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Many of the key ideas which formed modern topology grew out of "normal research" in 
one of the mainstream fields of 19th-century mathematical thinking, the theory of complex 
algebraic functions. These ideas were eventually divorced from their original context. The 
present study discusses an example illustrating this process. During the years 1895-1905, the 
Austrian mathematician, Wilhelm Wirtinger, tried to generalize Felix Klein's view of algebraic 
functions to the case of several variables. An investigation of the monodromy behavior of 
such functions in the neighborhood of singular points led to the first computation of a knot 
group. Modern knot theory was then formed after a shift in mathematical perspective took 
place regarding the types of problems investigated by Wirtinger, resulting in an elimination 
of the context of algebraic functions. This shift, clearly visible in Max Dehn's pioneering work 
on knot theory, was related to a deeper change in the normative horizon of mathematical 
practice which brought about mathematical modernity. © 1996 Academic Press, Inc. 

Viele der Ideen, die die moderne Topologie geprigt haben, stammen aus 'normaler 
Forschung' in einer der Hauptstr6mungen des mathematischen Denkens des 19. Jahrhunderts, 
der Theorie komplexer algebraischer Funktionen, und wurden erst allmihlich yon ihrem 
urspringlichen Kontext abgelOst. Ein Beispiel dieser Entwicklung wird diskutiert. In den 
Jahren 1895-1905 versuchte der Osterreichische Mathematiker Wilhelm Wirtinger, Felix Kleins 
Sicht algebraischer Funktionen auf den Fall mehrerer Variabler zu verallgemeinern. Eine 
Untersuchung des Monodromieverhaltens solcher Funktionen in der Nihe singulirer Punkte 
fihrte zur ersten Berechnung einer Knotengruppe. Die moderne Knotentheorie entstand dann 
nach einer Verschiebung der mathematischen Perspektive auf die von Wirtinger untersuchten 
Fragen, die zu einer Elimination des Kontexts algebraischer Funktionen fihrte. Diese 
Verschiebung, die in Max Dehns knotentheoretischen Pionierarbeiten deutlich sichtbar ist, 
war mit jener tieferen Verinderung im normativen Horizont der mathematischen Praxis 
verknipft, die die mathematische Moderne hervorbrachte. © 1996 Academic Press. Inc. 

Beaucoup des iddes centrales qui ont form6es la topologie moderne ont leurs racines dans 
la 'recherche normale' dans un des courants les plus importants de la pens6e math6matique 
du 196me siBcle, Ces iddes ont alors ~tds s6par6es graduellement de leur contexte originale. Un 
exemple de ce d~veloppement sera discut6. Pendant les ann6es 1895-1905, le mathdmaticien 
autrichien, Wilhelm Wirtinger, essayait de g6n6raliser le point de vue de Felix Klein sur les 
fonctions alg6briques complexes dans le cas de plusieurs variables. Une investigation de la 
monodromie de telles fonctions lui amenait ~ la premibre calculation d'un groupe d'un noeud. 
La th6orie des nceuds moderne a alors 6t6 form6e aprbs un changement de la perspective 

Earlier versions of this paper have been presented at the Mathematical Colloquium at Heidelberg 
and the History of Mathematics Meeting in Oberwolfach, April 1994. I have much profited from 
interesting discussions on both occasions. The paper is part of a larger research project on the history 
of knot theory. 
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math6matique sur les probl6mes 6tudi6s par Wirtinger. Ce changement, visible distinctement 
dans le travail de Max Dehn sur la th6orie des neeuds, a abouti en une 61imination du contexte 
des fonctions alg6briques. I16tait reli6 a un changement plus fondamental de l'horizon normatif 
de la pratique math6matique qui amenait h ce qui a 6t6 appel6 la modernit6 math6matique. 
© 1995 Academic Press, Inc. 

MSC 1991 subject classifications: 01A55, 01A60, 01A80, 32-03, 57-03. 
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INTRODUCTION 

Due to the rapid development and application of new knot invariants in mathe- 
matics and physics following Vaughan Jones' discovery of a new knot polynomial, 
knot theory has received growing attention within and even outside the mathemati- 
cal community. 2 In this context, it has often been asked why the knot problem--of 
all topological problems--was among the first to be studied by early topologists of 
our century such as Heinrich Tietze, Max Dehn, James W. Alexander, and Kurt 
Reidemeister. This question appears all the more puzzling since 19-century work 
on knots had certainly not been at the cutting edge of mainstream mathematical 
research--unlike, for instance, the topological problems that arose in connection 
with the theory of algebraic functions or algebraic geometry. In the following, an 
answer to this question will be given. Using hitherto unpublished correspondence 
between the Austrian mathematician, Wilhelm Wirtinger, and Felix Klein, it will 
be shown that modern knot theory did in fact originate from these latter fields. 
Furthermore, while they were familiar to the pioneers of modern topology, a series 
of events gradually left these roots forgotten by their followers. 

In considering the origins of modern knot theory, I will do more than merely 
retrace the technical developments. Rather, this formation of a new field of mathe- 
matical research illustrates a certain pattern which, in a nutshell, may be character- 
ized as follows: 

Thesis. What appears, at first sight, to be the invention of a new mathematical 
discipline, turns out, on closer inspection, to be the outcome of a rather complex 
process of differentiation, and, as I would like to call it, a subsequent elimination 
of  contexts. 

Here the term "differentiation" is taken from the Weberian tradition in sociology. 
As is well known, Max Weber has described the formation of modern culture and 
society as a process of progressive differentiation of cultural "value spheres" and 
domains of social action, the most important of which are science (which Weber 
links with technology and industrial production), ethics and religion (linked with 
the institutions of law), and art. 3 This picture is interesting for the history of science 

2 This breakthrough was first announced in [14]. Since then, a wealth of popular and scientific presenta- 
tions of knot theory, old and new, have been streaming into the market. Contributors come from all 
ranks of the scientific hierarchy, including authorities such as Michael Atiyah [37]. Some articles have 
included historical comments, for instance the nice survey by de la Harpe [47]. Przytycki [55] has given 
a presentation of some of the combinatorial ideas which led to polynomial knot invariants. The reader 
should be aware that most of these treatments are not intended to be serious historical studies. 

3 The locus classicus for this view is the "Zwischenbetrachtung" in Vol. 1 of [61]. 
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because of Weber 's  idea of viewing the formation of modernity from the perspective 
of a history of rationality. According to this view, a specific standard of rationality 
is associated to each of the different "value spheres" which organizes social practice 
in these respective domains. For Weber, the history of modernity is to a large extent 
the history of the evolution of these rationality standards. 4 Rober t  Merton has 
applied this perspective to an intermediate stage in the process of differentiation 
of science and religion in his ground-breaking study [53]. In contrast to Weber 's  
and Merton's  macrosociological approach, which treats science mostly from an 
external perspective, the idea of "differentiat ion" will be used on a microscopic, 
internal level in the context of the following study. This term will denote the 
gradual separation of a certain bundle of problems--problems appearing in a well- 
established field of what Kuhn called normal research- - f rom the mainstream of 
that field. As we shall see, even on this microscopic level a gradual separation of 
different standards of rationality is characteristic for such a process of differenti- 
ation. 

An "elimination of contexts," on the other hand, marks a critical step in 
mathematical (or, more generally, scientific) research. It puts, so to speak, a 
previously differentiated complex of problems onto its own feet. As a conscious 
or unconscious effect of active decisions taken by scientists, it leads to or 
completes a modification of the network of scientific disciplines. Typically, the 
decision to accept a new standard of rationality is central in an elimination of 
contexts. A change of such standards implies a reevaluation and reorganization 
of the manifold elements of scientific practice, including the perceived architecture 
of the body of scientific knowledge. On the macroscopic level, an example of 
this elimination of contexts is the gradual suppression of religious elements in 
science. We shall see that similar phenomena may be observed on the internal 
level of mathematical research. 

Using these ideas from a history of rationality, 5 we shall be able to trace the 
influence of the norms guiding the mathematical community not only in the way 
in which mathematical research is embedded into general scientific and social cul- 
ture, but also in the regulation of choices determining the constitution of the body 
of mathematical knowledge itself. In particular, it turns out that we can perceive 
in the early history of modern knot theory reflections of the broad changes in 
mathematical culture around the turn of the century. This leads to another  aspect 
which will be central in the following. 

The historical narrative to be presented is drawn from the history of topology, 
that is, from the history of one of those mathematical disciplines which must be 
called genuinely modern--if such a thing exists at all. The events in question 

4 A modern presentation of Weber 's  theory of modernity along these lines is contained in Jttrgen 
Habermas'  influential [46] see in particular Chap. II. 

5 An important difference between a history of rationality on Weberian lines and attempts to give a 
"rational reconstruction" of the history of science in the spirit of Lakatos [49] should be pointed out: 
Whereas the latter import the relevant standards of rationality from a particular methodology of science, 
the former considers these standards as historical data, to be traced and interpreted by the historian. 
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occurred during the two decades before and after the turn of the century. They 
thus overlap in time with Poincard's writings on Analysis situs, which mark the 
disciplinary threshold of topology. Moreover, they are contemporary with the onset 
of what Herbert Mehrtens and other writers have called "mathematical modernity," 
marked by events such as the publication of Hilbert's Grundlagen der Geometrie 
in 1899 and his famous talk on open mathematical problems delivered at Paris in 
1900. (We shall see that both events had an influence on the story to be told.) While 
these connections are striking, the present case study should not be understood as 
a general theory about the pattern of differentiation and elimination of contexts 
in the history of mathematics. Still, this pattern might be typical for the creation 
of some modern mathematical theories. 

Prelude: Poincar~'s Fundamental Group 

Let me first give a brief illustration of this pattern. It concerns one of the basic 
notions of topology, the "fundamental group" of a manifold. As is well known, 
Poincar6 introduced the fundamental group in his paper on Analysis situs of 1895 
[24] in the context of a discussion of the monodromy behavior of multivalued 
functions on a manifold. 6 In fact, he gave a motivation for his notion in terms of 
monodromy and then a definition in terms of homotopy classes of paths. Instead 
of simply defining his new notion, he explained the action of closed paths on the 
set of values of a certain class of multivalued functions at a given point in the 
manifold. (In more modern terms, he considered the action of the fundamental 
group on the fiber of the covering associated with a given set of multivalued 
functions. In fact, the only condition which Poincar6 required for the function set 
implies that this covering is unbranched, so that there are no exceptional fibers.) 
He then remarked that the resulting group of permutations of these values (which we 
may call the global monodromy group associated with the given class of functions) is 
always a homomorphic image of the group of path classes, which therefore is 
rightly considered "fundamental," at least from the point of view of monodromy 
considerations. 

