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 I. Topological notions in the weave of scientific practice

 Introduction

 § 1. The present study deals with the larger scientific background to the gradual
 emergence of the mathematical discipline of topology. Two important and interrelated
 strands in the practice of the exact sciences in the 19th century will be considered in
 which topological ideas came to be relevant for natural philosophy. In this way, light can
 be thrown on a part of the causal weave of events that eventually led to the emergence
 of topology as a discipline, a part which has largely been neglected up until now in
 the historical literature. The first of these two strands was concerned with topological
 issues that arose in the context of a dynamical theory of physical phenomena, a theory
 advocated in particular by British natural philosophers during the last third of the 19th
 century. These developments will be discussed in the first part of our study. The second
 strand of events - related to speculations about the large-scale topological structure of
 space - will be the focus of the second part of this article.

 § 2. The emergence of an entirely new discipline within mathematics is a rare event
 in the history of science. The creation of topology - the science of properties of spaces
 and figures that remain unchanged under continuous deformations - represents a phe-
 nomenon of this kind, but of a distinctly modern variety. Topology bears comparison
 with the calculus, probability theory or number theory in that the first ideas about a new

 field called Analysis Situs or Geometria Situs were communicated among a handful of
 mathematically-minded intellectuals in the late seventeenth and early eighteenth cen-
 turies. However, unlike the calculus and number theory, but similar to probability theory,
 the basic ideas underlying Analysis Situs reveal no ancient roots.2 Notoriously, ancient
 authors treated questions of continuity hardly at all, and if so, then mainly as physical
 questions linked to the phenomenon of motion.3 Moreover, in sharp contrast to these
 three other fields, during the 18th century no clearly defined domain of mathematical
 problems was delineated that should and could be treated by Analysis Situs. Rather, a
 vague idea about an analysis which dealt not with magnitude, but "position," left it to
 individual mathematicians to decide what should belong to the new field. Only gradu-
 ally over the course of the 19th century was a consensus reached about the nature of
 problems in topology. Nevertheless, after crossing the threshold to a scientific discipline
 in the full sense of the word in the first decades of this century, topology became one of
 the core research fields of mathematics, and topological arguments have come to play
 a role in virtually every other field in mathematics and the mathematical sciences. If
 one may reasonably speak of genuinely modern mathematical disciplines, then topology
 certainly belongs among them.

 These late beginnings may be one reason why the emergence of topology has only
 begun to attract historiographical attention comparable to that received by fields like the

 2 On the early ideas on Analysis Situs, see (Freudenthal 1972) and (Pont 1974). Some of
 Leibniz' fragments on Analysis Situs have recently been edited (Leibniz 1995).

 The locus classicus is Aristotle's Physics. For a modern discussion of the ancient idea of
 continuity, see (Dehn 1936a).
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 calculus, number theory, or probability theory. While the invention of the calculus has
 long since been the object of historical study, and while the emergence of number theory
 and probability theory have recently been treated from a wide variety of perspectives,4
 the number of historical monographs devoted to the formation of topology remains
 very small. Apart from these, we have a few survey articles, and several research papers
 dealing with particular topics within or closely related to topology.5 Most of this literature
 has focused on describing concepts and mathematical results which we today classify as
 topological, without undertaking a closer analysis of the concrete circumstances under
 which these achievements were actually produced. As a consequence, the overall account
 of the making of topology which emerges from the existing literature is structured by a
 rather narrow history of mathematical ideas.6 This account suggests that it was mainly
 a chain of deep insights into the conceptual architecture of mathematics that eventually
 opened up this new branch of geometry. These insights were gained and shared by a few
 great mathematicians, first Leibniz and perhaps Descartes, then Euler and Vandermonde
 in the 18th century, and finally Gauss and in particular Riemann in the 19th. Only
 after Poincaré's seminal writings in the 1890's, though, did the field reach maturity.
 The first serious outstanding problem of topology, according to this account, was the
 classification of surfaces, a problem which arose in connection with one of the core
 fields of 19th-century pure mathematics, the theory of complex algebraic functions.
 Generalizing this problem to higher dimensions then led to the notion of a (differentiable
 or topological) manifold and the corresponding classification problems, for which the
 notions of homology and homotopy provided the crucial technical tools.
 § 3. However persuasive such a picture may appear in retrospect, it certainly cannot

 account for the complex processes that led to the emergence of the discipline of topology
 in a detailed and realistic way. Knowing that certain concepts were formed and that a
 number of problems were formulated and treated does not tell us very much about
 the reasons that led scientists to form just these concepts and to treat precisely those
 problems. Moreover, the account just summarized is silent about the role of topological
 work in the scientific careers of those involved, the processes of communication of
 topological ideas, and the embedding of these new ideas into better established areas of
 scientific knowledge and practice.
 One need only focus attention on some of the well-known circumstances involving

 leading figures in order to see that studies of the emergence of topology may be deepened
 in significant ways. For instance, when Poincaré referred to celestial mechanics, (more

 4 The origins of number theory are discussed, e.g., in (Weil 1984), (Mahoney 1994), and
 (Goldstein 1994). On the emergence of probability theory, see (Hacking 1975), (Stigler 1986),
 (Porter 1986), and (Daston 1988).
 5 The only monograph dealing with the whole period before Poincare is still (Pont 1974). For

 the period after Poincaré, the standard reference is (Dieudonné 1 989). The substantial study (Scholz
 1980) focuses on the development of the concept of manifold. The surveys are (Hirsch 1978) and
 (Dieudonné 1994); of research papers, (Bollinger 1972), (Johnson 1979 and 1981), (vanden Eynde
 1992), (Epple 1995) and several articles in (Greffe et al. 1996) might be mentioned.
 6 Condensed statements of this view can be found in the concluding sections of (Pont 1974)

 for the period before Poincaré, and the opening paragraphs of (Dieudonné 1989) for the period
 beginning with Poincaré.
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 precisely, to the three-body problem) as one of the issues which led him to topology
 (Poincaré 1921, 101), this can be taken not only as a reference to a crucial point in
 Poincaré's own career (see Barrow-Green 1997) but also as indicating that areas of
 mathematics dealing with physically motivated problems might well have been relevant
 for the emergence of topology in general. Or, to go back to the Enlightenment, when
 Vandermonde, an intellectual close to Monge who became deeply involved in the French
 revolution, claimed in 1771 that Analysis Situs could be developed as a calculus for the
 manufacture of textiles (Vandermonde 1771, 566), this contention raises the issue of
 non-mathematical practices that were linked to the invention of Analysis Situs.

 As this study will show, similar hints taken from less familiar documentary evidence
 point in much the same direction. A causally adequate history of the emergence of
 topology, it seems, must go beyond a history of mathematics intra muros and look at the

 subject in a broader context. Such a history requires more than a description of a chain of
 topological concepts and results leading to the modern body of topological knowledge.
 Rather, it has to make clear by a detailed study of the network of practices in the math-
 ematical sciences how a need for topological tools gradually developed, and how these
 tools were forged in complicated interactions between different domains of scientific
 practice. After all, the emergence of topology was a process of mathematization, and
 as such dealt with a complex variety of questions - namely those of "position" - which
 were of relevance not only in important domains of pure mathematics but also in other
 domains of science and technology. Of course, the formation and use of topological ideas
 within pure mathematics also deserves a closer historical investigation highlighting the
 ways in which these ideas were situated in actual mathematical practice.

 § 4. The two parts of the present study both deal with one particular area relevant for
 a broader history of the emergence of topology, namely its relations with mathematical
 physics in the second half of the 19th century. At first sight, one might not expect to find
 a rich body of materials for a substantial history around this topic.7 It is true that, as a

 7 This seems to be confirmed by the limited number of earlier historical studies of topological
 ideas in 19th-century mathematical physics. Historians of mathematics have addressed the topic
 occasionally, but mainly in passing. Pont devotes a few pages to the subject which cannot claim
 to be complete in any respect (Pont 1974, 154 ff.). Some aspects of the issues of the dimension
 of physical space and also of the Zöllner affair have been discussed in Lützen's recent work
 (Liitzen 1995). Closest to some parts of section Π below is Archibald's brief study of the early
 development of Green's ideas in potential theory (Archibald 1989). On the other hand, many
 aspects of 19th-century natural philosophy related to the themes discussed here have received
 detailed and competent treatments in the historical literature on physics. For British dynamical
 theory, see e.g. (Silliman 1963), (Knudsen 1976), (Buchwald 1977), (Wise 1981), (Buchwald
 1985) and the collections (Cantor and Hodge 1981) and (Harman 1985). However, precisely those
 mathematical subtleties which show the gradual assimilation and refinement of topological notions
 are usually passed over in the physics literature. For instance, Silliman 's discussion of vortex atoms

 mentions Tait's ensuing knot tabulations only in passing and overlooks the topological arguments
 in Thomson's hydrodynamical work. Even Harman, who emphasizes the role of topology in
 Maxwell's work (Harman 1987), preface to (Maxwell 1995), does not pursue the matter in detail.
 The literature on the space problem has been mainly oriented toward philosophical issues; see for
 instance (Jammer 1969) and (Torretti 1978).
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 research discipline in the full sense of the word, topology did not exist before Poincaré
 published his papers on Analysis Situs, and perhaps not even before the next generation
 of topologists embarked on the project of extending Poincaré's results. Moreover, in the
 time before the disciplinary threshold was reached, even pure mathematicians had great
 problems in understanding and refining the topological tools introduced by Riemann
 and some of his contemporaries. This is indicated, for instance, by the long period
 that elapsed before the completion of the topological classification of non-orientable
 surfaces, or by the slow reception of Betti's ideas on higher connectivity numbers. In
 view of these difficulties, one might be inclined to wonder whether 19th-century natural
 philosophers were in a position to use the rudimentary tools of pre-disciplinary topology
 at all and, if they were, whether their work reflected more than a passive reception of
 the mathematical innovations.

 As a first step toward answering these questions, one can point to a document like
 Peter Guthrie Tait's now-famous tables classifying alternating knots (Fig. 1). Evidently,
 this gives an example of a natural philosopher who actively pursued topology in the
 decade 1876-1885. One might still wonder, of course, whether this classification of
 knots had serious relevance for physics; perhaps it was merely a mathematical recreation
 for the experimental physicist Tait? After all, it was only in the 1920's that Tait's knot
 tables could be verified by rigorous methods (using Poincaré's torsion invariants and, a
 little later, the polynomial knot invariant introduced by Alexander). Nevertheless, I wish
 to show that topological notions did play a crucial role in certain areas of physics and
 that, in particular, Tait's enterprise was deeply anchored in the natural philosophy of its
 time.

 More generally, I will argue that the interaction between mathematics and natural
 philosophy around topological notions was far from being just a process of sporadic re-
 ception of the mathematicians' work by physicists.8 The interaction was of a much more
 complicated form. At least three aspects deserve emphasis and will be discussed in the
 following. First, there was significant overlap between the communities and discourses
 of mathematicians and physicists in which topological ideas were exchanged and elab-
 orated. Physicists like Helmholtz, W. Thomson, Maxwell or Tait were highly sensitive
 to new ideas in mathematics. By the same token, mathematicians like Clifford or Klein
 did not separate their investigations from thinking or speculating about the physical
 world. Second, along with the exchange of topological ideas, a transfer of legitimacy
 from physical theory to mathematical innovation took place: "topology mattered" in an
 almost literal sense. Third, physical thinking even led to new mathematical problems
 and, consequently, to new results. All these observations call into question the idea that
 the emergence of topology was merely a result of developments within the disciplinary
 architecture of mathematics. On a more general level, they also qualify assertions about
 the degree of differentiation between the disciplines of mathematics and physics in the
 period considered.

 § 5. Before proceeding further, let me give a short survey of the contents of the
 present study. After some methodological remarks, I turn in Section Π to the role topol-

 8 That there was at least some reception of topological ideas among physicists has been noted
 occasionally. See for instance (Harman 1987, 285 ff.).
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 THE FIRST SEVEN ORDERS OF KNOTTINESS.
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 Fig. 1. One page from Taiťs tables of knots (Tait 1884c)
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 ogy played in speculations on the constitution of matter. Since much of 19th-century
 natural philosophy sought to explain physical phenomena in terms of a complicated
 dynamics of a continuous medium (be it in the form of an ether theory or in the more
 sophisticated version of a dynamical analogy based on the formalism of Lagrangian me-
 chanics9), it should come as no surprise that topological aspects of this dynamics were
 investigated and discussed. The basic phenomenon to be treated here is vortex motion.
 In a famous paper written in 1 858, Hermann v. Helmholtz initiated a rich line of research
 which not only soon entered hydrodynamics textbooks but which also was taken up by
 William Thomson in his famous speculations about vortex atoms in 1867 and the years
 following. Thomson was acutely aware of the topological difficulties of the topic and his
 hydrodynamical papers, written while he was still struggling to make his notions precise,
 in fact contain some non-trivial topological results. Technically speaking, Thomson's
 investigations dealt with "irrotational flows" (in modern terms: harmonic vector fields)
 in multiply connected space regions. Two other scientists, Peter Guthrie Tait and James
 Clerk Maxwell, were closely involved in this research. Maxwell, who was genuinely
 interested in learning and extending the topological ideas developed by the Göttingen
 mathematicians, is relevant for our discussion for two reasons. First, because he engaged
 in an extensive discussion about topological matters in his correspondence with Thomson
 and Tait around 1868, and second, because his Treatise on Electricity and Magnetism of
 1873 collected those topological ideas which he thought important for the development
 of natural philosophy. Tait, on the other hand, emerged among these Scottish natural
 philosophers as the one who made the most original contribution to topology. Motivated
 by Thomson's speculations about vortex atoms and encouraged by Maxwell's interest,
 he embarked on a remarkable project, the classification of alternating knots of up to ten
 crossings. With surprising success he produced complete tables of such knots, thereby
 founding a tradition of knot tabulation which survived even into the first decades of the
 20th century. Tait's achievement, discussed in Section ΠΙ, must be seen in the context
 of several other developments of the day, like combinatorics, the beginnings of graph
 theory, and speculations about chemical structure.
 In the second part of this study, comprising Sections IV- VI, I present a summary of

 the topological issues involved in another strand of the debates linking natural philosophy
 with mathematics in the late 19th century: those concerned with the so-called space
 problem. While these discussions have often been described as leading to a fundamental
 transformation in the understanding of the relations between geometry and physical
 experience, there is also a story to be told about what could be called the topological
 space problem, an issue underlying, but distinguishable from the geometrical space
 problem. Besides the issue of the dimension of physical space, the technical core of this
 story, treated in Section IV, concerns the topological differences between what came to be
 known as Clifford-Klein space forms. The novelty of the topological speculations about
 space and matter was felt very distinctly by teachers and students of 19th-century natural
 philosophy. Little wonder, then, that metaphysical and even supernatural speculations
 accompanied the conceptual innovations. In Section V, I briefly review both the scandals
 surrounding the astrophysicist Zöllner's engagement with spiritualism and Tait's and

 9 Compare the discussion in (Buchwald 1985, 20 ff.).
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 Stewart's popular books The Unseen Universe and Paradoxical Philosophy. It will be
 shown that many of the topological ideas which played a role in the debates of the time
 on natural philosophy - both those relating to the structure of space and those involved in
 theories of matter - were woven into this little tangle of spiritualism and immaterialism.

 In the last section, the topological speculations of 19th-century natural philosophy are
 connected with some developments in early 20th-century field theory. I conclude with
 an attempt to summarize the main features of the strands of scientific practice described,
 including a discussion of their role in the formation of modern topology.10

 Tracing topological notions: Dimension and connectivity

 § 6. The method used in the following to trace topological ideas in 19th-century
 natural philosophy is based on a rather simple analysis of the occurences of the two
 most important topological notions in natural philosophy during the period described.
 The first of these notions was dimension, in particular, the dimension of physical space.
 The second, in some ways both deeper and vaguer idea was that of connectivity (Zusam-
 menhang). By following the traces which the uses of these notions left in published
 texts, manuscripts and correspondence, and by situating these uses in their respective
 contexts, it becomes possible to establish a significant part of the interactions relating
 the work of mathematicians and natural philosophers around topological innovations
 in the period between Riemann and Poincaré. As mentioned before, the idea behind
 this procedure is not so much to write a conceptual history but rather to use dimension
 and connectivity as indicators for causal connections between the actions and events
 constituting the practice of the scientists involved. Both ideas, the notion of dimension
 as applied to physical space, and the even more complicated idea of connectivity, are

 10 I would like to emphasize that the topic of the broader scientific context of the emergence
 of topology is by no means exhausted by the following study. Of developments before the period
 considered here, at least three deserve historical attention in their own right. The first concerns
 Gauss, whose topological interests were also motivated in part by contexts like astronomy, geodesy,
 and electromagnetism. For a glimpse into Gauss' ideas, see (Epple 1997). I hope to present a
 full treatment on a future occasion. Secondly, Listing's essay Vorstudien zur Topologie of 1847
 merits a detailed study highlighting his attempts to convince scientists of the relevance of this
 new mathematical discipline for fields like crystallography, biology, astronomy, etc. The third
 development, particularly relevant for the discussion in Section II, concerns the topological ideas
 in Ampere's and Faraday's researches in electricity and magnetism. Some hints may be gathered
 from (Grattan-Guinness 1990, ch. 14). Another serious omission even in the period considered
 here are the Italian links to the events described below. In particular, Betti's hydrodynamics dealt
 with topological issues very much along the same lines as Thomson's work. On another Italian
 mathematical physicist, Beltrami, and his mathematical ideas on ether see (Tazzioli 1993). Finally,
 I have not ventured to enter into a detailed discussion of the broader scientific contexts of Poincaré's

 topological work. Poincaré will only briefly be discussed in the fourth section with respect to the
 topological aspects of the space problem, but there is much more to say. The role, for instance, of
 Poincaré's topological ideas in celestial mechanics and the three-body problem has been discussed
 in (Goroff 1993), (Andersson 1994) and (Barrow-Green 1997).
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 sufficiently specific that it makes sense to proceed in this way. In view of the novelty
 of these ideas in 19th-century scientific thinking, it is hardly conceivable that a scientist
 used one of them without having been in intellectual contact with earlier developments
 involving them, and in fact it is possible in many cases to establish chains of personal
 communication in which these ideas were transmitted, and often modified.

 Already at this level, the picture of the emergence of topology suggested by the
 existing historical literature will be shown to require modification. According to this
 standard view, the notion of connectivity, introduced in Riemann's function theoretic
 papers, played a key role in the classification of surfaces and in Betti's attempts to gen-
 eralize Riemanns Zusammenhangsordnung to higher dimensions (Pont 1974, ch. 2). By
 the 1870's, both the notion of connectivity and the related notion of genus began to take
 on major significance for algebraic geometry.11 Efforts to explore the connectivity of
 higher-dimensional algebraic varieties, mostly by Picard, form part of the backdrop lead-
 ing to Poincaré's breakthrough in defining homological invariants and the fundamental
 group of a manifold (see Scholz 1980, Section VI.2.3 and ch. VII). However, as will be
 described in detail below, the complicated notion of connectivity also passed through dif-
 ferent channels, leading to a link between Göttingen mathematicians and Scottish natural
 philosophers. Initiated by Helmholtz's hydrodynamical work, this reception eventually
 led to mathematical arguments which in modern mathematical language can be described
 as situated within the intersection of the theory of harmonic differential forms and three-

 dimensional topology. Of particular importance were arguments that arose in attempting
 to clarify the notion of connectivity itself. Both Riemann and Poincaré wavered at times
 between what later came to be distinguished as the homological and homotopical as-
 pects of this notion, ! 2 so it is hardly surprising that physicists like Maxwell and Thomson
 struggled with this ambiguity as well. Nevertheless, they were able to make substan-
 tial uses of the idea of connectivity in studying physical problems where this notion
 seemed relevant to them. The main body of the following study will be devoted to these
 developments and their implications.
 Concerning the notion of dimension, it has often been pointed out that at mid century

 it was quite difficult to speak, like Grassmann or Riemann, of η-fold extended quantities
 without entering into conflict with the traditional idea that physical space has no more
 than three dimensions. A related, but different task, however, is to describe how ideas

 about a space or spaces of higher dimensions finally found their way into physics lectures
 and books, sometimes combined with a defence of the number 3 or, occasionally, with
 brief speculations about how the world would look if real space had more than three
 dimensions. Moreover, also the notion of connectivity came to be applied to the issue
 of the topological structure of physical space, first by Clifford, and later by Klein and
 Killing. As we shall see, within this strand of the transmission of topological notions,
 the need for technical clarifications also grew significantly.13

 11 See (Scholz 1980, Section IV.2) on the contributions of Klein and Schläfli.
 12 See e.g. (Hirsch 1978, Section 10.2.3).
 1J A third topological notion, the uses or whicn coula be traced in tne interaction oetween
 natural philosophy and mathematics, is the fundamental notion of continuity. Also this would make
 an interesting subject of a narrative extending the perspective of the present study. Since, however,
 the uses of this notion - for instance, in Clifford's and Poincaré's writings on the philosophy of

This content downloaded from 129.215.149.99 on Thu, 02 Feb 2017 10:51:18 UTC
All use subject to http://about.jstor.org/terms



 Topology, Matter, and Space, I 307

 § 7. Let me now give a more concrete description of the procedure which I have
 tried to follow. In the first place, specific and substantial uses of the notion of dimension

 or connectivity in the context of natural philosophy were taken up into what might be
 called the basic chronicle underlying my historical narrative.14 At the beginning of each
 section, the respective part of this basic chronicle will be given. However, such lists
 of events are in themselves not a sufficient basis for producing a coherent historical
 narrative. Detailed descriptions of the events listed in the basic chronicle invariably
 suggest causal and motivational relationships with further historical events which did
 not necessarily have a topological cognitive content. In fact, in the present study they
 range from simple social events like the first encounter of Helmholtz and Thomson in
 Bad Kreuznach in the summer of 1856 to experimental illustrations of vortex motion, the
 Cambridge Tripos, and the invention of a graphical notation for chemical structure. These
 events were added to the basic chronicle in order to form what I will call the extended

 chronicle. This chronicle will be implicit in the text; it is not given as a separate list. The
 third step, then, consisted in constructing a narrative exhibiting the relations between
 the events in the basic chronicle and those in the extended chronicle. In particular, the
 narrative tries to account in a specific way for the cognitive contents of the events in
 the basic chronicle. In practice, these steps had to be iterated and adjusted to each other
 several times. In all three steps, there were choices to be made, in particular, to decide
 at what level of "thickness" (to use a notion made popular by (Geertz 1973)) to stop.

 One of the criteria which guides the type of historical inquiry carried out below
 is the achievement of a certain form of causal coherence in the historical narrative.

 A narrative is causally coherent, if the events forming its basic chronicle are given
 an interpretation that shows their place in a causally connected course of scientific
 action. To satisfy this criterion in the present case, I found it necessary to understand
 the occurences of the notions of dimension and connectivity in natural philosophy in
 the spirit of what Buchwald and Schweber have recently called "pragmatic realism" in
 the history of science (Buchwald 1995, 345 ff.). Adapted to the case of mathematical
 practice in the domain of pure mathematics as well as in natural philosophy, pragmatic
 realism means that the historian insists on both the objective character of mathematical
 knowledge and the fact that this knowledge was constructed in a fabric of social and
 communicative action. It is the weave of concrete scientific action rather than an abstract

 life of mathematical ideas that historians need to analyze in a detailed and realistic way if
 they wish to adhere to the goal of producing a causally coherent account of developments
 like the emergence of topology.

 science - are more relevant for exploring the scientific contexts of the emergence of set-theoretic
 topology rather than geometric and algebraic topology, it will only occasionally be touched upon
 in the following.

 Here I make use of the historiographie distinction between chronicle and narrative, rather
 traditional in general history. Even if often criticised, this distinction makes much sense if it is

 understood not as referring to two different kinds of historical writing, but rather as denoting
 two layers present in any historical text. As such, it has been made the core of Hayden White's
 impressive project of a Meta-History (White 1973, White 1987), the full implications of which
 for the history of science still remain to be drawn.
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 It seems necessary to add a remark on what historical causality is taken to mean in
 the following. Causal explanations of historical events have often been thought to be
 connected with formulations of historical laws accounting for individual events. Cutting
 short the long debate which this position has raised, I wish to emphasize that I take a
 different view of historical causality. Without further argument I take as starting point
 a Weberian picture of historical, social practice as composed of individual actions in
 situations structured both by material boundary conditions and an intellectual horizon
 shaping individual intentions.15 Material conditions and Sinnhorizont of scientific work
 are themselves, at least partially, results of social practice. The events making up what I
 called above the chronicle of a historical narrative are particular events in this practice,
 especially intellectual actions with a substantial cognitive content. Historical causality,
 then, is a complex network of relations between such individual action-events, including
 their concrete motivations and intentions. The latter, in turn, are causally related to
 previous events in the weave of scientific or social practice. In particular, causal relations
 are not necessarily governed by general historical laws. This view of causality conforms
 to the Weberian position that "a correct causal interpretation of a concrete action means:
 that both the external course and the motive [of the action] are recognized as accurate
 and at the same time are understandable as meaningful."16
 Of course, there is no easy access to this level of historical reality, nor can one expect

 to find some unique account, since no complex event in scientific practice admits just
 one adequate description. It should be clear, then, that the kind of realism advocated
 here does not preclude a certain degree of perspectivism on the side of the historian.
 Nevertheless, I cannot follow the view that in consequence of this difficulty, historiog-

 raphy should dispense with the attempt to provide realistic, causally coherent narratives
 altogether. Different realistic stories about the same tangles of scientific practice are not
 only possible but desirable and stimulating for historical discourse.
 On the historiographie level, pragmatic realism has consequences on a number of

 different levels. On the one hand, it requires close attention to technical issues, at least
 in some places. If the basic chronicle, as in the present case, is to include events like
 proofs of mathematical results, a narrative which situates them in mathematical practice
 must show at least the main lines of how these results came about, in what ways they
 were based on previous knowledge, and what kinds of aims motivated these findings. On
 the other hand, the tendency to view the modern, systematic motivations for posing and
 solving particular problems as driving forces behind the actual historical development
 - still prevalent in many contributions to the history of topology - has to be replaced
 by paying attention to the actual intentional context of historical research. Under the
 restriction to explicitly documented intentions, legitimations, etc., even a sceptic about
 intentional history might consider the result as a form of "discourse analysis", namely
 of the discourse about intentions, the function of which in scientific practice was the

 negotiation of legitimacy for a particular area of research.

 15 Weber's basic framework is concisely described in (Weber 1921, ch. I).
 10 See (Weber 1921, ch. I.I, § 1.7). Here and in the following, all additions m square brackets

 are mine.
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 § 8. Such a historical analysis allows one to show, to take a specific example, that two
 events like Listing's treatment of knots in his Vorstudien zur Topologie and Taiťs classi-
 fication project were not just related by the same topic (a relationship that does not neces-
 sarily imply a causal connection) or the fact that Tait eventually came to read Listing and
 subsequently used the latter's remarks for his own research. Rather, we can follow a much
 more complex series of historical events involving several other scientists (including
 Gauss, Riemann, Helmholtz, Thomson, and Maxwell) and research interests (including
 vortex motion, electrodynamics, and atomism) that enables us to explain how topological
 ideas actually found their way into the Scottish context and motivated Tait in his actions.

 In a similar way, I hope the present study shows at least part of the extension of
 the chronicle that is necessary for giving a causally coherent history of the complicated
 process of discipline formation leading to modern topology. Further studies are required
 to complement this extension of the chronicle with a better causal understanding of the
 developments within pure mathematics, first and foremost in algebraic function theory
 and algebraic geometry. In the end, it may turn out that in some respects, for instance
 concerning the relative importance of various developments, the existing account of the
 emergence of topology can be considered as substantially correct. Even if so, however,
 this should be the result of thorough historical studies rather than an implicit assumption
 drawn from the conceptual organisation of today's mathematical knowledge.

 Π. Ether vortices, constitution of matter, and the topology of space regions

 Chronicle: Ether vortices and topology

 1 847 Listing's essay Vorstudien zur Topologie tries to convince scientists of the im-
 portance of topology. The phenomena of orientation and knotting play a central
 role.

 1 851 , 1 857 Riemann 's papers on complex analysis present his ideas on connectivity.
 1 858 Helmholtz studies vortex motion of perfect fluids and mentions connectivity

 numbers of spatial regions.
 1 860 Tait reads Helmholtz and begins thinking about quaternion analysis.
 1 861 Listing publishes his Census der räumlichen Complexe.
 1 867 Gauss's fragments on electromagnetism are published, including the linking in-

 tegral. Tait performs smoke ring experiments in W. Thomson's presence. Thom-
 son speculates about vortex atoms. Tait publishes his translation of Helmholtz's
 Wirbelbewegung. Maxwell, Thomson and Tait begin to correspond on topolog-
 ical matters.

 1 868- 1 869 Thomson reproves and extends Helmholtz's results on vortex motion, with spe-
 cial emphasis on irrotational flows (in modern terms: harmonic vector fields) in
 multiply connected space regions.

