

DE FORMATIONE FRACTIONUM CONTINUARUM.

Audore

L. E V. L. E R O.

§. I.

rincipium vniuersale ad fractiones continuas perducens reperitur in serie infinita quantitatum A, B, C etc.; quarum ternae sibi succedentes secundum certam legem, siue constantem siue vtcunque variabilem ita a se inuicem pendent, vt sit

$$fA = gB + bC$$
, $f'B = g'C + b'D$, $f''C = g'' + D + b''E$,
 $f'''D = g'''E + b'''F$ etc.

Hinc enim deducuntur sequentes aequalitates:

Hinc elim deductifity lequentes aequively
$$\frac{f_{B}}{B} = g + \frac{b C}{B} = g + \frac{f' b}{f' B : C}$$

$$\frac{f' B}{C} = g' + \frac{b' D}{C} = g' + \frac{f'' b'}{f'' C : D}$$

$$\frac{f'' C}{D} = g'' + \frac{b'' E}{D} = g'' + \frac{f'' b''}{f''' D : E}$$

$$\frac{f''' D}{E} = g''' + \frac{b''' F}{E} = g''' + \frac{f''' b''}{f'''' E : F}$$
etc. etc.

A 2

Quod

Quod si iam posteriores valores in prioribus continuo substituantur, sponte emerget sequens fractio continua:

itur, îponte emerget lequelis nactio course
$$\frac{f A}{B} = g + \frac{f \cdot h}{g^{i} + \overline{f^{ii} b^{ii}}}$$

$$\frac{g^{ii} + \overline{f^{iii} b^{ii}}}{g^{iii} + \text{etc.}}$$

cuius ergo valor per folos duos primos terminos A & B feriei determinatur.

A, B, C, D, E etc, habetur, cuius lex ita fuerit comparata, vt terni quique eius termini fibi fuccedentes fecundum legem quamcunque a fe inuicem pendeant, toties inde deducitur fractio continua, cuius valor affignari potest. Quamobrem si formula quaecunque ita suerit comparata, vt eius euolutio perducat ad huiusmodi seriem quantitatum A, B, C, D, E, etc. quarum quisque terminus per duos praecedentes determinatur, inde fractiones continuae derinari poterunt, quod quomodo stat, commodisime per aliquot exempla ostendi poterit.

I. Euolutio formulae.

$$s = x^n (\alpha - \beta x - \gamma x x).$$

§. 8. In hac formula exponens n indefinitus spectatur, successive recipiens omnes valores 1, 2, 3, 4, 5, 6 etc., vnde, dummodo suerit n > 0, haec formula evanescit, posito x = 0, tum vero etiam evanescit, sumto

$$x = -\frac{\beta + \sqrt{\beta \beta + 4\alpha \gamma}}{2\gamma}$$
.

His notatis differentietur ista formula, vt fiat $ds = n \alpha x^{n-1} dx - (n+1) \beta x^n dx - (n+2) \gamma x^{n+1} dx$, vnde per partes integrando et integrationem tantum indicando fiet

 $n\alpha \int x^{n-\tau} dx = (n+\tau)\beta \int x^n dx + (n+2)\gamma \int x^{n+\tau} dx + s$, Hinc, fi post quamque integrationem, ita peractam, vt integrale evanescat posito x = 0, statuatur

 $x = -\frac{\beta \pm \sqrt{\beta \beta + 4\alpha \gamma}}{2\gamma},$ quippe quo casu sit s = 0, erit

 $n\alpha \int x^{n-1} dx = (n+1)\beta \int x^n dx + (n+2)\gamma \int x^{n+1} dx$, quae est eiusmodi relatio inter ternas formulas integrales sibi succedentes, qualem desideramus pro formatione fractionis continuae; quandoquidem hae formulae integrales, si loco n successive scribantur numeri 1, 2, 3, 4, 5, 6 etc. nobis suppeditant quantitates A, B, C, D etc.

6. 4. Scribamus igitur locó n ordine numeros naturales 1, 2, 3, 4, etc. vt prodeant istae relationes:

$$a \int dx = 2 \beta \int x dx + 3 \gamma \int x x dx$$

$$2 \alpha \int x dx = 3 \beta \int x x dx + 4 \gamma \int x^{z} dx$$

$$3 \alpha \int x x dx = 4 \beta \int x^{z} dx + 3 \gamma \int x^{z} dx$$

$$4 \alpha \int x^{z} dx = 5 \beta \int x^{4} dx + 6 \gamma \int x^{5} dx$$
etc. etc.

Hinc igitur habebimus

A =
$$\int dx = x = -\frac{\beta + \sqrt{(\beta \beta + 4\alpha \gamma)}}{2\gamma}$$
,
B = $\int x dx = \frac{r}{2} x x = \frac{r}{2} \left(\frac{-\beta + \sqrt{(\beta \beta + 4\alpha \gamma)}}{2\gamma} \right)^2$,
C = $\int x x dx = \frac{r}{3} x^3$, D = $\int x^3 dx = \frac{r}{3} x^3$,
etc. etc.

Tunc

 \mathbf{A}_{3}

Tunc vero pro literis f, g, h habebuntur isti valores:

$$f = \alpha$$
, $f' = 2\alpha$, $f'' = 3\alpha$, $f''' = 4\alpha$ etc.

$$\rho = 2 \beta$$
, $g' = 3 \beta$, $g'' = 4 \beta$, $g''' = 5 \beta$ etc.

$$f = \alpha$$
, $f' = 2\alpha$, $f'' = 3\alpha$, $f'' = 4\alpha$, $g''' = 5\beta$ etc.
 $g = 2\beta$, $g' = 3\beta$, $g'' = 4\beta$, $g''' = 5\beta$ etc.
 $g = 3\gamma$, $g' = 4\gamma$, $g'' = 5\gamma$, $g''' = 6\gamma$ etc.

ex quibus valoribus resultat sequens fractio continua:

$$\frac{\alpha A}{B} = 2 \beta + \frac{6 \alpha \gamma}{3 \beta + \frac{12 \alpha \gamma}{4 \beta + \frac{20 \alpha \gamma}{5 \beta + 30 \alpha \gamma}}$$

$$\frac{6 \beta + \text{etc.}$$

cuius ergo valor est

$$\frac{+\alpha\gamma}{=\beta+\sqrt{(\beta\beta+4\alpha\gamma)}}=\beta+\gamma(\beta\beta+4\alpha\gamma).$$

§. 5. Quo haec fractio continua concinnior reddatur, loco αγ scribamus 1/2 d, et prodibit

$$\beta + \gamma (\beta \beta + 2\delta) = 2\beta + 3\delta$$

$$\frac{3\beta + 6\delta}{4\beta + \frac{10\delta}{5\beta + \frac{15\delta}{6\beta + \text{etc.}}}}$$

Quoniam autem haec expressio capite truncata videtur, adiecto hoc capite ponamus

am autem haec expresso capite truncata videtures hoc capite ponamus
$$s = \beta + \delta$$

$$2\beta + \frac{3\delta}{3\beta + 6\delta}$$

$$\frac{3\beta + 6\delta}{5\beta + \text{etc.}}, \text{ efitque}$$

$$s = \beta$$

quae expressio reducitur ad hanc: $s = \frac{7}{3}\beta + \frac{1}{2}V(\beta\beta + 2\delta)$.

5. δ. Haec autem fractio continua adhuc ad maiorem simplicitatem reduci potest, si loco δ scribamus 2 ε, vt sit

$$\frac{\frac{1}{3}\beta + \frac{1}{3}V(\beta\beta + 4\varepsilon) = \beta + \frac{2\varepsilon}{2\beta + 6\varepsilon}}{\frac{2\beta + 6\varepsilon}{3\beta + 12\varepsilon}}$$

$$\frac{4\beta + 20\varepsilon}{5\beta + 20 \text{ etc.}}$$

Quod si iam prima fractio deprimatur per 2, secunda per 3, tertia per 4, quarta per 5 etc. prodibit sequens sorma:

$$\frac{1}{3}\beta + \frac{1}{3}V(\beta\beta + 4\epsilon) = \beta - \epsilon$$

$$\frac{\beta + \epsilon}{\beta + \epsilon}$$

$$\frac{\beta + \epsilon}{\beta + \epsilon}$$

$$\frac{\beta + \epsilon}{\beta + \epsilon}$$

quae est simplicissima, cuius summa si tanquam incognita spectetur, ac vocetur = z, erit vtique $z = \beta + \frac{\varepsilon}{z}$, ideoque $z = \beta z + \varepsilon$, vnde sit $z = \frac{\beta + \sqrt{(\beta\beta + 4\varepsilon)}}{z}$, quae est cadem.

\$. 7. Verum ista summa simplicissima immediate deduci potest ex ipsa formula initio assumta

$$s = x^{n} (\alpha - \beta x - \gamma x x),$$

quam.

quam quoniam nihilo aequalem posuimus, erit visque $\alpha = \beta x + \gamma x x$, eodemque modo

$$\alpha x = \beta x x + \gamma x^{3}$$
, $\alpha x x = \beta x^{2} + \gamma x^{4}$, etc.

ita vt pro serie A, B, C, D, etc. habeamus hanc simplicem seriem potestatum: x, x^2 , x^3 , x^4 etc., tum vero omnes literae, f, g, h etc. siunt α , β , γ etc. vnde oritur ista fractio continua:

$$\frac{\alpha}{x} = \beta + \frac{\alpha \gamma}{\beta + \frac{\alpha \gamma}{\beta + \text{etc.}}}$$

vbi est $\frac{1}{\alpha} = \frac{\beta + \sqrt{(\beta\beta + 4\alpha\gamma)}}{2\alpha}$. Huius ergo fractionis valor est $\frac{1}{\alpha}\beta + \frac{1}{\alpha}\sqrt{(\beta\beta + 4\alpha\gamma)}$, vt ante, ob $\alpha\gamma = \varepsilon$.

