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Argument

In 1926 and 1927, James W. Alexander and Kurt Reidemeister claimed to have made “the
same” crucial breakthrough in a branch of modern topology which soon thereafter was called
knot theory. A detailed comparison of the techniques and objects studied in these two roughly
simultaneous episodes of mathematical research shows, however, that the two mathematicians
worked in quite different mathematical traditions and that they drew on related, but distinctly
different epistemic resources. These traditions and resources were local, not universal elements
of mathematical culture. Even certain common features of the main publications such as
their modernist, formal style of exposition can be explained by reference to particular
constellations in the intellectual and professional environments of Alexander and Reidemeister.
In order to analyze the role of such elements and constellations of mathematical research
practice, a historiographical perspective is developed which emphasizes parallels with the recent
historiography of experiment. In particular, a notion characterizing those “working units of
scientific knowledge production” which Hans-Jörg Rheinberger has termed “experimental
systems” in the case of empirical sciences proves helpful in understanding research episodes
such as those bringing about modern knot theory.

1. Universal or local knowledge?

Recent history of science has taught in great detail that research practice in the
experimental sciences is strongly bound to local environments. At least since the
seventeenth century, even modestly advanced experiments involved a substantial
amount of special apparatus whose manufacture and operation required special
knowledge and skills not easily transmitted from one place or researcher to another.1

As the scale of experimentation increased, the importance of local knowledge and skills
was further emphasized. To build, to operate, and to make use of particle accelerators
or biological in vitro systems is a highly nontrivial practical and intellectual matter

1 Shapin and Schaffer 1985 has become a standard reference for these matters, see especially their discussion of
Huygens’s attempts to replicate Boyle’s vacuum experiments. Many other studies also underline the importance
of local traditions and environments in experimental science. Let just two be mentioned here: Buchwald 1994
and Sibum 1995.
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that goes far beyond what can be written down in scientific articles, monographs, or
textbooks. Rather than individuals performing single experiments we find groups of
scientists working together in complex experimental setups that allow whole series of
related experiments to be performed. The expertise required for working in such an
experimental configuration typically involves both a variety of theoretical resources and
technical skills relating to the particular apparatus used. This combination of theoretical
and practical knowledge is usually tied to the particular experimental setup and the
group of people working with it. The knowledge, skills, experimental setup, and group
of experimenters form an “integral working unit of scientific knowledge production,”
an “experimental system,” as Hans-Jörg Rheinberger puts it (Rheinberger 1997, 27–
28). Such experimental systems have their time and place. To repeat similar series
of experiments in other places or at other times requires rebuilding completely new
experimental systems which will be different in many respects.2

On an epistemological level, the fact that many historical studies of experimentation
have underlined the importance of local knowledge, traditions, and skills throws up a
disturbing problem: if scientific knowledge is produced in highly local settings, how
can it possibly attain the universality which is usually ascribed to it? Or is the outcome
of an episode of experimental research not universal knowledge at all? A number of
diverging answers have been given to this question, but the opinion remains divided.3

From the point of view of studying the research practices of scientists, the baseline of
these debates is that in order to transform knowledge gained in a local experimental
setting into universal knowledge in any robust sense, further activities are required –
activities of communication, of argument, of writing, of restructuring an existing
knowledge corpus, etc.

It might seem that the history of mathematics has little to learn from this
development within history of science. A lot of mathematical research is done
without a large material apparatus operated by skilled personnel, without complicated
experimental setups needing the help of special instrument-makers or operators.
Moreover, mathematical ideas seem to represent an extreme kind of scientific object.4

In the continuum between getting hands dirty with ordinary material things in,
say, a chemical laboratory, and pure, abstract thought, mathematical ideas have their
place close to one end. Equations and manifolds do not lie on workbenches, one
feels tempted to say, they are objects of thought, described in a highly artificial but
universal language. They are investigated using methods which themselves have to

2 Some of these points have been pointed out forcefully in the classic study, Fleck 1935/1980. For more modern
accounts, see in particular Pickering 1984, who also makes heavy use of the idea of theoretical resources of
experimentation, and Rheinberger 1997. More general overviews of recent historiography of experiment can
be found in the collections: Gooding et al. 1989, Buchwald 1995, Wise 1995, Heidelberger and Steinle 1998;
see also the survey Hentschel 2000.
3 See for instance Buchwald’s commentary on a variety of approaches (Buchwald 1998).
4 An interesting collection of attempts to describe the various roles and the historicity of scientific objects has
been presented in Daston 2000.
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fulfill strict standards of correctness and must be generally accepted. Therefore, one
might conclude, precisely those aspects of scientific knowledge production that recent
studies of experimentation have emphasized, its dependence on local, technical, as well
as theoretical resources, might not play a significant role in mathematics. Due to the
abstract nature of mathematical ideas, and due to the universal character of mathematical
language, knowledge about mathematical objects seems to be intrinsically non-local. If
a mathematical theorem has been correctly stated on the basis of sound definitions, and
if it has been proved according to full standards of mathematical rigor, the theorem’s
validity has been established for all times and places.

Whatever the philosophical merits of this well-known image of mathematics may
be, for historians it is a trap.5 It suggests a bypass around some of the most interesting
questions about the production of mathematical knowledge. How were mathematicians
at particular places and times led to try out certain definitions or concepts? How did
particular mathematical problems emerge? How was it possible to frame conjectures
that might eventually become theorems? Which means of proof were available at
particular places and times and how did mathematicians put them to use? How did
they manage to convince others of the relevance of their definitions as well as of the
correctness of their theorems and proofs? How did – in and by all these activities –
perceptions of and ideas about particular mathematical notions or objects change? If
such questions are seriously posed, the activities of mathematicians appear in a different
light. Issues such as the specifics of the mathematical language used in a particular period
and region, the possibilities offered and the limits imposed by particular conceptual
frameworks or ways of imagination, the differences in proof strategies and standards of
rigor, the mathematical and scientific contexts of particular problems, or the social and
cultural setting of particular episodes of mathematical work move into focus.6

All these factors tend to “localize” the historiography of mathematics, without,
however, shifting the perspective simply to traditional accounts of individual
achievements or intellectual biographies. Many recent studies in the history of
mathematics address the level between universal and individual aspects, the level of
intellectual environments and knowledge traditions, of research agendas and research
tools shared by relatively small groups of scientists in a particular place and/or period.7

Precisely the same kinds of issues occupy the recent historiography of experiment

5 This point seems to find growing acceptance in recent historiography of mathematics. For an earlier, related
discussion, see e.g. Corry 1989 and Corry 1996, especially pages 3–5.
6 If recent studies in the history of mathematics are paying attention to such issues more systematically, this is due
to a number of factors. Among these, Sabetai Unguru’s forceful criticism of algebraic reformulations of Greek
geometrical arguments and his insistence on philological standards in the interpretation of past mathematical
language still stands out as a landmark in demonstrating the importance of historical method to historians of
mathematics.
7 This is even true of some studies focusing on a single author such as Bos, who describes the development
of Descartes’ views of geometrical exactness in an intellectual environment structured by a variety of similar
approaches (Bos 2001). While it would be difficult to list all contributions to this kind of “intermediate”
historical analysis, there seem to be few studies that systematically address the development of particular local
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(disregarding for a moment the material aspect of laboratory work). The present paper
aims at exploring these parallels in some more detail. In particular, it attempts to
outline what might correspond, in the case of mathematics, to those functional units
of knowledge production which Rheinberger has called experimental systems.

One approach to a better understanding of the relations between experimental
and mathematical knowledge production is to look at cases in which mathematical
knowledge was indeed produced in close contact with an experimental science or, to
put it differently, where mathematical work formed part of an experimental system
in the proper sense. Such cases exist, in the physical sciences there are even many of
them. Nevertheless, very few historical studies of experiment have seriously addressed
the role(s) of mathematics in gathering and interpreting experimental data. In some
experiments, even the connection between the raw data of an experimental setup with
the empirical parameters of the physical theory involved cannot be established without
using advanced mathematics in nontrivial new ways.8 Another approach has been to
consider areas of mathematical research which did indeed rely on material cultures.
The most prominent such field is numerics, as far as calculating aids are developed
and used. In a rather precise sense, these devices form “mathematical laboratories”
for numerical mathematics, whose historical roles may be traced in similar ways as in
experimental science.9 In the twentieth century, other fields that rely heavily on this
kind of mathematical laboratory include fluid dynamics, optics, and combinatorics.
Somewhat less obvious is the case of computerized proving or, to mention an older
example, the use of mathematical models in higher geometry (see Mackenzie 1999
and Fischer 1986).10

All these approaches have in common the belief that the interfaces between
mathematical and experimental research widen the meaning of experimentation to
include, e.g., manipulating calculating aids and computers. In the following a different
route will be taken. I will consider episodes of mathematical research which are
not related to experiment or material cultures in any direct sense, in fact episodes
which are typical examples of “pure” mathematical research. I will argue that even
in this case one can discern the “laboratories” of mathematical thought, laboratories
in which local knowledge traditions and technical skills, specific research agendas and
patterns of mathematical rationality are amalgamated into effective units of knowledge
production.11

mathematical milieus. Exceptions include Rowe 1989 for the case of Klein’s and Hilbert’s Göttingen, and
Warwick 2003 for nineteenth-century Cambridge.
8 This is one of the main points in the interesting recent study, Sichau 2002 (see also Buchwald 1994 and Epple
2002).
9 This is the perspective of Warwick 1995.
10 In most of the areas mentioned above there is still much room for future historical studies.
11 With a similar intention, but using a rather narrow analytical framework, Pickering and Stephanides 1992 and
Pickering 1995, chap. 4, have described Hamilton’s invention of quaternions as an interplay between various
forms of theoretical “agencies.” For another recent study trying to show that even “pure” mathematical research
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In order to approach this goal, two closely related episodes of research are discussed.
In the years 1926 and 1927, two mathematicians in two rather different intellectual
environments claimed to have invented the “same” numerical invariants of knots
and links, i.e., procedures by which certain numbers could be associated with the
topological objects called knots or links such that two knots or links could only be
equivalent in an appropriate sense if these numbers were the same. The procedures
themselves were the same at least in the sense that the output data (numbers) were the
same for the same input data (knots or links). These parallel results constituted a major
breakthrough in the study of knots and links, effectively establishing knot theory as a
substantial subfield of modern topology.

