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1. Introduction 

§ 1. Among the most widely noticed achievements of knot theory are certainly the fa
mous knot tables produced by the Scottish tabulating tradition in the late 19th century, the 
polynomial invariant invented by James W. Alexander in the 1920's, and the series of new 
polynomial invariants that came into existence after Vaughan F. Jones discovered a new 
knot polynomial in 1984. It might seem that these results easily fit into a story centered 
around plane knot diagrams, symbolical codings of such diagrams and the operations one 
can perform with them, and combinatorial techniques to draw conclusions from the infor
mation that is thereby encoded.^ In this contribution, I will first outline such a narrative 
and then show that it fails to account for important causal and intentional links in the fabric 
of events in which these achievements were produced. Indeed, a striking feature of knot 
theory is that, even if a significant number of its results may be stated and proved in a 
direct, combinatorial fashion, the research that produced those results was often motivated 
by and directed toward geometric considerations of varying complexity. In many cases, 
these geometric ideas alone provided the links to other topics of serious mathematical in
terest and thus could induce mathematicians to devote their time to knots. Moreover, only 
by taking into account the surrounding geometric aspects can historians reach a position 
from which they may judge the relations between the steps in the formation of knot theory 
and the broader mathematical and scientific culture in which these steps were taken. These 
relations form part of the causal weave that needs analysis in order to attain a historical 
understanding of Tait's, Alexander's, or Jones's results. 

§ 2. In what follows, I will pursue this subject in five steps (corresponding to Sec
tions 2-6). In Section 2, some of the relevant combinatorial aspects of the history of knot 
theory will be sketched. This account is mainly intended to anchor the events relating to 
combinatorics in the historical chronicle, and to highlight the kinds of questions that re
main unanswered if the history of knot theory is presented in a perspective that concentrates 

^ A sketch along these Hnes has been published by Przytycki [131]. 
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exclusively on combinatorial issues. In Section 3, the main geometric ideas in the back
ground of the first mathematical treatments of knots, up to and including the tabulations 
of Peter Guthrie Tait and his followers, will be discussed. It will be seen that, in an im
portant sense, the knot tables of the 19th century did not represent an isolated and curious 
effort in the hardly existent science of topology. Section 4 will then be devoted to the mak
ing of what may be called modem knot theory in a historically specific sense, based on 
the new tools of Poincare's Analysis situs, the fundamental group, torsion invariants, and 
Alexander's polynomial. Section 5 takes up the difficult task of choosing and describing 
some developments concerned with the further investigation of knots in the period up to 
Jones's breakthrough. Besides the background to his new invariant, I will mainly focus on 
researches formulating innovative ideas on knots as genuinely three-dimensional objects, 
rather than as objects given by diagrams. I will return to my general theme in the conclud
ing Section 6, in a brief attempt to assess the historical role of geometric aspects in the 
mathematical treatments of knots. 

§ 3. Due to limitations of competence and space, the selection of topics discussed cannot 
be exhaustive and may perhaps not even be representative with respect to the main theme 
of this article. This holds both with respect to the description of mathematical ideas and 
- even more so - with respect to the causal and intentional saturation of the historical 
narrative.^ Among the many mathematical issues I have not dealt with are results about 
special classes of knots, investigations relating to the finer structure of knot groups, knots 
in higher dimensions, and the relations between knots and dynamical systems.-^ 

It must also be emphasized that the following remarks are written from the perspective 
of a historian, and not from that of a mathematician engaged in active research on knots. 
This raises a particular difficulty when it comes to recent developments. Since there is 
little or no distance to view these events from, one is hard pressed to find historical criteria 
that would help to order the overwhelming amount of material that could be subjected to 
historical investigation. Since, on the other hand, it is not the historian's task to side with 
one or several of the engaged parties of active researchers in the assessment of this material, 
he is left with a huge and (from his perspective) largely unordered corpus of information. 
Under these circumstances, the best I can hope for is to propose some points of view that 
may prove useful for a better structuring and understanding of this corpus in subsequent 
historical work."̂  

2. A tale of diagram combinatorics 

§ 4. It has been suggested that one of the earliest tools of combinatorial knot theory was 
forged by Carl Friedrich Gauss. Some posthumously pubhshed fragments of his Nachlafi, 

^ Taking descriptions of a complex of intellectual events in which certain mathematical ideas were produced 
as elements of the basic chronicle of a historical narrative, a historian has to "saturate" this chronicle in one 
of various possible ways. The idea that guides me in this enterprise is to produce an account of the weave of 
mathematical action in which these intellectual events actually happened. A historical narrative might thus be 
called "saturated" with respect to its basic chronicle if the causal and intentional context of the basic events in 
this weave is adequately captured. See also [42, Introduction]. 
^ Interesting survey articles that offer information on these and still other questions are [60, 156, 67]. 
^ A fuller treatment of the topics discussed here will be found in some of the papers referred to below and in my 
book Die Entstehung der Knotentheorie, forthcoming. 
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Fig. 1. A "Tractfigur" with crossing sequence ABCDBADC. 

originally written in the years 1825 and 1844, document that the Gottingen mathematician 
tried to classify closed plane curves with a finite number of transverse self-intersections, 
sometimes called "Tractfiguren" (tract figures) by Gauss.^ To do so, he invented a symbol
ical coding of such figures. He assigned a number or letter to each crossing and then wrote 
down the sequence of crossing symbols that resulted from following the curve in a given 
direction from a given point (see Figure 1). 

To some extent, this symbol-sequence captured the characteristic features of the tract 
figure in the sense of Geometria situs, as Gauss preferred to call the as yet unexplored 
science of topology.^ Gauss noticed that the sequences arising in this way had to satisfy 
certain conditions: Each of the symbols representing one of the n crossings had to appear 
exactly twice, once in an even and once in an odd place of the sequence. As Gauss noticed 
in 1844, however, these conditions were sufficient only for n ^ 4. He thus set out to write 
down a table of the admissible sequences for five crossings, but he did not find a method to 
solve the general problem of determining exactly which symbol sequences satisfying the 
above conditions actually represented crossing sequences of "Tractfiguren".^ 

What reasons did Gauss have for looking at this matter? Unfortunately, the fragments 
themselves do not give a clear answer. From the perspective of later knot theory, Gauss's 
attempt might look like a first step toward knot tables, but we will see that he had other 
reasons for studying "Tractfiguren". 

Apparently unrelated to these considerations is another posthumous fragment that has 
often been cited as evidence for Gauss's interest in knots and links. This text, written in 
1833, gives a double integral for counting 

the intertwinings of two closed or infinite curves. Let the coordinates of an undeter
mined point of the first curve be x, j , z; of the second x\ >'̂  z\ and let 

/ / 
jx' - x)(dydz' - dzd/) + (/ - y)idzdx' - dxdz') + jz' - zKdxd/ - dydx^) _ ^ 

[(x^ - jc)2 + (y - j)2 + (z' - 2)2]3/2 

then this integral taken along both curves is = 4mn and m the number of intertwinings.^ 

Here, the situation is different than with the fragments on "Tractfiguren". A number that 
modern knot theorists might be inclined to calculate from a link diagram by adding "signs" 

^ [57,vol. VIII, pp. 271-286]. 
^ Today, it is known that a reduced projection of a prime knot is indeed determined by its crossing sequence; 
see [29]. 
^ This problem received new interest after Gauss's fragments were published in 1900 and described in [33]. An 
algorithm solving the problem was first published by Max Dehn in [36]. 
8 [57, vol. V, p. 605]. 
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Fig. 2. Marking corners of diagrams. 

of diagram crossings, was described by Gauss using analytical information. As it stands, 
also this fragment poses a historical riddle: Why, when, and how was Gauss led to consider 
linked space curves and this integral? 

§ 5. While there is no direct evidence that Gauss actually studied the knot problem, his 
student and protege Johann Benedikt Listing did.^ In his 1847 essay, Vorstudien zur Topolo-
gie (in which he coined the term topology). Listing proposed to study, among other things, 
"Linearcomplexionen im Raume", roughly corresponding to 1-dimensional cell complexes 
embedded in ordinary space. The simplest case were knots (in the sense of smooth closed 
space curves without double points). Listing did not formulate the classification problem 
expHcitly, but the general thrust of his essay suggests that he was interested in topologically 
invariant characteristics of "Complexionen" like knots. Guided by the Leibnizian idea of 
a symboHcal calculus expressing "situation", as it was understood at the time,^^ Listing 
associated a "Complexionssymbol" with each knot diagram which, in slightly modernised 
notation, is a polynomial with integer coefficients in two variables. It was based on a rule 
for marking the corners of a diagram associated with Figure 2. Connecting two opposite 
regions by an axis running between the two arcs of the link, these arcs turn around the axis 
either like a right-handed or a left-handed screw. Accordingly, the regions were marked k 
or 5, respectively [94, p. 52]. Listing's symbol was then defined to be the polynomial 

where each term CijX^8J represented all diagram regions with precisely / marks X and j 
marks 8; the coefficients cij were just the numbers of regions of type X^S-^, including the 
outer region. This polynomial was not a knot invariant, however, since diagrams of equiv
alent knots could have different polynomials. What Listing hoped was that the resulting 
identities could be made the basis of an algebraic calculus with diagram polynomials (in 
modern terms, one might interpret Listing's idea by considering the quotient of Z[A, 8] by 
the ideal generated by all diagram equivalences). The obvious problem was that the basic 
identities were unknown as long as the knot problem was unsolved, and Listing was unable 
to draw any interesting consequences from his definitions. 

On Listing, see [21]. A letter of Betti's reporting on his conversations with Riemann gives indirect evidence 
that during the last years of his life, i.e. after Listing's Vorstudien had appeared, Gauss studied knots, though 
without much success; see [170]. 
^̂  The recurrent appeal to Leibniz' authority on Analysis situs is itself a historically interesting phenomenon, 
see [91, Introduction]. The particular conception of Analysis situs that Listing had in mind was in fact due to 
Euler [43]. 
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Fig. 3. "Twists" and "two-passes" 

§ 6. The next visible scientific enterprise relating to knots was the construction of tables 
of alternating knots of up to eleven and of non-alternating knots of up to ten crossings 
by the Edinburgh physicist Peter Guthrie Tait, the Lancashire clergyman and mathemati
cian Thomas P. Kirkman and the American civil engineer Charles N. Little in the last two 
decades of the 19th century. These tables, all but one pubhshed in the journals of the Royal 
Society of Edinburgh, were the outcome of hard combinatorial work.̂ ^ Tait, who initiated 
the whole enterprise, outlined the strategy to be followed. It consisted of two separate tasks: 
first, all possible projections of prime knots (i.e. diagrams where over- and undercrossings 
were not distinguished) had to be enumerated; second, all possible choices of over- and 
undercrossings in these projections had to be checked, eliminating diagrams of equivalent 
knots. 

The enumeration of knot projections was the easier part of this strategy. For the lowest 
crossing numbers, and independently of Gauss's still unpublished ideas, Tait first tried a 
method based on a refined version of crossing sequences. Later, he settled for a differ
ent technique, involving what today is called the "graph" of a knot. For higher crossing 
numbers, Kirkman took over this project, using another method for enumerating certain 
four-valent graphs from which knot projections could be derived. The harder task involved 
searching for duplications among the knot diagrams resulting from the enumerations of 
knot projections. Tait completed this task for alternating diagrams of up to ten crossings, 
and Little went on to deal with those having eleven crossings as well as the non-alternating 
diagrams. Two ideas about how diagrams of equivalent knots were related, implicit in Tait's 
work but only made explicit by Little, helped them to construct their tables, though both 
were acutely aware that their results were, to some extent, only tentative. For alternating 
diagrams without "nugatory" crossings,^^ Tait's implicit assumption and Little's explicit 
claim was that two such diagrams represented the same knot if and only if they could be 
related by a sequence of "twists" as in Figure 3 (left).̂ -̂  Only recently, and based on Jones's 
new invariant, has this conjecture been proved by Menasco and Thistlethwaite [108]. For 
non-alternating diagrams. Little argued that a sequence of twists and of additional op
erations, today called "two-passes" and illustrated in Figure 3 (right), would suffice to 
generate all diagrams of equivalent knots. Unfortunately, this claim was recognised to be 
wrong when K.A. Perko discovered a duphcation in Little's tables in 1974 that the latter 
had missed because the two are not related by twists and two-passes. 

^̂  The main publications are [153-155, 88, 89, 95-97]. See [42] for a more detailed description of this work. 
'^ A diagram crossing was called "nugatory" by Tait if a simple closed curve existed in the diagram plane 
intersecting the diagram only at this crossing. Diagrams without such crossings are today called "reduced". 
^̂  The name "flype" that modern authors tend to attach to this operation was used by Tait for a different operation. 
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Two obvious historical questions arise. First, why did these men spend so much of their 
time on knot tabulations? And, second, was their work causally Hnked to the Gottingen 
environment of the 1840's, where Gauss and Listing had dealt with similar issues? 

§ 7. Not long after Poincare had created the conceptual tools of modern topology - ho-
mological invariants and the fundamental group - presentations of the fundamental group 
of a knot complement, associated with a knot diagram, became known. In 1910, Max 
Dehn published a method for finding such a presentation and pointed out that a study 
of knots using group presentations would require solving some of the basic problems of 
combinatorial group theory [34]. In this connection, Dehn actually gave the first gen
eral and explicit formulations of the word and conjugacy problems in finitely presented 
groups. ̂ "̂  Dehn also sketched a technique for treating the word problem by constructing 
what he called the "Gruppenbild", namely, the Cayley graph of a finitely presented group 
G :— {a\,..., Uji \ r\,..., Vfi) consisting of the group elements as its vertices and oriented 
edges connecting group elements of the form g and aig. The cycles in this graph obviously 
correspond to all trivial words of the presentation, so that constructing the "Gruppenbild" 
and solving the word problem of a group presentation are equivalent tasks. Dehn managed 
to construct the graph of the group of a trefoil knot. The graph showed that this group was 
non-commutative, and hence a trefoil knot could not be deformed without self-intersections 
into an unknotted circle. 

In the 1920's, Kurt Reidemeister and Emil Artin pointed out that another method for 
associating a group presentation with a knot diagram had been developed already around 
1905 by the Vienna mathematician Wilhelm Wirtinger; and in fact the method had been 
described in a somewhat disguised fashion by Tietze in a paper of 1908.^^ Again, a question 
arises: what drew Wirtinger and Dehn to study knots and their groups in the first place? 
Was it just the wish to apply Poincare's new tools to a "natural" particular case? 

§ 8. The 1920's brought the first effectively calculable invariants of knots, and thus also 
a means for verifying the knot tables of the 19th century. More or less independently, the 
Princeton topologist James W. Alexander (together with his student G.B. Briggs), and Kurt 
Reidemeister, first at Vienna and then at Konigsberg, showed how to associate certain ma
trices with knot diagrams in such a way that the elementary divisors of these matrices were 
knot invariants.^^ The model for this technique was clearly Poincare's calculation of the 
torsion numbers of cell complexes, but both Reidemeister and Alexander presented their 
results in a completely independent way; Reidemeister even spoke of a new "elementary 
foundation" for knot theory. Both defined knots as equivalence classes of finite polygons 
in three-dimensional Euclidean space. Two such polygons were considered equivalent if 
and only if they could be deformed into each other by a sequence of applications of the 
following operation and its inverse: two incident edges AB, J5C of a polygon may be re
placed by an edge AC, provided the triangle ABC contains no further point of the polygon. 
Reidemeister and Alexander translated this into an equivalence relation between knot (or 
fink) diagrams. Instead of just one operation, four had now to be considered: an analogue 

^̂  For a discussion of the relations between knot theory, topology in general, and early combinatorial group 
theory, see [28, Chapter 1.4]. 
^̂  See [9, Section 6; 160, p. 103f]. 
16 See [134, 135,7]. 
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Fig. 4. Reidemeister's diagram moves. 

of the above in the plane (where it is allowed that an arc of the polygon without cross
ings lies "below" or "above" the triangle involved), and three "diagram moves" involving 
modifications of diagram crossings which since have become known under the name of 
"Reidemeister moves" (see Figure 4). 

Again, diagrams that could be deformed into each other by a finite sequence of such 
moves represented the same knot, and thus any mathematical object associated with a knot 
or link diagram invariant under Reidemeister's moves was a knot (or link) invariant. Reide
meister and Alexander showed this to be the case for the nontrivial elementary divisors of 
the matrices they were considering. Since this helps to understand Alexander's subsequent 
invention of a knot polynomial, let me present Alexander's version of a matrix associated 
with a knot diagram in condensed form. Thus, let the v crossings of a knot diagram be 
denoted by ci, C2,. . . , Cy, and let its v + 1 finite regions be denoted by ro, r i , . . . , r^}^ 
The region ro should have a common border with the infinite region. After selecting an 
orientation of the diagram, the corners of diagram regions are marked according to the 
convention that the corners of the two regions to the left of each undercrossing arc receive 
a dot. Moreover, an integer « ^ 2 is chosen. Then an {nv x ny)-matrix M is defined, 
consisting of y x v blocks aij, each of size n x n. In order to abbreviate the definition, let 
/ denote the {n x n)-unit matrix, and let x be the {n x «)-block given by 

X := 

0 

0 

\ 1 

1 

0 

0 

0 

0 . 

1 

0 • 

• ̂ ] 

•• 1 

.. 0 / 

Then M is defined by the following rules: (1) to each crossing c/ corresponds a row of 
blocks aij, and to each region rj, j = 1 , . . . , y, corresponds a column of blocks ajj in M; 
(2) if ry, rk^n, r,n are the regions incident with a crossing c/, in cycHcal order as one goes 
round c/ in counterclockwise sense, and such that the dotted corners belong to rj and r^, 
then aij = aik = x and an = aun = I. 

It was now a matter of straightforward calculation to show that the elementary divisors 
of M different from zero and one - called the "torsion numbers" of the knot - remained 
invariant under Reidemeister's diagram changes. Alexander and Briggs calculated the el
ementary divisors of all of the 168 matrices associated with the 84 knots of nine or less 

These notations are taken from [5]. In the earher [7], different notational conventions were adopted. In both 
papers, the matrix defined was viewed as a matrix of coefficients of a system of Hnear equations in the variables Vj. 
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Fig. 5. Local modifications of links. 

crossings in Tait's tables, corresponding to n = 2 and n = 3. Except for three pairs with 
identical torsion numbers, all of these knots were found to have distinct invariants. 

Of course, the above description makes Alexander's construction of invariant numbers 
appear historically opaque. How could he possibly have found all this machinery? Why 
were these invariants called torsion numbers? 

§ 9. In Alexander's and Briggs's first paper, the block structure of the above matrix was 
not introduced explicitly. Once it was recognized (and no doubt it was recognized during 
the extensive calculations needed for checking Tait's tables), it was but a small step to 
see that one could view the (v x y)-matrix of blocks as a matrix with polynomials in 
the formal variable x as its entries (/ being identified with 1). This step was taken in 
[5], where virtually the same arguments as before showed that the nontrivial elementary 
divisors of this new matrix, and therefore in particular its determinant Z\(x), were invariants 
under the Reidemeister moves up to a factor ±x^ (k e Z)}^ Normahzing A(x) by the 
requirement that the term of lowest degree became a positive constant, Alexander obtained 
the polynomial invariant of oriented knots that today carries his name. Again, the knots 
in Tait's tables were used to test the force of the new invariant. Alexander found that the 
polynomial, though of course much easier to calculate, was only shghtly less effective in 
distinguishing knots than the torsion numbers. It turned out that both, however, could not 
distinguish knots from their reverse knots (obtained by reversing the orientation) or mirror 
images (obtained by switching all crossings). 

