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EXACT HOMOMORPHISM SEQUENCES IN HOMOLOGY THEORY 

BY J. L. KELLEYAND EVERETTPITCHER 

(Received April 13, 1946) 

The developments of this paper stem from the attempts of one of the authors 
to deduce relations between homology groups of a complex and homology groups 
of a complex which is its image under a simplicia1 map. Certain relations were 
deduced (see [EP 11 and [EP 21) which form an extension of the Mayer-Vietoris 
formulas concerning coverings of a complex by two complexes. In this paper 
these relations are formalized and are seen to be consequences of the existence of 
an exact homomorphism sequence (see Definition 3.1). The concept of an exact 
sequence seems to be due to Hurewicz [WH]. Its principal property is used in 
the presentation of the Mayer-Vietoris formulas by Alexandroff and Hopf 
[A-H, pp. 297-2991. It has been used most notably by Eilenberg and Steenrod 
(reference [E-S]) as one of a very simple system of axioms for homology theory. 
(See [C] for another use.) In  one sense, this paper might have been written 
from the point of view of exploiting this axiom. Actually we have found the 
most flexible approach to be the consideration of the exact sequence of homology 
groups on a Mayer complex as a funda.menta1 algebraic identity. We exploit 
this identity in two directions. First we obtain a number of duality theorems 
and second, we investigate chain mappings and some closely related topics on 
coverings. A considerable part of the paper is methodological in character in 
that known results are deduced as part of a general line of reasoning. 

In geometric applications involving cech homology groups there are two pro- 
cedures available. One might consider fundamental complexes for a compact 
metric space, in which case the fundamental algebraic identity could be used, 
or else one might set up a limiting process. We have used the latter method. 

Section 1 is concerned with preliminary remarks on notation. In Section 2 
we define the term homomorphism sequence and recall the definition of an abstract 
complex according to Mayer [WM 1, 2, 41 distinguishing chain and cochain 
complexes notationally and defining homology and cohomology groups. In Sec- 
tion 3 we define the term exact sequence and establish the fundamental construc- 
tion of the paper, Theorem 3.3. 

In Section 4, the limit of a direct system of homomorphism sequences is 
defined and direct limits of exact sequences are shown to be exact. Section 5 
gives a summary of needed results on character theory. Compare with papers 
by Alexandroff [A] and Mayer [WM 41. These results are used in Section 6 to 
establish algebraic duality in Mayer complexes. Compare with [WM 41. The 
results of Section 5 are used again in Section 7, where limits of inverse systems 
of homomorphism sequences of compact groups are defined, to show that inverse 
limits of exact sequences of compact groups are compact. 

In Section 8, the theory of inverse limits is applied to prove exactness of the 
homomorphism sequence of homology groups relative to a compact coefficient 
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group of a space and a closed subspace (this was announced by Hurewicz [WH]) 
and to identify the dual sequence. For compact spaces a duality theorem of the 
Alexander type results. The exactness of the sequence of the singular homology 
groups of an arbitrary space and subspace is exhibited. 

Poincar6 duality is discussed in Section 9. If M is a manifold and N a closed 
subspace the form of statement here asserts the duality of the exact sequence of 
Cech homology groups of M and N and the exact sequence of singular homology 
groups of complementary dimension of M and M - N. Alexander-Pontrjagin 
duality is a consequence. 

Chain mappings are discussed in Section 10. The homology groups of vanish- 
ing chains and the homology groups of image chains are introduced and the 
relevant exact sequences are set up. For singular homology theory and an 
arbitrary continuous mapping this introduces two sets of groups which are func- 
tions of the mapping. 

A general construction relating the homology groups of a complex with the 
homology groups of the elements of a finite covering and of their intersections 
and of the nerve of the covering is described in Section 11. This extends the 
Mayer-Vietoris formulas to the case of coverings by more than two subcomplexes. 

Some remarks on critical level theory are made in Section 12. When singular 
homology theory is used inequalities analogous to those of Morse [MM 1, 2, 31 
are proved for an arbitrary bounded function with a finite number of critical 
levels. 

References to classical results are made to -4Iexandrcff and Hopf [A-HI and 
Lefschetz [L] when possible. 

The authors appreciate very much a critical reading of the major part of the 
manuscript by Prof. Eilenberg and Prof. Steenrod. 

1. Notation 
The following notation is essentially that of Lefschetz, [L]. 
If A and B are sets A n B is their intersection, A U B their union. If Ai is a 

collection of sets n A ;  and UAi are respectively the intersection and union. The 
set of all elements of A which are not elements of B is written A - B. 

If a is an element, { a )  is the set consisting of the single element a. 
The set of elements satisfying a given condition is written (a / condition]. 

For example, for any set r Z ,  A = ( a  / a E A ] .  
I f f  is a function whose domain is A and whose range is B we write j : A  -+ B 

and read "f carries A into B." If C is a subset of A, fC is the set of images of C, 
that is, fC = ( b  b E B and for some a E C ,fa  = b } .  The function whose domain 
is C and mhich has the same functional values as f is denoted by f I C : C  -+ B. 
If f:A -+ B and C C B, f-'C is the set of elements carried into C by f ,  that is 
f-'C = ( a I a E A and fa E C }. 

By group we shall mean additive, abelian, topological group. No separation 
axiom is assumed and the term subgroup is not restricted to closed sets. (Com-
pare with "generalized topological groups," [E-RI].) 
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If A and B are subsets of a group, A + B is the set of elements which can be 
written as the sum of an element of A and an element of B. 

If A and B are groups A X B is the direct product, consisting of elements 
(a, b), a E A, b E B. 

If B is a subgroup of a group A the collection of subsets of the form ( a ]  + B, 
a E A, form a group under the operation + defined above. This is the factor 
group, written A/B. A set is open in A/B if the union of its elements is 
open in A. 

