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Abstract The purpose of this paper is to prove a controlled surgery exact sequence,
including a stability theorem, as used in the construction of exotic homology manifolds.
The approach is to show that this result is a formal consequence of the Chapman–Ferry
Alpha-approximation theorem.
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1 Introduction

Let p:X → B be a map. We will say that a map f :Y → X is an ε-equivalence over B if there
exist a map g:X → Y and homotopies ht : f ◦g ∼ id, kt :g◦ f ∼ id so that the tracks p◦ht (x)
and p ◦ f ◦ kt (y) have diameter <ε for all x ∈ X and y ∈ Y . Let (M, ∂M) be a manifold.
If p:M → B is a map, an ε-structure on (M, ∂M) over B will mean an equivalence class
of pairs (N , f ), where f :(N , ∂N )→ (M, ∂M) is an ε-equivalence over B which restricts
to a homeomorphism of the boundaries. Pairs (N , f ) and (N ′, f ′) are said to be ε-related
if there is an homeomorphism φ:N → N ′ so that f ′ ◦ φ is ε-homotopic to f over B rel
boundary. Our notion of equivalence for ε-structures is the equivalence relation generated

by this relation. We will use the symbol S ′ε
( M↓

B

)
to denote the collection of equivalence

classes of ε-structures on M . The purpose of this paper is to prove an ε − δ surgery exact
sequence.
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Theorem 1.1 If Mn is a compact topological manifold, n ≥ 6, or n ≥ 5 when ∂M = ∅, B
is a finite polyhedron with the standard metric,1 and p : M → B is a U V 1 map2, then there
exist an ε0 > 0 and a T > 0 depending only on n and B so that for every ε ≤ ε0 there is a
surgery exact sequence

. . . Hn+1(B;L) ����� Sε
( M↓

B

)
�� [M, ∂M; G/TOP] �� Hn(B;L)

where L is the periodic L-spectrum of the trivial group and

Sε
( M↓

B

)
= im

(
S ′ε

( M↓
B

)
→ S ′T ε

( M↓
B

))
.

Moreover, for ε ≤ ε0,Sε
( M↓

B

) ∼= Sε0

( M↓
B

)
.

Definition 1.2 A connected locally finite polyhedron B with a metric bilipschitz equivalent
to the standard metric is said to have bounded geometry if there is a (finite) bound on the
number of vertices of B adjacent to a given vertex. We will call this bound the complexity
of B. We will say that a topological manifold M has bounded geometry if there is an L > 0
so that M has a handle decomposition so that each handle H is L-bilipschitz equivalent to
the standard handle of that dimension and index. Classically, a smooth manifold M is said to
have bounded geometry if it has bounded sectional curvature and if there is a lower bound on
the injectivity radius. Work of Cheeger et al. [7] shows that the classical definition implies
the definition that we have given in the topological category.

Remark 1.3

(i) If a polyhedron of bounded geometry is given the standard metric, then up to isometries,
there are only finitely many possibilities for vertex stars.

(ii) We can go further and declare a finite-dimensional ANR to have bounded geometry if it
has a manifold mapping cylinder neighborhood M(r)→ M so that M(r) has bounded
geometry as a topological manifold and so that the projection map M(r) → M is
uniformly continuous. This level of generality is not needed in the present paper.

Addendum 1.4

(i) This surgery sequence is also valid in the smooth and PL categories. The point is that the
PL and smooth surgery groups are the same as the TOP surgery groups, so the argument
in Theorem 10.2 gives “squeezing” and a surgery exact sequence in those categories, as
well. In the smooth and PL categories, [M,G/TOP] should be replaced by [M,G/CAT].

(ii) Theorem 1.1 is true as stated, i.e. with a linear relation between ε and T ε, for B a poly-
hedron of bounded geometry with the standard metric provided that we use locally finite
homology H � f

n (B;L) at the appropriate spots in the surgery sequence. Of course, M
will be a noncompact manifold in this case. We will state our results for finite polyhedra
and use addenda to discuss the extension to the bounded geometry case. The special
case B = P × R, where P is a finite polyhedron, is used in the proof of Theorem 1.1
for finite polyhedra. The use of the standard metric is for definiteness. Theorem 1.1
remains true as stated in any metric bilipschitz equivalent to the standard metric.

1 By the standard k-simplex, we mean the convex hull of unit vectors e0, . . . ek in R
k+1. By the “standard

metric” on a simplicial complex, we mean the path metric in which each k simplex is isometric to the standard
k-simplex and simplices are glued together via isometries on faces. See Sect. 1 part 7 of [2] for details.
2 See Definition 4.1 below.
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(iii) Theorem 1.1 is true for B a compact ANR, except that in that case we lose the linear

dependence in the definition of Sε
( M↓

B

)
. For B a compact ANR, the theorem should

say that there is an ε0 > 0 so that for every ε ≤ ε0 there is a δ > 0 so that the

surgery exact sequence is true with Sε
( M↓

B

)
= im

(
S ′δ

( M↓
B

)
→ S ′ε

( M↓
B

))
and that for

ε ≤ ε0,Sε
( M↓

B

) ∼= Sε0

( M↓
B

)
.

The proof of Theorem 1.1 is quite easy in principle. The first basic slogan is that a π–π
theorem lets you set up a surgery theory. It turns out to be straightforward to adapt the proof
of the bounded π–π theorem of [10] to give an “epsilon–delta” π–π theorem. The result
is a “pro” surgery theory. A second well-known slogan is that “once you understand one
manifold with a given fundamental group well, you know a lot about all manifolds with
that fundamental group.” The “Alexander trick” of Sect. 9 of this paper shows that the rel
boundary structure set of the projection map N (B)→ B sending a regular neighborhood of a
polyhedron B to B has trivial structure set. This uses the alpha approximation theorem of [6]
and it allows us to compute the controlled surgery groups over B with Z coefficients. This is
analogous to Sullivan’s use of the generalized Poincaré conjecture to compute the homotopy
groups of G/TOP, but in this case we reversed the process to compute the controlled surgery
groups. Once the surgery groups are known to be stable, the stability for the structure set
follows from a form of the five lemma. The rest of Theorem 1.1 follows immediately.

The most confusing part of this program is the “pro surgery theory,” but an excellent model
for this construction can be found in Chapman’s development of a very general theory of
controlled Whitehead torsion in [5]. Recapitulating, our basic plan for proving Theorem 1.1
was to combine the approaches of [5] and [10] to prove an ε–δ π–π theorem and use it to
give a formal “chapter 9” development of a pro-surgery theory. We then computed the high-
dimensional surgery groups by plugging the Chapman–Ferry alpha-approximation theorem
into this theory. The lower-dimensional groups were then computed using a 4-periodic alge-
braic description of the groups. The stability of the surgery groups was then used to deduce
the stability of the structure set in all dimensions. This version of the proof was presented
in a series of five lectures at Notre Dame University in May 2002. The author would like to
thank the topologists of Notre Dame for their hospitality during a pleasant visit.

This plan worked, but it turns out to have been overly elaborate. It is considerably simpler
to work directly with the algebraically defined surgery groups. Applying the alpha approxima-
tion theorem shows the stability of the algebraic system in high dimensions and periodicity
extends this immediately to all dimensions. One proceeds as before to prove the stability
of the structure sets—again, this is basically a “pro” form of the five lemma. The surgery
sequence of Theorem 1.1 then follows as usual.

The author apologizes for being slow in writing up this paper.3 It does involve quite a lot
of writing for a relatively straightforward result and the author hoped for some time to find a
quick way of proving this theorem as a consequence of [10]. Sadly, this included an attempt
called “Squeezing structures” which turned out to contain an error.

Here is the statement of the alpha-approximation theorem:

Theorem 1.5 (alpha-approximation theorem [6])

(i) Let Mn be a closed topological manifold of dimension ≥ 5. For every ε > 0 there is a
δ > 0 so that if f :N → M is a δ-homotopy equivalence from another manifold of the
same dimension to M, then f is ε-homotopic to a homeomorphism.

3 A competing presentation of this material has appeared in [16]. The author disagrees with the historical
statements in the introduction to that paper.
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(ii) If Mn is a compact topological manifold, then for every ε > 0 there is a δ > 0 so that if
f :N → M is a δ-homotopy equivalence from a compact manifold of the same dimen-
sion to M such that f | ∂N is a homeomorphism from ∂N to ∂M, then f is ε-homotopic
rel boundary to a homeomorphism.

Remark 1.6

(i) Since the manifolds in the theorem above are topological, the metric in which ε and
δ are measured is merely a topological metric. The proof of the alpha-approximation
theorem is a handle induction, so the size of δ is some fraction of the size of the smallest
handle in a handle decomposition of M . As noted by Farrell and Jones, this means that
the relation between ε and δ is linear in any metric which allows handle decompositions
to be subdivided linearly. In particular, the relation is linear for PL manifolds with the
standard metric. We will always assume that polyhedra in this paper have been given
metrics which are Lipschitz equivalent to standard metrics.

(ii) The full statement of the theorem in [6] is valid for noncompact manifolds and uses
open covers α and β in place of ε and δ, hence the name. The proof of the alpha approx-
imation theorem is a handle induction, so the theorem is true in its original form—with
ε’s and δ’s for manifolds of bounded geometry. One only has to deal with finitely many
isomorphism type of handles in a PL manifold of bounded geometry.

(iii) The alpha-approximation theorem is valid in dimension 4 as an easy consequence of
work of Freedman and Quinn. See [11].

(iv) The alpha-approximation theorem is a purely topological theorem. It is false in the PL
and smooth categories.

2 Geometric algebra

One of the main ideas in proving the thin h-cobordism theorem and related results is to do
ordinary algebraic topology while keeping track of the sizes of various homotopies and chain
homotopy equivalences. To facilitate this, we follow [8,17,22], and introduce the language
of geometric modules. One reason that geometric chain modules turn out to be useful is that
in certain situations they allow us to use homological data to construct homotopy equiva-
lences of non simply connected CW complexes without passing to the universal cover and/or
dealing with modules over the group ring. The general strategy is that if we can keep our cell
manipulations localized, then the loops that arise in our constructions will all bound small
disks which can be found without invoking the universal cover. See Proposition 5.3 below.

Definition 2.1

(i) A geometric Z-module on a space E is a free module Z[S] on a set S together with
a map f :S → E . In this paper, S will always be locally finite over E . We will often
suppress the function f and pretend that the elements of S are points of E . Geometric

-modules can be defined similarly for any ring 
.