Poincar6's text documents the last step in a process of differentiation. Investiga- 
tions of the monodromy behaviour of multivalued functions in the neighborhood 
of singular points had been normal research problems in analytic (or algebraic) 
function theory on surfaces since the time of Puiseux and Riemann. The term 
"monodromy group" was coined by Camille Jordan in his Trait~ des substitutions 
et des ~quations algObriques of 1870 [15]. The idea of the group had already been 
implicit in Victor Puiseux's Recherches sur les fonctions algObriques of 1850 [27]. 
Therein, Puiseux had examined the permutations of the roots of a polynomial 
equation with rational functions as coefficients induced by analytic continuation 
along small loops around branch points. One year later, Charles Hermite identified 

6A historical discussion of the developments leading to Poincar6's notion was given by vanden 
Eynde [45]. 
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this set explicitly with the Galois g roup  of  the defining equa t ion  [11]. 7 The  concept  
of  m o n o d r o m y  soon found  impor tan t  applications, for instance in the context  of  
differential equations.  In  1895, Poincar6 was on the verge of  separat ing a part icular  
complex  of  quest ions f rom this context  by in t roducing the new not ion  of  the 
fundamenta l  group.  H e  was well aware that  it was precisely the context which 
mat te red  to h im and his c o n t e m p o r a r y  mathemat ic ians;  this funct ioned as a source 
of  legit imation for  the s tudy of  the topological  quest ions involved. Therefore ,  in 
the a n n o u n c e m e n t  of  his work  on Analysis situs [23], which was in tended to 
convince readers  of  the impor tance  of  the new field for topics like analytic 
functions or  algebraic geomet ry ,  Poincar6 restricted himself to explaining the 
fundamenta l  g roup  in terms of  the m o n o d r o m y  behavior  of  mult ivalued functions 
on a surface. There ,  it is simply the "max ima l "  global m o n o d r o m y  group (belonging 
to " the  most  genera l"  set of  mult ivalued functions,  associated with what  was not  
yet  called the universal  cover ing of  a surface). The g roup  of  path  classes was  
not  even ment ioned.  8 

A t  the same time, Poincar6 ' s  not ion  opened  up the possibility of  eliminating the 
context  of  m o n o d r o m y  considerat ions.  A l r eady  the text of  [24] allows one to isolate 
conceptual ly  the not ion  of  the fundamenta l  group f rom its act ion on mult ivalued 
functions. A n d  this is exactly what  happened  later on. 9 The  central  step which led 
to this el iminat ion was when  Poincar6 decided to redefine a certain class of  manifolds 
in a purely combinator ia l  way, a step which he took,  mot iva ted  by Poul  Heegaa rd ' s  
criticisms, in the first Compl~ment d l'Analysis situs of  1899 [26]. Here ,  we find the 
first hints at a new s tandard  of  rat ionali ty for topological  a rgumenta t ion .  It was 
established after the turn of  the century  by those mathemat ic ians  who advoca ted  
an axiomatic,  purely  combinator ia l  approach  to topology.  While Poincar6 ' s  first 
Compl~ment d l'Analysis situs did not  ment ion  the fundamenta l  group,  it was clear 
that  a combinator ia l  not ion  of  manifolds offered new possibilities for  viewing the 
fundamenta l  group,  too.  It was Heinr ich  Tietze who  took  this step in his Habilita- 
tionsschrift of 1908, by reducing all t hen -known topological  invariants of  three-  
dimensional  manifolds  to the fundamenta l  group.l° This g roup  was now in t roduced 
and investigated by means  of  a group presenta t ion  associated with a given combina-  
torial complex. A combinator ia l  not ion  of  h o m e o m o r p h i s m  was in t roduced  which 
enabled Tietze to show the invariance of  the fundamenta l  group by means  of  
combinator ia l  g roup  theory.  N o  ment ion  was made  of  algebraic or  analytic functions 

7 See [63, 118 f.]. It is a pity that Hermite's short paper escaped vanden Eynde's notice in [45] since 
it shows, in fact, that group-theoretic thinking was in the air, at least immediately following Puiseux's 
work. However, it was not the fundamental group, but the monodromy group which was studied then. 
It seems to be a general shortcoming of vanden Eynde's article that she underestimates the role of 
monodromy considerations in the developments leading to the notion of the fundamental group. 

s The notion of equivalence classes of paths was familiar to Poincar6 by 1883 from his work on the 
uniformization problem. This problem represents another important source of topological notions in 
the context of complex function theory. See [45]. 

9 A thorough discussion of the relations between the fundamental group and coverings of a given 
manifold was taken up by Reidemeister [28] and Seifert and Threlfall [30]. 

10 [32]; see [38] for a survey of the combinatorial parts of Tietze's paper. 
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and their monodromy behavior. (See [38, 160-162].) Only after this elimination of 
the specific motivating context did the notion of the fundamental group of a manifold 
acquire its broad significance in topological research. In particular, mathematicians 
interested in the possibilities of the new discipline, such as Tietze and Dehn, could 
now use the notion without necessarily knowing a good deal of function theory. 
New problems could be posed and treated which did not presuppose a connection 
with algebraic functions or algebraic geometry, a famous example being Poincar6's 
conjecture regarding the 3-sphere. n 

This early history of the notion of the fundamental group discloses more than 
it may seem to at first glance. We shall see that the first steps of modern knot 
theory were the outcome of a line of thought which is astonishingly close to 
that just mentioned. Again, investigations of the monodromy behavior of algebraic 
functions--in this case, of two complex variables--led to a topological notion, 
which, after an elimination of the original context and a change in thought 
style, became known as the group of a knot. Seen from a purely mathematical 
perspective, this may come as no great surprise, since knot groups are special 
cases of fundamental groups. Seen historically, however, the parallel is rather 
instructive, since in the beginning at least, the two lines of thought evolved 
independently. This underlines the relevance of the specific pattern of transforma- 
tion, as well as the importance of late 19th-century research on algebraic functions 
for the birth of topology. 

DIFFERENTIATION 

The First Result of  Modern Knot Theory: The Impossibility of  Disentangling the 
Trefoil Knot 

Let us begin with an explanation of what "modern knot theory" shall be taken 
to mean in the following. The problem of classifying knots (or rather, plane knot 
diagrams) apparently already puzzled Gauss back in the 1820's (see, e.g., [55]). We 
also possess a remarkable letter from Betti, who reported on conversations with 
Riemann that document the importance which Gauss attached to the knot problem 
in his later days. (Betti to Tardy, 6.10.1863. See [62].) In fact, Gauss regarded this 
as one of the paradigmatic problems of Analysis situs. The next main episode in 
the history of knot theory was the beginning of knot tabulations by Peter Guthrie 
Tait and his followers, working in the Scottish context of Lord Kelvin's speculations 
about a theory of vortex atoms. 12 (In passing, note that again it was the context 

u For information on the early history of this conjecture, see [60]. 
12 From a mathematical point of view, 19th-century knot tabulations have been discussed in detail 

by Thistlethwaite [59]. On Thomson's  speculations, a standard reference is [58]. So far, no detailed 
treatment of the connections between this proposal of an atomic model and Tait's tabulations has been 
given. A rather interesting line of topological thought links the Scottish physicists to Riemann's  ideas 
about connectivity. In particular, Thomson's  papers contain, though in a rather vague way, the claim 
that the first Betti number of knot complements equals one in all cases. I plan to investigate these ideas 
on another occasion. 
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that served to legitimize non-normal  research.) However ,  the first serious published 
proofs of results on knots date f rom the beginning of our century. They were 
contained in the above-ment ioned article by Tietze and in a series of pioneering 
papers  by Max Dehn  that appeared  in the years 1910-1914. Soon thereafter,  knot  
theory attracted several talented young mathematicians.  After  the interruption 
caused by World War  I, Ot to  Schreier, Kurt  Reidemeister ,  Emil  Artin, and James  
Wadell  Alexander  were the first to take up the knot problem. It became the subject 
of journal a r t i c les - -mos t  of which were published in a new journal  with a modern  
outlook, the Abhand lungen  aus dem mathematischen Seminar der Hamburgischen 
Universitiit, founded in 1922. Ten years later, the first monograph  appeared: Reide- 
meister 's  Knotentheorie [29]. It was during this period that "modern  knot  t h e o r y " -  
that is, knot  theory as part  of mathematical  mode rn i ty - -was  formed. (In this study, 
the problem of whether  or when the " m o d e r n "  period of knot  theory ended will 
be left open.) 

In 1908, Heinrich Tietze published the first result of modern  knot  theory. In a 
section of his Habilitationsschrift which contains a discussion of 3-manifolds embed-  
ded in ordinary 3-space (called "developpable  dreidimensionale Mannigfaltig- 
kei ten"  by Tietze), he presented an argument  for the impossibility of disentangling 
a trefoil knot. He  began by mentioning that the fundamental  group of a solid torus 
(embedded in 3-space) is the infinite cyclic group. A homeomorphic  manifold is 
given, he continued, by boring a cylindrical channel out of a solid ball. " I f  one 
instead would bore  a knot ted channel out of the ball as in fig. 3, then the fundamental  
group of the resulting manifold would be generated by two operations satisfying 
the relation s t s =  tst so that this manifold cannot be homeomorphic  with that first 
mentioned.  ''13 (See Fig. 1.) 

Tietze gave his result without proof, in fact without even giving a hint at the 
method used to compute  the group. He  merely ment ioned an earlier note stating 
this result in a local Viennese journal [31]. A closer reading of his Habilitationsschrift, 

however,  indicates where the result came from, namely, f rom another  mathemati-  
cian who was working in a completely different context. Tietze buried this informa- 
tion in a section far removed  from the passage cited above, and without calling 
attention to the connection between the two passages. Later  readers,  such as Dehn,  
who were interested mainly in combinatorial  topology, appear  to have hardly read 

23 "Greifen wir etwa die von einer einzigen Fl~iche vom Geschlechte 1 berandeten developpablen 
Mannigfaltigkeiten heraus. Das einfachste Beispiel einer solchen Mannigfaltigkeit stellt der von einer 
Torusflache berandete Teil des ~3 vor. Die Fundamentalgruppe dieser Mannigfaltigkeit ist die aus einer 
Operation, fiir die keine definierende Relation besteht, erzeugte zyklische Gruppe unendlich hoher 
Ordnung. Eine dieser Mannigfaltigkeit hom6omorphe erh~ilt man, wenn man aus einer Kugel einen 
zylindrischen Kanal ausbohrt. Wt~rde man start dessen einen verknoteten Kanal wie in Fig. 3 aus 
der Kugel ausbohren, so w~ire die Fundamentalgruppe der so entstandenen Mannigfaltigkeit aus zwei 
erzeugenden Operationen mit der Relation sts = tst aufgebaut, so dab diese Mannigfaltigkeit mit der 
erstgenannten nicht hom6omorph sein kann." [32, 81] 
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this sect ion at all. 14 It treats what  Tietze (following Heegaa rd  [10]) called " R i e m a n n  
spaces," that  is, t h ree -d imens iona l  ana logues  of R i e m a n n  surfaces [32, Sect. 18]. 
There  we find the n a m e  of Wi lhe lm Wir t inger ,  Tie tze ' s  o lder  colleague,  who actually 

had induced  him to tu rn  to topology for his Habilitation. In  an au tobiography ,  
Tietze wrote  in 1960 abou t  his early career: 

[After finishing my dissertation] a strong impression was made on me by Wirtinger who had 
come from Innsbruck to Vienna and who, when speaking of algebraic functions and their 
integrals in lectures and seminars, pointed out that topological elements lie at the basis of 
this theory. 15 

Moreover ,  in Tie tze ' s  Sect. 18, we find not  only the missing techn ique  bu t  also the 

missing context .  Just  one  single sen tence  refers to it: the " inves t iga t ion  of the 
func t ion  of two complex var iables  r ep resen ted  by Cardan ' s  fo rmula"  [32, 105]. 

Tie tze ' s  text represents  the critical step in a s tr iking example  of "con tex t -e l imina-  
t ion ."  His decision to state the knot - theore t ica l  result  wi thout  specifying the context  
in which it was roo ted  led others to credit  h im with having ini t ia ted m o d e r n  knot  
theory  (at least by having asked the right quest ions) .  For  abou t  20 years at least, 
this vir tual ly e l imina ted  Wir t inger ' s  work f rom the collective consciousness  of the 

14 Tietze's article consisted of two parts. In Sects. 1-14, he developed a combinatorial theory of 
topological invariants (Betti and torsion numbers, the fundamental group). In Sects. 15-22, he discussed 
problems which did not yet seem tractable in a purely combinatorial fashion (e.g., embeddings of 
manifolds), admitting that the standard of rigour reached in the first part could not be maintained in 
the second; see [32, 80 ff]. Most readers appear to have concentrated on the first part. References to 
the second part are extremely rare in later papers on knot theory, although parts of its content came 
to be known later on via an oral tradition, see below. 