 1869 Maxwell reports on Listing's Census der räumlichen Complexe to the London
 Mathematical Society.

 1 870 Tait writes On Green 's and other allied theorems, combining quaternion meth-
 ods and ideas on fluid motion. Maxwell discusses the topology of graphs in
 papers on statics.

 1873 Maxwell publishes his Treatise, including Listing's topological ideas, Thom-
 son's results on flows in multiply connected regions and Gauss's linking integral.
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 Chronicle: Ether vortices and topology

 1 870's Thomson tries to prove the dynamical stability of simple vortex configurations
 and to determine their fundamental vibrations.

 1882 J. J. Thomson receives the Adams Prize for an essay on vortex motion which
 includes an attempt to explain chemical valency and chemical compounds in
 terms of vortex atoms.

 late 1 880's W. Thomson gradually abandons the vortex atom theory.

 § 9. For one or two decades in the late 19th century, some speculations on the consti-
 tution of matter were intensely discussed among British natural philosophers in which
 topological ideas entered at a very fundamental level. These speculations, initiated by
 William Thomson in 1867, tried to integrate two fundamental tenets of mid- 19th-century

 natural philosophy into a unified picture of matter and motion.17 The first of these was a
 mechanical, or rather dynamical world view ; the second an atomistic approach, forcefully
 supported first by chemistry, then by spectrum analysis and statistical mechanics, both
 of which began to blossom in the 1860's. These two visions did not, at first, appear easy
 to integrate. Many natural philosophers up to the middle of the 19th century conceived of

 atoms as small material (or perhaps even immaterial) objects, interacting with each other
 by some sort of action at a distance. Of particular influence was the theory proposed
 by Boscovich in the late 18th century which made atoms simply force centres, with a
 force law to be adjusted to save the phenomena. A dynamical theory, on the other hand,
 would try to explain matter and its interactions by a Lagrangian formalism describing the
 motion of a continuous medium; in such a medium, actions would be propagated by the
 contiguity of the smallest parts of the medium. For those adhering to the latter view, like
 William Thomson, in many ways the leading figure in British natural philosophy during
 this period, the idea of indestructible atoms therefore represented an important challenge.

 One way to reconcile atomism and dynamical theory was to look for stable dynamical
 configurations in a universal medium that could be regarded as atoms. Already in the
 1850's, Thomson had considered the possibility that such configurations could arise
 from rotary motion in the ether. Due, however, to the lack of both empirical evidence
 of the permanence of vortex motion in real fluids as well as mathematical methods to
 treat this kind of motion, Thomson remained sceptical and the idea was not pursued for
 several years. When Thomson took up his speculations again in the years following 1867
 and elaborated them into an ambitious but finally unsuccessful research program, the
 crucial new ingredient was the idea that the stability of atoms could perhaps be explained
 by the permanence of certain topological properties of fluid motion.

 In this section, the origins of this idea and its implications for the research of British

 natural philosophers, mainly Thomson, Tait, and Maxwell, will be discussed. For the
 developments to be described, Riemann's notion of connectivity became both an impor-
 tant technical tool and a notion inspiring far-reaching ideas on the variety of chemical
 elements. Moreover, the transmission of topological ideas from their Göttingen ori-

 17 For treatments of these developments from a physical point of view, see (Whittaker 1951),
 (Silliman 1963), (Smith and Wise 1989), and in particular the concise study (Siegel 1981).
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 gins to Scotland went well beyond a mere awareness of the literature on the part of
 the Scottish physicists. Oral and written communication were involved, the messenger
 from Germany being first Helmholtz and later Listing. An intense exchange of ideas in
 correspondence accompanied the efforts to understand the new ideas. In the course of
 these communications and subsequent uses of topological notions and techniques, the
 Scottish physicists became more and more aware of the fact that they were involved in
 an ongoing process of the formation of a new mathematical field, and they gradually
 produced a significant body of pre-disciplinary topological results.

 Helmholtz studies "Wirbelbewegung"

 § 10. The event which in many ways triggered the developments in question was the
 publication of an article by Hermann v. Helmholtz in the 1858 volume of Crelle's Journal,
 Ueber Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen
 entsprechen.1* In this article, Helmholtz dealt with the equations of the motion of a
 perfect fluid, i.e. an incompressible fluid without friction, in the case where the global
 existence of a velocity potential was not assumed. Helmholtz wrote these equations
 (often referred to as Euler's equations) in the form

 1 dp du du du du
 x - T-r = -r + UT + υτ~ + WT~ h dx dt dx dy dz

 1 dp dv dv dv dv
 Y - --f- = - + u- + v- + w -

 h dy dt dx dy dz
 _ 1 dp dw dw dw dw
 Ζ _ - -- = - - h u -

 h dz dt dx dy dz
 du dv dw

 dx dy dz

 where μ, υ, w are the velocity components of the fluid at a point with coordinates jc, y, z,
 the components of the external force being given by Χ, Υ, Ζ whereas h and ρ denote the
 density and the pressure of the fluid, respectively. All functions involved were implicitly
 supposed to be as smooth as calculations required.19 In earlier treatments, mainly by
 Euler and Lagrange, it had usually been supposed that the fluid velocity derives from a
 potential function, i.e. that there exists a function φ such that

 18 Brief discussions of Helmholtz's article can be found in (Silliman 1963), (Siegel 1981),
 (Buchwald 1985, appendix 6), (Archibald 1989).
 19 How this system of equations came to be written in a modern, vectorial form like

 1 dv
 F--Vp= - + (v.'7)Vy

 η at

 0 = V-υ,

 is part of the story to be told, so unless stated otherwise, I adhere to the original notations.
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 αφ αφ αφ 20
 αχ dy dz

 In this case of potential flows, the solution of the equations of motion could be reduced
 to finding appropriate solutions φ of the Laplace equation which results in this case from
 the last of the Euler equations. The pressure function ρ could then be found by means
 of simple integrations. At this point, Helmholtz added a remark and a footnote which
 came to be of importance later on. "It is well known," he wrote, "that every function φ,
 which satisfies the above [i.e. the Laplace] equation in a simply connected space may
 be expressed as the potential of a certain distribution of magnetic masses on the surface
 of the space." (Helmholtz 1858, 105 f.) This remark not only connected fluid motion
 and magnetism, but also introduced a notion which at that time was probably unknown
 to most of his readers: that of simple connectivity. Already in the introduction, which
 presented a survey of the novelties of the article, Helmholtz had given a definition of
 simple connectivity, extending Riemann's earlier notion to three dimensions:

 I take this expression in the same sense in which Riemann [in his article on
 Abelian functions, published in the previous volume of Crelle's Journal (Riemann
 1857)] speaks of simply and multiply connected surfaces. An η -ply connected
 space is thus one in which η - 1, but no more cutting surfaces [Schnittflächen]
 can be placed without dissecting the space into two completely disjoint parts. A
 [solid] ring is thus, in this sense, a doubly connected space. The cutting surfaces
 must be completely bounded by the line in which they cut the surface bounding
 the space. (Helmholtz 1858, 103.)

 The footnote which Helmholtz added to his remark on potentials in simply connected
 spaces continued by pointing to a mathematical difficulty that arose if one considered
 multiply connected regions of space. In this case, he argued, there exist multi-valued
 functions satisfying the Laplace equation (a local condition), and for such functions
 Green's basic integral formula as well as various of its consequences were no longer valid.
 This remark about potentials in topologically nontrivial regions actually had to do

 with Helmholtz's problem proper, the study of flows which were not supposed to be
 potential flows, as he set out to show. Locally, a potential function existed if and only if
 the set of equations

 du dv dv dw dw du

 dy dx dz dy dx dz

 was satisfied. Accordingly, Helmholtz began his investigation by developing a mechani-
 cal interpretation for these equations. Using infinitesimal considerations based on Euler's
 equations, he showed that the instantaneous movement of an infinitely small portion of
 the fluid could be decomposed into a translation, an expansion and a compression along
 three principal, mutually orthogonal directions, as well as a rotation around an axis with
 direction cosines proportional to

 dv dw dw du _ du dv _
 ΊΓζ ~ ~dy =: 7x~ ~ lz =: _ l7> ly " dx~ _ ~' '

 20 Euler, though, had also pointed to solutions without a potential; see (Helmholtz 1 858, 1 03 f.).
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 and with angular velocity proportional to the square root of ξ2 + η2 + ζ2.21 This con-
 sideration must be viewed as the origin of the notion of the rotation of a vector field;
 how vectors came in will be discussed below.

 A flow that did not everywhere admit local potential functions was thus rightly called
 a Wirbelbewegung: At least in some points of the fluid, the fluid particles experienced an
 infinitesimal rotation as just described. To capture these rotations, Helmholtz introduced
 two new terms: vortex lines (Wirbel fäden), defined as lines the direction of which coin-
 cided everywhere with the local direction of the axis of rotation of the fluid (in modern
 terms: integral curves of the rotation field), and vortex tubes (Wirbelfäden), bundles of
 vortex lines emerging from infinitely small area elements transverse to the rotation axes
 (see Fig. 3). Helmholtz went on to establish three important propositions about this ro-
 tary motion under the supposition that the external forces were derived from a potential
 function. First, no particle of the fluid which was not in rotation initially would ever begin

 to rotate. Second, those fluid particles constituting a vortex line at a given moment would
 constitute a vortex line for all times. Thus it was possible to speak of "the same" vortex
 line moving along in the fluid. Third, the product of the area of a cross section of a vortex
 tube and the angular velocity of the rotation at that point (called the strength of the vor-

 tex tube) was constant along the tube and in time. From this last proposition, Helmholtz
 concluded that vortex tubes either had to run back into themselves or else end at the

 boundary of the space in which the whole fluid was contained (Helmholtz 1858, 103).

 That Helmholtz was ready to draw this last conclusion shows that he had not con-
 sidered the topological features of fluid flows very seriously. In fact, viewed from a
 modern perspective, Helmholtz's three propositions are sound theorems even for finite
 vortex tubes, but the assertion about the closing of vortex tubes requires further quali-
 fications since topological complications like branching or aperiodic vortex lines may
 arise (see Fig 2.)22

 / //fit ©l'>^ :■
 ' 111 ' // ι

 Fig. 2. Vortex lines, vortex tubes and topological complications
 (small arrows indicate the motion of the fluid)

 21 Here and in the following, I have suppressed a factor 2 which occurs on the right hand sides of

 these equations. In modern terms, the second and third component of Helmholtz's decomposition
 correspond to the symmetric and the antisymmetric part of the differential of the flow map,
 άΦ, : R3 -► R3, in the limit t -+ 0.
 22 This criticism seems to be fairly recent. See (Chorin and Marsden 1992, 27).
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 Unaware of such difficulties, the hydrodynamical textbook tradition of the 19th
 century typically regarded the implication of Helmholtz's third theorem as a proved
 proposition.23 In any case, Helmholtz's theorems correctly showed that if a closed vortex
 line existed at a given instant in a perfect fluid, those fluid particles of which it consisted
 would forever remain on a closed vortex line, however distorted in shape.
 §11. The above theorems led Helmholtz to look at the problem of vortex motion in

 the following way: Suppose the dynamics of the vortex lines, i.e. the field (£, η, ζ ), are
 known. Was it then possible to determine the motion of a fluid as a whole? The answer
 was yes and the solution again depended on a simple application of potential theory. For
 a fixed point of time, Helmholtz looked for new quantities P, L, Ν, Μ satisfying

 d2L + d2L + (PL_ Ix2 + ly2 + 1? ~?
 d2M d2M d2M _
 1χΤ~{~~^Τ^Ί^~η _
 d2N d2N d2N _
 Ίχ* + ly2 + ~d? _ " ζ
 d2P d2P d2P

 UČ + ly2 + 1Ž2

 and appropriate boundary conditions. Then a solution of the Euler equations was
 given by:

 _ dP dN dM
 dx dy dz

 _ dP dL dN
 dy dz dx

 _dP dM dL_
 dz dx dy

 Of course, Helmholtz knew how to find L, Μ, Ν and Ρ by the standard integral formulas.24

 The point of this solution was that it allowed Helmholtz to extend the hydrodynamic-
 electromagnetical analogy to the case of flows without a velocity potential. The motion
 of the fluid at a given point of time turned out to be of exactly the same form as the
 magnetic field induced by a stationary distribution of electrical currents corresponding
 to the given distribution of vortex lines in the fluid. Due to developments which will
 be described below, this analogy is nowadays simply expressed by the corresponding
 Maxwell equation for the vacuum (ignoring constants):

 rot Η = j .

 23 See for instance (Kirchhoff 1876, 169), (Lamb 1879, 149), (Love 1887, 326).
 24 See (Helmholtz 1858, 1 16). In modern terms, Helmholtz decomposed the velocity field into

 a gradient and a pure rotation υ = V Ρ + rot Λ, where A = (LyM,N) denotes what we would
 call a vector potential. Modern authors call this the "Helmholtz decomposition" of vector fields;
 as such it forms one of the starting points of Hodge theory; see e.g. (Schwarz 1995, 1).
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 Helmholtz worked it out by verifying the analogue of the law for the force exerted
 on a "magnetic particle" (a magnetic monopole) by an infinitesimal current element.25
 The analogy could be made both ways: it could be used to visualize vortex motion in
 fluids, but it could also be used to visualize electromagnetical induction by fluid mo-
 tion. These possibilities, which form part of a general tendency in 19th-century natural
 philosophy to think in terms of analogies between different domains of physical phenom-
 ena, would become important later on when they piqued Maxwell's interest in vortex
 motion.26

 The hydrodynamic-electromagnetical analogy induced Helmholtz to consider the
 following special type of vortex motion. He supposed the vortex lines of a perfect fluid
 to be confined to a certain finite number of distinct vortex tubes (which need not be
 infinitesimally thin). In this situation, the region outside these vortex tubes was multiply
 connected, while the flow in this region satisfied

 ξ = η = ζ = 0,

 so that locally a velocity potential existed. Supposing the motion and strength of the
 vortex tubes to be known, the solution of the Euler equations amounted to finding what
 contemporary authors called a many-valued potential function in the region surrounding
 the moving vortices. In addition, appropriate boundary conditions on the surfaces of the
 vortex tubes and on the bounding surface of the spatial region under consideration had to

 be satisfied. Thus, for a great number of cases, the study of vortex motion was equivalent
 to potential theory in multiply connected regions.

 It was at this point that topology entered the discussion in a crucial way. Helmholtz
 was quite aware of this implication, as is indicated by a further gesture toward Riemann
 that he made in discussing his results. Integrals of the hydrodynamical equations, he
 wrote, which were based on a single- valued velocity potential, could be called "integrals
 of the first kind" of the fluid equations, whereas he proposed to call solutions with many-
 valued potentials belonging to the cases just discussed "integrals of the second kind."
 (Helmholtz 1858, 120.) This extended Riemann's terminology for the classification of
 Abelian integrals to the three-dimensional situation of potential flows.

 § 12. Helmholtz left the general discussion at that point. We shall see that the
 Scottish physicists took it up again and precisely at the point where Helmholtz had
 left it, giving the problem the title of the "most general motion of a fluid." Helmholtz
 concluded his paper by discussing some special cases. All of them were of the type
 described above. In particular, he treated the case where rotational motion was confined

 25 See (Helmholtz 1 858, 1 1 8). Helmholtz did not attribute this law, originally formulated by the
 French physicists Biot and Savait and further discussed by Ampère, to some particular scientist.
 It is thus unclear from whom Helmholtz took the idea. The interaction between current elements

 and "magnetic particles" had received various discussions in the German context, for instance by
 Gauss and W. Weber.

 20 See below, § 16. For a discussion of physical analogies, see (Knudsen 1976), (Siegel 1981,
 240 ff.), (Wise 1981), and (Knudsen 1985). In most cases, the analogy consisted in the fact that
 phenomena were described by solutions of Laplace's equation. Consequently, these phenomena
 admitted a description in terms of potential flows. Helmholtz also referred to this wider context
 of analogies; see (Helmholtz 1858, 119 f.).
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 to straight, parallel vortex tubes, and the case of a closed circular vortex ring. In finding
 the concrete solutions, Helmholtz used another idea which played a major role in his
 thinking, the conservation of energy. To deal with the circular vortex ring, Helmholtz
 also had to bring in elliptic integrals. In both cases, the solutions implied that straight or
 circular vortex tubes could exist only together with a motion of the parts of the fluid at
 infinite distance from the vortices; a fact which could be interpreted as saying that the
 vortex tubes acted at a distance. In particular, two parallel, straight vortex tubes would
 revolve around each other with a certain speed determined by their vortex strengths, and
 a single circular ring would move along its symmetry axis with a speed depending on
 its vortex strength. Helmholtz added a description of the behaviour to be expected from
 the movement of two circular vortex rings situated on the same symmetry axis:

 If they both have the same direction of rotation they will proceed in the same
 sense, and the ring in front will enlarge itself and move slower, while the second
 one will shrink and move faster; if the velocities of translation are not too dif-

 ferent, the second will finally reach the first and pass through it. Then the same
 game will be repeated with the other ring, so that the rings will pass alternately
 one through the other. (Helmholtz 1858, 133.)

 In the case of rotation in opposite directions, both rings slow down and enlarge.
 In the completely symmetric case of two equal rings on a line revolving in opposite
 directions, the normal component of the fluid motion in the symmetry plane is zero and
 one could thus imagine a blockading wall situated there. While Helmholtz hinted at how
 to produce nice semi-circular vortices with a spoon in a tea cup, he apparently did not
 think of performing more elaborate experiments to confirm his calculations.

 Tait reads Helmholtz

 § 13. A Scottish physicist, Peter Guthrie Tait, however, did, and with great success.
 Tait read Helmholtz's article in July 1858 and immediately made an English translation
 for his personal use. At this juncture, it was not the study of vortex rings which aroused
 his interest, but the mathematics of the opening paragraphs of the paper. Helmholtz's
 discussion of the infinitesimal motion of a perfect fluid reminded him of some formulae
 he had read five years earlier in Hamilton's Lectures on Quaternions. Sparked by this
 connection, Tait began to think seriously about quaternion analysis and its use in mathe-
 matical physics. In August 1858, he began an extensive correspondence with Hamilton
 which represents an important step in the history of the emergence of vector calculi.27
 Some months later, Tait described the event in a letter to Hamilton. The latter had asked

 Tait to tell him how he got involved with quaternions. Answering this query, Tait re-
 ported that he had begun to read Hamilton's Lectures already in 1853 but that other
 interests (more on the physical and experimental side) had prevented him from pursuing
 quaternions further. Then he continued as follows:

 27 See (Knott 191 1, ch. 4), (Crowe 1967, ch. 4), (Ewertz 1995).
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 [. . . ] it was only in August last that I suddenly bethought me of certain formulae I

 had admired years ago at p. 610 of your Lectures - and which I thought (and still
 think) likely to serve my purpose exactly. (The matter which more immediately
 suggested this to me was a paper by Helmholtz's in Crelle's Journal (Vol. LV)
 which I was reading in July last as soon as we received it, and which put the
 subject of Potentials before me in a very clear light. The title (in German) I forget
 - but an MS translation of my own which I have now beside me is headed 'Vortex

 Motion.' It refers to the integration of the general equations in Hydrodynamics
 when udx 4- vdy + wdz is not a perfect differential.)28

 What apparently captured Tait's attention was the physical picture Helmholtz's pa-
 per provided for the quaternion formulae he had learned earlier. Tait recognized that
 Helmholtz's decomposition of the motion of a perfect fluid into translation, rotation and
 deformation was expressible by quaternions in a simple and elegant way. In the following
 years, Tait worked out this insight and published the results in a series of notes, many of

 which appeared in the Proceedings of the Royal Society of Edinburgh, ajournai which
 would become the publication forum for many of the contributions to our story.

 It would take us too far away from the present subject to describe Tait's quaternionic
 arguments in any detail. Suffice it to say that the field of Helmholtz's vortex line elements

 admitted a particularly simple redescription. Using the quaternionic notation then in use
 - with i, j, k representing the imaginary units of the quaternions, Va, Sa, Ta denoting
 the vector part, scalar part, and length of a quaternion a, respectively, and

 d d d

 dx dy dz

 standing for Hamilton's differential operator - the velocity field of a fluid (u,v,w)
 was interpreted as what Hamilton and Tait called a "vector function," i.e. a function
 σ = ui + vj + wk defined on a region of Euclidean space with values in the quaternions
 and vanishing scalar part. The local rotations were then determined by the direction and
 length of the vector part of Hamilton's differential operator, applied to the given velocity
 field:

 _/T7 V.Va (dv dw dw du du dv _/T7 V.Va = -(- - - )i - (-

 dz dy dx dz dy dx

 Similarly, the scalar part of the same quantity,

 „ du dv dw
 S.Va „ = -(- + - + -),

 dx dy dz

 represented what Tait called the "cubical compression" during the infinitesimal motion
 of a fluid with velocity field σ.29

 28 Tait to Hamilton, 7 December 1858; quoted in (Knott 191 1, 127).
 When preparing his Treatise on Electricity and Magnetism, Maxwell proposed to call V. Va

 the "curl" of the vector field σ; in the second edition he changed this name to "rotation." For
 S.Va, Maxwell preferred "convergence," and Clifford was responsible for a change of sign and
 the modern term "divergence." See (Crowe 1967, 131-135).
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 In this way, Hamilton's calculus, and in particular the differential calculus associated
 with it, admitted a very intuitive physical interpretation: the basic differential operations
 on a "vector function" could be visualized by the kinematics of the fluid flow that had
 the given function as its velocity field. But not only quaternion analysis profited from
 acquiring a new, physical meaning. Quaternion formulae also helped to grasp physical
 situations which could be described in terms of fluid motion more easily. For instance,
 Tait reworked Helmholtz's hydrodynamic-electromagnetical analogy in quaternion lan-
 guage. In particular, he rewrote the differential form involved in Biot and Savart's law
 for the force exerted by an infinitesimal current element α on a magnetic particle in the
 quaternion form

 V.ap

 where ρ denoted the distance vector between current and magnetic particle (Tait 1860,
 23). Once quaternion expressions were understood, such a formula captured the geometry
 of the situation very clearly. Given the physical beliefs of the time, which relied heavily
 on all kinds of analogies to flow phenomena, quaternion analysis seemed to Tait an ideal
 mathematical instrument, and he felt justified in asserting "that the next grand extensions

 of mathematical physics will, in all likelihood, be furnished by quaternions." (Tait 1863,
 117.) The amalgamation of quaternion analysis and flow thinking, made possible by
 Helmholtz's treatment of vortex motion, thus served as the central motivation behind

 the crusade for quaternion methods which Tait was about to initiate.
 After Helmholtz's results had found Thomson's interest for reasons that will be de-

 scribed below, Tait not only published his translation of Helmholtz's paper (Tait 1867)
 but he also showed how to write the basic equations of fluid motion in a condensed form
 using quaternions. In a short note entitled On the most general motion of an incompress-
 ible perfect fluid (Tait 1870a), he presented them as follows:

 VP - 'Vp = Dao
 SVa = 0 ,

 where r was the density of the fluid, Ρ the potential of the applied forces, and Da
 denoted, for a given vector σ = ui + vj + wk, the differential operator

 d d d d
 Da = -r^-u-^-v-^-w- .

 dt dx dy dz

 This rewriting of the fluid equations represented an important step toward the modern,
 vectorial formulation. With great ease, Tait could now rederive some of Helmholtz's
 statements from some general formulae of vector analysis (or, more precisely, quaternion
 analysis). An example was the fact that DaVa vanishes whenever Va does, which
 implied (by taking vector parts) that fluid particles moving irrotationally at one instant
 would continue to move irrotationally forever.

 In the same year, Tait published a treatment of the basic mathematical tools for
 fluid motion and potential theory, entitled On Green 's and other allied theorems (Tait
 1870b). Again, the physical interpretation of Hamilton's calculus enabled Tait to reduce
 the respective results to one basic quaternion formula. This earned Tait great praise from
 Maxwell's side. In an undated letter sent to Thomson sometime in 1871, Maxwell wrote:
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 You should let the world know that the true source of mathematical methods

 as applicable to physics is to be found in the Proceedings of the Edinburgh
 F.R.S.E's. The volume- surface- and line-integrals of vectors and quaternions
 and their properties as in the course of being worked out by T' is worth all that
 is going on in other seats of learning.30

 Those British scientists who followed Tait's innovations, either with sympathy like
 Maxwell or Clifford, or with reservation like Thomson, were aware of their roots in

 Helmholtz's treatment of vortex motion. For instance, Clifford, whose interest in quater-
 nions will play an important role in the second part of this study, noted in 1877 that
 Helmholtz's procedure for finding the velocity of a fluid given its vorticity came down
 to solving the basic quaternionic integration problem, i.e. to determine a quaternion
 function, σ : IR3 -* Η, such that Va equals a given quaternion function (Clifford 1877,
 407).31

 Thomson speculates about matter

 § 14. Quaternion or vector methods (still subsumed under the former) helped Tait
 and others to elaborate on the mathematical description of vortex motion of a continuous
 medium. In this way, the ground was also prepared for an understanding of some topo-
 logical features of fluid motion. The crucial step in this respect was taken by William
 Thomson, who, however, did not share Tait's enthusiasm concerning quaternion meth-
 ods.32 In order to pique Thomson's interest, a less mathematical and more experimental
 approach to vortices was needed. Again, Tait played the key role. Tait had been so im-
 pressed by Helmholtz's general theorems on the dynamical invariance of vortices that
 he eventually decided to illustrate these in his physics lectures by carefully devised ex-
 periments with smoke rings.33 Tait used two boxes with a circular hole on one side and a

 rubber diaphragm on the opposite side. Within the boxes, a chemical agent (magnesium
 sulfate) produced a thick, white smoke. When struck on the rubber diaphragm, circu-
 lar smoke rings shot out of the holes. The boxes could be placed in various positions,
 causing the smoke rings to interact just as Helmholtz had indicated (see Fig. 3).

 Since Thomson's and Tait's own account, the story that one of Tait's earliest perfor-
 mances of the smoke-ring experiments inspired Thomson to his far-reaching speculation
 on vortex atoms belongs to the stock of history of physics.34 Seeing how the smoke rings
 preserved their identity when interacting with each other, Thomson hit upon an idea:

 30 Maxwell to Thomson, ca. 1871. Glasgow University Library, Kelvin Papers, M 32. This
 collection will in the following be denoted by Kelvin Papers Glasgow.

 For further details on Tait's campaign for quaternion methods and their physical applications
 see(Ewertz 1995).

 ÒÁ See e.g. (Knott 1911, 185), (Crowe 1967, 1 19 f.).
 Quite generally, Tait placed high value on experimental illustrations as a means of teaching;

 cf. his On the teaching of natural philosophy (Tait 1878). On Taiťs teaching, see also (Wilson
 1991).

 •~ See (Thomson 1867), Tait (1876a, 290 ff.), (Thompson 1910, 510 ff.), and (Knott 191 1, 68
 f.).
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 Fig. 3. Taiťs smoke rings (Tait 1876a, 292)

 why should not closed vortices provide the kind of stable dynamical configuration in a
 universal medium in accordance with his general beliefs regarding the nature of atoms?
 As a matter of fact, the development of Thomson's ideas was slightly more compli-

 cated. Recent authors have pointed out that since the mid-1850's, Thomson had explored
 various ways of conceiving the space between the smallest parts of matter as filled with
 a continuous and material medium undergoing rotary motions around material atoms
 and molecules, "vortical or other."35 These ideas drew on earlier ideas by the British
 physicist and engineer W. J. M. Rankine and on Thomson's own interpretation of Fara-
 day's discovery of the influence of magnetism on the polarisation of light. At that time,
 Thomson was still undecided about whether to consider material atoms as a different

 kind of body from those comprising a continuous space-filling medium, or as parts of
 the fluid medium itself. As there was no clear empirical evidence indicating how to make
 these ideas precise, and since sufficiently developed mathematical methods to treat such
 a complicated dynamics did not exist, Thomson's attempts to work out his speculations
 into a solid theory failed for the time being.36 Given these circumstances, it may seem
 surprising that Thomson did not immediately pursue Helmholtz's ideas after becoming
 aware of them in 1858.37 Thomson's delayed reaction may have been due to his occu-
 pation with other projects at the time, like the atlantic cable project or the writing of the
 Treatise on Natural Philosophy together with Tait. During the 1860's, however, general
 interest in atomistic conceptions was greatly enhanced by the progress in experimental

 35 (Thomson 1856, 200). See the studies by (Siegel 1981), (Knudsen 1985), and (Smith and
 Wise 1989, chs. 1 1 and 12), on which the following discussion is based.

 36 In the correspondence between Thomson and Stokes during these years, Stokes repeatedly
 took the position of a sceptic of Thomson's ideas; see (Smith and Wise 1989, 408-412).