(ii) A geometric morphism h:Z[S] → Z[T ] of geometric Z-modules with f :S → E and
g:T → E is a homomorphism Z[S] → Z[T ]. If we write h = (hst ) with respect to
the bases S and T , then the radius of h is sups,t {d( f (s), g(t))|hst �= 0}. This is less
general than the definition from [22], but it will suffice for the purposes of this paper.

(iii) A geometric morphism h:Z[S] → Z[T ] of radius ε is an ε-isomorphism if there is a
geometric morphism k of radius ε, k:Z[T ] → Z[S], so that h ◦ k = id and k ◦ h = id.
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Definition 2.2

(i) A geometric Z-module chain complex C on E is a sequence of morphisms of geometric
Z-modules on E

C : . . . �� Ci
di �� Ci−1

di−1 �� . . .

such that d ◦ d = 0. C will be called an ε-chain complex on E if each morphism di

has radius <ε.
(ii) A chain map f between geometric Z-module chain complexes C and D is a sequence

of geometric morphisms fi :Ci → Di so that di−1 ◦ fi = fi−1 ◦ di . The map f has
radius ε if each fi has radius ε.

(iii) A chain homotopy between two geometric chain maps f and g is a collection {Hi } of
geometric morphisms Hi :Ci → Di+1 so that di+1 ◦ Hi + Hi−1 ◦ di = fi − gi . The
radius of H is its radius as a geometric morphism.

(iv) An ε-chain contraction s:C∗ → C∗ is an ε-chain homotopy between id and 0.

Example 2.3 A good example of a geometric Z-module chain complex to keep in mind
arises when X is a finite polyhedron. The simplicial k-chains on X form a geometric module
Ck(X) where each k-simplex σ is associated to its barycenter σ̂ ∈ X . If the simplices in the
subdivision have diameter <ε, then the boundary map ∂:Ck(X)→ Ck−1(X) has radius <ε.
It is often useful to extend this example in the following manner: Let p:K → B be a map
from a finite polyhedron to a compact metric space. The simplicial chains of K give rise to a
chain complex of geometric modules over B by associating each simplex with the image of
its barycenter in B.

The biggest change in moving to this “controlled” or “epsilon–delta” world from ordinary
algebraic topology is that we no longer have kernels or quotients, the problem being that
except in very restricted circumstances it is difficult to assign a position in the underlying
space to an element of a kernel or a quotient. Happily, other standard constructions of alge-
braic topology carry over to this situation without difficulty. In particular, we have the notions
of the algebraic mapping cone4 and algebraic mapping cylinder of a morphism of geometric
chain complexes.

Definition 2.4 If E and F are geometric chain complexes over a space B, and f :E → F is
a chain map, then

(i) The algebraic mapping cone of f is the chain complex C( f )k = Ek−1 ⊕ Fk with

boundary map given by

(
∂E 0

(−1)deg f f ∂F

)
.

(ii) The algebraic mapping cylinder of f is the chain complex M( f )k = Ek ⊕ Ek−1⊕ Fk

with boundary map given by

⎛
⎝
−∂E (−1)k idE 0
0 ∂E 0
0 (−1)k f ∂F

⎞
⎠.

If f is a δ-morphism, then C( f )∗ is a δ chain complex.

Since we do not have kernels and cokernels available in this setting, we do not have homol-
ogy groups, so we must find a new proof that showing the contractibility of the mapping cone
of a map f is equivalent to showing that f is a chain homotopy equivalence.

4 It’s a good thing that the algebraic mapping cone has no cone point.
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Proposition 2.5 Let E and F be geometric chain complexes over a space B, and let f :E →
F be a δ-chain map.

(i) If C( f )∗ is δ-chain contractible, then f is a δ-chain homotopy equivalence.
(ii) If f is a δ-chain homotopy equivalence, then C( f )∗ is k0δ-chain contractible, where k0

is a fixed integer.

Proof The first part is a straightforward computation using the definitions. The second part
amounts to showing that if f is a δ-chain homotopy equivalence, then there is a retraction
r :M( f )∗ → E∗ which is k0δ-chain homotopic to the identity rel E∗. See Proposition 1.1
of [20], which gives an explicit formula for a controlled chain contraction. The analogous
statement for spaces is proven in [9] using “mapping cylinder calculus”. ��

Here is an algebraic version of handle sliding or handle addition, as it is sometimes called.
We will use this operation frequently to modify chain complexes.

Lemma 2.6 (handle sliding) Given a δ-chain complex

· · · → Cn+1

(
a
b

)
���� C ′n ⊕ C ′′n

( c d ) �� Cn−1

and a δ-morphism s:C ′n → C ′′n , there is a 2δ-isomorphism to the 2δ-chain complex

· · · → Cn+1

(
a

b−sa

)
���� C ′n ⊕ C ′′n

( c+ds d ) �� Cn−1

Proof The isomorphism is given by identity maps on the ends and

(
id 0
−s id

)
in the mid-

dle. Notice that the slide performed a block row operation on the first boundary map and a

compensating block column operation on the second one. If E =
(

id 0
s id

)
in the discussion

above, then the new boundary map on the left is E−1∂ and the new boundary map on the
right is ∂E . ��

Another very useful construction is cancellation of cells.

Lemma 2.7 There is an integer k so that if a portion of a δ-chain complex looks like

· · · → A→ B ⊕ C → D ⊕ C ′ → · · ·
with the composite

C → B ⊕ C → D ⊕ C ′ → C ′

a δ-isomorphism then the chain complex is kδ-chain homotopy equivalent to a kδ-chain
complex

· · · → A→ B → D→ · · ·

Proof Let the boundary map B⊕C → D⊕C ′ be given by

(
α β

η γ

)
. The map γ :C → C ′ is a

δ-isomorphism, so an elementary column operation followed by an elementary row operation

reduces the boundary map to

(
α′ 0
0 γ

)
. Performing appropriate handle slides in B ⊕ C and
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D⊕C ′ produces an isomorphic chain complex with boundary map of this diagonal form. It
is now a simple matter to show that this chain complex is kδ-chain homotopy equivalent to
one of the form · · · → A→ B → D→ · · ·.

If the original chain complex has the form

. . . �� A
( στ ) �� B ⊕ C

(
α β
η γ

)
�� D ⊕ C ′

( λ μ ) �� E �� . . .

then the new complex has the form

. . . �� A
σ �� B

α−βγ−1η �� D
λ �� E �� . . .

In particular, the collapsed complex is what it “should” be if either β:C → D or η:B → C ′
is zero, i.e., if the cells in C are attached only to cells in C ′ or if no cells in B are attached to
cells in C ′. The condition on β allows us, for instance, to collapse a cone to a subcone, while
the condition on η is to familiar “free face” condition from PL topology. ��

Remark 2.8 The sophisticated reader may wonder where the Whitehead group has gone in
this discussion. The K-theory vanishing theorem stated in the next section will show that
the hypothesis that the isomorphism C → C ′ be simple is unnecessary when working with
geometric Z-modules.

Lemma 2.9 If A is a geometric chain complex and C ⊂ A is a geometric chain complex
which is δ-contractible, then A is kδ-chain homotopy equivalent to (A−C), the chain com-
plex obtained by deleting generators of C. The new complex A − C is a δ-chain complex.
Here, k = k(n) is a fixed integer, where n is the dimension of C.

Proof C is δ-chain homotopy equivalent to Cone(C) rel C , so A is δ-chain homotopy equiv-
alent to the union of A with Cone(C) along C . Cancelling the cells of Cone(C) starting from
the top dimension of Cone(C) gives the desired equivalence. Since the higher-dimensional
cells in each collapse attach only into C , the boundary maps on A−C are unchanged by this
process. ��

Here is an algebraic cell-trading lemma. It involves introducing cells, adding cells, and
cancelling cells, the final result being that n-cells are “traded for” (n + 2)-cells.

Lemma 2.10 Suppose given an ε-chain complex decomposed as modules as B# ⊕ A# for
which the boundary map has the form

B#

��

⊕ A#

�������
��

��
��

B#−1 ⊕ A#−1

If there is an ε-chain homotopy s, with (s|B#) = 0, from the identity to a morphism which
is 0 on A# for # < �, then B# ⊕ A# is chain-homotopy equivalent to B# ⊕ A′# where A′# = 0
for # < � and A′# = A# for # ≥ �+ 2. The new chain complex is a 3�ε-chain complex with
a 3�ε-contraction.
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Proof First introduce cancelling 1- and 2-cells corresponding to A0 to obtain

B2

��

⊕ A2

������
��

��
��

⊕ A0

��
B1

��

⊕ A1

������
��

��
��

⊕ A0

B0 ⊕ A0

Now perform a handle slide using s|:A0 → A1 to obtain

B2

��

⊕ A2

������
��

��
��

�
⊕ A0

��
B1

��

⊕ A1

������
��

��
��

�
A0

⊕s��

B0 ⊕ A0

The lower map from A0 to A0 is the identity, so the lower copies of A0 may be canceled
to obtain

B2

��

⊕ A2

������
��

��
��

�
⊕ A0

����
��

��
��

�

B1

��

⊕ A1

����
��

��
��

�

B0

Repeat this process, and define A′# so that B# ⊕ A′# is the resulting chain complex. ��
Proposition 2.11 If we have a commuting diagram:

A∗
α ��

f
��

B∗
g

��
A′∗

β �� B ′∗
of δ-chain complexes, then there is a commuting diagram

A∗
α ��

f
��

B∗
g

��

�� C(α)

f+g

��
A′∗

β ��

��

B ′∗

��

�� C(β)

��
C( f )

α+β �� C(g) �� C(α + β) iso= C( f + g)
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Proof Chase the definitions. ��
The next proposition gives us a controlled replacement for the five lemma.

Proposition 2.12 If we have a commuting diagram

A∗
α ��

f
��

B∗
iB ��

g

��

C(α)

f+g

��
A′∗

β �� B ′∗ ��iB′ �� C(β)

where A∗, B∗, A′∗, B ′∗ are n-dimensional δ-chain complexes and g and f + g are δ-chain
homotopy equivalences, then there is a k = k(n) so that f is a kδ-chain homotopy equiva-
lence.

Proof We extend the diagram to the right and down

A∗
α ��

f
��

B∗
iB ��

g

��

C(α)

f+g

��

�� C(iB) � �(A)
�( f )

��
A′∗

β �� B ′∗ ��iB′ ��

��

C(β)

��

�� C(iB′) � �(A′)

��
C(g) �� C( f + g) �� C(�( f ))

This is an algebraic version of the Puppe sequence. The first two mapping cones on the
bottom are controlled chain contractible, so the last one is, as well. Here � just shifts the
dimensions in the chain complex by one. This shows that�( f ) is a kδ-equivalence for some
k and that f is, as well. ��
Remark 2.13 By continuing to the right, we can prove the analogous results whenever two
of the three vertical maps are δ-chain homotopy equivalences.

