1, . . . , bn (called thecritical valuesof f )

in Int B (= B − ∂B) such thatf |f −1(B − {b1, . . . , bn}) : f −1(B −
{b1, . . . , bn}) −→ B − {b1, . . . , bn} is a smooth fiber bundle with the fiber
diffeomorphic toΣg;

(3) for eachi (1 ≤ i ≤ n) and at each pointp ∈ f −1(bi), the germ(f, p) is
conjugate via (not necessarilly orientation-preserving) diffeomorphism to
the germ at0 of a holomorphic functionC2 −→ C. Moreover, there exists
at least one critical point off on the fiberf −1(bi).

We call a fiberf −1(b) asingular fiberif b ∈ {b1, . . . bn} or else ageneral fiber.
Also we callM thetotal space, B thebase spaceandf theprojection.

Let f : M −→ B be a locally analytic fibration of genusg andb1, . . . , bn

the critical values off . Take a base pointb0 ∈ Int B − {b1, . . . , bn}, and
identify the general fiberF0 := f −1(b0) with Σg by an orientation-preserving
diffeomorphismΦ : Σg −→ F0. Then we obtain the monodromy representation

ρ : π1(B − {b1, . . . , bn}, b0) −→ Mg

of f : M −→ B associated withΦ : Σg −→ F0.

Definition 4.2. A locally analytic fibrationf : M −→ B of genusg is said
to behyperellipticif there exists an orientation-preserving diffeomorphismΦ :
Σg −→ F0 such that the imageIm ρ of the monodromy representationρ of
the fibrationf associated withΦ is included in the hyperelliptic mapping class
groupHg.

Definition 4.3([18]). Let F andF ′ be (singular or non-singular) fibers in locally
analytic fibrationsf : M −→ B andf ′ : M ′ −→ B ′, respectively.F andF ′
are said to betopologically equivalentif there exist neighborhoodsN(⊂ B) and
N ′(⊂ B ′) of pointsb = f (F ) andb′ = f ′(F ′), respectively, and orientation-
preserving homeomorphismsH : (f )−1(N) −→ (f ′)−1(N ′) andh : N −→ N ′
so thath(b) = b′ andf ′ ◦ H = h ◦ f .

We denote bySg the set of topological equivalence classes of all fibers which
appear in locally analytic fibrations of genusg and bySH

g the subset ofSg which
consists of all equivalence classes of hyperelliptic fibers.

Theorem 4.4.There exists a unique function

σg : SH
g −→ 1

2g + 1
Z (g ≥ 1)

with the following properties:
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(1) if F ∈ SH
g is non-singular, thenσg(F ) = 0;

(2) if f : M −→ B is a hyperelliptic locally analytic fibration of genusg over a
closed surfaceB, and ifF1, . . . , Fn are all singular fibers in this fibration,
then

Sign(M) =
n∑

i=1

σg(Fi),

whereSign(M)(∈ Z) is the signature ofM. We callσg(Fi) the local signature
of the singular fiberFi .

Proof.Let {b1, . . . , bn} be the set of critical values off , Di a small 2-disk onB
centered atbi andFi = f −1(bi). We putM0 for M −⋃n

i=1 f −1(Int Di). We give
an orientation to∂Di from the inside ofDi and letαi ∈ Hg be the monodromy
of the bundlef −1(∂Di) −→ ∂Di in this direction of∂Di . By virtue of Meyer’s
signature formula ([22] Satz 1) and Proposition 3.1, we obtain

Sign(M0) = −
n∑

i=1

φg(αi).

If we defineσg(Fi) by

σg(Fi) := −φg(αi) + Sign(f −1(Di)),

then we get the formula above from Novikov’s additivity.
Let σ ′

g be another function satisfying properties (1) and (2). Ifα ∈ Hg is the
monodromy of a singular fiberF ∈ SH

g , thenα4(2g+1) is included in[Hg, Hg]
because the order ofHg/[Hg, Hg] divides 4(2g + 1). Thus there exists a hy-
perelliptic locally analytic fibrationf : M −→ B of genusg over a closed
surfaceB which has 4(2g + 1) timesF as the singular fibers. Then we have
4(2g + 1)σ ′

g(F ) = 4(2g + 1)σg(F ) from property (2). Henceσ ′
g must be equal

to σg. ut

Remark 4.5.The value ofσg is independent of a choice ofΦ becauseφg is a
class function onHg (Proposition 3.1(4)).