II. Euolutio formulae.

$$s = x^n (a - x).$$

6. 8. Haec igitur formula euanescit, ponendo x=a; hinc autem sit $ds = n a x^{n-1} dx - (n+1) x^n dx$, quae expressio cum duobus tantum constet terminis, reducatur ad fractionem, cuius denominator sit $\alpha + \beta x$, ita vt siat

$$ds = \frac{n \, a \, \alpha \, x^{n-1} \, dx + (\beta \, n \, a - \alpha \, (n+1)) \, x^n \, dx - \beta \, (n+1) \, x^{n+1} \, dx}{\alpha + \beta \, x}$$

His igitur membris seorsim integratis siet

$$s = n a \alpha \int \frac{x^{n-1} dx}{\alpha + \beta x} + (n \beta \alpha - (n+1) \alpha) \int \frac{x^n dx}{\alpha + \beta x} - \beta (n+1) \int \frac{x^{n+1} dx}{\alpha + \beta x}$$

quac

quare si post singulas integrationes statuamus x = a, ve stat s = 0, habebimus hanc reductionem:

$$n a \alpha \int \frac{x^{n-1} dx}{\alpha + \beta x} = ((n+1)\alpha - n\beta a) \int \frac{x^n dx}{\alpha + \beta x} + (n+1)\beta \int \frac{x^{n+1} dx}{\alpha + \beta x}.$$

§. 9. Loco n substituamus nunc successive numeros 1, 2, 3, 4 etc. atque comparatione cum formulis generalibus instituta habebimus

A
$$= \int \frac{dx}{\alpha + \beta x}$$
, B $= \int \frac{x dx}{\alpha + \beta x}$, C $= \int \frac{x x dx}{\alpha + \beta x}$ etc.

vbi quidem post integrationem sieri debet x = a. Praeterea vero habebimus

$$f = a \alpha$$
, $f' = 2 a \alpha$, $f'' = 3 a \alpha$, $f''' = 4 a \alpha$, etc.

$$g=2\alpha-\beta a$$
, $g'=3\alpha-2\beta a$, $g''=4\alpha-3\beta a$, etc.

$$b = 2 \beta$$
, $b' = 3 \beta$, $b'' = 4 \beta$, $b''' = 5 \beta$, etc.

atque ex his oritur sequens fractio continua:

$$\frac{\alpha a A}{B} = (2 \alpha - \beta a) + 4 a \alpha \beta$$

$$\frac{(3\alpha - 2 \beta a) + g a \alpha \beta}{(4\alpha - 3 \beta a) + 16 a \alpha \beta}$$

$$\frac{(5\alpha - 4 \beta a) + \text{etc.}}{(5\alpha - 4 \beta a) + \text{etc.}}$$

§. 10. Integratione autem inflituta fit $\int \frac{dx}{1+\beta x} = \frac{1}{2} \int \frac{1}{2} \frac{1}{1+\beta x} \frac{1}{1+\beta x}$

 $\int \frac{dx}{\alpha + \beta x} = \frac{1}{\beta} l \frac{\alpha + \beta x}{\alpha},$

quandoquidem integralia euanescere debent sacto x = 0. Nunc igitur siat x = a, eritque $A = \frac{1}{\beta} I \frac{\alpha + \beta}{\alpha} \frac{a}{\alpha}$. Porro

$$\int \frac{x}{\alpha + \beta} \frac{x}{x} = \frac{1}{\beta} \left(x - \frac{\alpha}{\beta} l \frac{\alpha + \beta x}{\alpha} \right), \text{ factoque } x = a \text{ fiet}$$

$$B = \frac{a}{\beta} - \frac{\alpha}{\beta\beta} l \frac{\alpha + \beta a}{\alpha},$$

Acta Acad. Imp. Sc. Tom. III. P. I.

quamobrem valor nostrae fractionis continuae erit

$$\frac{\alpha \, a \, \beta \, l \frac{\alpha + \beta \, \alpha}{\alpha}}{a \, \beta - \alpha \, l \frac{\alpha + \beta \, \alpha}{\alpha}}$$

euidens autem est, nihil de vniuersalitate perire, etiams sumatur a = x; tum enim erit

atur
$$\alpha = 1$$
, tank $\alpha = 1$, $\alpha = 1$,

6. II. Tota autem haec expressio manisesto vnice pendet a ratione numerorum α et β ; vnde sumamus $\alpha = 1$ et $\beta = n$, atque orietur haec fractio continua:

$$\frac{n!(1+n)}{n-i(1+n)} = (2-n) + \frac{4n}{(3-2n)+9n}$$

$$\frac{(3-2n)+9n}{(4-3n)+16n}$$

$$\frac{(5-4n)+etc.}{(5-4n)+etc.}$$

cui si praesigamus secundum ordinis legem 1 + n et summam statuamus = s, vt sit

n statulations
$$= 3$$
, $= 3$,

erit

$$s = \frac{1 + n(n - 1(1 + n))}{n \cdot 1(1 + n)} = \frac{1 + n - 1(1 + n)}{1(1 + n)} = \frac{n}{1(1 + n)}$$

Exempla aliquot percurramus, fitque primo n = 1, erit

mo
$$n = 1$$
, erit
$$\frac{1}{12} = 1 + \frac{1}{1 + 4}$$

$$\frac{1}{1 + 9}$$
ito autem $n = 2$ erit

Posito autem n = 2 erit

autem
$$n = 2$$
 erit

$$\frac{2}{\sqrt{3}} = 1 + 2$$

$$0 + 8$$

$$-1 + 18$$

$$-2 + 32$$

$$-3 + 50$$

$$-4 + etc.$$

quae autem expressio, ob quantitates negatiuas, non satis est commoda; quod cum eueniat quando n > 1, operae pretium erit eos casus euoluere, quibus n vnitate minor accipitur. and the first of the sylvenia

Quo hoc facilius fieri possit, reuertamur ad expressionem literas a et \beta continentes, atque capite,

quod deerat suppleto, prodit ista forma:
$$\frac{\beta}{1^{\frac{\alpha+\beta}{\alpha}}} = \alpha + \frac{\alpha\beta}{(2\alpha-\beta) + 4\alpha\beta}$$

$$\frac{(3\alpha-2\beta) + 9\alpha\beta}{(4\alpha-3\beta) + \text{etc.}}$$
Ponamus nunc $n = n - m$ et $\beta = 2m$, vt obtineamus seguen-

Ponamus nunc n = n - m et $\beta = 2 m$, vt obtineamus feB 2 auen-

quentem formam:

quentem formam:
$$\frac{2m}{n+m} = n-m+\frac{2m(n-m)}{2n-4m+\frac{8m(n-m)}{3n-7m+\frac{18m(n-m)}{4n-10m+\text{etc.}}}}$$

vnde sequentes casus speciales deducuntur.

Si m = x et n = 3 erit

requences taken appearance
$$= 1 \text{ et } n = 3 \text{ erit}$$

$$\frac{2}{l^2} = 2 + \frac{4}{2 + \frac{16}{2 + \frac{64}{2 + \text{ etc.}}}}$$
fraction per 2 divida et reducta praebet

quae fractio per 2 diuisa et reducta praebet istam:

Tractio per 2 dimin of
$$\frac{1}{1-\frac{1}{2}} = 1 + \frac{1}{1-\frac{1}{2}} = \frac$$

quae iam fupra est inuenta. Sit m=1 et n=4 erit

The iam fupra est inventa.

$$m = 1$$
 et $n = 4$ erit

 $\frac{2}{1\frac{5}{3}} = 3 + 6$
 $\frac{4 + 24}{6 + 96}$
 $= 3 + 6 \cdot 1$
 $\frac{6 \cdot 1}{4 + 6 \cdot 4}$
 $\frac{6 \cdot 4}{6 + 6 \cdot 16}$
 $\frac{7}{7 + \text{ etc.}}$

Sit
$$m = x$$
 et $n = 5$, erit

= 1 et
$$n = 5$$
, erit

 $\frac{2}{7^{\frac{5}{2}}} = 4 + \frac{8}{6 + \frac{3^{2}}{10 + \frac{128}{12 + \text{etc}}}}$

fine

$$\frac{1}{l^{\frac{1}{2}}} = 2 + \frac{2}{3 + 8}$$

$$\frac{4 + 18}{5 + 32}$$

$$= 2 + 2. 1$$

$$3 + 2. 4$$

$$4 + 2. 9$$

$$5 + 2. 16$$

$$6 + etc.$$
III Fuclution County

III. Euolutio formulae.

$$s \equiv x^n (\mathbf{1} - x^2)$$

§. 14. Haec ergo formula euanescit casibus x=0 et x = 1. Quoniam vero hinc fit

$$ds = n x^{n-1} dx - (n+2) x^{n+1} dx$$

reducatur hoc differentiale ad denominatorem $\alpha + \beta x x$, fietque.

$$ds = \frac{n \alpha x^{n-1} dx + (n \beta - (n+2) \alpha) x^{n+2} dx - (n+2) \beta x^{n+3} dx}{\alpha + \beta x x}$$
B 3 Hinc

Hinc iam iterum integrando fit

$$s = n \alpha \int_{\alpha + \beta x x}^{x^{n-1} dx} + (n\beta - (n+2)\alpha) \int_{\alpha + \beta x x}^{x^{n+1} dx} - (n+2)\beta \int_{\alpha + \beta x x}^{x^{n+2} dx}$$

Quod si iam post integrationes statuatur x = r, prodibit haec integralium reductio:

$$n \alpha \int \frac{x^{n-1} dx}{\alpha + \beta x x} = ((n+2)\alpha - n\beta) \int \frac{x^{n+1} dx}{\alpha + \beta x x} + (n+2)\beta \int \frac{x^{n+2} dx}{\alpha + \beta x x}.$$

§. 15. Quoniam hic potestates ipsius x binario augentur, exponenti n successive tribuamus valores 1, 3, 5, 7, 9 etc. ac statuatur:

$$A = \int \frac{dx}{\alpha + \beta x x}$$
, $B = \int \frac{x \times dx}{\alpha + \beta x x}$, $C = \int \frac{x^4 dx}{\alpha + \beta x x}$ etc.

Deinde vero literae f, g, b cum suis derivatis erunt:

$$f = \alpha$$
, $f' = 3\alpha$, $f'' = 5\alpha$, $f''' = 7\alpha$, etc.
 $g = 3\alpha - \beta$, $g' = 5\alpha - 3\beta$, $g'' = 7\alpha - 5\beta$, etc.
 $b = 3\beta$, $b' = 5\beta$, $b'' = 7\beta$, $b''' = 9\beta$, etc.

vnde nascitur sequens fractio continua:

vide natcitur requens fractio condition.

$$\frac{\alpha. A}{B} = 3\alpha - \beta + \frac{9\alpha\beta}{5\alpha - 3\beta + \frac{25\alpha\beta}{7\alpha - 5\beta + \frac{49\alpha\beta}{9\alpha - 7\beta + \text{etc.}}}$$

§. 16. Quia est
$$B = \int \frac{x \times d \times x}{\alpha + \beta \times x}$$
, esting $B = \frac{1}{\beta} \int dx - \frac{\alpha}{\alpha} \int \frac{dx}{\alpha + \beta \times x}$, ideoque $B = \frac{1}{\beta} - \frac{\alpha}{\beta} A$, quo valore substituto habebimus

$$\frac{\alpha \beta A}{1-\alpha A} = 3\alpha - \beta + \frac{9\alpha \beta}{5\alpha - 3\beta + \frac{25\alpha \beta}{7\alpha - 5\beta + \text{etc.}}}$$

cui, quia caput deest, praesigamus $\alpha + \beta + \alpha \beta$; tum autem erit summa $\beta + \frac{1}{\Lambda}$, ita vt habeamus

rit summa
$$\beta + \frac{1}{\Lambda}$$
, ita vt habeamus
$$\beta + \frac{1}{\Lambda} = \alpha + \beta + \frac{\alpha \beta}{3\alpha - \beta + \frac{9\alpha \beta}{5\alpha - 3\beta + \frac{25\alpha \beta}{7\alpha - 5\beta + \text{etc.}}}$$
te $A = \int_{\frac{\alpha}{\alpha + \beta \times \alpha}}^{\frac{\alpha}{\alpha + \beta \times \alpha}}$, integrali ita sumto, vt euanes-

existence $A = \int \frac{dx}{\alpha + \beta x x}$, integrali ita sumto, vt euanescat posito x = 0, tum vero facto x = 1.

\$. 17. Euoluamus primo casum simplicissimum quo $\alpha = 1$ et $\beta = 1$, vbi erit $A = \frac{\pi}{4}$, vnde habebimus

\$. 17. Eucluamus primo casum simple
$$= 1$$
 et $\beta = 1$, voi erit $A = \frac{\pi}{4}$, vnde hat $1 + \frac{4}{\pi} = 2 + \frac{1}{2 + 9}$

$$\frac{2 + 25}{2 + 49}$$
it

fiue erit

$$\frac{4}{\pi} = 1 + 1$$

$$2 + 9$$

$$2 + 25$$

$$2 + \text{ etc.}$$

quae est ipsa fractio continua olim a Brounkero primum producta, cuius inuestigatio, cum a Wallisio per calculos valde taediosos sit eruta, hic quasi sponte ex nostra formula sese prodidit.