The two episodes serve well to test the argument of this essay. At first sight, they
might seem to undermine its intentions. Are we not dealing with a typical instance of
a double discovery, showing that differences of local environments or traditions do not
matter in mathematics? The next section will present the two cases in detail, showing
that as soon as one analyzes the mathematical activity that produced these mathematical
achievements, significant differences between the two episodes appear, differences in
mathematical approach which point to different local milieus.12 In the third section,
some further descriptive tools are introduced which will then be used in outlining a
“synthesis” of the historical developments in the two places that led up to the results
of 1926 (section 4). By then I hope to have shown that local knowledge traditions
and technical skills were indeed essential ingredients of the research episodes under
consideration. Some open ends of the discussion are summarized in the concluding
section.13

2. Knot Invariants I: Analysis

If modern mathematics is taken to refer to the mathematical culture that gradually took
shape in the decades before and after 1900,14 then topology belongs among the most
active fields of modern mathematics. The study of mathematical spaces which have
certain continuity properties and the study of continuity properties of figures in such
spaces not only represented a paradigmatic field for the formation of the new, abstract,
and structural approach of modern mathematics. It also posed challenging problems

may have much in common with the style(s) of experimental science, see Goldstein 2001. She argues that in
the practice of the seventeenth-century mathematician Frénicle de Bessy, the Baconian program of scientific
method may have served as an alternative to a more traditional “Euclidean” model of doing mathematics.
12 Other examples of this kind are described in Tinne Hoff Kjeldsen’s contextual analysis of various theorems in
nonlinear programming and convexity theory (Kjeldsen 2000; Kjeldsen 2001; Kjeldsen 2002).
13 In its methodological emphasis as well as in its historical case studies, the present article draws heavily on
material presented in Epple 1999a, see especially chapters 1, 10 and 11; see also Epple 2000.
14 See the closing sections of any good standard textbook on history of mathematics. More sophisticated
interpretations are proposed and discussed in Mehrtens 1990, Corry 1996, and Epple 1999a, chap. 7.1.
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of a new kind. These problems ranged from conceptual clarifications (e.g., what
kinds of spaces and figures should actually be considered?) to very concrete problems
about particular topological objects (e.g., what are the topological characteristics of
ordinary 3-dimensional space?). On both levels, mathematicians learned to conceive
new research objects which could no longer be seized by ordinary intuition and which
even went far beyond the imaginations of most nineteenth-century mathematicians.
To address these problems (some of which still remain unsolved), a large number of
new mathematical tools were forged that now pervade most of present mathematics.15

One of the earliest problem fields of topology, and at the same time one which
was still fairly close to ordinary intuition, was related to knotted and linked curves in
standard 3-dimensional space. As objects of scientific interest knots came up in various
nineteenth-century contexts. Most important was the attempt of the Scottish natural
philosopher Peter Guthrie Tait to list all different types of knotted, closed curves
in ordinary space in the decade 1876–1885. The context of his work was William
Thomson’s speculation that material atoms might be indestructible knotted or linked
vortex rings in a perfectly fluid ether. Tait worked out a substantial part of such a
list but stopped his work when Thomson’s speculation lost its attraction for physicists
in the late 1880s. Moreover, it was quite clear to Tait and his contemporaries that
his work was mathematically rather informal. Nevertheless, Tait found industrious
followers who continued his tabulations to include more complicated knots.16

It was only in the 1920s that two mathematicians, James Weddell Alexander in
Princeton and Kurt Reidemeister in Vienna and later in Königsberg, made a major
breakthrough in dealing with the mathematics of knots. Their work opened a broad
range of new research possibilities that allowed the creation of a modern mathematical
theory of knots. The basic problem of this theory was still that of classifying different
types of knots; their innovation consisted in the successful construction of algorithms
for calculating numerical invariants that enabled one to distinguish effectively a large
number of different knot types. The late 1920s and 1930s then saw the construction
of several other calculable invariants of knots and links, whose scope and limitations
were studied in great detail. A comparable activity in research on knot invariants can
be witnessed only since the mid-1980s.17

For the following, the basic problem of knot classification must be reviewed in more
mathematical detail, in the fashion of the 1920s. The common understanding at the
time was that a (mathematical) knot should be conceived as a closed curve in Euclidean

15 Literature on the history of topology is still dominated by the retrospective of members of the discipline, see
e.g., the survey Dieudonné 1989 and the collection James 1999. Exceptions will be mentioned in some of the
following notes.
16 For a detailed historical analysis of Thomson’s and Tait’s enterprises, their scientific context, and the ensuing
work on knots, see Epple 1998. A comprehensive survey of the theory of vortex atoms can be found in Kragh
2002.
17 For some of this work, a Fields medal was awarded to Vaughan F. Jones in 1990. A brief sketch of various
important topics in knot theory up to Jones’ work is given in Epple 1999b.
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Fig. 1. Elementary deformations of knotted polygons.

3-dimensional space without self-intersections. In order to avoid certain topological
difficulties, this understanding was refined (and restricted) by demanding that a knot is a
closed polygon in three-dimensional Euclidean space with a finite number of sides and
without self-intersections. By taking the number of sides very large, such a polygonal
knot (or knotted polygon) could still be imagined to be close to a smooth closed curve
in space. Intuitively, two knots could be considered as equivalent or of the same type,
if one could smoothly be deformed into the other without cutting up the curve. In
the framework of polygonal knots, this idea was rendered as follows (see fig. 1): let
AB be one of the sides of a knotted polygon, and let C be a point in space such that
the triangle ABC does not contain any point of the knot except the side AB. Then
replace AB by the two sides AC, CB. This operation and its inverse are elementary
deformations of a polygonal knot which do not change its type. Two knots were called
equivalent or of the same type if and only of they could be deformed into each other
by a finite sequence of such elementary deformations.

In the first monograph on the field, the task of knot theory was then stated as
follows: “To give a survey of all properties of a knot, i.e., of all deformation invariants
of a closed polygon without double points” (Reidemeister 1932, § 1).18 In a trivial
sense, to know all deformation invariants implies to be able to distinguish between all
different types of knots, as the type of a knot (the class of knots equivalent to a given
one, or the abstract entity imagined to represent this class) is obviously a deformation
invariant itself. Another invariant that was known and studied to some extent before
Reidemeister’s and Alexander’s contributions was the so-called group of a knot, the
fundamental group (in Poincaré’s sense) of the complement of a given knot in space. In
1910, Max Dehn had described a way for deriving a finite presentation of this group
for any given knot (Dehn 1910; cf. also Epple 1995). As we shall see, another way
was known as well. However, this invariant object was not much less obscure than the
knot type itself. Two representatives of the same knot type would in general lead to

18 Here and in the following, all translations from German are mine.



138 Moritz Epple

quite different presentations of the knot group, and no general procedure was known
at the time that would have allowed a decision whether or not two such presentations
defined isomorphic groups. This problem belonged to the core of another new area
of mathematics, the area that came to be called combinatorial group theory.19 For this
reason, the knot group was not of much help for classifying knots.

The crucial problem was to find deformation invariants of knots that could more
easily be dealt with and which could actually be calculated for any knot given in a
simple manner. Such invariants were called calculable invariants by Reidemeister and
Alexander. The central claim made by both was that they had found the first calculable
invariants of polygonal knots. This claim was made in print first by Kurt Reidemeister
in two papers entitled “Knoten und Gruppen” and “Elementare Begründung der
Knotentheorie” in 1926 (hereafter, these texts will be denoted by R1 and R2; R will
refer to both). A year later, James W. Alexander and his student G. B. Briggs published
an article “On types of knotted curves” in which “the same” invariants were discussed
(hereafter, denoted by A/B). However, in the introductory passages A/B claimed that
Alexander had calculated these invariants already in 1920 for certain knots, and that it
was Reidemeister who had “rediscovered” them. By calculating the new invariants for
the knots listed in Tait’s and Kirkman’s tables, Alexander and Briggs also showed that
a substantial part of this informal classification of the late nineteenth century could be
saved according to modern standards of rigor.

In order to make his priority claim, Alexander argued that the core of the two
mathematical contributions in question was identical. It has already been mentioned
that this was true of the algorithms in the following sense: the same input data produced
the same output data.20 The input data of the algorithms were plane diagrams of knots.
Both R2 and A/B gave an explanation of how polygonal knots could be represented by
suitable plane projections of knots in space endowed with some marking convention
for “over-” and “undercrossings.” Elementary deformations of knots in space could
then be replaced by elementary deformations of diagrams. Fig. 2 and fig. 3 show typical
diagrams of both papers; fig. 4 illustrates the admissible elementary deformations of
diagrams in the neighborhood of diagram crossings (obviously allowed changes of the
diagrams that do not involve crossings also have to be taken into account).21 A/B also
used smooth diagrams in places where no misunderstanding could arise. A seemingly
marginal difference between A/B’s and R’s description of the input data of their
algorithms is precisely the marking convention for crossings. A/B use a system of dots

19 For a historical account of combinatorial group theory, see Chandler-Magnus 1982.
20 The importance of a detailed analysis of algorithmic properties of mathematical constructions for historical
understanding has been underlined in Jim Ritter’s studies of ancient mathematics (see e.g., Ritter 1995). One
can also view the following analysis as an attempt to understand how certain algorithms (in some sense the end
products of the episodes of mathematical research discussed here) were built, from what resources, and in what
steps.
21 The elementary deformations of fig. 4 are often named after Reidemeister in today’s knot theoretical
lingo.
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Fig. 2. A knot diagram from A/B.