Toward the end of his paper, Alexander included a side remark which probably resulted 
from his experiences with calculations of A(x). After noticing that his definition could 
equally well be applied to link diagrams (in this case, it gave rise both to a one-variable 
polynomial of oriented links, defined by the same rules as above, and a polynomial in 
as many variables as the link had components), Alexander established a relation of the 
one-variable polynomials of "three closely related links" [5, p. 301]. Using the modern 
subscripts L^, L-, and LQ for oriented hnk diagrams that only differ at one crossing in the 
way indicated in Figure 5, Alexander's relation can be written as 

AL_(X) - AL+(X) = {l -x)ALoix). (*) 

For the time being, however, nothing was made of this relation. 

§ 10. In 1961, Wolfgang Haken published a long and difficult paper in which an algo
rithm was described that allowed one to decide whether or not a given knot was equivalent 

^ ̂  Actually, Alexander used both this matrix and an equivalent one, in which certain signs were added to take 
care of orientations. 
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to the unknot [64]. Although this algorithm was extremely impractical, its existence made 
it probable that the classification of knots was possible by algorithmic means. Accordingly, 
and enhanced by the availability of powerful computers, the interest in computerised knot 
tabulations increased significantly during the 1960's. At a conference in 1967, John Con
way surprised the tabulators by presenting an algorithm for enumerating knots and links 
which was much more effective than those used by the 19th-century tabulators and which 
enabled him to enumerate knots of up to eleven crossings and links of up to ten crossings 
by hand [31]. The main tool was a calculus of "tangles", parts of link diagrams with four 
open ends, that could be used to survey their possible combinations and closings. In order 
to distinguish the various links enumerated in this way, Conway had to calculate invariants, 
too. This led him to reconsider the Alexander polynomial, and he redefined it by a change 
of variables and a new normalization. Apparently without having read Alexander's earlier 
remark, Conway pointed out that his version of the polynomial satisfied an equivalent of 
(*) and similar relations which he later came to call "skein relations".^^ In view of their 
usefulness in calculations, he counted these relations among "the most important and valu
able properties" of his version of the Alexander polynomial, but he did not try to define the 
polynomial using a variant of (*). 

This was done in 1981 by L.H. Kauffman. He observed that up to a suitable normal
ization, Alexander's one-variable polynomial Ai(t) of oriented links L was uniquely de
termined as a symmetric element of Z[r^/^, t~^^^] (in the case of proper knots even of 
Z[t, t~^]) by the following two conditions (the symbol Q represents the unknot):^^ 

^ o ( 0 = 1, (1) 

^L+(0 - ^L_(0 + (r^/^ - t-^^^)ALo(t) = 0. (2) 

Since any link diagram could be changed into a trivial one by switching its crossings, 
it was not difficult to see that these two rules would suffice to calculate the polynomial 
inductively, provided it was well-defined. This was shown to be the case using yet an
other description of A{x) as the determinant of a matrix associated with an oriented Hnk 
diagram. Still, no further analysis of this seemingly peculiar property of Alexander's poly
nomial was undertaken, and Kauffman expressed his astonishment about the approach: "It 
seems nothing short of miraculous that such a scheme should produce good invariants" 
[83, p. 102]. 

§11. The view of the matter changed dramatically when Jones discovered his new poly
nomial invariant of oriented links in 1984 [77]. In discussions, Jones and Joan Birman 
found that also this invariant satisfied a skein relation similar to the one found by Alexan
der. In fact, if Viit) denotes the Jones polynomial associated with a Hnk L, then V L ( 0 was 
uniquely determined by the conditions 

(i) VQ(t) = h 
(ii) tVi^t) - t-^VL_(t) + (̂ /̂̂  - r-i/2)yz.o(0 = 0. 

^̂  According to Lickorish [92]. In [31], this terminology was not used. 
^^ Conventions on signs and variables in the literature on knot polynomials are far from consistent. I follow here 
[54, 67], In [83], the polynomial f2{t) := z\(r^) was considered. 
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Fig. 6. Local modifications of unoriented links. 

This striking similarity induced several mathematicians to investigate the conditions under 
which a general skein relation would define a hnk invariant. Almost simultaneously, at least 
eight mathematicians found an equivalent answer to this question. In the joint article (Freyd 
et al. [54]),2i this answer was stated as follows: there is a unique invariant Piix.y.z) of 
oriented Unks with values in the homogeneous Laurent polynomials of degree 0, satisfying 

(I) Po{x^y^D = \^ 
(II) XPL+(X, y. z) + yPiM. y. z) + ZPLQU, y.z) = 0. 

Moreover, this invariant is universal in the sense that any link invariant Q with values in 
a commutative ring A that equals one for the unknot and satisfies a linear skein relation 
^QL^ + i>QL- + ^2LO = 0, for arbitrary invertible coefficients a,b,c G A, can be 
obtained from P by the canonical ring homomorphism from Z[x, jc^^ y, y~^, z, z~^] to 
A which sends x, y, z to a, b, c, respectively. In particular, both Alexander's and Jones's 
polynomials can be obtained from P (which is often expressed as the inhomogeneous two-
variable polynomial PL{U l~^,m)) by suitable substitutions of the variables. 

It turned out that Jones's polynomial and its generalization were much stronger invari
ants than the Alexander polynomial. In many cases, these polynomials distinguished knots 
from their mirror images, and up to the time of writing, no nontrivial knot seems to be 
known with the Jones polynomial of the unknot. 

Of course, once the surprising force of skein relations was recognized, variations of this 
combinatorial theme seemed promising and a whole series of related polynomials were 
found.^^ Kauffman's investigations were again particularly successful in this respect. By 
considering the four possible local modifications of unoriented links (see Figure 6) he 
found not only a new and extremely simple definition of Jones's polynomial (Kauffman 
[84]) but also a two-variable polynomial invariant of oriented links that was seen to be 
independent of P (Kauffman [85]). 

§ 12. It is a historiographical commonplace that quite different historical narratives based 
on the same documentary material are possible. The above outline of some important com
binatorial aspects in the development of knot theory is one of the stories that can be told 
about mathematical treatments of knots and links. Homogeneous as it may seem, though, 
it is clear that crucial historical questions remain unanswered and important parts of the 
documentary evidence have been passed over in silence. What were the actual motivating 
backgrounds for those contributing to this development? For whom, and in what contexts, 
did they work on knots? How, precisely, were physicists hke Tait and mathematicians such 
as Dehn, Reidemeister, or Alexander led to form their ideas? How could an operator al
gebraist like Jones hit on a topological invariant of links? It is hardly imaginable that an 

21 See also [132]. 
•^^ A concise survey is given in [93]. 
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interest in the combinatorics of knot diagrams alone provided enough motivation and a 
sufficiently elaborated intellectual framework for constructing knot tables, for studying the 
knot group, or for inventing polynomial invariants. And indeed, in most cases, it turns out 
on closer inspection that quite varied and much richer impulses were at work in the histor
ical development. Thus, a story about the mathematical study of knots can be told which is 
quite different from the above. 

3. Mathematical treatments of knots before 1900 

§ 13. Since prehistoric times, knots and interlacing patterns have been used in human 
cultures for practical, ornamental, and symbolical purposes. Against this background, the 
beginning of a mathematical interest for knots in the late 18th century marks a striking dis
continuity. It has to be understood within the general context of the progressing mathema-
tization of many domains of human knowledge and practice that characterizes this epoch. 
More precisely, knots and interlacing patterns found the attention of those few mathemati
cians that were interested in a vaguely conceived new exact science, tentatively called the 
"science of situation". Analysis situs or Geometria situs?^ In fact, the first but vigorous 
attempt to bring knots within the reach of mathematical treatment bears all the marks of a 
typical Enlightenment attempt to mathematize a domain of human practice. It was made in 
1771 by the Paris intellectual, A.T. Vandermonde, later a decided supporter of the French 
Revolution. In a short paper entitled "Remarques sur les problemes de situation", he wrote: 

Whatever the convolutions of one or several threads in space may be, one can always 
obtain an expression for them by the calculus of magnitudes; but this expression would 
not be of any use in the arts. The worker who makes a braid, a net, or knots, does not 
conceive of them by relations of magnitude, but by those of situation: what he sees is 
the order in which the threads are interlaced. It would thus be useful to have a system 
of calculation that conforms better to the course of the worker's mind, a notation which 
would only represent the idea which he forms of his product, and which could suffice 
to reproduce a similar one for all times.-̂ "̂  

Besides showing how some symmetrical weaving patterns (ones actually used in textile 
manufacture) could be described by means of a symbolical notation, Vandermonde did lit
tle to advance a veritable "system of calculation" relating to knotted or linked space curves. 
Nevertheless, it is significant that this kind of problem was incorporated into Geometria si
tus long before, say, the classification of surfaces became an important issue. 

§ 14. Also in Gauss's case, it seems to have been the uses of the new science of Ge
ometria situs that captivated his interest in the topic. For him, however, these uses were 
concerned not with the practical arts but rather the exact sciences, including traditional 
pure mathematics as well as sciences like astronomy, geodesy, and the theory of electro-
magnetism.^^ Gauss encountered linked space curves for the first time in his scientific 
career in an astronomical context. This happened in 1804, some twenty years before the 
first of the fragments described in the last section was written. After Gauss's successful 

23 See [129, 53]. 
2^ [163, p. 566]; my (rather literal) translation. 
2̂  The following paragraphs are a condensed version of [41]. For details and full references, the reader is referred 
to this article. 
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calculation of the orbit of the first observed asteroid, Ceres, had spread his fame over Eu
rope in 1801, he continued to follow the discoveries of several other "small planets" made 
soon thereafter with increasing rapidity. In this connection, he published a small treatise 
entitled Uber die Grenzen der geocentrischen Orter der Planeten, which took up a rather 
practical question, namely the determination of the celestial region in which a given new 
"planet" might possibly appear.^^ Taking the liberty of presenting Gauss's arguments in 
modern mathematical language, the problem of this paper can be described as follows. If 
the orbit of the earth's motion around the sun is given by X c M ,̂ and if X' c M̂  is the 
orbit of another celestial body (the sun being at the center of a suitable system of Cartesian 
coordinates). Gauss wanted to determine the region on the sphere given by 

-—— eS^\xeX, x' eX'\. 

This region he called the zodiacus of the celestial body in question. Its determination 
helped to Hmit the effort needed both in the observation of the celestial body and in the 
production of an atlas of the smallest part of the celestial sphere on which the orbit of the 
body could be drawn. In order to solve this problem, Gauss derived a differential equa
tion for the boundary curve or curves of the zodiacus, implicitly assuming the orbits to be 
smooth curves. lfx = (x, j , z) € Z and x' = {x\ y', zO e X' denote the coordinates of 
orbit points, a necessary condition that a pair of points (x, x') corresponds to a boundary 
point of the zodiacus is that the triple consisting of the two tangent vectors to the orbits at 
X and x' and the distance vector r := x' — x is linearly dependent. Gauss expressed this 
condition by saying that the two tangents at x and x' had to be coplanar. Translating the 
condition into a formula led to the differential equation 

{x' - x){dy'dz - dydz) + {y - y){dz'dx - dzdjc') 

+ {z' - z){dx'dy - dxdy) = 0. 

Obviously, the differential form on the left-hand side is, up to a change of sign, nothing 
but the numerator of the integrand in the linking integral! At this point, Gauss inserted a 
typical remark: He had undertaken a mathematical study of this equation in its own right, 
but for the sake of brevity he did not wish to go into that now. However, Gauss pointed 
out that one case was of particular importance, namely that in which the two orbits were 
linked. (Even this was not just a mathematical fancy: While none of the orbits of the known 
"planets" was hnked with that of the earth. Gauss reminded his readers that "comets of the 
sort exist in abundance".^^) In this case, the zodiacus was, "for reasons of the geometry of 
situation", the whole celestial sphere. 

As I have described elsewhere, it is probable that already in his study of the equation de
termining the boundary of the zodiacus Gauss began to understand the connection between 
the geometry of linked space curves and the integer calculated by his double integral - an 
integer which in modern mathematical language may also be described as the mapping 
degree of the mapping defining the zodiacus. Thus, geometric considerations that came up 

2^ The article is reprinted in [57, vol. VI, pp. 106-118]. 
^^ [57, vol. VI, p. 11 If] - in 1847, Listing counted 25 pairs of asteroids, whose orbits were known to be linked 
by then [94, p. 64fl. 



Geometric aspects in the development of knot theory 313 

in a scientific context highly appreciated at its time induced Gauss to think about this kind 
of topological phenomenon. 

A similar connection involving an exact science and Geometria situs probably first 
aroused Gauss's interest in tract figures. During the 1820's, his geodetic work related to 
the triangulation of the Kingdom of Hanover induced him to develop once again some new 
mathematics. While Gauss was directing this lucrative enterprise, he also worked on the 
Disquisitiones generales circa superficies curvas, published in 1827. In this concise trea
tise, he developed the basic ideas on curvature and geodesies on surfaces that formed the 
starting point of modern, intrinsic differential geometry. The crucial tool for studying cur
vature, however, depended on the consideration of surfaces embedded in ordinary space. 
This tool was a mapping that today carries Gauss's name: it associated to each point on 
a curved surface the direction of the surface normal at that point; this direction was then 
represented as a point on an auxiUary sphere. Using this mapping. Gauss introduced the 
notion of the total curvature of a portion of the surface bounded by a simple closed curve. 
By definition, this curvature was given by the area enclosed by the image of the boundary 
curve on the auxiliary sphere. Here, however, a problem arose: the image curve could have 
singularities - i.e. it could be a tract figure on the sphere (or even worse). Thus one had to 
clarify what "the area enclosed" by such a figure actually meant. In this way, Gauss was 
led to look at the topology of closed plane curves in more detail, and it was amidst his work 
on the Disquisitiones that he sketched his first ideas about tract figures. In the published 
treatise, he only alluded to this work (and the solution of the problem of defining the area 
enclosed by a tract figure by means of "characteristic" numbers given to the various regions 
of the figure). But in a letter to his friend Schumacher, he complained: 

Some time ago I started to take up again a part of my general investigations on curved 
surfaces, which shall become the foundation of my projected work on higher geodesy. 
[...] Unfortunately, I find that I will have to go very far afield [...]. One has to fol
low the tree down to all its root threads, and some of this costs me week-long intense 
thought. Much of it even belongs to geometria situs, an almost unexploited field.'^^ 

At about this time. Gauss also spent some thought on another peculiar object of Geome
tria situs - a four-strand braid. While the page in one of Gauss's notebooks documenting 
this astonishing attempt reveals that he knew how to determine the linking number of two 
curves by counting signs of diagram crossings, it remains unclear how this fragment relates 
to Gauss's other mathematical activities.^^ 

The third exact science which brought Gauss back to the study of linked space curves 
was the theory of electromagnetism, which drew considerable scientific and public atten
tion after Oersted's and Faraday's discovery of electromagnetism and electromagnetic in
duction. As is well known. Gauss was involved together with his friend and colleague, 
the physicist Wilhelm Weber, in setting up the first telegraph in Gottingen in April 1833. 
In connection with this work. Gauss studied intensively the mathematical formulation of 
the laws of electromagnetical induction. It could not have escaped his notice that the law 
describing the magnetic force induced by an electric current was governed by precisely 
the same differential form which he had encountered in his earlier investigation of the zo-
diacus. Conceiving magnetic forces as acting on particles, which behave mathematically 
like monopoles in some "magnetic fluid", the linking integral could be interpreted as ex-

2^ Gauss to Schumacher, 21 November 1825, in: [57, vol. VHI, p. 400]. 
^^ The fragment has been published and discussed in [41]. 
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pressing the work needed to carry an "element of magnetic fluid" along a closed path in 
the magnetic field induced by a current running through another closed curve. Still, when 
Gauss wrote the passage on the Unking integral in his notebook a few months before the 
telegraph was finished, he made no explicit remarks about electromagnetism. 

Those with close contact to Gauss's work, including Wilhelm Weber and Ernst Schering, 
the later editor of Gauss's writings on electromagnetism, knew that he had thought of 
topological issues in connection with electromagnetism, and Schering thus decided that 
the fragment on the finking integral should be pubfished in the fifth volume of Gauss's 
Werke, which appeared in 1867 and contained his unpublished notes on electromagnetic 
induction. It was there that another physicist learned of Gauss's interest in Geometria situs: 
James Clerk Maxwell. In his masterpiece, the Treatise on Electricity and Magnetism of 
1873, Maxwell went to considerable lengths to explain the physical content of the finking 
integral [104, §§409-422]. 

From several passages in Gauss's letters as well as from certain writings of his scientific 
friends, we know that Gauss held the still barely existent science of Geometria situs in very 
high esteem and expected great developments to come from future research in this field. 
The reasons for his expectations certainly had little to do with his inconclusive results on 
tract figures or similar combinatorial ideas. Rather, they derived from his experience that 
certain types of objects and problems, like linked space curves and tract figures, that were 
geometric in nature but independent of "magnitude", continually reappeared in some of the 
leading sciences of his day, ranging from pure mathematics to electromagnetism. 

§ 15. A similarly close relationship between important issues in the exact sciences and 
new ideas related to knots continued to hold throughout the 19th century. When Tait em
barked on his tabulation enterprise, he was motivated by developments in natural philoso
phy in which topological ideas played a very fundamental role. The crucial mathematical 
device that brought topology into play came from Germany: potential theory in multiply 
connected domains. Thus, Tait's enterprise and the earlier topological ideas shaped under 
Gauss's hegemony at Gottingen were actually connected in the fabric of scientific practice, 
although in an indirect way. Three elements must be put together in order to understand 
this connection: the dynamical theories that many British natural philosophers held in the 
second half of the last century, H. von Helmholtz' researches on vortex motion in perfect 
fluids, and Riemann's notion of connectivity?^ 

Guided by the many "mathematical analogies" between physical phenomena that could 
be described by means of the Laplace equation (electrostatics, heat flow, etc.), many of 
the leading British physicists in the second half of the last century believed that all of 
physical theory could and should ultimately be based on some kind of Lagrangian dy
namics that governed the flow of a continuous medium (or several media). However, an 
important challenge to this conception emerged with the continuous rise of atomistic con
ceptions in chemistry. From the 1860's onward, atomism was forcefully supported by what 
was perhaps the most advanced experimental technology of the time, spectrum analysis. 
This posed an immediate problem: how could the smallest units of matter possibly be ex
plained by the dynamics of a continuous medium? One hint came from experiments with 
magnetism that seemed to imply that, on the molecular level, some kind of rotary motion 

^^ Full references and a detailed account of the events described in the following paragraphs may be found in 
[42]. 
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took place. Already in the 1850's, one of the important proponents of dynamical theories, 
William Thomson, the later Lord Kelvin, hoped to solve the riddle of atoms by detect
ing some kind of stable (presumably rotary) dynamical configuration in the motion of the 
universal medium (ether). 