15 "[Nach meiner Dissertation] erhielt ich einen starken Eindruck von Wirtinger, der von Innsbruck 
nach Wien gekommen war und in Vorlesungen und "Ubungen, wenn er auf algebraische Funktionen 
und ihre Integrale zu sprechen kam, darauf hindeutete, dab es topologische Momente sind, die dem 
Aufbau zugrunde liegen." Quoted from [42, 78]. In a footnote at the beginning of his study (no. 10), 
Tietze explained that its starting point had been suggested to him by Wirtinger. The latter was also one 
of the three editors of the Viennese Monatshefie, in which Tietze's Habilitationsschrifi was published. 
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mathematical  community.  Today, most knot  theorists know the central parts of 
Wirtinger 's  r e su l t s - -bu t  few know that they are due to Wirtinger and even fewer 
that this piece of mathematics,  rather  than postdating the invention of knot  theory, 
actually furnished the basic tool for treating the subject, the group of a knot. 

Wirtinger's Approach to Branch Points of  Algebraic Functions 
of  Two Complex Variables 

Before turning to the piece of mathematics  in question, it seems appropriate  to 
include a short characterization of its author. Wilhelm Wirtinger was born in 1865 
in the little town of Ybbs in Lower  Austria, the son of a physician. Even in school 
he seems to have read some mathematical  classics, including some of Riemann 's  
works. Whatever  he may have understood f rom these, he was to become a renowned 
specialist in geometric  function theory. He  took his doctorate in 1887 under the 
Viennese mathematician,  Emil Weyr, and continued his studies during a stay in 
Berlin and GOttingen. In GOttingen, he participated in Felix Klein's seminar and 
thus established one of the most  important  connections of his professional life. In 
1890, he habilitated in Vienna, and after a period at the Technische Hochschule in 
Innsbruck, he received a call to Vienna in 1903, where he remained for the rest of his 
professional career. During his years in Innsbruck, he published widely appreciated 
papers on Abelian and theta functions. This recognition from his colleagues culmi- 
nated in 1907 when he was awarded the Sylvester Medal by the Royal  Society of 
London. Wirtinger 's further academic career went smoothly (further details are 
given below), and he retired in 1935. He  died in 1945 in his hometown,  Ybbs. 

Let  us now discuss the piece of mathematical  work that led to the first calculation 
of a knot  group. This was the discovery of the connection between knots and the 
topology of singular points of algebraic curves, a finding usually attributed to Karl  
Brauner,  who published a three-part  article on the subject in 1928 in the Hamburger 
Abhandlungen [3]. 16 Brauner  was one of Wirtinger 's  students, and this article was 
his Habilitationsschrifi. ~7 Moreover ,  the central idea of this article was clearly due 
to Wirtinger, even though the latter never  chose to publish it. In his report  on 
Brauner ' s  tlabilitation, Wirtinger wrote: "More  than twenty years ago, the referee 
showed the way in which these difficult, but basic problems may be dealt with. ' ' is  

The only printed documentat ion of Wirtinger 's  earlier work is the title of a talk 
he gave in 1905 at the annual meeting of the Deutsche Mathematiker-Vereinigung: 
" O b e r  die Verzweigungen bei Funktionen von zwei Ver~inderlichen" [35]. However ,  
we are in a good position to reconstruct his work. On the one hand, an oral tradition 
dating back to Wirtinger 's lectures in Vienna is documented in several early papers 
on knot  theory by Schreier, Artin, and Reidemeister ,  in addition to Tietze 's  and 

16 See for instance [36, Sect. 1.4; 56, 159; 54, 3 f.; 39, 415; or 47, 243]. 
17 Brauner was definitely not a first-rate mathematician. After his Habilitationsschrifi, he published 

nothing of importance. In the 1930s and 1940s, he became a convinced supporter of the Nazis, and in 
1945 he was removed from his chair in Graz. See [42, 249]. 

~8 "Der Berichterstatter hat vor mehr als zwanzig Jahren den Weg angegeben, auf welchem diesen 
schwer zug~inglichen, abet grundlegenden Problemen beizukommen ist." Quoted from [42, 247]. 
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B r a u n e r ' s  texts.  Ac tua l ly ,  all o f  these  m a t h e m a t i c i a n s  had  a t t e n d e d  W i r t i n g e r ' s  
l ec tures  at  one  t ime  or  a n o t h e r  [42, 18]. C o m p a r i n g  the  ascr ip t ions  these  texts  m a d e  
to  W i r t i n g e r  l eads  to a r a the r  c lea r  p ic ture .  F o r t u n a t e l y ,  this p ic ture  is fully conf i rmed  
and  even  e x t e n d e d  by  a ser ies  of  l e t te r s  inc luded  in W i r t i n g e r ' s  c o r r e s p o n d e n c e  
with  the  p o w e r f u l  m a t h e m a t i c i a n  who  had  f rom ear ly  on gu ided  and  s u p p o r t e d  his 
career ,  Fe l ix  Klein .  19 W h a t  fol lows is a fa i r ly  de t a i l ed  desc r ip t ion  of  W i r t i n g e r ' s  
ideas ,  b a s e d  on  these  let ters .  F r o m  them,  one  can fol low the g radua l  p rocess  of  
d i f f e r en t i a t i on  which e n d e d  in the  first t r e a t m e n t s  of  kno t  groups .  

T h e  first l e t t e r  to Kle in  which  is r e l e v a n t  he re  da tes  f rom D e c e m b e r  22, 1894. I t  
con ta ins  a sor t  of  annua l  r e p o r t  on  W i r t i n g e r ' s  work.  A m o n g  o t h e r  subjects ,  he 
wr i tes  a b o u t  a new resea rch  pro jec t :  

For functions of several variables, I have another project, namely to investigate whether the 
bilinear differential form in question can be determined in such a way that the real and 
imaginary parts of such a complex function on an arbitrary manifold remain potentials, too. 2° 

This  p ro j ec t  a m o u n t e d  to  no th ing  less than  an ex tens ion  of  Kle in ' s  view of  a lgebra i c  
funct ions ,  b a s e d  on the t heo ry  of  po t en t i a l  funct ions  on surfaces,  to  the  case  of  
severa l  var iables .  Ev iden t ly ,  W i r t i n g e r ' s  p r o p o s a l  was to view, as Kle in  had  success-  
fully done  for  one  var iab le  in his t r ea t i se  Uber R iemanns  Theorie der algebraischen 
Funkt ionen  und  ihrer Integrale of  1882, the  va r ie ty  assoc ia ted  with  an a lgebra i c  
func t ion  of  n comp lex  var iab les  as a 2 n - d i m e n s i o n a l  real  man i fo ld  whose  c omple x  
s t ruc ture  is d e t e r m i n e d  by  a R i e m a n n i a n  metr ic .  T h e  class of  rea l  par t s  of  a lgebra i c  
funct ions  de f ined  on such a va r ie ty  shou ld  t h e n - - s o  W i r t i n g e r  h o p e d - - b e  inc luded  
in the  class of  h a r m o n i c  funct ions  on  this R i e m a n n i a n  mani fo ld .  21 

A t  the  t ime,  the  s tudy of  a lgebra ic  funct ions  of  two or  m o r e  va r iab les  was a still 
y o u n g  and  f lour ishing field of  research .  W h e n  W i r t i n g e r  conce ived  his p ro jec t ,  only  
a few s tudies  had  add re s sed  this na tu ra l  ex tens ion  of  R i e m a n n ' s  w o r k  on a lgebra i c  
funct ions  and  the i r  integrals .  F r o m  a r o u n d  1870 onwards ,  Max  N o e t h e r  and  la te r  
l~mile P ica rd  had  s tud ied  a lgebra i c  funct ions  z of  two c omple x  va r iab les  x and  y 
given by  a p o l y n o m i a l  equa t ion  

f ( x ,  y, z)  = O, x, y, z E C. 

In  par t i cu la r ,  t hey  had  discussed reso lu t ions  of  s ingular i t ies  by  m e a n s  of  r a t iona l  
t r ans fo rma t ions .  Clebsch  and  severa l  I t a l i an  g e o m e t e r s  had  also c o n s i d e r e d  special  

19 Wirtinger's letters to Klein are contained in the Klein Nachlass in NSUB G6ttingen, Cod. Ms. 
Klein XII, 364-412. This includes ca. 50 letters dating from 1890 to 1924. At present, I do not know 
whether the other half of this correspondence is still extant. 

20 "FOr die Functionen mehrerer Variablen habe ich noch ein Project, n~imlich zu untersuchen, ob 
sich die bewusste bilineare Differentialform nicht so bestimmen l~isst, dass der reelle u. imagin~ire Theil 
einer solchen complexen Function auf beliebiger Mannigfaltigkeit auch Potentiale bleiben." 

21 For the plane C n, it had been shown by Poincar6 in 1883 that a straightforward extension of the 
approach to complex functions in one variable via harmonic functions was impossible. There exist 
harmonic functions of several complex variables which are not real parts of analytic functions. Still, the 
reverse inclusion holds, so that potential theory can be applied to complex functions of several variables. 
See [22; 25]. 
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classes of  a lgebra i c  funct ions  of  two var iab les ,  i n t e rp re t ing  these  as a lgebra i c  sur- 

faces. I t  soon  b e c a m e  c lear  tha t  one  of  the  m a j o r  d i f fe rences  b e t w e e n  a lgebra i c  
funct ions  of  one  and  of  two var iab les  was the  much  m o r e  invo lved  topo log ica l  
s i tua t ions  tha t  ar ise  in the  l a t t e r  case. A l g e b r a i c  surfaces  were  c o m p l i c a t e d  ob jec t s  
of  four  rea l  d imens ions  i m m e r s e d  in a space  of  six rea l  d imens ions .  F o r  ins tance,  
the  set  of  s ingular i t ies  consists  not  of  i so la ted  points ,  as is the  case for  one  var iab le ,  
bu t  is an a lgebra i c  curve,  g iven by  the d i sc r iminan t  D of  the  def ining p o l y n o m i a l  f :  

Dr(x, y) = O, x, y ~ C. 

In an inf luent ia l  m e m o i r  [20], P icard  had  e m p h a s i z e d  this aspec t  with r ega rd  to  the  
s ingular i t ies  of  a lgebra i c  funct ions  of  two var iables .  W h e n  in 1897 he and  G e o r g e s  
S imar t  pub l i shed  the  first m o n o g r a p h  on  such funct ions ,  a subs tan t i a l  c ha p t e r  of  
the i r  b o o k  was d e v o t e d  to  Analysis situs. 

Al l  this m a k e s  c lear  tha t  W i r t i n g e r ' s  p r o j e c t - - h o w e v e r  na tu ra l  in an e s t ab l i shed  
l ine of  r e s e a r c h - - w a s  a f o r m i d a b l e  one.  W e  shall  see  tha t  W i r t i n g e r ' s  ambi t ions  
soon  bo i l ed  down  to a much  m o r e  l imi ted  d o m a i n  of  ques t ions .  He ,  too,  was aware  
of  the  t opo log ica l  p r o b l e m s  which  his p ro jec t  wou ld  pose .  In  his l e t t e r  to Kle in ,  
he con t inued:  

o f  course, the faculty of imagination must here be educated and extended essentially. Let me 
just mention as an example that in 4-dimensional space, a surface of integration and a surface 
of singularities may be linked together like two rings in the three-dimensional domain. The 
surface of integration may then be deformed arbitrarily but cannot be reduced to a point. 
• . .  To grasp all this in a typical and general way will not be easy, but it must be done in the 
end if the consideration of complex functions of several variables will not be restricted to the 
most elementary facts. 22 

W e  shall  soon  see tha t  W i r t i n g e r ' s  sugges t ion  tha t  the  t opo log ica l  difficulties of  the  
subjec t  ca l led  for  a t ra in ing  of  m a t h e m a t i c a l  in tu i t ion  was no t  jus t  a pass ing  r emark .  