Fig. 3. A knot diagram from R1.

Fig. 4. Elementary local deformations of diagrams (from R2). In the diagram to the left, the
arc above may be moved away from the arc below, in the middle the loop may be untwisted,
and in the diagram to the right any arc may be moved beyond the crossing of the two others.

for determining which arc of a knot diagram lies over another: the knot is traversed in
a fixed sense and whenever one arc overpasses another, the two corners to the right of
the upper arc receive a dot. R simply used an intuitive convention of drawing broken
lines for underpassing arcs.
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Given a knot diagram (and thus a polygonal knot in space), both R and A/B
showed their readers how one could write down certain matrices whose entries were
integer numbers by following some simple rules. In fact, their papers allowed them
to define one such matrix for any given knot diagram D and any integer n.22 For
convenience, these matrices will here be denoted by Rn (D) and An (D), respectively.
Although defined in a similar fashion, Rn (D) and An (D) were in fact different
matrices. Nevertheless, by means of standard procedures (explained neither in A/B
nor in R) certain numbers could be calculated which were invariants of these matrices
with respect to certain elementary modifications of matrices. In A/B, these numbers
were called “characteristic invariants” or “torsion numbers,” in R, they were called
“Elementarteiler,” “Torsionszahlen,” or “Poincarésche Zahlen” of the matrix or of the
knot. In this way, with each knot diagram D and each level n, a set of integers was
associated, the set of elementary divisors not equal to 1 of either Rn (D) or An (D).
Both A/B and R showed that the numbers in this set remained unchanged under
elementary deformations of the underlying knot diagram. Consequently, they were
knot invariants. Moreover, it did not matter whether they were calculated from Rn (D)
or from An (D).

These sets of integers different from 1 were the output of the algorithm or, in the
terms of the papers, the calculable invariants of the knot given by D. Of course, not
the whole infinite sequence of invariants was actually calculated. R gave virtually no
calculations at all. A/B, on the other hand, calculated the invariants of levels 2 and
3 for the 84 simplest knots in Tait’s and Kirkman’s tables. The authors found that
using their invariants they could verify the nineteenth-century listings with very few
exceptions. By this effort, a substantial part of the older, informal knowledge about
knots was reconstructed in the modern paradigm. At the same time, the scope of the
new methods was impressively demonstrated.

Mathematical meaning of the algorithms I: techniques

The above description – it would not be difficult to complete it by adding the precise
rules for writing down the matrices Rn (D) and An (D), and it would only be a
little more cumbersome to show that their elementary divisors are indeed invariant
under elementary deformations of knot diagrams – treats A/B’s and R’s algorithms as
black boxes. This description does not explain how these algorithms were found or
constructed. Moreover, the account is not very faithful to the sources of 1926 and 1927.
In fact, it is the result of a highly selective reading of A/B’s and R’s texts, a reading that

22 While A/B made this explicit, R gave only one example for n = 2, see (R2, sect. 5). For higher n, the reader
had to understand the definition of the corresponding matrix from other parts of the text. A full description
was given in Reidemeister 1932.
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only extracts the information necessary for calculating the new invariants.23 From a
historiographical point of view, therefore, our initial account of “the first calculable knot
invariants” is defective. Its two most obvious defects – black-boxing and unfaithfulness
to the sources – are linked. In order to explain the algorithms to their readers and
in order to prove that these algorithms did in fact calculate knot invariants, A/B and
R outlined technical frameworks that went substantially beyond the above summary.
In this way, the algorithms were placed in mathematical contexts. As we shall see,
A/B and R chose different technical frameworks for introducing their knot invariants.
To some extent, these frameworks reveal information about the construction of the
algorithms, and to that extent, the sources permit a look inside the black boxes.24 The
next step in our analysis thus consists in a sketch of the technical frameworks in which
Reidemeister and Alexander presented their algorithms.

Reidemeister placed his version of the new knot invariants in the context of
combinatorial group theory. The first of his two papers begins with a brief discussion of
the difficulties involved in the study of the group of a knot (R1, 7). Then he summarized
the basics of group definitions by means of finite presentations. He thus chose a
mathematical technique which may properly be called a purely symbolical technique:
groups were characterized as particular systems of signs (“words” built from certain
basic, uninterpreted signs, the “generators”) and operation rules (for manipulating
“words,” codified in the basic group laws and the “relations” defining a particular
group). Within this framework, Reidemeister went on to present a combinatorial
method for deriving finite presentations of certain subgroups of finitely presented
groups. The method could be applied in situations in which a homomorphism from a
given, finitely presented group F onto a finite group G was known (in the sense that
the images of all generators of F were known). In this situation, a finite presentation
of “the normal subgroup g of F can be given which has G as factor group” (R1,
sect. 3).25

This method was then applied to the group of a knot (called K by Reidemeister). To
this end, Reidemeister “recalled” a definition of this group by means of a finite group
presentation that could be read off from a knot diagram (R1, sect. 2.2.). The reference
was to a paper by Emil Artin and Otto Schreier on the braid group that had been
published a year earlier; but in a footnote Reidemeister mentioned that this definition
was originally due to the Viennese mathematician Wilhelm Wirtinger (Artin 1925
and R1, 15 n. 1). From Wirtinger’s presentation it followed (by reading the defining

23 This reading is only slightly anachronistic. It was a possible “mathematician’s reading” (to use Catherine
Goldstein’s term) right after the publication of the two papers. Except for the notation, it corresponds closely to
the presentation of the same material in Reidemeister’s monograph of 1932. For a discussion of the operations
of reading mathematical texts, essential both in mathematical and historiographical practice, see Goldstein 1995.
24 The metaphor of black-boxing or of unpacking black boxes by means of historical analysis has, of course,
become a standard topos of recent history of science (see e.g., Latour 1987).
25 After some modifications by Otto Schreier, the method became known as the Reidemeister-Schreier method
in combinatorial group theory (see Chandler and Magnus 1982, chap. II.3).
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relations as defining relations of a commutative group) that the quotient of the knot
group and its commutator subgroup was the additive group of the integers. Therefore,
every finite cyclic group was in a canonical way the homomorphic image of the group
of a knot. Applying his general method, Reidemeister could thus derive, for any integer
g, a presentation of the normal subgroup of the knot group which had the cyclic group
of order g as its factor group (in Reidemeister’s notation, this subgroup was denoted
by Kg ; for convenience, I will write Kg (D) in order to express the dependence of
the defining group presentation on a knot diagram D). The presentation matrices26 of
the groups Kg (D) were R’s matrices Rg (D), hence the “torsion numbers” of the knot
given by D were the “torsion numbers” or “Poincaréan numbers” of these groups in
the sense of combinatorial group theory.

The technical setting in which Alexander and Briggs introduced their version
of calculable knot invariants was similar in style but different in content. Rather
than working with the symbolic combinatorics of finitely presented groups, A/B
introduced “linear systems” and “homologies” of symbolic expressions (A/B,
sect. 5).27 A “linear system” X was defined to be the set of all finite linear combinations
of certain uninterpreted “marks” x1, . . . , xm with integer coefficients. If

ys =
m∑

i=1

εsixi , s = 1, . . . , k, (∗)

was a system of k elements of X with coefficients εsi, the set of all finite linear
combinations of the ys defined a subsystem Y of X. Two elements x, x’ in X were then
defined to be “homologous” (mod Y ), in signs x ∼ x’, if and only if the difference
x – x’ was in Y. The homologies ys ∼ 0 were called the “fundamental homologies”
defining Y. The set Z of all homology classes in X was then again a “linear domain,”
and A/B reminded their readers that this domain was “completely characterized” by
the number and values of the elementary divisors greater than 1 of the coefficient
matrix (εsi) defining Y.

This machinery was then applied to knot diagrams as follows (A/B, sect. 6). After
choosing a fixed integer n, with each of the ν crossings of a given knot diagram D,
n uninterpreted marks were associated, defining a linear system X with a total of νn
base marks. Then for each region of the diagram, n fundamental homologies defining
a subsystem Y were written down, involving the marks associated with the corners
of this region and coefficients εsi depending on the dots distributed in these corners
in order to mark over- and undercrossings (see above). The matrix denoted above
by An (D) was nothing but the resulting matrix of coefficients (εsi), and the “torsion
numbers” of the knot given by D were just its elementary divisors greater than 1. In

26 In the presentation matrix (cij) of a group presented by generators a1, . . . , am and relations r 1, . . . , r n , entry
cij is the sum of the exponents of all occurrences of a i in relation r j .
27 For a semiotic analysis of similar texts of Alexander on linear systems, see Herreman 1997.
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A/B’s framework, these numbers characterized the domain of homology classes in X
modulo Y.

Comparing the technical frameworks in which R and A/B introduced their
numerical invariants of knots, both similarities and differences appear. Both papers
outlined more general techniques of abstract, symbolic mathematics, and both
connected these techniques with knot diagrams. However, the techniques themselves
were quite different. While R used combinatorial group theory, A/B employed
“homologies” of “linear systems.” A further similarity is that certain key words of
two crucial mathematical techniques introduced in Poincaré’s ground-breaking papers
on Analysis situs or topology appear in both papers.28 The knot group was referred
to as the fundamental group of the complement of a knot in 3-dimensional space,
“homologies” and “torsion numbers” or “Poincaréan numbers” of course referred to
Poincaré’s homological invariants of manifolds. Already at this point one may guess
that A/B and R each preferred one of these two techniques over the other.