If A and B are groups, by a homomorphism f:A -+ B, we mean a 
strongly continuous homomorphism. Explicitly, if V is an open set in A, we 
require that f V be open in fA. This requirement implies that a homomorphism 
of A onto B which is 1- 1 is an isomorphism. We notice that the map of a 
group into its factor group is a (strongly continuous) homomorphism. For 
compact groups strong continuity is a consequence of continuity. 

The kernel of a homomorphism f :  A -+ B is denoted by K[j,  A] and is ( a  I a E A 
and f a = 0 ) .  For a subgroup C C A we also define 

K[f, C] = {a I a E C and fa = 0 )  = Klf, A] fI C. 

I f f :  A -+ B is a homomorphism and A' C A, B' C B are subgroups such that 
fA' C B' then f induces a homomorphism on A/A1 to BIB' in which the image 
of ( a ]  + A' is {fa) + B' for all a E A. 

The symbol rn will be used for group isomorphism. "Isomorphism" will be 
used in the sense "isomorphism onto." 

The following p~oposition is well-known. 
NOETHERTHEOREM If A, B, C are groups with A 3 B 3 C, then B/C 1.1. 

i s  a subgroup of A/C and (A/C)/(B/C) = A/B. 
We shall frequently have to exhibit particular groups and homomorphisms. 

This will ordinarily be done by exhibiting homomorphisms on isomorphic copies. 
Formally, we shall say that the homomorphisnl f :  A -+ B is equivalent to the homo- 
morphism g: C -+ D under the isomorphisms hl , h2 if hl: A -+ C, h2:B +D and 
h2f = hlg holds as an identity on elements of A. The reader is referred to 
[E-MI where ideas of this sort are discussed in detail. Theorem 5.le will pro- 
vide an important construction for equivalences. 

2. Mayer complexes 

We begin with a preliminary definition. A sequence of groups and homo- 
morphisms is termed a homomorphism sequence if i t  can be indexed from the 
integers so that, if G, and g, denote respectively the group and homomorphism 
withindexr, theng,:G,-+G,-1, r = . - -, -1,0,1,  . . - . 

Notations {G, , g,) or {G, , g) and G,+l 7G, , G,+l -+ G, ,with as many terms 
enumerated as needed for clarity, will be used for homomorphism sequences. 
Although the definition requires that the sequence permit indexing in a prescribed 
fashion i t  may in an application be indexed in the reverse direction or in some 
other fashion. 
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We shall have occasion to use homomorphisms of one homomorphism sequence 
into another. Homomorphisms 

f,:G, +G: 

will be said to establish a homomorphism on {G, ,  g,} to {G: , g : ) ,  written 
f,: {G, ,g,] -+ {G: , g : } ,  provided the homomorphisms f, commute with the homo- 
morphisms of the sequences in the sense that g:f, = f,-lg, is an identity on ele- 
ments of G, for all r. 

In  case the homomorphism of one homomorphism sequence into another is a 
group isomorphism for all values of the index, the two sequences are termed 
equivalent. A problem of finding a homomorphism sequence with certain proper- 
ties may ordinarily be regarded as solved when an equivalent sequence is 
exhibited and we shall use the concept of equivalent sequence in this way. 

The homomorphism sequences of greatest interest for the purposes of this 
paper are Mayer chain and cochain complexes, the first of which is defined as 
follows. 

DEFINITION2.1. A Mayer chain complex M is a homomorphism sequence 
M = {C, , P } ,  p:C, -+ C,-l , such that @/3= 0 for all groups C, . The groups C, 
are called chain groups, their elements are chains, and /3 is called the boundary 
homomorphism. 

For notational convenience if M is a Mayer chain complex then C,(M) may 
be used as notation for its rth chain group. 

A chain complex N is termed a subcomplex of M if C,(N) C C,(M) and if the 
boundary homomorphism of M agrees on C,(N) with that of N .  The same 
symbol will be used for the boundary homomorphism on a complex and on a 
subcomplex. 

If N is a subcomplex of ill a quotient complex M / N  may be constructed. I ts  
chains groups C,(M/N)  are defined to be C,(M)/C,(N) and its boundary homo- 
morphism is induced by that of M .  Explicitly, the boundary of { a )  + C,(N) 
is { p a }  + C,-I(N). 

We define the homology groups of a Mayer complex in the conventional 
manner. 

DEFINITION2.2. 

Z, (M)  = group of r-dimensional cycles of M 

B,(M) = group of r-dimensional bounding cycles of M 

H,(lM) = r-dimensional homology group o f  M 

The chain groups of a cellular complex (explicitly, finite chains in a closure 
finite complex or infinite chains on a star-finite complex; see [L])with the usual 
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boundary homomorphism form a Mayer chain complex whose cycles, boundaries 
and homology groups are the usual ones. A subcomplex generates a Mayer 
subcomplex. The homology theory of the quotient Mayer complex corresponds 
to the usual relative homology theory. To show this we make the following 
definition. 

DEFINITION2.3. If N is a subcomplex of the Mayer chain complex M, 

Z,.(M mod 1V) = group of r-dimensional cycles mod N 

= P-'C,-~(N) 

B,(M mod N )  = group of r-dimensional bounding cycles mod N 

= BCr+l(M) + Cr(N) 

H,(M mod N )  = r-dimensional homology group of M mod N 

= Z,(M mod N)/B,(M mod N ) .  

We easily establish the follolving lemma. 
LEMMA2.4. The  groups H,(M mod N )  are isomorphic to the groups H, (M/N)  

under the isomorphisnz of the Noether theorem. 
For follo~ving definition (2.2) and the definition of a quotient complex 

Z,(M/N)  = P-'C,-~(N)/C,(N) 

Bv(M/N) = IBCT+I(M) + Cr(N)I/Cr(N). 