 37 The two had first met each other during a stay in Bad Kreuznach, a health resort in the
 Rhineland, in the summer of 1856, and afterwards they developed a close personal relationship.
 Thomson read Helmholtz's paper in late 1858 and intended to discuss its contents with him, as he
 wrote to Helmholtz in May 1 859; see (Thompson 1910, 402). Both advocated what might be called
 a hydrodynamical world view, and their correspondence repeatedly addressed hydrodynamical
 matters. For instance, in 1859, Helmholtz wrote to Thomson about the basic equations of fluid
 motion with friction, proposing a set of equations generalizing the one he had used in his 1858
 paper (Cambridge University Library, Kelvin Papers, Add. 7342, H 65; in the following, I will
 refer to this collection as Kelvin Papers Cambridge).
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 spectrum analysis and statistical thermodynamics which made the need for a theory of
 atomic structure more and more urgent.

 Ironically enough, another reason for the delay may have resulted from Tait's quater-
 nionic reformulation of Helmholtz's ideas. By focussing on infinitesimal considerations,
 Tait's treatment may well have given Thomson the impression that Helmholtz's theory
 had an essentially abstract mathematical character rather than being of serious phys-
 ical significance. In particular, Tait had never emphasized the global implication of
 Helmholtz's results, namely the permanence of the topological type of closed vortex
 tubes in the motion of an incompressible perfect fluid. It seems that it was precisely this
 idea of topological stability that Thomson finally grasped on the occasion of viewing
 Tait's experimental illustrations. Once Thomson recognized that Helmholtz's theorems
 enabled him to work out one of the variants of his earlier ether speculations, he became
 seriously engaged in developing a theory of vortex atoms in which topological consid-
 erations came to play a crucial role. This is documented already in the first, enthusiastic
 letter on his new ideas that Thomson wrote to Helmholtz in January 1867:

 Just now, however, Wirbelbewegungen have displaced everything else, since a
 few days ago Tait showed me in Edinburgh a magnificient way of producing
 them. [. . . ] We sometimes can make one ring shoot through another, illustrating
 perfectly your description; when one ring passes near another, each is much
 disturbed, and is seen to be in a state of violent vibration for a few seconds,
 till it settles again into its circular form. [. . . ] The vibrations make a beautiful
 subject for mathematical work. The solution for the longitudinal vibration of a
 straight vortex column comes out easily enough. The absolute permanence of
 the rotation, and the unchangeable relation you have proved between it and the
 portion of the fluid once acquiring such motion in a perfect fluid, shows that if
 there is a perfect fluid all through space, constituting the substance of all matter, a

 vortex ring would be as permanent as the solid hard atoms assumed by Lucretius
 and his followers (and predecessors) to account for the permanent properties of
 bodies (as gold, lead, etc.) and the differences of their characters. Thus, if two
 vortex rings were once created in a perfect fluid, passing through one another like

 links of a chain, they never could come into collision, or break one another, they
 would form an indestructible atom; every variety of combinations might exist.
 Thus a long chain of vortex rings, or three rings, each running through each of
 the other, would give each very characteristic reactions upon other such kinetic
 atoms.38

 In these lines, Thomson clearly spelled out the core of his speculations, namely that
 closed vortex lines or tubes manifested the required permanence and stability. Thus, topo-
 logically different, linked or knotted vortices might account for the variety of chemical
 elements. At the same time, the smoke ring experiment showed that collisions between
 vortex rings produced vibrations and thus hinted at a possible explanation of spectra.
 As Maxwell later pointed out in a very favourable review of Thomson's theory in the

 38 Thomson to Helmholtz, 22 January 1867; quoted in (Thompson 1910, 513-516).
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 Encyclopedia Britannica, these ideas represented the first candidate for an atomic the-
 ory which "saved appearances," and did so not by introducing new hypotheses for every
 aspect of atoms to be accounted for but by deriving them from the laws of motion of
 a more primitive object, the universal medium (Maxwell 1875, 471). In particular, the
 unity of a dynamical theory of physical phenomena was preserved. Actually, Thomson
 felt his ideas had one additional feature that recommended them, namely they left a
 role open for a creative power who could once and for all institute vortex motion in the
 universal plenum. Thus not only physical appearances and dynamical theory could be
 saved but theology as well!39
 § 15. Thomson's bold speculations were more akin to a huge research program than

 a specific, well-pondered physical conjecture. The main task of working out the program
 would lie in the hands of "pure mathematical analysis," as Maxwell later put it. It was clear

 that the mathematical methods required would be difficult to employ and, in parts, they
 would even have to be created virtually from scratch. By 1875, Maxwell's verdict was
 still: "the difficulties of this method are enormous, but the glory of surmounting them

 would be unique." (Maxwell 1875, 472.) Very much the same feeling was expressed
 in Thomson's first paper on vortex atoms (Thomson 1867, 2). There, Thomson also
 pointed out that one part of the mathematical difficulties he anticipated had to do with
 the topological features of vortex motion.

 Diagrams and wire models were shown to the Society to illustrate knotted or
 knitted vortex atoms, the endless variety of which is infinitely more than sufficient

 to explain the varieties and allotropies of known simple bodies and their mutual
 affinities. It is to be remarked that two ring atoms linked together or one knotted

 in any manner with its ends meeting, constitute a system which, however it
 may be altered in shape, can never deviate from its own peculiarity of multiple
 continuity. Thomson 1867, 3.)

 The last six words represent a first attempt to hint at what we would call the topo-
 logical type of the knot or link in space. It is clear from Thomson's work that he did
 not distinguish this from the topological type of the space region surrounding the knot
 or link, i.e. its complement.40 In the same paper, Thomson tried to distinguish between
 "degree and quality of multiple continuity." While the former notion, later translated
 by Tait as "degree of connectivity" in order to avoid confusion with the usual idea of
 continuity,41 referred to Riemann's and Helmholtz's Zusammenhangsordnung, the latter
 expression apparently was intended to capture those aspects of knots and links which

 39 See (Thomson 1867, 1). For further information on the metaphysical background of vortex
 atoms, see Section V below.
 40 The 19th-century physicists had definitely no means to imagine that the topological type
 of two knot or link complements might be the same while the knots or links themselves were
 inequivalent. The question was first raised by (Tietze 1908). (Whitehead 1937) then pointed out
 by a simple example that different links could indeed have homeomorphic complements, but it
 took a long time before (Gordon and Luecke 1989) proved that this cannot happen for knots.
 41 See Tait to Thomson, 1 8 May 1 867; Kelvin Papers Glasgow, Τ 8 1 . In this letter, Tait reported
 on his decision to translate the German zusammenhängend as Connected' rather than 'continuous;'
 moreover Tait indicated that he had been in touch with Helmholtz concerning the translation.
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 were not determined by the Zusammenhangsordnung. Thomson was prepared to admit
 that he was "not yet sufficiently acquainted with Riemann's remarkable researches on
 this branch of analytical geometry to know whether or not all the kinds of multiple con-
 tinuity now suggested are included in his classification and nomenclature." (Thomson
 1 867, 10.) Thomson soon learned that "this kind of analytical geometry" - for the case of

 three dimensions - had not yet advanced beyond Helmholtz's adaptation of Riemann's
 Zusammenhangsordnung to regions in space, and that vortex atom theorists would have
 to work out the subject for themselves to the extent it was needed.

 Tait, whose experiments had suggested the whole project to Thomson, seems to have
 been a little sceptical about this flight of imagination initially. Before Thomson presented

 his first paper at the crucial session of the Royal Society of Edinburgh, Tait pointed out
 to him what Helmholtz had already emphasized: "Your atoms act on each other at a
 distance as two small magnets. The true application of Vortex atoms is to electricity"42
 Nevertheless, Tait promised that the paper would be read, "amply illustrated by drawings
 and experiments - in both of which Crum Brown will assist." In this way, also Tait and his

 brother-in-law, the Edinburgh chemist Alexander Crum Brown, came face to face with
 topological issues for the first time. Tait's drawings of knots, printed with Thomson's
 second paper on vortex atoms (see Fig. 4), display the same perfection so characteristic of
 his later tables of knots. For the meeting, Tait also perfected his smoke ring experiments.
 Tait's letter of 11 February 1867 captures nicely the spirit in which he was working:
 "Have you ever tried plain air in one of your two boxes. The effect is very surprising.
 - But eschew NO5 and Zn. The true thing is SO3 + NaCl. Have the NH3 rather in
 excess - and the fumes are very dense + not unpleasant. NO5 is Dangerous. - Put your
 head into a ring and feel the draught." (L.c.) The session was successfully held on 18
 February, and by April 1867, the scientific public could read Thomson's bold claims in
 the Proceedings of the R.S.E.

 Fig. 4. Candidates for atoms? Knots and links from (Thomson 1869)

 42 Tait to Thomson, 1 1 February 1 867; Kelvin Papers Glasgow, Τ 74. Here and in the following,
 all emphasis is in the originals.
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 Enter Maxwell

 § 16. Tait's warning that perhaps vortex motion was more relevant for electromag-
 netism than for the constitution of matter apparently did not impress Thomson very
 much. For Tait's former schoolmate, James Clerk Maxwell, the warning would hardly
 have been necessary since electricity and magnetism were the focus of his attention
 anyway. Soon after Thomson and Tait started to discuss vortex atoms and their possible
 topological complications, Maxwell became interested, too. His own kind of analogical
 thinking had made him sensitive to connections between fluid dynamics and electromag-
 netism, and he had been aware of the hydrodynamic-electrodynamical analogy already
 for some years.43 Thus when Maxwell learned of Thomson's speculation, he tried to
 extract and elaborate what was new to him. The main new ingredient, however, consisted
 in the topological ideas. In the course of a few months, Maxwell systematically learned
 what was known about this branch of mathematics, documenting his newly gained in-
 sights in several manuscripts. Since this material is not very well known, a fairly detailed
 description of Maxwell's engagement with topology will be included in this section.

 In November 1867, Maxwell wrote to Tait:44

 Dear Tait,
 If you have any spare copies of your translation of Helmholtz on 'Water

 twists' I should be obliged if you could send me one. I set the Helmholtz dogma
 to the Senate house [i.e. the Cambridge Tripos] in '66, and got it very nearly
 done by some men, completely as to the calculation, nearly as to the interpreta-
 tion. Thomson has set himself to spin the chains of destiny out of a fluid plenum
 as M. Scott set an eminent person to spin ropes from the sea sand, and I saw
 you had put your calculus in it too. May you both prosper and disentangle your
 formulae in proportion as you entangle your worbles. But I fear that the sim-
 plest indivisible whirl is either two embracing worbles or a worble embracing
 itself. For a simple closed worble may be easily split and the parts separated

 c

 43 In a note to (Maxwell 1861), Helmholtz's analogy was mentioned. See also (Siegel 1985,
 191 f.) and item no. 254 in (Maxwell 1995).
 44 The Maxwell-Tait correspondence is available from Cambridge University Library as a
 microfilm, Add 7655. Harman's edition (Maxwell 1990/1995) gives the Maxwell part; a few of
 Tait's letters have been published in (Knott 191 1). In the following, only the dates of their letters
 will be given.
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 _^
 though each may split into many, every one of the one set must embrace every
 one of the other. So does a knotted one.

 yours truly
 J. Clerk Maxwell.45

 Tait immediately passed the letter on to Thomson, commenting: "How about the enclosed
 from Maxwell? He doesn't know that we had done all sorts of knots - but his splitting
 up suggestion seems curious if true."46 In his next letter, Maxwell reported on further
 thoughts he had devoted to the issue. This time he made it clear that electromagnetism
 provided the physical background of his interest:

 I have amused myself with knotted curves for a day or two. It follows from
 electromagnetism that if ds and da are elements of two closed curves and r the
 distance between them and if / m η , λ μ, ν, and L Μ Ν are the direction cosines
 of ds da Sir respectively then

 [(äsäoL]MN I - - l m η = ri [...] = A I J - 2 - l m η = ri [...] = A Ann
 λ μ ν

 the integration being extended round both the curves and η being the algebraical
 number of times that one curve embraces the other in the same direction. If the

 curves are not linked together η = 0 but if η = 0 the curves are not necessarily
 independent. In [a] the two closed curves are inseparable but η = 0. In [b] the
 3 closed curves are inseparable but η = 0 for every pair of them, [c] is the
 simplest single knot on a single curve. The simplest equation I can find for it is

 45 Maxwell to Tait, 13 November 1867; quoted in (Knott 1911, 106).
 46 Tait to Thomson, 18 November 1867; Kelvin Papers Glasgow, Τ 85.
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 r = b + a cos 'θ ζ - sin §0, when c is -ve as in the figure the knot is right
 handed, when c is +ve it is left handed. A right handed knot cannot be changed
 into a left handed one.

 % <Sb A
 [a] [b] [c]

 The curve χ = sin 20, y - sin 30, ζ = sin (50 + γ) is knotted in different
 degrees according to the value of γ. When γ = 0 it is not knotted at all, when
 γ = £ it begins to be knotted and when γ = j% π it is knotted in a different way
 but to the same degree.

 999 999 099 6oo oco oco
 γ = 0 no knot γ = | γ = ^π

 y = I , a knot = a righthanded The twist of 'π
 twist of 4^π and then the ends
 linked together

 Yours truly
 J. Clerk Maxwell47

 These passages are remarkable in several respects. First, Maxwell singled out knots
 and links as objects deserving of mathematical study. Second, he pointed out that "from

 47 Maxwell to Tait, 4 December 1867.
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 electromagnetism" one could derive a number distinguishing links of different types.
 Here, Maxwell reproduced or rediscovered one of Gauss's earlier topological insights,
 an integral formula counting the linking number of two closed or infinite curves which
 Gauss recorded without proof in one of his notebooks in 1 833. Gauss's formula represents

 the first topological invariant of links ever conceived, and he was perfectly aware of the
 relevance of his result. The fragment, however, was published only in 1867. The editor,
 the Göttingen physicist Schering, chose to place it among several other fragments relating

 to the law on electromagnetic induction since the latter involves the same differential
 form as the formula for the linking number. Actually, the double integral expresses
 precisely the work done by an imaginary magnetic particle when moved along a closed
 curve in the magnetic field induced by a closed circuit.48 Maxwell's correspondence
 contains no hint that he was aware of Schering' s edition at the time of writing his
 letter to Tait.49 Thus it cannot be ascertained whether Maxwell merely recognized the
 relevance of Gauss's idea when it was published, or whether he invented the invariant for
 himself, drawing on his detailed knowledge of electromagnetic induction. In any case,
 his remark that there might be linked curves with vanishing linking number went beyond
 Gauss's earlier remarks.50 Finally, Maxwell brought a new idea to the topic: to look for
 equations which describe knots or links. His examples all represented algebraic space
 curves, a class of curves that had rarely been singled out for detailed study by earlier
 mathematicians and certainly not from a topological point of view.

 § 17. Tait was pleased by Maxwell's interest in knots, although he had not yet
 seriously thought of dealing with the topic. He immediately replied by inviting Maxwell
 to send a paper on knots to the R.S.E.:

 Dear Maxwell,

 [. . . ] Please to remember that you are a fellow of the R.S.E., and be good enough
 to send us a paper on Knots & their possible equations in 3 dimensions. We
 devised all your figures (and many more) long ago - (Crum Brown and I, working
 for Thomson) - but we never tried Equations. Give us a paper on them like a
 good fellow; whether for the Trans, or merely for the Proc.51

 48 See (Gauss 1867, 605); a discussion of this fragment is given in (Epple 1997). There I have
 shown that Schering's editorial choice was reasonable though not beyond criticism. Already in
 1 804, Gauss had encountered the phenomenon of linking in the context of astronomy. Tait, who had
 already rewritten the law of electromagnetic induction in quaternion form (see above, § 13), could
 easily translate Maxwell's argument into quaternion language. In fact, after Tait had encountered
 the linking number again in his work on knots (see below, § 35), this example furnished him with
 another paradigmatic illustration of the power of quaternion methods; see e.g. (Tait 1890).

 ^ In later writings, he referred to Gauss's fragment, first in an undated excerpt, probably written
 in December 1868, which will be discussed below, § 26.

 50 The introduction of the linking integral in Maxwell's treatise might represent a way in which
 the formula was indeed found independently of Gauss. See below, § 45.

 51 Tait to Maxwell, 6 December 1867.
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 Tait was serious about the invitation.52 Unfortunately for him, however, Maxwell did
 not send the solicited paper. His next letter only contained a short remark about Tait's
 proposal:

 With regard to knots I have drawn stereoscopically χ = sin 20, y = sin 30,
 ζ = cos 70 which is the first real web [read: alternating knot] that I have got. If
 the middle crossing be reversed

 χ -x 882
 it becomes a knot of the simplest kind.

 I have not got any R.S.E. matter on this but if they would like could knit net
 again. I have considerably improved the theory of reciprocal figures & diagrams
 of forces, which appeared in Phil. Mag. Αρ. 1864.53

 In the last paragraph, Maxwell referred to his work in graphical statics, which was
 based on the consideration of plane projections of polyhedral graphs in space (repre-
 senting systems of forces) and projective duality.54 Prior to 1867, this work was only
 superficially related to topology: Maxwell's first paper on the subject (Maxwell 1864)
 vaguely alluded to Euler's theorem on simply connected polyhedra. But when Maxwell
 finally kept his promise and sent a paper to the R.S.E. Transactions (Maxwell 1870a),
 the situation had changed. In the meantime, Maxwell had formed a clear conception of
 multiply connected polyhedra and was ready to apply it to diagrams of forces. Maxwell's
 work in graphical statics thus confirms that in the period before November 1867, topo-
 logical ideas had not yet begun to play a central role in his research but that they did
 so only a short time later. To the best of my knowledge, no traces of a particular in-
 terest in Analysis Situs are present in his correspondence prior to the letters discussed
 above. Therefore, we may suppose that Maxwell's interest in topology was first raised
 by Thomson's speculations on vortex atoms. These ideas had pointed to the possibility
 that topological results could become an important factor in research on vortex motion
 in fluids, the constitution of matter and, most importantly for Maxwell's own work, for
 electromagnetism. In the course of 1868, Maxwell continued to follow Thomson's work
 on vortices, paying particular attention to the hydrodynamic-electromagnetical analogy
 and topology.

 52 In a postscript to the letter, Tait added: "Ponder this proposition. A man of your originality,
 and fertility, and leisure, is undoubtedly bound to furnish to the chief Society of his native land,
 numerous papers, however short." (L.c, emphasis by Tait.)

 3J Maxwell to Tait, 1 1 December 1867.

 54 See (Scholz 1989, 181 ff.).
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 The Helmholtz-Bertrand controversy

 § 18. During the year 1867, Thomson set out to develop some mathematical parts of
 his new theory, while Tait prepared his translation of Helmholtz's memoir for publication

 in the Philosophical Magazine.55 On April 29, Thomson read his second paper to the
 Royal Society of Edinburgh. On this occasion, Thomson embarked on the mathematics
 of vortex motion and the vibrations of vortices. The paper, however, was not published
 immediately. In July, Tait reminded Thomson to hand in a written contribution to the
 R.S.E., but apparently Thomson encountered significant difficulties in working out the
 material.56 For more than one year, nothing became of Thomson's second paper, though
 he continued to work on it. Then, right in the middle of this work, he learned of a harsh
 criticism of the foundations on which the whole theory relied: the French mathematician
 Joseph Bertrand claimed that Helmholtz's 1858 paper was flawed from the outset. In
 a short note presented to the Paris Académie des sciences on June 22, 1868, Bertrand
 attacked Helmholtz's decomposition of the infinitesimal motion of a fluid into a transla-
 tion, a deformation and a rotation (Bertrand 1868). As soon as Tait learned of Bertrand's

 criticism, he wrote to Thomson, who was spending a few days in the Bavarian health
 resort Bad Kissingen on the way back from Italy, where his wife had taken a cure:

 Do you see the Comptes Rendus? In that for the 22nd June (I think) Bertrand
 states that there is a mistake in the beginning of H2's Vortex paper which renders
 All his results erroneous. So, of course, you may drop your vortex-atom-
 paper, and come home to useful work. B. does not point out the mistake, nor
 have I been able to find it - but H2 will perhaps be able to tell you.57

 Thomson, however, was already too deeply involved with the possibilities of his new
 theory to give up everything completely. Three days later, he sent his reply, focusing on
 the topological and energy considerations which stood at the core of his conception:

 It is a pity that H2 is all wrong and we all dragged so deep in the mud after
 him. However we ought not to grudge France the glory (for once) of making
 an application of their characteristic exactness and clearsightedness so useful to
 others as this will be. Till yesterday afternoon when your letter came I had been
 seeing from time to time as I thought a little more about vortex motion, to shorten

 my paper [. . . ] but, as you say, I may now discard the whole affair. I proposed
 to begin with irrotational motion and show the reform in its theory required by
 the footnote of H2 tr11 ρ 488. 1 should have begun with the division irrotational
 non-cyclic/cyclic. Cyclic requires a core with double or multiple continuity.58

 Thus, Thomson evidently intended to take up the discussion of vortex motion where
 Helmholtz had left it, starting from the special cases where vortex lines were confined

 55 See Tait to Thomson, 18 May 1867, Kelvin Papers Glasgow, Τ 81.

 56 "Can't you send some speculations [. . . ] on matter as made of C
 Tait to Thomson, 4 July 1867; Kelvin Papers Glasgow, Τ 84.

 57 Tait to Thomson, 2 July 1868; Kelvin Papers Glasgow, Τ 89. See also Τ 96.
 DO Thomson to Tait, 5 July 1868; Kelvin Papers Glasgow, Τ 90.
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 to a number of bounded regions in the fluid. Outside these, in a space which might be
 multiply connected, the motion was irrotational, i.e. locally a potential flow. Thomson
 went to some lengths in sketching qualitatively his findings on the latter "wn would have
 been proved had the whole foundation not been cut away" (I.e.). Using ad hoc terms like
 the "degree of multiplicity of their hanging-together-ish-ness" for multiply connected
 regions, he developed his main result on irrotational flows in a region bounded by some
 external surface and the surfaces of several solids within the fluid. The latter had to be

 viewed as surfaces of the regions containing vortex lines and could therefore themselves
 be multiply connected. In a first step, Thomson discussed the crucial case of a fluid
 moving irrotationally around a ring-shaped solid in a large finite container:

 Let one of the solids be a ring stopped by an extensible membrane. By proper
 determinate pressure on the membrane (which is simple uniform all over it)
 institute a motion as that the velocity of the fluid will be equal on the two sides of
 the membrane. Then dissolve the latter into perfect liquid. A cyclic irrotational
 motion is thus instituted, and continues for ever unless again a membrane closes
 the ring + this time stops instead of starts the motion. Move the ring about, bend
 it, draw it out (its volume of course remaining constant) the cyclic motion has
 a constant quality, viz. the difference of fluid- velocity-potential in going once
 round any closed curve through the ring, remains always the same. This wants a
 name (? cyclic constant? only temporary).59

 In the second step, Thomson discussed more complicated arrangements of internal
 bounding solids, stating qualitatively that they behave as if formed by a finite number
 of independent cyclic motions as above. Thus, for every arrangement of multiply con-
 nected solids in a large container, the possible irrotational flows of a perfect fluid around
 these solids were determined by some fixed number of parameters (provisionally named
 "cyclic constants") which only depended on the topology of the situation, not on the
 particular shapes of the bounding surfaces.
 Here, in qualitative physical terms, Thomson hinted at a general theorem relating

 flows admitting locally a potential (in modern terminology: harmonic vector fields or 1-
 forms) in a multiply connected region of space and the topological type of such regions.
 It is unclear to what extent Thomson already understood this relation, but at least he
 had the crucial technical idea of determining the variety of possible flows by employing
 virtual membranes that stop fluid motion, thereby lowering the degree of connectivity
 of the region under consideration. Thomson's reasoning makes clear that with each
 such membrane he associated one cyclic constant characterizing the flow across it. On
 the other hand, it was not yet quite clear how to use this idea in the general situation
 of a region of space bounded by one external and several internal boundary surfaces
 of arbitrary shape. The key question remained: how many membranes with associated
 cyclic constants were actually needed in order to determine an irrotational flow?60

 59 Thomson to Tait, 5 July 1868. Kelvin Papers Glasgow, Τ 90.
 60 The second strand in Thomson's sketch concerned energy considerations; these need not
 detain us here though they were crucial for Thomson's later studies of both the vibrations and the
 stability of vortices.
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 § 19. At the end of his long report from Bad Kissingen, Thomson mentioned that
 Maxwell could perhaps help in working out the the ideas of his letter: "If you think it
 worthwhile and think he would make it out, you might send the above to Maxwell, as on
 a recent occasion he manifested a spirit of enquiry regarding vortices."61 Tait followed
 Thomson's suggestion. Two weeks later, he received Maxwell's reaction, reassuring Tait
 about Bertrand's critique:

 I have received Thomson on vortices which I will return in a little, as I am reading
 it with pains. I do not see the Comptes Rendus, nor do I perceive, without the aid
 of Bertrand, the 'légère faute' in H2. In fact I consider it impossible to commit
 one at the beginning of such a theory. You must either tell a 'rousing whid' or
 be infallible. If equations 3 and 3a have anything the matter with them, may ξ
 stick in H2's throat. I not only believe them myself but set them to senate house
 men who did them.62

 On the same day, Maxwell also wrote to Thomson, taking up the latter's discussion
 and presenting his own treatment of some special cases, such as a vortex cylinder or a
 vortex ring, based on the hydrodynamic-electromagnetical analogy and his 1865 paper
 A dynamical theory of the electromagnetic field. Maxwell included a long list of corre-
 sponding notions and propositions in electromagnetism and vortices. Moreover, he also
 reassured Thomson about Helmholtz's paper: "I have not seen Bertrand's refutation of
 Helmholtz so I will proceed as if he were still existing."63 A few days later, Thomson
 wrote again to Tait, reporting some further progress on vortex motion. He introduced his

 ideas by stating that Euler's equations of fluid motion "include all Natural Philosophy
 & Chemistry, and everything else too according] to [Emil] Du Bois Reymond..."64

 The Bertrand affair, however, was still unsettled. As it turned out, Helmholtz was

 able to show that Bertrand's original criticisms were unfounded since they resulted from
 a different description of the infinitesimal motion which was nevertheless compatible
 with Helmholtz's approximation. His response to Bertrand was published in the Comptes
 Rendus later in 1868, but in the same volume, which reached Tait in early September,
 Bertrand reiterated his criticisms. This time, it was the assumption of a continuous
 velocity field in the fluid which caused trouble. Tait reported to Thomson: "Dr Τ, Β. has
 put his foot into it fairly at least. He proves (or thinks he does) that H2's effect of an
 element of a vortex on a particle of the fluid is altogether wrong. Won't he catch it?"65
 The condition of continuity (or rather, smoothness) of the flow of a perfect fluid was
 indeed a delicate issue. From a mathematical point of view, it was clearly a necessary
 assumption ; from a physical point of view, however, it was rather unclear whether it could

 be supposed to hold in a perfect fluid or not. Thomson, Tait, and Helmholtz corresponded

 61 Thomson to Tait, 5 July 1868; Kelvin Papers Glasgow, Τ 90
 62 Maxwell to Tait, 18 July 1868. Equations (3) and (3a) in (Helmholtz 1858) determined the

 time derivative of the rotation field (£, η, ζ) (in Helmholtz's notation), showing that zero rotation
 at one instant implied zero rotation at every instant.

 63 Maxwell to Thomson, 18 July 1868; in (Maxwell 1995, 398^06).
 64 Thomson to Tait, 22 July 1868; Kelvin Papers Cambridge, Τ 7.
 65 Tait to Thomson, 6 September 1868. Kelvin Papers Glasgow, Τ 96.
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 about the matter in September and October 1868, and the issue repeatedly appeared in
 later correspondence between Tait, Stokes and Thomson. Throughout these exchanges,
 Thomson maintained the position that continuity or smoothness cannot be broken by
 natural actions on a perfect fluid, initially in a state of rest or continuous flow in a region

 of space, and therefore that Helmholtz's reasoning was sound.66 In any case, Thomson
 worked hard to get his long-planned paper on the mathematics of vortex motion into a
 form which could be printed.

