Discrete Comput Geom (2010) 44: 912-930
DOI 10.1007/s00454-010-9241-8

Computing the Shortest Essential Cycle

Jeff Erickson - Pratik Worah

Received: 30 July 2009 / Revised: 6 January 2010 / Accepted: 6 January 2010 /
Published online: 28 January 2010
© Springer Science+Business Media, LLC 2010

Abstract An essential cycle on a surface is a simple cycle that cannot be contin-
uously deformed to a point or a single boundary. We describe algorithms to com-
pute the shortest essential cycle in an orientable combinatorial surface in O (n>logn)
time, or in O (nlogn) time when both the genus and number of boundaries are fixed.
Our results correct an error in a paper of Erickson and Har-Peled (Discrete Comput.
Geom. 31(1):37-59, 2004).

Keywords Computational topology - Topological graph theory - Combinatorial
surface - Essential cycles

1 Introduction

Cutting surfaces into topologically simpler components is a common technique in
combinatorial and algorithmic topology. For example, algorithms that repeatedly cut
a given surface along short, topologically nontrivial cycles have been used for remov-
ing topological noise from graphical models [21], finding short cut graphs for sur-
face parameterization [18], computing shortest paths in a given homotopy class [12],
approximating optimal traveling salesman tours in surface-embedded graphs [14],

Research reported in this paper was partially supported by NSF grant DMS-0528086. See
http://www.cs.uiuc.edu/~jeffe/pubs/essential.html for the most recent version of this paper.
This work was done while the second author was affiliated with the University of Illinois,
Urbana-Champaign.

J. Erickson (&)

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana,
IL 61801-2302, USA

e-mail: jeffe @illinois.edu

P. Worah
Department of Computer Science, University of Chicago, Chicago, IL 60637, USA
e-mail: pworah@cs.uchicago.edu

@ Springer

http://www.cs.uiuc.edu/~jeffe/pubs/essential.html
mailto:jeffe@illinois.edu
mailto:pworah@cs.uchicago.edu

Discrete Comput Geom (2010) 44: 912-930 913

probabilistically embedding high-genus graphs into planar graphs [2, 26], drawing
abstract graphs in the plane with the fewest possible crossings [28], and testing iso-
morphism between graphs of fixed genus [27]. These and other applications have
motivated a series of algorithms for computing optimal cycles with various topologi-
cal properties [4-9, 18, 29, 31, 35].

Cutting a surface along noncontractible cycles decomposes the surface into com-
ponents with genus zero, but those components may have an unbounded number of
boundary cycles. Further simplifying those components requires cutting along essen-
tial cycles, which are simple cycles that cannot be continuously deformed either to a
point or to a boundary cycle. Repeatedly cutting along essential cycles decomposes
the surface into pairs of pants, surfaces with genus zero and three boundary cycles.
Pants compositions are a standard tool in Riemannian geometry and low-dimensional
topology; see, for example, [20, 23, 34]. Colin de Verdiére and Lazarus [13] describe
a polynomial-time algorithm to compute the shortest pants decomposition in a given
homotopy class. The algorithm of Colin de Verdiére and Erickson to compute the
shortest path is a given homotopy class uses pants decompositions in its preprocess-
ing phase [12]. Eppstein [17] and Poon and Thite [33] describe algorithms to approx-
imate the shortest pants decomposition for the punctured plane.

The fastest algorithm known for computing shortest noncontractible cycles was
described by Erickson and Har-Peled [18]. In the same paper, the authors claim that
a simple modification of their algorithm computes the shortest essential cycle. How-
ever, as we show in Sect. 3, this claim is incorrect, in part because the set of essential
cycles does not have the 3-path property of Thomassen [31, 35]. We give a weaker
characterization of shortest essential cycles that leads directly to a cubic-time algo-
rithm. In Sect. 4, we improve the running time to O (n? logn), matching the running
time of Erickson and Har-Peled’s algorithm for shortest noncontractible cycles. For
surfaces with constant genus and a constant number of boundary cycles, we show
in Sect. 5 that the running time can be improved to O (nlogn), again matching the
fastest algorithms known for shortest noncontractible cycles [5, 29]. The correctness
of this faster algorithm relies on a convexity property of shortest essential cycles that
may be of independent interest.

2 Notation and Definitions

We begin with some definitions from topology [24, 36] and topological graph the-
ory [31].

Surface, Paths, Cycles, and Homotopy A surface (more formally, a 2-manifold with
boundaries) is a connected Hausdorff topological space that is locally homeomorphic
to a plane or a closed halfplane. The points with neighborhood homeomorphic to the
closed halfplane comprise the boundary of the surface; the boundary of a compact
surface is homeomorphic to the disjoint union of circles. A surface is orientable if it
has no subset homeomorphic to the Mobius strip; with a few explicit exceptions, our
results apply only to orientable surfaces. '

I1n particular, Lemma 4.1 and its dependents require orientability, and the algorithms in Sect. 5 rely on
previous results that assume orientability [5, 8].

@ Springer

914 Discrete Comput Geom (2010) 44: 912-930

In any topological space X, a path is a continuous function «: [0, 1] — X. An
arc is a path whose endpoints lie on the boundary of X', and a loop is a path whose
endpoints coincide. The concatenation « - B of two paths @ and 8 with a(1) = 8(0)
is defined by setting (« - B)(#) = «a(2¢t) forall t <1/2 and (« - B)(¢) = B(1 — 2¢) for
all > 1/2. The reversal « of a path « is defined by setting o(¢) = «(1 — t) for all .
A cycle is a continuous function y : S! — X, where S is the circle R/Z.

A path or cycle on a surface X' is simple if it is injective; at the risk of confusing
the reader, we sometimes use the same symbol to refer to both a simple path or
cycle (a function) and its image (a subset of X'). Two simple paths « and 8 on a
surface intersect transversely at a point p if there is a homeomorphism from an open
neighborhood B of p to the plane, such that « N B and 8 N B are mapped to a
pair of orthogonal lines. Two simple paths @ and B cross if, after contracting each
component of @ N B to a point, the remaining paths intersect transversely at some
point. Equivalently, two (sufficiently tame) simple paths do not cross if and only
if they can be made disjoint by an arbitrarily small perturbation. In particular, two
simple paths that intersect only at their endpoints do not cross.

A homotopy between two paths o and B with the same endpoints is a continuous
function & : [0, 1] x [0, 1] — X such that (0,) = «a(t) and h(1,t) = B(¢) for all ¢,
and i (s,0) = a(0) = B(0) and A(s, 1) = a(1) = B(1) for all s. Two paths « and S are
homotopic (written o =~ B) if there is a homotopy from one to the other. Two cycles
y and § are (freely) homotopic if there is a continuous function 4 : [0, 1] x ' — ¥
such that #(0,7) = y(t) and h(1,1) = 5(¢) for all ¢.