When this is compared with definition (2.3) the truth of the lemma is seen. 
On account of this isomorphism we can and do identify the groups 

Hr(Mmod N )  and H,(M/N) ,  and we use either of the definitions as is convenient. 
The group H,(M/N) is useful since i t  is the group of a Mayer complex, but has 
the disadvantage that its elements are sets of sets of chains. 

We shall also use Mayer cochain complexes, which differ from chain com- 
plexes essentially only in notation. 

DEFINITION2.5. A homomorphism sequence 144 = (Cr,P ' )  , P': C' -+ c"', is 
a Mayer cochain conzplex if B'P' = 0 for all C'. 

Superscript notation will always be used for cochain complexes and subscript 
notation for chain complexes. The groups C' = Cr(M)will be termed cochain 
groups and 0' the coboundary homomorphism. If one defines Cr = C-' the 
cochain complex corresponds to a chain complex. Cocycles, coboundaries and 
cohomology groups are defined so as to correspond in this way to cycles, boundaries 
and homology groups. Also subcomplex and quotient complex of a cochain 
complex correspond to the concepts already defined for a chain complex and the 
relative theory and quotient theories are again to be identified. 

Cochain groups of a cellular complex in the usual sense (finite cochains for a 
star-finite complex or infinite cochains for a closure finite complex) form a 
Mayer cochain complex. A Mayer subcomplex corresponds to cochains of an 
open cellular subcomplex and the quotient complex to cochains relative to an 
open cellular subcomplex. 

Any results on chain complexes can be immediately transferred to cochain 
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complexes by associating with each cochain complex { C r ,8') the chain complex 
(C,, p ) ,  where Cr = C-, and 0 = p'. 

3. Exact homomorphism sequences 

The terms Mayer chain and cochain complex have been defined by restricting 
the concept of homomorphism sequence. The term exact sequence is defined 
by imposing additional restrictions. 

DEFINITION A homomorphism sequence is said to be exact if the kernel of 3.1. 
the homomorphism on each group is identical with the image of the preceding 
group. 

If 0 --t A +B occurs as part of an exact sequence then the map A -+ B is 
an isomorphism onto a subgroup of B .  If A --t B -+ 0 occurs, then the image 
of A covers B.  Thus if 0 -+A --t B --t 0 occurs, the homomorphism of A into 
B is an isomorphism. 

Homomorphism sequences whose groups consist of a single element outside a 
finite interval or on a half infinite interval are sometimes of special interest. If 
a homomorphism sequence i s  defined with a finite or half injnite range for its index 
and i s  termed exact it will be understood to mean that the groups consist of a single 
element for all other values of the index. This implies, i.n particular, that if there 
is  a first map, it i s  an isomorphism onto a. subgroup and i f  there is  a last map, it i s  
a homomorphism onto. 

The fundamental construction of this paper is embodied in the exact sequence 
t,heorem for which we shall now prepare. Let M denote a Mayer chain complex 
and N a subcomplex. There are three basic homomorphisms defined and de- 
noted as follo~vs: 

a: for A c H,(M),  CZA= A + C,(N) e H r ( M  mod N )  

(3.2) 6 :  for A e H,(M mod N ) ,  PA E Hr-l(N) 

y: for A E Hr-l(N) ,  r A  = A + BCT(M)E Hr-l(M). 

Then the theorem is as follows. 
THEOREM 3.3. If M i s  a Mayer chain complex and N a subcomplex then the 

homomorphism sequence 

. - . 4 H r ( M )a;) H r ( M / N )7Hr-i(N) Hr-1(M) -+ . . 
i s  exact. The homomorphisms cz and -y are induced by the identity map and the 
homomorphisms p by h e  boundary map. 

The proof consists of verifying that the respective kernel-images are 

K [a, Hr(M)I = r H r ( N )  

= [Z,(N) + Br(M)I/Br(M) 

K [ P ,  Hr(M/N)I = aH,(M) 

= [Z,(M) + Cr(N)I/Br(MI-I-lod N )  

I ( [ r , H r - ~ ( N ) I = P H r ( M / N )  -

= z , -~ (N)n B,-~(M)IB, -~(N) .  
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Advantage has been taken of the identificaton of H , ( M / N )  snd Hr(M mod N). 
A consequence of Theorem 3.3 is the analogue for cohomology. 
THEOREM 3.4. If M i s  a Mayer cochain complex and N a subcomplex then the 

honsomorphism sequence 

. . -+ K ( M )  2Hr( M / N )  p;t T"(N);tT"(M)-+ 

i s  exact. The homomorphisms a' and y' are induced by the identity and the homo-
morphism P' i s  induced by the coboundary homomorphism. 

Examining the case of Theorem 3.3 where M is a cyclic in two successive 
dimensions, that is, where H,(M) = H,-l(M) = 0, we can state the following 
theorem. 

THEOREM 3.5. If M i s  a Mayer chain complex with H,(M) = H,_l(M) = 0 
then for any subcomplez N ,  H , ( M / N )  and H,-l(N) are isomorphic under the map 
induced by the boundary homomorphism 8. 

Theorem 3.3 has a corollary about the ranks of groups. Writing p[G]for the 
rank of the group G and abbreviating p [H,(M)]to pr(M)we state the corollary. 

COROLLARY3.6. If the ranks on the right hand side in one of the inequalities 

pr(N) 5 pr+l(M/N) + pr(M) 

pr(M) 5 P ~ ( N )+ P ~ ( M / N )  

pr(M/N) 5 pr(M) + pr-l(N) 

are Jinite then so i s  the rank on the left, and the inequality holds. If all ranks used 
in the following inequality are Jinite and p-l(N) = 0 then 

CRO(-~)"+'[pr(N) - p r ( W  + pr(M/N)] 2 0 .  