Exac t ly  one  yea r  la ter ,  on  D e c e m b e r  22, 1895, in his next  " a n n u a l  r e p o r t , "  
Wi r t i nge r  could  wri te  to  Kle in  a b o u t  his first successes.  T h e  c o m p l e t e  text  of  the  
le t ter ,  which th rows  an in te res t ing  l ight  on  his r e l a t ionsh ip  to  Kle in ,  too,  is given 
in the  appendix .  In  this le t ter ,  we find the  first signs of  the  d i f f e ren t i a t ion  of  a 
cer ta in  p r o b l e m  f rom the  con tex t  of  funct ion  t heo ry  which la te r  t u rned  out  to be  
decisive.  W h a t  W i r t i n g e r  in the  l e t t e r  calls " t h e  core  of  the  who le  s u b j e c t ' - - t h e  
inves t iga t ion  of  the  b r anch ing  s ingular i t ies  of  a lgebra ic  f u n c t i o n s - - w i l l  be  t rans-  
f o r m e d  into  the  inves t iga t ion  of  kno t  g roups  15 years  la ter .  H e r e  I shall  t ry to  
i so la te  and  in t e rp re t  those  aspects  of  W i r t i n g e r ' s  s t a t emen t s  which pe r t a in  to this de-  
ve lopmen t .  

22 "Freilich muss hier das Vorstellungsverm6gen wesentlich geschult u. erweitert werden. Ich erw~ihne 
nur beispielsweise, dass eine Integrationsfl~iche u. eine Singularit~itenfl~iche im Raum yon 4 Dimensionen 
so ineinander h~ingen kOnnen, wie zwei Ringe im dreidimensionalen Gebiet. Die Integrationsfl~iche 
kann dann beliebig verschoben u. vefiindert werden, aber nicht auf einen Punct reducirt werden . . . .  
Alles dieses typisch u. allgemein zu erfassen wird nicht leicht sein, aber doch schliesslich gemacht 
werden mtissen, wenn man die Betrachtung complexer Functionen mehrerer Variablen nicht auf das 
allerelementarste beschranken will . . . .  " 
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As was usual at this time, Wirtinger viewed algebraic functions of two variables 
as branched coverings of the complex plane C 2, in modern notation, 

p : { ( x , y , z )  E C 3 : f ( x , y , z )  = 0}---~ C 2, (x ,y , z )~- -~(x ,y ) .  

(A similar situation obtains for more than two variables). He then distinguished 
two kinds of branch points, according to whether the sheets of the covering are 
permuted cyclically along a closed path around the branch point or not. He  realized 
that at regular points of the branch curve, where an analogue of the Puiseux 
expansion of the algebraic function is available, the sheets are permuted cyclically, 
while the situation is unclear at its singular points. At such points, say (x0, Yo), he 
interpreted the defining polynomial f as a polynomial in z with coefficients in the 
"Rationalit~itsbereich" of power series a(x,  y), convergent in a neighborhood of 
(x0, Y0) (probably, he meant the quotient field of this ring): 

f ( x ,  y, z)  = ao(x, y)  + al(x,  y ) z  + " ' "  + an(x, y ) z  n = O. 

It was known that the Galois group of the corresponding equation for the case of 
one variable, over the field of rational functions, coincides with the monodromy 
group of the unbranched covering of the Riemann number sphere with the set of 
branch points removed. (This had first been recognized by Hermite;  see above). 
Evidently, Wirtinger extended this insight to his higher-dimensional, local situation, 
claiming that the Galois group of his equation equals the "local" monodromy group 
of the associated covering, that is, the monodromy group of the covering of a 
neighborhood of (x0, Y0) with the branch curve taken out. Thus he could say that 
"this group characterizes the branch p o i n t " - - w e  should add, topologically, e3 

Wirtinger then gave an example. It involves the general equation of order  3. He 
considered the algebraic function z of x and y given by 

f ( x , y , z )  = z 3 + 3xz + 2y = O. 

The equation of the branch curve then is 

Df(x ,  y)  = x 3 + y2 = O. 

This cubic has a cusp in (0, 0). Since the Galois group of a general equation is the 
full symmetric group, there exist closed paths in the neighborhood of (0, 0), which 
induce arbitrary permutations among the three branches of the algebraic function 
defined by Wirtinger's equation. Thus the singular branch point is not of the cycli- 
cal kind. 

This example remained paradigmatic for all later work. We shall see that while 

23 It is not clear to me what Wirtinger meant in the letter by saying that a neighborhood of a singular 
branch point is not homeomorphic to an n-cell and has a "certain connectivity." Is he speaking of a 
neighborhood of the branch point in the base--with the branching manifold taken out--or in the total 
space of the covering? Certainly, there is an argument in the air concerning the first possibility. Since 
the fundamental group of such a neighborhood has a non-abelian homomorphic image--the Galois 
group--it cannot be abelian either. However, the sources do not ascribe such an argument to him. 
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p u r s u i n g  the  q u e s t i o n s  he  n o w  h ad  p u t  to  h i m s e l f - - t o  speci fy  g e n e r a l  c o n d i t i o n s  

wh ich  a g r o u p  of  p e r m u t a t i o n s  h a d  to  sat isfy in  o r d e r  to occu r  as the  local  m o n o -  
d r o m y  g r o u p  a s soc i a t ed  to a s i ngu l a r  b r a n c h  p o i n t - - W i r t i n g e r  was  led  to  the  first 

c a l c u l a t i o n  of  a k n o t  g roup ,  a resu l t  m a d e  p u b l i c  by  T i e t z e  in  1908. 

I n  the  fo l l owing  years ,  h o w e v e r ,  W i r t i n g e r  r e m a i n e d  s i len t  a b o u t  his p ro jec t .  H e  

h a d  e n o u g h  else to  do,  for  i n s t a n c e  in  w o r k i n g  wi th  M a x  N o e t h e r  to p r e p a r e  an  

ex t ens ive  s u p p l e m e n t  to  R i e m a n n ' s  co l l ec ted  works ,  a n d  wr i t i ng  the  ar t ic le  o n  

a lgeb ra i c  f u n c t i o n s  a n d  the i r  i n t eg ra l s  for  the  Enzyklopiidie der mathematischen 
Wissenschaften [34]. Fe l ix  K le in ,  w h o  t h o u g h t  h igh ly  of  his A u s t r i a n  a d m i r e r ,  p r o b a -  

b ly  h a d  his h a n d s  in  t h e  a r r a n g e m e n t  of  b o t h  tasks.  S ign i f ican t ly  e n o u g h ,  the  En- 
zyklopiidie ar t ic le  c o n t a i n e d  n e a r l y  n o t h i n g  a b o u t  f u n c t i o n s  of  seve ra l  va r iab les ,  
a n d  we f ind W i r t i n g e r  wr i t ing :  

• . . in general, the theory of functions of several variables has not yet been developed very 
far. In particular, one has not yet succeeded in determining a given algebraic variety by a finite 
number of data in a similar way as is possible with the different forms of a Riemann surface. 
These investigations presuppose a thorough treatment of analysis situs for several dimensions. 24 

W i r t i n g e r  r e t u r n e d  to the  sub jec t  in  a l e t t e r  d a t e d  A u g u s t  26, 1903. F ina l ly ,  he  
a n n o u n c e d  a resu l t  wh i ch  he  i n t e n d e d  to p r e s e n t  publ ic ly :  

For the branchings of algebraic functions of several variables I have made a completely elemen- 
tary study whose only aim is to make clear how it happens, and how it must be imagined 
topologically, that along the connected discriminant manifold only two branches are connected 
in general, while in its singular points perhaps arbitrarily many [branches are connected]. I 
wanted to report on these things in Kassel, but it has again become unclear whether I shall 
be able to go there. 25 

A c tua l l y ,  W i r t i n g e r  d id  n o t  t r ave l  to the  a n n u a l  m e e t i n g  of  the  Deutsche Mathema- 
tiker-Vereinigung in  Kasse l  in  S e p t e m b e r  1903, d u e  to p r o b l e m s  wi th  his ear .  26 
A n o t h e r  two years  pa s sed  b e f o r e  he  gave  a ta lk  o n  this  sub jec t  in  1905. 

24 ,,... dass die Theorie der Funktionen mehrerer Variablen tiberhaupt noch wenig ausgebildet ist. 
Es ist im besondern noch nicht gelungen, das einzelne algebraische Gebilde durch eine endliche Anzahl 
von Bestimmungsstticken in ahnlicher Weise festzulegen, wie dies bei den verschiedenen Formen der 
Riemannschen Fl~iche mOglich ist. Die Untersuchungen selbst setzen eine eingehende Bearbeitung der 
Analysis situs ftir mehrere Dimensionen voraus" [34,174]. For this last task, Wirtinger refers to Poincar6's 
texts [24; 26]. The middle sentence contains an allusion to his own work. One way to determine a 
Riemann surface had been studied by Hurwitz [13]: by specifying the number of sheets, the position 
of its branch points, and the local monodromy behavior at these points, i.e., a certain sheet permutation 
associated with each branch point• Wirtinger's thoughts focused on a generalization of the last of these 
three aspects. 

25,,... l)ber die Verzweigungen algebraischer Functionen mehrerer Variablen babe ich eine ganz 
elementare Untersuchung angestellt, welche nur den Zweck hat, klar zu stellen, wie es kommt u. wie man 
sich topologisch vorzustellen hat, dass l~ings der zusammenh~ingenden Discriminantenmannigfaltigkeit 
iiberall im allgemeinen nur zwei Zweige zusammenh~ingen, dagegen in deren singul~iren Punkten unter 
Umstgnden beliebig viele, l]ber diese Dinge wollte ich in Cassel berichten, ob es mir abet m6glich sein 
wird hinzukommen ist wieder zweifelhaft geworden . . . .  " 

26 Wirtinger to Klein, Cod. Ms. Klein XII, 409; probably autumn 1903. 
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Taking together what we find in [1; 3; 32], it is not too difficult to reconstruct the 
contents of that lecture. The main source is Sect. 18 of Tietze's Habilitationsschrift; 
Brauner 's  paper also makes it possible to add some computational details. In the 
talk, a crucial new idea came into play which, according to Tietze, Wirtinger had 
taken from Heegaard 's  dissertation of 1898, entitled Forstudier til en topologisk 
teori for de algebraiske fladers samrnenhceng [10]. As the title indicates, Heegaard 
had developed similar interests to those of Wirtinger in a topological t reatment of 
algebraic functions of two complex variables, but unlike Wirtinger he preferred the 
viewpoint of algebraic geometry. Heegaard 's  idea was to study singular points of 
algebraic surfaces by looking at the restriction of the branched covering of C 2 
defined by the equation of the surface to a 3-sphere bounding a small neighborhood 
of the singular point in question. In this way, one gets a branched covering of the 
3-sphere, which is precisely what Heegaard called a "Riemann space" [10, Sect. 
13]. In the situation of the paradigmatic example, one obtains (for small positive c) 

{(x,y,z) e C3:z 3 -I- 3ZX + 2y = O& IX] 2 + lyl 2 = c} 

p ; (x, y, z) ~ (x,y)  

{(x,y) E C2:lxl 2 + lyl2 = c} 

It was now a matter  of straightforward calculation for Wirtinger to see that the 
restriction o f  the 'branching manifold to the 3-sphere is a trefoil knot /One  simply 
had to solve the system of equations 

x 3 + y2 = 0 and Ixl 2 + 1212 = c. 

The calculation makes clear that the result is a curve which lies on a torus and 
winds twice round the first meridian and three times round the second. 