A loop or a cycle on a surface X is contractible if it is (freely) homotopic to
a point in ¥. A simple cycle y in X is separating if X \ y has more than one
connected component. A cycle in X is essential if it is simple, noncontractible, and
not homotopic to a boundary cycle of X.

Following earlier work [6, 7], we write X' « to denote the surface obtained by
cutting X along a simple arc or cycle «; each point of « becomes a pair of boundary
points in X ¢ «. (We suggest the pronunciation “snip” for the symbol -#.)

Combinatorial Surfaces An embedding of a graph G on a surface X' maps the ver-
tices of G to distinct points in X and edges of G to paths in X' that are disjoint except
at common endpoints. The faces of the embedding are maximal subsets of X' that are
disjoint from the image of the graph. An embedding is cellular if every face is home-
omorphic to an open disk; in particular, each boundary cycle is covered by a cycle
of edges in G. Any cellular embedding onto an orientable surface can be represented
combinatorially by a rotation system, which consists of a cyclic permutation 7, of
the edges incident to each vertex v. If e is an edge incident to vertex v, then the cyclic
sequence e, y(e), wy (7y(e)), . .. is called the clockwise ordering around v.

The input to our problem is a combinatorial surface [10, 12, 18, 30], which is an
abstract topological surface M together with an edge-weighted graph G cellularly
embedded on M. In the combinatorial surface model, we only consider paths and
cycles in M that arise as walks in G; in particular, paths and cycles may traverse the
same edge of G multiple times. The length of a path or cycle is the sum of the weights
of its edges, counted with appropriate multiplicity. A path or cycle in a combinatorial
surface is essentially simple if contains no crossing subpaths, or equivalently, if an

@ Springer

Discrete Comput Geom (2010) 44: 912-930 915

arbitrarily small perturbation is simple (injective). Essential cycles on combinatorial
surfaces may be only essentially simple.

The dual graph G* is defined with respect to the combinatorial surface X'°® =
(M*, G) obtained from X' = (M, G) by gluing a disk to each boundary cycle of M.
Specifically, the dual graph G* has a vertex for every face in G (including the disks
glued to the boundaries of X') and an edge for each edge in G (including edges along
the boundary of X'). The presence of a boundary cycle in M is recorded by setting
a bit in the corresponding face of the graph G; the dual graph G* stores the same
information in the vertices.>

For any subgraph F = (U, D) of G = (V, E), we write G \ F to denote the edge-
complement (V, E\ D). Also, for any subgraph F of G, we abuse notation by writing
F* to denote the corresponding subgraph of G*; every edge in F* is the dual of a
unique edge in F. In particular, we have the identity (G \ F)* = G* \ F*.

If « is an essentially simple curve in a combinatorial surface X, the cut surface
X+« is obtained by duplicating the vertices and edges of o with appropriate multi-
plicity. In the resulting surface ¥ -# «, some edges may lie on two different boundary
cycles (or even twice on the same boundary cycle), either because they appeared more
than once in «, or because they appeared both in & and on the boundary of X.

It is sometimes helpful to view the graph G as a continuous metric space, so that
distances and shortest paths between points in the interior of edges are well defined.
Specifically, any edge with weight £ is isometric to the real interval [0, £].

Shortest Paths and Useful Cycles Without loss of generality, we assume that any
two vertices in the graph are joined by a unique shortest path. A standard perturbation
technique like the Isolation Lemma [32] can be used to enforce this assumption if
necessary. Our assumption implies that the intersection of any two shortest paths is
either empty or a single common subpath. Unlike previous works on combinatorial
surfaces [10, 12, 18, 19, 30], we also assume without loss of generality that each
edge in G is a shortest path between its endpoints. This assumption can be enforced,
without changing the shortest essential cycle, by bisecting each “long” edge at its
midpoint.

For any source vertex s, we let T denote the tree of shortest paths in G from s to
every other vertex. The cut locus with respect to s is (G \ Ts)*, the subgraph of G*
containing all edges not dual to edges of 7. For a surface of genus g, Euler’s formula
implies that the cut locus is a tree with 2g extra edges [16]. The reduced cut locus
R} is the graph obtained by repeatedly removing vertices of degree 1 from the cut
locus [19].

For a fixed graph G, let o (u, v) denote the shortest path from vertex u to ver-
tex v. For any vertex s and edge uv, let y (s, uv) denote the oriented cycle formed
by concatenating the shortest path o(s,u), the edge uv, and the shortest path
o (v, s). Finally, for any edges st and uv, let y(st,uv) denote the directed cycle
ts-o(s,u) -uv-o(v,t). In particular, y (st, uv) and y (st, vu) are different cycles.

20ur definition of the dual graph differs slightly from the definition used by Erickson and Colin de
Verdiere [12].

@ Springer

916 Discrete Comput Geom (2010) 44: 912-930

3 Antipodal Edges

Fix an orientable combinatorial surface X'. A set C of cycles in X has the 3-path
property if the following condition holds: For any paths «, 8, and o in X with the
same endpoints, if the cycle « - B is in C, then at least one of the cycles 8- and o - @
isalsoinC.

Thomassen [31, 35] defined the 3-path property and proved that the set of noncon-
tractible cycles has the 3-path property. It follows that for any vertex x on the shortest
noncontractible cycle y, the cycle can be decomposed into two equal-length shortest
paths from x to its furthest point x” along y . (If shortest paths are unique, the furthest
point x” lies in the interior of an edge.) This observation implies that the shortest non-
contractible cycle can be computed in O (n°) time, by combining Dijkstra’s shortest
path algorithm with a linear-time test for contractibility [6, 35]. By interleaving the
contractibility test with Dijkstra’s algorithm, Erickson and Har-Peled [18] improved
the running time of this algorithm to O (n?logn). Faster algorithms are known for
surfaces with small genus and few boundaries [4-6, 29]; see Sect. 5.

Erickson and Har-Peled claimed that a similar algorithm computes the shortest
essential cycle, but their algorithm is incorrect, in part because the set of essential
cycles does not have the 3-path property [11]. The shortest essential loop through a
point x is not necessarily composed of two shortest paths from x. Moreover, in the
combinatorial setting, the overall shortest essential cycle cannot necessarily be split
into two equal-length shortest paths that share a vertex. The following counterex-
ample establishes these claims, along with the necessity of considering essentially
simple cycles.

Consider the combinatorial surface X' with genus zero and four boundaries illus-
trated in Fig. 1(a). This surface can be constructed by deleting a small neighborhood
of each vertex from the boundary of a regular tetrahedron. Each face of X is an ir-
regular hexagon; each boundary edge has length 1; and each nonboundary edge has
length 2. The shortest essential cycles in this surface have length 10; each shortest

Fig. 1 A counterexample for Erickson and Har-Peled’s algorithms to compute shortest essential loops
and cycles. (a) A combinatorial surface with genus 0 and four triangular boundary cycles. (b) A shortest
essential cycle in this surface

@ Springer

Discrete Comput Geom (2010) 44: 912-930 917

essential cycle has the form y = uv - vw - wx - xy - yz - zx - xw - wu, where wx
is a nonboundary edge between two clockwise boundary cycles uvw and xyz. See
Fig. 1(b). This cycle is not simple, because it traverses the edge wx twice, but it is
essentially simple. (The related cycle uv - vw - wx - xz - zy - yx - xw - wu traverses the
same edges as y, with the same multiplicity, but it is not essentially simple, because
the subpaths vw - wx - xz and yx - xw - wu cross.) Vertices u and y are antipodal
on y, but the shortest path uw - wx - xy is not a subpath of y.