However, the connection to Poincaré’s work is not (yet) very clear. There is a
significant difference in style: so far, neither A/B nor R spoke of manifolds, i.e., of those
mathematical objects for whose treatment Poincaré had developed his techniques.
Reidemeister’s groups were just introduced by means of presentations; similarly,
Alexander’s and Briggs’ homologies were introduced as purely symbolic devices. To
some extent, therefore, we have opened the black box of A/B’s and R’s knot invariants,
and to some extent, it still remains closed. We can see how the authors made specific
uses of known techniques in the definition of their invariants. We can also see a
similar preference for writing mathematical articles in terms of formal, combinatorial
mathematics. But the techniques themselves, and the writing style, still appear to fall
from mathematical heaven. How could Poincaré’s original techniques of manifold
topology be modified and adapted to the new field of knots given by diagrams? How
should we explain the particular formal style of A/B’s and R’s papers?

Mathematical meaning of the algorithms II: objects

A partial solution to this little riddle can be found by looking for the ingredients of
Poincaré’s manifold topology that are missing from the accounts of the knot theorists,
as far as we have described them up to this point. Clearly, the crucial missing items are
geometric objects to which the techniques of the fundamental group or of homology
could be applied, i.e., manifolds. As several detailed studies have shown, Poincaré’s
own perspective on manifolds was changing between a number of different approaches,
most of which were technically vague to a greater or lesser degree.29 To the extent to

28 On Poincaré’s topological work, see e.g., Scholz 1980, Dieudonné 1989, Herreman 1997, Sarkaria 1999, and
Volkert 2002.
29 See the literature cited in the previous note and Epple 1999a, chap. 7.2.
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which Poincaré wanted to “calculate” topological invariants of a manifold, however, he
developed a clear preference for describing manifolds by means of cell decompositions.
Based on the general idea of viewing a manifold as composed of simple, bounded
patches of space of different dimensions, attached to each other in a well-determined
fashion, this kind of description was vague in itself, a vagueness that gave rise to the
long-winded history of (cell) complexes in topology.30 Nevertheless, Poincaré’s papers
sketched workable methods for deriving presentations of the fundamental group of a
manifold and of the (“reduced”) homologies of a manifold, if this manifold was given
by a suitable kind of cell decomposition.31

Comparing these Poincaréan methods and the work of A/B and R one finds that
whereas A/B and R proceeded by introducing machineries of uninterpreted symbols,
Poincaré developed his methods in a highly intuitive, geometric fashion. In his papers,
the “algebraic” symbols used had a clear geometric meaning. The generators of his
presentations of fundamental groups represented (classes of ) so-called fundamental
paths in manifolds, while the defining relations were associated with 1-dimensional cells
in a given cell decomposition of a manifold. Similarly, his (1-dimensional) homologies
were expressing bounding relations between 1-dimensional and 2-dimensional cells.

Did the topologists of the 1920s disregard this geometric content, retaining just
the symbolical tools in order to use them in new, more general, maybe more abstract
situations? If so, Alexander’s and Reidemeister’s work would have involved a substantial
amount of ingenious guesswork since using Poincaré’s tools in the intended way
required a geometric interpretation of the symbols. To be able to apply the methods in
a particular situation meant to understand the way in which some manifold was built
up from simple cells.32 Another look into the sources reveals, however, that despite
all symbolic methods geometric objects were present, if a little hidden, in the knot
theorists’ papers. In surprisingly parallel fashion, manifolds and cell decompositions
were introduced as a means of “interpreting” the more formal definition of knot
invariants. A suspicion arises whether these apparently secondary “interpretations” had
not been, in fact, the decisive clues that had allowed the construction of knot invariants
in the first place.

Let us begin by considering R. Just after introducing the crucial groups Kg (D)
(whose Poincaréan numbers were R’s knot invariants) a section was added entitled
“Geometrische Deutungen” (1926a, sect. 3). At its beginning, Reidemeister referred
back to his introduction of the knot group as a fundamental group of the knot
complement. As mentioned above, he had taken this introduction essentially from

30 A good historical account of this interesting history of a crucial mathematical tool is missing. For treatments
by mathematicians, see Dieudonné 1989, Burde and Zieschang 1999.
31 A brief description of these methods is given in Epple 1999a, § 70.
32 Of course one could try to avoid geometrical interpretations by turning the whole process of forming a cell
complex into a purely formal procedure. This was attempted by some of the early readers of Poincaré, such as
Dehn and Veblen. See Herreman 1997 for a discussion of some of the steps toward a formalization of homology.
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Fig. 5. Wirtinger’s semi-cylinder (printed in Artin 1925, 58).

Artin and Schreier, indicating that it was even going back to Wirtinger. In Wirtinger’s
construction, a picture of a way of cutting up the complement of a given knot played
the crucial role (see fig. 5).

Imagining the knot in space, in a position close to a plane onto which its diagram
could be projected (roughly horizontally in the figure, not drawn), Wirtinger (and
Artin and Reidemeister) considered a self-intersecting semi-cylinder Z bounded by
the knot and generated by parallel rays orthogonal to the projection plane.33 This
cylinder was again subdivided into as many parts as the diagram had arcs (in the figure,
the three surface parts, each of which is bounded by two lines of self-intersection of
the cylinder and one knot arc). The (simply connected) complement of the cylinder,
these (simply connected) surface parts, the lines of self-intersection of the cylinder, and
(possibly) a point at infinity could then be viewed as a cell decomposition of the knot
complement. What R did not mention was the fact that Wirtinger’s presentation of the
knot group was nothing but the group presentation obtained by applying Poincaré’s
method to this cell decomposition.34

In order to interpret the groups Kg (D), Reidemeister extended Wirtinger’s
construction. Another, somewhat more complex geometric object was introduced:

33 I owe an apology to all those who have heard me emphasizing the crucial role of this “object,” or more
precisely, of this imagination in the history of knot theory for about ten years now. A comparison of the present
arguments with my first discussion of it in print (Epple 1995) will show that it played quite different roles in
this history. For more information, see section 4 below. The present paper may also be read as an explanation of
why imaginations or objects of this kind matter in the history of mathematics.
34 Considering the knot as a 1-dimensional polygon or curve, the knot complement is an open manifold and
thus not exactly what Poincaré had considered. In Reidemeister’s practice, however, this made no big difference.
The Poincaréan methods could easily be stretched to apply in this slightly different situation.
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Basically the same illustration [Veranschaulichung] is to cut up space along the semi-cylinder
Z and to attach g copies R1, R2, . . . , Rg of this space to each other along Z, in such a
way that starting from R1 and passing once through Z one reaches R2, after surrounding
the knot and a further passage through Z one gets to R3, and so on to R4, . . . , Rg , but
from there back again to R1. Kg is the fundamental group of this g times covered exterior
space, Ag . (R1, 16)

This new space Ag , the g-fold cyclic covering of the complement of a knot, described
here in very intuitive terms, is the geometric object at the core of R’s argument. In
a canonical fashion, Wirtinger’s decomposition of the knot complement gives rise to
a cell decomposition of the (open) manifold Ag . Applying Poincaré’s technique for
presenting the fundamental group of Ag to this cell decomposition produces exactly
the group presentation of Kg used in Reidemeister’s paper.

It is hard to believe that this geometric interpretation was but an afterthought to an
otherwise formal manipulation of symbolic machinery. In the passages of R discussing
these things, several historical references interfere with mathematical argument. These
references point to a much earlier stage of research – in fact Wirtinger had been working
on his construction before 1904. He had even considered certain covering spaces (see
section 4 below). The most important point, however, is that the construction of knot
invariants can easily be understood as a product of a meaningful research activity if it
was derived in this way – by applying known, Poincaréan techniques to an object, Ag ,
that was very close (to say the least) to objects also known beforehand.

In the case of A/B, the situation is even clearer. Toward the end of the paper, after
the full presentation of their version of knot invariants, the authors remarked: “Before
bringing the discussion to a close, we shall indicate how the torsion numbers of a knot
K, for any given determination of the integer n, may be interpreted in terms of the Betti
numbers and coefficients of torsion of an n-sheeted covering J n with a branch curve of
order n-1 covering the knot” (A/B, sect. 10). What Ag was for Reidemeister, J n was for
Alexander and Briggs. In a very detailed manner, A/B described a “cellular subdivision”
adapted to a given knot, first of the 3-dimensional sphere, then of its branched,
cyclic covering space J n . This cell decomposition was then modified, reducing it to
a cell decomposition with fewer cells but with the same homological invariants in
the Poincaréan sense. The (1-dimensional, reduced) homologies of this modified cell
decomposition of J n , calculated according to Poincaré’s method, led to exactly those
homologies (∗) which were codified in the earlier parts of the paper. Even the rather
peculiar dotting convention by which A/B marked over- and undercrossings in knot
diagrams acquired a new meaning: the system of dots encoded information about the
way in which the different layers of the covering space were attached to each other in
the cell decomposition used for calculating homologies.