Moreover,  the restriction transforms the local monodromy group characterizing 
the original singularity into the global monodromy group of the three-sheeted 
covering of the exterior of the trefoil knot. Thus in order to study the topological 
situation at the branch point, it was enough to look at the three-sheeted covering 
of the exterior of the trefoil. As was usual in the case of Riemann surfaces, Wirtinger 
now applied more or less intuitive cutting and pasting arguments in order  to obtain 
generators and relations for this monodromy group. There is a picture in Artin's 
article [1] which illustrates these techniques (Fig. 2). The same picture had been 
described in words by Tietze, and it reappeared in Brauner 's  article. Finally, it was 
reprinted in Reidemeister 's Knotentheorie. In all of these cases, the use of this 
picture in order to derive a presentation of the knot group is ascribed to Wirtinger. 27 
(The idea of the picture itself was again taken from Heegaard's  dissertation, where 
it had been used to construct what Heegaard had called the "diagram" of a Riemann 
space.) This alone suffices to establish the existence of an oral t radi t ion--which in 
this case transmitted a picture, an intuition! 28 

27 In Artin's case, Schreier was the go-between; see [1, 58]. 
28 See [44] for another example and a more philosophical discussion of the importance of cognitive 

acts related to such intuitions in the creation of mathematical knowledge. 
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FIG 2. Wirtinger's semicylinder. 

The first step toward determining a presentation of the monodromy group was 
to cut the covering into three simply connected sheets. This was achieved by joining 
the points on the branch curve by straight lines to a point (conveniently chosen at 
infinity in a direction along which the knot projects to a regular knot diagram) and 
cutting along the resulting semicylinder with self-intersections. 29 Evidently, the 
monodromy group is then generated by the sheet permutations associated to pene- 
trations of this semicylinder. In his example, Wirtinger used six generators, associ- 
ated with the six parts of the semicylinder which lie between the three lines of self- 
intersection. By looking at small circles which do not circle around the trefoil, the 
group relations could be determined. Three  cases were to be distinguished: (i) only 
one part of the semicylinder is traversed, giving no relation; (ii) two parts of the 
semicylinder are penetrated (this may happen a b o v e  a line of self-intersection and 
reduces the number of generators to three, say r, s, t, associated to the three arcs 
in the knot diagram); (iii) four parts of the semicylinder are passed through. This 
leads to those relations which today are still called Wirtinger's relations. For the 
trefoil, they are given by 

1 = r s r - l t  -~ = s t - ~ s  lr  = t r - l t - ~ s .  

29 In one dimension lower, the same idea had been used in the 19th century, e.g., by Hurwitz [13]. 
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El iminat ing r = sts  1 one arrives at the following relat ion for the sheet  permuta t ions  
of  the covering: sts = t s t - -wh ich  is exactly the relat ion which appeared  in Tietze 's  
a rgumen t  for  the knot tedness  of  the trefoil. In fact, it is clear f rom Wir t inger ' s  
a rgumen t  that  (s, t l s t  = ts t )  is a presenta t ion of  the fundamenta l  group of  the 
exter ior  of  the trefoil knot.  As  an immedia te  corollary,  we obtain  an a rgumen t  for 
the fact that  this g roup  is not  infinite cyclic. By construction,  it has the symmetr ic  
g roup  of  o rder  three (the m o n o d r o m y  group)  as a h o m o m o r p h i c  image. In this 
way, Wir t inger  had not  only character ized the compl ica ted  singularity of  his example  
by means  of  the g roup  of  the trefoil, 3° but  had also shown how to fo rm a very 
intuitive picture of  the topological  si tuation a round  the branch point.  The  remarks  
to Klein in his letter of  1903 were  thus fully justified. 

F r o m  the sources, it is not  quite clear whe ther  Wirt inger  was fully aware  of  the 
fact that  he had actually deve loped  much  more  than what  he originally had been  
looking for. Wha t  he had given was a me thod  for deriving not  just necessary 
condit ions on the m o n o d r o m y  group  in quest ion,  but  a presenta t ion  of  the funda-  
menta l  g roup  of  the exterior  of  an arbitrary knot!  While it is not  very p robab le  
that  anyone  who had read Poincar6 would  over look  this difference, it is astonishing 
to realize that  even in 1928 Braune r  seems to confuse exactly these two aspects of  
Wir t inger ' s  procedure .  31 The  me thod  became  general ly known under  Wir t inger ' s  
name  when  Ar t in  described it in his widely read article on the braid g roup  [1]. It 
is interesting that  Ar t in  makes  no reference to Tietze 's  Habilitationsschrift ,  where  
the m e t h o d  already had been  described in detail. This once more  suggests that  
Tietze 's  reference to his advisor escaped the notice of  the mathemat ica l  communi ty .  
In any case, by 1908 the separat ion f rom its original context  of  the central  p rob lem 
which was to consti tute m o d e r n  knot  theory  was complete .  32 

Wirtinger's Deb t  to Klein 

Before  turning to knot  theory  p roper  and the final el iminat ion of  contexts,  it 
should be emphas ized  that  Wir t inger ' s  commi tmen t  to the context  of  a certain view 
of  algebraic functions was not  just a quest ion of  mathematics .  We  have seen that  
when  he began  work  on his project  he viewed it as a natural  general izat ion of  an 
approach  to algebraic functions advoca ted  by one of  the mighty  figures on the 

30 TO be precise, he had shown the way to arrive at a topological classification of singular points of 
plane algebraic curves. Wirtinger's final result no longer concerned the covering he originally had 
intended to consider, but the topology of the base of this covering. See the Prelude above. 

31 For Brauner, Wirtinger's relations are still monodromy relations and not relations in the fundamental 
group of the knot complement. See [3, 4 if]. 

32 Wirtinger's investigation not only made the connection between singularities and knots; it also 
contained the first example of a knotted surface in a manifold of four real dimensions. This is exactly 
the position of the complex branch curve in the complex plane associated with the given algebraic 
function when looked at from the point of view of real manifolds. It is evident that Artin had this 
example in mind when he inaugurated the study of knotted surfaces in his short paper [2]. Once more, 
we face an elimination of contexts. A similar situation obtains in the case of Artin's alleged "invention" 
of braids in [1]; they had originally been treated in the context of Riemann surfaces by Hurwitz in his 
remarkable paper [13]. For details, see [40; 43]. 
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G e r m a n  mathemat ica l  scene. Like many  others,  Wirt inger  was very clear as to the 
influence which Klein had o n  his professional  career.  Thus,  it is hardly  surprising 
that  he in formed Klein about  progress and promising perspect ives in his research.  
It may  even be the case that  Klein expected something of  this kind f rom mathemat i -  
cians under  his protect ion.  We  have also seen that  Wir t inger  never  chose to leave 
the context  of  algebraic functions which was so dear  to Klein. 

In his general  views on mathemat ics ,  too,  he was strongly influenced by his 
mentor .  His letters to Klein express a s t rong adherence  to Klein 's  values coflcerning 
mathemat ica l  practice and the place of  mathemat ics  in culture. Wir t inger  shared 
Kleinian values with respect  to the status of  geometr ic  i n tu i t i on - - a s  evidenced by 
the way in which Wir t inger  approached  his project  on algebraic func t ions - - a s  well 
as with regard to the social impor tance  of  higher  mathemat ica l  education.  In  one  
of  a series of  letters dealing with the issues put  forward  by Klein in his talk on 
"a r i thmet iza t ion"  [17], Wirt inger  expressed his general  ag reement  by using a nice 
m e t a p h o r  to illustrate the mathemat ic ian ' s  task. He  imagined the mathemat ic ian  
of  the 20th century,  he said, like a painter  who looks at the wor ld  with a painter ' s  
eyes, thinking about  the way  in which he would  like to paint  it. Correspondingly ,  
the mathemat ic ian  should try to "see the mathemat ica l  p r o b l e m "  in whatever  fo rm 
she or  he encounters  it. This percept ive  faculty should be the result  of  general  
mathemat ica l  education.  Wir t inger  then joins in with Klein 's  crit ique of  the growing 
t rend toward  abstract ion in mathemat ics ;  an abstract  definition, he says, is noth ing  
but  a r~sum~ of a series of  concre te  instances, in which the real mathemat ica l  
interest must  lie. 33 

It is certainly apt  to call Wir t inger  a convinced suppor te r  of  a "Kleinian  s tyle" 
of  mathemat ica l  practice. Wir t inger  made  this very explicit not  only in his letters 
but  also in an article wri t ten on the occasion of  Klein 's  70th bir thday,  entit led Klein 
und die Mathematik der letzten 50 Jahre [35]. 

Of  part icular  impor tance  in the present  context  is Wir t inger ' s  reluctance to accept  
and to p r o m o t e  the general  tendencies  toward  a growing differentiat ion of  mathe-  
matical  fields. This hesitation, central  to  the style of  mathemat ica l  practice advoca ted  
by Klein and Wirt inger,  is clearly expressed in the following passage f rom Klein 's  
Entwicklung der Mathematik im 19. Jahrhundert which refers to the differentiat ion 
of  p rob lem fields and methodologica l  schools in connect ion  with algebraic functions: 

This tendency to dissect science not only into an ever greater number of individual disciplines, 
but also to create schools based on differences with regard to methodology would, if it should 
become prevalent, lead to the death of science. We have always aimed at the opposite ourselves. 

33 "Ich stelle mir den Mathematiker des 20 t Jahrhunderts so vor, dass er, wie der Maler, so oft er 
will, die Welt malerisch sieht u. denkt wie er sie malen wtirde (u. nicht blos an classische Galeriebilder), 
auch so oft er will das mathematische Problem sieht, wo u. in welcher Gestalt immer es entgegentritt. 
Als Resultat der allgemeinen mathematischen Bildung, denke ich mir nun die F~ihigkeit dieses Sehens, 
wenigstens im Princip. Es scheint mir, dass Sie mit der Bemerkung auf pag. 8 tiber die zu grosse 
Abstraction, die nur hindert ein concretes Problem zu erfassen, die Wurzel des Obel's bezeichnet haben. 
Mir pers6nlich war die Verbaldefinition nichts anderes als das Resumde tiber eine Reihe concreter F~ille 
u. ohne Kenntnis derselben ganz ohne Interesse." [Wirtinger to Klein, May 22, 1896] 
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In our generation, we have kept 1. the theory of invariants, 2. the theory of equations, 3. 
function theory, 4. geometry and 5. number theory more or less in contact and this was our 
special pride. 34 

Elsewhere I have tried to show not only that this attitude represents a strong 
normative commitment with respect to the organization of mathematical research, 
but also that it was connected to a particular style of mathematical argumentation 
which drew heavily o n - - a n d  sought to draw on--connect ions  between different 
areas of mathematics [43]. As such, Klein's statement may be interpreted as express- 
ing one aspect of a specific standard of rationality in mathematical practice. This 
standard is "integrative" in a strong sense. It is regarded as rational to promote 
the coherence of mathematics as a whole, in professional politics as well as in doing 
research which links different mathematical fields. It may well be that Wirtinger's 
adherence to a similar standard was one of the factors which prevented him from 
pursuing and publishing the purely topological parts of the results which he obtained 
in his investigation of branch points of algebraic functions. 

E L I M I N A T I O N  OF CONTEXTS 

Max Dehn's Research on Knots 

At about the time when his Habilitationsschrifi was published, Heinrich Tietze 
had an encounter in Rome with another aspiring young mathematician interested 
in topology and knot theory, Max Dehn. At  the time, Dehn was convinced that he 
knew of a topological characterization of ordinary 3-space which would have been 
more or less equivalent to a proof of the Poincar6 conjecture. 35 Tietze pointed out 
the error in Dehn 's  argument, and Dehn had to withdraw a paper which he already 
had sent to Hilbert with the urgent request for speedy publication in the GOttinger 
Nachrichten. 36 Dehn 's  misconception prevented him from publishing the other half 
of the paper immediately, and only in 1910 did the first of a series of papers appear 
wh ich - -among  other things--definitively established knot theory as a promising 
subfield of what was then called combinatorial topology ([5-8]). In fact, this paper 
also contained a serious gap which would not be filled during Dehn 's  lifetime, the 
notorious "Dehn  lemma" (see, e.g., [51]). 