I f  in addition p,+l(M/N) = 0 the inequality i s  an  equality. I f  the homology 
groups of M and N have jinite rank and vanish for I r large and x denotes Euler 
characteristic then 

x ( M )  = x ( N )  + x ( M / N ) .  

The corollary follo\rrs from the relation 

P [GI = P [K If, GI I + P IfGI 
which applies to any map f on a group G when two of the ranks are finite. Of 
course the finiteness of rank of a group in an exact sequence may be inferred 
from that of its two immediate neighbors. 

We close this section with the remark that an acyclic Mayer complex is an 
exact sequence and vice versa. Thus Theorem 3.5 can be used to examine a 
subsequence of an exact sequence. If { A , ,  (p] is a homomorphism sequence, 
{B , ,  $1 is a subsequence if B, C A,  and $ = (p / B, . The quotient sequence is 
{ C ,  , 0)  where C, = A,/B,  and 8 is induced by (p. Theorem 3.5 then has the 
following corollary. 

COROLLARY3.7. A subsequence of an  exact sequence i s  exact if and only if the 
quotient sequence i s  exact. 
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4. Direct systems of homomorphism sequences 
It is necessary to set up a limiting process for homomorphism sequences. 

This is an extension of the usual process for the construction of limit groups. 
In  formulating the ideas of a directed system of homomorphism sequences we 
shall presume familiarity with the notions of directed set, product, weak product, 
inverse limit and direct limit as given in [L]. In  this section we shall formulate 
the idea of direct systems of exact sequences while the idea of inverse system is 
postponed to section 7. 

Let A denote a directed set. Suppose that for each X e A there is a homo- 
morphism sequence h:A; -+ A;" of discrete groups. Suppose that there are 
homomophisms n-i,to be termed projections, of {A; ,A] into (A: ,J.,,] whenever 
p > X such that 

whenever v > p > A. Then the system consisting of the directed set, the 
sequences and the projections is called a direct system of homomorphism sequences. 
(Note that the projections are homomorphisms of a sequence into a sequence; 
i.e. commutativity relations are assumed.) 

The weak products PwA; form a homomorphism sequence under homo- 
morphisms 

defined coordinate-wise; if a e PwA; then (\ka)x = Auk where the subscript X 
is adjoined to the symbol for an element of a product to denote the coordinate 
of the element in the group with index A. 

The direct limits Dir Lim A ; ,  which are factor groups of the groups PwA{ , 
form a homomorphism sequence under the homomorphism J. induced by the 
homomorphisms \k. 

We have now the following theorem. 
TKEOREM 4.1. Let (A; , $ A ]be a direct system of exact homophism sequences. 

Let \k be defined coordinate-wise on PwA; and let J. be the induced map  on Dir 
Lim A; . Then ( PwA; ,\k]and (Dir Lim A; ,J.) are exact sequences. 

We shall prove only the exactness of the direct limit sequence. Any element 
a e Dir Lim A{ is carried into 0 by application of two consecutive homomorphisms 
J.. On the other hand suppose J.a = 0. The coset a contains an element a' with 
only one non-zero coordinate, say a; . Then for some a, 7$,$Ba; = 0. Let 
b, = &a; and let b be the element of PwA; which has coordinates zero save in 
A: and there has coordinate b,. Then b r a also. Since (A',, J.,] is exact, there 
is an element c, e A:-,-', with k c ,  =b ,. Let c have coordinates zero save in 
A:-;-', and have coordinate c, there. Then the element of Dir Lim A:-;-' contain- 
ing c maps onto a. 

I t  would be convenient if the inverse limit of a system of exact homomorphism 
sequences were exact. This, as has been noticed by Eilenberg and Steenrod, 
is in general not true. It is however true in case the groups are compact and 
can then be deduced from Theorem 4.1. Accordingly we shall state the nec- 
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essary facts from the theory of character groups and return to inverse limits in 
section 7. 

5. Character groups and dual homomorphisms 

For reference me shall collect facts about character groups and dual homo- 
morphisms, most of which are familiar. All groups considered here will be either 
compact (bicompact) or discrete and subgroup will mean closed subgroup. 

A homomorphism of a group A into the group of real numbers mod 1 is a 
character of A. The group of such homomorphisms is the character group of A 
and is denoted by A*. The character group is given in the familiar compact- 
open topology; i.e. all characters carrying a fixed compact set of A into a fixed 
open set of the reals mod 1 form an open set in A*, and d l  open sets in A* are 
finite intersections or arbitrary unions of such sets. If A is discrete (compact) 
then A* is compact (discrete). The notation ba, b e A*, a e A,  will be functional 
notation for such a homomorphism consistent with our general functional 
notation. For a sttbgroup B C A the set of characters of A which carry B into 
zero form a subgroup of A* which is called the annihilator of B in A*. Explicitly, 
me define 

AnnihB = {aIaeA*andi f  b e B  thenab = 0) .  

Similarly, if 6 is a subgroup of A*, Annih B is the subgroup of A consisting of all 
elements carried into zero by every element of B. The results needed in the rest 
of this paper can be summarized briefly. The reader is referred to [L, pp. 59-72]. 

THEOREM5.1. a. If B i s  a subgroup of A and a E A, a e B, there exists c E 

Annih B in A* with ca # 0.  
b. If B i s  a sztbgroup of A*, and c E A*, c i B, there exists a E Annih B in A with 

ca # 0. 
c. If B i s  a subgroup of A or of A*, Annih B = B. 
d. For any group A, A** = A ,  the element, a e A corresponding to the function 

whose value at b, b E A*, i s  ba. 
e. I f ' A  and B are subgroups of C and A C B then (B/A)* rn Annih A/Annih 

I3 where the annihilators are subgroups of C*. 
Actually parts c, d, e of this theorem can be derived easily from parts a and b. 