Lemma 2.14 Let A∗
i �� B∗ be a δ-chain map of δ-chain complexes so that there is a

δ-chain map j:B∗ → A∗ with j ◦ iδ-chain homotopic to the identity. Then B∗ is 2δ-chain
homotopy equivalent to A∗ ⊕ C∗(i).

Proof B∗ is δ-chain homotopy equivalent to M∗(i). We will show that M∗(i) splits. Writing
Mk(i) = Ak ⊕ Ak−1 ⊕ Bk , define r :M∗(i)→ A∗ by r(a, a′, b) = a + (−1)ks(a′)− j (b),
where s is the chain homotopy from j ◦ i to the identity. This retracts M∗(i) onto A∗, splitting
M∗(i) as A∗ ⊕ C∗(i). ��

3 Epsilon–delta K-theory

In this section, we will review controlled K -theory as described in [5] and [17].

Definition 3.1 Let h be an ε-automorphism of a geometric module A over a space B. We
will say that h is ε-elementary if A can be written as a based direct sum E⊕F in such a way

that h has matrix
( I ∗

0 I

)
.

123



80 Geom Dedicata (2010) 148:71–101

Definition 3.2 We will identify α:A→ A with α⊕ id : A⊕F → A⊕F for any geometric

Z-module F over B. If α and β are ε-automorphisms of A, we write α
ε∼ β if α ◦ β−1

is ε-elementary. The relation
ε∼ generates an equivalence relation and we denote the set

of equivalence classes of ε-automorphisms by K1,ε(B). Direct sum makes this set into an
additive semigroup. The Whitehead identities

(
α 0
0 α−1

)
=

(
1 1
0 1

)(
1 0
−1 1

)(
1 1
0 1

)(
1 0
α 1

) (
1 −α−1

0 1

) (
1 0
α 1

)

(
α 0
0 β

)
=

(
1 1
0 1

)(
1 0
−1 1

)(
1 1
0 1

)(
1 0
α 1

) (
1 −α−1

0 1

) (
1 0
α 1

)(
1 0
0 αβ

)
.

show that the image of K1,ε(B) in K1,2ε(B) is an abelian group. We will define W hε(B) to
be K1,ε(B)/{±1}.

The most unsatisfactory feature of this definition is the phrase “equivalence relation gen-

erated by
ε∼.” The next lemma makes this relation more palatable.

Lemma 3.3 If α and β are equivalent in K1,ε(B), then α
13ε∼ β.

This follows immediately from the next lemma.

Lemma 3.4 (Chapman’s swindle) If α, β:A → A in K1,ε(B) are automorphisms and
eηk . . . eη1α = β with radius(αi ) < ε for all i, αi = eηi . . . eη1α, then there exist eξ j :

⊕2k+1
i=1 A → ⊕2k+1

i=1 A, j = 1 . . . 13, with radius(eξ j ) < ε for all j such that
(
eξ13 . . . eξ1

)
(α ⊕ id) = β ⊕ id.

Proof We have:

α ⊕ (id⊕ id)⊕ (id⊕ id)⊕ · · · ⊕(id⊕ id)
ε∼ α ⊕

(
α−1

1 ⊕ α1

)
⊕

(
α−1

2 ⊕ α2

)
⊕ · · · ⊕

(
α−1

k ⊕ αk

)

=
(
α ⊕ α−1

1

)
⊕

(
α1 ⊕ α−1

2

)
⊕ · · · ⊕

(
αk−1 ⊕ α−1

k

)
⊕ αk

ε∼
(
αα−1

1 ⊕ id
)
⊕

(
α1α
−1
2 ⊕ id

)
⊕ · · ·⊕

(
αk−1α

−1
k ⊕ id

)
⊕β

=
(

e−1
η1
⊕ id

)
⊕

(
e−1
η2
⊕ id

)
⊕ · · · ⊕

(
e−1
ηk
⊕ id

)
⊕ β

ε∼ (id⊕ id)⊕ (id⊕ id)⊕ · · · ⊕ (id⊕ id)⊕ β
The first “∼” uses the first 6 term identity disjointly k times and the next line reassociates

parentheses. The third line uses the second 6 term identity disjointly k more times and also
uses the fact that αk = β. The last line combines k disjoint elementary operations. ��

Theorem 3.5 (controlled K̃1 vanishing [17]) For any finite polyhedron B there exist an
ε0 > 0 and a k so that for any ε < ε0 the map W hε(B)→ W hkε(B) is zero.

Remark 3.6

(i) The lemma and theorems above have a remarkable consequence: given a compact met-
ric B, for every ε > 0 there is a δ > 0 so that every δ-automorphism with Z-coefficients
can be written (stably) as a product of at most 13 ε-elementary automorphisms.
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(ii) The controlled vanishing theorem is also true as stated for polyhedra of bounded geom-
etry. Since there are only finitely many isomorphism types of vertex stars, the inductive
technique used to prove vanishing in the case where B is a finite polyhedron applies
without alteration. The linearity is not stated in the original argument of Quinn, but
follows easily from a subdivision argument due to Farrell–Jones.

The derivation of the surgery exact sequence of Theorem 1 will make extensive use of
Quinn’s Thin h-cobordism theorem, which we state here.

Theorem 3.7 (thin h-cobordism Theorem [17]) Let B be a finite polyhedron. Then for every
ε > 0 there is a δ > 0 so that if n ≥ 4 and p:Mn

0 → B is a U V 1(δ)-map5 and (W ;M0,M1)

is a cobordism with strong deformation retractions rt and st retracting W to M0 and M1

such that the lengths of the paths p(r1(rt (x))) and p(r1(s1(st (x)))) are <δ for each x ∈ W ,
then there is a product structure on W so that the composition of p with the projection to M0

is ε-homotopic to p ◦ r1.

Addendum 3.8 The thin h-cobordism theorem remains true as stated if B is a compact ANR
or a polyhedron with bounded geometry. For the latter, one simply notes that most existing
proofs work “in parallel” to prove the bounded geometry case along with the finite case.6

More specifically, note that in dimensions n ≥ 5 the topological thin h-cobordism theorem
parameterized by the identity map M0 → M0 is an immediate corollary of the alpha approx-
imation theorem. Using the given data, one constructs a homotopy equivalence from W to
M0 × [0, 1], which turns out to be controlled. One then applies the alpha approximation
theorem twice, first to M1 → M0 and then to W → M × [0, 1] rel boundary.7 The smooth
and PL versions of the thin h-cobordism theorem can then be recovered using concordance
smoothing results of Kirby–Siebenmann (see [14], p. 25). In particular, since any controlled
torsion over M can be realized on a thin h-cobordism, this gives the vanishing of the epsilon
Whitehead group controlled over a manifold of bounded geometry. Applying the “Alexander
trick” of Proposition 9.2 extends this to show vanishing of the controlled Whitehead group
parameterized over any polyhedron of bounded geometry. This general procedure of realizing
and algebraic obstruction and then using geometric methods to prove that it vanishes will
play a major role in this paper.

Definition 3.9 Let A be a geometric module on a metric space X .

(i) An ε-deformation h:A→ A is an ε-morphism which is a product
∏�

i=1 Ei of elemen-
tary ε-morphisms so that each product

∏k
i=1 Ei is an ε-morphism for k ≤ �.

(ii) An ε-projection p on A is an ε morphism p:A→ A such that p ◦ p = p. We say that
p is geometric if A can be written as a direct sum A1 ⊕ A2 of geometric submodules
with p| A1 = id and p| A2 = 0, that is, if p is the standard projection of A onto the
summand A1.

Theorem 3.10 (controlled K̃0 vanishing, Thm 8.4 [17]) Let B be a finite polyhedron. There
exist ε0 > 0 so that for every ε > 0 with ε < ε0 there is a δ > 0 so that if A is a geometric
Z-module on B and p:A→ A is an δ-projection, then there exist a geometric Z-module C
on B and a geometric projection q:C → C and ε-deformations H1 and H2 on A ⊕ C so
that H1 ◦ (p ⊕ q) ◦ H2 is geometric.

5 See Definition 4.1 below.
6 The proofs of the finite case are already parallel processes, so no modification is necessary to extend them
to the bounded geometry case.
7 Squeezing the “active” area of the homotopy into [0, ε] establishes control in the [0,1]-coordinate.

123



82 Geom Dedicata (2010) 148:71–101

Remark 3.11 If p:A → A is an ε-projection of a geometric Z-module over X , then p +
t (1 − p) is a 2ε-isomorphism of the associated geometric Z[t, t−1]-module A ⊗ Z[t, t−1]
with inverse p + t−1(1 − p). One can show ([8,17]) that this automorphism is trivial in a
controlled K1 if and only if the projection p is trivial in controlled K0 , i.e., that

(i) There exists k1 so that if H1 ◦ (p⊕q)◦ H2 is geometric, as in Definition 3.9, then some
stabilization of p + t (1− p) is a k1ε-deformation.

(ii) There exists k2 so that if p + t (1 − p) is an ε-deformation, then there exist
k2ε-deformations H1, H2 and a geometric projection q as above so that H1◦(p⊕q)◦H2

is geometric.

Controlled K̃0 vanishing is the key algebraic ingredient in the proof of the following con-
trolled version of Browder’s M ×R theorem which is a special case of Quinn’s approximate
end theorem. See p. 283 of [17] for n ≥ 6 and p. 505 of [18] for n = 5.

Theorem 3.12 (controlled M×R ) Suppose that n ≥ 5, and B is a finite polyhedron with
the standard metric. Then there exist a δ0 > 0 and a k > 0 so that if δ < δ0 and K → B is
a U V 1(δ)-map from a finite polyhedron to B and W n → K ×R

1 is a proper δ-equivalence
from an n-manifold W without boundary to K × R

1 over B × R
1, then there is a closed

codimension one submanifold M of W which is a kδ-strong deformation retract of W over
B. The k and δ0 depend on the dimension of W and the dimension of B.

If W n is a manifold with boundary and ∂W has a controlled splitting, then the splitting
extends to the interior, provided that n ≥ 5. The theorem is also valid if B is a polyhedron
with bounded geometry. In this case, M will not be closed and the k and δ0 depend on the
dimension of W and the complexity of B.