 Maxwell pursues topology

 § 20. Meanwhile, Maxwell continued to think about the topological matters which
 Thomson's ideas had brought to his attention. In the autumn of 1 868, he produced several
 manuscripts which now displayed a more systematic approach to the field.67 In them,
 he tried to fix basic concepts and collected some elementary observations and problems.
 In the course of these efforts, he solved the topological problem raised by Thomson's
 reflections on irrotational flows in multiply connected regions, i.e. to determine the
 degree of connectivity of such regions with given boundary surfaces.
 The first manuscript set out by defining the notions of function and of continuity. For

 Maxwell, the latter notion implied that at each point, a finite differential coefficient exists

 which, however, was not required to vary continuously. Then curves were defined as the

 66 As early as 1858, Stokes had doubted that fluid motion was necessarily continuous (Stokes
 to Thomson, 12 February 1858; Kelvin Papers Cambridge, S 391). For Thomson's exchange with
 Helmholtz, see e.g. Thomson to Helmholtz, 3 October 1868; Kelvin Papers Cambridge, H 71. In
 1 870, Tait wrote to Thomson: "O. T., Tell me 'in so many words' (as the phrase is) why a vortex
 filament in a perfect fluid 'bedingt' (as H2 has it) a certain velocity in each other part of ye same.
 It seems to me to be a mere gratuitous assumption of continuity. I know you laughed at this idea

 years ago, but I persist in it until I can get an explanation wh will satisfy me. Otherwise (f.e. if
 friction come[s] in) I allow it at once - but how without friction. Das Ganze ist nur Bosh. Yrs
 Τ' " (Tait to Thomson, 9 March 1870; Kelvin Papers Cambridge, Τ 13.) In 1880, Stokes raised the
 issue again in correspondence with Tait (see Tait to Stokes, 1 6 August 1 880; Cambridge University
 Library, Add. 7656, Τ 93). In 1884, Tait even brought the problem before the R.S.E. in a note
 entitled On vortex motion which was abstracted as follows: 'This paper contained a discussion
 of the consequences of the assumption of continuity of motion throughout a perfect fluid; one of
 the bases of von Helmholtz's grand investigation, on which W. Thomson founded his theory of
 vortex-atoms." (Tait 1884b) In 1887, Stokes came back to the topic in his correspondence with
 Thomson, using a nice illustration: What happens if a drop or wave of perfect fluid falls into a
 mass of perfect fluid at rest? Thomson again insisted on the continuity of the velocity field; see
 (Wilson 1990, vol. 2, 586-591).

 D' Harman includes three such MSS into his edition, moreover there is a further undated

 MS collecting material from Listing and Gauss, not edited by Harman. Two manuscripts were
 probably written in September or October 1868 as Maxwell mentioned part of his work in a letter
 to Thomson in late September. It is difficult to tell with certainty which one was written first but
 Harman's order seems plausible. I cannot agree, however, with the dating he gives for the second
 manuscript (no. 305 in Harman's edition), and the order in which he edited the two extant drafts
 of this manuscript. See below for details.
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 locus of a continuously varying point in space. Maxwell pointed out that the position
 of a point on a closed curve is a periodic function of curve length, measured from a
 given base point. Next, Maxwell passed to surfaces, defining a closed surface as "a finite
 surface enclosing a space so that a point cannot pass from within the surface to the
 space outside without passing through the surface." (Maxwell 1995, 434.) Evidently, he
 had only orientable, embedded surfaces in mind. The paradigmatic case was that of the
 surface of a solid body with several tubular "holes" through it. Turning to connectivity,
 Maxwell introduced a terminology similar to that of Riemann's short note Lehrsätze aus
 der analysis situs... of 1857:

 A closed surface may either be simply connected like that of a sphere or com-
 plexly connected like that of a ring or a solid body pierced with holes. [. . . ] In a
 surface of η connexions η - 1 closed curves may be drawn so that [it] may be
 possible to pass from any one point to any other without crossing any of these
 curves. (Maxwell 1995, 434 f.)

 It is not clear whether Maxwell had actually read Riemann's note or whether he had
 merely taken the idea from Helmholtz's and Thomson's writings. In fact, Maxwell's
 remark that the surface "of a ring," i.e. of a solid torus, was "doubly connected" reveals
 that he had not yet grasped the situation completely, and it also makes clear that he could
 not have read Riemann's note very closely. While Maxwell even remarked that both a
 longitudinal and a transversal meridian would serve the purpose, he realized his error
 only later and gave the right number of non-dissecting curves, i.e. two.68
 After a short remark concerning "finite spaces" (which did not, however, address mul-
 tiple connectivity), Maxwell turned to what he considered one of the basic problems of
 "geometry of position", as the draft was entitled:

 Let any system of closed curves in space be given and let them be supposed
 capable of having their forms changed in any continuous manner, provided that
 no two curves or branches of a curve ever pass through the same point of space,
 we propose to investigate the necessary relations between the positions of the
 curves and the degree of complication of the different curves of the system.
 (Maxwell 1995, 435.)

 Within the limits of the mathematical language available to Maxwell, this represents
 a formulation of the classification problem for links. Apparently, Maxwell was still
 unaware of Johann Benedikt Listing's Vorstudien of 1847, in which the same problem
 had been posed at least implicitly. Most probably, Maxwell was inspired to consider this
 problem by the role of knots and links in Thomson's speculations.

 Maxwell proceeded to discuss some simple ways of deforming links without chang-
 ing their type. In order to do so, he looked at plane projections of such links, implic-
 itly supposing that these projections only contained transversal double points. Next, he
 developed his own symbolic coding of such diagrams. For each of the closed curves

 68 See (Maxwell 1995, 434 f.) In his note, Riemann had explicitly mentioned that the surface
 of a solid torus is triply connected.
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 a,b,c9... constituting a link in space, he designated by Ap (p = 1, . . . , a) those points
 on the curve a lying over one of the double points of the link projection. Similarly,

 Bg (q = 1, . . . , β) denoted the corresponding points for component b, etc. Maxwell
 observed that the total numbers α, β, . . . of these points were always even, a fact which
 would also serve as Tait's starting point eight years later. To each crossing of the pro-

 jection, Maxwell assigned a symbol -jf-, if curve a crossed over curve b with respect
 to a given orientation of space. The reversed crossing would then be -^-' a crossing of

 a with itself was denoted by a symbol of the form j^9 etc. Of course, the projection

 together with these symbols determined the link completely (see Fig. 5).

 PtJD
 ^-/ A, B,.

 Fig. 5. Maxwell's coding of link diagrams

 To find modifications of these diagrams which did not change the type of the link,
 Maxwell first showed that every projection necessarily contained regions bounded by
 less than four arcs of the projection (taking an arc to be bounded by two consecutive

 points Ap, Ap+'). This was an easy corollary of Euler's formula for polyhedra, applied
 to the plane graph given by a connected link diagram.69 The number of edges of this
 graph equalled the total number / = a + β + γ + ... of the points Ap, Bq, etc., while
 the number of corners (i.e. crossings of the projection) was obviously given by s = '.
 Euler's formula then implied that there were 5 + 2 regions in the projection, one of
 which was the infinite region. Denoting the number of arcs bounding the i -th region by
 rii, Maxwell finally obtained

 n' + n2 + ... + ns+2 = 2/ = 45 ,

 thus at least one of the 5 + 2 integers n' had to be less than 4.
 Maxwell next proceeded to consider the types of deformations that could be carried

 out in regions bounded by less than four arcs. In the case of a region bounded by one

 arc only (cf. Fig.óa), the crossing symbol was of form j-^, and the whole region "may
 be made to disappear by uncoiling the curve", as Maxwell expressed it. In the case of
 a region bounded by two arcs, there were two possibilities (illustrated in Figs. 6b, 6c).

 Either the two symbols involved were of the form -^- and -g^j-, in which case "the
 two loops may be separated and the symbols belonging to them may be cancelled," or

 69 An extension of Euler's formula to the case of curvilinear plane figures had been described

 by (Cayley 1861). In later writings, Maxwell repeatedly referred to this paper.
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 i 1ΙΛΑ
 (a) (b) (c) (d) (e)

 Fig. 6a-e. Regions bounded by less than four arcs

 else the symbols would be of the form -^- and then ^^-, so that "the curves are linked
 together and cannot be separated without moving other parts of the system." If, finally,
 an area was bounded by three arcs, there were again two possibilities (cf. Figs. 6d, 6e).
 "In the first case," Maxwell wrote, "any one curve can be moved past the intersection of
 the other two without disturbing them. In the second case this cannot be done and the
 intersection of two curves is a bar to the motion of the third in that direction." (Maxwell

 1995, 437.) Maxwell went on to add a few inconclusive remarks about regions bounded
 by more than three arcs, culminating these reflections with the incorrect statement that
 "if a polygon [i.e. region of the projection] is partly right handed and partly left handed
 it may be reduced." (Maxwell 1995, 438.) The remark shows that Maxwell was unaware
 of non-alternating links.70

 Maxwell's discussion represents an early and inconclusive venture into the domain of
 knot theory. The diagram changes Maxwell discussed later came to be known under the
 name of "Reidemeister moves;" today they play a fundamental role in the combinatorial
 approach to knot theory. Even if Maxwell's discussion shows a clear deliberation to build
 up complex modifications of link projections from simpler ones or at least to order them
 according to increasing complexity, he did not claim or prove that all diagram changes
 can be built up from those he explicitly discussed. It was only in the 1920's that this was
 shown to be the case by Reidemeister and Alexander.71
 § 21. Thomson became aware of Maxwell's renewed interest in topology in late

 September 1868, when Maxwell reported about a new subject, the connectivity of
 bounded space regions. Writing to his Glasgow colleague, Maxwell announced a propo-
 sition that would become of great interest to Thomson:

 I have been making a statement about the continuity discontinuity periodicity
 and multiplicity of functions generally and of lines surfaces and solids. Here is
 the upshot in connected form.

 Take a solid without any hollows in it or holes through it. It is a simply
 connected space bounded by one simply connected closed surface. Now bore η

 70 A vague statement which might have been interpreted in this way was made by (Listing
 1847, 55). However, the difference in terminology and outlook in Maxwell's manuscript, and the
 absence of Listing's more interesting ideas on knots, make it improbable that Listing's essay was
 the source of Maxwell's claim.

 11 See (Reidemeister 1926) and (Alexander and Briggs 1927).
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 holes right through the solid. It is now a space of η connections bounded by an
 n-ly connected closed surface.
 The infinite space outside is also n-'y connected. Now let there be m hollow

 spaces within the solid and let these be bounded by closed surfaces whose con-
 nections are η'Π2Π3 . . . nm. Then the solid will be an (m H- l)-ly bounded space
 and its connexions will be η + n' + & c + nm.12

 Maxwell's wording shows that he was still struggling to form a clear picture of
 the situation, and his pronouncements here are inconsistent with the terminology of
 his earlier topological manuscript. According to this letter, both a sphere and a torus
 would be regarded as a simply connected surface. By contrast, following Riemann's
 terminology, a solid with η "holes" through it should have as its degree of connectivity
 η + 1 rather than n, and the connectivity of its bounding surface would be 2n + 1.
 The number η itself corresponds to what came to be called the genus of such a surface.
 Nevertheless, Maxwell was in a position to formulate a correct assertion. About a week
 later, he recognized his terminological error. On 6 October, Maxwell thanked Thomson
 for the first 6 pages of the latter's paper on Vortex Motion and informed him that he had
 been studying the dynamics of three "Heimholte rings" moving on the same symmetry
 axis and had illustrated the case in his "wheel of life."73 On the next day, Maxwell again
 wrote to Thomson:

 I find that I made a mistake about the connectedness of hollow solids. If the solid

 is bounded by m surfaces of which one is external and the rest internal and if
 the connectedness of these are n'n2 . . . nm Then if n' belongs to the external
 surface it introduces η ' connexions into the solid, but if «2 belongs to an internal
 surface it introduces only n^ - ' new connexions. Hence the whole number of
 connexions is [. . . ] £(w) - m + 1 ,74

 Given Maxwell's erroneous treatment of surfaces, this statement has to be read with

 care. It is wrong if we read, as he still explicitly required at that time, a surface "of η
 connexions" to be a surface in which at most η - I non-dissecting closed curves can
 be drawn. But the numbers n/ - 1 intended by Maxwell were not the maximal numbers
 of non-dissecting closed curves but rather the genera of the surfaces. Thus Maxwell's
 statement amounts to the correct proposition that the order of connectivity of a space
 region bounded by a finite number of closed surfaces is one higher than the sum of their
 genera. No proof or argument for this claim was given in the letter to Thomson.

 § 22. Around this time, Maxwell also wrote a second manuscript on topology, in-
 cluding the new result in the corrected form communicated to Thomson. Two drafts of
 this manuscript have survived. The first virtually repeated the phrasing of the letter to
 Thomson while the second is significantly more detailed and introduced new terminol-
 ogy which Maxwell later incorporated into his Treatise?5 The manuscript was written in

 72 Maxwell to Thomson, 28 September 1868; in (Maxwell 1995, 443).
 /J See the photograph in (Maxwell 1995), opposite page 446.
 " Maxwell to Thomson, 7 October 1868; m (Maxwell 1995, 449).
 75 Harman's edition of the two drafts of this manuscript gives what obviously was the first draft

 as the second (Maxwell 1995, 450) and the revise as the first (Maxwell 1995, 440-^42). That the
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 a style which would have suited the introductory sections of a textbook on mathematical
 physics, devoted to topological basics.76 Again, Maxwell started with a discussion of
 continuity, this time emphasizing the origin of this notion, as he conceived it, in physics
 rather than mathematics:

 The idea of physical continuity is best conceived under the example of the con-
 tinuous existence of matter in time and space. A material particle, during the
 whole time of its existence must have a determinate position. Hence its path
 is a continuous line and its coordinates are continuous functions of the time.

 (Maxwell 1995, 439.)

 Maxwell emphasized physics in this connection because he still conceived math-
 ematical continuity along 18th-century lines, making the distinction in almost perfect
 agreement with Euler's views on the subject: "The idea of mathematical continuity refers
 rather to the form of the function than to its particular values, whereas a function may
 be physically continuous though its form may be different for different values of the
 variables."77 As in the first manuscript, Maxwell required physically continuous func-
 tions to be differentiable as well. After setting forth this distinction, he then introduced
 topology in a remarkable way:

 Most important applications of the idea of physical continuity to geometry have
 been made by Riemann (Crelle). The ideas of Riemann have been employed by
 Helmholtz Betti Thomson &c in physical researches and I have found it necessary
 for my own purposes to employ a system of nomenclature of spaces, surfaces
 and lines which I shall now explain.78

 The core notion of topology, Maxwell implied, was physical, not mathematical conti-
 nuity. It would appear that Maxwell saw Riemann's efforts to utilize this physical notion
 in geometry as significant mainly because this furnished mathematical physicists with
 new tools for their investigations.

 correct order is different from Harman's can be seen from the error on the connectivity of closed
 surfaces which, while repeated both in the draft p. 450 and the letter to Thomson of 7 October to
 which Harman appended it, is only corrected in what Harman edited as the "first" draft. Moreover,
 the amount of detail and the new terminology used in this draft show that it was indeed the revised

 version. Harman's reason for his ordering - the mistake Maxwell made in reporting on his results
 to Thomson (see above) - has in fact nothing to do with the two drafts since it is contained in
 neither of them. Consequently, also Harman's dating of the two drafts has to be modified. While
 there is a chance that Maxwell wrote the first draft before his letter of 28 September, and simply
 got his own statements wrong in writing to Thomson, it seems more probable that both drafts of
 this MS were only written in October when Maxwell had come to realize the error in his statement
 to Thomson on 28 September.

 76 Harman views this MS as an early draft for the book. The crucial reference to Listing,
 however, is still missing; see below.

 " (Maxwell 1995, 439.) On Euler's distinction between mathematical and mechanical conti-
 nuity, see (Youschkevitch 1976, 64-69).

 '* (Maxwell 1995, 439.) Note that Maxwell did not yet mention Listing, as in various places
 of the Treatise; see § 45 below.
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 Maxwell then turned to discuss the connectivity of finite space regions and the
 closed surfaces bounding such regions, using almost the same words as in the letter to
 Thomson of 7 October.79 Initially, he still continued to use his problematic terminology
 that a surface of genus η is (n + l)-ly connected or continuous. But now he came to see
 that this was misleading, and he revised the second part of his manuscript thoroughly.
 Instead of "connexions" he decided to speak of "cycles", and the discussion of surfaces
 was finally put right. The crucial passage in this revision will be given here in full since
 it also enables us to discern at least the outline of an argument for Maxwell's proposition
 about the connectivity of solids:

 Let any closed curve be drawn on the limiting surface [of a finite space region]
 and let a surface be drawn within the space bounded by the closed curve then in
 the case of a space of simple continuity this surface will divide the space into
 two distinct regions so that a point cannot travel from one to the other without
 crossing the surface.
 Any solid body without any holes through it is an example of simple conti-

 nuity. Now let a hole be bored through the solid converting it into a ring, and let
 a surface be drawn meeting the limiting surface along one side of the hole and
 round one side of the solid. A point can still travel from one side of this surface
 to the other by going round the other side of the hole. If η holes had been bored
 through the solid, η such surfaces may be drawn without separating one part of
 the space from the rest. Such a space would be called if we follow the method
 of Riemann, an (n + l)ly connected space. I prefer however for reasons which
 will appear as we proceed to call it an n-cyclic space.
 If a finite space bounded by a single continuous [i.e. connected] surface is

 π -cyclic the bounding surface is also η -cyclic and the infinite space outside the
 surface is also η -cyclic as far as that bounding surface is concerned. If we consider

 the finite space as solid with η holes in it, then the infinite space has η channels
 by which it embraces the finite space and the finite space has also η channels by
 which it embraces the infinite space.
 If the expression Xdx + Y d y + Zdz = d V be a complete differential at every

 point within the finite space then in a simply connected space which we may call
 acyclic V can only have one value for each point of the space but in an η -cyclic
 space V may have values infinite in number of the form

 A = V0 + piPi + ... + pnPn

 where Vb is one of the values and p' ... pn are integral numbers positive negative

 or zero and P' ... Pn are the values of f(X^ + Y^ + Z^)ds taken round a
 closed curve drawn round each of the η channels belonging to the finite space.
 The quantities P' . . . Pn may be called the cyclic constants. They are important
 in the theory of Vortices and in Electromagnetism.
 If a space be bounded by several surfaces the number of cycles belonging

 to the space will be the sum of the number of cycles belonging to the different
 bounding surfaces. (Maxwelll995, 440 f.)

 79 See (Maxwell 1995, 450). As mentioned above, this version must be taken as the first draft
 of the manuscript.
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 Maxwell added a short section on surfaces where he pointed out that for closed
 surfaces which he called η-cyclic, not η but In closed curves may be drawn which do
 not separate the surface into disconnected parts. In other words, a closed «-cyclic surface,
 or what would later be called a surface of genus η embedded in 3-space, has degree of
 connectivity 2n + l.

 It is important to notice that Maxwell did not give a precise definition of the crucial
 new technical term: "cycle." His discussion of complete differentials dV suggests that he
 was interested in integration domains, or, more precisely, in systems of paths that generate

 all possible values of path integrals f d V of such a differential form. On the other hand,
 this interpretation does not fit his discussion of "cycles" in surfaces; Maxwell seems to
 have been unaware of Riemann's corresponding discussion in the main part of the paper
 on Abelian functions of 1857. 80 Certainly, Maxwell's terminology derived from the
 physical situation he and Thomson wanted to treat, i.e. fluid motion or electromagnetic
 fields and their path integrals in three-dimensional regions. Therefore, closed surfaces
 were not conceived in isolation but always, at least implicitly, as boundaries of "solids
 with holes."

 Based on Maxwell's new terminology, we can sketch an intuitive argument for his
 main result which states that a space region bounded by one external surface of genus η
 and m internal surf aces with genera η i,AZ2, . . .nm will possess Ν = n+n'+n2+. . .+nm
 "cycles," or, in other words, it will be (N + l)-ly connected. Starting with the interior
 of the external surface, viewed as the surface of a solid with tubular holes, Maxwell
 seems to have thought of a successive removal of further solids of the same kind from
 this region. The first region has η "cycles" if its bounding surface is of genus n, i.e.
 the space enclosed has η tubular holes; a "cycle" might here be conceived as a closed
 curve which runs once round one of the holes of the solid. From the dual statement that

 the exterior of a solid with η tubular holes is also η -cyclic (see the quotation above),
 Maxwell may have concluded that removing a solid with a surface of genus n' from
 this bounded region of 3-space will introduce n' new "cycles" (one closed curve for
 each hole, running once through the hole). Since each of these curves can be deformed
 into a point before removing the internal solid, these "cycles" are not reducible to the
 η "cycles" accounting for the original connectivity. Thus the connectivity of the new
 region is n + n' . Finite induction then leads to the desired result.

 It seems very probable that Maxwell derived his claim using an argument similar to
 the one just given. The crucial duality lemma relating the connectivity of a solid with
 holes to that of its complement in space reappears in virtually all of his later writings on
 the topic.81 Plainly, however, such an argument cannot be regarded as a serious proof,
 since it is based on a consideration of paradigmatic cases of the form depicted in the
 figure below where all the bounding surfaces are in a "standard" position, neither knotted
 nor linked with each other.

 80 See (Riemann 1857, § 4). A reader more interested in the notion of connectivity than in
 algebraic functions might well have contented himself with the short note Lehrsätze aus der
 analysis situs. . . , prefixed to the main, and difficult, part of the paper, the Theorie der Abel' sehen
 Functionen.

 81 See especially § 18 in the Treatise.
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 Fig. 7. Complexly connected solid with "cycles"

 The restriction to such cases and the use of the vague notion of "cycles," however, led
 to a difficulty which soon came to play a role in the work of the Scottish physicists. How,
 in fact, could Maxwell be sure that not more than n' independent new "cycles" were
 introduced by removing an η ' -cyclic solid which was situated in a more complicated way
 inside the original one, such as, for instance, a knotted vortex tube? How did Maxwell
 know that a space surrounding a knotted channel, like that drawn in Fig. 8, was just
 doubly connected?
 In order to show this, Maxwell would have had to develop a technique enabling him

 to show that two curves like α and β in Fig. 8 may indeed be considered as equivalent
 "cycles," or that his duality lemma holds in such cases as well. Nothing in Maxwell's
 manuscript indicates that he thought about such a technique.
 Here Maxwell fell victim to the general ambiguity in many topological arguments

 of the period, a difficulty that resulted from the lack of a clear distinction between what
 today are called homological and homotopical aspects of a given problem. Very often in
 this period, the relevant variations of one-dimensional integration domains were viewed

 Fig. 8. A doubly connected space?
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 intuitively as gradual changes in position, i.e. as homotopies.82 This was the case with
 Maxwell and Thomson, too, whose discussion of path deformations will be presented
 below. Following such a view, however, the difficulties illustrated by Fig. 8 become
 crucial. Intuition suggests that the curves a and β cannot be gradually deformed into
 each other without traversing the knotted channel, and indeed they are not homotopic in
 the modern sense. On the other hand, a homological equivalence between the two exists,
 i.e. a surface can be found avoiding the knotted channel and bounded precisely by a
 and β. But to establish this equivalence requires both a suitable conceptual framework
 and some insight into the complexities that can arise, of which no traces can be found
 in Maxwell's writings. Alternatively, the difficulty of knotted and linked channels could
 have been avoided by strictly adhering to the Riemannian point of view of counting
 the number of non-dissecting two-dimensional cuts which a three-dimensional region
 admits; we have seen that Maxwell explicitly decided not to follow this approach.

 Given that most 19th-century mathematicians did not clearly distinguish between
 homological and homotopical equivalences, the vagueness of the physicist Maxwell's
 remarks is certainly not surprising.83 It should be noted, however, that Maxwell was
 dealing with a three-dimensional situation where a recognition of the difference be-
 tween homological and homotopical properties would indeed have been of fundamental
 importance. Whereas two space regions of the kind illustrated in figure 8, but with differ-
 ently knotted channels removed, cannot be distinguished by homological information,
 they are in general very different from a homotopical point of view, as modern knot
 theorists would amply show in the 20th century. As we shall see, it is not completely
 anachronistic to raise this issue. Maxwell's correspondent, Thomson, whose occupation
 with vortex atoms had already made him sensitive to the distinction between the "degree"

 and the "quality of multiple continuity," was to struggle with these thorny matters and
 eventually he claimed to have found a way to deal with the kinds of problems Maxwell
 had evaded.

 Multiple continuity and the most general irrotational motion of a fluid

 § 23. While the Bertrand affair was still causing headaches for the vorticists, Thom-
 son finally began sending Tait the first pages of his paper On vortex motion for publication
 in the Transactions of the R.S.E. (Thomson 1869). The first 58 paragraphs of the paper
 were "recast and augmented 28th August to 12th November, 1868."84 Thus Thomson
 could profit both from Maxwell's reassuring remarks about Helmholtz's paper and from
 Maxwell's discussion of connectivity. Another year went by, however, before the second
 part (§§ 59-64) of the paper was delivered, and both parts were then printed together
 in the volume of the Transactions for 1869. In the meantime, Maxwell continued his

 82 See (vanden Eynde 1992) for a survey of contemporary views on deformations of paths.
 83 The difference was not fully clarified until Poincaré's work; see (vanden Eynde 1992,

 159 if.).
 84 See (Thomson 1869, 13). Thomson's collected papers give "§§ 1-59 recast . . . "; this must

 be a misprint as the remark before § 59 shows (Thomson 1869, 46).
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 topological studies and in particular read what was available from Listing and Gauss on
 the subject; we will find traces of this reception also in Thomson's paper.
 To a large extent, the paper was devoted to a discussion of impulse and energy in fluid

 motion, the central idea being based on Helmholtz's results. For a large class of solutions
 to the Euler equations, Thomson argued, vortices might be conceived as equivalent to a
 number of "bodies" of variable, but topologically invariant shape, embedded in the fluid
 (Thomson 1869, § 20). Therefore, the crucial point was to study irrotational flows of a
 perfect fluid in a space containing "bodies" replacing the vortices, taking into account
 the resulting interactions between the fluid and these "bodies." A complete presentation
 of the results that Thomson obtained on the basis of this approach would lead us too far
 astray. However, those passages of his article which dealt with the notion of connectivity
 must be treated in detail.

 The main problem which Thomson addressed and eventually solved in these passages
 was the one hinted at in his long letter to Tait: given a multiply connected space region,
 bounded by one external and several internal surfaces, to determine the set of irrotational
 flows in this region satisfying certain given boundary conditions. This was dubbed the
 problem of "the most general irrotational motion" of a perfect fluid (Thomson 1869,
 § 6 1).85 Its solution depended upon finding a workable notion of multiple connectivity.
 It turns out that, like Maxwell, Thomson, too, wavered between two versions of the
 notion of connectivity - one homological, the other homotopical. In his paper, however,
 the difference between the notions is much more explicit than in Maxwell's manuscripts,
 and it is possible to understand quite clearly on which of the two Thomson's technical
 arguments relied.

 § 24. The starting point in Thomson's argument was the well-known result that in
 a simply connected region bounded by a closed surface, irrotational fluid motion was
 uniquely determined by boundary conditions. In particular, if the normal component
 of the fluid velocity along the boundary vanished, then the fluid had to be at rest. The
 canonical proof, included for instance in Helmholtz's 1858 paper, relied on one of
 Green's integral theorems.86 However, Thomson reminded the reader:

 Helmholtz, in his splendid paper on Vortex Motion, has made the very important
 remark, that a certain fundamental theorem of Green's, which has been used
 to demonstrate the determinateness of solutions in hydrokinetics, is subject to
 exception when the functions involved have multiple values. This calls for a
 serious correction and extension of elementary hydrokinetics to which I now
 proceed. (Thomson 1869, § 54.)

 85 This global problem must be distinguished from the local problem of the "most general
 motion of a fluid" which consisted in finding suitable approximations and decompositions of the
 infinitesimal motion of a fluid. The latter problem was the subject of the Helmholtz-Bertrand
 controversy.

 ÖD Existence theorems in potential theory were not rigorously dealt with at the time. 1 hough the

 topic was carefully studied in two dimensions where it had been recognized to be important for the
 Riemannian approach to complex analysis, the situation was considered difficult in 3 dimensions,
 as H. A. Schwarz pointed out in a letter to Klein of 28 March 1882, NSUB Göttingen, Cod. MS.
 Klein, XI, 936.
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 Thomson formulated the version of Green's result which he had in mind as follows.

 For two single-valued functions φ and 0' in a space region bounded by a closed surface
 of arbitrary genus, one obtains:

 fff (άφ άφ' άφ άφ1 άφ άφ''

 = ί ί άα φ'>φ' - ίίί dx dy dz φΨφ1

 = ίί da φ'οφ - ίίί dx dy dz φ'ν2φ ,

 where fff dxdydz denotes integration over the given region, ff da denotes integration
 over the bounding surface, and b stands for the normal derivative at a point of this surface.

 Implicitly supposing sufficient conditions of smoothness, Thomson held this result to be
 "true without exception" (Thomson 1869, § 55.) The uniqueness of irrotational flows in
 simply connected regions could now be derived by observing that (1) the solution space
 of the corresponding Euler equation was linear; (2) every solution was the gradient flow
 V0 of a potential function φ; and (3) Green's formula implied, by taking φ = φ', that
 the only solution with zero normal component at the boundary was V0 = 0.

 This argument, however, broke down as soon as multiply connected regions were
 considered. Irrotational flows in such regions still formed a linear space, but they were no
 longer necessarily gradient flows of single-valued potential functions. As a consequence,
 if either φ or φ' was a many-valued function arising from a vector field ν by definite
 integration, i.e.