However, we can prove a weaker structural result. Like the 3-path condition, the
following lemmas apply not only to combinatorial surfaces, but more generally to
any surface endowed with a metric.

Lemma 3.1 Let y be the shortest essential cycle in a (not necessarily combinatorial
or orientable) surface X, and let x and z be arbitrary points in y. There is a shortest
path from x to z that does not cross y .

Proof Suppose to the contrary that every shortest path from x to z crosses y. Let
o (x, z) be a shortest path from x to z. It suffices to consider the case where o (x, 7)
crosses y exactly once; let y be a point in y N ¢ such that the subpaths o (x, y) and
o (y, z) do not cross y. Decompose y into three paths y(x,y) - y(y,z) - y(z, x) and
observe that none of these three paths is a shortest path. See Fig. 2.

Now consider the following essentially simple cycles, expressed as loops based
at y:

v:=y(,2) v x)-ox,y), vi=o(x,y)-yx,y),

v3:=y(,2)-0(y,2), va:=0(y,2) -y x) yx,y).

Each cycle y; is shorter than y and is therefore inessential. Each cycle y; is con-
tractible in X'®, because every essentially simple cycle in X' that is noncontractible in
X'* is essential in X'. The shortest essential cycle y is homotopic (in X) to the cycles
y1 - ¥2 and y3 - y4; thus, each cycle y; is noncontractible in X'. It follows that each
cycle y; is homotopic to a distinct boundary cycle. (Moreover, the surface X~ must
have genus zero and exactly four boundaries.)

We conclude that the essentially simple cycle y» - 3 is essential. But this is impos-
sible, because y2 -3 =0 (x, y) - ¥ (x, y) -0 (¥, z) - ¥ (¥, z) is shorter than the shortest
essential cycle y. 0

Fig. 2 A shortest path &
(dashed) crossing a shortest
essential cycle y (solid)

S<

>
<
A

P Uil §

@ Springer

918 Discrete Comput Geom (2010) 44: 912-930

Lemma 3.2 Let y be the shortest essential cycle in a (not necessarily combinatorial
or orientable) surface. There is a point x € y such that y consists of two equal-length
shortest paths from x to its farthest point on y .

Proof Let x be an arbitrary point of y; let x’ be the point furthest from x along y; and
let and B be the two paths from x to x’ that comprise y. Clearly « and 8 have the
same length. Suppose o and § are not shortest paths. Let o be a shortest path from x
to x’ that does not cross y, as guaranteed by the previous lemma. The loops y' =« -5
and y” = o - B are both shorter than y, so neither of them is essential. However,
because o does not cross y, both of these loops are essentially simple. Thus, y' % y
and y” % y. On the other hand, neither ¥’ nor y” is contractible, because y ~ y’-y".
Thus, both ¥’ and y” are freely homotopic to boundary cycles, which implies that y
must bound a pair of pants. (In particular, if the surface has at most one boundary, the
proof is complete.)

Reparameterize the cycle y as a loop y : [0, 1] — M with basepoint y (0) =
y (1) = x, such that for all ¢, the point on y furthest from y (¢) is y (r £ 1/2). For
each ¢, let o; and B; denote the two paths from y(¢) to y(t = 1/2) in y, and let o;
denote a shortest path from y (¢) to y (t £ 1/2) that does not cross y .

We now use a continuity argument to show that o; and 8; must be shortest paths
for some ¢. For the sake of argument, suppose «; and g; are never shortest paths. By
our previous argument, for all 7, the loops «; - &; and o, - B; are freely homotopic to
boundary cycles.

Let P denote the pair of pants bounded by y. If every path o; lies inside P, then
for some ¢, there must be two shortest paths oy and o] from y (¢) to y (+ £1/2) that are
not homotopic in P; see Fig. 3. If o/ does not separate the two boundary circles, then
either «; - o or o; - B; is an essential cycle shorter than y, which is a contradiction.
Otherwise, oy and o, must cross. By switching paths at the crossing, we obtain a third
shortest path o, that does not separate the two boundary circles, and again we obtain
a contradiction.

On the other hand, if o; is not always inside P, then for some ¢, there are two
nonhomotopic shortest paths o; and o/, one inside P and the other outside. By our
earlier argument, the complement of P must be another pair of pants, whose legs are
separated by o . It follows that o/ - o7 is an essential cycle shorter than y, which is a
contradiction. 0

Fig. 3 Splitting a pair of pants

RV(EE)

@ Springer

Discrete Comput Geom (2010) 44: 912-930 919

Lemma 3.2 immediately implies the following characterization of shortest es-
sential cycles on combinatorial surfaces. Recall that y (stz, uv) denotes the cycle
ts-o(s,u)-uv-o(v,t).

Theorem 3.3 (Antipodal edges) In any combinatorial surface X, there are two edges
uv and st such that y (st, uv) is the shortest essential cycle in X.

The following lemma characterizes the essentially simple cycles of the form
y(st,uv).

Lemma 3.4 For any edges st and uv, the cycle y (st, uv) is essentially simple if and
only if the shortest paths o (s, u) and o (v, t) do not cross.

Proof If y (st, uv) is essentially simple, then clearly o (s, #) and o (v, ¢) do not cross.

On the other hand, suppose o (s, u) and o (v, t) do not cross. Assume that o (s, u)
and o (v, t) intersect, since otherwise y (s, uv) is simple. The uniqueness of shortest
paths implies that T = o (s, u) No (v, t) is a simple path.

Suppose uv is an edge in the shortest path tree 7. If u is an ancestor of v in Ty,
then o (s, v) = o (s, u) - uv, which implies that y (st,uv) =ts-o(s,v) - o(v,t) =
y (v, ts). On the other hand, if v is an ancestor of u in T, then y(st,uv) is the
concatenation of y (v, ts) with the spur vu - uv. In both cases, y (st, uv) is essentially
simple. Symmetric arguments imply that y (s¢, uv) is essentially simple if uv € T; or
steT,UT,.