Addendum 3.13 Most recent proofs of topological invariance of torsion also prove the van-
ishing of the controlled Whitehead group of geometric Z[t, t−1]-modules. This yields the
vanishing of the controlled projective class group with Z coefficients, since that group embeds
in the controlled Whitehead group of geometric Z[t, t−1]-modules. This is the algebraic key
to proving the controlled M×R theorem. The argument in [17] produces the desired splitting
when it is given this algebraic data. As before, the proof extends without alteration to the
case of polyhedral control spaces with bounded geometry. For readers who prefer to work
with manifolds, a similar analysis to that of Addendum 3.8 establishes the vanishing of con-
trolled projective class groups over these same spaces. After embedding the epsilon projective
class group into the epsilon Whitehead group of M × S1 and realizing an obstruction by a
controlled h-cobordism, one solves the manifold problem using Chapman’s generalization
of the alpha approximation theorem. See [4].

As before, realizing the algebraic problems as geometric problems, solving them, and
using the well-definedness of the algebraic obstructions as in [8] or [17] completes the proof.
This and the argument in Addendum 3.8 extend the thin h-cobordism theorem, end theorem
and approximate end theorem to the situation of δ-control kδ-vanishing over manifolds and
polyhedra of bounded geometry.
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4 Surgery below the middle dimension

We begin with some definitions.

Definition 4.1

(i) We will say that a map p:K → B between finite polyhedra is U V 1(δ) if for every map
α:P2 → B of a 2-complex into B with lift α0:P0 → K defined on a subcomplex P0,
there is a map ᾱ : P → K with ᾱ|P0 = α0 so that p ◦ ᾱ is δ-homotopic to α.

P0
α0 ��

��

��

K

p

��
P2 α ��

ᾱ

���
�

�
�

B

This can be thought of as saying that p has Čech δ-simply connected point-inverses.
If � is a loop near p−1(b) for some b, then the image of � in B is contractible and the
contraction can be δ-lifted to K , giving a contraction of � close to p−1(x). The map p
is said to be U V 1 if it is U V 1(δ) for every δ > 0. More generally, we will say that a
map p:K → B with B a not necessarily finite polyhedron is U V 1(δ) if it is proper8

and satisfies the conditions above. See [15] for details.
(ii) If p:P → B is a U V 1(δ) control map, we will say that f :M → P is (δ, k)-connected

over B if whenever (L , L0) is a CW pair with dim(L) ≤ k and α:L0 → M is a map
such that there is a map β:L → P with f ◦α = β|L0, then there exist a map γ :L → M
with γ |L0 = α and a homotopy ht :L → P rel L0 with h0 = f ◦ γ, h1 = β, and
diam(p ◦ h({x} × I )) < δ for each x ∈ L .

M
f �� P

p

��
L0

α

����������
� � �� L

γ

���
�
�

β
����������
B

Definition 4.2 If P is a finite polyhedron and B is compact metric, we say that P is an unre-
stricted ε-Poincaré complex of formal dimension n over B if there exist a subdivision of P so
that images of simplices have diameter <ε in B and so that there is a cycle y in the simplicial
chains Cn(P) so that y ∩ _ : C#(P)→ Cn−#(P) is an ε-chain homotopy equivalence. The
definition of a restricted ε-Poincaré complex of formal dimension n is similar except that we
require in addition that the control map p:P → B be U V 1(ε).

Addendum 4.3 If B is merely locally compact and P is a finite-dimensional locally finite
complex, we will require that y be a locally finite cycle in the definitions of our ε-Poincaré
complexes.

For simplicity, we will restrict our discussion below to the oriented case. The unoriented
case can be handled as usual by using the orientation double cover. In a similar vein, we will
omit mention of the orientation character in our definition of the ε-Wall groups below.

Definition 4.4 Let P be an unrestricted δ-Poincaré duality space of formal dimension n over
a metric space B and let ν be a (TOP,PL or O) bundle over P . A δ-surgery problem or degree

8 i.e., inverse images of compact sets are compact.
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one normal map is a triple (Mn, φ, F)where φ : M → P is a map from a closed topological
n-manifold M to P such that φ∗([M]) = [P] and F is a stable trivialization of τM ⊕ φ∗ν.
Two problems (M, φ, F) and (M, φ̄, F̄) are equivalent if there exist an (n+ 1)-dimensional
manifold W with ∂W = M

∐
M , a proper map �:W → P extending φ and φ̄, and a sta-

ble trivialization of τW ⊕ �∗ν extending F and F̄ . Such an equivalence is called a normal
bordism. See p. 9 of [21] for further details.

We will use the notation M
φ �� P

��
B

to denote a δ-surgery problem. When B is understood,

we will shorten the notation to φ:M → P or even to φ. We will follow tradition in pretend-
ing that our topological manifolds are PL in order to simplify details of the proofs. A good
reference for the appropriate TOP material is [14].9 In all cases, the bundle information is
included as part of the data. Our theorem on surgery below the middle dimension and its proof
are parallel to Theorem 1.2 on p. 11 of [21]. As usual, surgery below the middle dimension
is unobstructed.

Theorem 4.5 Let (Pn, ∂P) be an unrestricted ε-Poincaré duality pair over a finite polyhe-
dron B, n ≥ 6, or n ≥ 5 if ∂P is empty. Consider an ε-surgery problem φ:
(M, ∂M) → (P, ∂P). Then φ:(M, ∂M) → (P, ∂P) is normally bordant to an ε-surgery
problem φ̄:(M, ∂M)→ (P, ∂P) such that φ̄ is (ε,

[ n
2

]
)-connected over B and φ̄|:∂M → ∂P

is (ε,
[ n−1

2

]
)-connected.

Proof We start by considering the case in which ∂P = ∅. Triangulate M so that φ is sim-
plicial and the diameters p ◦ φ(τ), τ ∈ M and p(σ ), σ ∈ P , are <ε. Replacing P by the
simplicial mapping cylinder of φ, we can assume that M ⊂ P . We inductively define a bor-

dism U (i),−1 ≤ i ≤ [ n+1
2

]
and maps�(i):U (i) → M∪P(i), so that ∂U (i) = M

∐
M
(i)

and
so that�(i) is an ε-homotopy equivalence. We begin by setting U (−1) = M × I , and letting
�(−1) → P be φ ◦ proj. Let U (0) be obtained from U (−1) by adding a disjoint (n + 1)-ball
corresponding to each 0-cell of P −M . The map�(0) is constructed by collapsing each new
ball to a point and sending the point to the corresponding 0-cell of P − M . Assume that
�(i):U (i) → P has been constructed in such a way that U (i) is an abstract regular neigh-
borhood of a complex consisting of M together with cells in dimensions ≤ i corresponding
to the cells of P − M in those dimensions. Assume further that �(i) is the composition of
the regular neighborhood collapse with a map which takes cells to corresponding cells. Each
(i + 1)-cell of P − M induces an attaching map Si → U (i). If 2i + 1 ≤ n, general position
allows us to move this map off of the underlying complex and approximate the attaching

map by an embedding Si → M
(i)

. The bundle information tells us how to thicken this
embedding to an embedding of of Si × Dn−i and attach (i + 1)-handles to U (i), forming
U (i+1). We extend �(i) to �(i+1) in the obvious manner. This process terminates with the

construction of U

[
n+1

2

]
. Turning U

[
n+1

2

]
upside down, we see that U

[
n+1

2

]
is obtained from

M

[
n+1

2

]
by attaching handles of index >

[ n+1
2

]
. Thus, the composite map M

[
n+1

2

]
→ P is

(ε,
[ n

2

]
)-connected over P .

9 In the present instance, we can embed M in a high-dimensional euclidean space, where it has a normal
closed disk bundle by [14]. This bundle has a PL structure. If T is a k-skeleton for this normal disk bundle with
2k+1 ≤ dim M , then the restriction of the bundle projection to T can be approximated by an embedding. The
image of T under this embedding can be used in the construction above in place of a skeleton of a triangulation
of M . Alternatively, we could appeal directly to the theorem in [14] that shows that high-dimensional TOP
manifolds have handlebody decompositions.
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In case ∂P �= ∅, the argument is similar. We first construct U over the ∂ (and, therefore,
over a collar neighborhood of the boundary) and then construct U over the interior. ��
Remark 4.6

(i) The Poincaré duality of P was never used. This result is true for arbitrary P and arbitrary
maps p:P → B. The space B can be an arbitrary metric space.

(ii) Notice that direct manipulation of cells and handles has replaced the usual appeals to
homotopy theory and the Hurewicz–Namioka theorem. This is a general technique for
adapting arguments from ordinary algebraic topology to ε-controlled topology.

(iii) The construction in the proof yields somewhat more—we wind up with (M, ∂M) ⊂
(P, ∂P). When n = 2k + 1,M and P are equal through the k-skeleton. When n =
2k, ∂M is equal to ∂P through the (k − 1)-skeleton and M contains every k-cell of
P − ∂P . Since M → P is k-connected, every k-cell in ∂P is homotopic rel boundary
to a map into M . By attaching a (k + 2)-cell to this homotopy along a face, we can
guarantee that for every k-cell in ∂P − M there is a (k + 1)-cell in P so that half of
the boundary of the (k + 1)-cell maps homeomorphically onto the k-cell and the other
half maps into M . Alternatively, the same effect can be obtained by adding a collar to
∂P and giving it the product CW structure.

P

M

P

ekek+1

5 Controlled cell-trading

In this section, we prove a controlled version of Whitehead’s cell-trading lemma and apply
it to prove a useful controlled Hurewicz–Whitehead theorem. The operations we describe
apply equally well to cells in a finely subdivided CW complex and to handles in a finely
subdivided handle decomposition. We will use cell terminology throughout, except for the
terms “handle addition” or “handle slide.” These refer to the same mathematical operation.

We will write the operation of sliding handles in B over handles in C corresponding to
m:B → C schematically as

A

f

��

g

		�
��

��
��

B

k
��

⊕m �� C

l

��
��

��
�

D

and call it adding the B-cells to C via m. When the sequence A → B ⊕ C → D is a part
of a cellular chain complex, this operation is realized geometrically by handle-addition by
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taking each generator x in B and sliding it across m(x). Changing the attaching maps of the
cells this way has the effect described above on the cellular chains. If m is an ε-morphism,
then the new chain complex is a 2ε-chain complex 2ε-isomorphic to the old one.

Lemma 5.1 Let � > 0 be given and let B be a polyhedron with the standard metric. Then
there exist δ0 = δ0(�) and k = k(�) > 0 so that if δ < δ0 and

(i) (X, Y ) is a CW pair such that the image of each cell has diameter <δ in B. We call this
a δ-CW pair.