 φ(χ) = I vds ; so that V0 = ν ,

 then the integrals in the second or third term of Green's formula were ambiguous, as
 Thomson showed by an example.87 He chose φ to be the many- valued potential of an
 irrotational fluid motion taking place between two concentric cylinders and bounded by
 two perpendicular planes which, in a suitable coordinate system, was given by:

 0(jc, j,z)=tan-!-
 X

 (here all branches of tan"1 must be taken into account). He then pointed out that the
 ambiguity of Green's formula arises from the fact that if ν denotes the vector field V0,

 the line integral fv as might take different values along different paths in the region
 considered. As this example indicated, such cases arouse precisely in the hydrokinetic
 situation Thomson wanted to treat, fluid motion in multiply connected (or "multiply

 87 Thomson never used vector language, and he chose to write all his formulas in Cartesian
 coordinates, in accordance with his general aversion against vector or quaternion methods. As I
 want to focus on other issues here, I will abbreviate Thomson's formulae occasionally by using
 vector notation. When, in 1870, Tait also turned to Green's theorem and its generalization to
 multiply connected regions, he used quaternion language, thus making the first step toward a
 vectorial form. See § 13 above.
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 continuous", as Thomson prefered to say) regions of space. In such regions, he noted
 that one could get rid of the ambiguity, "if we annex to [the system of bounding surfaces]

 S a surface or surfaces stopping every aperture or passage on the openness of which its
 multiple continuity depends." (Thomson 1869, § 57.) As already indicated in the letter
 to Tait of 5 July 1868, Thomson clearly conceived of this process in terms of virtual
 barriers that would stop the motion of the fluid. This physical idea, however, fitted well
 with Riemann's or Helmholtz's idea of cutting surfaces.
 Choosing a system ß' , . . . , βη of such blockading surfaces that completely stopped

 the flow thus produced a simply connected region. Thomson then remarked that for
 any given flow in the original region, a certain constant could be associated with each
 surface ft . In fact, the value of / V0 ds, taken along a path through the remaining simply
 connected region, starting from a point Ρ in ßi to one side and returning to Ρ from the
 other, was a constant κι -, independent of the starting point Ρ in ßi . Using these constants,

 Thomson gave a modified version of Green's formula, valid for many-valued functions
 whose gradients were smooth, single-valued vector fields:

 fff (αφ αφ1 αφ αφ' αφ άφ'' , . .
 JJJ 'dx dx dy dy dz dz )

 = ÍÍ da 0b0' + Σ Ki ÍÍ da b0' - iff dx dy dz φ^2φ'

 = ÍÍ da 0'b0 + Σ κ' ÍÍ da b0 - ÍÍÍ dx dy dz φ'ν2φ .

 Thomson's claim is easily derived from the original form of Green's formula, applied
 to the simply connected region obtained by introducing the ft, if technical difficulties
 relating to the smoothness of the functions and boundaries are passed over. The additional
 middle terms arise by evaluating the integrals containing the normal derivatives along
 the surfaces ft .

 § 25. Thomson's extension of Green's formula dealt with a phenomenon still rather
 unusual in the mathematical physics of this time. Some of this novelty was felt by
 Thomson himself, who concluded the first part of his paper with a paragraph elaborating
 and illustrating his views on multiply connected regions of space. His attempt at a
 definition was the following:

 Adopting the terminology of Riemann, as known to me through Helmholtz, I shall
 call a finite portion[88] of space η-ply continuous when its bounding surface is
 such that there are η irreconcilable paths between any two points in it. To prevent

 any misunderstanding, I add (1), that by a portion of space I mean such a portion
 that any point of it may be travelled to from any other point of it, without cutting
 the bounding surface; (2), that the 'paths' spoken of all lie within the portion
 of space referred to; and (3), that by irreconcilable paths between two points
 Ρ and β, I mean paths such, that a line drawn first along one of them cannot
 be gradually changed till it coincides with the other, being always kept passing

 88 The reprint in Thomson's Collected Papers has "position" for "portion", probably a misprint.
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 through Ρ and Q, and always wholly within the portion of space considered.
 (Thomson 1869, § 58.)

 Thomson went on to illustrate this "definition" by means of solids with a number of
 tunnels - either opening on the boundary or located entirely in the interior - bored out
 of them. If the solid were simply continuous (to use Thomson's language) to begin with,
 then Thomson claimed that boring out η tunnels would lead to a solid of "(n + l)ply
 continuity." Up to this point, Thomson's approach agreed more or less with Maxwell's
 way of looking at the situation. However, Thomson explicitly entered into the problem
 of knotted tunnels. He argued that if the tunnels were knotted or linked in complicated
 ways (as illustrated in the drawings by Tait and Crum Brown, reprinted in figure 4),
 this would give rise to "varieties of multiple continuity curiously different from that
 illustrated by a single ordinary straight or bent tunnel" (I.e.). Nevertheless, Thomson
 ventured the claim that "no amount of knotting or knitting, however complex, in the
 cord whose axis indicates the line of tunnel, complicates in any way the continuity of
 the space considered" (I.e.). In other words: while the "quality" or "variety" of multiple
 continuity could be different, its "degree" was always the same. In modern terms, this
 amounts to the statement that the first Betti number of a knot complement equals one
 for all knots.

 The whole discussion was, to be sure, quite unsatisfactory if the wording of Thom-
 son's definition of multiple connectivity was taken literally. His intuitive description of
 "irreconcilable paths" clearly suggests a notion involving homotopy rather than homol-
 ogy. Therefore, even a single tunnel would, in fact, create infinite continuity in Thomson's

 sense, since there are infinitely many "irreconcilable" paths in a doubly connected region
 like the interior of a solid torus. Missing was the idea of a composition of paths, which
 would have enabled Thomson to consider only "fundamental" paths from which all
 others could be generated up to reconcilability. However, the above presentation shows
 quite clearly that Thomson's extension of Green's result did not rely on the notion of
 multiple continuity as he just had defined it. Rather, his proof involved the notion of
 virtual membranes stopping the flow, i.e. of cutting surfaces that made the region con-
 sidered simply connected. Moreover, it was this homological idea rather than that of
 irreconcilable paths which justified Thomson's claim regarding the independence of the
 "amount of continuity" from the knotting or linking the tunnels in a solid. In fact, Thom-

 son saw his claim as confirmed by experiments with such membranes: "A single simple
 knot, though giving only double continuity, requires a curiously self-cutting surface for
 stopping barrier: which, in its form of minimum area, is beautifully shown by the liquid
 film adhering to an endless wire, like the first figure [in Fig. 4 above], dipped in a soap
 solution and removed." (Thomson 1869, I.e.)

 It seems very unlikely that Thomson, or Maxwell before him, actually had any
 topological evidence for this claim other than the paradigmatic example of unknotted
 and unlinked tunnels, together with such experimental illustrations which indeed indicate

 that for every knot there is a connected "surface" bounded by the knot and "stopping
 every aperture or passage" through it. Thomson's remarks have to be taken with caution,
 however, as a little experimenting following his suggestion shows. Even for the standard
 form of the trefoil knot, and similarly for other knots, the soap film usually obtained is
 not an immersed disc but branches along certain lines (see Fig. 9a for the case of the
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 trefoil; the branching lines are dotted in the figure). Such a surface therefore could not
 serve as a "stopping barrier" since the quantity κ defined by Thomson would differ in the

 middle and outer parts of this surface (it is proportional to the linking number between
 the knot and a closed curve intersecting the surface in one given point). Moreover, in
 some cases, a Möbius band is obtained as in Fig. 9b; whereas bending the knot to a
 different form leads to still further types of minimal surfaces.

 (a) (b)
 Fig. 9. Minimal surfaces bounded by a trefoil knot

 In short, it was the intuitive idea of cutting surfaces rather than the idea of "irrec-
 oncilable paths" that informed Thomson's mathematical claims concerning multiply
 connected regions. While Thomson tended to conceptualize multiple connectivity by
 using path classes, in arguments about flows he resorted to the use of "stopping barriers"
 or cutting surfaces. This wavering between the homotopical and homological aspects
 of a situation, even more explicit in Thomson's work than in Maxwell's manuscripts,
 was characteristic of the fluidity which the notion of connectivity still had during this
 period.

 § 26. In late 1868, at about the time when Thomson completed the first part of his
 paper, Maxwell's interests in topology took a new turn, following his reading of the Cen-
 sus der räumlichen Complexe, a topological essay written by the Göttingen physicist
 Johann Benedikt Listing. It is not quite clear how Maxwell got to know this text, but it
 seems possible to date his reception fairly precisely. Most probably, it took place between
 October 1868 when he wrote his second topological manuscript and 29 December 1868,
 which is the date Maxwell gave to his third manuscript of topological content (Maxwell
 1995, 466-^69). While the earlier manuscripts were independent both in content and
 terminology of Listing's writings, the third manuscript gave a summary of the main
 ideas of Listing's Census. Like Listing's essay, Maxwell's manuscript dealt with cell
 decompositions of three-dimensional space and various generalizations of Euler's for-
 mula on polyhedra which could be drawn from such decompositions.89 On 21 January
 1869, Maxwell posed a corresponding problem to the Cambridge Mathematical Tripos,
 and four weeks later, he gave an account of Listing's ideas to the London Mathematical

 89 More precisely, Maxwell summarized Listing's main result which related the alternating
 sum of the numbers of vertices, edges, faces, and cells of a given cell complex to the connectivity
 numbers of these constituents.
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 Society.90 From this time onward, Maxwell constantly referred to Listing both in his
 correspondence and published work whenever he treated topological matters.91 In par-
 ticular, he adopted Listing's terminology in the introductory chapter of his Treatise on
 Electricity and Magnetism. Maxwell's reading of Listing's essay apparently represents
 the earliest reception of this work in British scientific circles. It would become influential

 some years later when Tait started to think seriously about knots; by then, Maxwell had
 also learned of Listing's earlier Vorstudien zur Topologie.

 § 27. The discussion of the connectivity of space regions described above formed
 the end of the first part of Thomson's paper. Although the modification of Green's
 formula for such regions had been given, the intended application of this result to the
 determination of irrotational flows in multiply connected space regions was still missing.
 Thomson continued to work out his ideas and in late 1869, the second part of his paper
 took up the discussion at the point where he had left it. Apparently as a result of an
 exchange with Maxwell and perhaps of rereading Helmholtz, Thomson felt he should
 redo his topological discussion. As a new element, he introduced the notion of a "circuit"
 which comes closest to what today would be called a nontrivial homotopy class of closed
 paths in a region: "Henceforth I shall call a circuit any closed curve not continuously
 reducible to a point, in a multiply continuous space. I shall call different circuits, any two
 such closed curves if mutually irreconcilable (§ 58), but different mutually reconcilable
 curves will not be called different circuits." (Thomson 1869, § 60 (s).) Thomson then
 repeated his earlier, insufficient definition of the "degree of continuity," adding a telling
 historical comment:

 Thus (n + l)ply continuous space, is a space for which there are n, and only n,
 different circuits. This is merely the definition of § 58, abbreviated by the definite

 use of the word circuit, which I now propose. The general terminology regarding
 simply and multiply continuous spaces is, as I have found since § 58 was written,
 altogether due to Helmholtz; Riemann's suggestion, to which he refers, having
 been confined to two-dimensional space. I have deviated somewhat from the form
 of definition originally given by Helmholtz, involving, as it does, the difficult
 conception of a stopping barrier [here a footnote was inserted, see below]; and
 substituted for it the definition by reconcilable and irreconcilable paths. It is not
 easy to conceive the stopping barrier of any of the first three diagrams of § 58, or
 to understand its singleness; but it is easy to see that in each of these three cases,

 any two closed curves drawn round the solid wire represented in the diagrams are
 reconcilable, according to the definition of this term given in § 58, and therefore,

 that the presence of any such solids adds only one to the degree of continuity of
 the space in which it is placed. (Thomson 1869, § 60 (t).)

 90 The undated excerpt both of Listing's essay and of Gauss' fragment on the linking integral
 mentioned earlier (Cambridge University Library, Add. 7655. Vc. 40) might either belong to the
 period of Maxwell's first reception of these texts or else to the preparation of his talk to the London
 Mathematical Society. The problem for the Tripos is reprinted in (Maxwell 1995, 466); for the
 contents of the talk see below, § 45.

 Instances are his papers On hills and dales (Maxwell 1870b) and on graphical statics
 (Maxwell 1870a); for the latter, see also (Scholz 1989, 189 ff.).
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 Thomson did not elaborate on these risky claims which every critical reader of his
 paper must have found either incomprehensible or false. For if Thomson really insisted
 on taking the reconcilability of paths as depending on continuous deformation, then it
 was not only far from "easy to see" that two paths like a and β in Fig. 9 above are
 reconcilable, it was actually impossible to do so! Thus, had Thomson considered his
 own words more seriously, he would have recognized the necessity to clarify his ideas,
 either by emphasizing that his technique of "reconciling" paths was what in modern
 mathematics would be called a homological procedure, or else by noticing that with re-
 spect to continuous deformations of paths, knot and link complements were much more
 involved than his remarks suggested. It was at this point that Thomson came closest to
 recognizing the need to distinguish between different kinds of path equivalences or at
 least between the idea of reconcilable paths and Riemann's idea of cutting surfaces. In
 the footnote left out in the quotation above, Thomson explicitly acknowledged that in
 technical arguments he relied not on "circuits" but on "stopping barriers." Here he wrote
 that "without this conception [of stopping barriers] we can make no use of the theory
 of multiple continuity in hydrokinetics [...], and Helmholtz's definition is, therefore,
 perhaps preferable after all to that which I have substituted for it." (Thomson 1869,
 § 60 (t), note.) Moreover, Thomson explained that Maxwell had referred him to List-
 ing's Census for "a very complete" treatment of "the subject of multiple continuity",
 and to Cayley's adaptation of Euler's formula to the case of curvilinear plane figures
 (Cayley 1861).
 Finally, Thomson proceeded to solve the global problem of the irrotational motions

 of a fluid. After some preparations, he stated his result as follows:

 (Prop.) The motion of a liquid moving irrotationally within an (n+ l)ply continu-
 ous space is determinate when the normal velocity at every point of the boundary,
 and the values of the circulations in the η circuits, are given. (Thomson 1869,
 §63.)

 The proof of this proposition followed from an easy application of his modified
 Green's formula. Introducing all necessary "stopping barriers" β' , . . . , βη (see § 24
 above), every possible irrotational motion was uniquely determined by its potential
 φ, a single-valued function in the simply connected region obtained by cutting along
 the ßi, and satisfying the given boundary conditions. Moreover, φ had to satisfy the
 additional condition that its values on the two sides of every surface ßi differed by the

 given "cyclic constant," which Thomson now called the "circulation."92 As fluid motions
 could be linearly superposed, the difference between two such motions satisfying the
 given conditions was again a possible fluid motion, but determined by a potential ψ
 whose normal deriviative at the boundary and cyclic constants vanish. Therefore,

 92 This condition had to hold not only in the limit approaching a point in /?,· but in a whole
 neighbourhood of each such point, in order to guarantee a smooth gradient field across each
 "stopping barrier."
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 = ÍÍ da ψϊ)ψ + ΣΚί ÍÍ άσ b^ ~ ÍÍÍ dx dy dz ^γ2^ = ° '

 implying that ψ had to vanish identically, and the proposition was proved.
 From the point of view of this last proposition the problem of determining the degree

 of connectivity of a knot or link complement appears in a new perspective. Thomson's
 result showed that this degree was just the number of linearly independent irrotational
 flows satisfying fixed boundary conditions, or - seen in terms of the analogy between
 vortex motion and electromagnetism - of magnetic fields induced by currents in the given

 link. Thus, a seemingly quite complicated physical question, expressed in mathematical
 language as a question about potentials, now received a surprisingly simple answer in
 terms of a purely topological concept. Before stating his result, Thomson accordingly
 underscored that "hitherto we have seen no reason even to suspect the following propo-
 sition" (Thomson 1969, § 62). On the other hand, once the proposition was established,
 it could be read in the reverse direction, in which case the physical interpretation of the
 result suggested that the degree of connectivity of a space region equalled the number
 of essential physical parameters characterizing the possible flows the region admitted.
 Since, in addition to boundary conditions, the only available parameters in a system of
 η linked vortex tubes or currents were the η vortex or current strengths, the degree of
 connectivity of the given region had to be η Η- 1 no matter how the vortices or currents

 were linked or knotted. A physical argument of this kind may well have been a further
 reason for Thomson's and Maxwell's otherwise rather vaguely justified belief that knot-
 ting or linking of boundary surfaces does not change the degree of connectivity of the
 region enclosed.

 § 28. Both in terms of its content and the techniques of proof, Thomson's proposition
 appears as an analogue to Riemann's description of "Abelian integrals of the first kind"
 in the three-dimensional situation Thomson was considering, just as Helmholtz had
 indicated with his earlier remark that irrotational flows in multiply connected regions
 should be regarded as "integrals of the first kind" of the equations of fluid motion.
 Thomson himself saw the analogy, too, as he pointed out in his long report from Bad
 Kissingen. From a modern mathematical perspective, these results represented the first
 steps toward a theory relating the space of harmonic forms on a Riemannian manifold
 to its topology, culminating in Hodge's theory of harmonic integrals (Hodge 1941). It is
 beyond the scope of this study to follow the paths leading from Riemann's and Thomson's

 results to this modern theory, but a few hints may be given in order to show that the point
 of view developed by the Scottish physicists had an influence on later approaches.

 First, Thomson's hydrodynamic insight into the relation between irrotational flows
 and topology soon found its way both into Maxwell's Treatise and into hydrodynamical
 textbooks like (Lamb 1879). In this manner, Thomson's ideas helped to make math-
 ematicians aware of the fundamental relation between potential theory and topology.
 For Riemann surfaces, the interconnections between complex analytic functions, poten-
 tials, flows, and topology were made popular by Felix Klein's little monograph Über

This content downloaded from 129.215.149.99 on Thu, 02 Feb 2017 10:51:18 UTC
All use subject to http://about.jstor.org/terms



 350 M. Epple

 Riemanns Theorie der algebraischen Funktionen und ihrer Integrale of 1882. While no
 reference to Thomson was made in the booklet, Maxwell's treatment of complex analytic
 functions along hydrodynamical lines provided the starting point of Klein's presentation
 (Klein 1882, § 1, note). When dealing with the central problem of the "most general
 stationary flow" on a Riemann surface, Klein pointed out that a more rigorous treatment
 relied on an application of Green's formula, and he referred to Tait's hydrodynamical
 justification of the latter (I.e., § 10). Therefore, it seems that Klein's particular interpreta-
 tion of Riemann's theory was inspired at least as much by the British physicists as it was
 by Riemann himself, though he wanted his readers to believe that his views represented
 Riemann's original line of thought (I.e., iii-vi.). The next main step toward the modern
 understanding of the situation was then taken by Hermann Weyl in his Die Idee der
 Riemannschen Fläche of 1913. Weyl, who had discussed the material of his book with
 Klein, acknowledged both the heuristical force of the hydrodynamical interpretation
 of complex functions on a Riemann surface and the British background to it.93 In this
 way, the physical background of dynamical theory, motivating Thomson's proposition
 on irrotational flows in a space region, contributed to shape the directions in which later
 explorations of the relation between potentials and topology continued to move.

 Issues of reception

 § 29. Thomson's mathematical investigations, while providing an impressive starting
 point for further studies of vortex motion, failed to develop a sufficient mathematical
 basis for the physical speculation that motivated them. Indeed, his results were still far
 from offering a satisfying theory of the dynamics of vortex atoms. One of the problems
 yet to be addressed was that of the dynamical stability of vortices. While Thomson
 initially hoped that energy considerations would lead to the desired results, he had to
 admit in 1876 that not even the simplest cases had been solved:

 Hitherto I have not indeed succeeded in rigorously demonstrating the stability
 of the Helmholtz ring in any case. [. . . ] The known phenomena of steam-rings
 and smoke-rings show us enough of, as it were, the natural history of the sub-
 ject to convince us beforehand that the steady configuration [. . . ] is stable. [. . . ]
 But at present neither natural history nor mathematics gives us perfect assur-
 ance of stability when the cross section [of a Helmholtz ring] is considerable in
 proportion to the area of aperture.94

 A second important gap in the theory concerned the investigation of the fundamental
 modes of vibrations of vortices, which were crucial for explaining the observed spectra
 of chemical elements. In several minor papers, Thomson dealt with a few special cases,
 such as the vibrations of an infinitely thin columnar vortex or a circular vortex ring with

 93 Weyl even called the basic minimum problem whose solution guaranteed the existence of
 potentials on Riemann surfaces the "Thomson-Dirichlet principle." See (Weyl 1913, § 14.)
 94 (Thomson 1875, §§ 19-20.) See also (Smith and Wise 1989, 431 ff.)
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 an infinitely thin core.95 These treatments, however, failed to lead to results which could

 be related to empirical data.
 Even if it were granted that such mathematical difficulties could be overcome, im-

 posing physical problems remained as well. How could the basic physical phenomena of
 gravitation, electromagnetism and light be explained on the basis of vortex atoms? Here
 Thomson was led to ever more complicated assumptions about ether vortices. Regarding
 gravitation, he sought to adapt Le Sage's explanation of gravitation by means of tiny
 "ultramundane" corpuscles, which were conceived as vortices much smaller than the
 atoms of matter. Thomson hoped that the transmission of electromagnetic waves and
 light in ether could be accounted for by assuming that the space between material atoms
 also carried a regular vortex structure that formed into an elastic "vortex sponge."96

 Until well into the 1880's, these mathematical and physical shortcomings were not
 considered serious obstacles to pursuing the idea of vortex atoms. A few years after his
 first public announcement of the theory, Thomson's approach had become quite well
 established as a promising candidate for a future atomic theory. Maxwell's favourable
 discussion in the 9th edition of the Encyclopedia Britannica (Maxwell 1875) has already
 been mentioned. In that article, Maxwell even went to some length in laying out the
 mathematics of vortex motion. Regarding the topology of vortices, Maxwell hinted at
 the great number of knots and links which might account for the different types of
 atoms: "The number of essentially different implications of vortex rings may be very
 great without supposing the degree of implication of any of them very high." (Maxwell
 1875, 471.) Shortly after the appearance of this article, Thomson's collaborator, Tait,
 would take up this suggestion.

 In 1882, the theory appeared to have reached a state worthy of institutional encour-
 agement. For the University of Cambridge's Adams Prize for 1882, the subject selected
 was "A general investigation of the action upon each other of two closed vortices in
 a perfect incompressible fluid." The prize was awarded to J. J. Thomson, whose es-
 say not only discussed stability and vibrations of symmetric groups of ring vortices,
 but, in its most original parts, also hinted at an explanation of chemical valency and
 chemical combination via interactions of (possibly linked) groups of ring vortices. With
 hindsight, one perceives in this study some elements of J. J. Thomson's later atomic
 model.97 Outside Britain, William Thomson's speculation also received some attention.
 For the German journal Mathematische Annalen, A. E. H. Love contributed a survey
 On recent English researches in vortex-motion, emphasizing that "the chief physical
 interest of vortex-motion lies in the speculations of Sir W. Thomson as to the ultimate
 constitution of matter" (Love 1887, 326). In France, Thomson's admirer L. M. Brillouin
 intended to publish a series of papers on vortex atoms.98

 95 See e.g. (Thomson 1880). Not all of these papers were published; cf. e.g. the title of Thom-
 son's talk to the R.S.E., 15 April 1878, in the appendix.

 95 For details, see (Silliman 1963), (Siegel 1981, 256 ff.), and (Smith and Wise 1989, 425 ff.,
 438 ff.).

 yi (J. J. Thomson 1883); see also (Silliman 1963).
 ™ This is mentioned by (Love 1887, 327, note).
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 In all such presentations of Thomson's program, the role of topology was recognized
 and acknowledged but, with the exception of Tait, not seriously pursued." By the end
 of the 1880's, however, the physical difficulties of the theory seemed more and more
 pressing, and these ultimately proved fatal. The problems of explaining mass, gravitation,
 electromagnetism, and light on the basis of vortex atoms resisted any quantitative treat-
 ment. Moreover, no real progress was made in proving the dynamical stability of vortices
 in a perfect fluid, and virtually all calculations of modes of vortex vibrations showed the
 periods of vibration to be dependent on the energy of the vortex, a result that stood in
 blatant contradiction with the experiences of spectrum analysis. In 1887, Thomson had
 to admit that "the most favourable verdict I can ask [. . . ] is the Scottish verdict of not

 proven'9 and in the years to follow he gradually abandoned his brilliant speculation.100
 § 30. If vortex atoms turned out to be a dead end for physics, the same cannot be said

 for the mathematical ideas that accompanied this theory. While this has been acknowl-
 edged since the 19th century with respect to Thomson's hydrodynamical innovations,
 our narrative also makes clear that in the line of research leading from Helmholtz's in-
 vestigation of vortex motion to Thomson's theory of vortex atoms, topology entered a
 basic physical theory in a highly nontrivial way. The Scottish mathematical physicists,
 notably Maxwell and Thomson, were acutely aware of this fact. Their correspondence
 and writings during this period show that they struggled with at least three intercon-
 nected problems of a topological nature which would require a solution if Thomson's
 theory were to become successful. The central one, motivated by Thomson's idea to
 replace vortices in a perfect fluid by bodies of arbitrary shape, was to determine the
 set of irrotational flows in multiply connected space regions. This problem required
 an understanding of the topology of such regions and, in particular, a determination of
 their degree of connectivity. Maxwell's formula, expressing this number in terms of the
 genus of the boundary components, provided a means to calculate it without, however,
 giving more than an intuitive argument to justify his finding. Thomson's discussion of
 Maxwell's result then tried to spell out at least some of the potential difficulties that
 arise when regions which are complements of a system of knotted or linked channels
 are taken into account. I have tried to show that it was the physical content of Thom-
 son's proposition on irrotational flows, rather than a precise mathematical analysis, that
 lent support to Thomson's belief in Maxwell's formula. In this work, a difference was
 discerned between the degree of connectivity of a knot or link complement and what
 Thomson called its "quality of connectivity." This subject reached well beyond fluid dy-
 namics and the technical tools Maxwell and Thomson had employed up till then, and its
 elaboration would have required a direct attack on the problem of knot and link classifi-
 cation. Maxwell's writings of the late 1860's show that he was aware of the problem, but
 he apparently decided not to tackle it seriously. Soon afterwards, Peter Guthrie Tait did.

 99 A typical statement on the topological aspects of the problem may be found in (Love 1 887,
 327).

 100 (Thomson 1887, 320); further details regarding Thomson's disengagement can be found in
 the literature cited in previous footnotes.
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 ΙΠ. Knot chemistry

 Chronicle: Knot chemistry

 1 876 Tait embarks on knot classification and begins to publish a series of related papers.
 1 877 Pursuing a hint from Maxwell, Tait reads Listing's Vorstudien and reports on it to the

 R.S.E.; a long paper On knots collects Taiťs results.
 1 883 Tait describes Listing 's Topologie in a paper for the Philosophical Magazine, calling

 attention to knot classification.

 1 884 Reverend Kirkman redoes Taiťs results in terms of "polyhedra" and provides Tait with
 "polyhedral data" for knots with 8 and 9 crossings.
 Using Kirkman 's results, Tait extends his classification in On knots IL First knot tables

 are published.
 1885 On knots III tabulates alternating knots of order 1 0, again drawing on Kirkman 's work.
 1 885 The American engineer Little starts to produce knot tables.
 1886 The Edinburgh Chemist Crum Brown publishes short papers on topological issues.
 1 889 Little tabulates non-alternating knots of orders 8 and 9.
 1 890 Little tabulates alternating knots of order 1 1 .
 1 899 Little tabulates non-alternating knots of order 1 0.
 1917 Mary Haseman tabulates amphicheiral knots of order 1 2.

 § 31. Among other things, William Thomson's version of dynamical atomism in-
 tended to shed light on the problem of explaining the variety of chemical elements and,
 if possible, the nature of chemical structure. The latter topic received growing attention
 during the late 19th century, mainly in consequence of progress in organic chemistry,
 including Kekulé's discussion of the structure of benzene in 1865 and subsequent work
 on the isomerism of hydrocarbons. However, in the late 1860's, Thomson and Maxwell
 only hinted at the task of classifying the possible forms of knots and links which would
 serve to represent the various chemical elements on the basis of the vortex atom theory.
 This task clearly represented an important step in the extension of Thomson's program
 in the direction of chemistry.

 It was Peter Guthrie Tait who, in 1876, decided to make a serious effort toward the

 classification of knots. In this way, Tait hoped at least to lay the groundwork for a vorticist

 approach to the problems of chemistry. On the one hand, a list of knots (and perhaps links)
 would provide a universe of possible forms for vortices from which those forms could
 be selected which might actually represent chemical elements. On the other, a study of
 the various forms of knots and links might perhaps even be useful in approaching the
 problem of chemical structure, if the latter was also conceived in topological terms.