The central notion in this work was again that of the fundamental group of the 

34 "Diese Tendenz, die Wissenschaft nicht nur in immer zahlreichere Einzelkapitel zu zerlegen, sondern 
Schulunterschiede nach der Art der Behandlung zu schaffen, wOrde, wenn sie einseitig zur Geltung 
k~ime, den Tod der Wissenschaft herbeiftihren. Wir selbst haben imrner das Umgekehrte angestrebt. 
In unserer Generation haben wir 1. Invariantentheorie, 2. Gleichungstheorie, 3. Funktionentheorie, 4. 
Geometrie und 5. Zahlentheorie mehr oder weniger in Kontakt gehalten, und das war unser besonderer 
Stolz." [18, 327] 

35 The key to this characterization would have been "dab der gew6hnliche Raum die einzige 3dim. 
Mannigfaltigkeit ist, in der jeder 'geschlossene Fl~ichenkomplex' [as Dehn had defined it] zersttickelt" 
(Dehn to Hilbert, February 12, 1908). Compare also the final paragraph in [5]. 

36 Dehn to Hilbert, February 12, and April 16, 1908. Dehn had feared that somebody, perhaps Poincar6 
himself, might anticipate his result. 
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exterior of a knot, which Dehn simply called " the group of the knot ."  One of the 
famous results of the first paper is the statement (which hinges upon "Dehn ' s  
lemma")  that a knot may be disentangled, i.e., is equivalent to the trivial knot, if 
and only if its group is abelian? 7 Even more impressive was the proof, contained 
in the fourth paper, showing that a left-handed trefoil knot cannot be deformed into 
its right-handed mirror image. The proof  involved classifying the automorphisms of 
the group of the trefoil, which, as we have seen, had already been determined in 
Wirtinger's and Tietze's work. Nevertheless, Dehn did not use their techniques. In 
Dehn's  papers, no idea related to algebraic functions or at least coverings of the 
exterior of a knot was mentioned, and he ignored Wirtinger's method of deriving 
a presentation of the knot group. Instead, Dehn gave another  presentation starting 
completely from sc ra t chy  The methods he used to prove his deeper  results were 
devoid of all vestiges of analysis, and consisted in a highly original fusion of combina- 
torial group theory and hyperbolic geometry (which contributed to topology and 
group theory in almost equal parts). 

Why did Dehn not take up the thread offered to him by Tietze? It is clear that 
he had read at least those parts of Tietze's paper which seemed important to h i m .  39 

The answer to this question accounts for why the context of algebraic functions is 
no longer present in the first period of modern knot theory. Moreover,  it also 
reveals how this particular example of context-elimination reflects the rise of a 
new style of mathematical practice dominated by another mighty figure on the 
mathematical scene, David Hilbert, and connected to a new standard of mathemati- 
cal rationality. In order  to explain this fully, we must once more work our way 
backwards in time. We begin with a detailed description of Dehn's  way of defining 
knots and his way of proving the knottedness of the trefoil. Since Dehn's  work in 
topology is better  known than Wirtinger's, we need not go into the same detail as 
in the previous section. 4° 

Dehn's  paper of 1910 began with some considerations which proved to be of 
great influence for the development  of combinatorial group theory. Dehn's  subject 
was finite group presentations, and he stated clearly the algorithmic problems 
associated with them: to find methods that would enable one to decide in a finite 
number of steps whether or not two words (a) represent the same group element, 
or (b) represent conjugate elements. (A third algorithmic problem, namely, to 
decide whether two given presentations determine isomorphic groups, had already 
been stated and treated by Tietze in the context of showing the combinatorial 
invariance of the fundamental group [32]; see above.) Dehn went on to translate 
the first of these p rob lems- - the  "Identit~itsproblem" as he called it in [6]-- into 

37 Another  aim of this paper was to construct examples of 3-manifolds-- in particular, of homology 
spheres--us ing what was later called surgery on a knot. 

38 For some time, the group of a knot was even called "Dehn ' s  group," for instance, by Veblen [33] 
and in a letter of Reidemeister to Hellmuth Kneser of 1925. The picture was corrected by Artin [1]. 

39 This is evident from the group-theoretical parts of his papers, for instance [6]. See also [40, 17 ft.]. 
4o For a historical t reatment of Dehn 's  topological papers, see, e.g., [51] or [40]. Bollinger [38] and 

vanden Eynde [45] have also devoted some attention to Dehn 's  work. 
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another combinatorial problem, the construction of the "Gruppenbild" or Cayley 
graph associated to a group presentation G := (al . . . .  , an I rl . . . . .  rn). The vertices 
of this graph are the group elements. Two vertices g, h ~ G are connected by an 
edge of the graph if and only if h = aig holds for some generator ai. Consequently, 
each closed path in the graph represents a relation in the group. To solve the word 
problem and to construct the graph are therefore equivalent. 41 The "Gruppenbild" 
is an example of what Dehn called a "Streckenkomplex," that is, an assembly of 
basic elements (here, group elements) together with a set of pairings (here, equations 
h = a i g ) .  We shall see shortly how this combinatorial notion could be used to treat 
knot groups. 

After some further preparations (including his "lemma"), Dehn defined knots 
as what he called "closed nonsingular curves," embedded in 3-space [5,153]. A closer 
look shows that a "curve" is, for him, another example of a "Streckenkomplex. ''42 It 
is a polygonal curve, given by a set of points in 3-space, paired according to the 
line segments which make up the polygon. (For Wirtinger, by contrast, the trefoil 
had been given by the intersection of an algebraic curve with a 3-sphere in the 
complex plane!) A curve is nonsingular if no two line segments meet (except 
neighboring segments at the vertices of the polygon). The group of a knot was then 
introduced in the following way. Dehn's starting point was the "Streckenkomplex" 
given by a regular projection of a knot (a knot diagram with self-crossings). To 
such a graph, he had associated earlier in the paper [5, Part I, Sect. 2] a group 
presentation which was nothing but the fundamental group of the surface bounding 
a tubular neighborhood of the projection. Then, for each crossing of the projection, 
new relations were introduced which account for the fact that, in contrast to its 
projection, the knot has no self-crossings in 3-space. In this way, Dehn arrived at 
a presentation of the group of equivalence classes of paths on the torus which 
bounds a tubular neighborhood of the knot, where two such paths are considered 
equivalent if and only if they are homotopic in the knot complement [5, 157]. This 
completed Dehn's definition of the group of a knot. For the trefoil, Dehn found a 
presentation that is easily shown to be equivalent to Wirtinger's presentation: 

(C1,C2,C3,C41C1C41C2,C2C41C3,C3C41Cl). 

Note that the knot group was introduced on a purely combinatorial basis, starting 
from a "Streckenkomplex" and using no further information. It was not given 
beforehand and then shown to possess a certain presentation, as in Wirtinger's 
case. That it has an obvious interpretation in terms of equivalence classes of paths 
is not essential for the definition itself. Interestingly enough, Dehn makes no attempt 
to show that his group is in fact an invariant under a combinatorial version of 
isotopy. This leads one to wonder how Dehn could have shown that a given knot 

41 For further  information on the '~Gruppenbild" and Dehn ' s  use of it, see [40]. 
42 In [5], the reader  is simply referred to the Enzyklopiidie article [4]; see below. 
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FIG 3. Dehn's "Gruppenbild" of the trefoil. 

is non-trivial. Dehn did so by using the correct, but insufficiently proven result that 
a knot is trivial if and only if its group is abelian. (Since the "only i f"  part is enough 
for showing knottedness, the gap in Dehn's  proof  is not relevant here.) Let  us 
consider how this result appears in the case of the trefoil. 

In this instance, Dehn actually managed to construct the "Gruppenbi ld ."  It can 
be built from infinitely many "strips" of the form shown in Fig. 3 (left), where 
vertical edges always represent c4, while oblique edges represent cl, c2, and c3 as 
indicated in the figure. Different copies of such strips must then be pasted together 
according to the scheme shown in Fig. 3 (right). Here,  every line segment represents 
one copy of the strip, as "seen from above," and in pasting one has to ensure that 
at each vertex all four types of edges meet  (this is indicated by the numbers). 

It is easy to see that the resulting graph is in fact the "Gruppenbi ld"  of the trefoil 
group. Dehn's  argument for the knottedness of the trefoil is now a matter  of 
inspection. In his own words: "Now we recognize immediately that the group is 
not isomorphic to the group {S ~} [i.e., 7/], that it is not abelian. For example, the 
polygonal tract ClC4Calcg I is not closed. ''43 

43 "Wir erkennen nun sofort, dab die Gruppe nicht isomorph mit der Gruppe {S"}, dab sie nicht 
abelsch ist. Zum Beispiel ist der Streckenzug clc4c~1c5~ 1 nicht geschlossen" [5, 160]. Looking through 
the right glasses, the figure also shows that the group of the trefoil acts by isometries on the hyperbolic 
plane, a fact heavily exploited in Dehn's article of 1914 [8]. 
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A Hilbertian Approach to Topology 

Evidently, Dehn's  way of dealing with knots and their groups depended on 
a completely different conceptual outlook than Wirtinger's. This conceptual 
framework was taken from an article that Dehn had written together with Poul 
Heegaard for the Enzyklopi~die der mathematischen Wissenschaften in 1907. 
There,  they sketched a rigorously combinatorial approach to topology while 
attempting to reformulate the classical problems of 19th-century topology in 
this setting. 

Among these classical topics, the problem of classifying knots was taken up and 
given a systematic place in the hierarchy of topological problems. Dehn and Hee- 
gaard distinguished between problems of "Nexus"  and problems of "Connexus."  
The former are problems of classifying manifolds up to homeomorphism, whereas 
the latter deal with embeddings of manifolds of various dimensions into each other 
[4, 170]. Among "Connexus"  problems, one finds problems of homotopy (Dehn 
and Heegaard only mention closed curves in n-dimensional manifolds, which give 
the problem of calculating the fundamental group), and problems of isotopy. Ac- 
cording to Dehn and Heegaard, the first interesting case of the latter type of 
problems is the knot problem [4, 207 ff.].44 They even sketched a (rather trivial) 
"ari thmetizat ion" of the knot problem. This "ari thmetizat ion" consisted in consid- 
ering knots as chains of nearest neighbors in a three-dimensional cubic lattice, 
equivalence of knots being given by the obvious elementary deformations. 45 

More interesting than the remarks on knots, however, is the general perspective 
on topology which was advocated in the article. Unlike nearly all the other articles 
in the Enzyklopiidie, the systematic parts of Dehn and Heegaard's  text (for which 
Dehn was primarily responsible [4, 153]) were written with an evident dependence 
on Hilbert 's epoch-making Grundlagen der Geometrie. Like Hilbert 's geometry, 
Analysis situs was presented as a theory dealing with aggregates of uninterpreted 
elements, for which only combinatorial rules are specified. 46 Some of these rules 
were taken directly from the "topological" parts of Hilbert 's book, as for example 
the notion of a "Streckenkomplex,"  which is a direct generalization of what Hilbert  
had called a "Streckenzug. ''47 Dehn and Heegaard even formulated axioms (in 
Sect. 8), without, however, treating problems of consistency or uniqueness. These 
axioms were thought of rather as conditions which the combinatorial definitions 
had to satisfy in order to allow for an intuitive interpretation of the theory, to give 
it an "Anschauungssubstrat ." After  introducing this formal apparatus, the authors 
went on to characterize Analysis situs as a "par t  of combinatorics, characterized 

44 Even though Dehn had worked on the Jordan curve theorem earlier, the isotopy problem of closed 
curves on a surface was not mentioned. 

45 Eighteen years later, Artin also called his discussion of the braid group an "arithmetization" of 
(topological) braids. 