(ii) p:(X, Y )→ B is a map so that p and p|Y are U V 1(δ)-maps.
(iii) The cellular chain complex C#(X) is decomposed as (based) modules C#(Y )⊕C#(X−

Y ) for which the boundary map has the form

C(Y )#

��

⊕ C#(X − Y )

����												

C#−1(Y ) ⊕ C#−1(X − Y )

(iv) There is an δ-chain homotopy s with s|C(Y )# = 0, from the identity to a morphism
which is 0 on C#(X − Y ) for # < �.

then X may be changed by a simple homotopy equivalence of size kδ to a complex X ′, so
that the cellular chains C#(X ′) have the form C(Y )# ⊕C#(X ′ − Y ) where C#(X ′ − Y ) = 0
for # < � and C#(X ′ − Y ) = C#(X − Y ) for # ≥ �+ 2.

Proof Using the U V 1(δ) condition we can trade away 0- and 1-cells of X−Y . Now perform
the same operations as in the algebraic cell-trading lemma, but do them geometrically, using
handle additions and cell cancellations, rather than algebraically. The constant δ0 is included
to guarantee that all intersections take place in simply connected regions of the space, so
that geometric intersections can be manipulated to agree with algebraic intersection numbers
without taking the global fundamental group into account. There are discussions of controlled
cell-trading in Sect. 6 of [17] and on page 84 of [5]. ��
Addendum 5.2 The argument above works for B a uniformly locally simply connected
space, except that the relation between δ and kδ is no longer linear in the absence of a linear
relationship between the diameter of a small loop and the diameter of a disk it bounds.

Controlled cell-trading is a very useful tool in epsilon–delta topology. Here’s a controlled
Whitehead theorem whose proof relies on cell-trading. Let B be a finite polyhedron endowed
with the standard metric.

Proposition 5.3 (controlled Hurewicz–Whitehead) Let an integer n > 0 be given. There
exist a k > 0 and a δ0 > 0 depending on n so that if

(i) δ < δ0

(ii) (X, Y ) is an n-dimensional polyhedral pair with cells of size δ over B and p:X → B is
a U V 1(δ)-map such that p| Y is also U V 1(δ).

(iii) C∗(Y )→ C∗(X) is a δ-chain homotopy equivalence.

Then Y → X is a kδ-homotopy equivalence.

Proof By cell-trading, there is a k1 depending on n so that (X, Y ) is k1(n)δ-homotopy
equivalent rel Y to a CW pair (X ′, Y ) so that all cells of X ′ − Y are of dimension >n. Let
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φ:X → X ′ and ψ :X ′ → X be the k1(n)δ-homotopy equivalence and homotopy inverse.
By cellular approximation (or general position), we can take φ to be a map from X into
Y ⊂ X ′. This approximation loses as much as 3dim Xδ more in control, since cell trading may
make the cells larger. The controlled homotopy from ψ ◦ φ to the identity gives a controlled
strong deformation retraction from X to Y , establishing the desired controlled homotopy
equivalence. ��

6 The epsilon–delta π–π theorem

Definition 6.1 If f#:A# → B# is a chain homomorphism, we define K #( f ) to be the alge-
braic mapping cone of f #:B# → A#. We define K#( f ) to be the dual of K #( f ). Unraveling
this, we see that K k( f ) = Ak ⊕ Bk+1, Kk( f ) = Ak ⊕ Bk+1, and that up to signs in
the boundary map, K#( f ) is the algebraic mapping cone of f# with dimensions shifted by
one.

Now, suppose that we are given a degree one map φ:M → P from a manifold to a
δ-Poincaré space over a metric space X . We need to show that the complex K#(φ) described
above has kδ-Poincaré duality for some k = k(n). Following [19], Proposition 2.2, we have
a controlled chain homotopy commuting diagram

Ck(P)
φ#

��

[P]∩_∼=
��

Ck(M) ��

[M]∩_∼=
��

K k(φ)

Cn−k(P) Cn−k(M)
φ#��

which splits the top row of the diagram up to chain homotopy. By Lemma 2.14, this gives us
a chain-homotopy equivalence

C∗(M) ∼= K ∗(φ)⊕ C∗(P).

Dualizing, we have

C∗(M) ∼= K∗(φ)⊕ C∗(P).

As in the classical case, these splittings preserve cap product with the fundamental class,
so by Lemma 2.12 there is a controlled chain homotopy equivalence [M] ∩ _ : K ∗(φ) →
Kn−∗(φ).

At this point, the reader whose primary interest is in getting to the proof of Theorem 1.1
as directly as possible should move forward to the next section.

The next lemma is standard, as in Browder et al. [3] or Siebenmann’s thesis.

Lemma 6.2 If M is a topological manifold and H ⊂ M is a handle attached to ∂M,
then the effect of excising the interior of H from (M, ∂M) is to kill im(H∗(H, H ∩ ∂M)→
H∗(M, ∂M)) and to create homology in the next dimension corresponding to ker(H∗(H, H∩
∂M)→ H∗(M, ∂M)).
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Theorem 6.3 (simply connected controlled π–π theorem) If B is a finite polyhedron with
the standard metric, then there exist k > 0 and ε0 > 0 so that if (Pn, ∂P), n ≥ 6, is an
ε-Poincaré duality space over B, ε ≤ ε0, and

(M, ∂M)
φ �� (P, ∂P)

p

��
B

is an ε-surgery problem with bundle information assumed as part of the notation so that
both p:P → B and p|:∂P → B are U V 1(ε), then we may do surgery to obtain a normal
bordism from (M, ∂M) → (P, ∂P) to (M ′, ∂M ′) → (P, ∂P), where the second map is a
kε-homotopy equivalence of pairs. Here, k and ε0 will depend on n.

Proof The argument is a translation into ε-terms of the bounded π–π Theorem of [10].
We first focus on the case n = 2�. By Theorem 4.5 we may do surgery below the middle

dimension. We obtain a surgery problem M ′
φ′ �� P so that φ′ is an inclusion which is

the identity through dimension �.
This means that cancelling cells in the algebraic kernel K#(P, ∂P;M ′, ∂M ′) yields a

complex which is 0 through dimension � − 1. Abusing the notation, we will assume that
the chain complex K#(P, ∂P;M ′, ∂M ′) is 0 for # ≤ �− 1. The generators of K�−1(P,M)
correspond to �-cells in ∂P − M . Cancelling these against the (� + 1)-cells described in
Remark 4.6ii and leaving out the primes for notational convenience, we have

K#(P, ∂P;M, ∂M) = 0 # ≤ �− 1

K#(P,M) = 0 # ≤ �− 1.

Since K n−#(P, ∂P;M, ∂M) is ε-chain homotopic to K#(P,M), there is an algebraic
ε-homotopy σ on K #(P, ∂P;M, ∂M) satisfying σδ + δσ = 1 for # ≥ �+ 1. Taking duals,
there is an algebraic homotopy s on K#(P, ∂P;M, ∂M) such that s∂+∂s = 1 for # ≥ �+1.
Since K# = K#(P, ∂P;M, ∂M) is finite-dimensional, the “cell trading” procedure may be
applied upside down, so that the K# is changed to

0 �� K ′�+2
∂ �� K ′�+1

∂ �� K� �� 0

together with a homotopy s so that s∂ + ∂s = 1 except at degree �. Again, we leave out the
primes for notational convenience. Corresponding to each generator of K�+1 (and at a point
near where the generator sits in the control space) we introduce a pair of cancelling (�− 1)-
and �-handles and excise the interior of the (� − 1)-handle from (M, ∂M), modifying the
map so that the new boundary maps to ∂P . The chain complex for this modified M is:
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0 �� K�+3 �� K�+2 �� K�+1 �� 0

⊕
K�+2

All generators of K�⊕ K�+1 are represented by discs. We may represent any linear com-
bination of these discs by an embedded disc, and these embedded discs may be assumed to be
disjoint by the usual piping argument. See p. [21], p. 39. The U V 1 condition on the interior
is used here. We do surgery on the following elements: For each generator x of K�, we do
surgery on (x − ∂sx, sx) and for each generator y of K�+2, we do surgery on (0, ∂y). We
can think of the process as introducing pairs of cancelling �- and (�+1)-handles, performing
handle additions with the �-handles, and then excising the �-handles from (M, ∂M). The
resulting chain complex is:

0 �� K�+2
∂ �� K�+1 �� K�

⊕ ⊕

K�

1−∂s

��











 s �� K�+1 �� 0

⊕

K�+2

∂

��












which is easily seen to be contractible, the contraction being

0 K�+2�� K�+1
s�� K�

1−∂s

��












��

⊕ ⊕

K� K�+1
∂��

s

��











0��

⊕

K�+2

Dualizing, we see that after surgery, K#(P, ∂P;M, ∂M) is ε-chain contractible. Poincaré
duality shows that K#(P,M) is k′ε-chain contractible. Together, these imply the k′′ε-chain
contractibility of K#(∂P, ∂M). Using the controlled Hurewicz–Whitehead theorem now
shows that ∂P → ∂M and P → M are kε-homotopy equivalences for some k depending
on n. This application of the controlled Hurewicz–Whitehead theorem, Proposition 5.3, uses
both U V 1 conditions. An easy argument composing deformations in the mapping cylinder
of (M, ∂M) → (P, ∂P) completes the proof that (M, ∂M) → (P, ∂P) is a controlled
homotopy equivalence.

To obtain the π–π-theorem in the odd dimensional case we resort to a trick.

(1) Cross with S1 to get back to an even dimension and do the surgery.
(2) Go to the cyclic cover and split using the controlled M×R theorem to obtain a controlled

homotopy equivalence of the ends.

This completes the proof. ��
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Remark 6.4 There are a number of useful extensions of the π–π theorem. The theorem
remains true in the presence of multiple boundary components, provided that the restrictions
to the extra components are δ-equivalences. The theorem also remains true if the “active”
boundary component is divided into two submanifolds with boundary provided that the
original normal map is a δ-equivalence over one piece and satisfies the π–π condition over
the other. In fact, the theorem remains true if the “inert” boundary components are unrestricted
objects and the restrictions to these objects induce δ-duality at the chain level.