I t  will be convenient for future use to display explicitly the isomorphism whose' 
existence is asserted in part e. 

LEMMA5.2. Let C be a group and A and B be subgroups such that A C B C C. 
Then for D E B/A and E E Annih A/Annih B, the union of all images of D under 
elements of E consists of a single element of the group of real numbers mod 1. Each 
E E Annih A/Annih B corresponds in this fashion to a unique element of (B/A)*. 
This correspondence i s  an isomorphism. 

The isomorphism whose existence is affirmed in Theorem 5.le will be used to 
establish equivalences in the sense defined in Section 1. In these cases, for 
example, Lemmas 5.5 and 5.6, and Theorem 6.5, the isomorphism of the equiva- 
lence will not be specifically named. 
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We will assume implicitly that each group A is identified with A** under the 
isomorphism of Theorem 6.ld, so that each element of A is considered as a 
character of A*. 

I f f  is a, homomorphism of the group A into the group B, a homomorphism f* 
on B* into A* is define as follows. Corresponding to each element a E A and 
b E B*, bja is an element of the group of reals mod 1. Thus corresponding to an 
element b E B* an element f*b = bf in A* has been designated. The homomor- 
phism$ on B* to A* is termed the homomorphism dm1 to j. It is readily estab- 
lished that $* = f from the identity $ba = bfa in elements a E A and b E B*. 

The dual of the operational product of functions is identified in the following 
lemma. 

LEMMA 5.3. I f j :A+Bandg:B-+Cthenthedualojgj:A+Cis(gf)*=f*g*.  
The lemma follows from repeated use of the definition of dual homomorphjsm. 
Supposing f:A -+ B it will be useful to compute K [f, A] in terms of the 

dual map. 

= { aIa$B* = { O ) )  = Annih j*B* in A. 

Now Theorem 5.1 on character groups leads to the following result, due to 
Alexandroff ; see [A]. 

ALEXANDROFFLEMMA 5.4. Let f:A -+ B and f*:B* -+ A* be dual maps. 
Then the follouring statements are true. 

a. K [j, A] = Annih $B* and K If*,B*] = Annih fA 
b. K tf, A]* E A*/$B* and K If*,B*]* E B/fA 
c. CfA)*rn f*B*. 

For convenience we identify the dual map in three special cases in the lemmas 
which follow. 

LEMMA5.5. If B, C, D, E are subgroups of a group A with B 3 C 3 E and 
B 3 D 3 E and f is the homomorphism induced by the identity on B carrying C/E 
into BID, then the dual homomorphism $ carrying (BID) * into (C/E)* is equivalent 
to the homomorphism induced by the identity on Annih C carrying Annih DIAnnih 
B into Annih E/Annih C. 

A lemma implying Lemma 5.5 is the following. 
LEMMA5.6. Ijgroups are related so that A 3 B 3 C, A' 3 B' 3 C', g :A +A', 

gB C B', gC C C', then the dual j* to the induced homomorphism f on B/C to 
B'/C1 i s  equivalent to the homomorphism on Annih C1/Annih B' to Annih C/ 
Annih B induced by g*: A'* +A*. 

LEMMA5.7. If A is a subgroup of B a d  i is the identity map on B to B, the 
dual to the map i I A on A to B is equivalent to the map of B* into B*/Annih A. 
Iff :B 4 C t h e n  

Annih K tf, A] = j*C* + Annih A 

Annih jA = f *-' Annih A. 
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These lemmas are consequences of Theorem 5.1 and Lemmas 5.2 and 5.4 and 
the details of proof will be omitted. 

If {A , , v ) is a homomorphism sequence then the character groups under the 
dual homomorphisms form a homomorphism sequence (A: ,  P*) termed the 
dual homomorphism sequence. 

The following theorem permits application of character theory to exact 
sequences. 

THEOREM The homomorphism sequence dual  to an exact sequence is exact. 5.8. 
Let {A , ,  denote an arbitrary exact homomorphism sequence and consider 

the homomorphism sequence {A:,  v * ] .  One has in succession 

K [v*, A:] = Annih PA^+^ = Annih K [v ,  A,] = cp*A,-l. 

These equalities follow respectively from Lemma 5.4a, the exactness of ( A ,, 
and Lemma 5.4a again. This establishes the theorem. 

6. Algebraic duality in Mayer complexes 
Suppose M is a Mayer chain complex { C, , P ] .  we assume all C, are either 

compact or discrete. Then the character groups C' = c,*under the dual homo- 
morphism form a Mayer cochain complex. We shall call i t  the cochain complex 
of M and use the notation H r ( M )for its cohomology groups. This corresponds 
to the fact that in applications the homology and cohomology theories for a 
geometric complex arise together. 

If N is a subcomplex of the chain complex M then the groups Cr(M - N )  = 
Annih C,(N) under the coboundary homomorphism P*, suitably restricted in 
domain, form a subcomplex of the cochain complex of M .  The truth of this 
statement rests on the fact that @*Cr(M- N )  C c'+'(M - N ) .  This can be 
established from the relation PC,+'(N) C C,(N) by taking annihilators of both 
sides, using Lemma 5.7 and applying P*. 

If M is the system of chains over a geometric complex and N the chains over 
a subcomplex then C T ( M- N )  is the group of r-cochains which vanish identically 
on the subcomplex or of r-cochains on the complement. 

We recall that the groups H,(M) ,  H, (N) ,  H , ( M / N )  x H,(M mod N ) ,  H T ( M ) ,  
H r ( M  - N ) ,  H T ( M / N  - N )  Hr(M mod M - N) are all well defined. 