Hence the uninterpreted marks of A/B’s approach to knot invariants actually had
an interpretation, in fact a strikingly coherent one. As in R, the introduction of
the covering space reveals what probably was at the core of Alexander’s and Briggs’
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research activity. Taking it into account, a smooth order of reasoning becomes visible
that essentially reverses the order in which the authors had arranged their material in
writing. The text even said as much:

A number of years ago, one of the authors of the present paper pointed out that if the
space of a knotted curve be covered by an n-sheeted “Riemann 3-spread” (the three-
dimensional analogue of a Riemann surface) with a branch curve of order n-1 covering
the knot itself, then, the topological invariants of the covering spread will also be invariants
of the knot. He further calculated the Betti numbers and coefficients of torsion of the
covering spreads determined by some of the simpler knots and found these invariants to
be sufficient, in the cases actually examined, to distinguish one type of knot from another.
(A/B, sect. 1)

In this tiny story, the formal, combinatorial definition of torsion invariants of knots as
presented in A/B does not occur at all. Despite forming the content of the first sections
of the paper, in practice the formal perspective obviously came last. After making its
priority claim the text continues:

In this paper, we propose, first of all, to obtain the torsion invariants of a knot by direct,
elementary considerations, without appealing to the idea of a Riemann covering spread.
Next, we shall prove, with the aid of these invariants alone, that all types of knots of
eight or less crossings listed as distinct in the knot tables of Tait and Kirkman actually are
distinct . . . Finally we shall describe, briefly, the method of obtaining the torsion numbers
of a knot from its associated Riemann covering spread, after the manner in which the
invariants were originally discovered. (A/B, sect. 1)

Hence the written order of the final paper actually reversed the temporal order of events
in research practice. I feel tempted to convert this reversion into a historiographical
principle (to be taken with a grain of salt): for a historical reconstruction of successive
events in mathematical research, it may help to read the papers documenting the results
from end to beginning rather than in the usual way. The streamlined and polished
approach to a mathematical problem which is offered at the beginning of a final
paper may have been the last step in an episode of mathematical research while the
applications, concrete examples, and connections to other mathematical or scientific
topics with which many papers close may well have stood at the beginning of this
research episode.

3. Epistemic configurations of mathematical research

The analysis of the last section has shown that despite all similarities, two quite different
episodes of mathematical research led Alexander and Reidemeister to their respective
version of calculable knot invariants. We found that the formal, symbolic presentation
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of these invariants was only the last step in an activity which probably began as
an investigation of very specific geometrical objects by means of techniques that
were derived from Poincaré’s techniques of manifold topology. Alexander studied
“Riemann spreads” or “Riemann spaces,” closed covering manifolds of the 3-
dimensional sphere branched over a knot or link, using a modified version of
Poincaré’s “reduced homology.” Reidemeister, on the other hand, looked at (open)
unbranched coverings of knot or link complements, and used a modified version
of Poincaré’s technique for deriving a presentation of their fundamental group. In
addition to the fact that both authors treated different geometric objects, they relied
on two quite different descriptions of their objects: each author used a particular cell
decomposition of the spaces under investigation that was suited for the application
of the technique he was employing. While these differences may appear unimportant
to a modern mathematician fully aware of the mathematical relations between the
spaces and techniques mentioned, they made a significant difference in Alexander’s
and Reidemeister’s mathematical practice.35 They indicate that these mathematicians
worked in different epistemic configurations, as I will say.

An epistemic configuration of mathematical research is the entirety of the
intellectual resources that are involved in a particular research episode. It comprises the
mathematical language, the skills and techniques at the disposal of the mathematician
or the group of mathematicians engaged in this research, the set of research topics and
open problems under consideration, the horizon of aims and more general heuristic
guidelines followed by the researchers, etc. It either enables the work of a single
mathematician or is shared by a small group of mathematicians working together. An
epistemic configuration of mathematical research, together with the mathematician(s)
working in and with them, thus constitutes a (usually rather small) working unit for the
production of mathematical knowledge. Consequently, it may be taken to correspond
to what Rheinberger has called the experimental systems of empirical sciences.

This correspondence may be made even closer by taking up a functional
distinction used by Rheinberger to describe the dynamics of knowledge production
in experimental systems.36 Generating new knowledge means posing and answering
new, previously unthought questions, or answering old questions in new, previously
unimagined ways. Accordingly, there are two kinds of elements involved in the
cognitive practice of scientists: elements that induce questions, that open up the future
of research, and elements that generate answers, that produce a stable past for ongoing

35 That mathematical theories which are more or less “equivalent in theory” (especially in modern retrospective)
may be “non-equivalent in practice” has nicely been pointed out by Skuli Sigurdsson with reference to
Newtonian and Leibnizian calculus (Sigurdsson 1992). Further use of this idea has been made by Guicciardini
1999.
36 For the following, see Rheinberger 1997, 28–31. Rheinberger tends to conceive experimental systems as
“the smallest integral working units of research.” Whether it makes sense to speak of “smallest” of such units in
the case of mathematics depends on the meanings given to the other terms in the quotation. In any case it is
necessary to consider research episodes sufficiently limited in time and space.
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research activity. With a view to experimental research, Rheinberger calls these two
kinds of elements the “epistemic things” and the “technical objects” involved in
experimental systems. Epistemic things are objects of active investigation, intellectual
constructions, or material things or processes that are referred to as “objects” by
scientists even if they are not ready-made, inert entities. They induce questions only if
and insofar as they are vague, partially understood, and partially obscure. As research
progresses, certain aspects of the epistemic objects under investigation become clearer
while other, previously unseen aspects again emerge as vague and problematic, posing
new challenges to research. Typical examples would be the structure of DNA before
its clarification in the work of Watson, Crick, and others, or enzymatic sequencing
of DNA before its transformation into a generally used laboratory technique. Another
example, crossing the boundaries between physics and mathematics, might be Brownian
motion, both before and during its mathematization in Norbert Wiener’s work.37

Technical objects, on the other hand, are procedures or techniques – such as enzymatic
sequencing after its transformation into a standard tool or (mathematized) Brownian
motion as used in later theories of stochastic integration – that allow one to determine
some of the vague features of research objects. They either help to describe research
objects in a way that enables scientists to handle them effectively and ask precise
questions about them, or they provide the tools to answer some of these problems.
Technical objects are stable, finished products of earlier activities. In an experimental
setting, such techniques and procedures are typically tied to (but not identical with)
material apparata such as microscopes, computers, or all kinds of measuring devices.

Of course the examples that Rheinberger has in mind mainly belong to laboratory
science. However, the description of epistemic and technical objects given by
Rheinberger is deliberately coined as a functional one and hence conceptually
independent of any distinction between material and intellectual aspects of scientific
practice (see e.g. Rheinberger 1997, 30). For this reason, it can be applied in
situations where material practices do not extend far beyond reading, writing, talking,
and listening. Quite obviously, mathematical research also revolves around partially
understood objects of investigation, around objects that generate problems, and whose
vagueness and intricacies point to an unforeseen future. And the object-defining and
question-answering tools that a mathematician or a group of mathematicians has at
hand in a particular research episode may evidently be taken to correspond to the
laboratory equipment of an experimental scientist or, more precisely, to the technical
procedures employed by the experimentalist to determine her or his phenomena. (By
the way, also in the case of an experimentalist, certain cognitive instruments, certain
techniques of thinking must be considered as part of the laboratory.)38

37 At the time, the most challenging obscure aspects of this microscopic phenomenon were the strange properties
of paths of individual particles.
38 The relation between laboratory sciences and mathematics has also been discussed in Heintz 2000, especially
pages 110–119. Independently of Epple 1999, Heintz proposes a very similar application of Rheinberger’s
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In order to underline the conceptual, not necessarily factual, independence of the
answer-generating elements of research practice from material things, I will speak of
epistemic techniques rather than of technical objects. An epistemic configuration
of mathematical research, then, consists in a particular constellation of epistemic
objects and epistemic techniques. This way of expression remains close to the usage
of mathematicians. However, it must be kept in mind that the epistemic objects
and techniques of mathematical research are not the immutable abstract objects or
timeless methods mathematical Platonism or similar philosophies speak about. They
are mathematical objects and techniques not “as such” but as conceived, imagined, or
used by particular scientists in particular research episodes, as “targets” and resources
“of epistemic activity” (compare Rheinberger 2000, 274). By definition, then, they
exist only in particular places and times and undergo a permanent modification in
research practice. Every partial result and any new heuristic idea about a problematic
object changes it. Well understood epistemic objects may later turn into ingredients
of stable research techniques, while techniques applied in unintended situations may
become problematic and hence change into epistemic objects. On the other hand, both
epistemic objects and techniques usually transcend the conceptions, imaginations, or
uses of individual mathematicians – to the very degree that the research episode in
question transcends the research of an individual.39

The mathematical objects that Reidemeister or Alexander tackled while working
out their knot invariants were typical epistemic things. In particular, the key objects
of their constructions, the “Riemann spaces” or covering spaces associated with
knots were far from being fully understood mathematical constructions at the time
of their research. Just as Riemann surfaces a few decades earlier, these 3-dimensional
manifolds posed intriguing challenges to those studying them. No fixed nomenclature
and technical language existed that allowed researchers to speak about them in a
clear-cut way. Consequently, Alexander, Briggs, and Reidemeister had to develop
their own devices to deal with these objects – they had to set up productive epistemic

categories to the case of mathematics. While she places this proposal in the context of an interesting sociological
discussion of mathematics, Heintz does not try to give detailed analyses of particular episodes of mathematical
research based on such a framework.
39 Here an important disclaimer has to be added to prevent misunderstandings. The terminology and perspective
employed above are not necessarily intended to do away with philosophical claims about timeless mathematical
objects, structures, or methods. They are intended to describe something else, namely what mathematicians do
in their research. Even if there exists some timeless abstract object that may rightly be called “the 3-dimensional
sphere,” this object meant and will mean different things to different mathematicians engaged in topological
research. These differences begin with, but are by no means restricted to, the fact that any definition of a sphere
is relative to a topological theory of choice. As long as problems such as the (classical) Poincaré conjecture
remain unsolved, “the 3-sphere” will also remain an epistemic object for some – partially understood but in
some crucial aspects still obscure, an object of active research. (If, by the time of reading, this problem is solved,
choose another example.) – My attempt to remain neutral with respect to philosophical issues is slightly different
from a trend in recent history of science which views approaches to scientific objects similar to the one sketched
above as undermining philosophical debates about realism or constructivism, see. e.g. the introduction to Daston
2000.
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configurations in which “Riemann spaces” could be treated. While both chose to draw
on Poincaréan techniques – there was hardly another way to go – the endowment of
their mathematical laboratories differed quite substantially in the details. Reidemeister
made a strong effort to build up a technical apparatus around combinatorial group
theory. Poincaré’s approach to the fundamental group of a manifold was integrated in
this apparatus by means of the crucial description technique for the kind of epistemic
objects considered, namely cell decompositions. Alexander, on the other hand, worked
in a laboratory whose most powerful tools were homological ones. He also refined
the technique of describing manifolds by cell decompositions in such a way that
Poincaré’s method of determining the reduced homologies of a manifold involved less
complex symbolical manipulations.40 Accordingly, these mathematicians developed
quite different skills that they could bring to bear on their epistemic objects.