A crucial piece of knowledge for Thomson's pursuit of this line of thought was provided 
when Hermann von Helmholtz pubhshed a ground-breaking paper in which the dynamics 
of a perfect (i.e. incompressible and friction-free) fluid was investigated without supposing, 
as had been done earlier, that such a flow could be described by a globally defined poten
tial function (Helmholtz 1858). In modern mathematical notation, Helmholtz discussed 
solutions V of the Euler equations, 

- 1 dv ^ ^ 
F--Vp = — + {vV)v, 

h at 

0 = V S , 

for which the field of rotation, rot v, did not necessarily vanish.^ ̂  Helmholtz observed that 
the integral curves of rot v - called "Wirbellinien" (vortex Hues) - possessed a kind of 
dynamical stability. During the motion of the fluid, the particles constituting a vortex fine 
would continue to do so throughout the motion. In particular, if a vortex line was closed, 
it would remain closed, however altered in shape. This suggested looking for a particu
lar kind of solution to the Euler equations. Helmholtz supposed the dynamics of a finite 
number of closed vortex lines (or vortex tubes, i.e. tubular bundles of vortex fines emerg
ing from a small area) to be given. He then asked: could a solution to the Euler equations 
be found with precisely these vortex lines or tubes as its (discontinuous) rotation field? 
Since outside the vortices the rotation had to vanish, this problem amounted to finding a 
solution of the Laplace equation A(p = 0 in the multiply connected complement of the vor
tices (possibly bounded by some closed surface). Here, a solution was understood to be a 
many-valued function cp defined on the complement of the vortices, the branches of which 
satisfied the Laplace equation locally. By invoking the analogy between the mathematics of 
hydrodynamics and of electromagnetism, Helmholtz made it clear that such solutions al
ways existed. The mathematics of the situation corresponded to that of a system of closed 
currents (playing the role of the vortices) which induced a magnetic field (assuming the 
role of the flow) in their complement.^^ In fact it was easy to write down integral formulae 
representing the solutions locally. Helmholtz illustrated his results, which he viewed as a 
three-dimensional analogy to the "Abelian integrals of the first kind" on Riemann surfaces, 
by giving explicit formulae for a few concrete cases fike circular vortex rings. 

After a delay of more than eight years, and through the mediation of some experimental 
illustrations of Helmholtz' results by the Edinburgh physicist Peter Guthrie Tait, Thomson 
eventually understood that these findings provided one of the missing links in his earlier 
speculations on atomism. Were not these sorts of closed vortices the kind of stable dy
namical configuration in the ether that made up atoms? Once this idea had taken shape in 

As a matter of fact, the vectorial notations for the rotation field and for the equations of fluid motion were 
indirectly inspired by Helmholtz' paper. When Tait read this paper in the fall of 1858, he was reminded of certain 
quatemionic formulae he had seen earlier in Hamilton's writings; this induced him to start a crusade for the use 
of quaternions - and thus, also vectorial notations - in physics. 
^^ The analogy is strictly correct only in the stationary case. 
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early 1867, Thomson set out to pursue it with surprising energy. Two things were clear: 
first, if his speculation was correct, then the different topological types of knots and links 
provided a wealth of forms that should account for the variety of chemical elements. Sec
ond, if it was legitimate to hope for a precise mathematical treatment of "vortex atoms", as 
Thomson's ether singularities were now called, it would be necessary to extend Helmholtz' 
theory of vortex motion to a considerable degree. 

Thomson took up the second of these tasks. Among the first goals he set himself was 
to determine the solution space of the problem Helmholtz had considered. Thus, given 
a multiply connected domain in three-dimensional space (the complement of a system of 
vortices), how many linearly independent solutions of the Euler equations for a perfect fluid 
existed with given boundary conditions (e.g., with the fluid flow tangential to all boundary 
surfaces)? The surprising answer that Thomson found was that the number of parameters 
determining a solution was dependent only on the topology of the domain considered. It 
equalled the "order of continuity" of this domain, as Thomson called it. In modern terms: 
The dimension of the linear space of harmonic vector fields in a given domain, with fixed 
boundary conditions, was equal to the domain's first Betti number. Thomson was aware 
of the fact that his result provided an analogy between integrals of the Euler equations for 
a perfect fluid and Abelian integrals on Riemann surfaces, an even closer analogy than 
that Helmholtz had seen earher. Much later, this insight would be explored in a different 
direction by Hodge's theory of harmonic integrals. 

Due to Thomson's theory, interest among British physicists in topological ideas began 
to surge. In late 1867 and during the following year. Maxwell also began to think about the 
topological issues involved in the theory of vortex atoms, although his interest stemmed 
perhaps more from the relevance of the mathematics of vortex motion for electromagnetism 
rather than because he believed it could be used to explain the structure of matter. Maxwell 
produced several manuscripts in which he sketched some of the topological ideas needed 
for dynamical theory.̂ -̂  One basic proposition concerned the first Betti number of a region 
in ordinary space, a "solid with holes" as he described such a region intuitively. If a solid 
with holes was bounded by one external surface of genus ni and several internal bounding 
surfaces of genus n2,.. •, n,n, then the first Betti number of the region was b =^ n\ -\- n2 -\-

Both Thomson and Maxwell did not yet have a sufficiently clear language to give pre
cise formulations and proofs of their topological results; neither the notion of the genus of 
a surface nor that of the "order of connectivity" of a space region were completely clear 
in their work. Maxwell and Thomson tried to explain their ideas mainly in terms of "ir
reconcilable curves" in a domain, but "reconcilability" meant for them something closer to 
homotopical rather than homological equivalence. Thus, a particular difficulty in determin
ing the first Betti number of a space region arose again from knotting: why was the "order 
of connectivity" of a Hnk complement equal to the number of components of the link, as 
Maxwell's result implied? A closer analysis shows that it was physical thinking rather than 
mathematical precision that helped Thomson and Maxwell to find the correct results.̂ "^ In 
any case, an understanding of the topology of knots and links became a requisite part of 
their physical theories. 

^^ These manuscripts were published only recently in [106, vol. 2]. 
•̂ ^ Briefly put: In technical arguments on multiply connected domains, cutting surfaces (interpreted as membranes 
stopping fluid motion) were used rather than "irreconcilable curves". See [42, Section II] for details. 
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In one of his manuscripts, and to the best of my knowledge for the first time, Maxwell ex
plicitly formulated the classification problem for knots and links. Independently of Gauss's 
and Listing's earlier attempts, he then developed a method to represent link diagrams sym
bolically, and went so far as to look for obvious diagram modifications ordered according 
to the number of diagram crossings involved. Not surprisingly, this led him to uncover 
the "Reidemeister moves" - without, however, considering the question of whether or not 
these moves would generate all diagram equivalences.^^ Apparently, Maxwell did not pur
sue his reflections on knots very far in the years around 1868. However, in a very favourable 
review of Thomson's theory of vortex atoms, written for the ninth edition of the Encyclo
pedia Britannica in 1875, he pointed out that the classification of knots might actually turn 
out to be rather comphcated: "The number of essentially different implications of vortex 
rings [that is: knot types] may be very great without supposing the degree of impHcation 
of any of them very high" [105, p. 471]. 

Soon afterward, Tait began to investigate the classification problem of knots along the 
lines described in Section 2. Throughout his work on the tabulations, Tait was motivated 
by the possible contributions these tables could make to the theory of vortex atoms, and he 
dropped his work when he felt the tables were sufficiently extensive to be compared with 
the requirements of physics - be it with a positive or, as became more and more probable, 
with a negative result.^^ It should be emphasized, however, that the scientific background 
of Tait's tabulation enterprise was anything but a scientific curiosity. Given the beliefs and 
methods of the period, Thomson's theory was considered a serious and even promising 
speculation. The fact that several of the leading British natural philosophers, including 
Maxwell, followed Thomson's ideas with interest, in itself offers ample evidence of this. 
Moreover, even if unsuccessful, the theory of vortex atoms was the first serious attempt 
to explain atoms on the basis of fundamental laws of motion rather than by postulating 
additional theoretical entities, like force centres or the like. Finally, the mathematics that 
had to be developed in order to pursue the theory was clearly perceived to be important, 
even if the physical core of the theory should turn out to be incorrect. One final point 
deserves attention. As in all earlier contributions to the mathematical study of knots, knots 
were thought of as physical objects in ordinary space. While Tait and his followers used 
diagrams to deal with these objects, the physical context implied that the complement of 
a knot or link was at least as interesting as the link itself. Thus, in connection with vortex 
atoms, it was the geometry of this spatial domain rather than the combinatorics of diagrams 
that "mattered". 

4. The formation of "modern" knot theory 

§ 16. By the time mathematicians of the twentieth century turned again to the investiga
tion of knots and links, both the status of topology and the general horizon of mathematical 
culture had changed deeply - a new epoch of mathematics had dawned that may reason
ably be called "mathematical modernity". Two aspects of these changes are particularly 

35 Cf. [42, §20; 104, vol. 2, pp. 433-438]. 
3^ During the 1880's, Thomson himself gradually abandoned the theory of vortex atoms. He repeatedly failed to 
prove that vortices possessed kinetic stability, and he began to feel that the difficulties to include other physical 
phenomena like light and gravitation into the picture were unsurmountable. See [152] for a concise description 
of Thomson's changing views. 
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relevant for our story. On the one hand, Poincare's writings on Analysis Situs offered new 
ways to conceive topological objects and new mathematical tools to deal with them, how
ever vague some of his proposals still were on the technical level.^^ On the other hand, the 
emergence of the modern, axiomatic style in mathematics, the power of which had been 
impressively demonstrated in Hilbert's Grundlagen der Geometrie of 1899, underHned the 
intellectual autonomy of mathematics and its increasing conceptual separation from the 
exact sciences. In such an environment, a continuation of the study of knots along the 
lines followed by Tait, Kirkman and Little seemed hardly promising.^^ Indeed, two quite 
different hues of thought brought knots to the fore of modern mathematics: the study of 
singularities of complex algebraic curves and surfaces, and Poincare's attempt to give a 
topological characterization of ordinary three-dimensional space, known as the "Poincare 
conjecture . 

§ 17. Around 1895, the Austrian function-theorist Wilhelm Wirtinger began to think 
about ways to generalize the approach to algebraic functions of a single complex variable 
based on harmonic functions on Riemann surfaces to the case of algebraic functions of two 
complex variables, i.e. "functions" z = z{x,y) defined by a polynomial equation 

f{x,y,z) = 0, x,y,z € C. 

Such an approach was very much in the spirit of Felix Klein's views on algebraic func
tions, and indeed Wirtinger regularly reported on his ideas in his correspondence with 
Klein. Soon, however, Wirtinger realized that among the many difficulties that had to be 
overcome, the topological ones were crucial. Viewing algebraic functions of two variables 
as branched coverings of C^, 

p : {(x, y, z) e C^: / ( x , y, z) = O} ^ C^ (JC, y, z) ^ (x, y), 

Wirtinger tried to characterize the topological situation along the singularity set of such 
a function (a curve given by the discriminant of / ) . In particular, Wirtinger was inter
ested in the local monodromy of such a covering along the branch curve, i.e. the group of 
permutations of the values /7~^(xo, yo) over a point (xo, yo), induced by analytic contin
uation of the function values along small closed loops starting and ending at (XQ, yo) and 
avoiding the branch curve. In modern terms, this meant considering, for a neighbourhood 
17 of a branch point with the branch curve removed, the image of the fundamental group 
n\{U, (xo, yo)) under the canonical mapping to the symmetric group acting on the fibre 
P~^ {xo, yo)' However, it should be emphasized that, in the beginning at least, Wirtinger's 
work was independent of Poincare's, and the notion of a fundamental group did not appear 
exphcitly. 

While Wirtinger noticed that along regular pieces of the branch curve, the sheets of 
the covering were permuted in cyclical order, he recognized that at singular points of the 

•̂ ^ On Poincare, see [141, 37, 166], and Chapter 6 in this volume. 
^^ The exception confirms the rule: In 1918, Mary G. Haseman of Bryn Mawr College published her dissertation 
on amphicheiral knots of 12 crossings in the footsteps of Tait, Kirkman and Little. She did not mention any of the 
modern contributions to knots by Tietze and Dehn that had appeared in the meantime. 
^^ The following paragraphs are mainly based on [40]. For a description of early work related to the Poincare 
conjecture, see also [166]. 
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branch curve the sheets could be connected in a more complicated way. Several years went 
by, however, before Wirtinger managed to work out a paradigmatic example, that given by 
the equation 

f(x,y.z) = z^-h3xz^2y=:0. 

The discriminant of this polynomial is Df(x, y) = x^ -\- y'^, which yields a cubic with 
a cusp as branch curve. In 1905, Wirtinger presented this example to the annual meeting 
of the Deutsche Mathematiker-Vereinigung. The proceedings of the meeting give only the 
title of his talk, but from his correspondence with Klein and various remarks of later au
thors on Wirtinger's ideas the gist of what he said on that occasion is quite clear. In order 
to characterize the topological behaviour of a function like the one above in the neigh
bourhood of a singular point of its branch curve, Wirtinger brought a new idea into play 
which he probably had learned from Poul Heegaard's dissertation [69]. Therein, Heegaard 
described a similar program for a topological study of algebraic surfaces.^^ The idea that 
interested Wirtinger was to restrict the covering p to the boundary of a small 4-ball around 
the point in question, that is, to a covering of the sphere 5^, branched along a certain set 
K of real dimension one, namely the intersection of S^ with the branch curve of the given 
algebraic function. In the particular example considered, this covering turned out to be a 
three-sheeted covering of 5^, branched along the trefoil knot [69, p. 85]! The point of this 
restriction was that it had the same monodromy as the algebraic function itself, and, more
over, that it allowed one to compute the monodromy group, as a matter of fact, to compute 
the fundamental group of the base space S^ — K of the restricted, unbranched covering. 
For his example, Wirtinger obtained the full symmetric group on three elements as mon
odromy group - and thus the first serious proof that the trefoil knot was actually knotted. 
It was soon reahzed, either by Wirtinger himself or by his younger Vienna colleague Hein-
rich Tietze, that Wirtinger's method actually gave a way to write down a presentation of 
the fundamental group of the complement of arbitrary knots and links, and not just of the 
trefoil knot. Moreover, it became clear that this approach could be used to describe the 
topology of singularities of algebraic curves (algebraic functions of one variable) by dis
regarding the covering obtained by Wirtinger and by taking the branch curve itself as the 
basic object to be studied. 

The importance of the whole argument for the emergence of modern knot theory can 
hardly be overestimated. Not only had knots appeared in one of the central areas of math
ematical interest, but the situation suggested a whole set of new ideas and questions. To
gether with a knot and its complement, covering spaces of knots - either coverings of the 
3-sphere branched along a knot or unbranched coverings of knot complements - had come 
into the picture, including homomorphisms from the knot group to permutation groups. 
Among the obvious questions were: what kinds of knots could arise in situations like those 
considered by Wirtinger? What kinds of covering spaces could be obtained in such cases? 

Since Wirtinger did not publish his ideas, it took some time before these problems were 
taken up by others. Wirtinger's basic insight and the main ingredients of the answer to 
the first question have often been attributed to Karl Brauner, who pubhshed a three-part 
article on the subject in 1928, based on his Hahilitationsschrift under Wirtinger. Follow
ing Brauner, Kahler, Zariski, and Burau simplified and rounded off Brauner's arguments 

40 More information on Heegaard may be found in Chapter 34 in this volume. 
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Fig. 7. Tietze's wild knot. 

to obtain the final result that singularities of irreducible curves were topologically char
acterized by iterated torus knots while for reducible curves, links of such knots had to be 
considered.^^ Moreover, the knots and Unks arising from singularities of algebraic curves 
were classified by the pairs of integers determining the Puiseux expansions of the curve 
branches around the singularity. However, Wirtinger was certainly right when he pointed 
out in his (unpublished) review of Brauner's Habilitationsschrift'. "More than twenty years 
ago, the reviewer has shown the way in which these difficult, but basic problems may be 
dealt with".42 

Not only Brauner, but several other mathematicians who made significant contributions 
to modern knot theory in its early years were also inspired by Wirtinger's insights. Heinrich 
Tietze, Otto Schreier, Emil Artin, and Kurt Reidemeister all came in direct contact with 
Wirtinger at some time, and it will become clear below to what extent their ideas were 
influenced by Wirtinger's. 

§ 18. Twenty years before Brauner, another young mathematician presented a Habil
itationsschrift on topology, guided by Wirtinger in Vienna: Heinrich Tietze. His paper 
[162] marked a crucial step toward a clear technical understanding of Poincare's topolog
ical ideas. Following a rather coherent, combinatorial approach to the topology of three-
dimensional manifolds, Tietze re-established Poincare's results, emphasizing that all then 
known invariants of three-dimensional manifolds could be derived from the fundamental 
group. Among the examples he discussed was Wirtinger's method for finding a presenta
tion of the fundamental group of knot complements, including the example discussed by 
Wirtinger."̂ -̂  In addition, and in the thorough, critical spirit which marks the whole paper, 
Tietze formulated several basic questions related to knots and three-dimensional manifolds 
whose answers were unknown at the time. 

First, Tietze pointed out in a discussion of Poincare's definition of the homological in
variants of manifolds that certain curves required special attention: For instance, a curve 
like that of Figure 7 could not be said to bound a finite two-dimensional cell complex in 
S^ in Poincare's sense. This example also made clear that the notion of a knot and of knot 
equivalence itself required additional care if "wild knots" were to be avoided. 

41 See [20, 82, 175, 25, 26]. 
"̂ 2 Quoted from [38, p. 247]. 
^^ However, Tietze's description of Wirtinger's ideas was scattered in different passages of his paper which made 
it hard for his readers to see just what Wirtinger's contribution had been. See [162, §§15, 18]. 
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The second group of questions was inspired by Wirtinger's calculation of the group of 
the complement of the trefoil knot. Tietze viewed this as a region in R-̂ , bounded by a 
torus which bounds on its other side a tubular neigbourhood of the knot. Clearly, both 
the right-handed and the left-handed trefoil had homeomorphic complements (and, conse
quently, isomorphic groups), but what about the converse? Could two knot complements 
be homeomorphic without one knot being isotopic to the other or its mirror image? As 
Tietze remarked, it was not even clear whether all submanifolds of IR-̂  bounded by a torus 
were knot complements [162, § 15]. 

A third complex of questions arose from Tietze's consideration of the group of self-
homeomorphisms of a (closed or bounded) manifold and its quotient by the group of those 
self-homeomorphisms homotopic to the identity [162, §16]. For oriented manifolds, one 
could also consider just the orientation-preserving self-homeomorphisms. These groups 
acted in a canonical way on the fundamental group of the manifold as well as on the fun
damental group of its boundary. In the case of several boundary components, the group of 
permutations of these components induced by this action might also carry interesting infor
mation. In this way, a whole new set of topological invariants arose about which very little 
was known. Tietze illustrated these concepts by considering the complements of collec
tions of disjoint right- and left-handed trefoil knots, pointing out that not even the intuitive 
belief that the two trefoil knots were inequivalent (a belief that he used in his illustrations) 
had been rigorously proved. 

Finally, Wirtinger's construction suggested yet another way of looking at three-
dimensional manifolds, namely as coverings of 5^, branched over a link. Manifolds de
scribed in this way were called "Riemann spaces" at the time, generalizing the idea of 
a Riemann surface (viewed as a branched covering of 5^). It was known that all closed, 
orientable surfaces could be described in this way; but, Tietze asked, could all closed, ori-
entable 3-manifolds be described as Riemann spaces [162, § 18]? 

All of Tietze's questions stressed the relations between knots (or links) and the general 
study of three-dimensional manifolds. In at least two ways, knots and links gave rise to 
interesting classes of such manifolds: by their complements, and by covering spaces. It 
turned out that some questions of Tietze's could be answered rather quickly by the next 
generation of topologists, while others resisted a solution until very recently. 