We prepare for the principal theorem of this section. 
Since P:C,+'(M) 4 C,(M) and o*:CT(M)-+ CT+'(M)are dual mappings 

Lemma 5.4a implies that 

Annih Z,(M) = B T ( M )  
(6.1) 

Annih Br(M) = Z T ( M ) .  

By use of Lemma 5.7 the annihilators in Cr(M)of Zr(ll l  - N )  and B r ( M  - N) 
are shown to be 

Annih Zr(M - N )  = B,(M)  + C,(N) = B,(M mod N )  
(6.2) 

Annih B T ( M- N )  = P-'C,-~(N)= Z,(M mod N ). 
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It is the equality of the annihilators of the groups of (6.2) which will be used. 
By use of Lemma 5.7 again the annihilators in Cr(M)of Z,(N) and B,(N) are 
shown to be 

Annih Zr (N)  = Br(M)  + Cr(M - N )  = Br(M mod M - N )  
(6.3) 

Annih B,(N) = @*-'c'+'(M - N )  = Zr (M mod M - N ) .  

We are now prepared to compute character groups of Hr(M),  H, (M/N)  and 
H,(N). Before doing so we note a fact we shall not use in the next theorem, 
namely that 

(6.4) Hr (N)  w Hr(M mod M - N ) .  

For from (6.1) with M replaced by N and (6.3) each side is seen to be isomorphic 
with the dual to Hr(N) .  The isomorphism can be identified more precisely but 
we shall not do so since the viewpoint "cohomology mod an open set" will be 
the one desired in further developments. 

Our principle theorem of this section follows. 
DUALITYTHEOREM 6.5. The dual of the exact sequence 

. . . + Hr(M)2 H,(M mod N )  7H,.-I(N) -;: H,l(M) -, 

i s  equivalent to the exact sequence 

The homomorphisms a* and r*are induced by the identity and @*i s  induced by the 
dual to the boundary homomorphism. 

We have used a*, heretofore the notation for the dual to a, for the correspond- 
ent to the dual in the equivalence inasmuch as we shall in practice identify the 
dual sequence and its equivalent. 

The groups isomorphic to the dual groups are identified by use of (6.1)) (€1.2)~ 
(6.3) and Theorem 5.le. The exactness of the dual sequence is stated in Theorem 
5.8. The homomorphisms a* and r* are identified in Lemma 5.7 while @*is 
identified in Lemma 5.6. This completes the proof. 

Statement c of the Alexandroff Lemma 5.4 shows that under the isomorphic 
equivalence the duals to the image-kernel groups in the given sequence are the 
image-kernel groups in the dual sequence. These groups have topological sig- 
nificance and i t  seems proper to display them in descriptive form. This is done 
in the following theorem. 

DUALITY Let M be a Mayer complex and N a subcomplex.THEOREM6.6. 
Then the following groups are dual pairs. 

The subgroup of Hr (M)  of ele- The subgroup of Hr (M mod M -N )  
a. 	ments containing elements of and of elements containing cocycles 


Hr(N) of M 


The subgroup of Hr(M mod N )  The subgroup of H r ( M )  of ele-
b. of elements containing cycles and ments containing elements of 


of M Hr (M-N )  
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The subgroup of Hr(N) of ele- The subgroup of H'+'(N- N)  of 
c .  	ments containing cycles bound- and elements containing cocycles cobound- 

ing in M ing in 41. 

There are, in view of the kernel-image identity, alternate descriptions of each 
of the above groups. 

7. Inverse systems of exact sequences 

As me remarked in Section 5, we shall not develop inverse systems inde- 
pendently but shall use character theory and the development of direct systems 
:already carried out. We recall again that the ideas of products and limits used 
here are explained in [L]. 

Suppose A is a directed set and a:Arx +Ar-l,x ,h E A, a set of homomorphism 
sequences of compact groups admitting homomorphisms, to be termed projections, 

whenever p > h which have the property 

aft 4= 7r; 

whenever v > p > A. Then the directed set, the homomorphism sequences and 
t,he projections form an inverse system of homomorphism sequences. 

The dual homomorphism sequences ( A : ~ ,21under the dual projections d* 
form a direct system which dua,lizes in turn to the given inverse system. Either 
system completely determines the other. 

The products PA,h and P"A; admit homomorphisms 

defined coordinate-wise; if a e Prl,+l,x then (@a)x= 	 thenMax and if b E P"A,*,I,~ 
(aXa)x= gbx, where a symbol xx denotes the coordinate of the element x in 
the group with index A. 

Special homomorphisms 

(7.1) 	 fr:pW~,*x--+ (PA,x)* 

are defined as follo~vs. If a t: PA,h and b E P"A: then the value of fa a t  a is 

(7.2) 	 Cfib)a = A a h .  

I ts  usefulness is in the following lemma. 
LEMMA7.3. T h  special homomorphisms j, are isomorphisms under which the 

sequence (P"A:~ ,0'1 is equivalent to the sequence {PArx)*, a*).  
The fact that fr  is an isomorphism is established in [L]. To prove the identity 

f,+,aX = 9*fr,let a denote an element of and b an element of P"A?~. 
Then either member a t  b is a homomorphism on PA,.,l,x to the reals mod 1. The 
left member is the homomorphism fr+l(axb)whose value a t  a is a k ( 2 h )  = 
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~ ( a a x )  The right member is the homomorphism 9*(frb)whose value at  abh . 
is [9*Cfrb>la = (fib) (@a)= x(aax) bx . 

REMARK7.4. At this point we identify ( pWA,*x,ax}with ( PArx)*, a* )  using 
the mixed notation { pWA,*x,O*]. 

We shall let A,  denote the subgroup of pWA,*xconsisting of elements b such 
that xrth = 0 for some a greater than the indices of all non-null coordinates 
of b. Then Dir Lirn = pWA,*x/A,. The following lemma is proved in [L]. 