A striking feature of both A/B’s and R2’s introduction of knot invariants was that
both articles also sketched another, new epistemic configuration for doing mathematical
research on knots. The objects of this new configuration were knots, described
by means of plane diagrams, and its epistemic techniques were symbolic devices
(matrices, groups, etc.) translating diagram equivalences into combinatorial or algebraic
equivalences of the symbolism. In this configuration, 3-dimensional manifolds no
longer played the role of key objects. Readers who skipped the corresponding parts of
the papers would not thereby have missed essential information for dealing with knots
in the new fashion. This reconstellation of research on knots was the main thrust of
Reidemeister’s “elementary foundation” for knot theory (R2), and one cannot avoid
the impression that at least this move inspired Alexander and his student Briggs to
proceed in a similar style, notwithstanding Alexander’s claim to priority in discussing
the torsion invariants of Riemann spaces. The further development of knot theory
in the late 1920s and 1930s shows that the new epistemic configuration of knot
theory, built around diagram combinatorics rather than manifold topology, was indeed
effective and allowed the production of new knowledge about knots.41 This shift also
illustrates the dynamics of epistemic configurations in research processes. Elements of
these configurations may change places. The epistemic objects of one research episode
may turn into tools for another or they may vanish from a mathematical laboratory
altogether. Techniques may themselves move in the focus of research interest and
become modified for new tasks.

We have now reached a point where we can turn from an analysis of our
main sources to a historical synthesis, as it were, of Alexander’s and Reidemeister’s
research practice. By localizing the objects and tools of their work in their particular
epistemic configurations, questions concerning the historicity of these objects, tools,
and configurations can be posed and answered. How, when, and in what local milieus

40 As mentioned above, this was done mainly by reducing the number of cells involved in the description of a
manifold in a systematic fashion.
41 A detailed account is given in Epple 1999a, chap. 12.
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did Reidemeister and Alexander learn about their techniques and objects? A closer
look at their roles in their respective local milieus also reveals different intellectual
orientations and mathematical agendas which can help to account for the main
phenomenon which our previous analysis has left unexplained, the move toward a
“modern,” formal mathematical style.

4. Knot Invariants II: Synthesis

Reidemeister

Kurt Reidemeister turned to topology soon after his arrival in Vienna in late 1922,
where he had just obtained his first professorship.42 Earlier he had been working
on algebraic number theory and differential geometry, so his professional move
was connected with a reorientation of his research interests. His correspondence
during this period shows that he made himself acquainted with two main areas,
Poincaréan manifold topology and combinatorial group theory. Both areas were
actively represented in Vienna’s local mathematical tradition. In this respect, the key
figure among the senior professors whom Reidemeister met in Vienna was Wilhelm
Wirtinger, born in 1865. Wirtinger lectured mainly on complex analysis and algebraic
function theory, and in this context, he gave Poincaré’s topological ideas a prominent
role.43 In particular, Wirtinger intensively studied singularities of algebraic functions
of two complex variables during the decade between 1895 and 1904. In this work,
drawing heavily on Riemannian function theory and the imaginative topological work
of the Danish mathematician Poul Heegaard,44 Wirtinger showed that certain features
of such singularities – another characteristic epistemic object of mathematical research –
could be investigated by means of a mathematical technique that transformed the
singularities into 3-dimensional analogues of Riemann surfaces, i.e., those objects
which Heegaard, Alexander, and others called “Riemann spaces.” In this way, knots,
Wirtinger’s semi-cylinder construction, and the knot group appeared on the Viennese
mathematical stage. For Wirtinger, these items played the role of research instruments:
he used them to answer problems related to singularities. However, he refrained from
publishing any final results of his research (for details, see Epple 1999a, chap. 8.2).

One explanation for this may be that the instruments were difficult to handle. They
began to generate problems of their own. How could one tell different Riemann
spaces apart? How could one tell different knot groups apart? As soon as such
problems were raised, Wirtinger’s items turned into epistemic objects. This step can be

42 For more biographical information, see Epple 1999a, § 91.
43 See in particular a remark in an unpublished autobiography of Heinrich Tietze (quoted in Epple 1999a, 240).
44 Heegaard’s thesis of 1898 played a crucial role in the clarification of Poincaré’s homological notions. For a
discussion of its contents and its role in Wirtinger’s and Tietze’s research, see Epple 1999a, § 77.
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traced in a long and influential paper written by another mathematician who studied
with Wirtinger in Vienna for some time, Heinrich Tietze’s habilitation thesis “Über
die Topologie dreidimensionaler Mannigfaltigkeiten” (Tietze 1908).45 Tietze’s main
emphasis was to rework the foundation of Poincaré’s manifold topology in a more
consistent, combinatorial fashion. Two techniques were heavily used and developed:
cell decompositions (according to Tietze’s own account, this part of his thesis drew on
direct suggestions by Wirtinger) and combinatorial group theory. Moreover, Tietze’s
article may be said to be an inventory of open topological problems, several of
which were drawn from the tradition of geometric function theory. In this context,
Wirtinger’s constructions were mentioned – not as tools for algebraic function theory,
but as problematic objects in their own right. One of the problems Tietze raised
without answering it was the following: Could all closed, 3-dimensional manifolds
be represented by a Riemann space in Wirtinger’s fashion, i.e. as a covering of the
3-dimensional sphere branched along some knot or link (Tietze 1908, § 18)? We will
return to the answer below.

From this brief account it is clear that there existed an awareness in Vienna’s local
tradition that this area of mathematics offered interesting possibilities for future research.
Moreover, several of the crucial elements of the epistemic configuration in which
Reidemeister worked out his knot invariants were present in this tradition prior to
Reidemeister’s involvement. In January 1923, Reidemeister wrote from Vienna to
Hellmuth Kneser, who had taken his doctorate with David Hilbert and who also
turned to topology at the time, that he planned to read Poincaré’s papers on topology
and that he intended to work on graphs and knots: “Whether something will come
out of my present graph-knot-plans I can probably decide by Easter.”46 Five months
later, Reidemeister reported that he gave courses on topological and group-theoretical
topics, among them the theory of elementary divisors. In the same letter, Reidemeister
mentioned that Max Dehn, the main expert on knots and groups in the period
before World War I, had given lectures in Vienna, adding: “Soon, I will also fire
a group cannon for shooting all invariants; at the moment the battery position is
being dug out, transports of ammunition are directed etc., but everything is feverishly
excited.”47 Reidemeister’s excitement marks the turning point from learning new
mathematical tools to the production of new knowledge. At least he now felt that
he had a tool – the “group cannon” – which would help him in solving actual
problems.

A first sign that his mathematical laboratory was beginning to be productive is
the fact that one of the Vienna doctoral students, Otto Schreier, who participated
in Reidemeister’s seminar, was able to reprove and generalize an important earlier
result of Max Dehn’s classifying the groups of the so-called torus knots using group

45 A discussion of Tietze’s work is given in Epple 1999a, chap. 8.3.
46 Reidemeister to Kneser, 6.1.1923 (translated from Epple 1999a, 301).
47 Reidemeister to Kneser, 17.6.1923 (translated from Epple 1999a, 301).
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theoretical tools where Dehn had relied on geometric arguments.48 Schreier, who
wrote his dissertation under Philipp Furtwängler, at the time Vienna’s leading algebraic
number theorist, shared Reidemeister’s fascination with combinatorial group theory
and seems to have functioned as a mediator for the transfer of older Viennese knowledge
about knots and groups to Reidemeister. In late 1923 or early 1924, after receiving
his doctorate, Schreier joined the mathematical seminar at Hamburg University and
began working with Emil Artin (another Viennese mathematician who had come to
Hamburg). As mentioned above, Schreier was also responsible for bringing Wirtinger’s
ideas into this collaboration.49

In 1924, Reidemeister presented his first group theoretical results at a mathematical
colloquium at the university of Hamburg.50 However, it seems that he still struggled
with bringing his (somewhat unwieldy) group cannon to “shoot” topological
invariants. A year later, after moving to Königsberg where he got his first full
professorship, Reidemeister wrote to Kneser about a major breakthrough: “Concerning
knots, it is violently roaring in my head, a horribly exhausting activity. I just want to
make you a little curious. I have discovered a new knot group, a subgroup of Dehn’s
group.”51 The rest of the letter shows that this subgroup was the fundamental group
of the (unbranched) double covering of the knot complement, i.e., the first in the
series of groups whose Poincaréan numbers were presented as Reidemeister’s new
knot invariants.