Now suppose uv ¢ Ty U T; and st ¢ T, U T,,. Then vertices ¢ and v do not lie on
the shortest path o (s, u); otherwise, either st or uv would not be a shortest path.
Similarly, vertices s and u do not lie on the shortest path o (v, t). Thus, each of the
vertices s, t, u, and v appears exactly once in y (st, uv), and therefore none of these
four vertices lie on the common path 7. Because the paths o (s, u) and o (v, t) do not
cross, we can perturb o (s, u) and o (v, t) within an arbitrarily small neighborhood
of t so that they become disjoint. This neighborhood avoids st and uv, so the per-
turbation removes all self-intersections from y (st, uv). We conclude that y (st, uv)
is essentially simple. O

We emphasize that Lemma 3.4 requires our assumption that every edge in G is a
shortest path between its endpoints. Figure 4 shows a graph in which the edge st is not
the shortest path from s to 7. The cycle y (st, uv) crosses itself at vertex s and thus is

Fig. 4 (a) Lemma 3.4 may be false if some edge is not a shortest path. (b) Bisecting long edges restores
Lemma 3.4

@ Springer

920 Discrete Comput Geom (2010) 44: 912-930

not essentially simple, even though the shortest paths o (s, #) and o (v, ¢) do not cross.
We can enforce our assumption by bisecting the long edge st into two equal-length
edges sx and xt. In the resulting graph, the cycle y (sx, uv) is essentially simple,
because the shortest paths o (x, v) and o (s, #) do not cross, and the cycle y (xt, uv)
is not essentially simple, because the shortest paths o (¢, v) and o (x, u) do cross.

We are now ready to describe our algorithm for computing the shortest essential
cycle. Our algorithm relies on the following subroutine.

Lemma 3.5 Given two shortest paths o and t with distinct endpoints, we can deter-
mine whether they cross in O (n) time.

Proof Color the vertices of o \ t red, 7 \ o blue, and o N T purple. If there are no
purple vertices, then o and 7 are disjoint and therefore do not cross. Otherwise the
uniqueness of shortest paths implies that o N 7 is a single path; let x and y denote
the endpoints of this path. If either x or y is an endpoint of either o or 7, then the
paths do not cross. Otherwise, there are two cases to consider. If there is only one
purple vertex x =y, then o and 7 cross if and only if the red and blue neighbors of
x alternate in cyclic order. Otherwise, o and t cross if the cyclic orders of red, blue,
and purple neighbors of x and y are the same.

We can color the vertices of o and 7 and identify x and y in O (n) time by simply
traversing the paths. The cyclic order of the neighbors of x and y can be obtained in
O (n) time from the embedding. Thus, the total running time is O (n). O

Theorem 3.6 The shortest essential cycle in a combinatorial surface can be com-
puted in O(n3) time.

Proof We begin by computing the shortest-path tree T for every vertex s using, for
example, Dijkstra’s algorithm [15]. Then for every pair of edges st and uv, we check
whether the cycles y (st, uv) and y (st, vu) are essential as described below. Finally,
we return the shortest candidate cycle that is found to be essential.

Given a candidate cycle y (st, uv), we first check whether it is essentially sim-
ple using Lemma 3.5. If the cycle is essentially simple, we then perform simul-
taneous depth-first searches on both sides of the cycle, following the strategy of
Thomassen [35] and Erickson and Har-Peled [18]. If the two searches meet, the cycle
is nonseparating and therefore essential. Otherwise, we compute the Euler character-
istic of the smaller component by a depth-first traversal. The cycle is essential if and
only if neither component has Euler characteristic 1 (a disk) or O (an annulus).

Constructing n shortest path trees requires O (n”logn) time, and we test each of
the O (n?) candidate cycles in O (n) time, so the overall running time of our algorithm
is O(n?). O

4 Faster Algorithms

In this section, we improve the brute-force algorithm described in the previous sec-
tion. The key ingredient in our improvement is a preprocessing phase that allows us to

@ Springer

Discrete Comput Geom (2010) 44: 912-930 921

determine in constant time whether a given cycle y (st, uv) is essentially simple, and
if so, whether the cycle is essential. We first describe the improvement for genus-zero
surfaces, then its generalization to higher-genus surfaces.

4.1 Genus Zero

Fix an orientable combinatorial surface ¥ with genus 0 and b boundary cycles. We
can assume that b > 4, since otherwise there are no essential cycles in X'.

We first describe our data structure for fast simplicity queries. We call two edges
st and uv opposing if uv ¢ Ty UT; and st ¢ T, U T,. The proof of Lemma 3.4 implies
that if st and uv are not opposing edges, then y (s, uv) must be essentially simple.

So suppose st and uv are opposing edges. Vertices ¢ and u do not lie on the shortest
path o (s, v), and vertices ¢ and v do not lie on o (s, u). It follows that the shortest
paths o (s, u), o(s,v), and o(s,t) = st have a well-defined orientation around s,
either clockwise or counterclockwise, induced by the rotation system of X. Let X’
be the combinatorial surface obtained by contracting all but the final edges of o (s, u)
and o (s, v). If edges st, su, and sv appear in clockwise order around s in X/, we say
that the triple (¢, u, v) is oriented clockwise around s; otherwise, (¢, u, v) is oriented
counterclockwise around s. The orientations of (s, u, v) around ¢, (s, t, v) around u,
and (s, ¢, u) around v are defined similarly.

Lemma 4.1 Let st and uv be opposing edges in an orientable combinatorial surface
of genus 0. The cycle y (st, uv) is not essentially simple if and only if the orientations
of (t,u,v) around s, (s,u, v) around t, (s, t,v) around u, and (s, t, u) around v are
either all clockwise or all counterclockwise.

Proof The lemma follows from a brute-force enumeration of all possible embeddings
of the complete graph K4 onto the sphere (or the plane) with vertices s, ¢, u, v and
“edges” st, uv, o (s,u), o(s,v),o(t,u),and o (¢, v).

Two shortest paths with a common vertex cannot cross, and no path can cross
a single edge. If both o (s, u) and o (¢, v) cross and o (s, v) and o (¢, u) cross, the
Jordan curve theorem implies that one of those pairs of shortest paths must cross
more than once, which is impossible. Thus, there are exactly three possible crossing
patterns, illustrated in Fig. 5: (1) o (s, v) and o (¢, u) cross, but o (s, u) and o (¢, v) do
not; (2) o (s, u) and o (¢, v) cross, but o (s, v) and o (¢, u) do not; and (3) neither pair

—t k—p ¢
/)
/ /

S=—=, %,

Fig. 5 The only possible configurations of s, t, u, v, up to homotopy and reflection. The bold cycle is
y(st,uv)

@ Springer

922 Discrete Comput Geom (2010) 44: 912-930

of shortest paths crosses. By Lemma 3.4, only the second crossing pattern implies
that y (s, uv) is not essentially simple. Each crossing pattern is realized by exactly
two orientations of the four vertex triples. In particular, the second crossing pattern
occurs exactly for the orientations listed in the statement of the lemma. We omit
further tedious details. O

Lemma 4.2 After O(n?) preprocessing time, we can determine in O (1) time whether
any cycle y (st,uv) is essentially simple on an orientable combinatorial surface of
genus 0.