7 Remarks on pro theory

Throughout this paper, we will be working with systems of sets and/or groups. The purpose
of this section is to establish some definitions and notation. The setup we’re describing is
pro-theory, but only for the comparatively uncomplicated case of systems indexed by the
natural numbers. For the reader unfamiliar with these things, a good example to keep in
mind is the system of homology groups near infinity in an open manifold. If we have a basis
{Ui } of neighborhoods of infinity, it’s actually the system {Hk(Ui )} as a whole that we’re
interested in, not the individual groups. A proper map from one manifold to another induces
a homomorphism of homology systems at infinity, but a certain amount of passing to subse-
quences and reindexing is necessary in order to write down a pleasant commutative diagram
representing the map of homology systems.

Definition 7.1

(i) In this paper, a system will be an inverse system of sets and maps indexed by the
integers, most often positive, but sometimes including 0. We write such a system as
{Ai , αi } where αi :Ai → Ai−1. The maps αi are called bonding maps.

(ii) The relation of equivalence on systems is the equivalence relation generated by passing
to subsequences. Of course we must also allow passing to “supersequences” in order
to maintain symmetry. When we pass to subsequences we will automatically compose
the bonding maps and reindex the remaining spaces.

(iii) Defining a map {Ai , αi } → {A′i , α′i } of systems in full generality is messy. The offi-
cial definition is limk colim j Maps(A j , A′k). This allows allows a bit more flexibility
in defining maps than we’ll need in this paper. Suffice to say that after passing to
subsequences and reindexing, maps can be represented by a commuting diagram of
level-preserving maps

A1

��

A2
α2��

��

A3
α3��

��

A4
α4��

��

. . .��

A′1 A′2��
α′2�� A′3��

α′3�� A4
α′4�� . . .��

(iv) If we have maps in both directions, it may not be possible to represent both by level-
preserving maps in the same diagram and the best we can get by passing to subsequences
and reindexing is a diagram like

A1

β1

��

A2
α2��

β2

��

A3
α3��

β3

��

A4
α4��

β4

��

. . .��

A′1 A′2��
α′2��

γ2

�������

A′3��
α′3��

γ3

�������

A4
α′4��

γ4

��������
. . .��

123



Geom Dedicata (2010) 148:71–101 91

with commuting squares and parallelograms. Note that if all of the triangles commute,
such a diagram implies equivalence of the systems {Ai , αi } and {A′i , α′i }, since it is
easy to build a larger system which contains both as subsystems. The systems would
still be equivalent if we only had αi−1 ◦ γi ◦ βi = γi−1 ◦ α′i ◦ βi for each i , rather
than strict commutativity in the diagram above. In general, composing with bonding
maps to get commutativity is allowed as long as the commuting subdiagrams are co-
final in the original system. See [12] for more information, including a translation of
limk colim j Maps(A j , A′k) into something more readable.

Definition 7.2

(i) A system is Mittag–Leffler if it is equivalent to a system of epimorphisms.
(ii) A system is stable if it is equivalent to a system of isomorphisms.

After passing to subsequences and reindexing, stability of a system {Ai , αi } leads to a
commuting diagram like the one below, from which one can see that each αi maps the image
of Ai+1 in Ai bijectively onto the image of Ai in Ai−1.

A1

β1

��

A2
α2��

β2

��

A3
α3��

β3

��

A4
α4��

β4

��

. . .��

A A
id��

γ2

����������
A

id��

γ3

����������
A

id��

γ4

����������
. . .��

8 Algebraic δ-surgery groups

In this section, we will define our algebraic δ-surgery groups over a polyhedron B. In even
dimensions, we will define these groups to be systems of δ-Witt groups over B. Our (2k+1)-
dimensional groups over B will be the (2k + 2)-dimensional groups over B × R. Thus, in
this section we will be looking at locally finite geometric chain complexes over finite polyhe-
dra and noncompact polyhedra of bounded geometry. Restricting ourselves to locally finite
polyhedra of this special form allows us to phrase our work in terms of epsilons and deltas,
rather than working with collections of open covers.

In this section, we will define a sequence of abelian semigroups {Ln,B,δ(e)}. We will show
that this sequence is equivalent to a sequence of groups and homomorphisms and that this
system serves as an appropriate system of Wall groups for epsilon–delta surgery. To begin
with, we will restrict our attention to even-dimensional manifolds.

Definition 8.1 Let η = ±1. Let Iη = {0} for η = 1 and 2Z for η = −1. By a special geo-
metric (Z−)quadratic η-form over B, we will mean a triple (A, λ, μ)where A is a geometric
Z-module over B, λ:A × A→ Z is Z-bilinear, μ:A→ Z/Iη

(i) λ(x, y) = ηλ(y, x) x, y ∈ A
(ii) λ(x, x) = μ(x)+ ημ(x) x ∈ A

(iii) μ(x + y)− μ(x)− μ(y) = λ(x, y) mod Iη x, y ∈ A
(iv) μ(xa) = a2μ(x) x ∈ A, a ∈ Z

(v) Aλ:A→ A∗ defined by Aλ(x)(y) = λ(x, y) for x, y ∈ A is an isomorphism.10

10 The usual simplicity condition is not needed because of the vanishing of controlled Z-Whitehead groups.
We are getting away with a certain amount in this section because the controlled Whitehead group vanishes
and we do not have to prove simplicity at each stage of our argument.
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The radius of this form is <ε if λ(x, y) = 0 when d(x, y) ≥ ε.

Definition 8.2

(i) Let η = ±1. If A is a geometric module over B, the nonsingular η-hyperbolic qua-
dratic form on A⊕ A is the form ηH(A) which has matrix

(0 1
η 0

)
corresponding to each

basis element of A with μ(1, 0) = μ(0, 1) = 0. This simply means that ηH(A) has a
standard 2× 2η-hyperbolic form (the intersection form of S�× S� for � even and odd)
corresponding to each basis element of A.

(ii) Two special geometric quadratic η-forms (A, λ, μ) and (A′, λ′, μ′) of radius ≤ δ
are δ-isomorphic over B if there is a δ-isomorphism h:A → A′ over B so that
λ′(h(x), h(y)) = λ(x, y) for all x, y ∈ A and μ′(h(x)) = μ(x) for all x ∈ A.

(iii) If (A, λ, μ) and (A′, λ′, μ′) are geometric quadratic η-forms of radius ≤ δ, we will

write (A, λ, μ)
δ∼ (A′, λ′, μ′) if there are geometric modules F and G over B such

that (A′, λ′, μ′)⊕ ηH(F) is δ-isomorphic to (A, λ, μ)⊕ ηH(G).
(iv) We define Lη,B,δ(Z) to be the abelian semigroup of geometric special quadratic η-forms

of radius ≤ δ, modulo the equivalence relation generated by
δ∼.

Here is the statement of the theorem which is our first main goal. It says that our surgery
groups tell us, at least in the pro-sense, when we can do even-dimensional surgery.

Theorem 8.3 Let � ≥ 3 be given. Then ∃ δ0 > 0 so that for δ < δ0 the following holds: Let
φ:(W 2�, ∂W ) → (P2�, ∂P) be a degree one normal map with p:P → B and p|∂P both
U V 1(δ)-maps. Here, B is either a finite polyhedron or a polyhedron of bounded geometry.
Let η = (−1)�. Suppose, in addition, that φ| ∂W is a δ-equivalence. There is a number
k = k(n) so that that:

(i) There is a surgery obstruction σ(φ) ∈ Lη,B,kδ(Z).
(ii) The image of Lη,B,δ(Z) in Lη,B,kδ(Z) is an abelian group.

(iii) σ(φ) is well-defined on normal bordism classes rel boundary in Lη,B,k2δ(Z). In partic-
ular, if φ can be surgered to a δ-equivalence, then σ(φ) = 0 in Lη,B,k2δ(Z).

(iv) If σ(φ) = 0 in Lη,B,k2δ(Z), then φ can be surgered to a k3δ-equivalence.
(v) Every element of Lη,B,δ(Z) is realized on a manifold with two boundary components

such that the restriction of φ to the first boundary component is the identity and the
restriction of φ to the second boundary component is a kδ-equivalence.

Let (P, ∂P) be a 2�-dimensional δ-Poincaré duality pair with U V 1(δ)-map p:P → B
such that p| ∂P is also U V 1(δ). Let φ:(N , ∂N ) → (P, ∂P) be a degree one normal map
such that φ| ∂N is a δ-equivalence. We will assume that surgery has been done below the
middle dimension as in Theorem 4.5.

The kernel complex is a k′δ-Poincaré duality chain complex for some k′ = k′(n), with
homology concentrated in dimension �. Trading cells from the bottom and then flipping the
complex over (algebraically) and trading down from the top shows that the kernel complex
is k′′δ-chain homotopy equivalent to a complex of geometric modules with cells in only two
dimensions, �− 1 and � or, if we choose, � and �+ 1. This means that we have the diagram
below, where ϕ and ψ are controlled chain-homotopy inverses.

0 C�−1

ψ

��

�� C�

ψ

��

∂�� 0�� 0��

0 0�� C ′�

ϕ

��

�� C ′�+1

ϕ

��

∂�� 0��
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Since the composition ϕ ◦ ψ is controlled chain homotopic to the identity, we have a
diagram:

0 C�−1

id
��

��

s

��





C�

id−φ◦ψ
��

∂�� 0��

0 C�−1�� C��� ∂�� 0��

with ∂ ◦ s = id.
Unfortunately, we are in a land without kernels, so this is not enough by itself to split the

sequence

0 C�−1��
s

�� C�
∂�� 0��

However, we do have (s ◦ ∂)◦ (s ◦ ∂) = (s ◦ ∂), so (s ◦ ∂):C� → C� is a controlled projec-
tion. The K̃0-vanishing result of Theorem 3.10 says that there exist a geometric projection g
and ε deformations H1 and H2 so that H1((s ◦ ∂)⊕ g)H2 is a geometric projection.

If we stabilize by doing trivial surgeries and adding cancelling pairs of �- and (� − 1)-
handles, we can assume that H1 ◦ (s ◦ ∂) ◦ H2 is geometric. This means, in particular, that
the image of H1 ◦ s is geometric. By Chapman’s swindle, we can assume, after stabilization,
that H1 is a product of no more than 13 elementary matrices.

Proposition 2.6 says that

0 C�−1�� C�
∂�� 0��

is isomorphic to the chain complex

0 C�−1�� C�
∂H−1

1�� 0��

which is split by H1s. Since the image of H1s is geometric, C� splits as geometric modules
C1
� ⊕ C2

� with ∂H1|C1
� :C1

� → C�−1 a controlled isomorphism and ∂H1|C2
� = 0. Since the

controlled Whitehaead group vanishes, another controlled handle slide arranges that ∂H1|C1
�

takes generators to generators. At this point, we can cancel the cells in C1
� against those of

C�−1.
The result is that the chain complex representing our surgery kernel has generators only in

dimension �. It follows from Poincaré duality and self-intersection, as in the classical case,
that our surgery kernel has the structure of a special geometric Z-quadratic η-form. This
establishes part (i) of Theorem 8.3.