Unfortunately we do not have any “laboratory notebooks” documenting this
breakthrough in more detail. However, our previous analysis makes clear what must
have caused the storm in Reidemeister’s brain: the consideration of Wirtinger’s
geometric objects. The techniques he had learned to master in Vienna, Poincaré’s
and Wirtinger’s cell decompositions and fundamental groups, Tietze’s and Schreier’s
combinatorial group theory now all fitted together in the study of covering spaces.
Calculating their fundamental group according to Poincaré’s method and using
Wirtinger’s cell decomposition gave the new subgroup and with it, numerical
invariants.52 Hence, a hybridization of at least three strands of knowledge, two of which
formed part of Vienna’s local mathematical tradition and one of which consisted in
a conscious and cooperative appropriation of written knowledge, was responsible for
Reidemeister’s innovation.53 For quite some time, the epistemic configuration thus
built up was highly productive. Not only would Reidemeister become the leading
authority on knots in Europe for several years, he also worked out a number of

48 Schreier’s debt to Reidemeister’s seminar is mentioned in Schreier 1924, 167 n.1.
49 On Schreier’s short life and career, see Chandler and Magnus 1982, 92–93.
50 Published only later in Reidemeister 1926c; see the remarks at the beginning of this paper.
51 Reidemeister to Kneser, 30.7.1925 (translated from Epple 1999a, 302).
52 A full account of the claim made in this sentence is given in Epple 1999a, § 93.
53 Here we recover another important aspect of Rheinberger’s analysis of experimental systems. In many cases,
their potential to produce new knowledge relies on the merging of elements from different research activities
or experimental systems into a new one (cf. Rheinberger 1997, 135 f.; see also below).
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further, more general results about the relation between the covering spaces and the
fundamental group of a manifold.54

The influence of the city of Mahler, Schönberg, and Freud, of Wittgenstein and
the Vienna circle in philosophy, of waltzes and anti-semitism on Reidemeister’s
intellectual life was not limited to the mathematical tradition(s) that entered his
topological research.55 In his university studies, Reidemeister had graduated not just in
mathematics, but in philosophy (and three other subjects) as well. Edmund Husserl had
been among his teachers. After coming to Vienna, Reidemeister soon found himself
involved in the mathematico-philosophical activities that would later condense into the
Vienna circle. In particular, he became a close friend of Hans Hahn, who had been one
of Heinrich Tietze’s closest friends before World War I. Together with the philosopher
Moritz Schlick and the economist Otto Neurath, Hahn was one of the main figures in
the early Vienna circle. Hahn’s sister Olga was Neurath’s first wife; Reidemeister’s sister
Marie would later flee with Neurath from Nazi persecution to England and become
his second wife. Among the younger students involved in the group during the years
Reidemeister spent in Vienna were Otto Schreier and Karl Menger. In other words,
most of Reidemeister’s communication partners in mathematics (with the exception of
his older colleague Wirtinger) were also engaged with him in philosophical, cultural,
and political discourses. When Reidemeister left Vienna in 1925 for Königsberg, he
could rightly be regarded as an outpost of the Vienna circle. In 1930, he functioned
as the local organizer and moderator of one of the circle’s most famous meetings,
the Königsberg meeting in which the famous triad of logicist, intuitionist, and
formalist approaches to the foundations of mathematics was discussed by Carnap,
Brouwer and von Neumann, and Gödel announced his famous undecidability
results.56

Already in the mid-twenties, the foundations of mathematics as outlined in Hilbert’s
recent “formalist” program (Hilbert 1922) and the relevance of this approach to
epistemology at large were discussed in Vienna. Two texts, published in 1928 and
1929, respectively, document some results of these discussions. The first was written by
Reidemeister, the second by Hahn. This latter text, entitled “Empiricism, mathematics,
and logic,” sought to combine a formalist view of logic and mathematics with
empiricism. According to Hahn, empirical knowledge arose from speaking about the
world by means of a suitable symbolism. However, the signs of this symbolism did not
correspond “uniquely and isomorphically” to that which they should signify. Hence
a science was necessary which studied those transformations of symbolic expressions
that did not change their relation to empirical content. This science was (formal) logic.

54 See in particular Reidemeister 1928a, which gave a general classification of coverings of 3-dimensional
manifolds endowed with a cell decomposition, and Reidemeister 1935, where a new topological invariant was
introduced that came to be called “Reidemeister torsion.”
55 For Vienna’s intellectual life, Janik and Toulmin 1973 and Schorske 1979 remain essential reading.
56 Full references for the last paragraph are given in Epple 1999a, § 91 and § 97.
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Mathematics, in turn, was nothing but a special branch of logic, particularly suited
to the needs of empirical science (Hahn [1929] 1988). Reidemeister’s philosophical
manifesto, entitled “Exact thinking,” also stressed the fundamental role of analyzing
the combinatorics of sign systems. In his view, the “combinatorial facts” about dealing
with “concrete signs” had their place in the “at the beginning of the construction
of exact science, before logic” (Reidemeister 1928b, 35). For Reidemeister, exact
science meant to establish relations between certain “combinatorial objects” only on
the basis of previously fixed “combinatorial rules.” The relations of the domain of
exact thinking to the empirical world, however, were problematical: “The immediate
grasp of these relations never leads to exact knowledge. It only gives rise to certain
exact constructions” (Reidemeister 1928b, 37).

It is striking how well both Hahn’s and Reidemeister’s formulations capture the
approach to knot invariants as published by Reidemeister in 1926. There, mathematical
knowledge about knots was indeed presented as knowledge about the combinatorics of
symbol systems, in fact as knowledge about certain symbolic expressions that remained
invariant under transformations of the diagram symbolism describing knots in space.
Hence knot theory was a part of “exact” combinatorics, but a part that had a fairly
clear intuitive meaning, i.e. a relation to the empirical world, however problematic
it might be. In this way, Vienna’s modernist philosophical culture of the 1920s, the
exchanges with Hahn and others, may well have contributed to shaping the formal,
combinatorial style of Reidemeister’s mathematics. As mentioned earlier, this writing
style both documented and advanced a significant change in the epistemic configuration
of doing research on knots. Thus we have a nice example of how an intellectual milieu
can contribute to shaping a new epistemic configuration of mathematical research.

Alexander

James W. Alexander’s career as a topologist was closely tied with Princeton’s emergence
as a renowned center of mathematical research. Born in 1888, Alexander took his
degree and doctorate at Princeton University. There “he came under the guidance
of Oswald Veblen,” as his later colleague Solomon Lefschetz put it in his obituary
(Lefschetz 1974). At the time, Veblen was the main American propagator of Hilbertian
ideas and “founder of the Princeton research tradition in topology” (Parshall and Rowe
1994, 449).57 Soon after graduating, Alexander got involved in polishing Poincaré’s
approach to homology based on cell decompositions of manifolds. His first major
paper, coauthored by Veblen, gave a duality theorem on non-orientable manifolds.
In its proof, a technique first introduced in Tietze’s paper of 1908 was heavily used
(Alexander and Veblen 1913).58 In 1915, he closed an essential gap in Poincaré’s

57 On Princeton’s rise as a mathematical center, see also Aspray 1988 and Borel 1988.
58 The technique in question was the use of chains with coefficients mod 2.
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arguments by giving a detailed proof of Poincaré’s rather vaguely justified claim that
two different cell decompositions of the same manifold gave rise to the same invariants
of (reduced) homology. By the end of World War I, Alexander had developed an
impressive virtuosity in handling the homology of cell-decomposed manifolds. Given
Veblen’s continuing interest (documented especially in Veblen 1922), one can clearly
speak of a local knowledge tradition in Princeton in this regard.

In 1918, Alexander’s researches took a new turn. Apparently inspired by the long
list of open problems related to 3-dimensional manifolds in Tietze’s paper and the
geometric ideas discussed in Heegaard’s thesis, which Alexander had helped to translate
into French in 1916 (Heegaard 1916, 163), Alexander made 3-dimensional manifolds
his favorite epistemic objects. Over the next few years, an impressive sequence of
research results appeared in print which explored 3-dimensional manifolds in various
new directions (including, where possible, higher-dimensional cases).59 He defined
new invariants, discussed the differences between the topological constructions within
the 3-dimensional sphere that were possible either with finite “cellular subdivisions”
or with wild, infinite subdivisions,60 found and proved a new duality theorem and
thought about new ways to construct 3-dimensional manifolds.

An important step in this last respect was Alexander’s successful attempt at answering
one of Tietze’s open problems concerning Riemann spaces, i.e., branched coverings of
the 3-dimensional sphere. Using once more cell decompositions and (most probably)
intuitive thinking in the style of nineteenth-century’s geometric function theory,
Alexander “showed” that Tietze was right in conjecturing that every closed orientable
3-dimensional manifold could be represented as a covering of the 3-dimensional sphere
branched over a knot or link (Alexander 1920).61 This indicated that Riemann spaces
might become an essential element in a new general description technique for 3-
dimensional manifolds, and it appears that Alexander had high expectations for this
technique (Lefschetz 1974, 112).

This insight added importance to the study of Riemann spaces; in other words, it
added weight to their status as epistemic objects. In November 1920, Alexander gave
a talk at the National Academy of Sciences that contained the material that would
later form the basis of his priority claim about knot invariants. Our only sources about
this talk are Alexander’s own account, quoted above, and brief remarks in Veblen’s
1922 monograph on Analysis situs. According to these, the main thrust of this talk was
the statement that all topological invariants of a Riemann space were also invariants
of the system of its branch curves (in a suitable sense) (Veblen 1922, chap. V, § 44).