Proof In the preprocessing phase, we compute the shortest path tree 7 for each ver-
tex s, using the linear-time algorithm of Henzinger et al. [25]. We then rank the nodes
in each shortest path tree T by a clockwise preorder traversal. We select an arbitrary
child x of s and use the local clockwise ordering around s to linearly order the neigh-
bors of s starting from x; we visit the subtrees of s in this linear order. For each vertex
y # s, we visit the neighbors of y starting with the successor of the parent of y in the
local clockwise ordering about y. We rank the nodes of T by their first appearance
in this traversal; thus, a node visited earlier has a lower rank than a node visited later.
We store the ranks in an array indexed by the vertices: rank[s, v] is the clockwise
preorder rank of v in 7. Finally, for any opposing edges st and uv, the triple (¢, u, v)
is oriented clockwise around s if and only if

rank([s, t] < rank[s, u] < rank[s, v], or
rank[s, u] < rank[s, v] <rank[s,t], or

rank[s, v] < rank[s,] < rank[s, u].

Now given any pair of edges st and uv, we can easily determine whether they are
opposing in constant time; if not, the cycle y (st, uv) must be essentially simple. If
st and uv are opposing, we can determine whether y (st, uv) is essentially simple,
in constant time, by computing the orientation of each triple of vertices around the
fourth vertex and applying Lemma 4.1. (]

Once we know that a cycle y(st, uv) is essentially simple, we check whether
it is essential by computing the number of boundary cycles on one side. For any
essentially simple directed cycle y in X, let b(y) denote the number of boundary
cycles in the component of X'+ y lying to the right of y; the cycle y is essential if
and only if 2 < b(y) < b — 2. A second preprocessing phase allows us to compute
b(y (st,uv)) in constant time.

Lemma 4.3 After O (n?) preprocessing time, we can determine in O (1) time whether
any essentially simple cycle y (st,uv) is essential, on an orientable combinatorial
surface of genus 0.

Proof Fix a vertex s. Recall that we have already computed the shortest path tree T

and that boundary cycles are represented by marked vertices in the dual graph G*. Fix
an arbitrary unmarked dual vertex r* as the root of the dual spanning tree (G \ Ty)*.

@ Springer

Discrete Comput Geom (2010) 44: 912-930 923

For any dual vertex f*, let B(s, f*) denote the number of marked dual vertices in
the subtree rooted at f*. We can compute B(s, f*) for all dual vertices f* in O (n)
time by a simple depth-first traversal of the dual spanning tree. We store these values
in yet another array.

Now consider any cycle y (s, uv). If uv is an edge in Ty, then y (s, uv) is just a
doubled shortest path, so b(y (s, uv)) = 0. Otherwise, let f be the face adjacent to
uv whose dual vertex f* is further from the root r* of the dual spanning tree. If
f lies to the right of the directed edge uv, then b(y (s, uv)) = B(s, f*); otherwise,
b(y(s,uv)) = b — B(s, f*). Thus, after preprocessing, we can compute b(y (s, uv))
in constant time.

Finally, any essentially simple cycle y (st, uv) can be obtained by concatenating
the cycles y (v, ts) and y (s, uv) and canceling the common shortest path o (v, s).
If the regions to the right of y (v, ts) and y (s, uv) are disjoint, then b(y (st, uv)) =
b(y (v,ts)) + b(y (s, uv)); otherwise, b(y (st, uv)) = b(y (v, ts)) + b(y (s, uv)) — b.
In both cases, we have the identity

b(y (st,uv)) =b(y(v,1s)) + b(y(s,uv)) mod b.

Thus, we can determine whether y (st, uv) is essential in constant time. O
We conclude:

Theorem 4.4 The shortest essential cycle in an orientable combinatorial surface of
genus 0 can be computed in O (n?) time.

4.2 Positive Genus

Now suppose the input surface X' has genus g > 0 and b > 0 boundary cycles. Recall
that X'° is obtained from X by gluing a disk to each boundary cycle.

Lemma 4.5 Suppose y (st, uv) is the shortest essential cycle in X. Either y (st, uv)
is also the shortest noncontractible cycle in X°, or the cycles y(s,uv), y(t,uv),
y(u, st), and y (v, st) are all contractible in X°.

Proof Every noncontractible cycle in X'® is essential in X'. The cycle y (s, uv) cannot
be longer than y (st, uv). Thus, if y (s, uv) is noncontractible in X'®, it must have the
same length as y (s¢, uv). The uniqueness of shortest paths then implies that y (s, uv)
and y(st,uv) are in fact the same cycle. Thus, y (sz,uv) is the shortest essential
cycle in X' and is noncontractible in X'®, which implies that it must be the shortest
noncontractible cycle in X'®. Similar arguments apply if any of the other three cycles
is noncontractible in X'°. g

Say that cycle y (st, uv) is reducible if all the cycles y (s, uv), y (¢, uv), y (u, st),
and y (v, st) are all contractible in ¥'*. Lemma 4.5 immediately implies that either
the shortest essential cycle y (st, uv) is noncontractible in X, or y (st, uv) is the
shortest essential reducible cycle.

@ Springer

924 Discrete Comput Geom (2010) 44: 912-930

Our algorithm to find the shortest essential reducible cycle in X' requires only a
few changes from the genus-zero case. As before, our algorithm preprocesses the
graph so that we can quickly determine whether a cycle y (s¢, uv) is both essentially
simple and essential; however, we now only have to test reducible cycles.

Lemma 4.6 After O(n®logn) preprocessing time, we can determine in O(1) time
whether any cycle y (st, uv) is both reducible and essential on any orientable combi-
natorial surface.

Proof For any cycle y that is contractible in X'®, let b(y) denote the number of holes
in the genus-0 component of X+ y. Recall that the reduced cut locus of a vertex s is
the dual subgraph R} obtained by repeatedly removing all vertices of degree 1 from
the cut locus (G \ Ty)*.

In the preprocessing phase, we preform the following computations for each
vertex s. First, we compute the shortest path tree 7, using Dijkstra’s algorithm
[15]. Next, we compute the reduced cut locus R} and its complementary forest
F} = (G \ Ts)* \ R}, as well as the clockwise preorder ranks of the vertices of 7.
Finally, for every edge uv such that (uv)* € F;* (so the cycle y (s, uv) is contractible
in X'*), we compute b(y (s, uv)) as follows. We define the root of each tree in F; to
be the unique vertex that is also in the reduced cut locus R;. For each dual node f*
in F, let B(s, f*) denote the number of marked dual vertices (representing bound-
ary cycles) in the subtree of F;" rooted at f*; we can compute all these values by a
straightforward depth-first search of F;". For each edge uv, let f(s, uv) denote the
face adjacent to uv whose dual vertex f (s, uv)* lies further from the root of its com-
ponent of F*. Observe that b(y (s, uv)) = B(s, f (s, uv)*). We also store whether the
face f (s, uv), and thus the genus-zero component of X'-# y (s, uv), lies to the right or
left of the oriented edge uv. The preprocessing time for each vertex s is dominated by
Dijkstra’s algorithm, which runs in O (nlogn) time; everything else takes O (n) time.