 Taiťs research may be seen as related to a broader interest in representing the struc-
 ture of molecules by means of symbolical graphs. This interest had arisen during the
 1860's, and by the 1870's, several mathematicians, including Arthur Cay ley and Joseph
 J. Sylvester, had become involved in developing graph-theoretic methods applicable
 to chemical structure. The problem of classifying knots and links, or, more precisely,
 knot and link diagrams, seemed to fit naturally into this context. Along with his work
 on knots, Tait more than once exchanged ideas with his brother-in-law, the Edinburgh
 chemist Alexander Crum Brown, whose version of a graphical notation of chemical
 structure, proposed in the early 1860's, had since come into general use. While Tait
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 eventually took up Cram Brown's method of notation in his classification enterprise,
 the chemist became interested in topology as well. In the mid-1880's, Tait's classifica-
 tion project developed into a modest tradition of knot tabulations. Contributions to this
 project were made by the combinatorially-minded Lancashire clergyman, Thomas P.
 Kirkman, the American professor of civil engineering Charles N. Little, and, as late as
 1917, by Mary G. Haseman, who wrote a dissertation on knots at Bryn Mawr College. In
 the following, the development and content of Tait's classification project and its main
 contexts will be briefly sketched.101

 A periodic table of knots?

 § 32. Nine years elapsed between Tait's smoke ring experiments and his attack on
 the problem of knot classification. We have seen that Tait had initially been somewhat
 sceptical about Thomson's idea of vortex atoms, but in the early 1870's he began to
 include Thomson's theory into his regular lecture courses on natural philosophy, and
 he also addressed the topic repeatedly in popular lectures before different audiences.
 Usually he discussed the various hypotheses on the constitution of matter at the outset
 of his courses. Thus, a typical presentation would include a description of Lucretius'
 hypothesis of elastic balls, of Boscovich's centre of force hypothesis, and, as preparation
 for the discussion of Thomson's ideas, a qualitative review of Helmholtz's results on
 vortex motion.102 Tait would then perform his smoke ring experiments, emphasizing
 that the idea of vortex atoms was of a very fundamental character. That he made his own
 views plainly known can be seen from notes taken by of one of his students in the 1871-
 72 lectures. In connection with Tait's smoke ring experiments, the student described an
 "Example of Vortex ring, formed by the smoke, arising from the ignited gunpowder, as
 it curls up on the air, and spreads along the ceiling. One of the most plausible hypotheses
 yet made in regard to matter is, that matter is nothing but energy."103 In later lectures of
 the course, reference to vortex atoms would be made now and then in other contexts in

 order to make an argument.104
 Of course, Tait also saw the mathematical difficulties which stood in the way of a

 straightforward pursuit of Thomson's programme. In their common metaphysical man-
 ifesto of 1875, The Unseen Universe (to be discussed in Section V), Tait and the Belfast

 101 It would take too much space to give a full treatment of Tait's endeavours here. See my
 History of Knot Theory, forthcoming, for a more detailed discussion.
 ιυζ To leave out advanced mathematics was part ot the general style of Taits lectures; see
 (Wilson 1991).
 103 Tait, Lectures on natural philosophy, Edinburgh University 1871-1872. Notes taken by I.
 Gray, Edinburgh University Library, Gen 1408.
 ιυ* Instances of Tait s presentation ot vortex atoms may be found in the lecture notes ot his
 regular courses by I. Gray (1871-1872), Andrew D. Sloan (1881-1882), P. P. Easterbrook (1885-
 1 886), all in the University Library at Edinburgh, and by G. M. Barrie ( 1 880-1 88 1 ), in the National

 Library of Scotland, MS 6654. The argument was also presented in Tait's popular lectures on
 Recent Advances in Physical theory (Tait 1876a) and in his "Lectures for Ladies" (1875-1876),
 see the notes by Elisabeth Haldane, National Library of Scotland, MS 20200.
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 experimental physicist Balfour Stewart included a passage describing Helmholtz's re-
 sults on vortex motion, declaring that very little had been achieved mathematically on
 this topic in the meantime. Thomson's speculation, they wrote,

 promises to be very valuable from one point at least, viz., the extension and
 improvement of mathematical methods; for in the treatment of its very elements
 it requires the application of the most powerful of hitherto invented processes,
 and even with their aid, the mutual action of two ring- vortices (the simplest
 possible space-form [read: knot or link]) has not yet been investigated except
 in the special cases of symmetrical disposition about an axis. (Stewart and Tait
 1875, § 134.)

 In the margin of his private copy of the first edition of The Unseen Universe, Tait
 added: "Nay more; even the undisturbed form of the simplest knotted vortex (that which
 is drawn on our title page) has not yet been investigated. If any competent mathematician
 were to devote his whole life to this study of this one form."105 At about the time Tait
 wrote this comment, he himself embarked on the project of knot classification.

 The first documented manifestation of Tait's interest in knots came in 1876 in the

 form of a short communication to the mathematical section of the annual meeting of the
 British Association for the Advancement of Science. This note contained an observation

 which Tait had made earlier on the occasion of "designing Vortex atoms of various
 forms" for Thomson, namely that two closed plane curves which have only a finite
 number of transverse intersections (which may be self-intersections) always meet in an
 even number of points.106 Tait pointed out two immediate implications: first, that every
 plane curve with at most finitely many transverse self-intersections could be viewed as
 a plane projection of a knot in which the double points of the curve alternately represent
 over- and undercrossings of the arcs of the knot. Thus it seemed possible, at least for
 such alternating knots, to base the classification of knots on a preliminary classification
 of closed plane curves with finitely many double points. Supposing this could be done,
 the crucial problem that remained was: what are the conditions under which two closed
 plane curves represent projections of knots which can be deformed continuously into one
 other? The second consequence mentioned by Tait was that the regions of any regular
 knot projection could be coloured black and white in a chequerboard-like fashion, a
 fact which came to play a technical role in Tait's later work. Tait concluded his short
 communication with the words: 'The development of this subject promises absolutely
 endless work - but work of a very interesting and useful kind - because it is intimately
 connected with the theory of knots, which (especially as applied in Sir W. Thomson's
 Theory of Vortex Atoms) is likely soon to become an important branch of mathematics."
 (Tait 1876b, 272.)

 During the academic year 1876-1877, Tait devoted himself intensively to the study
 of knots. On 16 October 1876, he submitted a sealed envelope to the Royal Society of

 105 Edinburgh University Library, Df. 3. 87, note to § 134.
 106 See (Tait 1876b); the historical remark is in (Tait 1877b, 309 f.). Of course, this proposition,

 a consequence of the Jordan curve theorem, was not and could not have been proved in any modern
 sense by Tait.

This content downloaded from 129.215.149.99 on Thu, 02 Feb 2017 10:51:18 UTC
All use subject to http://about.jstor.org/terms



 356 M. Epple

 Edinburgh containing some remarks on knot diagrams which he apparently regarded as
 marking a breakthrough in knot classification.107 In December 1876, he read a paper to
 the Royal Society of Edinburgh, the first in a series of seven which were then reworked
 into a long article (Tait 1877g). These seven papers, all published in the R.S.E. Proceed-
 ings, make possible to give a a detailed analysis of the development of Tait's endeavours.
 In the following, I sketch the various topics Tait addressed in the order in which they
 appear in these communications, adding remarks on his later achievements regarding
 the same topics.
 § 33. As with Maxwell's earlier work, which he seems not to have known, Tait's first

 step was to find a suitable symbolic notation for knot diagrams which could serve as
 the basis for a combinatorial treatment. His method, though similar to Maxwell's, was
 closer to one which had been employed much earlier by Gauss.108 Starting with a knot
 diagram, i.e. a closed plane curve with finitely many double points or crossings, Tait
 proposed to choose an initial point and an orientation (see Fig. 10), and then to label the
 first, third, fifth, etc., double point by letters A, B, C,

 would be labeled uniquely. The series of letters attached to the crossings, read along the
 diagram and including the even places, Tait called the scheme of the knot.109

 Evidently, a scheme was determined by the sequence of letters in the even places
 (we may call this the condensed scheme). However, not every sequence of letters could
 actually arise, and some sequences led to obviously reducible diagrams. If, for instance,
 the letter A occurred in the first or last place of the condensed scheme, the diagram
 in the neighbourhood of A had to appear like Fig. 1 1 (left). In this instance, A could
 be removed from the diagram by untwisting the loop. More generally, a symbol was
 considered "nugatory" if it corresponded to a diagram crossing which separated two
 completely distinct parts of the knot as in figure 1 1 (right).

 The scheme of a diagram depended on the choice of the initial point and the orienta-
 tion. This gave rise to an equivalence between schemes which could easily be translated
 into purely combinatorial terms.110

 (&>
 Fig. 10. A knot with scheme ACBDCADB

 107 National Library of Scotland, Ace. 1000, no. 376. The most important remark on the sheet
 of paper in the envelope will be discussed in § 34 below. The envelope was opened for the first
 time in 1987.

 108 The relevant fragments of Gauss' Nachlaß were unkown to Tait as they were only published
 in 1900 in the eighth volume of Gauss' Werke.

 ^ 5ee(lait lö/öc, zj»), (lait 18/ /g, §^.

 110 Tait's clearest explanation of this is in (Tait 1877g, § 5).
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 Fig. 11. Nugatory crossings

 By introducing this scheme, Tait could devise a strategy for classifying knots as
 follows: (1) find all not obviously nugatory condensed schemes, i.e. all permutations
 of η distinct signs A, B, C, . . . such that A is not in the last or first place, Β is not
 in the first or second, etc.; (2) find all combinatorially equivalent schemes, and retain
 only one scheme of each equivalence class; (3) of the remaining schemes, single out
 those which actually represent knot diagrams; (4) determine which diagrams of the list
 obtained in the third step represent equivalent knots. Strictly speaking, this last step
 consisted in answering two questions: (4a) given a knot diagram, which choices of
 over- and undercrossings give rise to irreducible knots, i.e. knots which do not possess
 a diagram with fewer crossings? (4b) which among all the irreducible knots resulting
 from diagrams with a given number η of crossings are equivalent?1 ] !

 The first two steps were purely combinatorial problems, and Tait succeeded in at-
 tracting Cayley's and Muir's interest to the first of these in early 1877. Using determinant

 methods, Muir gave a formula for the numbers un of schemes satisfying condition (1).
 For three to eight crossings, Muir's formula gave the numbers:

 M3 = 1, M4 = 2, u5 = 13, u6 = 80, H7 = 579, w8 = 4738,

 showing that the number of schemes to be tested increased rapidly.1 12 The third step in
 Tait's procedure was partly a combinatorial task (involving several tests based on the
 idea of looking at subcycles of schemes), and partly a matter of empirical verification
 by drawing the associated diagrams. If done with care, this process would lead to a
 complete list of knot diagrams with a given number of double points; Tait managed to
 work out this step up to and including the case of seven crossings (see below). However,
 Tait and his followers, like Gauss earlier, were not able to provide efficient algorithms
 for this part of the problem.1 13 As it turned out, the fourth step emerged as the hardest
 and least clear part of the whole procedure. For most of his work, Tait only considered
 alternating choices of over- and undercrossings, thus bypassing step (4a).

 1 ] * This overall strategy was only vaguely hinted at in the published abstract of Tait's first paper.

 However, Tait clearly followed it when discussing the simplest types of knots. It was then spelled
 out in those parts of (Tait 1877g) which present the arguments of the earlier paper in more detail.
 1 12 See (Muir 1 877). Cayley simplified Muirs results by studying the generating function of the

 problem, u3 + u4x + u5x2 H

 I1J This gap was only filled by (Dehn 1936b).
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 § 34. From the beginning, Tait was also interested in finding numerical invariants
 of knots that could express something like their degree of complexity. Both Thomson
 and Maxwell had thought about such a measure, and the degree of connectivity of space
 regions suggested that something similar might be attained for knots.114 The first such
 possibility Tait discussed was the minimal number of crossings any diagram of a given
 knot type might have. Already the sealed envelope handed in to the R.S.E. stated a con-
 jecture about this number which has since become known as "Taiťs first conjecture."1 15
 The cryptic statement "If the simplest is H

 envelope meant that an alternating diagram (the signs in the quote refer to over- and
 under-crossings) without nugatory crossings would necessarily have the minimal num-
 ber of crossings. Tait gave no argument for this claim, and even his long paper of 1877
 qualified the proposition as "obvious." Nevertheless, in this paper he added a sort of intu-
 itive justification: "For the only way of getting rid of such alternations of + and - along
 the same cord is by untwisting; and this process, except in the essentially nugatory cases,
 gets rid of a crossing at one place only by introducing it at another." (Tait 1877g, § 4.)
 The interpretation this argument requires some care. In this passage, Tait came close

 to formulating a second conjecture which provides a mathematical justification not only
 for his statement on the crossing number of reduced alternating diagrams but also for
 several of Taiťs further claims. We shall see below that from his reading of Listing's
 Vorstudien zur Topologie, Tait was inspired to consider operations on a knot diagram
 which "twist" a part of the diagram by 180 degrees as in the following Fig. 12.

 r 7n 7 Γ Γ/ 7Γ/Ί7Πυ' 7/ À? '/n τη -jrrrrA? V
 Fig. 12. A "twist" (the shaded regions may contain arbitrary completions

 of the diagram; the lower part remains fixed)

 A reasonable reading of Taiťs claim is that a non-nugatory crossing of an alternating
 diagram may only be removed by a twist, and therefore the total number of crossings
 remains the same. In this form, however, Taiťs argument is inconclusive since it does
 not rule out the possibility of reducing the number of crossings through a series of
 diagram deformations which increase the number of crossings in the first stages. Thus
 one might be inclined to favour a stronger interpretation of Taiťs argument, saying that
 any two reduced alternating diagrams of the same prime knot are related by a sequence
 of twists. 1 16 This latter assertion is what modern knot theorists have come to call 'Taiťs

 1 14 A similar interest in a numerical degree of knottedness is documented by (Klein 1 876). See
 below, Section V.
 115 See e.g. (de la Harpe, Kervaire and Weber 1986, § 9). It was hrst publicly stated in (I ait
 1876c, 239) and then again in (Tait 1877g, § 4.)
 1 16 A knot is called "prime" if it is not composed of two separate knots tied on the same string.
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 second conjecture." It is not clear whether Tait actually held this conjecture, today known

 to be a valid theorem.1 17 Indeed, it never appears explicitly in Tait's writings and some
 of his remarks make it appear probable that he did not think that twists were sufficient to
 generate all reduced alternating diagrams of a given alternating knot. On the other hand,
 the combination of this conjecture with its corollary on the crossing number of reduced
 alternating diagrams provides a solution to step (4) in Tait's classification strategy in
 the case of alternating knot diagrams. Consequently, together with an algorithm for
 enumerating diagrams, these conjectures solve the classification problem for alternating
 knots by a procedure which, for every given crossing number, consists of finitely many
 steps. Thus, although Tait never explicitly formulated his so-called "second conjecture,"
 we may understand why a consideration of the twisting operation allowed Tait to con-
 struct correct and, for the cases he studied, complete tables of alternating knots.

 § 35. Apparently, Tait hoped initially that the natural measure of the complexity of
 a knot was not the minimal crossing number of its diagrams but a different invariant
 which he termed the "beknottedness" of a knot. His first, tentative definition involved

 a distinction between the possible orientations of diagram crossings. For this purpose,
 he invented a method of "going round the curve" while throwing silver and copper
 coins into the corners of the various diagram regions reached ("silver to the right when
 crossing over, to the left when crossing under;" the other corner received a copper coin).
 The method was independent of the orientation chosen and led to a distinction between
 "silver" and "copper" crossings (see Fig. 13) (Tait 1877a, 290).

 "The excess of the silver over the copper crossings" seemed to Tait to be the natural
 measure of beknottedness he was looking for. As the possibility of twisting an arc into
 a little loop shows, this number (later called "the twist" of a knot diagram by C. N.
 Little118) had to be calculated using reduced diagrams, i.e. diagrams without nugatory
 crossings. Tait and his followers wrongly believed that the twist number so defined was
 a knot invariant in the full sense; Little would even state and "prove" this as a theorem
 (see § 41 below). Still, the twist number is indeed an invariant of reduced alternating
 diagrams in consequence of the twisting theorem ('Taiťs second conjecture").

 ' © / ' d> /

 Fig. 13. Silver (left) and copper (right) crossings

 117 After having been one of the challenging open problems of knot theory for some time,
 the twisting conjecture was proved by (Menasco and Thistlethwaite 1993). Following (Conway
 1970), the operations here called twists are often called "flypes" today, a term used by Tait to
 denote a different operation on a diagram (corresponding to the inversion of a knot with respect to

 a 2-sphere in space). Tait's first conjecture had already been proved earlier by (Murasugi 1987).
 The modern proofs of both conjectures rely heavily on Vaughan Jones's new polynomial invariant
 for knots.

 118 In modern texts one also finds "writhe."

This content downloaded from 129.215.149.99 on Thu, 02 Feb 2017 10:51:18 UTC
All use subject to http://about.jstor.org/terms



 360 M. Epple

 By considering two-component links instead of knots and by only counting crossings
 where both components meet, Tait obtained a similar number which he knew well from
 Maxwell's work and which may even have inspired him to try something similar for
 knots: Gauss' linking number. This connection inspired him to look for an electromag-
 netic interpretation of his measure of beknottedness by considering the work done when a

 magnetic particle (a "pole") is carried along a current in a knotted circuit. He immediately
 observed, however, that such an interpretation could not be defined unambiguously since
 one had to introduce a convention in order to determine the exact path of the particle.1 19

 As Tait realized, changing an overcrossing into an undercrossing or vice- versa in-
 creases or decreases the twist number of a diagram by two. Looking at some examples
 of alternating knots, Tait was led to wonder whether half the twist number was equal to
 another measure of the complexity of knots. "It is probable after all," he wrote, "that the
 true measure of beknottedness is the smallest number of signs in a scheme [indicating
 over- and undercrossings] which must be altered in order that the wire may cease to be
 knotted." (Tait 1877a, 294.) The idea of relating the easily calculable twist number to
 this new notion of beknottedness was, to say the least, premature, as Tait immediately
 realized. For instance, the well-known knot with four crossings (see Fig. 1) had twist
 number zero, whereas at least one crossing had to be changed in order to unknot it. This
 induced Tait to ask a new question: Under what conditions would a knot diagram have
 zero twist number? According to his own account, this led him "to see that there is a class
 of knots which are capable of being changed from right-handed to left-handed, without
 change of form, by the ordinary processes of deformation." (Tait 1877a, 295.) To these
 knots, Tait gave the name of amphicheirals. If the twist number of reduced diagrams was
 indeed an invariant, as Tait supposed, diagrams of amphicheiral knots would necessarily
 have vanishing twist number since a reversal of all crossings leads to the negative of the
 original twist number. Once more Tait was able to come up with an assertion which was
 correct if restricted to reduced alternating diagrams like that of the four-crossing knot.
 For knots with such diagrams, the twist number is an invariant and thus amphicheirality
 does indeed imply that this number is zero.
 The obvious difficulties with the twist number induced Tait to invent various ad hoc

 methods to make "corrections" of this number in order to save its relation to "beknot-

 tedness" in the new sense. None of these methods, however, led to a satisfactory general
 result. In the end he had to admit: "There must be some very simple method of deter-
 mining the amount of beknottedness for any given knot; but I have not hit upon it."120
 While Tait was still struggling with these ideas, he also noticed that the minimal number
 of crossing changes needed to open a knot behaved quite differently than the minimal

 119 (Tait 1877a, 290 f.). Since Taiťs time, several attempts have been made to define an appro-

 priate "self-linking number" of knots along the lines indicated by Tait, but none of these led to a
 topological invariant of knots. A natural convention about the path of the magnetic particle can
 be made if the knot is endowed with a framing, i.e. a smooth field of normal vectors. In this way,
 an invariant for "framed knots" is obtained which came to play a role in the characterization of
 3-manifolds by surgery on links by Lickorish and Kirby in the 1960's and 1970's; see e.g. the
 discussion in (Kauffman 1991, 250 ff.).

 120 See (Tait 1 877g, § 42). To the best of my knowledge the situation has not changed up to the
 time of writing (July 1997).
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 number of diagram crossings; in particular, sometimes diagrams with fewer crossings
 had greater beknottedness. This induced him to distinguish these two quantities by in-
 troducing the term knottiness for the minimal crossing number (Tait 1877a, 296, note).

 § 36. When Tait's second communication to the R.S.E. containing his reflections on
 a measure of beknottedness was printed, he added the following remark:

 Professor Clerk-Maxwell, to whom I sent some of the above results (and to
 whom, as well as to Sir W. Thomson, I am indebted for various hints, usually
 in the especially valuable form of criticisms and reasons for doubt), has lately
 called my attention to a paper by Listing, of date 1847, part of which is devoted
 to the subject of knots. [. . . The author] virtually shows, by giving a particular
 case, that the method of deformation which I employ does not always give all
 possible forms of a completely knotted wire. [. . . ] I propose to give the Society
 an account of Listing's method and results on the earliest opportunity.121

 Tait's following communication kept this promise by explaining in detail Listing's ideas
 on knots and, in particular, the latter's method of representing a knot by a so-called "type

 symbol." Moreover, Tait reconsidered an example Listing had given of two diagrams of
 the same knot (see Fig. 14), and he found that these diagrams were related by the kind
 of deformation by twisting as discussed above. It was this example which gave Tait the
 general idea to use twisting as a method for transforming diagrams.

 As his concluding remarks show, Tait was rather puzzled by this new aspect of
 knots. Realizing that there were even more combinatorial problems involved than he
 had expected, he even thought about quitting the field:

 In conclusion, it appears that the problem of finding all the absolutely distinct
 forms of knots, with a given number of intersections, is a much more difficult one

 than I at first thought; and it is so because the number of really distinct species
 of each order is very much less than I was prepared to find it. The question now
 belongs more to quantitative than to qualitative relations. It resembles, in fact,

 1 ~^^m^^-

 Fig. 14. Listing's equivalent knots

 121 See (Tait 1877a, 297 f.). The remark was dated 27 January 1877. Only a few days earlier,
 Tait had received Maxwell's suggestion; see Maxwell to Tait, 22 and 24 January 1877.
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 the species of problem originally suggested by Crum Brown, and resolved by
 Sylvester and Cayley, of determining the number of conceivable Hydrocarbons
 under given conditions of limitation. And here I am glad to leave it, for at this
 stage it is entirely out of my usual sphere of work, and it has already occupied
 too much of my time. (Tait 1877b, 315 f.)

 Apparently, Tait hoped that scientists interested in the combinatorics of graphs rep-
 resenting the structure of chemical compounds would take up the issue. In fact, the years
 following 1874 had seen an increasing activity in this domain. Based on Crum Brown's
 graphical notation of chemical structure (which is essentially the modern one),122 Arthur
 Cayley wrote a series of articles enumerating the graphs representing the possible iso-
 mers of various series of hydrocarbons. A little later, William Kingdon Clifford and
 James Joseph Sylvester also published contributions on the problem based on the the-
 ory of invariants (in this way, the method of graphical notation also entered the latter
 field).123 Tait's suggestion that one of the experts in this kind of questions should turn
 to knot diagrams was certainly reasonable in view of the types of problems that had to
 be solved. Moreover, it made sense from a disciplinary point of view. To classify knots
 and links should, Tait hoped, be as useful for chemistry as for physics or mathematics,
 just as the enumeration of hydrocarbon isomers had been.

 Graphical formulae for molecules and knots

 § 37. Indeed, Tait's disillusionment with the classification of knots proved to be
 only a momentary lapse of interest. Just two weeks after expressing his discontent with
 the state of the subject, in fact, he was back in the fray. In his next communication, he
 entered into a further discussion of Listing's type symbol, especially as applied to links.
 Moreover, he presented a new method for enumerating knot and link diagrams, inspired
 by Crum Brown's graphical notation of chemical compounds.
 Listing's symbolic representation of knots had been based on a rule for marking the

 corners of a knot (or link) diagram associated with the following Fig. 15. Connecting
 two opposite regions by an axis running between the two arcs of the link, these arcs
 turn around the axis either like a right-handed or a left-handed screw. Accordingly, the
 regions were marked r or /, respectively.124 In slightly modernized notation, Listing's
 symbol - originally called the "Complexions-Symbol" - was defined to be a polynomial
 of the form:

 122 Brown's notation was first published in the R.S.E. Transactions in 1864 and made popular
 by an introductory monograph written by Edward Frankland (Frankland 1 866). Other versions of
 graphical notation had been used by various other chemists; see (Russell 1971).
 123 See (Cayley 1874), (Cayley 1875), (Cayley 1877b), (Sylvester 1878a), (Sylvester 1878b),
 and (Clifford 1878). For a discussion of these contributions to chemical graphs, see (Biggs, Lloyd
 and Wilson 1976, 60 ff.).

 124 The notation is Tait's. Listing had actually interchanged left and right in his notation since
 he had used an orientation of space different from the modern convention; see (Listing 1847, 52).
 When Maxwell prepared his Treatise, he established a consensus in the London Mathematical
 Society for adopting the system based on the "right hand rule;" see below, § 45.
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 Fig. 15. Marking corners of diagrams

 where each term aijrlV represented all diagram regions with precisely i marks r and j
 marks /; the coefficients a/; were just the number of regions of type rlV , including the
 outer region (see Fig. 16 below for an example).

 While Listing had been interested in relations between the polynomials of different
 diagrams of the same knot, Tait soon found that diagrams of different knots or links might
 lead to the same "type-symbol," as he preferred to call it.125 In particular, Listing's
 symbol might equally well represent a link or a knot, as Tait illustrated by several
 examples. Still, Tait found Listing's idea of basing a symbolic representation on diagram
 regions rather than diagram crossings attractive and tried to improve it, drawing further
 inspiration from chemical graphs:

 There is no connection between the type-symbol, as Listing gives it, and the
 singleness or complexity of the curve represented, but it is possible to make
 analogous symbols capable of expressing everything of this kind. Only we must
 now adopt something very much resembling Crum Brown's Graphical Formu-
 lae for chemical composition. Some very remarkable relations follow from this
 process, but I can only allude to a few of the simpler of them in this abstract.
 (Tait 1877c, 326.)

 yXv 2^+2r χι--- x/

 Fig. 16. A five-crossing knot, its type symbol, and its graphical formula

 125 Apparently, Listing's hope in introducing "Compexions-Symbole" had been to establish a
 calculus in which polynomials representing different diagrams of the same knot were considered
 equivalent. Since the "defining relations" were unknown, however, the idea was not easy to work
 out; see (Listing 1847, 58). Given these difficulties, Tait's renaming of Listing's symbol as a
 "type-symbol" does not seem very happy.
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 Taiťs new method was restricted to alternating diagrams or, equivalently, to link
 projections in which over- and undercrossings were not distinguished. In fact, in alter-
 nating diagrams all marks of a given region were identical, giving rise to a checkerboard
 distribution of "right-handed" (r) and "left-handed" (/) regions (a fact which Listing
 had already observed). Focusing on one kind of region only, say the right-handed ones,
 Tait encoded their arrangement in a graphical formula similar to a chemical structure
 formula, in which each region was represented by its symbol rl (in later versions, only
 by the number /), while each crossing joining two regions rl and r·7 was represented by a
 dash (see Fig. 16). Any region of type rl was connected to others by exactly / crossings,
 and thus the numbers i represented the valencies of the vertices of the graphical formula
 representing a given diagram. From the new graphical formula, the diagram itself could
 easily be recovered by joining mid-points of the edges as indicated in the figure below.
 Moreover, the dual graphical formula obtained by interchanging vertices and regions
 gave the arrangement of left-handed diagram regions.126

 These properties of the new formulae suggested that they could be used in the enu-
 meration of knot and link diagrams. The only restrictions on the valencies i were that
 their sum had to be even and no / could be less than 2 or greater than the sum of the
 others. Hence an alternative strategy for making a complete list of knot and link pro-
 jections arose:127 first, find all the ways in which an even number In can be written
 as a sum in which no summand is less than 2 or greater than n' and second, determine
 whether the resulting sets of numbers can be realized as the valencies of a "graphical
 formula," thereby enabling one to draw the corresponding diagrams. Of course the prob-
 lem of checking whether the resulting diagrams actually correspond to different knots
 remained the same as in the earlier approach. Motivated by his new ideas, Tait remarked:
 "I propose, when I have sufficient leisure, to re-investigate the whole subject from this
 point of view." (Tait 1877c, 330.) From this point onward, Taiťs articles abound with
 graphical formulas very much like the structure formulas found in contemporary papers
 of organic chemistry.

 Tait concluded his present paper by describing all knots of sixfold knottiness, based
 however not on the new method of graphical formulae but on a consideration of the 80
 schemes of six letters that are not obviously nugatory. It turned out that only four distinct

 alternating knot types occurred, one of them being the composite knot made up of two
 trefoils. (See Fig. 1 for the three prime knots. Tait did not mention the non-alternating
 version of the composite form.)