Next, suppose that the surgeries of part (i) have been performed and that our normal map
φ:(N , ∂N )→ (P, ∂P) is normally cobordant rel boundary to another such degree one nor-
mal map, call it φ′:(N ′, ∂N )→ (P, ∂P). We can controlled surger the normal bordism rel
ends and boundary to make the map from the bordism to P × I into an �-connected map. By
handle trading, first up from P and then down from the other end, it follows that φ is normally
bordant to φ′ via a bordism (with small handles, since any bordism can be subdivided) in
dimensions � and �+ 1 and no handles outside of those dimensions.

We now look at the effect on the surgery kernel of passing through these layers of cells.
Starting from the left in the diagram below, the first set of cells is trivially attached, so the
algebraic effect on the surgery kernel is to add a geometric hyperbolic form to the algebraic
kernel from P . This is the surgery kernel at the level of P ′′ below. On the other hand, we can

123



94 Geom Dedicata (2010) 148:71–101

begin at the right end of the bordism, where the surgery kernel is trivial, and see that adding
the (� + 1)-cells, which become �-cells when viewed from that side, exhibits P ′′’s surgery
kernel as a hyperbolic form. Combined, this shows the forms representing the kernels on the
two ends are stably equivalent. In particular, if φ′ is a controlled homotopy equivalence, then

the surgery kernel of φ must be controlled stably hyperbolic, i.e., it must be
kδ∼ 0. Again, we

have k = k(n). Moreover, if the surgery kernel of a degree one normal map is stably con-
trolled hyperbolic, we can proceed exactly as in [10], which is modelled on Chap. 5 of [21]
to surger to a kδ-equivalence for some k = k(n). Since this step passes through geometry,
we need to assume that the control space is a bounded geometry polyhedron endowed with
the standard metric. This establishes parts (iii) and (iv) of Theorem 8.3.

'PP P''

l-1 cells l cells

Finally, we note that the algebraic proof of Wall realization given in Theorem 5.8 of [21]
works without modification to show that every geometric special quadratic (−1)�-form can
be realized on a manifold with boundary. The statement is given below.

Theorem 8.4 (Wall Realization) Let B be a polyhedron with bounded geometry and let n ≥ 6
be given. Then there exist k = k(n) and δ0 such that given a U V 1(δ)-map p:V n−1 → B and
α ∈ Ln,B,δ(Z), δ < δ0, we can represent the image of α in Ln,B,kδ(Z) by a map with V × I
as target.

We now return to salgebra. The next proposition is needed to prove part (ii) of Theorem
8.3.

Proposition 8.5 If (A, λ, μ) is a geometric special quadratic η-form of radius ≤ δ, then

(A, λ, μ)⊕ (A,−λ,−μ) kδ∼ ηH(A) for some k = k(n).

Proof We give a geometric argument, so our proof is only valid over polyhedra of bounded
geometry. This is a deficiency of our “quick-and-dirty” geometric approach. It would be
better to imitate Wall’s algebraic proof in Lemma 5.4 of [21] and recover the result for arbi-
trary control spaces. Given a geometric special quadratic (−1)�-form, we Wall realize it on
a manifold (W 2�; N , N ′) with boundary. Consider the 2�+ 1-dimensional surgery problem
obtained by crossing our problem with J = [0, 1].

If (A, λ, μ) is the surgery kernel of W → N × I , then W × J gives a normal bordism
from the dark region in the figure, which is W ∪ N ′ × J ∪ (−W ), to N × J , where we have
a homeomorphism. The surgery kernel for the dark region is (A, λ, μ)⊕ (A,−λ,−μ). This
shows that a controlled surgery problem with kernel (A, λ, μ)⊕ (A,−λ,−μ) can be solved
and that the sum (A, λ, μ) ⊕ (A,−λ,−μ) is therefore stably hyperbolic. This completes
the proof of Theorem 8.3 the k in the statement of the theorem is the maximum of the k’s
appearing in the proofs of parts (i)–(v). ��

123



Geom Dedicata (2010) 148:71–101 95

By part (ii) of Theorem 8.3, the system {Lη,B,δi (Z)} of abelian semigroups is equivalent
to a system of groups. By abuse of notation, we will refer to {Lη,B,δi (Z)} as a system of
groups.

We can now set up our system {Lη,B,δi (Z)} of even-dimensional algebraic surgery groups
for B a polyhedron of bounded geometry. We can add elements of Lη,B,δi (Z) immediately
this time, because direct sum does not increase the radius. Each element of Lη,B,δi (Z) has

a negative in Lη,B,δi (Z), but the sum is only
kδ∼ 0, so elements don’t have inverses until we

increase δ by a factor of k. Chapman’s swindle then shows that the image of Lη,B,δi (Z) in
Lη,B,δi−1(Z) is an abelian group, provided that δi−1 is bigger than δi by a factor k = k(n)
for each i . Theorem 8.3 shows that in even dimensions and in a “pro” sense these groups do
determine when surgery to a controlled homotopy equivalence is possible.

The next proposition shows that we can solve a controlled surgery problem over B if
and only if we can solve (problem)×R over B × R. Thus, we can always choose to work
with even-dimensional surgery problems. Note that this is the basic philosophy of [10], as
expressed in the introduction to that paper—the major difference being that here we use a
product metric rather than a conelike metric.

Proposition 8.6 Let n ≥ 6 and let p:(Pn, ∂P) → B be U V 1(δ) with B a polyhedron of
bounded geometry, and let φ:(N , ∂N )→ (P, ∂P) be a degree one normal map with φ| ∂N
a δ-homotopy equivalence.

(i) There exist a k = k(n) and a δ0 = δ0(n) so that if δ < δ0 and φ × id:N × R →
(P, ∂P) × R is normally cobordant rel ∂ to a δ-equivalence controlled over B × R,
then φ is normally cobordant to a kδ-equivalence controlled over B.

(ii) If φ is normally cobordant to a δ-equivalence, then φ × id : N ×R→ (P, ∂P)× R is
normally cobordant to a δ-equivalence.

Proof Part (i) is a direct application of the controlled M × R theorem stated in Sect. 2 plus
the thin h-cobordism theorem. Part (ii) is clear. ��

Definition 8.7 Let N = N (M) be the set of normal bordism classes of degree one normal
maps (M, ∂M)→ (N , ∂N ) which restrict to a homeomorphism on the boundary. The bor-
disms here should be through maps which are fixed on the boundary. By work of Sullivan, this
collection is in one-to-one correspondence with [N , ∂N ; G/TOP], making N into a group.

Remark 8.8 There also is a 1-1 correspondence between normal bordism classes of of degree
one normal maps W → M × R and normal bordism classes of degree one normal maps
N → M . This means that the groups L(−1)�+1,B×R,δ(Z) give the obstructions for (2�+ 1)−
δ-controlled dimensional surgery in the same “pro-” sense as the even-dimensional groups
Lη,B,δ (Z) which we have already discussed.

The map in one direction is the product and the map in the other direction is given by
transversality. To see that the composition N (M×R)→ N (M)→ N (M×R) is the identity
on bordism, note that we can arrange for the composition to be the identity on B × {t0} for
some t0 and then enlarge a collar to make the composition equal to the identity everywhere.
Again, this is the basic approach of [10].

Notation 8.9 By Ln,B,δ(Z), we will mean L(−1)�,B,δ(Z) for n = 2� even and
L(−1)�+1,B×R,δ(Z) for n = 2�+ 1 odd.
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9 Stability of controlled wall systems for n large

Definition 9.1 A system consisting of groups A1 A2�� A3�� . . .�� is stable
if it is equivalent to a sequence of groups and isomorphisms.

Our goal in this section is to prove the stability of the sequence

Lq,B,δ1(Z) Lq,B,δ2(Z)
�� Lq,B,δ3(Z)

�� . . .��

for all q whenever {δi } is a sequence of positive real numbers converging monotonically
to zero. We will accomplish this by first proving the result for q ≥ 2 dim B + 2 and then
noting that the result for arbitrary q follows from the periodicity of the Wall groups. Let
N = N (B) be a regular neighborhood of B in R

q , q ≥ 2 dim B + 2, and let N be the set
of normal bordism classes of degree one normal maps (M, ∂M)→ (N , ∂N ) which restrict
to a homeomorphism on the boundary. By work of Sullivan, this collection is in one-to-one
correspondence with [N , ∂N ; G/TOP], making N into a group.

Taking rel boundary δ-surgery obstructions gives us the commuting diagram below. In
this special case, N = N (B) has the form N ′ × [0, 1], where N ′ is a regular neighborhood
of B in R

q−1. Addition in N can be defined by gluing elements together along pieces of the
boundary. The vertical maps in this diagram are homomorphisms, see [21], p. 111 for details.

N
σ

��

Nid��

σ

��

N
σ

��

id�� . . .��

Lq,B,δ1(Z) Lq,B,δ2(Z)
�� Lq,B,δ3(Z)

�� . . .��

We will show that the vertical maps are eventual isomorphisms. We begin with the argu-
ment for surjectivity. Consider an element α of Lq,B,δ2(Z). By a rel boundary adaptation of
Wall realization, this element is realized by a degree one normal map φ:(W, ∂W, N ′, N ′′)→
(N ′ × I, ∂(N ′ × I ), N ′ × 0, N ′ × 1) where N ′ is a regular neighborhood of B in R

q−1 as
before and φ restricts to homeomorphisms over N ′ × 0 ∪ ∂N ′ × I and a kδ2-equivalence
over B on N ′′, where k = k(q). In order to show that φ is in the image of N , we need to
show that φ is normally bordant to φ′, where φ′ is a homeomorphism on the entire boundary.