§. ₹8.

§. 18. Nostra autem forma generalis infinitas alias fimiles expressiones suppeditat, prouti literae α et β vario modo accipiuntur. Ac primo quidem, si α et β suerint numeri positiui, valor literae A semper per arcum circularem exprimetur, contra vero per logarithmos. igitur primo $\beta = 1$, eritque

$$A = \int \frac{d x}{\alpha + x x} = \frac{1}{\sqrt{\alpha}} A \text{ tang. } \frac{x}{\sqrt{\alpha}} = \frac{1}{\sqrt{\alpha}} A \text{ tang. } \frac{x}{\sqrt{\alpha}},$$

vnde nascitur haec fractio continua:
$$\mathbf{I} + \frac{\sqrt{\alpha}}{A \text{ tang.}} = \alpha + \mathbf{I} + \frac{\alpha}{3\alpha - \mathbf{I} + 9\alpha}$$

$$5\alpha - 3 + 25\alpha$$

$$7\alpha - 5 + \text{etc.}$$

Hinc igitur si sumatur $\alpha = 3$, quia A tang. $\frac{1}{\sqrt{18}} = \frac{\pi}{6}$, habebimus

c igitur fi fumatur
$$\alpha = 3$$
, quia A tang. $\frac{1}{\sqrt{3}} = \frac{\pi}{6}$ mus
$$1 + \frac{6\sqrt{3}}{\pi} = 4 + \frac{3}{8 + \frac{27}{12 + \frac{75}{16 + \frac{147}{20 + \text{etc.}}}}$$

fiue

$$1 + \frac{6\sqrt{3}}{\pi} = 4 + \frac{3 \cdot 1}{8 + \frac{3 \cdot 9}{12 + \frac{3 \cdot 25}{16 + \frac{3 \cdot 49}{20 + \text{ etc.}}}}$$

§. 19. Sit nunc B numerus positiuus quicunque, et quia est

$$A = \int \frac{dx}{\alpha + \beta x x} = \beta \int \frac{dx}{\frac{\alpha}{\beta} + x x},$$

integrando fit $A = \frac{1}{\sqrt{\alpha \beta}} A$ tang. $\sqrt{\frac{\beta}{\alpha}}$. Hinc igitur habe-bimus

$$\beta + \frac{\sqrt{\alpha \beta}}{A \text{ tang. } \sqrt{\frac{\beta}{\alpha}}} = \alpha + \beta + \frac{\alpha \beta}{3\alpha - \beta + \frac{9\alpha \beta}{5\alpha - 3\beta + \text{etc.}}}$$

Faciamus igitur $\alpha+\beta=2n$ et $\alpha-\beta=2m$, vt sit $\alpha=m+n$ et $\beta=n-m$, quibus valoribus positis erit

$$n-m+\frac{V(nn-mm)}{A \text{ tang. } V^{\frac{n-m}{n+m}}}=2n+\frac{nn-mm}{2n+4m+\frac{9(nn-mm)}{2n+8m+\text{etc.}}}$$

§. 20. Confideremus etiam casum, quo β est numerus negatiuus, et ponendo $\beta = -\gamma$, erit

$$A = \int \frac{dx}{\alpha - \gamma x x} = \frac{1}{V} \int \frac{dx}{\frac{\alpha}{V} - x x},$$

cuius integrale est

$$A = \frac{1}{2\sqrt{\alpha}\gamma} I \frac{\sqrt{\frac{\alpha}{\gamma} + x}}{\sqrt{\frac{\alpha}{\gamma} - x}};$$

facto ergo x = 1 erit

$$A = \frac{1}{2\sqrt{\alpha\gamma}} I \frac{\sqrt{\alpha + \sqrt{\gamma}}}{\sqrt{\alpha - \sqrt{\gamma}}},$$

Acta Acad. Imp. Sc. Tom. III. P. I.

vnde

vnde nascitur ista fractio continua:

vnde nascitur ista fractio continua:
$$-\gamma + \frac{2\sqrt{\alpha}\gamma}{l\frac{\sqrt{\alpha}+\sqrt{\gamma}}{\sqrt{\alpha}-\sqrt{\gamma}}} = \alpha - \gamma - \frac{\alpha\gamma}{3\alpha + \gamma - \frac{9\alpha\gamma}{5\alpha + 3\gamma - \frac{25\alpha\gamma}{7\alpha + 5\gamma - \text{etc.}}}$$

hocque modo nacti sumus nouas fractiones continuas, quarum valores etiam per logarithmos exhibere licet, et quae prorsus discrepant ab illis, quas ante inuenimus.

§. 21. Hic casus prae reliquis notatu dignus se offert, quando $\gamma = \alpha$. Siue, quod eodem redit, $\alpha = 1$ et $\gamma = 1$; quia enim tum est $l \frac{\sqrt{\alpha} + \sqrt{\gamma}}{\sqrt{\alpha} - \sqrt{\gamma}} = l \infty = \infty$, habebimus

$$-1 = 0 - \frac{1}{4 - 9}$$

$$8 - 25$$

$$12 - \text{etc.}$$

fiue mutatis fignis

tis fignis
$$\begin{array}{r}
12 - \text{etc.} \\
4 - 9 \\
\hline
8 - 25 \\
\hline
12 - \text{etc.}
\end{array}$$
nus denominator

hinc primus denominator

$$4-9$$

$$8-25$$

$$12-\text{ etc.} \text{ debet effe} = 1$$

$$0=3-9$$

Erit ergo
$$0=3-\frac{9}{8-\frac{25}{12-\text{ etc.}}}$$

fine
$$I = \frac{3}{8 - 25}$$

12 - etc.

vbi denominator debet effe == 3, vnde fit

$$0 = 5 - \frac{25}{12 - \text{ etc.}}$$

cuius denominator debet esse = 5, vnde sit

$$0 = 7 - 49$$
 $16 - 81$
 $20 - efc$

ex quo ordine facile veritas perspiciture

§. 22. Sumamus a = 4 et $\gamma = x$ et nanciscemur hanc fractionem:

5. 22. Sumamus
$$\alpha = 4$$
 et $\gamma = 1$ et nanci
fractionem:
$$-1 + \frac{4}{13} = 3 - 4.1$$

$$13 - 4.9$$

$$23 - 4.25$$

$$33 - 4.49$$

$$43 - \text{ etc.}$$
atem accipiamus $\alpha = 9$ et $\gamma = 1$ erit
$$-1 + \frac{6}{12} = 8 - 9.1$$

Sin autem accipiamus $\alpha = 9$ et $\gamma = 1$ erit

telier.

$$33 - 4.49$$

$$43 - \text{etc.}$$
tem accipiamus $\alpha = 9$ et $\gamma = 1$ erit
$$-1 + \frac{6}{12} = 8 - \frac{9.1}{28 - 9.9}$$

$$48 - \frac{9.25}{68 - 9.49}$$

$$88 - \text{etc.}$$

IV Euo-

IV. Euolutio formulae.

$$s = x^n e^{\alpha x} (1 - x)$$

5. 22. Hic e denotat numerum cuius logarithmus hyperbolicus est vnitas, ita vt $d \cdot e^{\alpha x} \equiv \alpha d x \cdot e^{\alpha x}$ ergo erit

 $ds = n x^{n-1} dx e^{\alpha x} + (\alpha - (n+1)) x^n dx e^{\alpha x} - \alpha x^{n-1} dx e^{\alpha x}$ vnde vicisim integrando sit

 $s = n \int x^{n-1} dx e^{\alpha x} + (\alpha - (n+1)) \int x^{n} dx e^{\alpha x} - \alpha \int x^{n+1} dx e^{\alpha x}.$ Quod si ergo post integrationem statuatur x = 1, erit

 $n \int x^{n-1} dx \, e^{\alpha x} = (n+1-\alpha) \int x^n dx \, e^{\alpha x} + \alpha \int x^{n+1} dx \, e^{\alpha x}.$

\$ 23. Quods iam loco n successive scribamus numeros 1, 2, 3, 4, ac saciamus

A
$$\int e^{\alpha x} dx = \frac{1}{\alpha} (e^{\alpha} - 1)$$
 et B $= \int x dx e^{\alpha x} = \frac{\alpha - 1}{\alpha \alpha} e^{\alpha} + \frac{1}{\alpha \alpha}$
 $f = 1$, $f' = 2$, $f'' = 3$, $f'' = 4$, etc.
 $g = 2 - \alpha$, $g' = 3 - \alpha$, $g'' = 4 - \alpha$, etc.
 $b = \alpha$, $b' = \alpha$, $b'' = \alpha$, $b''' = \alpha$, etc.

prodibit ista, fractio continua:

ibit ista fractio continua:
$$\frac{A}{B} = 2 - \alpha + \frac{2\alpha}{3 - \alpha + \frac{3\alpha}{4 - \alpha + 4\alpha}}$$

$$\frac{A}{3 - \alpha + \frac{3\alpha}{3 - \alpha + \frac{4\alpha}{3 - \alpha}}}$$
ungamus adhuc superne $1 - \alpha + \alpha$, erit eius val

Adiungamus, adhuc superne $1 - \alpha + \alpha$, erit eius valor

$$1-\alpha+\frac{(\alpha-1)e^{\alpha}+1}{e^{\alpha}-1}=\frac{\alpha}{e^{\alpha}-1}$$

vndc

vnde habebitur haec fractio continua fatis concinna:

nabebitur haec fractio continua fatis concinna:
$$\frac{\alpha}{e^{\alpha} - 1} = 1 - \alpha + \frac{\alpha}{2 - \alpha + \frac{2\alpha}{3 - \alpha + 3\alpha}}$$

$$\frac{3 - \alpha + 3\alpha}{4 - \alpha + \text{ etc.}}$$
natet fi frerit $\alpha = 0$, ob $e^{\alpha} - 1 - \alpha$, fore veigne $1 - 1$.

vnde patet, si sverit $\alpha = 0$, ob $e^{\alpha} - 1 = \alpha$, fore vtique 1 = 1.

6. 24. Consideremus nonnullos casus speciales; ac primo, fi fit $\alpha = 1$, erit

quae fractio facile transfunditur in hance

vode fit

Haec autem porro a fractionibus partialibus liberata dat

nutem porro a fractionibus partialibus libera
$$e-1=+\frac{\pi}{2}+\frac{\pi}{2}$$

$$\frac{3+3}{4+4}$$
fequitur

vnde, fequitur

$$\begin{array}{c|c}
1 & -2 & 1 + 1 \\
\hline
e - 2 & 2 + 2 \\
\hline
3 + 3 \\
\hline
4 + 4 \\
\hline
4 + etc.
\end{array}$$

quae formae ob simplicitatem maxime sunt notatu dignae. Ex penultima, qua fit

$$\theta = 2 + \frac{1}{1 + \frac{1}{2 + 2}}$$
 $\frac{3 + 3}{4 + \text{ etc.}}$

sumendo successive 1, 2, 3, pluraue membra, orientur sequentes approximationes: re the second

$$e = 2,0000$$
 $e = 3.0000$
 $e = 2,6666$
 $e = 2,7272$
 $e = 2,7169$

qui valores, alternatim maiores et minores, satis prompte ad veritatem convergunt

§. 25. Sumamus $\alpha = 2$ orit

$$\frac{2}{e \, e - 1} = -1 + 2$$

$$0 + 4$$

$$1 + 6$$

$$2 + 8$$

Ex hac fractione porro deducitur ista:

$$\frac{2(e \cdot e - 1)}{e \cdot e + 1} = 0 + \frac{4}{1 + 6}$$

similique modo, si pro a maiores numeri accipiantur, reductio fieri poterit.