 § 38. Up to this point, the results of Taiťs endeavours proved rather unsatisfactory
 with respect to the vortex atom theory, as too few distinct knot types had been found.
 Thus it seemed necessary to proceed to the study of more complicated knots. Taiťs next
 communication, discussing Sevenfold knottiness, addressed Thomson's theory in its first

 126 Tait did not use the term "dual" although he probably knew it from Maxwell's paper on
 graphical statics which was read to the R.S.E. in 1870 and published in the R.S.E. Transactions.
 Today, the graph underlying Taiťs formula is often called the graph associated with a link; see
 e.g. (Kauffman 1991, 47 f.).
 127 Explicitly stated in Tait 1877g, § 21.
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 lines. Here, he claimed that the small number of distinct knots with few crossings was

 actually not a vice, but a virtue of the theory, for as he explained:

 From the point of view of the Hypothesis of Vortex Atoms, it becomes a question
 of great importance to find how many distinct forms there are of knots with a
 given amount of knottiness. The enormous numbers of lines in the spectra of
 certain elementary substances show that the form of the corresponding Vortex
 Atoms cannot be regarded as very simple. But this is no objection against, it is
 rather an argument in favour of the truth of, the Hypothesis. For not only are
 the great majority of possible knots not stable forms for vortices; but altogether
 independently of the question of kinetic stability, the number of distinct forms
 with each degree of knottiness is exceedingly small. (Tait 1877d, 363 f.)

 The idea behind this slightly involved argument seems to have been that since there
 were only surprisingly few types of knots with a small number of crossings (some of
 which could even lack dynamical stability), any explanation of chemical elements by
 means of knotted vortices would necessarily involve rather complicated knots - but this
 was just what the complicated structure of observed spectra would make one expect.
 Using a combination of his two methods, Tait now found that there were seven prime
 knots and a single composite alternating one with crossing number seven, and he listed
 them in the new notation (see Fig. 17). Again he did not consider the possibility of non-
 alternating forms, a gap which he only filled in his next major paper (Tait 1877g, § 13).

 Still, the number of knot types was too small for the purposes of vortex chemistry,
 and Tait felt that the labour involved in extending the classification would be too great
 for him: "Eight and higher numbers [of knottiness] are not likely to be attacked by a
 rigorous process until the methods are immensely simplified." (Tait 1877d, 364.)

 2

 Λ Γ~ϊ Λ I »? 6S6 5=5 <t- I
 Fig. 17. Formulae for sevenfold knottiness

 § 39. In May 1877, Tait summed up and extended his previous findings in a long
 paper for the R.S.E. Transactions. Beyond the topics already discussed, this paper was
 full of all kinds of ideas and suggestions (e.g., on amphicheiral knots, on "plaits," which
 is Tait's term for braids, and on Möbius type bands), some of them full of insight, some
 of them miscarried if not erroneous.128 Perhaps the most valuable group of remarks

 128 Tait asked Maxwell to read the proofs of the paper, but their correspondence does not tell
 whether Maxwell actually did Tait the favour. See Tait to Maxwell, 13 and 30 June 1877; Maxwell
 toTait, 13 July 1877.
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 pertained to his collection of various ways of deforming a knot.129 These served as the
 basis for the final step in Tait's classification strategies. He freely admitted, however, that
 he had "not been able as yet to find a general method" of finding all possible diagrams
 of a given knot, nor had he "discovered, what would probably solve this difficulty, any
 perfectly general method of pronouncing at once from an inspection of its scheme or
 otherwise, whether a knot is reducible or not" (Tait 1877g, § 28). This again indicates
 that Tait probably did not explicitly hold the twisting (or flyping) conjecture.
 Tait's long paper marks the end of his first involvement with knots. In the months

 to follow, his interests turned back to other physical topics (cf. the chronicle of his
 contributions to knots in the Appendix).130 The outcome of his work for his original
 aim, to extend Thomson's theory of vortex atoms in the direction of producing a table
 of chemical elements, was ambiguous. While in the introduction to the paper, Tait again
 emphasized the physical motivation, his results did not offer satisfactory findings from
 this point of view. Before a judgement about the value of knot classification for this
 kind of atomic physics could be made, the project had to be extended to higher crossing
 numbers, and this seemed beyond Tait's capabilities. The labour involved, he felt, "rises
 at a fearful rate." Apparently, Tait's only hope was the possibility of transferring this kind

 of labour to a suitable machinery: "In fact it is probable that the solution of these and
 similar problems would be much easier to effect by means of special (not very complex)
 machinery than by direct analysis. This view of the case deserves careful attention."
 (Tait 1877g, § 12.) This Babbagian utopia, however, was not pursued seriously, and the
 project of knot classification reached a virtual standstill for several years.131
 In late 1883, on the occasion of an address to the recently founded Edinburgh Math-

 ematical Society on Listing 's Topologie which will be discussed in more detail below
 (see § 46), Tait turned back to the possibilities of renewed human effort to advance his
 project of knot classification:

 We find that it becomes a mere question of skilled labour to draw all the possible
 knots having any assigned number of crossings. The requisite labour increases
 with extreme rapidity as the number of crossings is increased. [. . . ] I have not

 129 Given in §§ 14, 15, and 28-34 of (Tait 1877g).
 130 Although Tait dropped the subject of knots, his interest in plane graphs continued. When
 Alfred Bray Kempe announced his supposed proof of the four-colour conjecture in 1 879, Tait took
 the matter up and claimed to have an alternative proof of the conjecture based on a method for
 colouring the edges of a trivalent graph using three colours only, such that at each vertex all three
 colours meet (Tait 1880). While the four-colour conjecture is indeed equivalent to the existence
 of such a colouring, Tait's supposed inductive proofs of the latter were fallacious; see (Biggs,
 Lloyd and Wilson 1976, 94 ff.). However, Tait did not connect these graph-theoretic ideas with
 his work on knots. It seems that the idea of colouring a knot diagram, leading to what is perhaps
 the simplest proof of the fact that the trefoil knot is actually knotted, emerged from Fox's work
 in the early 1960's as a simple way of coding homomorphisms from the knot group to symmetric
 groups (Fox 1962, Section 10). Such homomorphisms were first considered by Wirtinger in the
 context of monodromy investigations of singularities of algebraic surfaces; see (Epple 1995).
 131 Computer algorithms for the tabulation of knots have been devised since the 1960's; see
 (Trotter 1970) and (Thistlethwaite 1985). Computerized knot tabulations have recently been car-
 ried to knots with 16 crossings by Thistlethwaite, Hoste and Weeks (forthcoming).
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 been able to find time to carry out this process further than the knots with seven

 crossings. [. . . ] It is greatly to be desired that some one, with the requisite leisure,
 should try to extend this list, if possible up to 1 1, as the next prime number. The
 labour, great as it would be, would not bear comparison with that of the calculation

 of π to 600 places, and it would certainly be much more useful.
 Besides, it is probable that modern methods of analysis may enable us (by

 a single 'happy thought' as it were) to avoid the larger part of the labour. It is
 in matters like this that we have the true 'raison d'être' of mathematicians. (Tait
 1884a, 97.)

 As it turned out, though perhaps not by a "single happy thought," help was soon on its
 way. Tait's advertisement reached a broad public when it was published in the January
 1884 issue of the Philosophical Magazine, and at least one of its readers decided to
 respond.

 The tabulating tradition

 § 40. The Reverend Thomas Penyngton Kirkman, Rector of Croft, Lancashire, was
 already well versed in combinatorial and graph-theoretical problems when he became
 interested in knot classification in 1884, probably motivated by his reading of Tait's
 address to the Edinburgh Mathematical Society.132 In the 1850's, Kirkman had studied
 circuits in polyhedral graphs, a famous example being the circuits along the edges of
 a dodecahedron which Hamilton had made popular by his "Icosian Game."133 Accord-
 ingly, Kirkman viewed knot and link diagrams as four-valent "polyhedral" graphs. In
 fact, he was only interested in knot projections and explicitly decided not to consider the
 question as to which projections, when viewed as alternating or non-alternating knot dia-
 grams, corresponded to equivalent knots. Kirkman even argued over this point with Tait,
 trying to convince the latter that it was not physically reasonable to consider operations
 which twisted the threads of a knot or link.134

 Kirkman's crucial idea, which eventually enabled him to enumerate all knot pro-
 jections of up to 11 crossings, was to start the enumeration by considering only such
 four-valent graphs (knot projections) which formed what he called a "solid knot." The
 term derived from viewing a knot projection as the net of a polyhedron in space; the
 condition of solidity meant that no closed curve in the plane intersected the given graph
 in just one or two of its vertices or in two points on different edges. Any reduced projec-
 tion of a prime knot could be further transformed into a "solid knot" by employing what

 132 This is at least what Tait claimed (Tait 1885, 346).
 133 See (Biggs, Lloyd and Wilson 1976, 28 ff.) for more information and reprints of sources.
 134 See (Kirkman 1884, §§ 5, 6). Kirkman liked controversy: "Whatever be the decision of the

 reader, I am highly delighted, while attempting to write on a theme so dry and tiresome, that we
 have, at the outset, such a pretty little quarrel as it stands wherewith to allure his attention." In
 particular, Kirkman was far from dealing with something like the twisting conjecture. Only in his
 next paper, Kirkman conceded that it might be reasonable to consider "the curious transformations
 and reductions by twisting of Listing and Tait" (Kirkman 1885).
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 Kirkman called a removal of "flaps," a "flap" being a part of the diagram as illustrated
 in Fig. 18a. Since the removal of flaps could lead to link projections even if one started
 from a knot projection, Kirkman had to consider "plurifilar" graphs of η - 2 four- valent
 vertices (crossings) for enumerating "unifilars" of η crossings. The basis for his approach
 was, therefore, the enumeration of "solid plurifilars." Using his own kind of symbolic
 notation and a partition method similar to Tait' s second approach, Kirkman succeeded
 in producing a list of knot projections of up to nine crossings. He sent his first results to
 Tait in May 1884.

 Fig. 18. (a) A flap (b) Removal of flaps

 It remained to determine which knot diagrams obtained from Kirkman's list corre-
 sponded to the equivalent knots. Restricting to the alternating case, Tait completed this
 task within a few weeks after receiving Kirkman's paper. Tait's main tool in looking for
 knot equivalences was the consideration of twists, as he himself pointed out. However,
 Tait still did not formulate the twisting conjecture or an equivalent statement. During
 the process, a few errors in Kirkman's list were corrected and the final tables, both of
 Kirkman's graphs and of Tait's alternating knots of orders three to nine, were commu-
 nicated to the R.S.E. (see Fig. 1). But Tait also felt that his table was not completely
 satisfactory from a mathematical point of view. Both Kirkman's and his own methods
 had "the disadvantage of being to a greater or less extent tentative. Not that the rules laid
 down [. . . ] leave any room for mere guessing, but they are too complex to be always
 completely kept in view. Thus we cannot be absolutely certain that by means of such
 processes we have obtained all the essentially different forms which the definition we
 employ comprehends." (Tait 1884c, § 1.) This reservation notwithstanding, Tait was
 finally satisfied with the number of knots obtained: "Reverting to the main object of my
 former paper, we now see that the distinctive forms of less than 10-fold knottiness are
 together more than sufficient (with their perversions, &c.) for the known elements, as
 on the Vortex Atom Theory." (L.c, § 5.)

 Besides the table, Tait's paper gave a new discussion of beknottedness, introducing
 an idea suggested by links like the Borromean rings (see Fig. 19). In such links, each
 component was both unknotted and unlinked with every other individual component,
 but still at least one crossing had to be changed in order to disentangle the system.
 By analogy, Tait argued that this phenomenon of "locking" between the various parts
 of a knot was the real difficulty in relating the beknottedness to the twist number of
 a knot. The idea of distinguishing between linking and locking had already come up
 in the summer of 1877 in a brief exchange with Maxwell, who showed Tait how to
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 Fig. 19. Maxwell's infinite configuration of "locked" circles

 extend the Borromean link to an infinite configuration of mutually unlinked circles.135
 In January 1885, Kirkman sent Tait his next list of "polyhedral data." This time, they
 included all knot projections often crossings. As before, Tait set out to reduce Kirkman's
 list by looking for equivalent alternating diagrams. Even more than with the previous
 table, Tait felt that he could not be sure to have succeeded in producing a complete
 and correct list of alternating knots. Nevertheless, he presented Kirkman's new paper
 and the results of his own "somewhat protracted" work to the R.S.E. in June and July
 1885, including some remarks on amphicheiral knots of up to ten crossings (Tait 1885).
 Just before the publication of the table of alternating "tenfolds," Tait was surprised to
 receive a duplication of his own work, a table of alternating ten-crossing knots compiled
 by Charles N. Little, a mathematician and civil engineer of Nebraska State University
 who spent some time studying mathematics in Göttingen about this time.136 As was to
 be expected, the two tables were not in complete agreement. Checking the differences,
 Tait detected what turned out to be his only error before his own tables were printed in
 September 1885.

 Somewhat earlier, Tait had also received a list of 1581 knot projections of eleven
 crossings from the tireless Kirkman. Tait's last published word on knots signalled his
 permanent retirement from the field: 'The number of forms is so great, and the time I can
 spare for the work so limited, that I cannot promise [to undertake a census of 1 1 -folds]
 at an early date." (Tait 1885, 347.) He never did, but in April 1889 Tait suggested to
 Little that he might wish to pursue this work further.

 § 41. Little's attention had originally been drawn to the subject of knot tables by
 Tait's and Kirkman's earlier papers. The method used in his first paper was a modification
 of Tait's second classification stragegy, relying on the graphical formulae of knots. After
 receiving Little's paper, Tait opened a correspondence with him, and Little, in turn,
 deepened his interest in knot tables. In the course of the next fifteen years, three further
 substantial contributions by Little were published in the publications of the R.S.E.

 135 Tait to Maxwell, 30 June 1877; Maxwell to Tait, 13 July 1877.
 On Little's career, see Who was who in America, 3rd printing, Chicago: The A.N. Marquis

 Company, 1 943, vol. 1 : 1 897- 1 942. It is not clear to me whether Little was motivated to write his

 paper (Little 1885) as a result of his stay in Göttingen.
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 In July 1889, Little's second paper was read by Tait to the R.S.E. For the first time
 in the project of knot tabulation, Little took up a new issue: the classification of non-
 alternating knots, i.e. knots which do not possess an alternating diagram. While Tait had
 recognized the existence of such knots from the outset, he had decided not to include
 them into his enterprise (cf. Tait 1877g, § 4, § 13). Indeed, his work clearly shows that he
 was guided by the alternating case throughout his involvement with knot investigations.
 For various reasons, non-alternating knots were harder to classify than alternating ones.
 In the former case, one could again start from the list of knot projections. But now
 for every possible choice of over- and undercrossings it had to be decided whether the
 resulting knot admitted a diagram with fewer crossings, or other diagrams with the
 same number of crossings. Moreover, while something like the twisting conjecture was
 implicit and crucial in the classification of alternating knots, no similar transformation
 process for non-alternating diagrams had been discussed by the earlier writers. Thus
 in producing his table of various diagrams of the 11 prime, non-alternating knots of
 up to nine crossings which formed the core of his paper, Little had to rely on extensive
 experimentation. It is thus quite understandable why he ultimately expressed reservations
 as to the correctness of his results: "In deriving the knots from the knot forms [i.e. knot
 projections] the conditions to be observed are so many that a single worker cannot be
 absolutely certain that all the groups of forms obtained are really distinct knots." (Little
 1889, § 7.) One must keep in mind here that Little still lacked any calculable invariants
 which he could have used to prove rigorously that two given knots were inequivalent.
 But such reservations did not keep him from continuing his work. As mentioned above,
 in early 1889 Tait had suggested to Little to use Kirkman's "polyhedral data" of eleven
 crossing knot projections for a tabulation of alternating knots of order 1 1 . About a year
 later, Little had accomplished the task. After making a series of corrections to Kirkman's
 list, he produced a table of 357 prime alternating knots, with a total of 1595 reduced
 alternating diagrams (Little 1890).137
 In the years to follow, Little tried to extend his tabulation of non-alternating knots.

 In the fall of 1893, Little thought he had completed a full list of non-alternating knot
 diagrams with crossing number ten, whithout yet having considered the question of
 equivalence. According to his own words, "the matter was then laid aside and taken up
 anew in the spring of '99 "138 In July 1899, his results were communicated to the R.S.E.
 by Tait, including a table of 43 supposedly distinct non-alternating prime knots of order
 ten together with more than five hundred different diagrams of these knots.

 On the technical level, Little's work had been grounded in his belief in the general
 invariance of the twist number of a knot diagram. He even claimed to be able to give
 an exceedingly simple "proof" of this invariance. This proof is worth quoting since it
 reveals the method which Little used in his tabulations:

 Theorem. - The total twist of a reduced knot is constant for all forms in which

 the knot can be projected.

 137 The table was for the first time checked by J. H. Conway in 1967. He found 1 duplication
 and 1 1 ommissions (Conway 1970, 329).

 138 (Little 1900, § 1.) One often reads in modern texts the rather misleading remark that Little
 needed 6 years to complete his tables, see e.g. (Conway 1970, 329).
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 The proof is very simple. The twist of the crossings is not altered by any of the

 transformations permissible to alternate forms, since these consist of rotations
 of a portion of the knot through an angle of π about an axis in the plane of the
 knot projection. [. . . ] In the changes peculiar to non-alternate forms the thread
 is shifted from one portion of the knot to another, so as to alter the position of
 two consecutive overs (or unders). (Little 1900, § 8.)

 This seems to be the first explicit statement of the twisting conjecture. The addi-
 tional operations used for non-alternating diagrams - termed "two-passes" by modern
 authors139 - may be illustrated by Fig. 20.

 Fig. 20. Little's two-passes

 Evidently, a two pass does not alter the twist number, whatever the orientation of
 the arcs involved may be. We may take it for granted that, given Kirkman's and Tait's
 earlier lists of knot projections, Little's tabulations were based on a systematic test of
 possible twists and two-passes, aided by the previous determination of the twist number
 of diagrams. Unfortunately, Little's claim that twists and two-passes exhaust the possible
 transformations of reduced knot diagrams was erroneous. In the case of non-alternating
 ten-crossing knots, there was one pair of equivalent knot diagrams which was not related
 by a sequence of twists and two-passes; in fact these diagrams even had different twist
 numbers. The error was first recognized in 1974.140

 § 42. Around the turn of the century, the techniques of modern topology became
 gradually available, and thus the study of knots could finally be based on a rigorous foot-
 ing, an effort begun by Wilhelm Wirtinger, Heinrich Tietze, and Max Dehn, and pursued

 139 See e.g. (Thistlethwaite 1985, 21).
 140 See (Perko 1974). Perko found that the following two knot diagrams in Little's list

 were actually equivalent, reducing the number of non-alternating knots of order 10 to 42:
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 after the First World War by Kurt Reidemeister and James W. Alexander. Until this time,

 the 19th-century knot tabulations seem to have been viewed with some reservation by
 mathematicians, due to their apparent irrelevance for the core subjects of mathematical
 research as well as the obvious lack of rigor in the techniques used to produce these
 results.141 Real appreciation for the work of Tait and his followers emerged only in the
 1920's when the knot tables, at least those of lower orders, could be checked using new
 homological invariants and were found to be correct. In particular, the torsion numbers
 of cyclic coverings of the knot exterior and Alexander's polynomial invariant were used
 to verify Tait's tables by (Alexander and Briggs 1927) and (Alexander 1928).
 Nevertheless, the tabulating tradition founded by Tait also survived into the twentieth

 century. In 1917, Mary Gertrude Haseman finished her Ph.D. dissertation at Bryn Mawr
 College with a paper entitled On knots: With a census of the amphicheirals with twelve
 crossings. She published this work in the natural place: the Transactions of the R.S.E.
 Not much is known about the background of her work, but the short curriculum vitae
 joined to her thesis shows that she had been in touch with two mathematicians who
 had brought the fruits of their mathematical education from Cambridge, England, to the
 United States in the late 1880's: Frank Morley at Johns Hopkins, and Charlotte Angas
 Scott, Haseman's principal thesis advisor at Bryn Mawr.142 Haseman's thesis was based
 on certain rules for the construction of amphicheirals which Tait had described thirty
 years earlier (Tait 1885, §§4, 5). She followed these precepts in order to construct
 alternating amphicheirals of twelve crossings. While she knew of and used the twisting
 conjecture - among other things, she introduced the name of "tangles" for the four-ended
 parts of a diagram involved in a twist and gave rules how twists changed the scheme of
 tangles - she did not systematically check her list for duplications. Also, Haseman did
 not address the question as to whether there existed amphicheiral knots not obtainable
 from Tait's construction rules.143 Haseman's thesis advisors apparently did nothing to
 help her in learning the new methods of modern topology, and her thesis did not mention

 any of the recent topological texts. The work closest to her own would have been Dehn's
 paper on the inequivalence of the two trefoil knots (Dehn 1914): this paper gave the first
 proof satisfying modern standards that there exist non-amphicheiral knots at all.
 § 43. Summing up, we find that the tradition of knot tabulations was a coopera-

 tive enterprise, inspired and guided by Tait's initiative. Kirkman did the hard work of
 compiling tables of knot projections. Tait then determined the equivalences of alternat-
 ing forms of up to ten crossings, whereas Little did the same for eleven crossings on

 141 This is my conclusion from the fact that virtually no mathematician of some standing was
 inspired by Tait's work to take up the subject of knots; compare the survey in (Dehn and Heegaard
 1907, 207-215). The main steps in the passage to the modern theory of knots have been described
 in my Branch points of algebraic functions and the beginning of knot theory (Epple 1995). As the
 title indicates, the most important motivation for the formation of modern knot theory came from

 algebraic function theory and not from the tabulating tradition.
 14Z On Scott's and Morley 's roles for American mathematics, see (Parshall and Rowe 1 994, 241
 ff. and 432 ff.).

 l™ This still seems to be an open question. In the 1 970 s, Perko showed that Taits methods
 suffice for amphicheiral knots of up to 10 crossings; see (Thistlethwaite 1985, 19).
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 Tait's suggestion. Moreover, Little completed the tabulations of prime knots of up to
 ten crossings by studying non-alternating forms (based on his "theorem"). By checking
 each other's work where it overlapped, their tables achieved an impressive level of
 completeness and correctness. The central role Tait played in coordinating the tabulations
 is also documented by the fact that, with the only exception of Little's first paper, all
 contributions were read before the R.S.E and published in its journals.

 This leads back to the question of how important Tait's original motivation, vortex
 chemistry, has been for the tabulating tradition. For Kirkman and Little, the purely com-
 binatorial or intuitive fascination of the topic may well have been the main reason for
 taking up Tait's lead. But they were at least aware of its potential physical applications.
 Little documented his awareness of the application of knots to ether vortices for instance
 in the introductory passages of his last paper (Little 1900, § 3). Kirkman, on the other
 hand, only mentioned electricity and magnetism in this respect. His first paper on knots
 ended with the remark: 'This may suffice on solid knots until their value in electricity and
 magnetism is so enhanced as to call for a formal treatise on the whole subject." (Kirkman
 1884, Postscript, 1 September 1884.) Kirkman's silence on vortex atoms comes close to
 an implicit criticism. It might well be explained by his determined anti-materialist beliefs
 or his sympathy for Boscovich's theory of atoms as force centres.144 In Tait's case, how-
 ever, the physical motivation was clearly dominant. In several passages of his writings,
 he expressed his wish to leave the laborious mathematical project, and he actually did so
 once he found that the tables had become sufficiently extended to serve as a universe of
 forms for "the known elements." For Tait, the task of knot tabulation, as a preliminary to
 broaden the scientific content of Thomson's theory of vortex atoms, now seemed com-
 plete. Also, one should not forget that during the late 1880's, Thomson himself became
 more and more sceptical about his theory. This may well be another reason why Tait
 abandoned the quest, leaving it to Little to carry on the project of knot tabulation.145

 A chemist's interest in topology: Crum Brown

 § 44. While Tait was still working on his knot tables, the Edinburgh chemist Alexan-
 der Crum Brown, married to a sister of Tait's wife, also turned to topology for a short

 144 This sympathy was for instance expressed in a letter to Maxwell, dated 8 November 1878,
 in which Kirkman criticised the notion of mass presented in Thomson's and Tait's Treatise on
 Natural Philosophy. The letter is in Cambridge University Library, Add 7655/11, No. 167.
 145 During his work on knots, Tait tried to keep Thomson informed of what he was doing, al-

 though Thomson apparently never took a serious interest in Tait's enterprise. Shortly after sending
 his paper on Listing 's Topologie to the Philosophical Magazine, Tait wrote to Thomson: "I am
 going to smash Vortex-atoms at R.S.E. (Jan^ 7) so I bid you to hearken." (Tait to Thomson, 20
 December 1 883; Kelvin Papers Cambridge, Τ 33.) This is not the final criticism of Thomson's the-
 ory, however, but a technical idea about knots, involving the cutting up of crossings. In November
 1 884, Tait had a little exchange with Thomson who did not see that for knot diagrams with 6 or
 more crossings, non-alternating choices of crossing orientations were possible (Tait to Thomson,
 1 and 4 November 1884, Kelvin Papers Cambridge, Τ 36 and Τ 37).
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 period.146 In several respects, Crum Brown, a theoretically oriented chemist not very
 fond of work in the laboratory, was in a good position to appreciate Tait's tabulation
 enterprise.147 He had witnessed Thomson's vortex atom speculations from their very
 beginnings. As mentioned earlier, he had assisted Tait both in making smoke-ring ex-
 periments and in producing drawings and wire models of knots and links for the meeting
 of the R.S.E. in early 1867 at which Thomson first presented his new ideas. Being a fel-
 low of the R.S.E. and a regular guest in Tait's house, Crum Brown must also have been
 aware of the latters involvement with knots and in particular of the fact that Tait began
 to use an analogue of Brown's own graphical notation in his work.
 Among the reasons why Crum Brown had designed this notation were the possibili-

 ties it offered not only for explaining isomerism, but also the common structure of various
 series of organic substances with similar parts like the hydrocarbons or the alcohols.148
 Even before Cay ley turned to the systematic application of graph theory to explore chem-

 ical structure, Crum Brown himself tried to construct a mathematical calculus expressing
 the possibilities of combinations of (especially organic) radicals. Roughly speaking, he
 conceived chemical molecules as "operands" and possible substitutions of radicals as
 "operators" of his calculus; his graphical formulae thus encoded the ways in which oper-
 ators might act on the operands (Brown 1867). The paper which presented this calculus
 was actually read to the R.S.E. at the same meeting which saw Tait's presentation of his
 remarkable smoke-ring experiments and Thomson's first paper on vortices.
 A crucial question for the utilization of graphical notation to explain chemical com-

 pounds was, as Brown put it in one of his lectures, whether or not "the form of the
 formulae in any way resembles the form of the molecules these formulae represent."149
 Brown clearly thought this to be the case, as his extended discussion of the various
 proposed forms of benzene (including Ladenburg's three-dimensional arrangement) in
 these same lectures showed. On the other hand it was quite unclear how this structural
 similarity between graphical formula and molecule should be understood, and several
 chemists seem to have been highly sceptical about the idea. It was Tait who proposed
 to solve this puzzle by conceiving the notation as giving a topologically, though not a
 spatially, correct picture of chemical bonding. In his 1883 address on Listing's Topolo-
 gie, Tait argued that "Crum Brown's chemical Graphic Formulae [...], of course, do not

 146 Unfortunately, not many of Brown's papers seem to have been preserved in Edinburgh
 libraries. There are some correspondence and lecture notes taken by students in Edinburgh Uni-
 versity Library, but these do not provide much evidence for the topic of interest here.
 14 ' In a contemporary biographical sketch, we read: "As an analytical or practical chemist Dr.
 Crum Brown cannot be said to have made a reputation. He has been heard to wish that (some
 one would invent a machine for doing those tiresome analyses.)" Brown's wider interests are
 said to include mathematics, philology, Russian, Chinese, and church history. And: "Perhaps he
 believes more than most of us in a region where paradoxes are not only soluble but solved." See
 Quasi Cursores. Portraits of the High Officers and Professors of The University of Edinburgh at
 its Tercentenary Festival, 1884, 282-232; Edinburgh University Library, JY 1202.
 140 See (Biggs, Lloyd and Wilson 1976, 60). These features were also responsible tor the hnal

 success of Brown's notation.

 lHy Notes ot lectures on Advanced Chemistry by Froî. Crum Brown, bummer session 1884, Dy

 James Walker; Edinburgh University Library, Gen. 47 D, p. 8.
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 pretend to represent the actual positions of the constituents of a compound molecule,
 but merely their relative connection" in the sense of the new science of topology (Tait
 1884, 85). Most probably, this way of looking at the matter was completely acceptable
 to Brown, and the prominence Tait's address gave to his formulae aroused his interest
 in the new mathematical field.

 We have seen that the two years following Tait's address mark a second period
 of intensive work on knots. Toward the end of that period, in December 1885 and in
 January 1 886, Brown read two short papers to the R.S JE., entitled On a case of interlacing

 surfaces and On the simplest form of half wist surface. The second paper contained a
 discussion of Möbius band-like surfaces, while the first described a configuration of three

 infinite surfaces pierced with circular holes, the boundaries of which were linked locally
 like the Borromean rings. In fact Brown showed - without mentioning Maxwell's name
 - that the three sets of unlinked circles making up the infinite "Borromean" pattern
 which Maxwell had communicated to Tait in 1877 (see Fig. 19 above) bound three
 infinite surfaces which may be embedded in space without mutual intersections. It seems
 very likely that Tait had told Brown of Maxwell's pattern. From Brown's papers it
 remains unclear whether he had any chemical reasons for looking at Möbius bands or
 interlacing surfaces. Admittedly, Brown never took up knots or links in relation to issues
 of chemical structure. Nevertheless, his interest in topology would appear to derive from
 an awareness of potential connections between chemistry and the new discipline. After
 Tait had reinterpreted the earlier work on isomerism and graphs in terms of Listing's
 new science, it was only natural that Crum Brown wanted to familiarize himself with
 some of its elements.