LEMMA7.5. The annihilator of Ad is Inv Lirn Arx . 
Let cp  denote the homomorphism on Inv Lirn Arx obtained by restricting 9 

and let cp* denote the homomorphism on Dir Lirn AS^ induced by a*. We can 
state the following theorem. 

THEOREM Each of the homomorphism sequences (Inv Lim Arx , c p J  and7.6. 
(Dir Lirn A: ,cp*J is equivalent to the dual of the other. 

The isomorphism of the groups is the one established in Theorem 5.le and 
Lemma 5.2 and under this isomorphism the equivalence is established in I ~ m m a  
5.6. 

REMARK7.7. We shall refer to the sequences of Theorem 7.6 as dual se- 
quences, making the identification corresponding to the equivalence. 

Theorem 7.6 with Theorem 5.8 provides an indirect proof of the following 
theorem. 

THEOREM7.8. Let ( A A ,  a )be an inverse system of exact sequences of compact 
groups. Let O be deJined coordinate-wise on PA,x and let cp be de$ned on Inv Lirn 
Arx by restricting .?he domain and range of 9. Then (PArx ,  91 and (Inv Lirn 
Ark ,p ) are exact sequences. 

8. Cech and singular homology sequences 

As has been indicated, the inverse limit of exact sequences is not always exact. 
I t  is therefore not to be expected that for a space and a closed subspace the 
corresponding Cech homology group sequence should in general be exact. We 
shall show that i t  is exact if the coefficient group is compact. This is proved by 
means of character theory, and our primary concern is actually with cohomology 
over a discrete coefficient group. We give a formal presentation since some ra- 
ther delicate considerations arise. All Cech cohomology groups are computed 
with a fixed discrete coefficient group J, and all homology groups with J*. 

Let X be a topological space and Y a closed subspace. Let T ( X )  be the set 
of all open sets of X. Then T ( Y )  is obtained as the intersections of Y with 
elements of T ( X ). 

A covering of X is a map of the positive integers p :  I + T ( X )such that 
a. For all but a finite number of integers pi is the null set. 
b. U pi = X .  
The set A(X)of all coverings of X is made to be a directed set by the convention 

that ji > X if for each j there is an i i  such that p j  C Xij . We also say that ji 
is a refinement of A. 

For each X we construct the nerve of A, ,which is a finite simplicia1 complex. 
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A simplex consists of a finite set of integers together with the map X, written 
(io , . . ,i ,  ;A ) ,  and the requirements 

c. fl Xij z 0 ,  and 
d. The finite set of indices is non-vacuous. 

If condition d is not imposed the nerve has a ( - 1)-dimensional simplex, and is 
augmented in the sense of [L], p. 130. We note that Ni and N, are disjoint if 
X # p. 

Whenever p > X there exist projections carrying N, into Ni corresponding to 
maps carrying each vertex (i;p)  into a vertex (j;A )  with pi C Xj. It is known 
that any two such maps induce the same homomorphisms 

: ( N )  TN )  and d:Hr (N,) -+ HV (Nx) 

and that if Y > p > X 

d ~ f : = G  and drz=4.  
The Cech homology group H,(X)  is defined to be Inv Lim H,(NA)under the 

projections 4 and the cohomology group to be Dir Lim Hr(Ni ) .  
For each complex NA there is a subcomplex N{ consisting of all simplices 

( i o  , . , i ,  ; A )  for which Y intersects fl Xii.  The projections, for p > A, 
always carry N: into N: . Thus unique projections are defined for Hr(Nimod N:) 
and Hr(Ni - N:).  The inverse and direct limits of these groups are defined to 
be the groups Hr(X mod Y )  and H r ( X  - Y )  respectively. Further, 
H r ( X  mod X - Y ) is defined to be the direct limit of Hr(Nxmod Nx - N:). 

Theorem 4.1 then implies the following statement. 
LEMMA8.1. Th sequence 

. . -+H r ( X )-+H r ( X mod X - Y ) -+H'+'(X - Y )  --+ H'+'(x)4 - .. 
is exact. 

Further, Theorem 7.6 serves to locate the dual sequence. 
LEMMA8.2. The sequence 

. . . t H,(X)  + Inv Lirn H,(N:) t Hr+l(X mod Y )  + H,+l(X) 

is equivalent to the dual of the sequence of Lemma 8.1. 
It is now necessary to identify Inv Lim H,(N:), where X E A ( X ) ,with H r ( Y )  = 

Inv Lim H,(Nx),where X E A ( Y ) .  To that end we note the existence of a map 
8:A(X)  --+ A ( Y )  defined by the relation 8Xi = Y fI X i ,  X e A ( X ) ,i E I .  Since Y 
is closed, 8 maps A(X)  onto A ( Y ) .  The map 8 preserves order relations in the 
sense that if p > X then 8p > O X .  

There is an isomorphic correspondence between the subcomplex N: and the 
complex Nex. For each X E A(X)  there is an isomorphic map of Hr(Nex) onto 
H,(N:),  which we shall denote by (ph . It has the property that for p > X the 
projections 4 and a$ satisfy the relation rip,,= (phr$as an identity on elements 
Hr ( N B J .  

The maps (ph are used to define a map cp:  PH,(N,) + PH,(N:),  X E A ( X ) ,  
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7 E A(Y), the image (pa being defined to have coordinates (cpa)x = maex . It will 
be shown, in three steps, that the homomorphism cp, suitably restricted in 
domain, establishes the required isomorphism between Hr(Y) C PHr(N,) and 
Inv Lim H,(N;) C PH,(N;). 

First, cp is an isomorphism into PH,(N;). For if a # 0, a r PHr(N,), then 
some coordinate a, # 0; y = OX for some X since 8 is a map onto; and finally 
n a ,  # 0 since is an isomorphism. Thus no non-null element is carried into 
the null element. 