§ 19. More or less simultaneously with Tietze, Max Dehn, a student of Hilbert who had 
started his mathematical career with brilhant results on the foundations of geometry, turned 
to an investigation of 3-manifolds which led him to study knots."*"̂  In the beginning, Dehn 
hoped to be able to prove an equivalent to Poincare's conjecture that S^ was the only closed, 
orientable 3-manifold with trivial fundamental group. However, a discussion with Tietze 
at the International Congress of Mathematicians in Rome in 1908 made clear to Dehn that 
his arguments were flawed.'*^ Nevertheless, he continued to work on the topic. In 1910, 
he published a paper whose title "Uber die Topologie des dreidimensionalen Raumes" 
indicated that he still hoped to find a topological characterization of ordinary 3-space or 
the 3-sphere. Instead of trying to prove the Poincare conjecture, however, he showed how 
to construct infinitely many "Poincare spaces", i.e. orientable 3-manifolds bounded by a 
two-sphere, with vanishing homological invariants but nontrivial fundamental group. In the 

^ On Dehn's career, see Stillwell's contribution to this volume. 
See [40] for more details on this. 
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T=dA = dJ 

Fig. 8. Dehn's setup. 

closing paragraph, Dehn outlined an argument by which he hoped to prove the Poincare 
conjecture, directing the attention of his readers to the crucial gap. 

While Dehn's paper made clear that the Poincare conjecture was difficult, it broke new 
ground both for the study of knots and for combinatorial group theory. In order to con
struct his examples of "Poincare spaces", Dehn introduced a presentation of the group of 
a knot different from Wirtinger's and a new criterion for knottedness. A knot is trivial, 
he claimed, if and only if its group is commutative. While the "only if" was obvious, the 
other implication required proof. Here, Dehn argued as follows (compare Figure 8): for all 
knots K, there exists a longitudinal curve A, on a torus T which bounds a tubular neigh
bourhood J of the knot, such that X bounds in the knot complement A \= S^ — J!^^ If, 
in addition, the fundamental group of the knot complement is commutative, then X must 
actually be null-homotopic in A. Hence it bounds a singular disk in the knot complement, 
in such a way, however, that all singularities may be removed from the boundary of the 
disk. At this point, Dehn invoked the famous, insufficiently proved "lemma" which today 
carries his name: if a closed curve in S^ bounds a (piecewise linear) singular disk in such 
a way that an annulus along the boundary is free of singularities, then this curve even 
bounds a regularly embedded disk."**̂  From the "lemma", then, it followed that X and hence 
the knot itself were trivial. Regardless of the difficulties with the lemma, Dehn's criterion 
could be used to prove that certain knots were non-trivial by showing that their group was 
non-commutative. 

Then Dehn proceeded to consider manifolds arising from the following construction. Let 
KhQdi knot in 5^, and let A,, 7, T, and A be as above. The generators of the fundamental 
group of T may be represented by the longitude X and a curve IJL bounding a transversal 
disk in 7 U r . Any other element in this (commutative) group may then be represented 
by a curve A V " » or by the pair of integers, (/, m). Dehn now chose a curve p of class 
(/, 1) in r and formed a new manifold 0 = (PxiU 1) by attaching to A a thickened disk 
D (i.e. a 3-cell, whose boundary is considered as the union of an annulus and two disks, 
see Figure 8) along a small strip on T that forms a neighbourhood of p. By construction, 
(PK{U 1) is a manifold bounded by a sphere and with trivial homology, i.e. a "Poincare 

^^ My notation is a slightly modernized version of Dehn's. 
^^ The gap in Dehn's rather involved argument was recognized in the 1920's, both by H. Kneser and Dehn 
himself. A sound proof was only given by Papakyriakopoulos [127]. For more details on this, see Chapter 36 in 
the present volume. 
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space". Its fundamental group arises from adjoining to the group of the knot the relation 
expressing the contractibility of p. Dehn's presentation of the knot group allowed him to 
express this relation in a straightforward fashion so that a presentation of the fundamental 
group of ^A:( / , 1) could actually be found. 

For the trefoil knot, Dehn managed to construct the graphs of the resulting groups. Of 
course, 0A: (0, 1) was just a 3-cell. The group of 0A: (it 1, 1) turned out to be a finite group 
of order 120, a binary extension of the group of rotational symmetries of the icosahedron.^^ 
All other manifolds possessed infinite groups. In this way, Dehn found an infinite family 
of "Poincare spaces". Moreover, he observed that all of their fundamental groups (like the 
group of a trefoil knot itself) acted on the hyperboHc plane in a canonical way. Thus, he 
established a link between knot groups and hyperbolic geometry, a link that he exploited 
again in a paper of 1914 answering one of Tietze's questions. By a detailed consideration 
of the automorphisms of the group of a trefoil knot and their actions on longitudes X and 
meridians /x of the knot, Dehn showed that the right- and left-handed trefoils were not 
isotopic. 

One should note that Dehn's construction of "Poincare spaces" is not quite the same 
as what today is usually called "Dehn surgery", since Dehn considered bounded mani
folds and restricted himself to the case of attaching curves of type (/, 1), a restriction that 
guaranteed that all manifolds obtained by his construction from knot complements were 
homologically trivial. I will describe below how the change to the modern point of view 
came about. It should also be noted that Dehn did not ask whether his construction might 
eventually produce not just a homology cell but even a counterexample to the Poincare 
conjecture, i.e. a manifold bounded by a 2-sphere and with trivial fundamental group but 
topologically different from the 3-ball. Clearly, he still hoped he was on his way toward a 
proof of this conjecture, rather than a refutation. 

§ 20. The geometric motivation behind Wirtinger's, Heegaard's, Tietze's, and Dehn's 
contributions is obvious. Neither of these mathematicians was motivated by building up 
a theory of knots per se. Rather, they were led to study knots by their research in other 
areas: research on the singularities of algebraic curves and surfaces, and investigations of 
three-dimensional manifolds as they had become tractable by Poincare's new techniques of 
Analysis situs. Knots thus appeared in a rich geometric context, involving covering spaces 
or Dehn's method for constructing "Poincare spaces". In both approaches, the knot group 
played a crucial role, but with different additional structures involved. Some of the prob
lems related to these objects and structures turned out to be quite deep, and several were 
even too difficult to admit solutions with the methods available at the time. In many ways, 
later geometric-oriented research on knots, links, and in part also on 3-manifolds, tried 
to sort out and answer the questions raised in this first phase of a modern mathematical 
treatment of knots. Some crucial problems remain open even today, as we shall see. 

World War I interrupted both Dehn's work and that of the Vienna mathematicians. After 
the war, two young mathematicians, James W. Alexander and Kurt Reidemeister, became 
increasingly interested in knots. In several respects, Alexander's and Reidemeister's work 
were strikingly parallel. Both were led to the same, indeed the first, effectively calculable 
invariants of knots in the mid-twenties. Moreover, both chose to present their results on the 

"̂^ Using his theory of fibered 3-manifolds, Seifert later showed that Poincare's original example of a homology 
sphere was homeomorphic to the closed version of Dehn's manifold (/)A:(±1, 1) [148, pp. 204ff.]. 
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basis of the elementary, combinatorial approach to knots that has been sketched in the sec
ond section. To some extent, this parallelism may be traced to the common inspiration they 
found in Tietze's and Wirtinger's earlier ideas, and in particular to the idea of studying cov
ering spaces of knots or links. On closer inspection, however, their approaches also reveal 
a basic difference. Probably guided by his earlier work, Alexander was mainly interested 
in homological invariants of covering spaces in his relevant contributions. Reidemeister's 
crucial insights, on the other hand, were concerned with Xht fundamental groups of such 
spaces. 

§ 21. Alexander's contributions to knot theory began with several clarifications of issues 
Tietze had raised. During the war years, the Princeton topologist, who had already shown 
his talents in improving Poincare's homological results, stayed as a volunteer in Paris and 
assisted in preparing a French translation of Heegaard's thesis [69]."̂ ^ It appeal's to have 
been around this time that the problems on 3-manifolds described in Tietze's paper of 1908 
caught his attention. The first of Alexander's clarifications was only indirectly related to 
knots. Still in Paris, he showed that Tietze had been correct in conjecturing that the two 
"lens spaces" L(5, 1) and L(5, 2) were not homeomorphic [2]. Alexander defined these 
spaces in a way clearly influenced by Heegaard's dissertation and Dehn's paper of 1910, 
namely as the manifolds obtained by an identification of the boundaries of two solid tori in 
such a way that the meridian of one of them gets identified with a curve of type (5, 1) or 
(5, 2), respectively, in the boundary of the other. Since the fundamental group of both was 
cyclic of order 5, this showed that the fundamental group was not sufficient to distinguish 
3-manifolds in all cases. 

About a year later, Alexander claimed in a brief note that every closed, oriented 
3-manifold given by a triangulation could indeed, as Tietze had suggested, be obtained 
as a covering of S^ branched over a fink [3]. His argument was strikingly simple, but in
complete. With each vertex of the triangulation, he associated a point in S^ such that no 
four of these points were coplanar. By mapping the simplices of the triangulation onto 
the simplices of S^ given by the corresponding vertices and respecting the orientations, 
Alexander obtained a covering of S^ branched over a subcomplex of the 1 -complex given 
by the chosen points in S^ and the edges joining them. "It is easy to show", he continued, 
"that, without modifying the topology of the space, the branch system may be replaced by 
a set of simple, non-intersecting, closed curves such that only two sheets come together at 
a curve. These curves may, however, be knotted and linking" [3, p. 372]. As R.H. Fox later 
pointed out, the missing part of the argument could be filled in by appealing to a classical 
argument given by Clifford which showed that every closed Riemann surface - viewed as 
a branched covering of the complex number sphere - could be deformed into a covering 
in which only simple branch points of order 2 occur. Alexander's conclusion followed by 
applying this argument to a continuous family of generic plane sections of the covering 
obtained in the first step of his argument.^^ 

Brief as the argument was, it gave a new and general construction technique for 
3-manifolds. Such techniques were still rare and difficult, since triangulations were in 
some sense too general while the only other known method, Heegaard's decomposition 

^^ On Alexander, see [90] and Chapter 32 in this volume. 
^^ See [48, p. 213]. Other proofs of Alexander's claim were given by Birman, Hilden, and Montesinos, leading to 
sharper results, see [72, 117, 73, 118]. Today it is known that there even exist "universal knots", i.e. knots whose 
branched coverings exhaust all closed, orientable 3-manifolds (Hilden et al. [74]). 
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of a 3-manifold into two handlebodies, did not seem easy to use except in special cases. 
Accordingly, Alexander's result whet his interest in links and their covering spaces. Indeed, 
in November 1920, he presented a new idea for studying^n/r^ cyclic branched coverings of 
knots by calculating their torsion numbers. The paper, read to the US National Academy 
of Sciences, was not pubHshed, so that it is difficult to tell precisely what it contained. 
According to Alexander's own later account, he pointed out that these torsion numbers 
were actually invariants of the knot or link itself, and he calculated them for a few of the 
simpler knots. It remains unclear, however, whether he had developed a general method to 
calculate the new invariants.^ ̂  

In 1923, Alexander further refined his picture of "Riemann spaces" by establishing a 
lemma showing that every Hnk could be deformed into what was later called a closed 
braid. This lemma had already been demonstrated by Heinrich Brunn at the ICM in Zurich 
1897, but Alexander was apparently unaware of Brunn's short note [23]. The implication of 
the lemma was that "every 3-dimensional closed orientable manifold may be generated by 
rotation about an axis of a Riemann surface with a fixed number of simple branch points, 
such that no branch point ever crosses the axis or merges into another" [4, p. 94].^^ A year 
later, Alexander settled yet another open question of Tietze's by showing that a piecewise 
Unearly embedded torus in S^ bounds a sohd torus on at least one side, making the other 
side into a knot complement (Alexander 1924). 

Up to this point, Alexander was clearly more interested in the 3-manifolds arising from 
knots or links than in the classification of links themselves. But this changed after Reide-
meister's first papers appeared in 1926, describing both a general method for calculating 
the torsion numbers of a knot from a diagram and the "elementary foundation" of knot 
theory by diagram moves. In April 1827, Alexander and Briggs submitted their paper "On 
types of knotted curves" to the Annals of Mathematics, describing their own approach to 
torsion numbers. Although this method was presented in a combinatorial fashion, a closer 
analysis of the paper makes it clear that Alexander and Briggs were actually guided by 
Alexander's earlier ideas, and that the calculation was based on an analysis of a suitable 
cell decomposition of the branched cyclic covering spaces of a knot. I have described in 
Section 2 how this approach to torsion numbers led to the invention of the first polynomial 
invariant for knots. As the infinite cyclic covering of a knot does not appear in [5], it may 
well be that here, for the first time, Alexander was guided by the combinatorial approach 
rather than by a geometric one. 

§ 22. Also in Reidemeister's case, the combinatorial presentation of his results gives a 
misleading picture of the actual course of his research. For him, it was an insight into the 
relation between the unbranched covering spaces of knot complements and the correspond
ing subgroups of the knot group that opened the way to calculable knot invariants. In 1922, 
Reidemeister obtained his first professorship in Vienna, and soon afterward he learned of 
his older colleague Wirtinger's ideas on knots. He began to study Poincare's writings on 
Analysis situs and organized a seminar on topology and algebra in which he encountered 

See [7, p. 562]. This account figures in an argument with Reidemeister on priority and must thus be taken with 
some caution. 

Also this conclusion was mathematically related to an earlier idea which Alexander may or may not have 
known: In 1891, Hurwitz had published a substantial paper studying the deformations of Riemann surfaces 
(viewed as branched coverings of the complex number sphere) arising from braid-like deformations of their 
branch points. See below, § 23. 
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the young Otto Schreier, who was full of ideas about combinatorial group theory.53 The 
breakthrough came in 1925, soon after he had accepted a position in Konigsberg (Kali
ningrad). In correspondence with H. Kneser, Reidemeister announced that he had found a 
subgroup of the knot group that possessed nontrivial torsion invariants. This group was in 
fact the fundamental group of the double cyclic covering of the knot complement. In the 
following year, Reidemeister worked up his idea into a general method for writing down 
a presentation of the fundamental groups of finite cyclic coverings of knot complements. 
The method was based on a combination of Wirtinger's method for presenting the knot 
group and Poincare's method for calculating the fundamental group of a 3-manifold given 
by a cell decomposition. The surprising fact was that, in contrast to the knot group itself, 
many of the subgroups obtained in this way had nontrivial torsion invariants. 

In preparing the publication of his results, Reidemeister tried to present his ideas in 
as abstract a fashion as possible. This led him to recognize that his method for calculat
ing subgroups of the knot group could actually be made into the method for calculating 
subgroups of finitely presented groups that today is known as the "Reidemeister-Schreier 
method" (Reidemeister [134]).54 Moreover, he developed his "elementary foundation" of 
knot theory [135], a manner of presentation that was at least partially motivated by his 
philosophical interests in the foundations of mathematics. In Vienna, Reidemeister had be
come one of the early members of the philosophical circle around Hans Hahn and Moritz 
Schlick. During the foundational debates of the twenties, he was engaged as a convinced 
"modernist", emphasizing that all exact knowledge (i.e. in his view, mathematics and logic) 
was ultimately rooted in "combinatorial facts" about signs.55 Little wonder, then, that Rei
demeister favoured a combinatorial approach to topology.56 

§ 23. Before arriving in Vienna, Reidemeister had held an assistant professorship in Ham
burg, where a new university had been founded in 1919. Its mathematical department was 
directed by Wilhelm Blaschke, who received his doctorate in Vienna under Wirtinger, and 
by Erich Hecke, a student of Hilbert. Hamburg quickly emerged as a lively mathematical 
center during the 1920's, and in 1922, the department began to publish its own journal, the 
Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universitat. Reide-
meister's papers of 1926 were published in this journal, and it became the main forum for 
knot theoretical research during the following years. Hamburg's ties with Vienna were also 
particularly close. At about the time when Reidemeister left for Vienna, another Viennese 
mathematician came to Hamburg, Emil Artin, followed soon afterward by Otto Schreier. 
For a short period, the two worked together on a group-theoretical problem related to knots: 
the classification of braids, or the word problem in the braid group. 

Since the paper describing the fruits of this work, [9], has often been taken as docu
menting the invention of the braid group, a few words should be said about earlier interest 
in braid-like topological objects and related groups. As pointed out in Section 3, Gauss 
was probably the first to consider braids (i.e. a collection of n disjoint, smooth curves in 

53 An outcome of this seminar was Schreier's very simple group-theoretical proof that the two trefoils were 
inequivalent [142]. On Schreier, who died in 1929 at age 28, see [28, Chapter II.3]. 
54 For a historical description of the various stages in which this method reached its final shape, see [28, Chap
ter H.3]. 
55 A pronounced statement of Reidemeister's philosophical views can be found in [136]. 
56 j k e "purely combinatorial" approach to topology was first advocated by Dehn and Heegaard [33], strongly 
inspired by the style of Hilbert's Grundlagen der Geometrie. 
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Euclidean space such that every member of a continuous family of parallel planes inter
sects each curve in precisely one point) as objects of topological interest. His unpublished 
fragment may actually be read as posing the problem of classifying braids up to a suitable 
notion of equivalence. Later, both Listing and Tait were interested in similar geometric 
objects but failed to prove substantial results about them. As with knots, it was the wish 
for a geometric understanding of algebraic functions that motivated mathematicians to dig 
deeper. Since the appearance of Puiseux's contributions [133], the idea became common
place that the behaviour of an algebraic function of one complex variable, given by a poly
nomial equation f(x, y) = 0, could be studied by looking at the simultaneous motions 
of the finitely many values y e C that arise when the argument x describes loops start
ing and ending at a given point a e X, where X c C is the complement of the set of 
branch points of f(x, y) = 0. Puiseux and most authors following him were interested in 
the "monodromy group" of f(x, y) = 0, i.e. the group of permutations of the n roots of 
f(a,y) = 0 arising from all such loops. Once the conceptual apparatus of the fundamental 
group and the braid group became available, it was easy to see that the propositions proved 
by Puiseux actually yield homomorphisms 

7r i (X, f l ) -* £ „ - > 27„, 

where Bn is the n-strand braid group, En is the symmetric group on n elements, and the 
image of the composite homomorphism is the monodromy group. In other words, even 
if the notion of the braid group had not yet been defined, monodromy considerations led 
to knowledge concerning motions of configurations of complex numbers (we might say 
"braid motions") that was later encoded in the braid group. 

In 1891, Adolf Hurwitz published a paper on (closed) Riemann surfaces, understood as 
branched coverings of the complex number sphere with finitely many sheets and a finite 
number n of branch points. Among other things, he investigated deformations of such 
coverings arising by a continuous change of the configuration of branch points, starting 
and ending at a given configuration. Thus he was again led to consider both braid motions 
and the special kind of braid motions where each point returns to its original position (in 
modern terms: motions corresponding to pure braids). Hurwitz went a step further than 
earlier authors by considering pure braid motions as loops in the configuration space 

Cn (JC1 JC„) € Cn | ] " ] (* / - * / ) = 0 

whereas he thought of general braid motions as loops in the quotient of this space by the 
canonical action of the symmetric group En. Still, the braid group did not appear explicitly 
in his paper. Instead, for two given natural numbers n and m, Hurwitz considered the set of 
Riemann surfaces with m sheets and n branch points, each surface being specified by the 
n sheet permutations s\,..., sn e Em associated with the n branch points. He managed 
to give rules for determining the "monodromy groups" of permutations of the surfaces, 
induced by either braid or pure braid motions. Like Wirtinger, who seems to have studied 
the monodromy of coverings of a knot complement without explicitly discussing the knot 
group, Hurwitz seems to have been unaware that his rules actually determined the braid and 
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pure braid group itself. In the case of braid motions, his result was that the "monodromy 
group" in question was generated by the permutations of surfaces, 

\Sl . . . SiSi + lS. Si . . . SnJ 

Since the sheet permutations Sk were left unspecified in Hurwitz' argument, the group 
generated by the a/ may be understood as a group of automorphisms of the free group on n 
generators which is in fact a faithful representation of the braid group as Artin would show. 
Again, while the notion of braid group itself was absent, insights were developed that could 
immediately be transformed into knowledge about this group once it was defined. 