We recall the Euler contribution of a fiber of locally analytic fibrations (see
[18] Definition 3.8).

ForF ∈ Sg(g ≥ 1), ε(F ) := e(F ) − e(Σg) is called theEuler contribution
of F . If f : M −→ B be a locally analytic fibration of genusg over a closed
surfaceB, and ifF1, . . . , Fn are all singular fibers in this fibrationf , then

e(M) = e(B)e(Σg) +
n∑

i=1

ε(Fi).
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Remark 4.6.The local signatureσg(F ) and the Euler contributionε(F ) of a
singular fiberF ∈ SH

g are conserved at splitting ofF .

(2) The local signature for Lefschetz singular fibers

Definition 4.7([18]). A locally analytic fibrationf : M −→ B of genusg is
called aLefschetz fibrationof genusg if the following conditions are satisfied:

(1) for each critical valuebi (1 ≤ i ≤ n), there exists a single pointpi ∈ f −1(bi)

such that (i)(df )p : Tp(M) −→ Tf (p)(B) is onto for anyp ∈ f −1(bi)−{pi},
(ii) about pi (resp.bi), there exist local complex coordinatesz1, z2 with
z1(pi) = z2(pi) = 0 (resp. local complex coordinateξ with ξ(bi) = 0), so
thatf is locally written asξ = f (z1, z2) = z1z2;

(2) no fiber contains a(−1)-sphere.

In Condition (1)(ii), we require the orientation ofM (resp.B) to coincide with the
canonical orientation determined by the local complex coordinatesz1, z2 (resp.
local canonical coordinateξ ) about the critical pointpi (resp.bi).

Y. Matsumoto proved that the global monodromy of a Lefschetz fibration
determines the fibering structure up to isomorphism ([18] Theorem 2.4 and The-
orem 2.6).

There are exactly[ g

2] + 1 topological types of Lefschetz singular fibers of
genusg, which we call singular fibers of typeI and typeIIh(h = 1, . . . , [ g

2]).
All of these singular fibers are hyperelliptic:I, II1, . . . , I I[ g

2 ] ∈ SH
g . The mon-

odromy of a singular fiber of typeI is the negative Dehn twist along a non-
separating simple closed curve onΣg and that of a singular fiber of typeIIh is
the negative Dehn twist along a separating (or bounding) simple closed curve of
genush onΣg. We can easily see thatε(I ) = ε(IIh) = 1(h = 1, . . . , [ g

2]).
Theorem 4.8.The local signatureσg for Lefschetz singular fibers are calculated
as follows:

σg(I ) = − g + 1

2g + 1
, σg(IIh) = 4h(g − h)

2g + 1
− 1

(
h = 1, . . . ,

[g
2

])
.

Proof.These values are easily computed from the definition ofσg, Lemma 3.3
and Lemma 3.5. ut
Remark 4.9.The valueσg(IIh)(h = 1, . . . , [ g

2]) is always positive forg ≥ 3.

We are interested in the number of singular fibers in a hyperelliptic Lefschetz
fibration.

Proposition 4.10.Let f : M −→ B be a hyperelliptic Lefschetz fibration of
genusg over a closed surfaceB anda, b1, . . . , b[ g

2 ] numbers of Lefschetz singu-
lar fibers of typeI, II1, . . . , I I[ g

2 ], respectively. Then the following congruences
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hold:

(g + 1)a − 4

[ g
2 ]∑

h=1

h(g − h)bh ≡ 0 (mod 2g + 1) (1)

a + 4

[ g
2 ]∑

h=1

h(2h + 1)bh ≡ 0

(
mod

{
2(2g + 1) (g : even)

4(2g + 1) (g : odd)

})
. (2)

Proof. (1) This congruence follows from Theorem 4.4, Theorem 4.8 and the
integrality of the signature ofM:

Sign(M) = g + 1

2g + 1
a −

[ g
2 ]∑

h=1

4h(g − h)

2g + 1
bh ∈ Z.