59 For details, see Epple 1999a, §§ 99–101. A good biographical study or even a detailed obituary of Alexander
is not available at present. The most important short obituary describing some main achievements and goals of
Alexander’s topological work is Lefschetz 1974.
60 This research was inspired by another French paper, Antoine 1921.
61 He came back to this topic in Alexander 1923 where he showed that the system of branch curves could be
chosen to be what was later called a closed braid.
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Probably, Alexander viewed this result as a byproduct of his study of Riemann spaces,
and not as an important insight for the study of knots or links. In any case, the results
discussed in the talk were not published. Instead, Alexander continued his investigations
of 3-dimensional manifolds. Only after reading Reidemeister’s paper, it appears, did
Alexander take up the knot-theoretic leads of his earlier ideas, asking Briggs to help
him work them out into an alternative approach to the torsion numbers of knots. Once
this was done, Alexander found he could go an important step beyond Reidemeister’s
results. Less than a year after his joint paper with Briggs, he published his second
major paper on knot invariants, introducing the polynomial invariant that today bears
his name (Alexander 1928). A closer analysis reveals that this work very probably
represents the first actual research performed in the new epistemic configuration of
knot theory outlined both in R and A/B (Epple 1999a, § 103).

The local tradition Alexander drew upon in this research was clearly the homology
of cell complexes he had been refining with Veblen since his earliest steps as a
mathematician. This tradition merged with knowledge about the geometric objects
of Heegaard and Vienna’s earlier topological tradition and in particular, about
Riemann spaces. Apparently, this knowledge was appropriated by active reading. In
the period considered here, i.e. the years after World War I, Alexander’s general
agenda can be described as a highly successful (if necessarily incomplete) attempt at
building up a powerful archive of mathematical tools for dealing with 3- and higher-
dimensional manifolds. This agenda encompassed more than just a productive epistemic
configuration for a particular research episode. It was directed toward turning the
whole field of combinatorial topology of manifolds into a productive subdiscipline of
modern mathematics, satisfying modern standards of rigor. This attitude was concisely
summarized in a talk at the International Congress of Mathematicians of 1932 which
may be considered as Alexander’s mathematical manifesto of this period (Alexander
1932). In it, Alexander discussed rival views of the field of topology, weighing the
possibilities and limitations of different approaches to its foundations. His own variant
of the topology of cell complexes and cell-decomposed manifolds, “flat analysis situs,”62

was presented as a wise compromise between set-theoretic, geometric and purely
combinatorial foundations of topology. Illustrations of the possibilities of the field were
taken, among other things, from knot theory.

Unlike Reidemeister, Alexander was not a philosophical mind. He was first and
foremost a professional topologist. Up to World War II, virtually all of his research
was devoted to topology. It earned him a full professorship at Princeton University
in 1928, and in 1933 he became one of the first professors of the newly founded
Institute for Advanced Study at Princeton. The key notion characterizing both aspects
of Alexander’s work – research and career – is clearly that of professionalization.
Here again, Veblen’s influence seems important. Around 1900, Veblen had been a

62 The most adequate translation of this term into present-day mathematical language would be piecewise linear
topology.
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doctoral student of E. H. Moore in Chicago, one of the most important centers of
the professionalization of mathematics in the United States one generation earlier (see
Parshall and Rowe 1994, chap. 9). There, Veblen also came in touch with Hilbert’s
modern axiomatic approach to geometry. When Veblen came to Princeton a few years
later, he clearly saw the advancement of axiomatic, formal mathematics as a pathway
to professional mathematical culture. Princeton provided a very appropriate setting
for these tendencies within the mathematical culture of the 1920s. New fields such
as topology seemed ideally suited for carrying such a program to the next level of
professional differentiation, and Alexander was just the right person to take over this
particular task. Without being able to present more direct evidence, I would suggest
that this aspect of scientific modernity played a similar role in Alexander’s research
practice as the intellectual avantgardism of Reidemeister’s years in Vienna. To present
knot invariants in the streamlined fashion of symbolic mathematics, joining simple
manipulations of knot diagrams with formal manipulations of algebraic devices must
have appeared attractive to a mathematician of Alexander’s professional outlook.

5. Conclusion

The focus on the material aspect of experimentation is misleading when it comes to
comparing experimental sciences with mathematics. What is needed is an analysis of
the different functions of elements of research practice for the production of scientific
knowledge. Once this move is made, as suggested e.g. in Rheinberger’s historical
studies of molecular biology, a number of interesting similarities between the dynamics
of mathematical and experimental research become visible. The clue to such an analysis
lies in a consistent temporalization and localization of the perspective on past scientific
research. Rather than looking at an abstract, eternal world of mathematical objects and
procedures so dear to some philosophers and mathematicians, historians can focus on
the objects and techniques as given, employed, and modified in particular episodes of
research.

Our analysis of two influential contributions to early twentieth-century topology
has shown that even in a case in which two rather different mathematicians appear to
produce the same fragment of mathematical knowledge at roughly the same time in two
different locations, the technical resources and skills, the problems actually dealt with,
and the general scientific agendas responsible for this work can be quite different. Both
Reidemeister’s and Alexander’s research practice had its time and place. As intellectual
enterprises, their work was not interchangeable.

This is mainly due to the fact that the production of mathematical knowledge also
requires elements that do not travel instantaneously through space and time, in spite of
their not being material in a straightforward sense. On the one hand, these elements
consist in more or less stable mathematical techniques that have to be mastered before
beginning work on a particular area of mathematical problems. In the episodes we
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have considered, this was not done by a simple and quick reading of mathematical
texts. The tools of cell decompositions, combinatorial group theory, or homology
were appropriated by Reidemeister and Alexander only in time-consuming processes
that would probably have been impossible without the existence of a communicative
environment in which technical skills were exchanged and probed in direct interactions.
Reidemeister made himself acquainted with the tools he needed in Vienna, Alexander
did the same, but with other tools, in Princeton. The second kind of elements tied to
particular places and times are the epistemic objects of research. In both Reidemeister’s
and Alexander’s work on knots, the crucial objects whose investigation allowed the
introduction of calculable knot invariants were complicated geometric imaginations
whose paths through early twentieth-century mathematics can be traced in almost
complete detail. They had first been considered in late nineteenth-century work on
the singularities of complex algebraic functions, notably in Heegaard’s dissertation and
then, decisively, in studies of Wilhelm Wirtinger around 1900. Wirtinger’s students,
in particular Tietze and later Schreier, made some of this work known to others,
either in print or in direct communication. Only after learning of these geometric
imaginations could Alexander and Reidemeister become aware of the research
possibilities that would be opened up if the tools they had mastered were applied to these
objects.

The analysis sketched in the second section has also shown that the texts
documenting the results of Alexander’s and Reidemeister’s efforts did not openly reveal
the epistemic configurations in which this research happened. In fact, they effectively
sketched a different epistemic configuration in which mathematical work on knots and
links could be done in the future. In this new configuration, the complicated geometric
objects of the Vienna tradition no longer played a crucial role. Instead, the objects and
techniques of the new setup revolved around knot diagrams and formal, symbolical
manipulations of algebraic devices associated with these diagrams. In order to account
for this remarkable move toward a modernist style of mathematics, I have sketched the
intellectual and professional milieus in which Reidemeister and Alexander worked.
Once more we find quite different environments. Whereas Reidemeister was immersed
in the avantgard philosophical circles of Vienna’s science-oriented intellectuals,
Alexander was mainly acting in an environment of energetic professionalization of
the kind of research he was interested in. However, these environments also shared
certain features: they represented different shades of modernism in mathematics. In both
milieus, Hilbert’s axiomatic approach to mathematics was regarded as paradigmatic, and
the kind of intuitive argumentation characteristic of, e.g. Heegaard’s and Wirtinger’s
work was considered obsolete. Both in Veblen’s environment and in the Vienna circle,
the combinatorics of symbol systems was judged to be a rigorous or exact foundation
for mathematics in general and topology in particular. Due to these factors, the
intellectual environments of Alexander and Reidemeister exerted a similar pressure
on the style in which they presented their results. If this is correct, it underlines
once again the relevance of Rheinberger’s observation of the hybrid character of
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experimental systems for configurations of mathematical research: “they are at once
local, social, technical, institutional, instrumental, and epistemic settings” (Rheinberger
1997, 34).

Together with the shift of epistemic configurations, the debts of Alexander and
Reidemeister to their local environments were obscured in their written papers. Going
back to the first steps of our analysis we see that the final algorithms for calculating
invariants, including their proofs, were largely detached from information concerning
their coming about. Readers could take these final results and use them as models
for further work on knots without even knowing about the epistemic objects and
techniques of Alexander’s and Reidemeister’s own earlier research. To a superficial
reader it could thus seem that the similarities in A/B and R – in results, in technical
detail, in style – by far outweighed the remaining differences. A new piece of universal
mathematics seemed to have been unraveled, as it happened in two places at more or
less the same time.

But as we have seen, even this final similarity may be explained by referring
to the shared features of the authors’ local milieus. When Alexander read R, he
not only recognized the epistemic objects of his own earlier research, but he will
also have realized that Reidemeister’s style of writing followed norms similar to his
own. Given that he wanted to show that his earlier work had covered “the same”
mathematics anyway, it is not surprising that A/B was written in a fashion closely
resembling R. In the process of presenting their results, Reidemeister, Alexander, and
Briggs acted on a level of mathematical culture that happened to be less determined
by local differences. Writing articles meant acting in a space of communication
that was wider than Vienna or Princeton. General knowledge claims had to be
defended, and every article positioned its author in the spectrum of mathematical styles
available at the time. Princeton and Vienna, being centers of a decidedly modernist
mathematical culture, were in fact placed rather close to each other within this
spectrum.

In this way, in connection with a priority quarrel and with the move toward a
modern mathematical style, the outcome of local research activities was transformed
into a more universal, maybe more stable, form of mathematical knowledge. This
is not meant to suggest a general answer to the problem of how local mathematical
knowledge becomes universal, but as another indication that even if the weave of
intellectual fictions constructed by mathematicians acquires a remarkable stability over
space and time, both the activity of weaving and the generation of stability happen in
contingent, local historical processes.
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Dehn, M. 1910. “Über die Topologie des dreidimensionalen Raumes.” Mathematische Annalen 69:137–

168.
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