The group-theoretic structure (**) obtained by Hurwitz reappeared with a different in
terpretation in another context of ideas, relating to transformations of Riemann surfaces 
onto themselves Fricke and Klein [55, pp. 299ff.]. In this work, the idea of "braid motions" 
was less visible, but soon after the exphcit definition of the braid group, Wilhelm Mag
nus showed how some of Fricke's and Klein's ideas could be translated into a connection 
between the mapping class group of the n times punctured plane or sphere and the braid 
group [98]. 

In the early twentieth century, the idea of what I have called "braid motions" was cer
tainly well known to most mathematicians interested in algebraic functions and related 
issues. We have seen that it served Alexander to study 3-manifolds, and certainly Artin and 
Schreier were acquainted with it, too. In this light, Artin's geometric definition of the n-
strand braid group Bn and his presentation of Bn as the group generated by n — 1 elements 
a i , . . . , a„_i, with relations 

a^a/ = aiGk if \k — l\ ^ 2 ; 

cyk<yk+\cfk = (yk+\(yk(yk-^\ fork = 1 , . . . , « - 2, 

appears less as an invention out of the blue but rather as a properly topological or group-
theoretical definition of a known structure. The emphasis of Artin's paper was clearly on 
translating the geometric questions about braid motions into purely group-theoretical ques
tions. In particular, the classification of braids up to the appropriate kind of isotopy was 
restated as the word problem of the braid group, while the classification of closed braids 
amounted to the conjugacy problem of the braid group. On the other hand, Artin probably 
knew Hurwitz' paper and its geometric techniques. In order to solve the main problem of 
his paper, the word problem in Bn, Artin used precisely the representation of braids as 
automorphisms of the free group on n generators that Hurwitz had (almost) defined. The 
crucial step was to show that this representation is indeed faithful, and here Artin rehed 
on a topological argument quite close to some of Hurwitz' ideas. Moreover, when look
ing at closed braids, Artin used Wirtinger's presentation of a knot group as it had been 
communicated to him by Schreier. 

Thus, on the whole it is clear that, as with the case of knots, interest in braids was closely 
tied to a geometric approach to algebraic functions; the latter provided the background for 
the investigations of the combinatorial and group-theoretic aspects that came into focus 
after Artin had published his paper. 
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§ 24. After Alexander's homological and Reidemeister's and Artin's group-theoretical 
contributions had shown how to construct calculable invariants of knots and links, the 
prospects for developing a "theory of knots" in its own right seemed promising. Many 
problems seemed tractable, and Dehn's and Alexander's results connecting knots with 
3-manifolds, as well as the work inspired by Wirtinger on singularities of algebraic func
tions established sufficiently many links to other fields to convince others that knot theory 
was an interesting subject. At the same time, the piecewise linear, combinatorial approach 
to knots used by Reidemeister and Alexander made it possible to develop knot theory 
without entering the intricacies of these other fields too deeply. This enabled newcomers 
to join the enterprise. Indeed, both at Konigsberg and Hamburg a number of students of 
Reidemeister and Artin started to work on knots, and the flow of papers to the Hamburger 
Abhandlungen incrtastd steadily. In 1932, Reidemeister's monogvaph Knotentheorie sum
marized the results obtained until then (leaving out most connections to other fields, how
ever) and provided a kind of "paradigm" in the sense of Thomas Kuhn for the young field. 
On the mathematical level, this period of flourishing activity was oriented toward a finer 
study of particular classes of knots or links (such as the finks arising from singularities), a 
better understanding of the invariants that had been constructed, and a discussion of their 
power in distinguishing knots and links. 

A significant contribution to the understanding of Alexander's invariants was made by 
Herbert Seifert, exploiting a geometric idea that lay dormant since Tait's days. While it had 
long been known that surfaces embedded in space and bounded by an arbitrary knot could 
be found (this followed for instance from Tait's observation that every knot diagram could 
be coloured in a chequerboard-like fashion), an additional argument was needed to show 
that oriented surfaces bounded by a given knot existed as well. A procedure to find such a 
surface was described by Frankl and Pontrjagin [52]. Seifert saw that one could use such 
surfaces - today called Seifert surfaces - for the construction of cyclic coverings of a knot 
complement and hence for a calculation of homological knot invariants [150]. In particular, 
Seifert was the first to describe the Alexander polynomial in terms of the first homology 
group of the infinite cyclic covering of a knot complement. He showed that this group 
could be viewed as a module over the ring Z[x, x~~^], and that the Alexander polynomial 
was given by the determinant of a presentation matrix of this module. Seifert's construction 
also made it possible to obtain information about the minimal genus gK of Seifert surfaces, 
an invariant of the knot K which he called its "genus". For all knots, the degree of the 
Alexander polynomial was a lower bound for IgK- Since a more or less sharp upper bound 
on gK could be read off a diagram, this enabled calculations of the genus of many knots 
such as the torus knots and all knots of up to 9 crossings. Moreover, Seifert was able 
to describe a nontrivial knot all of whose cyclic coverings were homology spheres. This 
showed that the Alexander polynomial was not sufficient to detect knottedness [150, § 4]. 

Already in an earlier paper, Seifert had observed that the two composite knots presented 
in Figure 9, without being mirror images of each other, had the same group. Seifert dis
tinguished these knots by a new type of "linking invariants", computed from the torsion 
subgroup of the first homology group of cycfic coverings of the knots [149]. This showed 
that the group of a knot was not a complete invariant, at least for composite knots. More
over, Tietze's question whether a knot was determined by the homeomorphism type of 
its complement also remained a mystery. By a rather simple example, J.H.C. Whitehead 
pointed out in 1936 that the analogous statement for the case of links was false [171], and 
thus the answer to Tietze's question seemed quite unclear (see Figure 10). 
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Fig. 9. Knots with the same group. 

Fig. 10. Whitehead's Unks having homeomorphic complements. 

Yet another way of looking at the Alexander polynomial came into view when Werner 
Burau found a rather surprising connection of this invariant to braids. Burau showed how 
the Alexander matrix of a link, represented by a closed braid of n strands, could be calcu
lated from a linear representation of the braid group, 

fi:Bn -^ GL{n,Z[x,x~^]), 

that today carries his name [24].^^ In particular, if a knot K could be represented by 
closing a braid w, then up to a normaUzation, its Alexander polynomial was given by 
AK{X) = dti{fi(w) — I). Further light was thrown on the relation between braids and knots 
by a conjecture of the Russian mathematician A.A. Markov at the congress on topology in 
Moscow in 1935 [102]. He claimed that two closed braids, given by elements v e B^ and 
w e Bn in different braid groups, represented isotopic links if and only if v and w could 
be related by a sequence of modifications 

a -̂> bab {a,b e Bk) or a e Bk ô- aa, e BM. 

At the time, Markov's conjecture was not seriously pursued nor was it related to Burau's 
results. Only much later, Joan Birman included a full proof of it in her book [17].^^ 

In Germany, this period of a rapid development of the young field was ended by the 
consequences of the Nazi regime's takeover. Already in April 1933, Reidemeister lost his 
professorship in Konigsberg for being "politically unreliable".^^ After a lapse of a year, 
he obtained a new position in Marburg, but he had lost most of his Konigsberg students 
and spent his Marburg years in growing isolation. Some of Reidemeister's students moved 

^^ Joan Birman reports that Burau had learned of this representation either from Reidemeister or from Artin. 
^̂  The proof was based on notes taken at a seminar at Princeton University in 1954 [17, p. 49]. 
^^ See [39] for a description of the circumstances. 
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to Hamburg, but there, the situation was difficult as well. In 1937, Artin and his wife had 
to leave Germany because she was Jewish. After the pogroms of November 1938, Dehn, 
too, was forced to flee from Frankfurt under rather dramatic circumstances (Siegel [151]). 
Seifert was ordered by the German ministry of education to go to Heidelberg in 1937. 
There, the Nazis had driven the two Jewish professors of mathematics, Liebmann and 
Rosenthal, out of their positions. This interrupted Seifert's productive collaboration with 
William Threlfall. After the war broke out, research on knot theory was also abandoned 
outside Germany. Topologists like Alexander and Whitehead took over new tasks in the 
military and left knots and links behind. 

§ 25. A look back on the events described in this section shows how deep the changes in 
the mathematical treatment of knots were that occurred between the late nineteenth and the 
early twentieth century. Research on knots needed no longer to be justified by its function in 
scientific contexts beyond mathematics. New kinds of mathematical objects and techniques 
definitely transcended the limits imposed by thinking of knots and knot complements as 
figures or regions in physical space. Moreover, an impressive range of problems could be 
dealt with in a rather rigorous way and with promising results. All these aspects point to 
the modernity which the new field shared with much contemporaneous mathematics. 

A particular shade of this modernity is also visible in Reidemeister's successful attempt 
to build up knot theory in a very autonomous, combinatorial fashion, the Hilbertian roots of 
which can easily be discerned. Nevertheless, I hope to have made clear that both the main 
motivations and the complex mathematical objects that allowed mathematicians to reach 
a deeper understanding of knots did not originate in this "elementary" way. They came 
from the highly valued field of algebraic functions and from Poincare's ideas on three-
dimensional manifolds. Neither Alexander's nor Reidemeister's nor Artin's innovations 
would have been possible had they not been acquainted with the corresponding ideas of 
mathematicians like Hurwitz, Wirtinger, Dehn, or Tietze. For this reason, the combinatorial 
shade of modernity should not be overplayed in our understanding of the emergence of 
modern knot theory. 

5. Some geometric topics in knot theory after 1945 

§ 26. While the emergence of modern knot theory in the early decades of the 20th cen
tury can be described as a relatively coherent fabric of events, the further development 
of knot theory becomes increasingly complex. In part, this results from the fact that knot 
theory did not attain the status of a self-sustaining subfield of mathematics, with its own 
separate domain of problems and methods, with its own publication forums, institutional 
networks, etc. Rather, research on knots remained tied to the broader development of low-
dimensional topology, especially the theory of 3-manifolds. This holds both with respect to 
mathematical ideas and with respect to the social setting of work on knots. Although there 
emerged a group of experts in knot theory, most of the important work was done by math
ematicians who had interests in other areas as well. Consequently, a historical narrative 
sensitive to issues of motivation and context cannot isolate knot theory after 1945 from the 
spectrum of related mathematical activities. This makes our subject both interesting and 
difficult. The overwhelming proHferation of mathematical research during the second half 
of this century, in which the discipline of topology played a crucial role, is reflected in the 
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Fig. 11. Two satellites of the trefoil knot. 

broad range of new concepts and techniques that were formed in order to deal with knots. 
The following paragraphs try to capture a part of this complexity. Guided by the main 
theme of this article, the following groups of issues will be discussed: the systematiza-
tion of the categorical framework of knot theory by Ralph H. Fox and his Princeton group 
(§ 27); John Milnor's work related to knots (§ 28); the use of surgery techniques and the 
relation between knots and the Poincare conjecture (§ 29); the ideas of Wolfgang Haken 
and others that led to a proof that knots can be classified algorithmically (§ 30); the dis
covery of the hyperbolic structure of most knot complements by Robert Riley and William 
Thurston (§31); and the path leading from von Neumann's construction of the "hyperfinite 
III factor" to Vaughan Jones's new knot invariant (§ 32). Several further developments 
are passed over in silence, but the narrative should enable the reader to perceive the main 
geometric impulses that induced 20th-century mathematicians to investigate knots. 

§ 27. For many years after the defeat of the Nazi regime in 1945, knots and links did 
not play a significant role in mathematical research in Germany. Reidemeister gathered a 
new group of research students with interest in low-dimensional topology and knot theory 
only after accepting a professorship in Gottingen in 1955, at the age of 61. In Heidelberg, 
where Seifert was teaching, Horst Schubert stood out as the major exception from the rule 
that mathematics in Germany now had other concerns than knots. Schubert had begun his 
studies during the war with Threlfall in Frankfurt, and followed him when Threlfall re
ceived a call to Heidelberg in 1946. In his dissertation, Schubert showed that knots formed 
a commutative semigroup with unique prime decomposition under the product operation 
given by tying two separate knots on the same string [143]. Schubert's Habilitationsschrift 
[144] treated knots K embedded in a solid torus J that formed a tubular neigbourhood of 
another non-trivial knot K', such that K could not be deformed into K' or the unknot by 
isotopies within J. The knot K' was called a "companion knot" of K by Schubert, while K 
later became to be called a "satellite" of K' (see Figure 11 for two examples; note that the 
right one indicates that all product knots are satellite knots). Schubert showed how certain 
invariants of satellite knots, such as their genus, were related to the corresponding invari
ants of their companions. A year later, Schubert introduced a new invariant, the "bridge 
index" of a knot [145]. This invariant could be defined from knot diagrams, namely as the 
least number of diagram arcs that extend from one undercrossing to the next while passing 
at least one overcrossing in between. Like the crossing number or the genus of a knot, the 
new invariant was in general difficult to calculate, but Schubert was able to give a complete 
classification of knots with bridge index 2 [146]. 
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In contrast to the situation in Germany, knots quickly received attention in the United 
States. Soon after the war, a new center for research in knot theory developed in Princeton. 
There, the earlier local tradition in topology, the emigration of German mathematicians, 
and the new international contacts created a favourable environment for research on knots 
and related topics. From 1946 to 1958, Artin taught at Princeton University, and in the late 
forties, Reidemeister and Seifert also stayed at the Institute for Advanced Study for some 
time. But it was Ralph H. Fox who became the central figure in a group of young mathe
maticians interested in knots, links, and three-dimensional topology. Fox had obtained his 
doctorate under Solomon Lefschetz before joining the Princeton faculty in 1945. For a cer
tain period, he closely collaborated with Artin, who was then reconsidering his earher work 
on the braid group. Together, they published an article on "Some wild cells and spheres in 
three-dimensional space" which raised at least two important issues. On the one hand, they 
asked for a clear delineation of the domain of knot theory within three-dimensional topol
ogy; on the other, it hinted at a relation between the complements of (maybe wild) knots 
or knotted arcs and the Poincare conjecture [49].^^ During the following years, many of 
Fox's students started their careers with contributions to knots and links, often with a view 
toward 3-manifold theory.^^ 

At the International Congress of Mathematicians in 1950, Fox presented a first survey 
on the work of his group, which began with a criticism of the combinatorial fashion in 
which knot theory was conceived during the 1920's and 1930's: 

This description of what I may call classical knot theory tends, by its narrowness, to 
isolate the subject from the rest of topology. It is to be hoped that the various special 
theorems which make up classical knot theory will eventually turn out to be particular 
cases of general topological theorems. In working toward this end the following princi
ples seem almost obvious: (A) The class of polygons should be replaced by a suitable 
topologically defined class of curves. [...] (B) Euclidean 3-space should be replaced 
by other compact 3-manifolds. 

The interest of Fox and some of his students in wild arcs was tied to this desire to redefine 
the objects of knot theoretical studies. When in the early 1950's, Edwin Moise proved that 
topological 3-manifolds could be triangulated and that, moreover, the "Hauptvermutung" 
of combinatorial topology was true in this case, it became clear that "classical" knot theory 
could indeed be reformulated according to Fox's ideas as the theory of (orientation preserv
ing) homeomorphism classes of (oriented) tame simple closed curves in S^ (or a different 
3-manifold).^^ Before these clarifications, Fox had proposed to work with isotopy classes 
of smooth curves and conjectured that every smooth curve was actually tame. A proof of 
this conjecture was later included in [32]. 

This successful effort to readjust the foundation of knot theory must be seen in the 
context of a general reaction to the earlier, purely combinatorial style of low-dimensional 
topology. As R.H. Bing put the matter in an inspiring paper that will be discussed below. 

"^ The terminology of "tame" and "wild" curves in a 3-sphere was introduced in this paper. A curve, surface, 
or domain in S^ was said to be "tame" if and only if it could be transformed into a simple polygon, polyhedral 
surface, or solid polyhedron by a self-homeomorphism of S^, respectively, and "wild" if this was not the case. 

A list of Fox's research students is given in the second volume of Milnor's Collected Papers, dedicated to Fox 
[114, vol. 2, p. xi]. A look at the bibliography of Burde and Zieschang [27] shows that almost all of them worked 
on topics related to knots, links, braids, or higher dimensional analogues. 
^^ [45, p. 453]. Emphasis in the original. 
^̂  This was pointed out by Moise himself at the ICM 1954 [115]; a proof appeared the same year [116]. 
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the trend was to "regard a 3-manifold as a concrete object [described by appropriate topo
logical constructions] rather than an abstraction of combinatorially equivalent systems of 
symbols" [12, p. 17]. Of course, this desideratum was particularly easy to fulfill in the 
three-dimensional case, once it was clear that triangulations existed and the "Hauptvermu-
tung" was true. At any rate, the new perspective on knots advocated by Fox tended to make 
explicit the integration of knot theory into the broader field of low-dimensional topology. 
As I have described above, a similar view had also guided the research of the pioneers of 
modern knot theory, but this perspective had more or less vanished from the printed texts 
of "classical" knot theory of the 1920's and 30's (note how quick a "modern" approach had 
become "classical"). 

In his talk at the ICM in 1950, Fox also reported on certain new ideas developed at 
Princeton concerning the algebraic structure of the knot group and their presentations. At 
the time of his talk, these ideas had not yet appeared in print, but during the following years 
Fox gradually unfolded them in a series of articles. One of his guiding ideas, for a knot in 
a 3-manifold M represented by a knotted solid torus J with boundary 97, was to consider 
the commuting diagram of homomorphisms: 

mid J) -> 7tl(J) 
i i 

ni{M - J) -> TViiM) 

where the arrows were given up to a conjugation in the respective image by the canonical 
embeddings of manifolds. In the case of knots in S^, the information contained in such a 
diagram was already captured by the conjugacy class of subgroups of the knot group gen
erated by the homotopy classes of a meridian and a longitude of the knot. Such subgroups 
Fox called the (maximal) peripheral subgroups of the knot group. He conjectured that all 
known knot invariants could be derived from the knot group together with the class of 
its peripheral subgroups. He also mentioned that Dehn's proof of the inequivalence of the 
two trefoil knots could be interpreted as an argument about peripheral subgroups. More
over, he reported that he had been able to show that no automorphism of the group of the 
two knots discussed by Seifert (see Figure 9) preserved peripheral subgroups.̂ "^ Fox fur
ther suggested that a proof of his conjecture might possibly depend on a proof of Dehn's 
lemma. As it turned out, he was right, but even after Dehn's lemma had been saved by 
CD. Papakyriakopoulos in 1957 it took a long time and hard work to establish that the 
answer to Fox's question was affirmative, as will become clear from what follows. 