(2) The abelianizationHab
g = H/[Hg, Hg] of Hg is isomorphic toZ/2(2g + 1)

(resp.Z/4(2g + 1)) if g is even (resp. odd)(see [5]). Under the identifica-
tion Hab

g = Z/2(2g + 1) (resp.Z/4(2g + 1)), each of Lickorish generators
y1, u1, z1, u2, . . . , zg−1, ug, yg corresponds to 1 and

qh = (y1u1z1u2 · · · zg−1ugyg)
2(2g+1)

to 4h(2h + 1) (h = 1, . . . , [ g

2]). Thus the total monodromy off : M −→ B

corresponds to

a + 4

[ g
2 ]∑

h=1

h(2h + 1)bh.

Since the total monodromy off : M −→ B must be freely equal to a commu-
tator ofHg, the abelianized total monodromy is equal to 0. Thus we obtain the
congruence above. ut

The next corollary corresponds to Noether’s conditionc2
1 + c2 ≡ 0(mod 12)

on complex manifolds (cf. [4]).

Corollary 4.11. If f : M −→ B be a hyperelliptic Lefschetz fibration of genus
g over a closed surfaceB, then the integerSign(M) + e(M) is divisible by4,
wheree(M) is the Euler characteristic ofM.

Proof. If a, b1, . . . , b[ g
2 ] are numbers of Lefschetz singular fibers of typeI, II1,

. . . , I I[ g
2 ] in this fibrationf , then we have

Sign(M) + e(M) = g

2g + 1
a +

[ g
2 ]∑

h=1

4h(g − h)

2g + 1
bh + e(B)(2 − 2g).
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Both 4h(g−h)bh ande(B)(2−2g)are clearly divisible by 4. By using Proposition
4.10(2), we can show thatga is also divisible by 4. ut
Remark 4.12.The congruenceSign(M)+ e(M) ≡ 0 (mod 4) holds for any (not
necessarily hyperelliptic) Lefschetz fibrationf : M −→ B of genusg over a
closed surfaceB becauseM has an almost complex structure (see [10] Chapter
8).

(3) Examples of Lefschetz fibrations

We need the following lemma.

Lemma 4.13.In the hyperelliptic mapping class groupHg, the next relation
holds:

(y1u1z1u2 · · · zg−1ug)
2g+1 = ι ,

whereι is the hyperelliptic involution.

Proof.We denotey1, u1, z1, u2, . . . , zg−1, ug, yg byζ1, ζ2, ζ3, ζ4, . . . , ζ2g−1, ζ2g,

ζ2g+1 and seta = ζ1ζ2ζ3 · · · ζ2gζ2g+1 and b = ζ 2
1 ζ2ζ3 · · · ζ2gζ2g+1. Then by

Theorem 2.2(2),a2g+2 = 1 andζ1 = ba−1 = ba2g+1. We can verifyζi =
ai−1ζ1a

1−i(i = 2, . . . , 2g + 1). We obtain

ζi = ai−1ba2g−i+2 (i = 2, . . . , 2g + 1)

by substitutingba2g+1 for ζ1. We rewrite the known relation

ζ1ζ2ζ3 · · · ζ2gζ
2
2g+1ζ2g · · · ζ3ζ2ζ1 = ι

(cf. [5]) using the above expression ofζi in terms ofa andb, then we obtain

a−1(ba2g)2g+1a = ι.

Sinceι belongs to the center ofHg, we have(ba2g)2g+1 = ι. We will further
rewriteba2g as follows:

ba2g = b · a2gba · a−1b−1 = bζ2g+1a
−1b−1

= b(ζ2g+1 · ζ−1
2g+1ζ

−1
2g · · · ζ−1

3 ζ−1
2 ζ−1

1 )b−1

= b(ζ1ζ2ζ3 · · · ζ2g−1ζ2g)
−1b−1.

Then we haveb(ζ1ζ2ζ3 · · · ζ2g−1ζ2g)
−(2g+1)b−1 = ι. Using the fact thatι belongs

to the center ofHg and thatι2 = 1, we finally obtain

(ζ1ζ2ζ3 · · · ζ2g−1ζ2g)
2g+1 = ι

as asserted. ut
We generalize Example D of [18] to examples in higher genara.
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Example 4.14.(Homeomorphic but non-isomorphic Lefschetz fibrations)
From Theorem 2.2(2) and Lemma 4.13, we have the following relations in

Hg:
(y1u1z1u2 · · · zg−1ugy

2
gugzg−1 · · · u2z1u1y1)