6. 26. Possunt etiam pro α numeri negativi accipi. Ita si fuerit $\alpha = -1$ fiet

fi fuerit
$$\alpha = -1$$
 fiet
$$\frac{e}{e-1} = 2 - 1$$

$$3 - 2$$

$$4 - 3$$

$$6 - etc$$
educitur ad hanc formam:

quae reducitur ad hanc formam:

similique modo maiores valores expediri possunt.

5. 27. Statuamus etiam a= ;, ac reperietur ista expressio:

$$\frac{1}{2(\sqrt{e-1})} = \frac{1}{2} + \frac{1}{2}$$

$$\frac{1}{2(\sqrt{e-1})} = \frac{1}{2} + \frac{1}{2}$$

$$\frac{1}{2} + \frac{1}{2}$$

quae liberata a fractionibus partialibus euadit.

iberata a fractionibus partialibus euadit.

$$\frac{1}{-1+\sqrt{e}} = 1 + \frac{2}{3+4}$$

$$\frac{3+4}{5+6}$$

$$7+8$$

$$9+etc.$$

Simili modo si summus $\alpha = \frac{1}{3}$ erit

modo si summus
$$\alpha = \frac{1}{3}$$
 erit

$$\frac{1}{3(\sqrt[3]{e-1})} = 2:3 + 1:3$$

$$5:3 + 2:3$$

$$11:3 + 4:3$$

$$14:3 + etc.$$

quae a fractionibus partialibus liberata dat

$$\frac{1}{-1+\sqrt{6}} = 2+\frac{3}{5+6}$$

$$\frac{1}{11+12}$$

$$14+\cot 6$$

At si ponatur a = 2, prodit haec fractio continua:

$$\frac{2}{3(\sqrt[3]{(ee-1)})} = 1:3+2:3$$

$$\frac{2}{4:3+4:3}$$

$$\frac{7:3+6:3}{10:3+8:3}$$

$$13:3+etc.$$

quae a fractionibus partialibus liberata fit

a fractionibus partialibus liberata fit
$$\frac{2}{\sqrt[7]{(e e - 1)}} = 1 + \frac{6}{\sqrt[4 + \frac{12}{7 + \frac{18}{13 + \text{etc.}}}}$$

His formulis tanquam principalibus ac fimplicioribus euolutis, fimili modo alias multo generaliores tractare licebit, quae ad fractiones continuas multo magis absconditas perducent, vti ex casibus qui sequuntur patebit.

V. Euolutio formulae.

$$s \equiv x^n (a - b x^{\theta} - c x^{2\theta})^{\lambda}.$$

§. 29. Hinc igitur erit

$$ds = (a - b x^{\theta} - c x^{2\theta})^{\lambda - \tau} (n a x^{n - \tau} dx - b (n + \lambda \theta) x^{n + \theta - \tau} dx - c (n + 2 \lambda \theta) x^{n + 2\theta - \tau} dx),$$

vnde per partes integrando, tum vero statuendo $a-b x^{\theta}$ $-c x^{i\theta} = 0$, (quod fit fi fuerit $x^{\theta} = -\frac{b+\sqrt{(bb+4as)}}{sc}$) habebitur ista reductio generalis:

Acta Acad. Imp. Sc. Tom. III. P. I.

D

na/x

s. 30. Quodsi iam hanc formam cum nostra generali initio tradita comparare velimus, valores pro litera n successive assumendi per differentiam θ augeri debent. Deinde non necesse est vt primus valor ipsius n, vt hactenus secimus, sumatur $\equiv x$; statuamus igitur eius primum valorem $\equiv \alpha$, et quaeramus valores binarum sequentium formularum integralium, scilicet:

m formularum integration,

$$A = \int x^{\alpha - 1} dx (a - b x^{\theta} - c x^{2\theta})^{\lambda - 1} \text{ et}$$

$$B = \int x^{\alpha + \theta - 1} dx (a - b x^{\theta} - c x^{2\theta})^{\lambda - 1},$$

quae integralia ita funt capienda, vt euanescant posito x = 0, quo sacto ipsi x ille valor tribui debet, qui reddat formulam $a - b x^0 - c x^{2\theta} = 0$. Quoniam autem hoc in genere exsequi non licet, istos valores per literas A et indicare contenti simus, quos ergo tanquam cognitos spectemus.

S. 3r. Praeterea vero literae f, g, h, cum suis derivatis sequentes induent valores:

derivatis sequentes induent values.

$$f = \alpha a$$
, $f'' = (\alpha + \theta) \alpha$, $f'' = (\alpha + 2\theta) a$, $f''' = (\alpha + 3\theta) a$, etc.

 $g = (\alpha + \lambda \theta) b$, $g' = (\alpha + \theta + \lambda \theta) b$, $g'' = (\alpha + 2\theta + \lambda \theta) b$, etc.

 $b = (\alpha + 2\lambda \theta) c$, $b' = (\alpha + \theta + 2\lambda \theta) c$, $b'' = (\alpha + 2\theta + 2\lambda \theta) c$, etc.

Ex his ignur formabitur sequens fractio continua:

$$\frac{a \cdot a \cdot A}{B} = (\alpha + \lambda \theta)b + (\alpha + \theta)(\alpha + \lambda \theta)ac$$

$$\frac{(\alpha + \theta + \lambda \theta)b + (\alpha + 2\theta)(\alpha + \theta + 2\lambda \theta)ac}{(\alpha + \theta + \lambda \theta)b + (\alpha + \theta + 2\lambda \theta)ac}$$

$$\frac{(\alpha + \theta + \lambda \theta)b + (\alpha + \theta + \lambda \theta)ac}{(\alpha + \theta + \lambda \theta)b + (\alpha + \theta + \lambda \theta)b + (\alpha + \theta + \lambda \theta)ac}$$

$$\frac{(\alpha + \theta + \lambda \theta)b + (\alpha + \theta + \lambda \theta)ac}{(\alpha + \theta + \lambda \theta)b + (\alpha + \theta + \lambda \theta)ac}$$

quae forma viique est maxime generalis, cuius autem vi-

VI. Euolutio formulae.

$$s = x^n (1 - x^{\theta})^{\lambda}$$

\$. 32. Hinc ergo fit

 $ds = n x^{n-1} dx (1-x^{\theta})^{\lambda} - \lambda \theta x^{n+\theta-1} dx (1-x^{\theta})^{\lambda-1}$

vnde tantum duae formulae integrales orirentur; quam obrem huic differentiali denominatorem arbitrarium tribuamus $a + b x^{\theta}$, vt habeamus:

$$ds = \frac{(1-x^{\theta})^{\lambda-1}}{a+b} (n a x^{n-1} dx - (a (n+\lambda \theta) - b n) x^{n+\theta-1} dx - b (n+\lambda \theta) x^{n+2\theta-1} dx.$$

Nunc igitur, ponendo post integrationem x = x, deducimus hanc reductionem:

$$n a \int_{a+b}^{x^{n-1}} \frac{dx (\mathbf{1} - x^{\theta})^{\lambda - 1}}{a + b x^{\theta}} = (a (n + \lambda \theta) - b n) \int_{a+b}^{x^{n+\theta-1}} \frac{dx (\mathbf{1} - x^{\theta})^{\lambda - 1}}{a + b x^{\theta}} + b (n + \lambda \theta) \int_{a+b}^{x^{n+\theta-1}} \frac{dx (\mathbf{1} - x^{\theta})^{\lambda - 1}}{a + b x^{\theta}}.$$

§. 33. Hic iterum enidens est valores ipsius n per differentiam θ crescere debere. Statuatur autem primus valor ipsius $n \equiv \alpha$, et quaerantur pro quouis casu oblato binae sequentes formulae integrales:

$$A = \int \frac{x^{\alpha - 1} dx (\mathbf{i} - x^{\theta})^{\lambda - 1}}{a + b x^{\theta}} \text{ et } B = \int \frac{x^{\alpha + \theta - 1} dx (\mathbf{i} - x^{\theta})^{\lambda - 1}}{a + b x^{\theta}},$$

vbi scilicet post integrationem positum sit x = 1. Quibus

bus inuentis, cum hinc fiat

inventis, cum fine hat
$$f = \alpha a, \ f' = (\alpha + \theta) a, \ f'' = (\alpha + 2\theta) a, \ f''' = (\alpha + 3\theta) a, \ \text{etc.}$$

$$g = (\alpha + \lambda \theta) a - \alpha b, \ g' - (\alpha + \theta + \lambda \theta) a - (\alpha + \theta) b,$$

$$g'' = (\alpha + 2\theta + \lambda \theta) a - (\alpha + 2\theta) b, \ \text{etc.}$$

 $b=(\alpha+\lambda\theta)b$, $b=(\alpha+\theta+\lambda\theta)b$, $b^{ij}=(\alpha+\theta+2\lambda\theta)b$, etc. inde formabitur sequens fractio continua:

 $\frac{\alpha a \lambda}{B} = (\alpha + \lambda \theta) a - \alpha b + (\frac{\alpha + \theta)(\alpha + \lambda \theta)ab}{(\alpha + \theta + \lambda \theta)a} - (\frac{\alpha + \theta)b + (\alpha + 2\theta)(\alpha + \theta + \lambda \theta)ab}{(\alpha + 2\theta + \lambda \theta)a - (\alpha + 2\theta)b + (\alpha + 3\theta)(\alpha + 2\theta + \lambda \theta)ab} etc.$

cuius formae vberiore euolutione supersedemus.

VII. Euolutio formulae.

$$s \equiv x^n \left(e^{\alpha x} \left(1 - x \right)^{\lambda} \right)$$

6. 34. Hinc ergo fit $ds = (x-x)^{\lambda-1} (n x^{n-1} dx - (n+\lambda-\alpha) x^n dx - \alpha x^n dx),$

hinc igitur si post integrationem vbique statuatur x = 1, quippe quo casu sit s = 0, habebimus hanc reductionem:

$$n \int x^{n-1} dx \, e^{\alpha x} (\mathbf{I} - x)^{\lambda - 1} = (n + \lambda - \alpha) \int x^{n} dx \, e^{\alpha x} (\mathbf{I} - x)^{\lambda - 1} + \alpha \int x^{n-1} dx \, e^{\alpha x} (\mathbf{I} - x)^{\lambda - 1}.$$

§. 35. In his ergo formulis exponenti n valores vnitate crescentes tribui debebunt, tum vero hic minimum eius valorem sumamus $n \equiv \delta$, atque valores literarum A et B ex his formulis erui oportebit, ponendo post integrationem $x \equiv 1$,

 $A = \int x^{\delta - 1} dx \, e^{\alpha x} (1 - x)^{\lambda - 1}, \quad B = \int x^{\delta} dx \, e^{\alpha x} (1 - x)^{\lambda - 1}$

deinde vero ob hos valores: $f=\delta$,

$$f = \delta$$
, $f' = \delta + 1$, $f'' = \delta + 2$, $f''' = \delta + 3$, etc.
 $g = \delta + \lambda - \alpha$, $g' = \delta + 1 + \lambda - \alpha$, $g'' = \delta + 2 + \lambda - \alpha$, etc.
 $h = \alpha$, $h' = \alpha$, $h'' = \alpha$, etc.

sequitur ista fractio continua:

fequitur ista fractio continua:
$$\frac{\delta A}{B} = \delta + \lambda - \alpha + \frac{(\delta + 1)\alpha}{\delta + 1 + \lambda - \alpha + (\delta + 2)\alpha}$$

$$\frac{\delta + 2 + \lambda - \alpha + (\delta + 3)\alpha}{\delta + 2 + \lambda - \alpha + (\delta + 3)\alpha}$$
 Vbi imprimis notari oportet, exponentes λ et δ necessaria.