46 For further details, see [38, 144-147]. 
47 According to Hilbert [12, Sects. 3-6], a line segment is defined by a pair (AB) of points A, B; a 

"Streckenzug" is a system of line segments ((AB)(BC)(CD) ... (KL)). Admitting arbitrary pairings 
instead of chains yields a "Streckenkomplex" as defined by Dehn and Heegaard [4, 156]. 
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by its intuitive meaning."  Moreover ,  in another  striking parallel to Hilbert ' s  
Grundlagen der Geometrie, Dehn and Heegaard  viewed Analysis situs as occupying 
a rather  fundamental  place in the architecture of mathematical  disciplines, namely, 
as " the most  primitive section of geometry,  where the notion of a limit is still of 
no importance.  ''48 Consequently,  not even the analytical notion of continuity has 
a systematic place in Dehn  and Heegaard ' s  treatment.  In sum, the mathematical  
discipline of topology which Dehn  had in mind was f rom the beginning conceived 
as an axiomatic, self-contained theory, very fundamental  and far removed from 
analytic contexts. 

Compared  to Wirtinger 's  and even Poincar6's ideas about  the role of topological 
problems in mathematics,  Dehn  and Heegaard ' s  approach represents a new start. 
The decision to present  topology as a part  of combinatorics amounted  to establishing 
a new standard of rationality in dealing with topological questions. On the one 
hand, this standard aimed at perfect  rigor. Topological arguments could be guided 
by intuition, but essentially they should be reducible to arguments dealing with 
combinatorial  data on a formal, axiomatic basis. On the other hand, the new standard 
differentiates topology f rom other mathematical  disciplines. Topology has concepts, 
techniques, and a hierarchy of problems defined internally, without reference to 
either the origin of its basic concepts in or its application to other fields, like complex 
function theory or algebraic geometry.  Of  course, this differentiated status of topol- 
ogy does not preclude, and very probably was not intended to preclude, applications 
of topological ideas to other mathematical  fields. What  had changed, however,  was 
the type of  relations between these fields, and the way of conceiving topology as a 
subject on its own. 49 

When, one year after Dehn  and Heegaard ' s  article, Tietze published his 
Habilitationsschrift, we find him wavering between the new standard and a more  
traditional outlook on topology. As far as possible, he tried to follow a rigorous 
combinatorial  approach.  However ,  he was not yet prepared  to give up completely 
connections with ideas originating in fields like algebraic functions or the kind 
of intuitive arguments that had been usual in earlier treatments.  His personal 
solution to this conflict of rationality standards was diplomatic. He  proposed to 
consider those topological issues not yet tractable from the combinatorial  point 
of v i e w - - a m o n g  them "Riemann  spaces" and Wirtinger 's  approach to the knot  
g r o u p - - a s  suggesting the type of problems to be dealt with in the future [32, 

48 Analysis situs is a "... durch seine anschauliche Bedeutung ausgezeichneter Teil der Kombinatorik, 
... der primitivste Abschnitt der Geometrie, wo der Grenzbegriff noch nirgendwo von Bedeutung ist" 
[4, 170 ff.]. 

49 It would be interesting to compare this outlook on topology with that advocated by Listing 60 years 
earlier [19]. In 1847, not even the separation of mathematics and physics was an established fact. 
Accordingly, Listing's efforts to promote a new mathematical discipline included the attempt to convince 
scientists of all sorts that topology had significant insights to offer in their contexts: in crystallography, 
biology, physics, etc. Two levels of differentiation separate Listing's project from Dehn and Heegaard's: 
first, the differentiation of pure mathematics from other scientific contexts; and second, the differentiation 
of topology from its contexts in pure mathematics. 
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80 ft.].50 Whatever  the merits of this early attempt to give topology an axiomatic, 
combinatorial foundation may have been, one thing was clear: once Dehn, 
Heegaard,  and Tietze had published their papers, no reader of them would have 
denied that topology had emerged as a discipline in its own right, endowed 
with its own problems and standards of rigor. 

It is easy enough to see where Dehn got the orientation which determined 
his views on topology. Around the turn of the century, he had been one of 
Hilbert 's model pupils. In a letter to Hurwitz, Hilbert spoke in enthusiastic 
terms about the results of Dehn's  thesis on the foundations of geometry? 1 (It 
was in this connection that Dehn first began working on hyperbolic geometry, 
an interest which proved useful to him later on.) After having solved Hilbert 's 
third problem on polyhedra, Dehn could be sure of the future support of his 
teacher. 52 From the correspondence between the two it is clear that Dehn was 
deeply involved in the revisions that led to several new editions of Grundlagen 
der Geometrie. 53 He even considered writing a book on the foundations of 
geometry himself. 54 Although this project was never realized, he later did write 
an historical appendix to the second edition of Pasch's classic Vorlesungen iiber 
neuere Geometrie in which he sought to emphasize the lines of thought leading 
to Hilbert 's foundations of geometry [9]. Hilbert, in turn, contributed to the 
career of his pupil by writing letters of recommendat ionY Thus, when in the 
years following 1908 Dehn turned to topology and knot theory, it was clear 
that a genuine follower of Hilbert 's axiomatic program in geometry had begun 
research on knots. Little wonder, then, "that knot theory- - l ike  combinatorial 
topology as a whole- -was  seen as a fundamental, self-contained theory which 
a priori had nothing to do with higher analysis. 56 

5~ In a way, Tietze's ambivalence was not new, and it was never resolved completely. Dehn and 
Heegaard 's  radical hope to establish topology as a subfield of combinatorics never quite got off 
the ground. During the 1920s and 1930s, a competition dominated the scene between topologists 
favoring the combinatorial approach and topologists who elaborated analytical notions and methods. 
Even when the possibilities of the different approaches could be assessed more clearly in the 
language of categories, this still did not bring to an end the conflict between combinatorial and 
analytic orientations shared by different members  of the topological community. This ongoing debate 
points to a conflict between what Gerald Holton has called a pair of antithetical themata in scientific 
thought [48, Chapter 1]. 

51 Hilbert to Hurwitz, 5. and 12.11.1899, contained in the Hurwitz Nachlass in NSUB GOttingen. 
52 See [51] for details. 
53 The correspondence is contained in the Hilbert Nachlass in NSUB G6ningen and the Dehn Nachlass 

in Austin, Texas. 
54 Dehn to Hilbert, January 19, 1903. 
55 Dehn to Hilbert, April 3, 1911, concerning Hilbert 's recommendation of Dehn's  call to Kiel; 

March 9 and July 11, 1913, concerning an unsuccessful attempt to promote Dehn in Kiel and his 
call to Breslau. 

56 Still another influence of Hilbert on Dehn resulted in the awareness of algorithmic problems in 
combinatorial disciplines. When, in 1910, Dehn decided to begin his topological paper with a statement 
of the word and conjugacy problems of combinatorial group theory, this may well have been a response 
to Hilbert 's quest for an algorithmic solution of problems in number theory, expressed in Hilbert 's 10th 
problem. See [40, 54 ft.]. 
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Wirtinger, Dehn and the Memory of the Mathematical Community 

This background allows us to understand why Dehn  did not take up the line of 
thought on knots which had been pursued by Wirtinger and his younger  colleague, 
Tietze. He  simply was educated and accustomed to think along a completely differ- 
ent horizon of mathemat ical  values. Dehn  adhered to a different standard of mathe- 
matical rationality. He  also was moving in a different social setting in the mathemati-  
cal community,  and he was influenced by a different constellation of power  
relations. 57 Probably,  Dehn  simply did not read passages in Tietze 's  Habilita- 
tionsschrifi which had to do with things like "R iemann  spaces," the more so since 
Tietze himself admitted that they were not t reated in a rigorous combinatorial  
fashion but rather  depended heavily on intuitive arguments,  situated in a peculiar 
way between different mathematical  theories. And even if Dehn  had read these 
passages, it must have been clear to him that there was no easy way to adapt  their 
contents into the picture of combinatorial  topology to which he adhered. 

The absence of the context of algebraic functions in Dehn ' s  pioneering work on 
knots may be explained along these same lines. This elimination of contexts need 
not necessarily have been the the result of a conscious decision. Rather,  it was 
probably the unintended effect of aprior decision, the decision to accept a Hilbertian 
style in mathematical  practice together  with its inherent standard of rationality. 
Relative to that standard, the elimination was itself "rat ional ."  The combinatorial  
approach to knots was simpler and more  streamlined since it carried no ballast 
f rom the theory of algebraic functions. It  promised a different level of rigor in proofs 
as well as a clearcut separation between the knot  problem and other  mathematical  
problems related to it. The tendency of the new style to foster a differentiation 
within mathematical  disciplines made it also especially attractive for a young mathe-  
matician like Dehn. It allowed such a person to reach the frontiers of research 
without the long years of education necessary to survey a whole network of mathe-  
matical fields as Klein would have liked. Dehn  could do knot theory without knowing 
much about  Galois groups, analytic continuation, or singular points of algebraic 
curves. It was no longer necessary to delve deeply into the classics of 19th-century 
mathematical  literature, reading works by Puiseux, Riemann,  Jordan, etc. 

It is equally understandable that when, after the interruption caused by World 
War  I, the next generation of mathemat ic ians- -Schre ier ,  Reidemeister ,  and A r t i n - -  
entered the scene, they started f rom Dehn ' s  combinatorial  approach,  and not from 
Wirtinger 's  (still unpublished) ideas. Thus, in his Cambridge Colloquium on Analysis 
situs, Oswald Veblen summarized the history of the knot  problem in the follow- 
ing words: 

A large number of types of knots have been described by Tait and others and a list of references 
may be found in the Enzyklop~idie article on Analysis situs. But a more important step towards 
developing a theory of knots was taken by M. Dehn, who introduced the notion of the group 
of the knot, which is essentially the group of the generalized three-dimensional complex [sic!] 

57 The notion of "power relations" should be understood here in a neutral and descriptive way, 
referring equally to the asymmetry of social relations in a community and to scientific leadership. 
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obtained by leaving out the knot from the three-dimensional space. Dehn gave a method for 
obtaining the group of a knot explicitly . . . .  [33, 150] 

This passage suggests that by 1922 not only was the mathematical context of alge- 
braic functions eliminated from knot theory but also that 10 years of an individual's 
efforts had b e e n - - f o r  the time be ing- -de le ted  from the collective memory of the 
mathematical community. 

However,  this was not quite the truth. As mentioned earlier, Reidemeister,  
Schreier, and Artin had attended Wirtinger's lectures in Vienna. In fact, there was 
a most intimate connection between the newly founded "Mathematisches Seminar" 
in Hamburg and the mathematicians in Vienna. Kurt  Reidemeister,  for example, 
went to Vienna following the recommendation of Hamburg's  Wilhelm Blaschke, 
who himself had received most of his education in Vienna (in fact, Blaschke had 
written his dissertation under Wirtinger). It was there that Reidemeister decided 
to turn to knot theory, and a closer look at his mathematical contributions reveals 
that he absorbed Wirtinger's approach to knots. In fact, it was precisely this knowl- 
edge that enabled him to go a step further than Dehn by giving the first effectively 
computable knot invariants, the torsion numbers of cyclic coverings of knot exteriors. 
Interestingly enough, even this remnant of the original context which had led to 
the notion of a knot group was relegated to the last sections of Reidemeister 's  
Knotentheorie of 1932. There,  too, Reidemeister 's new invariants were introduced 
in a purely combinatorial way, and their connection to covering spaces only appeared 
as a secondary, though interesting, interpretation. 5s 

CONCLUSION 

Why was Wirtinger's work presented here in such detail? Certainly not to engage 
in priority debates. To ask whether or not Wirtinger was the "real  fa ther"  of modern 
knot theory misses the point of the present study. Surely, it would be misguided 
to accuse Tietze or Dehn of having temporarily suppressed an interesting piece of 
mathematics. Rather, my intention has been to re-contextualize early work in 
modern knot theory. Knot theory was neither an invention out of thin air nor an 
application of general topological notions to a particular problem. 59 It emerged as 
part of a gradual process of differentiation out of one of the mainstream disciplines 
of 19th-century mathematical research, the theory of algebraic functions. With 
regard to that process, Wirtinger was the key figure. Moreover,  the status of knot 
theory as a separate subfield of the new discipline of topology was attained only 
after an elimination of the context which originally served to legitimize Wirtinger's 
project. (Actually, algebraic function theory was not the only context of 19th- 
century work on the knot problem which moved into the background during the 
constitution of modern knot theory. Another  was the physical context, from which 
Tait had derived his justification for tabulating knots.) 