For any vertex s and any edge uv, the cycle y (s, uv) is contractible in X'* if and
only if the dual edge (uv)* is not in the reduced cut locus R}. Thus, to test whether
acycle y (st, uv) is reducible in constant time, we simply verify that the edges st or
uv do not lie in the reduced cut loci of s, #, u, and v.

Now suppose y (st, uv) is reducible. Let H be the union of the shortest paths st,
uv, o(s,u), o(s,v), o(t,u), and o (¢, v); tedious case analysis implies that at most
one component of X'+ H is not a disk. Thus, the proof of Lemma 4.1 applies verbatim
to reducible cycles y (st,uv) on higher-genus surfaces. It follows that we can test
whether a reducible cycle y (st, uv) is essentially simple in constant time exactly as
in the genus-zero case: first check whether st and uv are opposing, and if so, compute
the orientation of each triple of vertices around the fourth using clockwise preorder
ranks.

If y(st,uv) is both reducible and essentially simple, we compute b(y (st, uv))
in constant time as follows. If faces f(s,uv) and f(u, st) lie on the same side of
cycles y (s, uv) and y (v, ts), then b(y (st,uv)) = b(y(s,uv)) + b(y (v, st)). Other-
wise, the genus-zero components of X'-# y (s, uv) and X+ y (v, st) must be nested,
so b(y (st,uv)) = |b(y(s,uv)) — b(y(v,ts))|. Finally, y (st,uv) is essential if and
only if b(y (st, uv)) > 2, because the other component of X'-# y (st, uv) has positive
genus. O

@ Springer

Discrete Comput Geom (2010) 44: 912-930 925

This lemma immediately implies that we can compute the shortest reducible essen-
tial cycle y in O (n?logn) time. We can also compute the shortest noncontractible cy-
cle y* in X* in O (n? logn) time, using the algorithm of Erickson and Har-Peled [18].
The shortest essential cycle in X is the shorter of y and y*. This concludes the proof
of our main result.

Theorem 4.7 The shortest essential cycle in an orientable combinatorial surface can
be computed in O (n* logn) time.

If g = O(n'~*) for some constant & > 0, we can improve the running time to
O (n?) by substituting the shortest-path algorithm of Henzinger et al. [25] for Dijk-
stra’s algorithm. This exactly matches the performance of Erickson and Har-Peled’s
algorithm to compute shortest noncontractible cycles [18].

5 Small Genus and Few Boundaries

In this section, we describe how to compute the shortest essential cycle in O (b*nlogn)
time for a combinatorial surface of genus 0, or in O((b*+ g%n logn) time when
the genus g is positive. The first algorithm improves our earlier result whenever
b = o(n'/*); the second algorithm is faster whenever g = o(n'/3) and b = o(n'/?).

In fact, our faster algorithm is a special case of a more general result. An es-
sentially simple cycle y is k-inessential if it separates the underlying surface into
two components, at least one of which has genus zero and at most k bound-
aries (including y), and k-essential if it is essentially simple but not k-inessential.
Thus, 1-essential is the same as noncontractible, and 2-essential is the same as es-
sential. Here we describe algorithms to compute the shortest k-essential cycle in
O (poly(g, b) - nlogn) time for any fixed integer k.>

As in Sect. 4, we first describe our algorithm for genus-zero surfaces and then
generalize to the higher genus case. Surprisingly, genus-zero surfaces present more
difficulties than higher-genus surfaces, and surfaces with few boundaries are more
difficult than surfaces with many boundaries. In fact, the most difficult input for our
original problem (k = 2) is a surface with genus zero and four boundaries; see Fig. 1!

5.1 Constant Genus and Number of Boundaries

If the parameters g and b are constants, then for any k, we can compute the shortest
k-essential cycle in O (nlogn) time using a recent algorithm of Chambers et al. [8,
Theorem 6.1]. The input to their algorithm is a combinatorial surface X and a set of
pairs S ={(g1, b1), (g2, b2), ..., (gr, br)}. An essentially simple cycle y is allowed
by S if it separates X' into two components, at least one of which has genus g; and b;
boundaries (including y), for some pair (g;, ;) € S. The algorithm of Chambers et
al. computes the shortest cycle allowed by any set S in (g + b)? €T nlogn time.

31t is unclear whether our earlier near-quadratic algorithms can be extended to find shortest k-essential
cycles for any k > 2. In particular, Lemma 3.2 does not directly generalize: There may be no pair of
antipodal points on the shortest 3-essential cycle that splits it into two equal-length shortest paths.

@ Springer

926 Discrete Comput Geom (2010) 44: 912-930

Theorem 5.1 For any integer k, the shortest k-essential cycle in an orientable combi-
natorial surface with genus g and b boundaries can be computed in
(g +b)2G Dy logn time.

Proof On a genus-0 surface, a cycle is k-essential if and only if it is allowed by the set
{(0,b)) | k+ 1 <b' <b—k+ 1}. (In particular, the surface has no k-essential cycles
if b < 2k.) Thus, the shortest k-essential cycle can be computed in time 5% ®nlogn.

On a surface X' with positive genus, a cycle is essential if and only if it is either
noncontractible in X® or allowed by the set S = {(0,b") |k +1<b' <b+1}. (In
particular, if b < k, every essential cycle in X' is noncontractible in X'®.) The shortest
noncontractible cycle in X'® can be computed in time g?® n logn using an algorithm
of Kutz [29],* and the shortest cycle allowed by S can be computed in time (g +
b)9@€*P) ylogn. The shortest k-essential cycle is the shorter of these two cycles. [

5.2 Convexity

To improve the running time of our algorithm when g and b are large, we rely on
another relaxation of Thomassen’s 3-path condition. A subset X of a (not necessarily
combinatorial) surface X' is convex if every shortest path in X' between two points
in X lies entirely in X. This definition is consistent with both Harary and Niemi-
nen’s definition of geodesic convexity in graphs [3, 22] and the standard definition
of total convexity in Riemannian geometry [1]. In particular, a cycle is convex if and
only if no shortest path crosses the cycle more than once; moreover, a convex cy-
cle must be simple (not just essentially simple). An immediate consequence of the
3-path condition, first observed by Cabello and Mohar [6] and then later used by sev-
eral authors [4, 5, 29], is that the shortest noncontractible and nonseparating cycles
are convex. Erickson and Whittlesey proved that every cycle in the minimum-length
homology basis is convex, or in their terminology, tight [19].

Nonseparating cycles are k-essential for every integer k. Thus, if the shortest es-
sential cycle y is nonseparating, it is the shortest nonseparating cycle, which implies
that it is convex. However, if the shortest k-essential cycle is separating, it may not be
convex (unless k = 1); see Fig. 1(b). The following lemma shows that if the shortest
essential cycle is nonconvex, then it separates the surface into two components with
useful structure.