Vbi imprimis notari oportet, exponentes λ et δ necessario nihilo maiores accipi debere, quia alioquin formula principalis $x^n e^{\alpha x} (x - x)^{\lambda}$ casibus x = x non euanesceret.

6. 36. Si literis δ et λ tribuatur valor = 1, prodibit casus iam supra tractatus; ac si his literis numeri integri assignentur, eiusmodi fractiones continuae orientur. quas per certas operationes ad priores reducere licebit. Verum si his literis δ et λ, vel alterutri, vel vtrique, fractiones affignemus, tum formae orientur ad priores prorfus irreductibiles, quarumque valor haud aliter quam per quantitates maxime transcendentes exprimere liceat. Velvti si fuerit δ = ½ et λ = ½, valor literae A quaeri debebit ex hac formula integrali: $A = \frac{e^{\alpha x} dx}{V(x - x x)}$; cuius integratio ad quantitates maxime transcendentes perducit, ita vt valor talium fractionum continuarum prodeat maxime abstrusus.

On the formation of continued fractions*

Leonhard Euler[†]

1. A universal principle for unfolding continued fractions is found in the infinite series of quantities A, B, C, etc., of which each third succeeds from the preceding two by a certain law, either constant or variable inasmuch as they depend in turn upon each other, so that it will be

$$fA = gB + hC$$
, $f'B = g'C + h'D$, $f''C = g''D + h''E$, $f'''D = g'''E + h'''F$, etc.

From here indeed are deduced the following equalities:

$$\frac{fA}{B} = g + \frac{hC}{B} = g + \frac{f'h}{f'B:C}$$

$$\frac{f'B}{C} = g' + \frac{h'D}{C} = g' + \frac{f''h'}{f''C:D}$$

$$\frac{f''C}{D} = g'' + \frac{h''E}{D} = g'' + \frac{f'''h''}{f'''D:E}$$

$$\frac{f'''D}{E} = g''' + \frac{h'''F}{E} = g''' + \frac{f''''h'''}{f''''E:F}$$
etc. etc.

But if now the latter values are substituted successively in place of the prior ones, the following continued fraction spontaneously emerges:

$$\frac{fA}{B} = g + \frac{f'h}{g' + \frac{f''h'}{g'' + \frac{f'''h''}{g''' + \frac{f'''h'''}{g''' + \text{etc.}}}}}$$

whose value therefore is determined by the two first terms A & B of the series alone.

^{*}Delivered to the St.—Petersburg Academy September 4, 1775. Originally published as *De formatione fractionum continuarum*, Acta Academiae Scientarum Imperialis Petropolitinae 3 (1782), no. 1, 3–29, and republished in *Leonhard Euler*, *Opera Omnia*, Series 1: Opera mathematica, Volume 15, Birkhäuser, 1992. A copy of the original text is available electronically at the Euler Archive, at http://www.eulerarchive.org. This paper is E522 in the Eneström index.

[†]Date of translation: August 12, 2005. Translated from the Latin by Jordan Bell, 3rd year undergraduate in Honours Mathematics, School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada. Email: jbell3@connect.carleton.ca. This translation was written during an NSERC USRA supervised by Dr. B. Stevens.

2. Therefore whenever such a progression of quantities A, B, C, D, E, etc. is had, of which such a law is disposed, that each of the terms depends in turn on the succeeding two by a certain law, then from this a continued fraction may be deduced, whose value is able to be assigned. Therefore if such a particular formula were disposed, such that the expansion of it should lead to such a series of quantities A, B, C, D, E, etc. of which each term is determined by the preceding two, from this continued fractions will be able to be derived, in what way it will be able to be revealed most conveniently by several examples.

I. The expansion of the formula
$$s = x^n(\alpha - \beta x - \gamma xx)$$

3. In this formula the exponent n is considered an indefinite, successively receiving all the values 1, 2, 3, 4, 5, 6, etc., from which, providing it will be n > 0, this formula vanishes by putting x = 0, and then indeed it also vanishes by taking

$$x = -\frac{\beta \pm \sqrt{(\beta \beta + 4\alpha \gamma)}}{2\gamma}.$$

With this having been noted, this formula will be differentiated so that it will become

$$ds = n\alpha x^{n-1}dx - (n+1)\beta \int x^n dx - (n+2)\gamma \int x^{n+1}dx + s,$$

from which by integrating the parts, this integration may then be indicated as such

$$x = -\frac{\beta \pm \sqrt{(\beta \beta + 4\alpha \gamma)}}{2\gamma}.$$

Then, if after this integration, having been completed such that the integral should vanish by putting x = 0, it should be set

$$n\alpha \int x^{n-1} dx = (n+1)\beta \int x^n dx + (n+2)\gamma \int x^{n+1} dx,$$

of course in which case it would be s = 0, it will be

$$n\alpha \int x^{n-1} dx = (n+1)\beta \int x^n dx + (n+2)\gamma \int x^{n+1} dx,$$

which is a relation of this type between three integral formulas following each other, which we desire for the formation of a continued fraction, seeing that these integral formulas, if in place of n is written successively the number 1, 2, 3, 4, 5, 6, etc., the quantities A, B, C, D, etc. are given to us.

4. We write therefore in place of n the consecutive numbers 1, 2, 3, 4, etc., so that these relations may be produced:

$$\alpha \int dx = 2\beta \int x dx + 3\gamma \int xx dx$$

$$2\alpha \int x dx = 3\beta \int xx dx + 4\gamma \int x^3 dx$$

$$3\alpha \int xx dx = 4\beta \int x^3 dx + 3\gamma [\text{sic}] \int x^4 dx$$

$$4\alpha \int x^3 dx = 5\beta \int x^4 dx + 6\gamma \int x^5 dx$$
etc. etc.

Then we will therefore have

$$A = \int dx = x = -\frac{\beta \pm \sqrt{(\beta \beta + 4\alpha \gamma)}}{2\gamma},$$

$$B = \int x dx = \frac{1}{2}xx = \frac{1}{2}\Big(\frac{-\beta \pm \sqrt{(\beta \beta + 4\alpha \gamma)}}{2\gamma}\Big)^2,$$

$$C = \int xx dx = \frac{1}{3}x^3, \quad D = \int x^3 dx = \frac{1}{4}x^4$$
 etc. etc.

Thereupon indeed, for the letters f, g, h will be had these values:

$$f = \alpha, f' = 2\alpha, f'' = 3\alpha, f''' = 4\alpha$$
 etc.
 $g = 2\beta, g' = 3\beta, g'' = 4\beta, g''' = 5\beta$ etc.
 $h = 3\gamma, h' = 4\gamma, h'' = 5\gamma, h''' = 6\gamma$ etc.,

from which values the following continued fraction results:

$$\frac{\alpha A}{B} = 2\beta + \frac{6\alpha\gamma}{3\beta + \frac{12\alpha\gamma}{4\beta + \frac{20\alpha\gamma}{5\beta + \frac{30\alpha\gamma}{5\beta +$$

whose value therefore is

$$\frac{4\alpha\gamma}{-\beta+\sqrt{(\beta\beta+4\alpha\gamma)}}=\beta+\sqrt{(\beta\beta+4\alpha\gamma)}.$$

5. So that this continued fraction should be rendered more elegant, in place of $\alpha\gamma$ we write $\frac{1}{2}\delta$, and it will proceed

$$\beta + \sqrt{(\beta\beta + 2\delta)} = 2\beta + \frac{3\delta}{3\beta + \frac{6\delta}{4\beta + \frac{10\delta}{5\beta + \frac{15\delta}{\alpha + 15\delta}}}}.$$

Since moreover the head of this expression is seen to have been truncated, with this head having been added we may put

$$s = \beta + \frac{\delta}{2\beta + \frac{3\delta}{3\beta + \frac{6\delta}{4\beta + \frac{10\delta}{5\beta + \text{ etc.}}}}},$$

and it will be

$$s = \beta + \frac{\delta}{\beta + \sqrt{(\beta\beta + 2\delta)}},$$

which expression is reduced to this:

$$s = \frac{1}{2}\beta + \frac{1}{2}\sqrt{(\beta\beta + 2\delta)}.$$

6. This continued fraction is in fact able to be reduced to even greater simplicity, if in place of δ we write 2ε , so that it would be

$$\frac{1}{2}\beta + \frac{1}{2}\sqrt{(\beta\beta + 4\varepsilon)} = \beta + \frac{2\varepsilon}{2\beta + \frac{6\varepsilon}{3\beta + \frac{12\varepsilon}{4\beta + \frac{12\varepsilon}{5\beta + 20[\text{sicl etc.})}}}}.$$

And if now the first fraction is depressed by 2, the second by 3, the third by 4, the fourth by 5, etc., the following form will be produced:

$$\frac{1}{2}\beta + \frac{1}{2}\sqrt{(\beta\beta + 4\varepsilon)} = \beta + \frac{\varepsilon}{\beta +$$

which is of the greatest simplicity, and if its sum is considered an unknown, and it is denoted as equal to z, it will be in turn be $z = \beta + \frac{\varepsilon}{z}$, and thus $zz = \beta z + \varepsilon$, from which it would be $z = \frac{\beta + \sqrt{(\beta \beta + 4\varepsilon)}}{2}$, which is the same.

7. Indeed this most simple sum is able to be immediately deduced from the formula taken initially

$$s = x^n(\alpha - \eta x - \gamma xx),$$

and since we have put this equal to nothing, it will certainly be $\alpha = \beta x + \gamma xx$, and in the very same way

$$\alpha x = \beta xx + \gamma x^3$$
, $\alpha xx = \beta x^3 + \gamma x^4$, etc.,

thus so that for the series A, B, C, D, etc. we may have this simple series of powers: $1, x, x^3, x^4,$ etc., then indeed each of the letters f, g, h, etc. becomes α, β, γ , etc., from which arises this continued fraction:

$$\frac{\alpha}{x} = \beta + \frac{\alpha \gamma}{\beta + \frac{\alpha \gamma}{\beta + \frac{\alpha \gamma}{\beta + \text{ etc.}}}},$$

where it is $\frac{1}{x} = \frac{\beta + \sqrt{(\beta\beta + 4\alpha\gamma)}}{2\alpha}$. Therefore the value of this fraction is $\frac{1}{2}\beta + \frac{1}{2}\sqrt{(\beta\beta + 4\alpha\gamma)}$, such as before, since $\alpha\gamma = \varepsilon$.