 Aware of a new discipline: The British reception of Listing's work

 § 45. On several occasions in this study, we have had reason to mention the British
 reception of Johann Benedikt Listing's papers on topology. While Listing's name was
 not unknown in Britain before the developments described - in particular, his contri-
 butions to physiological optics had found some recognition - from the 1870's onward,
 Listing's Vorstudien zur Topologie and his Census räumlicher Complexe became stan-
 dard references whenever British natural philosophers dealt with topological problems.
 The interest which Maxwell, Tait and others showed in these writings is perhaps the most
 telling indication of the growing awareness of the emergence of this new mathematical
 field in British scientific circles. For this reason, Maxwell's and Tait's reception of List-
 ing's essays must be summarized with a view to their perception of the disciplinary role
 of topology.

 We have seen that it was Maxwell who, in early 1 869, first called attention to Listing's
 Census, as both Thomson and Tait plainly acknowledged in their publications. Beyond
 the question set for the Cambridge Mathematical Tripos in January 1869, Maxwell's first
 public reference to Listing was made in a short talk to the London Mathematical Society
 which summarized the contents of Listing's paper.150 In this talk, Maxwell emphasized

 150 See § 26 above and (Maxwell 1995, 466-471).
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 the use of topological considerations for integration in space regions. He noted that if
 such a region could be continuously contracted to a system of ρ points joined by / lines,
 then it necessarily had / - ρ + 1 "cycles," and "any other path must be compounded
 of these." Moreover, Maxwell explained that path integrals joining two fixed points of
 the region along varying curves would give infinitely many values, the differences of
 which were sums of integer multiples of the integrals along "cycles." As an example,
 Maxwell mentioned Gauss's linking integral in which one of the two curves involved
 was considered as fixed while the other represented a variable path.
 The first reference Maxwell made to Listing's Vorstudien of 1847 appears to be in

 the context of the preparation of his Treatise in an attempt to establish a convention
 for the orientation of space. After corresponding with Tait about this issue, Maxwell
 put the problem before the London Mathematical Society in May 1871, pointing out
 that different writers used different conventions. The quaternionists and Listing, in his
 Vorstudien, were among those who chose the orientation "jc to South, y to West, and
 ζ upwards" as the positive one, while Thomson and Tait in their Treatise on Natural
 Philosophy had adopted the opposite convention.151 The issue of orientation had indeed
 been of central importance in the Vorstudien, and Listing had called the relation between
 the two orientation systems of space that of perversion, a term both Maxwell and later
 Tait adopted. Maxwell finally established a consensus within the London Mathematical
 Society for adopting the convention of Thomson and Tait, making reference to astronomy,
 screw-making, and botany.152
 When Maxwell finally published his Treatise on Electricity and Magnetism in 1873,

 Listing's terminology was given a prominent place in the introductory paragraphs of the
 text. 1 53 Again, the main interest was to provide a language suited for describing the topo-
 logical issues which had to be dealt with in integration theory. According to Listing's con-
 ventions, the number of internal boundary components of a space region with one external
 boundary surface was called its "periphractic number;" what we would today call its first
 Betti number was termed the "cyclomatic number." The technique of contraction of re-
 gions to one-dimensional diagrams that Maxwell had taken from Listing's Census and de-
 scribed in his talk to the London Mathematical Society was repeated and used to introduce
 the crucial lemma which stated that the cyclomatic number of a space region equals that of
 its complement. Then, the relation between the cyclomatic number of a space region and
 the cyclomatic numbers of its various bounding surfaces, which had been so intensively
 discussed between Maxwell and Thomson, was restated in the new terminology and fol-
 lowed by remarks on line- and surface-integrals. This time, Maxwell also pointed out that
 such considerations were related to a disciplinary development: "We are here led to con-
 siderations belonging to the Geometry of Position, a subject which, though its importance
 was pointed out by Leibnitz and illustrated by Gauss, has been little studied. The most
 complete treatment of this subject has been given by J. B. Listing." (Maxwell 1873, § 18.)

 151 See Maxwell to Tait, 8 and 11 May 1871, Tait to Maxwell, 9 and 13 May 1871. For the
 question to the London Mathematical Society, see (Maxwell 1995, 641-643).
 152 L.c, see also the corresponding footnote to § 23 of Maxwell's Treatise.
 153 See especially (Maxwell 1873, §§ 16-26).
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 In the body of the Treatise, Maxwell included a detailed discussion of Thomson's
 extension of Green's theorem for multiply connected regions (§ 96), and an even longer
 discussion of both an electromagnetic and a geometrical interpretation of Gauss's linking
 integral (§ § 409-423). The crucial point, i.e. the proof that the value of this double integral

 was an integral multiple of 4π, was taken from an insight due to Ampère: the magnetic
 field induced by a closed current could be replaced by the field generated by a "magnetic
 shell," i.e. a "uniformly magnetized" surface bounded by the current's path. The work
 done on a magnetic particle when moved along a closed curve through the field was then
 proportional to the number of intersections of this curve with the "magnetic shell."154
 Maxwell also presented his earlier example, illustrating that the linking integral might
 vanish even if the two curves involved were themselves linked. Today, this example is
 usually called the "Whitehead link."155 Once more, Maxwell referred to the disciplinary
 development involved, joining the growing group of scientists calling for a development
 of topology: "It was the discovery by Gauss of this very integral [. . . ] that led him to
 lament the small progress made in the Geometry of Position since the time of Leibnitz,
 Euler and Vandermonde. We have now, however, some progress to report, chiefly due
 to Riemann, Helmholtz, and Listing." (Maxwell 1873, § 421.) The appearance of the
 names of Helmholtz and Listing in this update of a famous earlier remark by Gauss aptly
 summarizes, in a nutshell, the weave of events described in the previous two sections.

 § 46. Tait did even more to promote Listing's achievements in British science. We
 have seen how he exploited several of the ideas in Listing's Vorstudien, like the twisting
 operation and the type symbol. Tait regarded the latter's contributions so highly that
 he proposed that Listing be elected an honorary fellow of the R.S.E. in 1879.156 After
 Listing's death, Tait wrote a very appreciative obituary for Nature (Tait 1883). In its first
 sentence, Tait pointed out the role Listing had played in the network of scientific commu-
 nication: "One of the few remaining links that still continued to connect our time with that
 in which Gauss had made Göttingen one of the chief intellectual centres of the civilised
 world has just been broken by the death of Listing." (Tait 1883, 81.) Only a short para-
 graph of the obituary was devoted to Listing, the physiological optician (in this respect,
 he was compared to Helmholtz); the remainder of the text described Listing, the topol-
 ogist. Tait sketched the contents of the Vorstudien and referred the reader to Maxwell's
 Treatise for obtaining "a fair idea of the nature of [the] contents" of the Census (I.e.).

 Listing ys Topologie also received prominent attention in the address Tait delivered to
 the Edinburgh Mathematical Society on 9 November 1883, a talk which probably called
 Kirkman's attention to knots and links and inspired Crum Brown to write topological
 notes as we have seen earlier. In it, Tait presented Listing's ideas to a public ranging
 from university professors to college teachers and mathematical amateurs. The point of

 154 See (Maxwell 1873, § 421). These passages, together with Schering's decision to place
 Gauss's fragment among his writings on electromagnetism, were responsible for the general
 opinion that Gauss was led to the linking integral by electromagnetic considerations. See note 48
 above.
 ICC _ . _ . _ _ _

 1JJ See the hgure above, § 16.

 156 The proposal was made at the meeting of the R.S.E. on 3 February 1879, and Listing was
 elected on 3 March. See the minutes of the R.S.E., National Library of Scotland, Ace. 10000, no. 7.
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 the address was precisely to acknowledge the existence of a new science. Tait began
 his talk by apologizing for the barely understandable title he had chosen. In order to
 illustrate his theme he mentioned some basic problems like, in the first place, the knot
 problem, or relations "among the numbers of corners, edges, faces, and volumes of a
 complex solid figure," or, tellingly, "Crum Brown's chemical Graphic Formulae" (Tait
 1884a, 85.) Then he added:

 For this branch of science, there is at present no definitely recognized title except
 that suggested by Listing, which I have therefore been obliged to adopt. [. . . ]
 The subject is one of very great importance, and has been recognized as such by
 many of the greatest investigators, including Gauss and others; but each, before
 and after Listing's time, has made his separate contributions to it without any
 attempt at establishing a connected account of it as an independent branch of
 science. It is time that a distinctive and unobjectionable name were found for it;
 and once that is secured, there will soon be a crop of Treatises. (Tait 1884a, 85 f.)

 It is important to note that Tait did not speak as a mathematician here, i.e. as one who
 sought to promote a new branch of mathematics. It was rather the physicist Tait who
 claimed recognition for topology, a field of mathematics which might be of physical
 relevance just like Tait's other favourite mathematical subject, quaternions.

 In what follows I shall not confine my illustrations to those given by Listing [...];
 but I shall also introduce such as have more prominently forced themselves on
 my own mind in connexion mainly with pure physical subjects. It is nearly a
 quarter of a century since I ceased to be a Professor of Mathematics;157 and
 the branches of that great science which I have since cultivated are especially
 those which have immediate bearing on Physics. But the subject before us is so
 extensive that, even with this restriction, there would be ample material, in my
 own regarding, for a whole series of elementary lectures. (Tait 1884, 86.)

 Tait then went on to explain that Listing's articles were still far too unknown in British
 circles and that they would merit "an English dress" more than many other scientific
 papers which had been translated into English. Mentioning his own initial lack of famil-
 iarity with Listing's work, Tait explained: "I was altogether ignorant of the existence of
 the Vorstudien till it was pointed out to me by Clerk-Maxwell, after I had sent him one
 of my earlier papers on Knots; and I had to seek, in the Cambridge University Library,
 what was perhaps the only then accessible copy." (L.c.) Tait proceeded to give a detailed
 survey over the contents of the Vorstudien, adding further illustrations and problems
 taken from graphs like Hamilton's Icosian game and the problem of map colouring to
 which Tait claimed to know a solution.158 When he came to knots, Tait described his

 own involvement with these studies, again emphasizing the physical background:

 As I have already said, the subject of knots affords one of the most typical
 applications of our science. I had been working at it for some time, in consequence

 157 Tait speaks of 1860, the year he came to the chair of Natural Philosophy in Edinburgh.
 Before that he had been at Queen's College, Belfast.

 158 Seenöte 130 above.
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 of Thomson's admirable idea of Vortex-atoms, before Clerk-Maxwell referred

 me to Listing's Essay [...]. Listing's remarks on this fascinating branch of the
 subject are, unfortunately, very brief, and it is here especially, I hope, that we
 shall learn much from his posthumous papers [...]. My first object was to classify
 the simpler forms of knots, so as to find to what degree of complexity of knotting
 we should have to go to obtain a special form of knotted vortex for each of the
 known elements.159

 At the end of this talk, Tait referred to Listing's Census and the generalization of
 Euler's theorem about polyhedra it contained. This paper, too, Tait remarked, would
 merit an English translation and a better reception.160

 Although Tait's prediction that there would soon be a "crop of Treatises" on the
 new science proved premature, his address clearly documents both his insight into the
 disciplinary development of topology as well as his conscious effort to promote it. It is
 also evident that the "science of situation" advocated by Tait was a physicist's topology:
 like Thomson and Maxwell, he was only interested in understanding those topological
 problems that were tied to configurations of matter and motion in actual space.161

 The topology of matter: Concluding remarks

 § 47. The thesis which the two previous sections of this study were intended to
 advance is twofold. On the one hand, I have tried to show, by describing the weave of
 events connecting Helmholtz's seminal paper on vortex motion in 1 858 with the reception

 of Listing's work in the 1880's, that British natural philosophers became conscious of
 and seriously interested in the emergence of what they perceived as a new scientific
 discipline, topology, well before this discipline reached what Kuhn would have called
 its paradigmatic phase. On the other hand, I have tried to make clear that this interest was
 anything but passive, as in particular Tait's knot tabulations dramatically demonstrate.
 The physicists felt a need for topology, and in order to satisfy this need, they started to
 produce mathematical knowledge which pure mathematicians had not yet to offer.

 Through Thomson's topological theory of atoms, Maxwell's dynamical treatment
 of electricity and magnetism (mathematically related to the former by Helmholtz's
 hydrodynamic-electromagnetical analogy), knot tabulations and work on graphs rep-
 resenting chemical structure, the new field was increasingly recognized to be of impor-
 tance for natural philosophy, at least in scientific circles under the hegemonial influence

 159 (Tait 1 884, 95 ff.). Little, who probably returned to Germany a second time in the late 1 890's,

 reported that Klein and Stäckel had enabled him to see Listing's (and Gauss's) Nachlaß. The only
 interesting document he found was a sketch of the transformations of the four-crossing knot into
 its "perverse;" see (Little 1900, § 4, note).
 1W See (Tait 1884, 98). Among the few who had read the Census was also Cayley, who "con-

 tributed an elementary statement of its contents to the Messenger of Mathematics for 1873." (L.c.)
 101 This, however, does not necessarily imply that he was only interested in understanding the

 topology of Euclidean space. See Section IV for the position of the British natural philosophers
 on this issue.
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 of Thomson, Maxwell, and Tait. Two reasons can be discerned which account for this

 recognition. The first is that the general policy of striving for a dynamical understanding
 of matter and physical phenomena made it unavoidable to deal with those mathematical
 aspects of the dynamics of continuous media which came to be classified as topological
 for systematic reasons. These included, in particular, the relations between vector fields,
 path integrals, and the topology of spatial domains. The second reason is that the op-
 tion for atomism in chemistry and physics called for a study of combinatorical aspects
 underlying the possible groupings of atoms in molecules, leading to graph-theoretical
 work on hydrocarbons, isomerism etc. Both factors combined in Thomson's vortex atom
 theory which brought with it a need for new topological results. Here, it was the topo-
 logical combinatorics of linked and knotted vortices which required attention and which
 was soon found to present challenging problems, the strictly mathematical solutions of
 which went far beyond the capacities of the tabulators. Whatever one may think of the
 physical views Thomson, Tait, and Maxwell attempted to elaborate, and independent of
 the inadequacies of vortex atomism, the role consciously assigned to topology in this
 episode of scientific practice must be considered as a significant causal factor in the
 pre-disciplinary period of this new mathematical field.
 Although the Scottish natural philosophers felt compelled to make original contri-

 butions to topology themselves, their results were couched in the semi-intuitive, often
 physical styles of argument available to them. This was a consequence of the fact that the
 new "science" could hardly be said to exist as such in the usual sense of the word. There
 were still no "topologists," or treatises on topology comparable to Maxwell's Treatise
 on Electricity and Magnetism or Thomson and Tait's Treatise on Natural Philosophy,
 and even the mathematicians still had trouble in getting beyond intuitive arguments in
 this early period of topology. Given this background, it is also understandable that the
 results obtained by the natural philosophers fell into categories corresponding to the
 main physical ideas that guided their work. Relating to the connections between topol-
 ogy and vector fields, the culminating point was Thomson's "proof that the number of
 linearly independent irrotational flows in a space region with given boundary conditions
 equals the first Betti number of the domain (its "cyclomatic number," as Maxwell put
 it). The other outstanding achievement of this tradition was the knot tables of Tait, Kirk-
 man, Little, and Haseman. Certainly, these tables were received as, and remain today,
 a somewhat obscure and marginal scientific contribution, an inevitable consequence of
 the circumstance that they were based on rather tentative methods and that the intended
 application to vortex chemistry never came to fruition. Nevertheless, the labour invested
 in the production of these tables was not entirely in vain. If nothing else, they demon-
 strated that the problem of classifying knots and links was by no means a simple matter,
 and in this way they furnished a legitimation for topologists in early twentieth century
 to take up the problem again by employing the new methods offered by the modern
 discipline of topology.
 The fact that the argumentative style in the topological work of Maxwell, Thomson

 and Tait was strongly based on intuitive and physical arguments deserves special empha-
 sis. Some of the arguments described above (such as those intended to show that knot
 complements are doubly connected or those relating to twists of knot diagrams) provide
 beautiful historical examples of what Georg Poly a called plausible or physical reasoning
 in mathematics. Moreover, they show that the lack of rigorous proof, well known to all
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 involved, did not deter the physicists from venturing into the field, nor did it prevent
 them from achieving sound results. Indeed, the style of their findings reveals close affini-

 ties with the topological arguments of "pure mathematicians" during the same period.
 Riemann, Betti, and Klein all had to rely on intuitive and highly informal techniques
 when trying to establish or explicate a topological insight.

 In all areas of topology to which the Scottish natural philosophers made contri-
 butions, we find a keen interest in numerical invariants. The "cyclomatic" and "pe-
 riphractic" numbers connected with spatial domains and graphs, the linking, twisting,
 and crossing numbers and the elusive beknottedness, all provide instances documenting
 this viewpoint. In this respect, the physicists were again not far from their mathematical

 colleagues, as becomes clear for instance by reference to the discussions on dimen-
 sion, genus of surfaces and algebraic curves, or Betti's generalizations of Riemann's
 connectivity number.162

 § 48. Both aspects of the argument I have tried to make may be condensed into
 the assertion that the physical interests motivating Maxwell's, Thomson's and Tait's
 engagement with topological matters led to a heteronomous development of mathemat-
 ical knowledge. The distinction between heteronomous and autonomous mathematical
 work was proposed by Erhard Scholz in order to overcome the limitations of the stan-
 dard categories of pure and applied mathematics, which often convey rather problematic
 connotations and pictures of 19th-century scientific activity.163 Certainly, these conven-
 tional categories are inadequate for describing the use and extension of topological ideas
 in the context of the Scottish tradition in natural philosophy. From a modern perspective,
 topological concepts and results belong to a very pure domain of mathematics. Yet it is
 clear from the foregoing narrative that this perception was shared neither by Maxwell
 nor Tait. While Tait never tired of emphasizing that physical interests had drawn him
 to the subject, Maxwell viewed topology as linked to natural philosophy for conceptual
 reasons. For him, and certainly also for Thomson and Tait, topology was the science
 investigating the properties of physical continuity in actual space.164 On the other hand,
 their mathematical contributions cannot be said to have been applications of pre-existing
 pure mathematics. For this reason, new categories of historical analysis are needed that
 enable us to describe the kinds of legitimation justifying mathematical work such as
 that considered here. This is what Scholz's distinction tries to capture. Accordingly, an
 autonomous development in mathematics is one in which the social and cognitive legit-
 imacy of a particular episode of research can be drawn from a socially and cognitively
 pre-established system of disciplined mathematical practice, for example, the gradual
 extension of number theory in the 19th century from Gauss to Hubert. The legitimacy of
 this research was provided from within mathematics as an evolving discipline or system
 of disciplines. A heteronomous development, by contrast, is one in which the legiti-

 162 This interest in numerical invariants is characteristic for much of the 19th-century work on
 topological questions. Only when Poincaré introduced homology and the fundamental group, the
 situation was effectively changed.
 JW The distinction is presented m (Scholz 1989, chapter III).
 164 In this sense, I am tempted to say the Scottish physicists adhered to an Aristotelian view of

 topology.
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 macy of an episode of mathematical research derives from ends that originate outside of
 the established disciplinary structure of mathematics. One of Scholz's examples is the
 crystallographical literature of the early 19th century. His study shows that within this
 field a significant body of mathematical knowledge had accumulated, knowledge which
 after the advent of group theory could immediately be translated into pure mathematics.
 Scholz's other example, graphical statics, was a subject connected with the events de-
 scribed in this study through Maxwell's contributions; we have seen that, among other
 things, Maxwell brought his topological ideas to bear on that particular topic. Both
 heteronomous and autonomous developments can produce knowledge which we might
 classify as pure or applied.
 The mathematical contributions of Maxwell, Thomson and Tait to topological prob-

 lems clearly belong to the category of heteronomous mathematical work. Without the
 motivation in dynamical theories of matter and electromagnetism, this work certainly
 would not have been undertaken. Moreover, these efforts were located outside the estab-

 lished system of disciplinary mathematics at the time in Britain. This is clear not only
 from the Scottish natural philosophers' perception of the subject matter of topology,
 but also from their position within the British scientific community. While all three had
 been educated in the Cambridge system - both Thomson and Maxwell had been Second
 Wranglers, and Tait had even emerged as Senior Wrangler from the Mathematical Tripos,
 and all of them received a Smith's Prize - their later careers increasingly estranged them
 from an outlook on pure and mixed mathematics that a Cambridge mathematician like
 Cay ley represented. Oriented toward a unified "mental representation" of physical phe-
 nomena and also practical issues of technology, they developed something between an
 ironical distance and a marked disdain for mathematicians such as Cayley and Sylvester
 who pursued subjects like higher analytic geometry or the algebraic theory of invariants
 just for their own sake.165 Nevertheless, when these natural philosophers encountered,
 in the pursuit of their proper scientific aims, problems like those decribed here, they
 were prepared to do serious mathematical work in the ways open to them and without
 the blessings of pure mathematicians. Somebody like Cayley, on the other hand, became
 interested in the kind of mathematical work described here only when problems were
 touched upon which were familiar to him for other reasons. In fact, Cayley's work on
 the enumeration of hydrocarbons in the 1870's is a good example of applied mathemat-
 ics in the literal sense: he had studied trees some fifteen years earlier in the context of
 differential calculus.

 The causal role of heteronomous mathematics both for the development of science
 in general and the development of mathematics in particular should not be underesti-
 mated. On the one hand, the autonomy of the modern system of mathematical (sub-)
 disciplines has always been dependent on successful interactions with other domains

 165 For Thomson, this has been described convincingly by (Smith and Wise 1989, 168-192).
 Taiťs views on pure mathematics can be seen for instance from his 1871 address to the British
 Association for the Advancement of Science (Tait 1871) and his exchange with Cayley on the
 use of quaternions (Tait 1889); Maxwell's position - involving the idea of mental pictures or
 representations - may e.g. be gathered from his introductory remarks on Lagrange's dynamical
 formalism in §§ 553, 554 of the Treatise.
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 of scientific practice. Heteronomous mathematics, as well as successful applications in
 the strict sense, provided a way to achieve such interactive stability, if mathematicians
 could show that some of their contributions, motivated by aims external to established
 mathematics but pursued within mathematics, helped scientists or other practicioners in
 their respective practices. On the other hand, heteronomous mathematics often provided
 mathematicians with new and substantial problems and these affected the inner architec-
 ture of the discipline of mathematics itself. In particular, this happened whenever a new
 domain of problems was mathematized, i.e. represented in a way admitting mathematical
 treatment. In this sense, heteronomous mathematical developments could in some cases
 be historical preconditions of later autonomous work; the transition then resulted from
 an integration of the newly mathematized problems or problem fields into the stock of
 mathematics and from the elimination of the original motivating contexts.

 The topological work in the context of physics described here gives an instance of
 the second aspect rather than the first. Yet, there were no mathematicians who could
 have profited from taking up the topological problems connected with fluid motion or
 the classification of knots and links, solving the physicist's problems with methods they
 knew beforehand. Nevertheless, the growing need for topological knowledge that Thom-
 son, Maxwell and Tait felt and sought to satisfy by their own, sometimes insufficient
 contributions forms one piece in the mosaic which will have to be put together in order
 to understand the emergence of topology after the turn to the 20th century.

 Appendix:

 From the Minutes of the Royal Society of Edinburgh

 This appendix documents the role of the Royal Society of Edinburgh as a forum for
 activities related to vortex atoms and knots. The following chronicle lists all papers on
 vortex atoms and on knots and links, as well as some papers on related topics, which were
 presented at meetings of the society between 1867 and 1918. If the minutes indicate that
 a paper was read by a Fellow of the R.S.E. different from the author, this is mentioned.
 Not all of the papers were abstracted or printed in the Proceedings or Transactions of the

 R.S.E. Other areas of physics that received particular interest at the meetings of the R.S.E.
 during the period considered include: techniques of spectrum analysis (mainly 60's and
 70's); thermoelectricity (mainly 70's and early 80's); the telephone (late 70's and 80's).

 From the Minutes of the R.S.E.

 1 8/2- 1 867 Thomson: On vortex atoms

 Brown: On an application of mathematics to chemistry
 29/4-67 Thomson: On vortex motion

 5/4-69 Brown: On chemical structure

 3 1/5-69 Rankine: On the thermal energy of molecular vortices
 21/3-70 Tait: On the steady motion of incompressible perfect fluids in two dimensions

 Tait: On the most general motions of incompressible perfect fluids
 1 6/5-70 Tait: On Green 's and other allied theorems
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 From the Minutes of the R.S.E., cont.

 1 8/ 1 2-7 1 Thomson: On vortex motion

 3/3-73 Thomson: On vortex motion

 1/1 2-73 Tait: Note on the expression for the action of one current-element on another
 20/12-75 Thomson: On vortex statics

 3/1 -76 Thomson: On two-dimensional motion of mutually influencing vortex columns
 Thomson: On two-dimensional approximately circular motion of a liquid

 2>ΙΑΊ6 Thomson: On the vortex theory of gases
 1 8/12-76 Tait: Applications of the theorem that two closed plane curves cut one another

 an even number of times
 29/1-77 Tait: Note on the measure of beknottedness
 5/2-77 Tait: On knots

 19/2-77 Tait: On links

 1 9/3-77 Cay ley: On a problem of arrangements
 Tait: On the difference between knottiness and beknottedness and on the forms
 of sevenfold knottiness

 2/4-77 Muir: On a problem of arrangement
 Tait: On amphicheiral forms and their relations

 7/5-77 Cayley: Note on Mr. Muir's solution of a "Problem of arrangement"
 Tait: Preliminary note on a new method of investigating the properties of knots

 21/5-77 Tait: Additional remarks on knots

 15-4/78 Thomson: On vortex vibrations, and on instability of vortex motions
 Thomson: A mechanical illustration of the vibrations of a triad of columnar
 vortices

 6/1 -79 Tait: Note on the measurement of beknottedness
 17/3-79 Thomson: On vortex motion: Gravitational oscillations in rotating water
 1 6/6-79 Brown: Atomicity or valence of elementary atoms: Is it constant or variable?
 1/3-80 Thomson: Vibrations of a columnar vortex
 1 5/3-80 Tait: Note on the colouring of maps
 21/2-81 Thomson : On vortex sponge
 1 8/4-8 1 Helmholtz: On electrolytic conduction

 Thomson: On the average pressure due to impulse of vortex rings on a solid
 2/5-81 Brown: On chemical nomenclature and notation

 3/4-82 Tait: On beknottedness

 1 8/2-84 Tait: On vortex motion

 2/6-84 Kirkman: The enumeration, description, and construction of knots with fewer
 than 10 crossings (Communicated by Tait)
 Tait: On knots, Part II

 7/7-84 Tait: On a special class of partitions
 1 6/2-85 Thomson: On energy in vortex motion
 1 /6-85 Tait: On knots, Part III (Amphicheirals)
 20/7-85 Kirkman: On the unifilar knots with ten crossings (Communicated by Tait)

 Tait: Census of tenfold knottiness
 7/1 2-85 Brown: On a case of interlacing surfaces
 4/1-86 Brown: On the simplest form of half-twist surface

 Kirkman: On the linear section of a knot. . . (Communicated by Tait)
 1/3-86 Tait: On a theorem in the science of situation
 19/4-86 Kirkman: Examples upon the reading of the circle, or circles, of a knot (Com-

 municated by Tait)
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 From the Minutes of the R.S.E., cont.

 1 9/7-86 Meyer: Ueber algebraische Knoten (Communicated by Tait)
 20/1 2-86 Kempe: Note on knots (Communicated by Tait)
 1 8/4-87 Thomson: On instability of fluid motion
 15/7-87 Thomson: On the stability of the steady motion of a viscous fluid between two

 parallel planes
 21/5-88 Cay ley: Note on the hydrodynamical equations
 1 5/7-89 Little: Non-alternate ± knots of orders eight and nine

 (Communicated by Tait)
 6/1 -90 Tait: The effect of friction on vortex motion
 17/2-90 Preston: On Descartes' view of space; and Sir William Thomson's theory of

 extended matter

 1 7/3-90 Thomson: On a mechanism for the constitution of Ether; illustrated by a model
 21/7-90 Little: The knot-forms of the eleventh order (Communicated by Tait)
 3/7-99 Little: The non-alternate ± knots of the tenth order (Communicated by Tait)
 4/6- 1917 Mary Haseman: On knots, with a census of the amphicheirals with twelve cross-

 ings (Communicated by Knott)
 4/11-1918 Mary Haseman: Amphicheiral knots
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