Next, Fox mentioned an algebraic tool for the study of group presentations, his so-called 
"free differential calculus", by which not only Alexander's polynomial could be investi
gated but also the finer structure of the "elementary ideals" of the group ring Z[x, x~^] 
of the abelianized knot group associated with a given presentation of the knot group. This 
calculus, first discussed in a series of papers starting to appear in 1953, was made popular 
by two pubhcations that did much to disseminate the Princeton group's work on knot the
ory: Fox's "A quick trip through knot theory" (1962) and the Introduction to Knot Theory 
by Fox and his former student R.H. Crowell (1963), the first monograph on knot theory 
since Reidemeister's book. Together with his "Quick Trip", Fox pubUshed a Ust of open 
problems on knots. The two most fundamental were: (1) Tietze's old question, "Is the type 

^ The argument, based on a discussion of the representations of this group in the symmetric group on five 
elements, was published in [46]. 
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of a knot determined by the topological type of its complement?", and (2), the new, com
plementary problem whether the topological type of a knot complement was determined 
by the knot group and its peripheral subgroups. 

§ 28. Toward the end of his 1950 talk. Fox had also reported on the work of a then 
19-year-old student that fell somewhat outside the range of topics otherwise described: 
John W. Milnor's study of the total curvature K(K) of a knot K [110]. Using a definition 
of total curvature applicable to any continuous closed curve, Milnor showed that, when 
K varied in its isotopy class ^, the greatest lower bound of K(K) was a positive integer 
multiple of 27r, and equalled 27r only if the knot was isotopic to a circle.^^ Thus the integer 

. . f<{K) 
fiK '= inf —— 

Ke^ In 

was a knot invariant that, for the first time in the development of knot theory, involved a 
notion from differential geometry. Milnor showed how to relate this invariant to a Morse-
theoretic view of knots. He began with the observation that every knot in a generic position 
in space attains a finite number of height maxima with respect to a given axis. The mini
mum number of such maxima, which Milnor called the "crookedness" of a knot, was just 
IJiK- As a matter of fact, it was not difficult to see that the crookedness of a knot and its 
bridge index (defined by Schubert a little later) were the same numbers. This gave a nice 
example of how a combinatorial knot invariant could have a geometric meaning.^^ 

In his master's and doctoral theses [111, 112], written under Fox's direction, Milnor 
dealt with a new geometric idea concerning links. In order to describe this, it may help 
to look back at Gauss's linking number briefly. It was clear that this number was not only 
invariant under ambient isotopies of the link, but also under deformations where each com
ponent of the link might cross itself, but no two components were allowed to have mutual 
intersections. Such deformations were called "link homotopies" by Milnor. Invariants un
der this kind of deformation captured information about the proper "linking phenomena" 
in links, disregarding the possible knotting of individual link components.^^ By consid
ering the factor group G/Gq of the fundamental group G of the link complement by its 
^th lower central subgroup, Milnor was able to define certain new numerical invariants of 
link homotopy, depending not just on two components of a link but on finitely many. These 
"higher Unking numbers" represented a generalization of Gauss's invariant, i.e. for the spe
cial case where only two link components were considered the definitions were equivalent. 
A geometric ingredient in Milnor's technical arguments that documents the influence of 
Fox's ideas was the essential use of longitudes and meridians of the link components. 

In 1957, Fox and Milnor together pubhshed a short note in the Bulletin of the AMS in 
which a new research theme was announced that would occupy Milnor's attention repeat
edly during the following years. It concerned the relation between knots and singular points 

^̂  This confirmed the conjecture of Borsuk [19] that the total curvature of a non-trivial knot was bounded from 
below by 47r. Borsuk's conjecture was proved independently by Fary [44]. 
^^ Strangely enough, Schubert originally claimed that his bridge number was independent of Milnor's crooked
ness [145, p. 245]. 
^^ The idea to look at this kind of deformations had already appeared in a dissertation by Erika Pannwitz in 1931, 
written under the direction of Otto Toeplitz. Using the idea, Pannwitz showed that there always exist lines in 
space intersecting a non-trivial two component link (or a knot) in at least four points [126]. 
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of surfaces in a four-dimensional manifold, a problem that had stood at the beginnings of 
modern knot theory as we have seen in Section 3. Also with respect to this topic, Artin 
functioned as a mediator between the earlier generation of knot theorists and the Prince
ton mathematicians. In 1925, Artin wrote a brief paper in which he discussed the purely 
topological aspects of the situation as considered earlier by Heegaard and Wirtinger [10]. 
Artin pointed out that, contrary to the beliefs of some of his contemporaries, knotted sur
faces in M^ (in particular, knotted spheres) did exist. To construct examples, he introduced 
a technique later called "spinning": a knot or a knotted arc in a half space in M?, bounded 
by a plane E, was "rotated" in R^ about E. The surface covered by the moving knot was 
then a knotted surface in 4-space. Moreover, Artin pointed out that the kind of singularities 
discussed by Heegaard and Wirtinger could be described in purely topological terms, with
out reference to algebraic functions. Given a point in a piecewise linear, closed surface F 
embedded in R"̂ , the intersection of F with the boundary S^ of a small 4-ball around the 
given point was a knot whose isotopy class in S^ was a complete invariant of the surface 
point with respect to deformations in R"̂ .̂ ^ If the knot was non-trivial, the point could be 
considered as a "combinatorial singularity" of F, as Artin called it. Examples could be 
obtained by forming the "cone" on a given knot in R-̂ , i.e. by joining all points of the knot 
by straight line segments with a vertex in R"̂  outside the hyperplane containing the knot. 

In their research announcement. Fox and Milnor proposed to study these kinds of lo
cal singularities of piecewise linear embeddings of oriented 2-dimensional manifolds into 
piecewise Hnear, oriented 4-dimensional manifolds more closely. They claimed that a col
lection of knots Ki, K2,..., Kn could arise from singularities of a 2-sphere in R"̂  if and 
only if the product knot K\K2 ... Kn could be obtained from a single singularity. This 
gave rise to the introduction of a new concept and a new equivalence relation among knots. 
A knot obtained from a single singularity of a 2-sphere, or, equivalently, as the boundary 
of a non-singular disc, embedded in a half space of R^ bounded by a hyperplane contain
ing the knot, was called a "slice knot".^^ Two knots Ki and K2 were called equivalent, 
if and only if the product K](—K2) of Ki with the "inverse" of K2 (i.e. its mirror im
age with reversed orientation) was a slice knot. The equivalence classes of knots under 
this relation formed a commutative group. Fox and Milnor remarked that a necessary con
dition for a knot AT to be a slice knot was that its Alexander polynomial had the form 
AK(X) = p(x)p(x~^) for some p e Z[x]. This allowed them to conclude that the new 
group was not finitely generated. 

In 1966, Fox and Milnor published a more detailed paper summarizing their ideas in 
a revised and extended form. There, they also showed that the new equivalence relation 
could be regarded as a kind of relative cobordism relation between knots: two oriented 
knots were equivalent if and only if they could be placed in two parallel hyperplanes in 
R"̂  such that in the region of 4-space between these hyperplanes, a non-singular, oriented 
annulus could be found which was bounded by the two knots (with correct orientations). 
Accordingly, Fox and Milnor proposed to call their group the knot cobordism group. 

In the years between the authors' first announcement and the paper of 1966, their ideas 
on knot cobordism had been communicated to several other people, and in particular, to 
a group of mathematicians working in Japan. This connection had been established in the 

^^ Here, Artin's claim was necessarily vague. As Fox and Milnor [51] pointed out, it was only clear that the knot 
was a "combinatorial" invariant of the embedding, i.e. unchanged by piecewise linear deformations. 
^^ This last term was actually absent from Fox's and Milnor's announcement, but was introduced in Fox's "Quick 
Trip". 
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late 1950's by Fox, and during the 1960's a great number of articles on knots appeared 
in the Osaka Journal of Mathematics. Many of them focused on the brand new topic of 
slice knots. Perhaps the most important outcome of this research was a paper by Kunio 
Murasugi in which the signature of knots - the signature of a quadratic form derived from 
the first homology group of a Seifert surface of minimal genus - was discussed and shown 
to be a cobordism invariant [120]. Since then, sHce knots and knot cobordism continued to 
form a focus of research at the interface between knot theory and 4-manifolds.^^ 

Milnor's interest in the relation between knots and singularities took a new turn af
ter Egbert Brieskorn, using techniques analogous to the Heegaard-Wirtinger construction, 
showed that certain algebraic varieties yielded examples of exotic spheres. Brieskorn con
sidered the intersection of the varieties 

Vn := {(ZU . . . , Zn-,1) € C^+l | Z? + Ẑ  + • • • + zl^, = O} 

with the boundary 5'̂ '̂ +i of a ball centered at the origin, giving rise to smooth manifolds 
homeomorphic to S^^^~^ and knotted in 5^""^^ Brieskorn showed that for certain n, for 
instance n = 5, these knotted spheres were even exotic, i.e. their differentiable structure 
inherited from C"^^ was inequivalent to the standard differentiable structure on 5^""^ 
[22]. Milnor set out to study the singularities of complex hypersurfaces, i.e. zero sets of 
polynomials, along similar lines [113]. His basic result was a fibration theorem: if Sg was 
a sphere of sufficiently small radius s around an arbitrary point z^ = (zp . . . , zj]̂ _i) of a 
complex hypersurface V given by f(z) = 0, and if K denoted the intersection V DSg, then 
Ss — K was a smooth fibre bundle over S^, with projection mapping 0(2) = f(z)/\f(z)\, 
having a smooth, parallelizable 2«-manifold F as fibre. From this theorem, further infor
mation on the algebraic topology of the singularity could be drawn. In the "classical case" 
of an isolated singularity of an irreducible, complex algebraic curve characterized by a 
knot K, Milnor's theorem implied that the complement S^ — K admitted a fibration by 
Seifert surfaces of minimal genus. Using another deep result of the Princeton school, a 
theorem of Neuwirth and Stallings characterizing knots with complements fibred over S^, 
Milnor concluded that the commutator subgroup of the group of K was a finitely generated 
free group whose rank t̂ equalled the degree of the Alexander polynomial of K. Moreover, 
/JL was twice the genus of the fibre F, i.e. the genus of the knot [113, p. 84]. Milnor's main 
interest, though, concerned higher-dimensional generalizations of this situation. 

In all of Milnor's contributions to knot theory, a strong component of geometric thinking 
is clearly visible. The essential new ideas - curvature, link homotopy, knots as invariants 
of local singularities of surfaces in 4-manifolds, knot cobordism, Milnor's fibration - were 
all of a geometric character. There can be no doubt that it was this aspect that made his 
work so fruitful in stimulating further research. Also Brieskorn's examples, weaving to
gether algebraic geometry, knotted spheres in higher dimensions, and exotic differentiable 
structures, gave a significant impulse to research in all fields concerned.^ ̂  

§ 29. Another series of new researches on knots and their role in the theory of three-
dimensional manifolds was initiated when Dehn's technique for constructing "Poincare 
spaces" was elaborated in the early 1960's. As in Dehn's case, the main impulse to do this 

^^ See, for instance, the long list of problems relating to this topic in [87]. 
^̂  On the topology of singularities, see also Chapter 13 in this volume. 
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came from renewed attempts to decide the Poincare conjecture (here always taken to refer 
to the three-dimensional case). In 1957, Christos D. Papakyriakopoulos, a mathematician 
supported by Fox although he had apparendy been unproducdve for several years, pub-
hshed proofs of Dehn's lemma and two other fundamental theorems, the loop theorem and 
the sphere theorem. These theorems provided new tools to draw geometric information 
on 3-manifolds from knowledge of their algebraic topology, and specialists in the field 
agree that they marked "the beginning of the modern period of growth in 3-dimensional 
topology" [114, p. xi]. In particular, substantial progress toward a resolution of Poincare's 
long-standing problem seemed possible. In the late 1950's, rumours spread in Princeton 
that several independent proofs were on the way (Bing [14, p. 124]). 

In 1958, a paper of Bing on "Necessary and sufficient conditions that a manifold be 5^" 
brought knots back into the discussion on Poincare's conjecture. As a matter of fact, Bing, 
who came hke Moise from R.L. Moore's school of general topology, tended to disbelieve 
the conjecture: "The conjecture has not been proved, and I suspect that perhaps being sim
ply connected is not enough to insure that [a closed, orientable 3-manifold] M is topologi-
cally 5-̂ ".̂ ^ Bing introduced his paper by describing an example of Whitehead of an open, 
bounded, simply connected subset U of R^ with connected boundary that nevertheless was 
topologically different from R^. In fact, Bing noticed that this open set failed to satisfy a 
topological property of ordinary 3-space that Artin and Fox had described in their paper on 
wild cells and arcs, for U contained a simple closed curve that could not be enclosed in a 
"topological cube", i.e. a 3-ball. Bing's main theorem then asserted that this property - that 
every simple closed curve can be enclosed in a "topological cube" - was indeed necessary 
and sufficient to conclude that a closed, connected 3-manifold was homeomorphic to S^. 
Knots came into play both in the form of an ingenious trick in Bing's proof of this theorem 
(see [12, § 5]) as well as in his concluding discussion of various constructions that could 
perhaps produce counterexamples to the Poincare conjecture. After discussing handlebody 
decompositions of 3-manifolds,̂ -^ Bing considered 3-manifolds that could be decomposed 
into a solid torus and the complement of a tubular neighbourhood of the trefoil knot ("a 
cube with a knotted hole"). Such manifolds could be thought of as formed by removing 
a knotted solid torus J from S^ and "sewing it back" in a different fashion by identify
ing the boundary torus of both components in various ways. The possible identifications 
were determined by the image of a meridian of the solid torus / on the boundary torus of 
S^ — J. Indeed, the resulting manifolds were just Dehn's <^A:(/, m) with a 3-sphere filled 
in to close the manifold. In contrast to Dehn, Bing now considered, for K the trefoil knot, 
all possibilities for the attaching curve and not just those with m = 1. (In the following, I 
will denote the closed manifold by 0K (I, ^^), too, and the construction will be referred to 
as "Dehn surgery on K'\) A presentadon of the fundamental group of the resuldng man
ifold could easily be found by adding the reladon that expressed the contractibility of the 
attaching curve to the relations defining the knot group. By analyzing these presentations, 
Bing showed that 0K {U^'^) was simply connected if and only if m = ±1 and / = 0. More
over, in these cases the manifold was homeomorphic to S^. Thus, from Dehn surgery on 
the trefoil knot, no counterexample to the Poincare conjecture could be formed. 

Bing closed his paper with a series of questions. Papakyriakopoulos had informed him, 
he reported, that in the above construction, the trefoil knot could be replaced by an arbi-

"̂2 [12, p. 18]. On Moore's school, see [173]. 
^̂  In particular, Bing pointed out that no manifold with a decomposition into handlebodies of genus one could 
lead to a counterexample to the Poincare conjecture. 
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trary knot K with the result that any simply connected 0K (/, rn) would still be homeomor-
phic to S^, Was the same true, Bing asked, for manifolds from which two or more knotted 
and perhaps linked solid tori were removed and replaced differently? Moreover, did every 
simply connected compact 3-manifold belong to this class? If the answer to both ques
tions were yes, the Poincare conjecture would have been proved. If, on the other hand, the 
answer to either question were no, a counterexample might eventually be constructed.^^ 

It turned out that the first question was difficult to answer. In fact, even Papakyriakopou-
los' claim was only a conjecture as Bing pointed out in a correction to his paper [13]. The 
second question, however, was quickly answered in the affirmative. Using a general ma
chinery of "modifications" of differentiable 4-manifolds, A.H. Wallace showed that every 
differentiable, closed and orientable 3-manifold could indeed be obtained by a finite num
ber of Dehn surgeries on a link of disjoint solid tori [169]. Soon afterward, W.B.R. Lick-
orish gave an elementary and very geometric proof that the same could be shown in the 
piecewise linear category [92]. Lickorish's basic idea was to decompose a given oriented 
3-manifold into two handlebodies and then to use a sequence of Dehn surgeries to sim
plify the boundary identification of these handlebodies until a 3-sphere was obtained.^^ In 
this way, a new technique for constructing and handling closed orientable 3-manifolds was 
established. The necessary data (what came to be called a "surgery description" of the man
ifold) were a link and, associated with each of its components, a rational number r = m/l 
specifying the type of the surgery on a small tubular neighbourhood of this component.^^ It 
was quickly realized that Dehn surgery could be used to calculate invariants of 3-manifolds 
by controlling the effect of the surgery operations on the invariants in question. In particu
lar, it became clear that Dehn surgery gave a powerful method for calculating homological 
knot invariants like the first homology group of the infinite cychc covering of a knot com
plement, from which the Alexander polynomial could be derived. This method was heavily 
exploited in Rolfsen's textbook [140]. In 1978, Robion Kirby was even able to describe an 
equivalence relation on surgery descriptions, generated by two simple "diagram moves", 
which corresponded to orientation-preserving homeomorphism between the 3-manifolds 
thus defined.^^ 

The result of Wallace and Lickorish also heightened the interest in Bing's other ques
tion: for which knots besides the unknot and the trefoil knot could one show that no Dehn 
surgery would ever produce a counterexample to the Poincare conjecture? In 1971, Bing 
and Martin summarized the results obtained thus far. If the following two propositions 
about a given knot K were true, the knot was said to have "property P": (1) if Dehn surgery 

Soon afterwards, Fox reminded the community of low-dimensional topologists that there was, besides han-
dlebody decompositions and surgery on links, a third way of constructing simply connected 3-manifolds, namely 
that indicated by Tietze and Alexander, using coverings of the sphere branched over a suitable link. Fox's free 
calculus allowed to give algebraic conditions on the sheet permutations of the covering that implied its simple 
connectivity [48]. 
^̂  In order to show that this idea worked, Lickorish established a basic theorem on self-homeomorphisms 
of closed, orientable surfaces: every such homeomorphism is isotopic to a sequence of elementary self-
homeomorphisms called "Dehn twists". Moreover, Lickorish showed that Dehn twists in the splitting surface 
of a given 3-manifold can be produced by Dehn surgeries. 
^° It is not hard to see that |/] and \m\ have to be relatively prime since the corresponding curve must be simple. 
Moreover, only the quotient of the signs is relevant to fix the relative orientation of the two tori involved in the 
surgery. The "rational" notation seems to be due to Rolf sen [140]. 

See [86]. More information on the developments initiated by Dehn surgery on 3-manifolds may be found in 
the article by Cameron McA. Gordon in this volume. 
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on K leads to a simply connected manifold 0 , then (P is homeomorphic to the 3-sphere; 
(2) any piecewise linear homeomorphism of S^ — J, where 7 is a small tubular neigh
bourhood of K, into S^ can be extended to a piecewise Unear self-homeomorphism of S^. 
The first condition meant that no counterexample to the Poincare conjecture could be ob
tained by Dehn surgery on K, while the second meant that the homeomorphism type of the 
complement of K determined the knot (up to orientations). Due to Alexander's theorem on 
embedded tori in S^, property P could be reformulated as follows: a knot K had property P 
if and only if, for all nontrivial surgeries (i.e. for / ^ 0), the manifold ^xih m) was not 
simply connected. Since a presentation oin\{(pK{U t^)) could be found, this reduced the 
question to combinatorial group theory. By rather tricky constructions of homomorphisms 
onto known non-trivial groups, Bing and Martin showed that several classes of knots had 
property P, including twist knots, doubled knots, and all product knots (in this last case, a 
more geometric argument was used).^^ At the end of their article, Bing and Martin pointed 
out that in many cases, like that of the trefoil knot, a properly geometric understanding had 
not yet been reached for the fact that no non-trivial Dehn surgery yielded a simply con
nected manifold. Later work by various authors changed this to some extent. For instance, 
David Gabai showed by an argument involving fohations of 3-manifolds that all torus and 
satellite knots possessed property P [56].^^ It remains unclear, however, whether or not all 
knots share the property. 