II. The expansion of the formula $s = x^n(a - x)$

8. This formula will therefore vanish by setting x = a. Moreover it is $ds = nax^{n-1}dx - (n+1)x^ndx$, which expression is comprised by two terms; it may be reduced to a fraction, whose denominator is $\alpha + \beta x$, so that it will become

$$ds = \frac{na\alpha x^{n-1}dx + (\beta na - \alpha(n+1))x^n dx - \beta(n+1)x^{n+1} dx}{\alpha + \beta x}.$$

Therefore by integrating each of the members, it will be

$$s = na\alpha \int \frac{x^{n-1}dx}{\alpha + \beta x} + (n\beta a - (n+1)\alpha) \int \frac{x^n dx}{\alpha + \beta x} - \beta(n+1) \int \frac{x^{n+1}dx}{\alpha + \beta x}$$

which if after each are integrated we set x = a, so that it may become s = 0, we will have this reduction:

$$na\alpha \int \frac{x^{n-1}dx}{\alpha + \beta x} = ((n+1)\alpha - n\beta a) \int \frac{x^n dx}{\alpha + \beta x} + (n+1)\beta \int \frac{x^{n+1}dx}{\alpha + \beta x}.$$

9. In place of n we shall now successively substitute the numbers 1, 2, 3, 4, etc., and then by comparison with the general formula that has been established we will have

$$A = \int \frac{dx}{\alpha + \beta x}, \qquad B = \int \frac{x dx}{\alpha + \beta x}, \qquad C = \int \frac{x x dx}{\alpha + \beta x}, \text{ etc.}$$

where indeed after integration it ought to be made x=a. Thereafter truly we will have

$$f = a\alpha, \ f' = 2a\alpha, \ f'' = 3a\alpha, \ f''' = 4a\alpha, \ \text{etc.}$$
 $g = 2\alpha - \beta a, \ g' = 3\alpha - 2\beta a, \ g'' = 4\alpha - 3\beta a, \ \text{etc.}$ $h = 2\beta, h' = 3\beta, \ h'' = 4\beta, \ h''' = 5\beta, \ \text{etc.}$

and thus from this arises the following continued fraction:

$$\frac{\alpha aA}{B} = (2\alpha - \beta a) + \frac{4a\alpha\beta}{(3\alpha - 2\beta a) + \frac{ga\alpha\beta}{(4\alpha - 3\beta a) + \frac{16a\alpha\beta}{(5\alpha - 4\beta\alpha) + gt\alpha}}}$$

10. By integrating, it may moreover be established

$$\int \frac{dx}{\alpha + \beta x} = \frac{1}{\beta} l \frac{\alpha + \beta x}{\alpha},$$

seeing that the integral ought to vanish by making it x=0. Now therefore it may be x=a, and it will hence be $A=\frac{1}{\beta}l\frac{\alpha+\beta a}{\alpha}$. In turn

$$\int \frac{xdx}{\alpha + \beta x} = \frac{1}{\beta} \left(x - \frac{\alpha}{\beta} l \frac{\alpha + \beta x}{\alpha} \right),$$

and by it being made x = a it shall become

$$B = \frac{a}{\beta} - \frac{\alpha}{\beta\beta} l \frac{\alpha + \beta a}{\alpha},$$

wherefore the value of our continued fraction will be

$$\frac{\alpha a\beta l \frac{\alpha + \beta a}{\alpha}}{a\beta - \alpha l \frac{\alpha + \beta a}{\alpha}};$$

moreover it is evident for nothing of universality to perish, even if it is set a=1; then in fact it will be

$$\frac{\alpha\beta l \frac{\alpha+\beta}{\alpha}}{\beta - \alpha l \frac{\alpha+\beta}{\alpha}} = (2\alpha - \beta) + \frac{4\alpha\beta}{(3\alpha - 2\beta) + \frac{9\alpha\beta}{(4\alpha - 3\beta) + \text{ etc.}}}.$$

11. Moreover, the whole of this expression manifestly depends singularly on the ratio of the numbers α and β ; from this, we may take $\alpha = 1$ and $\beta = n$, and then this continued fraction will be seen:

$$\frac{nl(1+n)}{n-l(1+n)} = (2-n) + \frac{4n}{(3-2n) + \frac{9n}{(4-3n) + \frac{16n}{(5-4n)4 - 4n}}},$$

for which if we set this series after the law 1 + n and set the sum equal to s, so that it will be

$$s = 1 + \frac{n}{(2-n) + \frac{4n}{(3-2n) + \frac{9n}{(4-3n) + \frac{16n}{(5-4n) + \text{ etc.}}}}},$$

it will be

$$s = 1 + \frac{n(n - l(1+n))}{nl(1+n)} = 1 + \frac{n - l(1+n)}{l(1+n)} = \frac{n}{l(1+n)}.$$

12. We shall run through several examples, and the first shall be n=1, where it will be

$$\frac{1}{l2} = 1 + \frac{1}{1 + \frac{4}{1 + \frac{9}{1 + \frac{16}{1 + \text{etc.}}}}}.$$

On the other hand by putting n=2 it will be

$$\frac{2}{l3} = 1 + \frac{2}{0 + \frac{8}{-1 + \frac{18}{-2 + \frac{32}{-3 + \frac{50}{-4 + etc}}}}}$$

which expression however, on account of the negative quantities, is not very pleasant; insofar as it will turn out that whenever n > 1, it will be more worth the work to unfold these cases, than when n is taken as less than unity.

13. Therefore it is able to be made easily; it may be reverted to an expression containing the letters α and β , and then by supplying the head because it is missing, this form will be produced:

$$\frac{\beta}{l\frac{\alpha+\beta}{\alpha}} = \alpha + \frac{\alpha\beta}{(2\alpha-\beta) + \frac{4\alpha\beta}{(3\alpha-2\beta) + \frac{9\alpha\beta}{(4\alpha-3\beta) + \text{ etc.}}}}.$$

We now put $\alpha = n - m$ and $\beta = 2m$, so that we may obtain the following form:

$$\frac{2m}{l\frac{n+m}{n-m}} = n - m + \frac{2m(n-m)}{2n - 4m + \frac{8m(n-m)}{3n - 7m + \frac{18m(n-m)}{4n - 2m + \frac{1}{2m}}}},$$

from which the following special cases are deduced.

If m = 1 and n = 3 it will be

$$\frac{2}{l2} = 2 + \frac{4}{2 + \frac{16}{2 + \frac{36}{2 + \frac{36}{2 + \frac{64}{2 + \frac{10}{2}}}}}},$$

which fraction divided by 2 and reduced is rendered as such:

$$\frac{1}{l2} = 1 + \frac{1}{1 + \frac{4}{1 + \frac{9}{16} + \frac{16}{1 + \text{etc.}}}},$$

which here is arrived at like before.

Were it m = 1 and n = 4 it will be

$$\frac{2}{l^{\frac{5}{2}}} = 3 + \frac{6}{4 + \frac{24}{5 + \frac{54}{6 + \frac{96}{7 + \text{etc.}}}}}$$
$$= 3 + \frac{6 \cdot 1}{4 + \frac{6 \cdot 4}{5 + \frac{6 \cdot 9}{6 + \frac{6 \cdot 9}{7 + \frac{16}{10}}}}.$$

Were it m = 1 and n = 5, it will be

$$\frac{2}{l^{\frac{3}{2}}} = 4 + \frac{8}{6 + \frac{32}{8 + \frac{72}{10 + \frac{72}{128}}}},$$

¹Translator: Original reads "n = n - m".

or

$$\frac{1}{l^{\frac{3}{2}}} = 2 + \frac{2}{3 + \frac{8}{4 + \frac{18}{5 + \frac{18}{6 + \text{ etc.}}}}}$$
$$= 2 + \frac{2 \cdot 1}{3 + \frac{2 \cdot 4}{4 + \frac{2 \cdot 9}{5 + \frac{2 \cdot 16}{6 + \text{ etc.}}}}}$$

III. The expansion of the formula $s = x^n(1 - x^2)$

14. This formula therefore vanishes in the cases x=0 and x=1. Then indeed, it shall be

$$ds = nx^{n-1}dx - (n+2)x^{n+1}dx,$$

which differential uplifted with the denominator $\alpha + \beta xx$ would be

$$ds = \frac{n\alpha x^{n-1}dx + (n\beta - (n+2)\alpha)x^{n+2}dx - (n+2)\beta x^{n+3}dx}{\alpha + \beta xx}$$

here, by now integrating this in turn it will be

$$s = n\alpha \int \frac{x^{n-1}dx}{\alpha + \beta xx} + (n\beta - (n+2)\alpha) \int \frac{x^{n+1}dx}{\alpha + \beta xx} - (n+2)\beta \int \frac{x^{n+3}dx}{\alpha + \beta xx}$$

And if now after these integrations it is set x = 1, this reduced integral will be produced:

$$n\alpha \int \frac{x^{n-1}dx}{\alpha + \beta xx} = ((n+2)\alpha - n\beta) \int \frac{x^{n+1}dx}{\alpha + \beta xx} + (n+2)\beta \int \frac{x^{n+3}dx}{\alpha + \beta xx}.$$

15. Because these powers of x are augmented two by two, for the exponent n we shall assign successively the values 1, 3, 5, 7, 9, etc., and it shall be set:

$$A = \int \frac{dx}{\alpha + \beta xx}, \qquad B = \int \frac{xxdx}{\alpha + \beta xx}, \qquad C = \int \frac{x^4dx}{\alpha + \beta xx}, \text{ etc.}$$

Then indeed from these, the letters f, g, h will be derived:

$$f = \alpha, f' = 3\alpha, f'' = 5\alpha, f''' = 7\alpha, \text{ etc.}$$

 $g = 3\alpha - \beta, g' = 5\alpha - 3\beta, g'' = 7\alpha - 5\beta, \text{ etc.}$
 $h = 3\beta, h' = 5\beta, h'' = 7\beta, h''' = 9\beta, \text{ etc.}$

from which is born the following continued fraction:

$$\frac{\alpha A}{B} = 3\alpha - \beta + \frac{9\alpha\beta}{5\alpha - 3\beta + \frac{25\alpha\beta}{7\alpha - 5\beta + \frac{49\alpha\beta}{9\alpha - 7\beta\beta + ptc}}}.$$

16. Because it is $B = \int \frac{xxdx}{\alpha + \beta xx}$, it will be $B = \frac{1}{\beta} \int dx - \frac{\alpha}{\alpha}$ [sic] $\int \frac{dx}{\alpha + \beta xx}$, and thus $B = \frac{1}{\beta} - \frac{\alpha}{\beta} A$, by whose value being substituted in we will have

$$\frac{\alpha\beta A}{1-\alpha A} = 3\alpha - \beta + \frac{9\alpha\beta}{5\alpha - 3\beta + \frac{25\alpha\beta}{7\alpha - 5\beta + \text{ etc.}}},$$

which, because it is missing its head, we will set in front $\alpha + \beta + \alpha\beta$; then moreover the sum will be $\beta + \frac{1}{A}$, so that we will thus have

$$\beta + \frac{1}{A} = \alpha + \beta + \frac{\alpha\beta}{3\alpha - \beta + \frac{9\alpha\beta}{5\alpha - 3\beta + \frac{25\alpha\beta}{5\alpha - 3\beta + \frac{25\alpha\beta}{3\alpha - 3\beta} - \frac{1}{3\alpha}}}}.$$

with it arising that $A=\int \frac{dx}{\alpha+\beta xx}$, with this integral being taken so that it vanishes by putting x=0, and indeed also by making it x=1.

17. First we shall expand the simplest case, in which $\alpha = 1$ and $\beta = 1$, where it will be $A = \frac{\pi}{4}$, for which we will have

$$1 + \frac{4}{\pi} = 2 + \frac{1}{2 + \frac{9}{2 + \frac{25}{2 + \frac{49}{2 + \frac{49}{2 + \frac{1}{2}}}}}},$$

that is it will be

$$\frac{4}{\pi} = 1 + \frac{1}{2 + \frac{9}{2 + \frac{25}{2 + \text{ atc.}}}},$$

which is the same continued fraction produced first before by Brouncker, the investigation of which, which was elicited by Wallis through greatly tedious calculations, here proceeds immediately from our formula by itself.