Lemma 5.2 Let y be the shortest k-essential cycle in a (not necessarily combinato-
rial or orientable) surface X . Suppose y is separating, and let X+ and X~ denote
the components of X+vy. If X7 is nonconvex, then X~ has genus 0 and at most
2k — 1 boundaries (including y).

Proof Suppose X7 (and therefore also y) is not convex. Let p and g be points in X
whose shortest path o (p, g) does not lie entirely in . Without loss of generality,
we can assume that o (p, ¢) lies entirely in X'~ and intersects y only at its endpoints.

4The time for this step can be improved to 0(g3n logn) using the more recent algorithm of Cabello and
Chambers [5], but this improvement will not change the final running time.

@ Springer

Discrete Comput Geom (2010) 44: 912-930 927

The cyclesy' =0o(p,q) -y (q, p) and y” =0 (q, p) -y (q, p) are boundaries of the
surface X~ y. Uniqueness of shortest paths implies that both y” and y” are shorter
than y and therefore k-inessential. In particular, both " and y” are contractible in
X', which implies that y is also contractible in X'®. In other words, X~ has genus 0.

It follows that X ~-# o (p, g) has two genus-0 components, one bounded by y’ and
the other bounded by y”. Each of these components has at most k boundaries. We
conclude that X~ has at most 2k — 1 boundaries. g

For the special case k = 1, Lemma 5.2 simply restates the observation that the
shortest noncontractible (1-essential) cycle is convex. (If X+ and X~ are convex,
then their intersection y is convex as well. If the shortest noncontractible cycle is
nonseparating, it is the shortest noseparating cycle and is therefore convex.) The spe-
cial case kK = 2 is also implicit in the proof of Lemmas 3.1 and 3.2: If the shortest
(2-)essential cycle is not convex, then it must be the boundary of a pair of pants.

5.3 Genus Zero, Many Boundaries

Suppose the input surface X has genus 0. If b < 4k — 4, we can compute the short-
est k-essential cycle in 5@ nlogn = k°®nlogn time by Theorem 5.1. So let us
assume that b > 4k — 3.

Our approach is to find two disjoint sets of k boundary cycles on opposite sides of
the shortest k-essential cycle, by brute force enumeration, and compute the short-
est cycle separating those two sets. Specifically, we enumerate all possible pairs
A ={61,...,6¢} and A = {Aq, ..., A} of disjoint sets, each containing & boundary
cycles from X'. For each pair of sets A and A, we compute a certain cycle y (A, A)
that separates A and A. Finally, we return the shortest cycle y (A, A), over all pairs
(A, A), as the shortest k-essential cycle.

For any set A of k boundaries, we define a forest F(A) of shortest paths that
connect A as follows. Shrink each boundary in A to a single representative vertex.
(Equivalently, change the weights of the edges of boundaries in A to 0 and choose
an arbitrary vertex on each boundary to represent that boundary.) Next, construct
the minimum spanning tree T of those k representative vertices in the shortest-path
metric. Each edge of T is a shortest path in X' between two boundaries in A; let F(A)
be the union of those k — 1 shortest paths. Erickson and Har-Peled [18, Lemma 6.4]
show that F(A) can be constructed in O (nlogn) time.

Now fix two disjoint sets A and A, each containing k boundaries. Let X' (A, A)
denote the surface obtained by gluing disks to all boundaries of X' outside the set
A U A and cutting along the forest F(A). This surface has exactly k + 1 boundaries:
all the boundaries in A, plus one new boundary §*. We define y (A, A) to be the
shortest cycle in X' (A, A) that is homotopic to the new boundary §*. This cycle can
be computed in O(nlogn) time (with no hidden dependence on g, b, or k) using an
algorithm of Cabello et al. [7, Lemma 6].

Our algorithm examines (i) (b;k) = O (b*) pairs of k-element subsets of bound-
aries and computes a k-essential cycle separating each pair in O (nlogn) time. Thus,
the overall running time of our algorithm is O (b**n logn).

The correctness of our algorithm follows from Lemma 5.2. Let A and A be arbi-
trary sets of k boundaries on opposite sides of the shortest k-essential cycle y. Then

@ Springer

928 Discrete Comput Geom (2010) 44: 912-930

y is also the shortest cycle separating A and A. Because b > 4k — 3, the surface
X #y has at least 4k — 1 boundaries (including both copies of y), so at least one
of its components must have at least 2k boundaries. So Lemma 5.2 implies that at
least one component of X'y is convex, which implies that either no shortest path
in F(A) crosses y, or no shortest path in F(A) crosses y. Our algorithm tries both
possibilities.

Theorem 5.3 For any integer k, the shortest k-essential cycle in an orientable com-
binatorial surface with genus 0 and b boundaries can be computed in O((b* +
kO(k>)nlogn) time.

In the special case k = 2, we only need to fall back on the slower algorithm de-
scribed by Theorem 5.1 when b = 4, and the forest F(A) is just a single shortest
path.

Corollary 5.4 The shortest essential cycle in an orientable combinatorial surface
with genus 0 and b boundaries can be computed in O (b*nlogn) time.

5.4 Positive Genus

Finally, suppose X' has positive genus. A cycle y is k-essential if and only if it is
either noncontractible in X'® or separates X' into two components, one of which has
genus 0 and at least k + 1 boundaries (including y). We compute the shortest non-
contractible cycle in X* in O(g3nlogn) time, using the recent algorithm of Cabello
and Chambers [5]. To compute the shortest cycle of the second type, we use the fol-
lowing simplification of our genus-0 algorithm. The shorter of these two cycles is the
shortest k-essential cycle.

Our algorithm enumerates all (2) = O(b") subsets A of k boundary cycles in X.
For each set A, we first compute the surface X'(A) obtained from X by gluing
disks on every boundary outside A and then cutting along the shortest-path forest
F(A). This surface has genus g and exactly one boundary, and we can compute it in
O (nlogn) time, just as in the genus-0 case [18]. We then compute the shortest cycle
y(A) in X' (A) homotopic to its single boundary, in O (nlogn) time [7]; this cycle
is clearly k-essential in the original surface X'. Finally, we return the shortest cycle
Y (D).

The correctness of our algorithm again follows from Lemma 5.2. If the shortest
k-essential cycle y is contractible in X', then the genus-zero component of X'y
must be convex. Thus, for any set A of k boundaries in this component, the shortest-
path forest F(A) does not cross y.

Unlike the genus-0 case, we never need to fall back on the slower algorithm de-
scribed in Theorem 5.1.

Theorem 5.5 The shortest k-essential cycle in an orientable combinatorial surface
with genus g > 0 and b boundaries can be computed in O((b* + g>)nlogn) time.

Corollary 5.6 The shortest essential cycle in an orientable combinatorial surface
with genus g > 0 and b boundaries can be computed in O ((b* + g*) nlogn) time.

@ Springer

Discrete Comput Geom (2010) 44: 912-930 929

Acknowledgements Thanks to Eric Colin de Verdiere [11] for finding the error in [18] and other useful
discussions. We also thank Sergio Cabello and anonymous reviewers for their very helpful and detailed
comments on previous versions of the paper.