2g = 1,

(y1u1z1u2 · · · zg−1ug)
4g+2 = 1,

which produce two hyperelliptic Lefschetz fibrationsM1 −→ S2 andM2 −→ S2

of type 4g(2g+1)I ([18] Theorem 2.6). By computing the local signatureσg and
the Euler contributionε, both ofM1 andM2 have the same signature−4g(g+1)

and the same Euler characteristic 4(2g2 + 1). If g ≡ 1 or 2(mod 4), thenM1

andM2 are homeomorphic to(2g2 − 2g + 1)CP 2](6g2 + 2g + 1)CP
2

from
Freedman’s theorem. However, they are not isomorphic as Lefschetz fibrations
because the monodromy representation ofM1 is surjective onto the whole map-
ping class groupMg while that ofM2 is not so. In the caseg = 2, it is shown that
M1 andM2 are not diffeomorphic to each other by using Kirby calculus ([8]).

We can also construct Lefschetz fibrations of genusg(≥ 3) with positive
signature.

Example 4.15.(Lefschetz fibrations with positive signature)
We assumeg ≥ 3.The total monodromy(y1u1)

6(2g+1) of 2g+1 singular fibers
of typeII1 with monodromy(y1u1)

6(= q1) is included in[Hg, Hg] because the
order ofHg/[Hg, Hg] divides 4(2g+1). Thus(y1u1)

6(2g+1) is equal to a product
of k commutators ofHg for somek(> 0) and we obtain a Lefschetz fibration
f : M −→ B of genusg of type(2g + 1)II1 over a closed surfaceB of genus
k ([18] Theorem 2.6). Then we have

Sign(M) = (2g + 1)σg(II1) = (2g + 1) ×
(

4(g − 1)

2g + 1
− 1

)
= 2g − 5.

We compute a concrete value ofk.
Let denote byWg the product of(y1u1)

6(2g+1) with

(β1
1)

−6(2g+1)(β1
g)

12
g−1∏
i=1

(β2
i )

−12(2g−2i+1)

g−1∏
i=1

(β3
i )

−12(2g−2i)(δ1)−3 (= 1).

The wordWg, which is actually equal to(y1u1)
6(2g+1) as an element ofHg,

is of length 12(2g + 1)(6g − 1) and the algebraic number of each generator
included inWg is equal to zero. Such a wordWg is decomposed to a product of
at most 3(2g + 1)(6g − 1) commutators ([9] Sect. 3 Corollary 2) and we can set
k = 3(2g + 1)(6g − 1).

We can construct a non-hyperelliptic Lefschetz fibration of genusg(≥ 3)

with positive signature (cf. [3] Introduction).
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Let f : M −→ B be a Lefschetz fibration of genusg obtained above and
f ′ : M ′ −→ B ′ aΣg-bundle over a closed surfaceB ′ with zero signature whose
monodromy representation is surjective ontoMg. (Such aΣg-bundle is easily
constructed in the smooth category.) The desired Lefschetz fibration is the fiber
connected sum off : M −→ B with f ′ : M ′ −→ B ′.

Y. Matsumoto remarked about the construction of Example 4.15 as follows.

Remark 4.16.(See [17] Sect. 5 Remark(1) for genus 1 case)
A similar construction to Example 4.15 in genus 2 case yields a Lefschetz

fibrationf : M −→ B of genus 2 of type 5II1 over a closed surfaceB. The
total monodromy of all singular fibers off is equal to(y1u1)

30(= (q1)
5) and the

signatureSign(M) of the total spaceM is equal to−1. This Lefschetz fibration
is not isomorphic to any fiber connected sum of a Lefschetz fibration overS2

with aΣg-bundle overB because such a Lefschetz fibration of genus 2 overS2

does not exist. If such a Lefschetz fibration overS2 exists, the total monodromy
(q1)

5 of it must be equal to 1. But this contradicts a result of Mess [20].

5. Another local signature

In this section we work in the complex category.
For (holomorphic) hyperelliptic fibrations, another local signature can be

defined with a quite different method from ours.
The next theorem is known.

Theorem 5.1 (Horikawa [12], Persson[27] and Arakawa-Ashikaga [2]). Let
f : S −→ C be a relatively minimal (holomorphic) hyperelliptic fibration of
genusg over a compact Riemann surfaceC of genusπ andF1, . . . , Fn all the
singular fibers of this fibration. There exists a non-negative rational number
Ind(Fi) ∈ 1

g
Z called the Horikawa index of the singular fiberFi(i = 1, . . . , n)

such that the next equality holds:

K2
S = 4(g − 1)

g
{χ + (g + 1)(π − 1)} +

n∑
i=1

Ind(Fi),

whereKS is the canonical bundle andχ is the holomorphic Euler-Poincar´e
characteristic of the compact complex surfaceS.