18. Our general form as well provides infinite other similar expressions, precisely as the letters α and β are taken in varied ways. And firstly indeed, if α and β were positive numbers, the value of the letter A is always able to be expressed by circular arcs, and conversely indeed by logarithms. Were it therefore $\beta=1$, it will be

$$A = \int \frac{dx}{\alpha + xx} = \frac{1}{\sqrt{\alpha}}$$
 Atang. $\frac{x}{\sqrt{\alpha}} = \frac{1}{\sqrt{\alpha}}$ Atang. $\frac{1}{\sqrt{\alpha}}$,

from which is born this continued fraction:

$$1 + \frac{\sqrt{\alpha}}{\text{Atang.} \frac{1}{\sqrt{\alpha}}} = \alpha + 1 + \frac{\alpha}{3\alpha - 1 + \frac{9\alpha}{5\alpha - 3 + \frac{25\alpha}{7\alpha - 5 + \text{ etc.}}}}.$$

Here therefore it should be taken $\alpha = 3$, and because Atang. $\frac{1}{\sqrt{3}} = \frac{\pi}{3}$ we will have

$$1 + \frac{6\sqrt{3}}{\pi} = 4 + \frac{3}{8 + \frac{27}{12 + \frac{75}{16 + \frac{147}{204 - etc.}}}},$$

or

$$1 + \frac{6\sqrt{3}}{\pi} = 4 + \frac{3 \cdot 1}{8 + \frac{3 \cdot 9}{12 + \frac{3 \cdot 25}{16 + \frac{3 \cdot 49}{191 + str.}}}}.$$

19. Now B shall be a particular positive number, and indeed it is

$$A = \int \frac{dx}{\alpha + \beta xx} = \frac{1}{\beta} \int \frac{dx}{\frac{\alpha}{\beta} + xx},$$

which having been integrated will be $A = \frac{1}{\sqrt{\alpha\beta}}$ Atang. $\sqrt{\frac{\beta}{\alpha}}$. Then therefore we will have

$$\beta + \frac{\sqrt{\alpha\beta}}{\text{Atang.}\sqrt{\frac{\beta}{\alpha}}} = \alpha + \beta + \frac{\alpha\beta}{3\alpha - \beta + \frac{9\alpha\beta}{5\alpha - 3\beta + \text{ etc.}}}.$$

We shall now therefore set $\alpha + \beta = 2n$ and $\alpha - \beta = 2m$, so that it shall be $\alpha = m + n$ and $\beta = n - m$, with whose values having been put in it will be

$$n - m + \frac{\sqrt{(nn - mm)}}{\text{Atang. }\sqrt{\frac{n - m}{n + m}}} = 2n + \frac{nn - mm}{2n + 4m + \frac{9(nn - mm)}{2n + 8m + \text{ etc.}}}.$$

20. We may consider as well the case, in which β is a negative number, and by putting $\beta = -\gamma$ it will be

$$A = \int \frac{dx}{\alpha - \gamma xx} = \frac{1}{\sqrt{\int \frac{dx}{\frac{\alpha}{\sqrt{-xx}}}}} [\text{sic}],$$

whose integral is

$$A = \frac{1}{2\sqrt{\alpha\gamma}} l \frac{\sqrt{\frac{\alpha}{\gamma}} + x}{\sqrt{\frac{\alpha}{\gamma}} - x};$$

with it having been made therefore x = 1 it will be

$$A = \frac{1}{2\sqrt{\alpha\gamma}} l \frac{\sqrt{\alpha + \sqrt{\gamma}}}{\sqrt{\alpha - \sqrt{\gamma}}},$$

from which is born this continued fraction:

$$-\gamma + \frac{2\sqrt{\alpha\gamma}}{l\frac{\sqrt{\alpha}+\sqrt{\gamma}}{\sqrt{\alpha}-\sqrt{\gamma}}} = \alpha - \gamma - \frac{\alpha\gamma}{3\alpha + \gamma - \frac{9\alpha\gamma}{5\alpha + 3\gamma - \frac{25\alpha\gamma}{7\alpha + 5\gamma - \text{ etc.}}}},$$

and thus we have made in this way new continued fractions, of which the values may moreover be exhibited by logarithms, and which are altogether different from that which we came upon before.

21. This case presents itself being more worthy of notice than the others, when $\gamma=\alpha$. Or, because it turns out the same, $\alpha=1$ and $\gamma=1$; because then it is $l\frac{\sqrt{\alpha}+\sqrt{\gamma}}{\sqrt{\alpha}-\sqrt{\gamma}}=l\infty=\infty$, we will have

$$-1 = 0 - \frac{1}{4 - \frac{9}{8 - \frac{25}{12 - \text{ etc.}}}},$$

or by changing the sign

$$1 = \frac{1}{4 - \frac{9}{8 - \frac{25}{12 - \text{etc}}}},$$

whence the first denominator

$$4 - \frac{9}{8 - \frac{25}{12 - \text{ etc.}}}$$

ought to be equal to 1. Therefore it will be

$$0 = 3 - \frac{9}{8 - \frac{25}{12 - \text{etc.}}},$$

or

$$1 = \frac{3}{8 - \frac{25}{12 - \text{etc.}}},$$

where the denominator ought to be equal to 3, from which it shall be

$$0 = 5 - \frac{25}{12 - \text{ etc.}},$$

whose denominator ought to be equal to 5, from which it shall be

$$0 = 7 - \frac{49}{16 - \frac{81}{20 - \text{etc.}}},$$

from which the true order is easily perceived.

22. We take $\alpha=4$ and $\gamma=1,$ and this fraction will be born

$$-1 + \frac{4}{l3} = 3 - \frac{4 \cdot 1}{13 - \frac{4 \cdot 9}{23 - \frac{4 \cdot 25}{33 - \frac{4 \cdot 49}{24 \cdot 49}}}}$$

But if on the other hand we let $\alpha = 9$ and $\gamma = 1$ it will be

$$-1 + \frac{6}{l2} = 8 - \frac{9 \cdot 1}{28 - \frac{9 \cdot 9}{48 - \frac{9 \cdot 9}{68 - \frac{9 \cdot 9}{3} \cdot 49}}}.$$

IV. The expansion of the formula
$$s = x^n e^{\alpha x} (1 - x)$$

22.[sic] This e denotes the number whose hyperbolic logarithm is unity, thus so that $d \cdot e^{\alpha x} = \alpha dx e^{\alpha x}$. Then it will therefore be

$$ds = nx^{n-1}dxe^{\alpha x} + (\alpha - (n+1))x^n dxe^{\alpha x} - \alpha x^{n+1} dxe^{\alpha x},$$

from which in turn by integrating it will be

$$s = n \int x^{n-1} dx e^{\alpha x} + (\alpha - (n+1)) \int x^n dx e^{\alpha x} - \alpha \int x^{n+1} dx e^{\alpha x}.$$

But if now after integration it is put x = 1, it will be

$$n \int x^{n-1} dx e^{\alpha x} = (n+1-\alpha) \int x^n dx e^{\alpha x} + \alpha \int x^{n+1} dx e^{\alpha x}.$$

23. But if now in place of n we successively write the numbers 1, 2, 3, 4, and so on, we may make

$$A \int e^{\alpha x} dx = \frac{1}{\alpha} (e^{\alpha} - 1) \text{ and } B = \int x dx e^{\alpha x} = \frac{\alpha - 1}{\alpha \alpha} e^{\alpha} + \frac{1}{\alpha \alpha}$$
$$f = 1, f' = 2, f'' = 3, f''' = 4, \text{ etc.}$$
$$g = 2 - \alpha, g' = 3 - \alpha, g'' = 4 - \alpha, \text{ etc.}$$
$$h = \alpha, h' = \alpha, h'' = \alpha, h''' = \alpha, \text{ etc.}$$

and this continued fraction will be produced:

$$\frac{A}{B} = 2 - \alpha + \frac{2\alpha}{3 - \alpha + \frac{3\alpha}{4 - \alpha + \frac{4\alpha}{3 - \alpha}}}.$$

We now adjoin at the head $1 - \alpha + \alpha$, whose value will be

$$1 - \alpha + \frac{(\alpha - 1)e^{\alpha} + 1}{e^{\alpha} - 1} = \frac{\alpha}{e^{\alpha} - 1},$$

from which is obtained this quite elegant continued fraction:

$$\frac{\alpha}{e^{\alpha} - 1} = 1 - \alpha + \frac{\alpha}{2 - \alpha + \frac{2\alpha}{3 - \alpha + \frac{3\alpha}{4} - \frac{3\alpha}{4}}},$$

from which it is apparent that if it were $\alpha=0$, because $e^{\alpha}-1=\alpha$, for it to be certainly 1=1.

24. We may consider several particular cases; and first, if it were $\alpha=1,$ it will be

$$\frac{1}{e-1} = 0 + \frac{1}{1 + \frac{2}{2 + \frac{3}{3 + \frac{4}{1 + \frac{4}{1 + \frac{1}{1 + \frac{4}{1 + \frac{4$$

which continued fraction is easily transformed into this:

$$\frac{1}{e-1} = \frac{1}{1 + \frac{\frac{1}{1}}{1 + \frac{\frac{1}{2}}{1 + \frac{\frac{1}{2}}{1 + \text{ etc.}}}}},$$

from which it is

$$e - 1 = 1 + \frac{\frac{1}{1}}{1 + \frac{\frac{1}{2}}{1 + \frac{1}{1 + \text{ etc.}}}}.$$

Moreover, this in turn having been resolved by partial fractions gives

$$e - 1 = +\frac{1}{1 + \frac{1}{2 + \frac{1}{3 + \frac{3}{4 + \frac{4}{4 - 4}}}}},$$

from which follows

$$\frac{1}{e-2} = 1 + \frac{1}{2 + \frac{2}{3 + \frac{3}{4 + \frac{4}{4 \text{ sicl +etc.}}}}},$$

which forms because of their great simplicity are noteworthy. From the second last, it may be

$$e = 2 + \frac{1}{1 + \frac{1}{2 + \frac{2}{3 + \frac{3}{44 + \text{etc.}}}}};$$

by taking successively 1,2,3, and so on for the members, the following approximations arise:

$$e = 2,0000$$

 $e = 3,0000$
 $e = 2,6666$
 $e = 2,7272$
 $e = 2,7169$

which values, alternately greater and smaller, converge to the truth readily enough.

25. We may take $\alpha=2$ and it will be

$$\frac{2}{ee - 1} = -1 + \frac{2}{0 + \frac{4}{1 + \frac{6}{2 + \frac{1}{2 +$$

From this fraction in turn is deduced this:

$$\frac{2(ee-1)}{ee+1} = 0 + \frac{4}{1 + \frac{6}{2 + \frac{6}{2 + \frac{8}{2 + \frac{8}}{2 + \frac{8}{2 + \frac{8}{2 + \frac{8}{2 + \frac{8}{2 + \frac{8}{2 + \frac{8}{2 + \frac{8}}{2 + \frac{8}{2 + \frac{8}{2 + \frac{8}{2 + \frac{8}{2 + \frac{8}{2 + \frac{8}{2 + \frac{8$$

and in a similar way, if larger numbers are taken for α , a reduction will be able to be made.

26. As well, negative numbers are able to be taken for α . In this way, if it were $\alpha=-1$, it will become

$$\frac{e}{e-1} = 2 - \frac{1}{3 - \frac{2}{4 - \frac{3}{5 - \frac{4}{6 - \text{etc.}}}}},$$

which is reduced to this form:

$$\frac{e}{e-1} = 2 + \frac{1}{-3 + \frac{2}{4 + \frac{3}{-5 + \frac{4}{g+4} + 2}}},$$

and in a similar way larger values are able to be dealt with.