After a long series of partial results obtained by various authors, and relying on certain 
techniques of Gabai for studying fohations, Cameron McA. Gordon and John Luecke fi
nally showed that no non-trivial Dehn surgery on a knot yields S^ [62]. While this did not 
resolve the problem of property P, it answered Tietze's long-standing question: the topolog
ical type of a knot complement does indeed determine the type of a knot (with or without 
orientations).^^ Therefore, Gordon's and Luecke's result implied that the second clause in 
Bing's and Martin's original definition of property P could be dropped, so that the truth of 
the Poincare conjecture would imply that all knots have property P. On the other hand, if a 
single knot could be found such that some Dehn surgery on it yielded a simply-connected 
manifold, a counterexample to the Poincare conjecture would have been found, too. Thus, 
property P is still considered by several mathematicians as one of the major open problems 
of knot theory. 

§ 30. By the end of the seventies, a further development in 3-manifold theory came to a 
certain end which had fundamental implications for knot theory: the general classification 
problem of knots was recognized to be solvable by algorithmic means. Following the first 
undecidability results in mathematical logic in the 1930's, logicians raised the question 
as to whether certain topological problems, among them the classification of knots, might 

^̂  In the proof for twist knots, matrix representations of Coxeter groups were used for this purpose. These rep
resentations were generated by certain matrices in which complex square roots of the numbers 4cos^(7r//i), 
n = 3, 4, 5 , . . . occurred. After Jones showed that these numbers were just the possible discrete values of the 
index of subfactors of the hyperfinite / / j factor (see below, § 32), a relation between subfactors and Coxeter 
groups was immediately recognized, see, e.g., [77, p. 104]. I am not aware, however, of work relating this to the 
problems studied by Bing and Martin. 
^^ For torus knots, a purely group-theoretical proof of property P had already been included in the textbook of 
Burde and Zieschang [27, Section 15.6]. 
^^ If a knot complement S^ - Ki would be homeomorphic to another, S^ - Ki, without a homeomorphism of 
pairs {S^, A î) -> (S^, K2), there would be a non-trivial Dehn surgery on K\ yielding S^. A survey of further 
known properties of Dehn surgeries on knots can be found in [61]. 
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be algorithmically unsolvable as well (Church [30]). The reason for posing such a ques
tion was that Reidemeister's purely combinatorial approach had given the knot problem a 
form very much resembUng a kind of word (or transformation) problem in symbolic cal
culi. When, in the mid-fifties, RS. Novikov and W.W. Boone independently showed that 
the general word problem in finitely presented groups was unsolvable, Markov soon there
after pointed out that this implied the algorithmic unsolvability of the general classification 
problem of manifolds of dimension greater than three [103]. Due to these circumstances, 
the case of three dimensions, and knot classification, gained even more interest. Reide-
meister, at least, was prepared to wager that the problem of deciding whether or not two 
given knots were equivalent was solvable (see [11, p. 97]). 

Notwithstanding such hopes, undecidability results rather than decidability proofs were 
high on the agenda of mathematical logicians, and Boone even seems to have tried to 
prove that the knot problem was unsolvable. Therefore, when Wolfgang Haken, then an 
almost complete outsider in the community of topologists, announced a theory which al
lowed to decide algorithmically whether or not a given knot was isotopic to an unknotted 
circle, he could be sure both of attention and of a certain amount of scepticism about the 
correctness of his results. Haken, who first presented his ideas at the ICM in 1954, was 
asked to work out his ideas in full detail. This task took him several years, but in 1961, 
his long and technically demanding "Theorie der Normalflachen" was finally published 
in Acta Mathematica. In the same year, a somewhat simplified and more intuitive presen
tation of Haken's ideas was given by Schubert [147]. In his article, Haken described an 
algorithm which enabled one to construct, for a given compact, triangulated 3-manifold, a 
finite set of "normal surfaces", characteristic of the manifold's topology. In the case of a 
knot complement (bounded by a torus along the knot), the algorithm could be adapted to 
produce a Seifert surface of minimal genus. Thus, in principle, the genus of the knot was 
computable and in particular, it was decidable whether or not the knot was trivial. How
ever, even today Haken's highly complicated algorithm remains beyond the requirements 
of practical computation. Haken's result found great appreciation among logicians, how
ever, and a few weeks after his paper appeared, he was offered a position at Urbana, Illinois, 
where Boone was gathering a research group working on the decidability of mathematical 
problems.^ ̂  

In 1962, Haken announced that he could modify his algorithm in such a way that it 
could be used to classify a large number of 3-manifolds, including all knot complements 
[65]. The basic idea was to employ the algorithm to find so-called "incompressible sur
faces" in a given manifold M along which the manifold could be split into pieces.^^ Haken 
sought to determine a class ^ of compact, orientable 3-manifolds for which the process of 
finding such splitting surfaces could be iterated, decomposing the manifold after finitely 
many steps into a collection of 3-balls. Moreover, the class of manifolds should be such 
that the algorithm allowed, for each of the pieces obtained at a given stage, only finitely 

^̂  The historical details of this paragraph have been taken from an interview with Haken, conducted by T. Dale 
in 1994, that has kindly been communicated to me by D. MacKenzie. 
^̂  The technical definition of an incompressible surface underwent several modifications throughout the follow
ing years. Intuitively speaking, an incompressible surface cannot be simplified within M by cutting open handles 
or by deleting 2-spheres that bound a 3-ball. In [167], the following definition was chosen: An incompressible sur
face F in a compact, orientable 3-manifold M is either a properly embedded, compact surface (i.e. FHdM = dF) 
or a component of dM, such that the following two conditions are satisfied: (1) there does not exist an embedded 
disk D in the interior of M, bounded by a curve dD C F which is not contractible in F; (2) no component of F 
is a 2-sphere bounding a 3-ball in M. See also [66] for a readable description of his procedure. 



342 M. Epple 

many possibilities for the next splitting surface (the splitting process thus had the structure 
of a finite, rooted tree). For two manifolds in such a class ^, it could then be decided if 
they were homeomorphic by comparing the finitely many spHtting trees (called "hierar
chies" in the technical literature). The manifolds were topologically equivalent if and only 
if two of them ran completely parallel. However, in order to apply the algorithm to a given 
manifold M at all, it had to be known beforehand that 2-sided, incompressible surfaces 
F c M existed (with dF c 9M, if F was bounded), and, moreover, that M was irre
ducible, i.e. that every S^ C M bounded a 3-ball (otherwise, the unproved Poincare con
jecture would have prevented recognizing the 3-balls at the end of a splitting hierarchy). 
Thus it was reasonable to conjecture, and Haken in fact claimed, that R could be taken to 
include all manifolds satisfying these two conditions (following Thurston, such manifolds 
are usually called "Haken manifolds" today). Among them were all knot complements, so 
that the algorithm implied a decision procedure for the homeomorphism problem of knot 
complements. 

Unfortunately, Haken did not spell out the proofs of all the claims he made in his paper, 
so that the scope of his results was not completely clear. An announced sequel to his arti
cle, which should have given the missing technical details, never appeared. Indeed, further 
research by Haken and Friedhelm Waldhausen made clear that Haken's original arguments 
required either an additional restriction on the class R or an algorithmic solution of the 
conjugacy problem in the group of isotopy classes of self-homeomorphisms of a compact, 
bounded surface (with respect to isotopies fixing the boundary).^^ It took another decade 
before a co-worker of Waldhausen, Geoffrey Hemion, solved this additional problem and 
thus established Haken's original claim as correct [71]. In a widely read survey article, 
Waldhausen summarized the overall results of the development. While these results were 
of great importance for 3-manifold theory in general, they had particularly striking con
sequences for knot theory. By a slight modification, Haken's procedure would not only 
classify knot complements and knot groups, but actually knots themselves.̂ "^ A further 
consequence of Waldhausen's own contributions to the subject was the proof of Fox's 
conjecture that two knots whose groups could be mapped by an isomorphism respecting 
peripheral subgroups had homeomorphic complements. In view of Gordon's and Luecke's 
theorem, this imphes that the knots are equivalent. The result can be strengthened in the 
case of prime knots: up to orientation, these knots are determined by their groups.^^ 

So far, it seems, Haken's unwieldy algorithm itself has been less useful in further re
search on knots and 3-manifolds than the general theorems drawn from it by Waldhausen 
and others. Haken's contribution must thus first and foremost be viewed as a decidability 
proof. Nevertheless, the results established by working out Haken's ideas changed the out
look on knot theory. The search for simpler classifying algorithms or complete knot invari
ants was shown to be a meaningful enterprise. What should be emphasized in the present 
context is the fact that genuine three-dimensional ideas guided this line of research, and 

^̂  See [167, 66, 168, § 4]. The difficulty arose from the possibility that during the decomposition process, a fibre 
bundle over S^ could arise, fibred by incompressible surfaces, with incompressible boundary, and containing 
only incompressible surfaces isotopic to a fibre or a boundary component. In this case, the decomposition process 
would be blocked. Since such manifolds were known to be representable as mapping tori of self-homeomorphisms 
of their fibre, a solution to the above-mentioned problem was required. 
^̂  See [168, § 4]. In carrying out the splitting procedure, one had to keep track of a meridian of the knot consid
ered. 
5̂ See [168, p. 26], [172]. 
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highly specific geometric tools, such as the notion of an incompressible surface, were pro
vided by it. Once again, it was not by means of diagram combinatorics that a deep insight 
was found, and once again, knot theory profited from its status as a specialty within the 
well-estabHshed field of 3-manifold theory. 

§ 31. In the mid-seventies, the mathematical community was surprised by a revival of 
the connection between knots, 3-manifolds, and hyperbohc geometry which had akeady 
been touched upon by Dehn. In 1973, a Ph.D. student at Southampton, Robert Riley, found 
that the complement S^ — K4 of the figure eight knot K4 (see Figure 1) had a hyperbolic 
structure, i.e. it admitted a complete Riemannian metric of constant sectional curvature 
— 1 .̂ ^ In fact, Riley showed that S^ — K4 was homeomorphic to a quotient M^/G of three-
dimensional hyperbolic space HI-̂  by a discrete group G of hyperbohc isometrics, acting 
freely on M^ and isomorphic to 7ri(5^ — K4) [138]. The proof relied essentially on Wald-
hausen's theorems on Haken manifolds. Riley then went on to construct, with the help of 
a computer, similar examples of hyperbohc structures in certain other knot complements. 
He conjectured that the complements of all knots except torus and satellite knots could be 
endowed with such a structure.^^ 

In 1977, Riley met Wilham Thurston, who was then in the course of working out his 
general programme of finding geometric structures on 3-manifolds, an outhne of which 
began to circulate in the form of notes of Thurston's lectures at Princeton about a year later 
[160]. Riley's results inspired Thurston to look systematically for hyperbolic structures in 
knot complements and related 3-manifolds. Among many other things, Thurston pointed 
out in his lecture notes that Riley's example was closely related to a hyperbohc manifold 
that Hugo Gieseking, a student of Max Dehn, had discussed in 1912. In his dissertation, 
Gieseking had constructed a manifold whose fundamental group contained an isomorphic 
copy of the group of the figure eight knot as a subgroup of index two.^^ This manifold was 
constructed from a regular tetrahedron in three-dimensional hyperbolic space, all of whose 
vertices were on the sphere at infinity. By identifying the sides of this tetrahedron two by 
two, Gieseking had obtained a non-compact manifold with a complete hyperbolic metric, 
and with finite hyperbolic volume. Thurston now showed that the natural conjecture, sug
gested by the structure of the fundamental group of Gieseking's manifold, was indeed true: 
S^ — K4 was the twofold orientable covering of Gieseking's example. In particular, S^ — K4 
could be decomposed into two copies of the hyperbolic tetrahedron defining Gieseking's 
manifold. 

Thurston went on to prove a general result on the existence of hyperbohc structures 
on certain compact, bounded 3-manifolds which implied that a knot complement S^ — K 
(or, equivalently, the interior of the compact, bounded manifold obtained by removing an 
open tubular neighbourhood of K from S^) admitted a such a structure if and only if K 
was not a torus knot or a satellite knot, as Riley had conjectured. If K was a torus knot, 
then its complement could be given a different geometrical structure, while if K was a 
satellite of a non-trivial knot K\ the question of endowing the knot complement with a 
geometric structure could be asked separately for the two (simpler) pieces obtained by 
splitting S^ — K along a torus, bounding a tubular neighbourhood of K^ and containing K. 

^^ A metric is called complete if every geodesic may be extended indefinitely. 
'̂7 See [139, 161, pp. 360, 366ff]. 

^̂  See [59]. A description of Gieseking's example was also given in [99, pp. 153ff]. For the delicate question 
how much Gieseking or Dehn knew about the relation with A'4, see [101, pp. 39f.]. 
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Thus, knot complements provided a striking illustration of Thurston's main conjecture that 
"the interior of every compact 3-manifold has a canonical decomposition into pieces which 
have a geometric structure" [161, Conjecture 1.1 ]. A proof of this conjecture for the class of 
compact Haken manifolds, together with several surprising applications, earned Thurston 
a Fields medal in 1982, despite the fact that full details of the proofs had not yet appeared 
in print. 

A direct application of Thurston's results to knot theory was made possible by another 
fundamental result on hyperbolic 3-manifolds that had been proved in the early 1970's, the 
"rigidity theorem" of hyperbolic manifolds.^^ It stated that if two 3-manifolds M and Â  of 
dimension ^ 3 with a hyperbolic structure of finite volume have isomorphic fundamental 
groups, then M and Â  are not only homeomorphic but even isometric to each other. This 
implied that every isometric invariant of such a manifold, for instance the volume, was 
necessarily also a topological invariant. Since all hyperbolic knot complements had finite 
volume, the rigidity theorem provided a way to introduce a whole basket of new invariants 
for knots with hyperbolic complements. Many of these new invariants turned out to be 
calculable by means of computers. Jeffrey Weeks, a student of Thurston, was particularly 
successful in this respect. In his Ph.D. thesis, he described an algorithm for calculating 
various hyperbolic knot invariants that has since been very useful in extending knot tables 
to ever higher crossing numbers.^^ Already the volume of a knot turned out to be a rather 
fine (though not complete) invariant of knots with hyperbolic complements. It seems to 
measure a kind of geometric complexity of knots, but not much is known about this as yet. 
Thurston has conjectured that the complement of the figure eight knot K4 might be the 
hyperbolic manifold with the least volume [161, p. 365]. 

Evidently, the rigidity theorem and the work of Riley and Thurston not only related knot 
theory to 3-dimensional topology in a deeper way but also led to a variety of more specifi
cally geometric issues. For instance, representations of knot groups by discrete subgroups 
of PSL(2, C) can be investigated, or the details of the hyperbolic structure of knot com
plements may be looked at. Here, too, Dehn surgery turns out to be a particularly helpful 
tool. It allows to construct new hyperbolic manifolds from given ones, and to address ques
tions such as: which Dehn surgeries on a given knot do produce hyperbolic manifolds and 
which do not? The connection between knot theory and hyperboHc geometry has opened 
up a rich and still rather unsurveyable field of inquiry. 

§ 32. Up to this point, the "geometry" involved in the investigation of knots and Hnks 
was mainly that of three-dimensional manifolds associated with knots, be it in the sense 
of their topological structure or, as in the last paragraph, in the more specific sense of a 
Riemannian metric on the knot complement. In Vaughan Jones's discovery of a new knot 
polynomial, a completely different kind of geometry came into play: that of lattices of 
projections on a Hilbert space and the algebras generated by them. In order to explain why 
this may with reason be called a variety of geometry, a short look back to the beginnings of 
the field in which Jones was working is necessary. In the 1930's, John von Neumann and his 
collaborator Francis J. Murray embarked on a programme investigating what they called 
"rings of operators" on a separable Hilbert space (today called von Neumann algebras). 
In the course of this work, they invented a mathematical object that represented a close 

^^ See [119] for a proof in the case of compact manifolds and [130] for the non-compact case. 
^^ See [1]. Recently, tables of prime knots of up to 16 crossings have been constructed by Thistlethwaite, Hoste 
and Weeks, using a modification of Weeks's program. 
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infinite-dimensional analogy to complex projective space, although in an important respect 
it had very different properties. Since it was an investigation of the fine structure of this 
object which led to Jones's breakthrough, a more detailed account is necessary.^^ 

Von Neumann's and Murray's work was motivated by earlier research on the spec
tral theory of linear operators and the wish to understand the mathematical foundations 
of quantum mechanics. It concentrated on so-called "factors" of operator rings, i.e. rings 
M c B{H) of bounded operators acting on a Hilbert space H, closed under the adjoin
ing operation * and under pointwise convergence on H, containing the identity operator 
I G B(H), and with a trivial center. Obvious examples of factors were the rings of all 
operators on a (separable) Hilbert space. Up to algebraic isomorphism, these factors were 
classified by the dimension of the underlying Hilbert space, i.e. they were all isomorphic 
to the rings M„(C) of all (n x n)-matrices over the complex numbers or to the set B(H) 
of all bounded Hnear operators on a separable, infinite-dimensional Hilbert space H. How
ever, the theory acquired depth by the fact that more, and different, examples could be 
constructed. In particular, Murray and von Neumann described a class of factors which 
in their view represented in many ways a better analogy to the finite-dimensional factors 
Mn (C) than B{H). Using a simplified construction method that Murray and von Neumann 
published in 1943, these factors can be defined as follows. For a finite or countably infinite 
group G, the Hilbert space /^(G), consisting of all square-summable sequences of complex 
numbers indexed by the elements of G may be formed. On this Hilbert space, G acts by its 
left regular representation U, given by 

(Ug^)h:=^gh f o r a l U € / ^ ( G ) ; g , / z e G . 

Then the smallest closed subring M c B{l^iG)) containing all operators Ug is a von 
Neumann algebra, whose elements can all be represented in the form J2geG ̂ g^g ^^^ 
certain r] e l^(G). Murray and von Neumann pointed out that for finite G, the ring M was 
equivalent to Frobenius' "group numbers" (in today's language, the group ring CG). In 
contrast, it was not too difficult to show that for countably infinite groups, Ai was a factor 
if and only if all conjugacy classes of G were infinite [122, § 5.3]. 

The rings constructed in this way had a very particular property, though. The function 
^^(HgeG ^g^g^ •— ^^' where e was the neutral element in G, defined difinite trace, i.e. a 
linear function tr: A^ -^ C, satisfying tr(I) = 1, tr(jc*jc) ^ 0, and tr(jcy) = ix{yx), for all 
x,y e M. This, in turn, made it possible to define a dimension function (relative to M) on 
the lattice of all closed linear subspaces E c /^(G) of the form E = PEQ^(G)) for some 
orthogonal projection pE e M,by putting 

dimMiE) :=tT{pE). 

For finite groups of order n, this function measured the dimension of a subspace of CG, 
normalized in the sense that for a subspace E of dimension k, dim^(£') = k/n. For the 
factors constructed from groups with infinite conjugacy classes, however, the range of this 
dimension function was the closed interval [0, 1]. In general, Murray and von Neumann 
showed that for all factors a similar dimension function could be constructed, with but few 
possibilities for the range of its values [121, § 8.4]. Corresponding to these possibilities. 