Arakawa andAshikaga [2] (and the author) noticed the following proposition.

Proposition 5.2 (Arakawa-Ashikaga[2]). If f : S −→ C is a relatively min-
imal (holomorphic) hyperelliptic fibration of genusg over a compact Riemann
surfaceB of genusπ andF1, . . . , Fn all the singular fibers of it, then

Sign(S) =
n∑

i=1

σ̂g(Fi),
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where

σ̂g(Fi) = gInd(Fi) − (g + 1)ε(Fi)

2g + 1
∈ 1

2g + 1
Z

is called thelocal signatureof the singular fiberFi(i = 1, . . . , n) andε(Fi) is
the Euler contribution ofFi .

Proof.The statement follows from Theorem 5.1 and relations among invariants
of S, namelyK2

S = c2
1, 12χ = c2

1 + c2, c2
1 = 2e(S) + 3Sign(S) andc2 = e(S).

ut
Let us denote our local signatureσg by σ

top
g and Arakawa-Ashikaga’s local

signaturêσg byσhol
g .We callσ top

g (resp.σhol
g ) thetopological(resp.holomorphic)

local signature.
When the author spoke about Proposition 5.2 above and Example 5.4 below at

Hokkaido University in September 1998, T. Terasoma told him the next theorem.

Theorem 5.3 (Terasoma).Let F be a singular fiber of a relatively minimal
(holomorphic) hyperelliptic fibrationf : S −→ C of genusg over a Riemann
surfaceC. Then the topological local signatureσ top

g (F ) of F is always equal to
the holomorphic local signatureσhol

g (F ) of F : namely

σ top
g = σhol

g .

The proof of Theorem 5.3 due to Terasoma is given in Appendix below. We
observe the coincidence of these two kinds of local signatureσ

top
g andσhol

g in
several cases.

Example 5.4.(The local signature for ‘atomic fibers’)
Theorem 5.3 can be easily checked wheng ≤ 4. Any singular fiber of rela-

tively minimal (holomorphic) hyperelliptic fibrations of genus 1 (resp. 2, 3 and
4) splits into singular fibers of 1 type (resp. 2 types, 5 types and 5 types), which
are called ‘atomic fibers’, under the conservation of local signaturesσ

top
g and

σhol
g ([1][2]) and it is easily seen thatσ top

g (F ) = σhol
g (F ) if F is an ‘atomic fiber’

(see [2] Example 4.8).

(1) g = 1 : σ1(type 00) = −2/3 ;
(2) g = 2 : σ2(type 00) = −3/5 , σ2(class II-(i)) = −1/5 ;
(3) g = 3 : σ3(type 00) = −4/7 , σ3(class I (g′ = 1)) = −6/7 ,

σ3(class II-(i)) = 1/7 , σ3(class II-(ii)) = −6/7 , σ3(class II-(iii)) = 0 ;
(4) g = 4 : σ4(type 00) = −5/9 , σ4(class I (g′ = 1)) = −2/3 ,

σ4(class II-(i)) = 1/3 , σ4(class II-(ii)) = 7/9 , σ4(class II-(iii)) = −1 ,

where type 00, class I and class II are classes of singular fibers defined in [2]. A
singular fiber of type 00 corresponds to a Lefschetz singular fiber of typeI : type
00=LefschetzI . It can be observed thatσ top

g (LefschetzI ) = σhol
g (type 00) =
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−(g + 1)/(2g + 1) for everyg(≥ 1) (see Theorem 4.8 and [2] Example 4.8).
If g ≤ 4, all Lefschetz singular fibers of typeIIh(h = 1, . . . , [ g

2]) are included
in class II: class II-(i)=LefschetzII1 (g = 2, 3, 4); class II-(ii)=LefschetzII2

(g = 4).

Because the coincidence of two local signaturesσ
top
g and σhol

g (Theorem
5.3) is proven by using the uniqueness ofσ

top
g and that ofσhol

g , conceptual
reason of this coincidence is still not clear. If one wants to clarify more of the
relation between these two local signatures, it might be important to study the
correspondence of singular fibers to their monodromies (cf. [19]).