27. Now too we set $\alpha = \frac{1}{2}$, and this expression will be found:

$$\frac{1}{2(\sqrt{e-1})} = \frac{1}{2} + \frac{\frac{1}{2}}{\frac{3}{2} + \frac{1}{\frac{5}{2} + \frac{\frac{3}{2}}{\frac{5}{2} + \text{etc.}}}}$$

which reduced by partial fractions comes out as

$$\frac{1}{-1+\sqrt{e}} = 1 + \frac{2}{3 + \frac{4}{5 + \frac{6}{7 + \frac{8}{2 - 8}}}}.$$

In a similar way if we take $\alpha = \frac{1}{3}$, it will be

$$\frac{1}{3(\sqrt[3]{e}-1)} = 2:3 + \frac{1:3}{5:3 + \frac{2:3}{8:3 + \frac{2:3}{11:34 - \frac{3:3}{4:3}}}},$$

which reduced by partial fractions gives

$$\frac{1}{-1+\sqrt[3]{e}} = 2 + \frac{3}{5 + \frac{6}{8 + \frac{9}{11 + \frac{12}{14 + \text{etc.}}}}}.$$

And if it is put $\alpha = \frac{2}{3}$, this continued fraction will be produced:

$$\frac{2}{3(\sqrt[3]{(ee-1)})} = 1:3 + \frac{2:3}{4:3 + \frac{4:3}{7:3 + \frac{6:3}{10:3 + \frac{8:3}{10:3 + \frac{8:3}{10:3}}}}},$$

which reduced by partial fractions will be

$$\frac{2}{\sqrt[3]{(ee-1)}} = 1 + \frac{6}{4 + \frac{12}{7 + \frac{18}{10 + \frac{24}{124} + \text{otc}}}}.$$

28. With these fairly simple principles disclosed, in a similar way it will be permitted to treat other more general ones, which will be led to continued fractions much more abstrusely, such that this will be accessible from the cases which follow.

V. The expansion of the formula
$$s = x^n(a - bx^{\theta} - cx^{2\theta})^{\lambda}$$

29. Here therefore it will be

$$ds = (a - bx^{\theta} - cx^{2\theta})^{\lambda - 1} (nax^{n-1}dx - b(n + \lambda\theta)x^{n+\theta-1}dx - c(n + 2\lambda\theta)x^{n+2\theta-1}dx,$$

from which by its parts being integrated, then indeed by putting $a-bx^{\theta}-cx^{2\theta}=0$, (insofar as if it were it will be $x^{\theta}=-\frac{b+\sqrt{(bb+4ac)}}{2c}$) this reduction will be had in general:

$$na \int x^{n-1} dx (a - bx^{\theta} - cx^{2\theta})^{\lambda - 1}$$
$$= (n + \lambda \theta)b \int x^{n+\theta - 1} dx (a - bx^{\theta} - cx^{2\theta})^{\lambda - 1}$$
$$+ (n + 2\lambda \theta)c \int x^{n+2\theta - 1} dx (a - bx^{\theta} - cx^{2\theta})^{\lambda - 1}.$$

30. But if we want to compare this form with our general one related earlier, we must discover the values for the letter n which are to be successively assumed for different θ . Then it is not necessary that the first value for n, as we have so far made it, be taken as equal to 1; we shall set therefore the first value of it as equal to α , and we shall search for the values of the two following integral formulas, namely:

$$A = \int x^{\alpha - 1} dx (a - bx^{\theta} - cx^{2\theta})^{\lambda - 1} \text{ and}$$
$$B = \int x^{\alpha + \theta - 1} dx (a - bx^{\theta} - cx^{2\theta})^{\lambda - 1},$$

which integrals are taken such that they vanish by putting x=0, which having been made the former value of x ought to be taken, which returns the formula $a-bx^{\theta}-c\alpha^{2\theta}=0$. Since however it is not permitted for this to be carried out in general, we shall be content to indicate these values by the letters A and B, which therefore consider as known.

31. Thereafter indeed the letters f, g, h, with this having been derived will take on the following values:

$$f = \alpha a, \ f' = (\alpha + \theta)a, \ f'' = (\alpha + 2\theta)a, \ f''' = (\alpha + 3\theta)a, \ \text{etc.}$$

$$g = (\alpha + \lambda \theta)b, \ g' = (\alpha + \theta + \lambda \theta)b, \ g'' = (\alpha + 2\theta + \lambda \theta)b, \ \text{etc.}$$

$$h = (\alpha + 2\lambda \theta)c, \ h' = (\alpha + \theta + 2\lambda \theta)c, \ h'' = (\alpha + 2\theta + 2\lambda \theta)c, \ \text{etc.}$$

From this therefore will be formed the following continued fraction:

$$\frac{\alpha a A}{B} = (\alpha + \lambda \theta)b + \frac{(\alpha + \theta)(\alpha + \lambda \theta)ac}{(\alpha + \theta + \lambda \theta)b + \frac{(\alpha + 2\theta)(\alpha + \theta + 2\lambda \theta)ac}{(\alpha + 2\theta + \lambda \theta)b + \frac{(\alpha + 3\theta)(\alpha + 2\theta + 2\lambda \theta)ac}{(\alpha + 3\theta + \lambda \theta)b}}},$$

which form is certainly most general, of which however we will not exclude another derivation.

VI. The expansion of the formula
$$s = x^n (1 - x^{\theta})^{\lambda}$$

32. Here therefore it would be

$$ds = nx^{n-1}dx(1-x^{\theta})^{\lambda} - \lambda \theta x^{n+\theta-1}dx(1-x^{\theta})^{\lambda-1}$$

from which will emerge two integral formulas; wherefore, for this, we may take an arbitrary denominator $a+bx^{\theta}$ of this differential, so that we may have:

$$ds = \frac{(1-x^{\theta})^{\lambda-1}}{a+bx^{\theta}}(nax^{n-1}dx - (a(n+\lambda\theta)-bn)x^{n+\theta-1}dx - b(n+\lambda\theta)x^{n+2\theta-1}dx).$$

Now therefore, by putting after integration x = 1, we deduce this reduction:

$$na \int \frac{x^{n-1}dx(1-x^{\theta})^{\lambda-1}}{a+bx^{\theta}} = (a(n+\lambda\theta)-bn) \int \frac{x^{n+\theta-1}dx(1-x^{\theta})^{\lambda-1}}{a+bx^{\theta}} +b(n+\lambda\theta) \int \frac{x^{n+2\theta-1}dx(1-x^{\theta})^{\lambda-1}}{a+bx^{\theta}}.$$

33. Here again it is clear what values should arise for n by differentiating by θ . Moreover, first the value of it should be set $n = \alpha$, and

$$A = \int \frac{x^{\alpha - 1} dx (1 - x^{\theta})^{\lambda - 1}}{a + bx^{\theta}} \text{ and } B = \int \frac{x^{\alpha + \theta - 1} dx (1 - x^{\theta})^{\lambda - 1}}{a + bx^{\theta}},$$

where namely after integration it shall be set x = 1. With this having been determined, it may then be made

$$f = \alpha a, f' = (\alpha + \theta)a, f'' = (\alpha + 2\theta)a, f''' = (\alpha + 3\theta)a, \text{ etc.}$$

$$g = (\alpha + \lambda \theta)a - \alpha b, g' = (\alpha + \theta + \lambda \theta)a - (\alpha + \theta)b,$$

$$g'' = (\alpha + 2\theta + \lambda \theta)a - (\alpha + 2\theta)b, \text{ etc.}$$

$$h = (\alpha + \lambda \theta)b, h' = (\alpha + \theta + \lambda \theta)b, h'' = (\alpha + \theta + 2\lambda \theta)b, \text{ etc. [sic]}$$

from which will be formed the following continued fraction:

$$\frac{\alpha a A}{B} = (\alpha + \lambda \theta) a - \alpha b + \frac{(\alpha + \theta)(\alpha + \lambda \theta) a b}{(\alpha + \theta + \lambda \theta) a - (\alpha + \theta) b + \frac{(\alpha + 2\theta)(\alpha + \theta + \lambda \theta) a b}{(\alpha + 2\theta + \lambda \theta) a - (\alpha + 2\theta) b + (\alpha + 3\theta)(\alpha + 2\theta + \lambda \theta) a b \text{ etc.}}}$$

the copious expansion of which form we refrain from.

VII. The expansion of the formula
$$s = x^n (e^{\alpha x} (1-x)^{\lambda})$$

34. Here therefore it would be

$$ds = (1-x)^{\lambda-1}(nx^{n-1}dx - (n+\lambda-\alpha)x^n dx - \alpha x^n dx);$$

then consequently if after integration it is set everywhere x=1, of course in which case it would be s=1, we will have this reduction:

$$n\int x^{n-1}dx e^{\alpha x}(1-x)^{\lambda-1} = (n+\lambda-\alpha)\int x^n dx e^{\alpha x}(1-x)^{\lambda-1} + \alpha\int x^{n+1}dx e^{\alpha x}(1-x)^{\lambda-1}.$$

35. In this formula therefore, for the exponent n all the values ascending from unity ought to be taken, where indeed for the minimum value of this we shall take $n = \delta$, and then the values of the letters A and B will be able to be elicited from this formula, by it being put x = 1 after integration,

$$A = \int x^{\delta - 1} dx e^{\alpha x} (1 - x)^{\lambda - 1}, \qquad B = \int x^{\delta} dx e^{\alpha x} (1 - x)^{\lambda - 1},$$

then indeed from these values:

$$f = \delta, \ f' = \delta + 1, \ f'' = \delta + 2, \ f''' = \delta + 3, \ \text{etc.}$$

$$g = \delta + \lambda - \alpha, \ g' = \delta + 1 + \lambda - \alpha, \ g'' = \delta + 2 + \lambda - \alpha, \ \text{etc.}$$

$$h = \alpha, \ h' = \alpha, \ h'' = \alpha, \ \text{etc.}$$

such a continued fraction follows:

$$\frac{\delta A}{B} = \delta + \lambda - \alpha + \frac{(\delta + 1)\alpha}{\delta + 1 + \lambda - \alpha + \frac{(\delta + 2)\alpha}{\delta + 2 + \lambda - \alpha + \frac{(\delta + 3)\alpha}{\delta + 3 + \lambda - \alpha + \text{etc.}}}}$$

Here it should be noted in particular that the exponents λ and δ should from necessity be taken as no greater than nothing, since otherwise the principal formula $x^n e^{\alpha x} (1-x)^{\lambda}$ will not vanish in those cases when x=1.

36. If a value equal to 1 were taken for the letters δ and λ , the case treated above will come forth; and if integral numbers are assigned to these letters, in the same way continued fractions will arise, which by certain operations will be permitted to be reduced to the prior ones. Truly if either for either one or both of these letters δ and lambda fractions are assigned, then forms shall arise which are irreducible to the prior ones, of which the value would be able to be expressed in no other way than altogether transcendental quantities. For if it were $\delta = \frac{1}{2}$ and $\lambda = \frac{1}{2}$, the value of the letter A will be bound to be obtained from this integral formula: $A = \frac{e^{\alpha x} dx}{\sqrt{(x-xx)}}$ [sic], the integration of which leads to altogether transcendental quantities, thus so that the value of such continued fractions comes forth as most abstruse.