The restriction of φ to N ′′ is a homeomorphism on ∂N ′′. In order to show that φ is in the
image of N , we apply the alpha approximation theorem (Theorem 1.5 of the introduction)
together with a variation on the classical Alexander trick. The figure below represents the
restriction of φ to the top boundary of the previous picture.
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Here is our Alexander trick. Let p be the mapping cylinder projection p:N ′′ → B. The ho-
motopy equivalenceφ is controlled over this map. Now, repeat the boundary homeomorphism
over a boundary collar in N ′′, rescaling so that the image of this homeomorphism contains
all but a very small regular neighborhood of B in N ′ × 1. After this modification, φ|N ′′
becomes a controlled homotopy equivalence over N ′ ×1, not just over B, and we can use the
alpha approximation theorem to find a small homotopy from φ|N ′′ to a homeomorphism.11

This means that if kδ2 is chosen to be so small that alpha approximation works on N ′ to
produce a homeomorphism δ1-homotopic to the original φ, then the image of α in Lq,B,δ1(Z)

is in the image of N . This proves eventual surjectivity and we pass to a subsequence so that
“surjectivity” takes place in the (i − 1)st place for each i .

Now for the proof of injectivity. Consider an element φ ∈ N whose image in, say,
Lq,B,δ3(Z) is trivial. This means that φ:M → N with φ a homeomorphism over ∂N and
that φ is bordant as a restricted δ3-object to a δ3-equivalence. We denote this bordism by
�:P → N × I . Our goal is to show that φ is equivalent in N to a homeomorphism.

The restriction of � to ∂P − ◦
M gives a δ3-equivalence to ∂(N × I ) − ◦

N × 1 which
is a homeomorphism on the boundary. Reparameterizing, this gives a bordism from φ to a
δ3-equivalence over the shaded area. Using the same Alexander trick, the restriction of� to
the shaded area is ε-homotopic rel boundary to a homeomorphism, where ε is related to δ3

as in the alpha approximation theorem. This shows that the element [φ] is trivial in N and
that the sequence {Lq,B,δi (Z)} is equivalent to the sequence N ← N ← · · ·.

The group N is isomorphic to [N , ∂N ;G/TOP], which is in turn isomorphic to
Hq(N ,G/TOP), Hq(B,G/TOP), and Hq(B,L(e)). Thus, we have shown:

Proposition 9.2 Given B and q ≥ 2 dim B+2, we can choose a sequence δi of positive real
numbers monotonically approaching zero so that the image of Lq,B,δi (Z) in Lq,B,δi−1(Z) is
isomorphic to Hq(B,L(Z)) for all i . By periodicity of Lq,B,δi (Z) and Hq(N ,G/TOP), this
establishes the same result for all q

Remark 9.3 The proof above is closely related to the proof of the surgery exact sequence.
The point of our Alexander trick is that it allows us to use the alpha approximation theorem

to show that the rel boundary structure set Sδ
(

N
↓
B

)
is equivalent to a trivial system and then

t is equivalent to a trivial system and then to use this fact to prove that the normal maps
are isomorphic to the surgery groups as systems. Rather than set up a structure set which is
going to be zero (in this specific instance, anyway) we have chosen to delay setting up the
official surgery sequence and make our argument on the level of individual representatives
of elements of the structure-set-to-be.

11 The key point here is that the alpha-approximation theorem only requires that homotopies have small diam-
eter after projecting to the target. By stretching out a collar where φ| is a homeomorphism, we have replaced
control over B by control over N ′ × 1.
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10 Stability of controlled structure sets

Next, we want to show how to use stability of the controlled L-groups to prove a similar sta-
bility result for manifold structures. We can always replace a U V 1(δ)-map p:Mn → B,M
a manifold and n ≥ 5, by a U V 1-map. Here is a theorem from [13] which is a modified
version of a theorem of Bestvina [1].

Theorem 10.1
(i) Let a finite polyhedron B and n ≥ 5 be given. Then given ε > 0 there is a δ > 0 so that

if p′:N n → B is a U V 1(δ)-map from a compact manifold to B, then p′ is ε-homotopic
to a U V 1-map p:N → B.

(ii) Let N be a compact manifold and suppose that a U V 1-map q:N → B onto a polyhe-
dron B is given. Then for each ε > 0 there is a δ = δ(ε, q) > 0 such that for each map
f :M → N of any compact PL manifold M with dim M ≥ 5 which is 1-connected with
δ-control with respect to q, there is a U V 1-map g:M → N which is ε-close to f as
measured in B.

Here is the long-awaited stabilty theorem for structures.

Theorem 10.2 Let n ≥ 5. If Mn is a closed n-manifold and p:M → B is a U V 1-map,
then for every ε > 0 there is a δ > 0 so that for any μ > 0, if φ:N → M is a δ-homotopy
equivalence over B then there is an ε-homotopy over B from φ to aμ-homotopy equivalence
over Bψ:N → M. A similar result holds for rel boundary structures if M is a manifold with
boundary.

In other words, if we are willing to allow a homotopy of fixed size, then if we start with a
sufficiently well-controlled homotopy equivalence we can improve the control of that homot-
opy equivalence by an arbitrary amount. This is the “squeezing theorem” for structures.12

Proof As above, the proof consists of working our way through the not-yet-existent surgery
exact sequence. We start with the systems {Lq,B,δi (Z)} reindexed so that we have commuta-
tive diagrams:

N (M)
σ

��

N (M)id��

σ

��

N (M)
σ

��

id�� . . .��

Ln,B,δ1(Z) Ln,B,δ2(Z)

γ2

��											
�� Ln,B,δ3(Z)

γ3

��											
�� . . .��

Hn(B;L(Z))

��

Hn(B;L(Z))��

��

Hn(B;L(Z))��

��

. . .��

and

N (M × I )

σ

��

N (M × I )
id��

σ

��

N (M × I )

σ

��

id�� . . .��

Ln+1,B,δ1(Z) Ln+1,B,δ2(Z)

γ2

���������������
�� Ln+1,B,δ3(Z)

γ3

���������������
�� . . .��

Hn+1(B;L(Z))

��

Hn+1(B;L(Z))��

��

Hn+1(B;L(Z))��

��

. . .��

12 Note that we do not claim to have constructed a fixed map which is a μ-equivalence for all μ.
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Assume, further, that the δi ’s have been chosen so that for q = n, n + 1

(i) Degree one normal maps φ:N → M with vanishing surgery obstruction in Lq,B,δi (Z)

are normally bordant to δi−1-equivalences.
(ii) Each α ∈ Lq,B,δi (Z) can be Wall-realized by a normal bordism to an δi−1-equivalence

over B.
(iii) Each δi -thin h-cobordism over B has a δi−1-product structure over B.
(iv) δ0 = ε and δ4 = μ.

We take δ = δ3. Suppose that we are given a δ3-controlled homotopy equivalence φ:N →
M . The surgery obstruction of [φ] vanishes in Ln,B,δ3(Z), so an easy diagram chase shows
that the surgery obstruction of [φ] vanishes in Ln,B,δi (Z) for all i ≥ 3, so [φ] is normally
bordant to some δi -equivalence for each i . Choose a δ5-equivalence φ5:N5 → M normally
bordant toφ. The normal bordism�5:W5 → M× I has a surgery obstructionα in Ln,B,δ3(Z).
Wall realize an element ᾱ ∈ Ln,B,δ5(Z) whose image in Ln,B,δ2(Z) is the same as the image
of −α starting with φ5:N5 → M to get a normal bordism �:W → M × I from φ5 to a
δ4-homotopy equivalence φ′:N ′ → M .

The obstruction to surgering W5 ∪ W to a controlled h-cobordism dies in Ln,B,δ2(Z), so
we can surger the bordism rel boundary to a δ1-h-cobordism which has a δ0-product structure.
This provides the desired ε-homotopy from φ to a δ4-equivalence φ′ ◦ h, where h:N → N ′
is the homeomorphism coming from the product structure. ��

We now repeat our definition of δ-controlled structure sets.

Definition 10.3 Let M be a closed manifold and let p:M → B be a U V 1-map. We define

S ′δ

⎛
⎝

M
��

B

⎞
⎠ to consist of equivalence classes of δ-homotopy equivalences φ:N → M over B

modulo the relation that φ:N → M and φ′:N ′ → M are equivalent if there is a homeomor-

phism h:N → N ′ so that φ is δ-homotopic to φ′ ◦ h over B. We declare Sδ

⎛
⎝

M
��

B

⎞
⎠ to be the

image of S ′δi

⎛
⎝

M
��

B

⎞
⎠ in S ′δi−1

⎛
⎝

M
��

B

⎞
⎠ .
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Given stability of the system of surgery groups, Proposition 10.2 shows that the system⎧
⎨
⎩Sδi

⎛
⎝

M
��

B

⎞
⎠

⎫
⎬
⎭ is stable as a sequence of sets, that is, it is equivalent to a sequence of bijec-

tions. The proposition shows immediately that the sequence is equivalent to a sequence of
surjections and the relative version of the proposition shows that the sequence is equivalent
to a system of injections. This completes our proof of stability in dimensions ≥ 5.

Remark 10.4 As usual, all of the above extends to the bounded geometry case. The most
interesting extra step in this case is that we need to find a bounded geometry thickening of
a polyhedron of bounded geometry. For this, we note that a polyhedron B of complexity �
immerses in a simplex of dimension �+1.We obtain the required thickening of B by pulling
back a regular neighborhood of ��+1 in R

�+1. The rest of the argument goes through as
above.

11 The surgery sequence, functoriality, and everything else

If any neophytes have made it this far, here is the proof of the surgery exact sequence, which
we recall below:

. . . Hn+1(B;L) ����� Sε
( M↓

B

)
�� N (M) �� Hn(B;L)

If we start with a normal map, we can take its controlled surgery obstruction. If that dies,
then it can be surgered to an ε-equivalence for any ε > 0. Thus, it comes from a controlled
structure. Conversely, if the normal map comes from a controlled structure, then its controlled
surgery obstruction dies. Starting with a controlled structure, we can consider it as a normal
map and ask if it is normally bordant to a homeomorphism. If it is, there is a controlled
relative surgery obstruction in Hn+1(B;L) to surgering the normal bordism to a controlled
product. If this obstruction dies, then we can surger to a controlled product, which shows
that the original structure woas controlled homotopic to a homeomorphism.

Wall realization gives an action of Hn+1(B;L) on the controlled structures: start with a
controlled homotopy equivalence f :N → M and Wall realize an element α ∈ Hn+1(B;L),
obtaining a bordism (Wα, N , N ′). The controlled equivalence N ′ → M is the result of
acting on f by α. If a controlled structure goes to 0 in the normal maps, then it is obtained
by acting on id:M → M by some α.

If we have a U V 1-map p:B → B ′, then the entire surgery sequence controlled over B
maps to the surgery sequence controlled over B ′. This also works if the map is U V 1(δ) for
δ ≤ δ0 with δ0 depending on B ′ and p. If p happens to be Lipschitz with constant 1, then δ0

only depends on B ′.
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was being written.
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