References
1. Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2003)
2. Borradaile, G., Lee, J.R., Sidiropoulos, A.: Randomly removing g handles at once. In: Proc. 25th Ann.
Symp. Comput. Geom., pp. 371-376 (2009)
3. Buckley, F., Harary, F.: Distance in Graphs. Addison-Wesley, New York (1990)
4. Cabello, S.: Many distances in planar graphs. In: Proc. 17th Ann. ACM-SIAM Symp. Discrete Algo-
rithms, pp. 1213-1220 (2006)
5. Cabello, S., Chambers, E.W.: Multiple source shortest paths in a genus g graph. In: Proc. 18th Ann.
ACM-SIAM Symp. Discrete Algorithms, pp. 89-97 (2007)
6. Cabello, S., Mohar, B.: Finding shortest non-separating and non-contractible cycles for topologically
embedded graphs. Discrete Comput. Geom. 37, 213-235 (2007)
7. Cabello, S., DeVos, M., Erickson, J., Mohar, B.: Finding one tight cycle. In: Proc. 19th Ann. ACM-
SIAM Symp. Discrete Algorithms, pp. 527-531 (2008)
8. Chambers, E.W., Colin de Verdi¢re, E., Erickson, J., Lazarus, F., Whittlesey, K.: Splitting (compli-
cated) surfaces is hard. Comput. Geom. Theory Appl. 41(1-2), 94—110 (2008)
9. Chambers, E.W., Erickson, J., Nayyeri, A.: Minimum cuts and shortest homologous cycles. In: Proc.
25th Ann. ACM Symp. Comput. Geom., pp. 377-385 (2009)
10. Colin de Verdiere, E.: Shortening of curves and decomposition of surfaces. Ph.D. thesis, Université
Paris 7, December 2003 (http://www.di.ens.fr/users/colin/textes/these.html.en)
11. Colin de Verdiere, E.: Personal communication (2004)
12. Colin de Verdiere, E., Erickson, J.: Tightening non-simple paths and cycles on surfaces. In: Proc. 17th
Ann. ACM-SIAM Symp. Discrete Algorithms, pp. 192-201 (2006)
13. Colin de Verdiere, E., Lazarus, F.: Optimal pants decompositions and shortest homotopic cycles on
an orientable surface. J. ACM 54(4) (2007)
14. Demaine, E.D., Hajiaghayi, M., Mohar, B.: Approximation algorithms via contraction decomposition.
In: Proc. 18th Ann. ACM-SIAM Symp. Discrete Algorithms, pp. 278-287 (2007)
15. Dijkstra, E.-W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269-271 (1959)
16. Eppstein, D.: Dynamic generators of topologically embedded graphs. In: Proc. 15th Ann. ACM-SIAM
Symp. Discrete Algorithms, pp. 599-608 (2004)
17. Eppstein, D.: Squarepants in a tree: Sum of subtree clustering and hyperbolic pants decomposition.
In: Proc. 18th ACM-SIAM Symp. Discrete Algorithms, pp. 29-38 (2007)
18. Erickson, J., Har-Peled, S.: Optimally cutting a surface into a disk. Discrete Comput. Geom. 31(1),
37-59 (2004)
19. Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators. In: Proc. 16th Ann.
ACM-SIAM Symp. Discrete Algorithms, pp. 1038—1046 (2005)
20. Farb, B., Margalit, D.: A primer on mapping class groups. Preprint, Version 3.1, June 1 (2009)
(http://www.math.utah.edu/~margalit/primer/)
21. Guskov, 1., Wood, Z.: Topological noise removal. In: Proc. Graph. Interface, pp. 19-26 (2001)
22. Harary, F., Nieminen, J.: Convexity in graphs. J. Differ. Geom. 16(2), 185-190 (1981)
23. Harer, J.L., Penner, R.C.: Combinatorics of Train Tracks. Annals of Math. Studies, vol. 125. Princeton
University Press, Princeton (1992)
24. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2001)
25. Henzinger, M.R., Klein, P., Rao, S., Subramanian, S.: Faster shortest-path algorithms for planar
graphs. J. Comput. Syst. Sci. 55(1), 3-23 (1997)
26. Indyk, P, Sidiropoulos, A.: Probabilistic embeddings of bounded genus graphs into planar graphs. In:
Proc. 23rd Ann. ACM Symp. Comput. Geom., pp. 204-209 (2007)
27. Kawarabayashi, K., Mohar, B.: Graph and map isomorphism and all polyhedral embeddings in linear
time. In: Proc. 40th Ann. ACM Symp. Theory Comput., pp. 471-480 (2008)
28. Kawarabayashi, K., Reed, B.: Computing crossing number in linear time. In: Proc. 39th Ann. ACM
Symp. Theory Comput., pp. 382-390 (2007)
29. Kutz, M.: Computing shortest non-trivial cycles on orientable surfaces of bounded genus in almost

linear time. In: Proc. 22nd Ann. ACM Symp. Comput. Geom., pp. 430—438 (2006)

@ Springer

http://www.di.ens.fr/users/colin/textes/these.html.en
http://www.math.utah.edu/~margalit/primer/

930 Discrete Comput Geom (2010) 44: 912-930

30. Lazarus, F., Pocchiola, M., Vegter, G., Verroust, A.: Computing a canonical polygonal schema of an
orientable triangulated surface. In: Proc. 17th Ann. ACM Symp. Comput. Geom., pp. 80-89 (2001)

31. Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins Press, Baltimore (2001)

32. Mulmuley, K., Vazirani, U., Vazirani, V.: Matching is as easy as matrix inversion. Combinatorica 7,
105-113 (1987)

33. Poon, S.-H., Thite, S.: Pants decomposition of the punctured plane. In: Proc. 22nd European Work-
shop Comput. Geom., pp. 99-102 (2006). arXiv:cs.CG/0602080

34. Seppild, M., Sorvali, T.: Geometry of Riemann Surfaces and Teichmiiller Spaces. North-Holland
Mathematics Studies, vol. 169. North-Holland, Amsterdam (1992)

35. Thomassen, C.: Embeddings of graphs with no short noncontractible cycles. J. Comb. Theory Ser. B
48(2), 155-177 (1990)

36. Zomorodian, A.: Topology and Computing. Cambridge University Press, Cambridge (2005)

@ Springer

http://arxiv.org/abs/arXiv:cs.CG/0602080

	Computing the Shortest Essential Cycle
	Abstract
	Introduction
	Notation and Definitions
	Surface, Paths, Cycles, and Homotopy
	Combinatorial Surfaces
	Shortest Paths and Useful Cycles

	Antipodal Edges
	Faster Algorithms
	Genus Zero
	Positive Genus

	Small Genus and Few Boundaries
	Constant Genus and Number of Boundaries
	Convexity
	Genus Zero, Many Boundaries
	Positive Genus

	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