^̂  Based mainly on [121, 122]. Again, notations have been slightly modernized. 
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factors with a dimension function like the above (or, equivalently, infinite-dimensional 
factors with a finite trace) were called factors of type II\. 

Von Neumann realized that this construction came very close to a view of projective ge
ometry that had been advocated by Karl Menger and Garrett Birkhoff a few years earlier. 
In 1928, Menger, like Reidemeister a mathematician with strong ties to the Vienna circle 
in philosophy, had proposed to reformulate projective geometry as the theory of linear sub-
spaces of a finite-dimensional vector space [109]. Through the use of homogeneous coor
dinates, this idea had been implicit in many researches of 19th-century analytic geometers 
such as FeUx Klein, but it was only under the influence of Hilbert's axiomatics that Menger 
proposed to shift the perspective on projective geometry and to make the properties of lin
ear subspaces of a vector space the basis of the theory. Accordingly, he characterized these 
by a suitable system of axioms. Besides axioms governing the intersection and linear span 
of two subspaces, a crucial ingredient of Menger's approach was an axiom asserting the 
existence of a dimension function, associating with each subspace a positive integer that 
behaved correctly under intersection and linear span of subspaces. The value of this func
tion then specified whether a given subspace corresponded to a point, or to a plane, etc. 
Seven years later, and independently of Menger's work, Garrett Birkhoff pointed out that 
the system of subspaces of a finite-dimensional vector space defining "a projective geome
try" represented a particular kind of what he had come to call a lattice [16].^^ The lattice of 
projections of a factor of type / / i satisfied virtually all of Menger's or Birkhoff's axioms 
except those securing that the structure defined was finite-dimensional. In this perspective, 
these factors represented a kind of infinite-dimensional complex projective space, or else, 
a geometry "without points", since no elements of least dimension existed. Von Neumann 
set out to show that one could indeed characterize the lattices of subspaces arising in the 
above way in an abstract fashion [123, 124]. For some time, he had great hopes that these 
"continuous geometries", as he decided to call them, provided the right framework to do 
infinite-dimensional projective geometry, and even quantum mechanics.̂ -^ Accordingly, he 
devoted a significant effort to the further investigation of factors of type / / i . 

In 1943, Murray and von Neumann were able to show that not all II\ -factors constructed 
as above were algebraically isomorphic, depending on the properties of the group G used in 
the construction. If G was the set theoretic union of an ascending sequence of finite groups, 
then, and only then, the associated factor M was "approximately finite" (or, in today's 
terminology, hyperfinite), i.e. generated by an ascending sequence of finite-dimensional 
algebras. Moreover, all such factors were algebraically isomorphic. In other words, up to 
isomorphism, there was just one of them, say, the factor 9^ constructed from the group Uoo 
of permutations of the integers such that each a G î oo permuted only finitely many inte
gers. Since Z'oo was the union of the finite symmetric groups, Ei C 1̂ 2 C X'a C • • •, the 
factor D\ was indeed hyperfinite; the group rings CEn could be taken as the approximating 
sequence of finite-dimensional algebras. If, on the other hand, G was taken to be a free 
group on two generators, then the associated factor was not hyperfinite [122, § 6.2]. Thus, 
the hyperfinite II\ factor D̂  had acquired a rather singular position in the theory. It rep
resented, so to speak, the closest infinite-dimensional analogue to the finite-dimensional 
factors M„(C); in other words, its lattice of projections represented the closest analogue 
to the lattice of subspaces of a finite-dimensional, complex vector space. Moreover, its 
construction showed that it had a rich but complicated inner structure. 

^^ See [107] for information on the origins of the theory of lattices. 
^^ See, e.g., the introduction to [121, 125]. 
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For a long period after World War II, the attention of operator algebraists turned to more 
general issues, and the "continuous geometry" of 91 moved in the background. A crowning 
achievement of much of this work was Alain Connes's completion of the classification of 
factors up to algebraic isomorphism, which earned him a Fields medal in 1982. Connes 
also took up the study of 9̂  again by classifying its automorphisms.^^ Finally, the time 
seemed ripe to look at the inner structure of 91 in more detail. It was Vaughan Jones who 
set himself the task of investigating suhfactors of 91, i.e. other infinite-dimensional factors 
M embedded in 91. As such subfactors were automatically equipped with a finite trace, 
they also were of type 1I\. In such a situation, i.e. given a pair of II\ factors J\f c. M 
with the same unit, von Neumann's theory of dimension functions could be used to define 
an "index" [M : Af] which equalled the index of groups, [G : / / ] , if the factors AT 
and M were constructed from groups / / c G as above. The suprising result found by 
Jones was that for II\ subfactors of 91, the possible values of this index did not consist 
of the interval [1, oo), as the definition of the index would have allowed, but only of the 
continuous interval [4, oo) and the discrete set {4cos^ n/n | « = 3, 4, 5, ...} [76]. 

In the proof of his result, Jones calculated the index in a different way. If a pair of II\ 
factors J\f c. M with the same unit was given, the inner product on M given by ix,y) i-> 
tr(y*x) allowed for a completion of A^ to a Hilbert space, denoted by L^{M, tr). On this 
Hilbert space, M acted by the left regular representation, given by left multiplication on 
the dense subspace M. Similarly, L^iM, tr) could be formed as a closed linear subspace 
of L^{M, tr). Introducing the projection ej\f: L^(M, tr) -^ L^{M, tr), Jones considered 
the von Neumann algebra M\ C B{L^{M, tr)), generated by M and ej\f. It turned out 
that M\ was again a / / i factor, with a trace extending the trace on M, and such that 
[A^i : M] = [M. : A/"] = ^, where fi~^ — \x{e]^). By iterating this construction (which 
had already been studied by C. Skau and E. Christensen in the late 1970's), Jones was 
able to find the possible values of the index. Repeating the process by which M\ had 
been formed, Jones obtained both an infinite tower of //i-factors Mi (i = 1,2,...) and 
an infinite sequence of orthogonal projections ^,+i : L^(A/1/, tr) -> L^(Mi-i, tr) (here, 
MQ \= J\4 and e\ := ej\f). These orthogonal projections satisfied a remarkable set of 
relations: 

eiei±\ei = P'^et, etej = ejet for \i - j\^2; 

moreover, for all words w; in I, ^ i , . . . , e/_i, the relation 

iT(wei) = P'hriw) (***) 

held, and fi was restricted to the set of values mentioned above. Thus, a necessary condition 
on the values of the index [M : A/"] had been found. But more than that: Jones showed that 
whenever V was the von Neumann algebra generated by a system of orthogonal projections 
satisfying the above relations, then V was isomorphic to 91 - it was approximated by the 
ascending sequence of the canonical images A^^n Q V of the abstract finite-dimensional 
algebras v4^,„, generated by I, ^ i , . . . , ^„ and satisfying the above relations - , and the 
double commutant of the set {̂ 2, ^3,...} in 'P = 9̂  was a / / i subfactor with index p. 
Consequently, the condition also was sufficient. 

^^ See [8] for a brief description of Connes's work. 
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The system of projections arising in this argument and the finite-dimensional algebras 
n soon turned out to form the core of a web of surprising relations to other mathemat

ical topics. In fact, these algebras had been encountered by several other people in quite 
different fields. For instance, H. Temperley and EUiott H. Lieb had used a representation of 
Ap^n on C '̂̂ "̂ ^ in a study of certain models of statistical mechanics already in 1971. More
over, for the discrete values of )6, the algebras A^^n were in some way or other related to 
Coxeter groups.^^ Finally, and most important, it was pointed out to Jones by D. Hatt and 
Pierre de la Harpe that the relations bore a strong resemblance to those defining the braid 
groups Bn. In fact, it was not difficult to show that after a change of variables, 

gi :=tei-(l-ei), l + t^T^ =p, 

the algebras A^^n were presented by the relations 

gf = (r - l )g /+r , 

8igj=gj8i foY\i-j\^2, 

gigi+igi + gigi+\ + gi-^\gi + gi H- g/+i + 1 = 0 . 

Consequently, the mapping p sending a braid generator a/ e Bn to the element piai) := 
gi ^ Ap,n defined a representation of the braid group 5„+i within A^ji or, similarly, 
within Ap^n ^ ^ - In this way, a connection to topology was opened up which no one 
had expected. "For the first time", Jones remarked in a contribution to a conference in 
July 1983, '7 / i factors have begun to exhibit their geometric and combinatorial nature. 
This rich structure can only be expected to deepen as one answers further simple questions 
about subfactors of finite index" [78, p. 270]. It was not immediately clear, though, how to 
exploit this connection, as the same paper shows. For a short period, Jones hoped that the 
determinant of his family of representations of Bn could be used in a way similar to that in 
which the Burau representation had been used to get new information about the Alexander 
polynomial or perhaps a related invariant of links.^^ To discuss this question, Jones turned 
to an expert in braid groups, Joan Birman. In her earher book [17], written shortly after 
Garside had solved the conjugacy problem for the braid group, Birman had collected and 
refined the available knowledge for the study of knots and links via an analysis of the 
relation between links and closed braids. She was therefore a natural partner for discussing 
Jones's new ideas. In the discussions, however, Birman pointed out to Jones that his first 
idea would not work out.̂ '̂  In a popular article, Jones later recalled: 

I went home somewhat depressed after a long day of discussions with Birman. It did not 
seem that my ideas were at all relevant to the Alexander polynomial or to anything else 
in knot theory. But one night the following week I found myself sitting up in bed and 
running off to do a few calculations. Success came with a much simpler approach than 
the one I had been trying. I realized I had generated a polynomial invariant of knots.̂ ^ 

^^ See footnote 78 above. 
96 See above, § 24, and [78, p. 244]. 
^'^ See note (2), added in proof, in [78, pp. 244 and 273]. 
9̂  From [81]. 
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It is not difficult to tell what Jones had found. Among other things, Birman had explained 
to Jones Markov's equivalence relation, characterizing the braid words that represented 
isotopic knots or Hnks as a closed braid (see above, § 24). Jones reahzed that the traces 
tr : Ap,n -> C furnished by his theory of subfactors automatically satisfied 

tr{vwv~^) = iviw) and tr{wgf_l^) = ^^Hr(u;), 

for all words i;, if in the generators gi, g2,..., gi, since two arguments of the trace could 
be interchanged and since it satisfied property (•*•). Thus, only a sUght correction was 
needed in order to make the trace itself into an invariant of links. Indeed, Jones showed that 
if w e Bn was a word with exponent sum e in the braid group generators a/, representing 
an oriented link L, then 

VLit):=(^'-±J-y\^/hr{p(w)) 

was invariant under the moves generating Markov's equivalence relation and thus V L ( 0 
was an isotopy invariant of oriented Unks. Moreover, the finite-dimensional algebra in
volved showed that VL was a Laurent polynomial in the variable t for knots and Hnks with 
an odd number of components, while it was a Laurent polynomial in y/J for links with an 
even number of components. Further discussions with Birman brought the next surprise. 
Examples showed that the new invariant was not equivalent to the Alexander polynomial. 
However, Birman and Jones found that VL satisfied a skein relation similar to the Alexan
der polynomial, as described in § 11 above.^^ This meant that Jones's polynomial could 
be defined independently of its original context in von Neumann algebras, a fact heavily 
exploited in subsequent work. 

Let me reconsider the remarkable chain of arguments leading from von Neumann's con
struction of the hyperfinite II\ factor 91 to Jones's new link invariant. While completely 
independent of low-dimensional topology, the beginnings of this development were clearly 
motivated by the wish to understand a particular kind of infinite-dimensional geometry, 
extending the approach to projective geometry by Menger and Birkhoff. Moreover, these 
beginnings were related to von Neumann's attempt to clarify the mathematical basis of 
quantum mechanics. Jones took up the problem of subfactors of IH, continuing this inves
tigation along lines close to those indicated by Murray's and von Neumann's work. When 
Jones found his towers of finite-dimensional algebras (the canonical images of ^^,„ inside 
d\), he was inclined to think of them in terms of von Neumann's variety of geometry: "The 
situation is thus very geometric and [the] relations [defining A^^i] can be thought of as 
defining special configurations of subspaces" [79, p. 377]. From this point of view, how
ever, the outcome of Jones's research generated perhaps even more riddles than it solved. 
By arguments which in the end boiled down to exploiting a surprising similarity in the 
combinatorial structures of 9\ and the braid groups, a relation between the geometry of 
configurations of subspaces of a Hilbert space and the topology of low-dimensional ob
jects such as braids and links was estabhshed. But what was - apart from this combinato
rial resemblance - the geometric reason for this connection? Was there a kind of structure 

^^ Interview with Joan Birman, Oberwolfach 1995. For this interview and further private communications about 
her involvement in the invention of the new polynomial invariants, I wish to express my sincere thanks to Joan 
Birman. 
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which bridged the algebra and the topology in question, in a similar way than the homol
ogy of cyclic coverings related knots and links to the Alexander polynomial? In the years 
following Jones's breakthrough, such questions were asked repeatedly. In a contribution 
on statistical mechanical models of link invariants, published in 1989, Jones himself con
ceded that the riddle was still unsolved: "Our main reason for doing this work was as a 
step towards a useful and genuinely three-dimensional understanding of the invariants. So 
far we have not succeeded. The situation is the same as that of the poor prisoners in Plato's 
allegory of the cave" [80, p. 312].^^^ 

While Jones's new invariant has been used and generahzed by many people in a broad 
spectrum of directions (such as: further polynomial link invariants, statistical mechanical 
models, quantum field theory, invariants of 3-manifolds constructed on the basis of Kirby's 
calculus of surgery descriptions), it seems that a deeper understanding of the relations be
tween the two kinds of geometry involved is still lacking. However, an important new idea 
which might eventually change the situation came into play through work of V.A. Vassihev 
[164, 165]. Following a general approach outhned by V.I. Arnold, Vassiliev proposed to 
study the space V of all smooth mappings S^ -> S^.ln this space, the isotopy classes of 
knots are separated by a system U of "walls" representing singular maps, and thus the ho
mology of V — X' in dimension zero, which can be studied by means of a spectral sequence, 
characterizes all numerical knot invariants. After Birman and X.-S. Lin found a connection 
between Jones's and Vassiliev's ideas in fall 1990, a substantial amount of research was 
done on this connection which might provide the starting point for a better understanding 
of the topology underlying the new Hnk polynomials.^^^ 

6. Conclusion 

§ 33. From the account given in the previous three sections it will be clear that a "tale 
of diagram combinatorics" such as that told in Section 2 reduces the complex weave of 
scientific and mathematical practice in which knot theory was formed to a rather thin nar
rative, in which the intentional and causal aspects of the development become almost un
recognizable. This can already be seen from the periodization which is suggested by the 
developments discussed. Four major stages of the history of knot theory can be discerned. 
In the first stage, extending from Vandermonde's first remarks to the late 19th-century 
tabulations, the mathematization of the knot problem stood in the foreground. This math-
ematization was called for by various developments in the exact sciences, ranging from 
astronomy and the theory of electromagnetism to Thomson's speculations on the structure 
of matter. In the second period, from 1900 to the late 1930's, modern knot theory emerged 
as a subfield of the discipline of topology, culminating in Alexander's, Reidemeister's and 
Seifert's contributions. On the one hand, we have seen that this emergence of modern knot 
theory was motivated by the desire to understand singularities of algebraic curves and sur
faces - a topic deeply rooted in 19th-century pure mathematics - and to solve several major 
problems thrown up by Poincare's new Analysis situs. On the other hand, the formation of 
knot theory was influenced by the modernist impulse toward autonomous, formal theories, 
an impulse which found its clearest expression within the developments considered here in 
Reidemeister's Knotentheorie of 1932. The third period, extending roughly from 1945 to 

100 PQJ. statements in a similar spirit, see [18]. 
^̂ ^ See the survey of this development in [18]. 
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Jones's invention of a new knot polynomial, is characterized by the close interplay between 
knot theory and the growing field of low-dimensional topology. The various ways in which 
knots gave rise to 3-manifolds were explored in detail, and the surprising resistance of the 
three-dimensional Poincare conjecture only contributed to motivate topologists to clarify 
the structure of knot complements, manifolds obtained from those by Dehn surgery, and 
3-manifolds in general. The fourth period set on with Jones's discovery, a breakthrough 
which remains surprising even today, and which changed the structure of the field very 
deeply. Knot theory is no longer more or less exclusively tied to low-dimensional topol
ogy, but also to a variety of other fields among which mathematical physics certainly stands 
out. 

A look at the intellectual contexts which I have touched upon (restricting mainly to the 
mathematical ideas involved) allows us to recognize that the actual motivations for mathe
matical investigations of knots and links were very complex. In a more or less direct way, 
and like so many other fields of mathematics, research on knots was related to the small 
sets of highly appreciated and contested research themes, the "big issues" that occupied 
the attention of the scientists of a given period. What is the nature of the small planets, 
and what are their orbits? What is an atom, and how are observed spectra to be explained? 
How do algebraic curves or surfaces behave at singular points? What are the objects of the 
new science of topology and how can ordinary space be characterized in purely topological 
terms?^^^ What is the right mathematical framework to be used in quantum physics? Which 
mathematical problems are solvable by algorithmic means? The appreciation of such prob
lems, and even more of the candidates for their solutions, has continually changed and will 
often be found not to coincide with today's valuations. WilUam Thomson's theory of vor
tex atoms which inspired Tait's tabulation enterprise did not sustain its original attraction 
for long. Nevertheless, it was in relation to such larger themes that the knot problem has 
continued to occupy the attention of mathematical minds. In their day, and for a shorter or 
longer period, they represented hard and deep problems in rich intellectual constellations; 
constellations which reached far beyond the narrow focus of a particular piece of knot-
theoretical work. Moreover, a study of the temporal modifications of the interplay between 
the grand scientific themes and more concrete research allows us to gain a deeper insight 
into the historical changes influencing the development of mathematics. It is significant 
that after 1900 the interest in knots no longer arose from physics but from pure mathemat
ics, and that in the wake of Jones's work, mathematical physics again came to play a major 
role in motivating research on knots and related topics. I have also indicated in which way 
the move toward a combinatorial style of "modern" knot theory (or "classical", depending 
on the perspective) was at least partially inspired by philosophical debates on the foun
dations of mathematics. To spell out all these influences and interrelations in the details 
of mathematical, scientific, and cultural practice would mean to produce yet another, and 
still much "thicker" historical narrative on the formation of knot theory than the one I have 
presented here.^^^ 

Returning to the proper subject of this contribution, let me close by recalling the truism 
that it is not the historian's task to predict the future. However, it is less a prediction than 
a reasonable expectation to suppose that geometric aspects will continue to play a crucial 
role in the further development of knot theory. After all, the hierarchy of knots in ordinary 

^̂ ^ A more detailed analysis would show that around 1900, the second half of this theme was not without cosmo-
logical overtones. 
103 PQJ. ̂ ĵ g interesting notion of "thick narratives", see [58]. 
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space or of similar placements in manifolds will continue to remain, first and foremost, a 
hierarchy of geometrical complexity of a certain kind. This hierarchy remains only very 
partially understood. The bare fact that it is possible in principle to enumerate all types 
of knots and links in that hierarchy does not tell too much about its finer structure (the 
comparison has been made with a fisting of all prime numbers and a deeper understanding 
of number theory).^^^ Thus, knot theory will continue to be interesting and useful in all 
situations within and outside mathematics where this kind of geometrical complexity is 
involved. If the history of knot theory tells us anything, it is that this has always been the 
case. 
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