An at tempt to redescribe the invention of a mathematical theory or discipline 

58 1 hope soon to present a study of this period in the formation of modern knot theory. 
59 As such, it appears in Dieudonn6's presentation [41,307-310]. 
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as a p rocess  of  d i f f e ren t i a t ion  and /o r  con t ex t - e l imina t ion  should  no t  be  v i ewed  as 
a r e a s se s smen t  of  the  ach i evemen t s  of  the  p ionee r ing  figures. R a t h e r ,  it p laces  these  
ach i evemen t s  in a d i f fe ren t  l ight  by  exhib i t ing  some  of  the  causa l  l inks b e t w e e n  
m a t h e m a t i c a l  life be fo re  and  af te r  the  d i sc ip l inary  t h r e sho ld  has  b e e n  reached .  
M o r e o v e r ,  this  a p p r o a c h  m a y  d i rec t  h i s to r ians '  a t t en t ion  to  tha t  a spec t  of  m a t h e m a t -  
ical cu l tu re  which  is r e spons ib l e  for  mos t  of  its d e e p e r  changes ,  the  d o m a i n  of  
the  n o r m s  and  va lues  gu id ing  m a t h e m a t i c a l  research ,  inc luding  the  field of  p o w e r  
cons te l l a t ions  c o n n e c t e d  with  the  n o r m a t i v e  s t ruc ture  of  eve ry  communi ty .  I h o p e  
to  have  shown that ,  in the  case  of  ea r ly  m o d e r n  kno t  theory ,  this  d o m a i n  had  an 
inf luence not  on ly  on  the  ro le  and  s ta tus  of  m a t h e m a t i c a l  k n o w l e d g e  in scientif ic 
cu l ture  as a whole ,  as has o f t en  b e e n  discussed,  bu t  also on  the  in te rna l  cons t i tu t ion  
of  the  b o d y  of  k n o w l e d g e  itself. W h e n  the comple x  of  p r o b l e m s  wi thin  the  t heo ry  
of  a lgebra ic  funct ions  which  had  led  W i r t i n g e r  to his t opo log ica l  inves t iga t ion  of  
the  c o m p l e m e n t  of  ce r ta in  kno t s  even tua l ly  d i f f e ren t i a t ed  in to  a new topo log ica l  
( sub-)d isc ip l ine ,  c e n t e r e d  a r o u n d  a c o m b i n a t o r i a l  t r e a t m e n t  of  the  kno t  g roup ,  this 
re f lec ted  a shift in the  re la t ive  va lua t ions  of  m a t h e m a t i c a l  p r o b l e m s  and  theory -  
cons t ruc t ing  techniques .  T h e  con tex t - e l imina t ion  which  is so ev iden t  in D e h n ' s  and  
R e i d e m e i s t e r ' s  l a te r  w o r k  was the  c o n s e q u e n c e  of  a ser ies  of  n o r m a t i v e  decis ions,  
dec is ions  which  d e p a r t e d  f rom a Kle in i an  view of  m a t h e m a t i c s  and  r e in fo rced  a 
" m o d e r n i s t "  view of  m a t h e m a t i c s  as a comp le x  of  m o r e  or  less se l f -conta ined ,  
a x i o m a t i z e d  theor ies .  M o r e o v e r ,  these  dec is ions  were  not  t a k e n  in a social  vacuum,  
bu t  in a social  space  s t ruc tu red  by  complex  n o r m a t i v e  hor izons  and  p o w e r  re la-  
t ions.  6° 

A P P E N D I X  

This  a p p e n d i x  p re sen t s  the  c o m p l e t e  text  of  W i r t i n g e r ' s  l e t t e r  to  Klein ,  d a t e d  
22.12.1895. The  l e t t e r  is c o n t a i n e d  in the  Kle in  Nachlass  in G6 t t i ngen ,  filed in Cod.  
Ms. Kle in  XI I ,  391. O r t h o g r a p h y  and  p u n c t u a t i o n  a re  left  unchanged .  

Innsbruck, 22./XII 1895. 
Hochgeehrter Herr Collega! 

Diesen Brief muss ich mit einer Entschuldigung einleiten. Ich habe n~imlich bis jetzt gehofft, 
das Manuscript der Arbeit iiber Differentialgleichungen bis Neujahr fertigstellen zu k6nnen, 
nun aber sehe ich, dass es doch nicht geht. Der Entwurf, ziemlich ausgearbeitet, ist fertig. 
Die Schlussredaction werde ich hoffentlich im J/~nner fertigmachen k6nnen. Vorlesungen, ein 
1/~ngeres Unwohlsein, Prtifungen u. was derlei sch6ne Dinge mehr sind haben mich nicht dazu 
kommen lassen. Vergebliche Versuche diese und jene ber0hrte Frage weiter zu f0hren als es 

601 leave it to the reader to draw the obvious connections from my narrative to Herbert Mehrtens' 
discussion of the opposition beween what he calls "'modern" and "counter-modern" trends in mathemati- 
cal practice around the turn of the century. One could even go further and speculate whether the shift 
from an integrative standard of mathematical rationality as expressed by Klein toward a differentiative 
standard as implicit in (at least the reception of) Hilbert's Grundlagen der Geometrie reflects the general 
trend of modern culture toward differentiation noticed by Max Weber and others. For further information 
on Klein, Hilbert and general matters, I refer to work by Herbert Mehrtens [52] and David Rowe [57]. 
It will be clear that my perspective on the developments presented in this article owes much to both 
of them, a debt which I gratefully acknowledge. 
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geschehen ist haben auch ihren Anteil daran. Nun aber ist es wenigstens soweit, dass ich nur 
mehr die letzte Redaction vor mir habe. 

Die Functionen mehrerer Variablen sind auch wenig vorgertickt. Abet einiges habe ich mir 
doch klar gemacht. Um Directiven for die allgemeinen Fragen zu gewinnen, bin ich daran 
gegangen, mir das Verhalten gew6hnlicher algebraischer Functionen l~ings Verzweigungsman- 
nigfaltigkeiten genauer auszudenken. Mein Ziel ist dabei zu erweisen, dass man ein beliebiges 
System algebraischer Gebilde yon n - 1 Dimensionen mit zugeh6rigem Verzweigungsschema 
immer als System yon Verzweigungsmannigfaltigkeiten einer Function von n Variablen auffas- 
sen kann. Das gibt verschiedene algebraische und transcendente Formulirungen, die erst fassbar 
werden, wenn ich tiber die singul~ren Stellen eine deutliche Vorstellung gewonnen habe. Der 
Kern der ganzen Sache ist mir nun ziemlich deutlich. Bei einer Variablen liegt die Frage 
deshalb so einfach, weil in der N~ihe eines Verzweigungspunktes die cyclischen Functionen 
der Werte eindeutig werden, also die n-re Wurzel der Variablen selbst eindeutig ist. In dieser 
Fassung liegt der Keim der Verallgemeinerung. 

Das cyclische Verhalten bleibt aufrecht fiir beliebige Verzweigungsmannigfaltigkeiten die 
durch Nullsetzen einer Potenzreihe mit Gliedern erster Ordnung gewonnen werden. Mit Hilfe 
yon p1/, kann man dann alle Functionen darstellen. Sind mehrere solche P an einer Stelle 
Null, so schadet das nichts. Anstelle des Schemas der Aufl6sung der einfachen Abel'schen 
Gleichungen tritt dann nur das Schema der ~mehrf~iltigen' Abel'schen Gleichungen. 

Ganz anders ist es abet wenn P keine Glieder erster Ordnung hat u. auch nicht zerlegbar 
ist in Reihen mit Gliedern erster Ordnung. Dann ist n~imlich jede Galoissche Gruppe m6glich. 
Und eben diese Gruppe charakterisiert den Verzweigungspunkt. Beispielsweise z 3 + 3 z x  + 

2y = 0 - z als Function von x u. y- -ha t  in der N~ihe der Stelle 0 nur die symmetrische Gruppe. 
Eine Darstellung aller Functionen, die auf der gegebenen Mannigfaltigkeit in der Umgebung 

einer Stelle eindeutig sind ist dann m6glich durch eine Wurzel der Galoisschen Resolvente, 
u. diese Wurzel ist es, welche an die Stelle von x 1/" in der Ebene tritt. Der Rationalit~itsbereich 
ist hier der aller convergenten Potenzreihen von n Variablen. 

Es ist im allgemeinen nicht m6glich, die Umgebung einer solchen Stelle stetig auf ein einfach 
zusammenh~ingendes Raumsttick von n Dimensionen abzubilden, sondern die Umgebung einer 
solchen Stelle hat selbst einen gewissen Zusammenhang! 61 

Aus diesem Grunde halte ich eine allgemeine, iiberall bestimmte, ParameterdarsteUung des 
Gebildes in der N~ihe der betrachteten Stelle, welche ausserdem jede Stelle nur einmal liefert, 
ftir unm6glich. Dagegen k6nnen sehr wohl Dastellungen m6glich sein, welche das Gebilde 
mehrfach tiberdecken, oder ausserwesentliche Singularit~iten aufweisen. In wie fern man viel- 
leicht die letzteren durch Benutzung homogener Variablen unsch~ldlich machen kann ist mir 
noch nicht ganz klar, ich setze aber nicht viel Hoffnung darauf. 

Der Kern der ganzen Sache liegt jetzt fiir mich in der Eruirung der Gruppe eines Verzweigung- 
spunktes, also eigentlich in einer Irreduzibilit~itsfrage im Gebiete der Potenzreihen einerseits, 
andrerseits in der Frage: Kann man diese Gruppe willktirlich vorgeben, oder ist sie an Bedin- 
gungen gebunden, damit zugeh6rige Functionen existieren? 

Das sind die Fragen und Gesichtspunkte, die ich nun genauer durcharbeiten will. 
Mit meiner Lehrth~itigkeit in Innsbruck hat es eine eigene Bewandtniss. Der Menschenschlag 

ist hier sehr z~ih, fleissig aber ungemein widerstandsf~ihig gegen jeden Versuch den Gesichtskreis 
zu erweitern. Die Vorbildung l~isst viel zu wtinschen tibrig. Ich musste z.B. letzthin 3 Semi- 
narstunden darauf verwenden, urn die Elemente der Kettenbriiche vorzuftihren, u. das Leuten 
aus dem VII u. VIII Semester! Von Geometric will ich gar nicht reden, wurde ich doch letzthin 
angegangen--von den n~imlichen Semestern--zu erkl~ren was eine Invo lu t ion  ist!! Da k6nnen 
Sie denken, wie viel Geduld ein auch nur geringer Lehrerfolg braucht. 

61 Here Wirtinger amended "Zusammenhangszahl" into "Zusammenhang," showing that he was 
aware of the nontrivial topological situation he was considering. 
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Nun aber wtinsche ich Ihnen und dem mathematischen Lexikon besten Erfolg im neuen 
Jahr. FOr mich war das vergangene Jahr nach aussen hin ein Glticksjahr u. das verdanke ich 
zum gr6sstentheil Ihnen. Lassen Sie mich also nochmals recht herzlich far Ihre Freundschaft 
u. F/Srderung danken u. bewahren Sie mir dieselbe auch im kommenden Jahr, wo ich Sie in 
Frankfurt a.M. wieder zu sehen hoffe. 

Die Herren Hilbert, Burkhardt, Sommerfeld bitte ich vielleicht bei Gelegenheit von mir 
zu grtigen. 

Mit den herzlichsten Wtmschen ftir Ihre Gesundheit verbleibe ich 
Ihr dankbar ergebener 

Wirtinger 
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