Appendix. Proof of Theorem 5.3 (by T. Terasoma)

Let ∆ = {z ∈ C || z |< ε} andf : C → ∆ be a family of hyperelliptic curves
over ∆. Let σ top andσhol be the topological and holomorphic invariant. Let
η ∈ C such that 0<| η |< ε. If the geomeric monodromy ofC on π1(f

−1(η))

is equal to the Dehn twist by a simple closed curve which does not separate the
surfacef −1(η) into two components, then we haveσ top = σhol (see Example
5.4).

Definition. Such a familyC → ∆ is calledirreducible Lefschetz type.

Theorem.For any family of hyperelliptic cirveC → ∆, we haveσ top = σhol.

Proof.We denoteCn by the fiber product ofC andSpec(C[t]/tn+1) over∆. First
we note that there exists a sufficiently largen such that for anyC ′ → ∆ such that
C ′

n ' Cn overSpec(C[t]/tn+1), then (1)σ(C ′)top = σ(C)top and (2)σ(C ′)hol =
σ(C)hol. For the statement (1), the conjugacy class of the geometric monodromy
representation depends only on the data for a stable reduction and the action of
the Galois group for the covering of∆ corresponding to the stabilization on the
stable graph and skrew numbers defined in [19]. This impiles the existence of
a sufficiently large numbern with the property (1). For (2), one can prove this
statement using formal function theorem (cf. [11] III,Sect. 11) and the definiton
of Ind(C).

Lemma. We can construct a relatively minimal hyperelliptic fibrationφ : S →
P1 such that

(1) S ×P1 Spec(C[t]/tn+1) is isomorphic toCn, whereSpec(C[t]/tn+1) → P1

is then-th infinitesimal neibourhood of0 ∈ P1.
(2) The restricitonS |f −1(P1−{0})→ P1 − {0} of φ has at most singularities of

irreducible Lefschetz type.
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Proof. SinceC is a relatively minimal hyperellipic fibration, we can take 2: 1
coveringC −f −1(0) → P1 × (∆−{0}) branching at(2g + 2)-multisectionΣ0.
The closure ofΣ0 in P1 × ∆ is denoted byΣ . ThenC is bimeromorphically
equivalent to the double covering branching atΣ orΣ ∪(P1×{0}). LetΣ̃ be the
branching divisor ofP1 ×∆. Then for anyn there exists a divisor̃Σgl in P1 ×P1

such that the image of̃Σgl in P1×P1Spec(C[t]/tn+1) corresponds that of̃Σ under
the isomorphism betweenP1 ×P1 Spec(C[t]/tn+1) andP1 ×∆ Spec(C[t]/tn+1).

Next we claim that there exists a divisorΣ̃gl,Lef ⊂ P1 × P1 such that

(1) Σ̃gl,Lef |P1×Spec(C[t]/tn+1)= Σ̃gl |P1×Spec(C[t]/tn+1) .

(2) Σ̃gl,Lef has at most nodes and each nodes does not lay on the same fiber for
P1 × (P1 − {0}) → P1 − {0}.

(3) The divisor class of̃Σgl,Lef is divisible by 2.

The type ofΣ̃gl is denoted by(2g + 2, m). Let m′ be an integer such that
m + m′ > n + 1 andm + m′ is divisible by 2. LetF be the defining equation
of Σ̃gl,Lef + m′(P1 × {∞}). Fix a sectiont ∈ OP1(1) such thatt (0) = 0 andG

be a generic member ofO(2g + 2+ m + m′ − n − 1). Then for a generick, the
zero locus ofF + k · pr∗

2(t)n+1G satisfies the required properties. Note that the
condition (2) is open condition fork which is satisfied fork = ∞.

To show the existence ofS in Lemma, we takeS as the relatively minimal
model of the double covering ofP1 × P1 branching atΣ̃gl,Lef . ut

We can finish the proof of Theorem by using Theorem 4.4 and Proposition
5.2. Actually,

sign(S) =σ top(C |∆0) +
∑

p 6=0,C→P1is singular atp

σ top(C |∆p
)

=σhol(C |∆0) +
∑

p 6=0,C→P1is singular atp

σhol(C |∆p
),

where∆p is a sufficienly small neigbourhood ofp in P1. Sinceσ top(C |∆p
) =

σhol(C |∆p
) for p 6= 0, we haveσ top(C |∆0) = σhol(C |∆0). ut
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