Second, if a r Inv Lim Hr(N ,), y r A(Y), then cpa r Inv Lim H,(N;), X r A(X). 
For if r > X then d(cpa), = dcp,,ac = ma$aer = maa = (@)A. 

Third, the image under cp of Inv Lim Hr(N,), y r A(Y), covers Inv Lim 
H , ( N ~ ,X r A(X). To see this, consider a fixed element b r Inv Lim H,(N;). 
For each X r A(X), let a(X) be that element of Hr(Na) which is carried by (ph 

onto h .  We must now show that if OX = Bp then a(X) = a(p), so that to each 
element of Inv Lim H,(N;) there corresponds an element of PHT(Ny), y r A(Y). 
Then we must show that this element belongs to Inv Lim Hr(Nh). This demon- 
stration is based on the fact that if a > A, a, X r A(X), then bx = 

?riba = ?rCcp.a(a) = cpx?r:ta(a), so that a(X) = ?r:;a(a). Thus, if OX = Op, then 
a(X) = a(p), since both are equal to r:;a(a) for any a > A, p. We may therefore 
replace a(X) by sex. The element a with coordinates sex surely maps onto b 
under cp, and it remains to show that a E Inv Lim H,(NA). If Op > OX, choose a 

ea easo that a > p and a > A. Then ae, = ?repaerr,and sex = *exaea = ?r%?r:;aea = 

?r:ffaer, so that a E Inv Lim Hr(Nx). This completes the proof. 
In view of Lemmas 8.1 and 8.2 we have established the following theorem, 

the first part of which is due to Hurewicz WH]. 
THEOREM8.3. I f  Y i s  a closed subspace of X, then the jollowing sequence on  

eech  homology groups, computed over a compcact coemient  group J*, i s  exact. 

. . +Hr(X) -+ Hr(X mod Y) +Hr-1(Y) -+ Hr-i(X) -+ . . . . 
The  following sequence of eech  cohomology groups, computed with coejkient  

group J, i s  equivalent to the d m 1  sequence 

. . tHr(X)tHr(X - Y) +-H"(X mod X - Y) +- H'-'(x) t . . . . 
This form implies that H"(X mod X - Y) is a function only of Y, being 

isomorphic to H"(Y). The notation Hr(X - Y) is misleading, in that this 
group is not in general a function of X - Y. However, it can be shown that 
Hr(X mod Y) is the Cech homology group of the space Xy obtained from X by 
shrinking Y to a point. (More precisely, the points of Xy are the set Y and 
the points of the complement of Y, X - Y. The open sets in Xr are the open 
sets in X - Y and the open sets in X which contain Y.) we shall not give 
the proof of this fact, which is straightforward but tedious. In case X is com- 
pact, the space Xy is determined by X - Y, since it is the compactification of 
X - Y by a single point. See for example [L],p. 23. We have then as a cor- 
ollary to Theorem 8.3 the following. 
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ALEXANDER ? ~ E O R E ~ ~  Let X be a compact space whose r- TYPE DUALITY 8.4. 
and (r - 1)-dimensional 6ech homology groups vanish. Then the (r - 1)-dimen-
sional 6ech homology group of any closed subset Y of X is isomorphic with the 
r-dimensional6ech homology group of the compactification of X - Y by the additim 
of a single point. I n  particular, the (r - 1)-dimensional homology group of Y is a 
function of the space X - Y. 

It will be seen in Section 9 that if X is a manifold there is a much simpler way 
of computing this function of X - Y. In  particular the Alexander-Pontrjagin 
theorem will be obtained. However i t  seems to us that Theorem 8.4 is the 
fundamental functional relation of Alexander duality. Compare with [B], 
Theorem 6.2. 

REMARK. Theorem 8.7 as stated gives no duality for the dimensions 1, 0 
since the 0-dimensional homology group of X cannot vanish. This may be 
remedied by using augmented complexes ([L], p. 130) in the definition of the 
Cech homology group, in which case the 0-dimensional homology group of a 
connected space vanishes. The same theorem is valid for these modified Cech 
groups. 

With respect to singular homology groups, the situation is quite simple. 
The singular homology groups of a space X are the homology groups of a closure 
finite complex (see for example [El). If Y is a subspace of X ,  the singular com- 
plex of Y is a subcomplex of that of X and the singular homology groups X ( X ) ,  
x ( Y ) ,  3C,(X mod Y) of finite chains with discrete coefficient group are well 
defined. On the other hand, the infinite cochains of the singular complex of X 
with arbitrary coefficient group define the cohomology group W ( X ) .  We also 
consider the cochains on those singular cells of X which are not cells of Y and so 
define X ' ( X  - Y), and X r ( X  mod X - Y). T:le group X ' (X  - Y) is not a 
function of the space X - Y, but depends on both X end Y. I t  is easy to see 
the following isomorphism. 

We do not use this fact in stating the following theorem. 
THEOREM 8.6. If Y is an arbitrary subspace of a topological space X the following 

sequences are exact. 

. -X(X)+Xr(X mod Y) 7 3C,-l(Y) 73C;-l(X) + - - .  

.. +X'(X)  73Cr(X - Y) 7~C'-'(X mod X - Y) 2 X'-~(X) + . a .  

These sequences are on singular homology and cohomology groups respectively, the 
homology groups being computed with a discrete coefiient group and the cohomology 
groups wifh an arbitray topological group. 

There appears to be no general analogue of Theorem 8.4 for singular homology. 
The group Xr(X mod Y) seems, even in rather special situations, to depend on 
both X and Y. Even on a manifold (see Section 9) X,(X mod Y), Y open, 
depends on X - Y and on the dimension of X.  
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9. The exact sequence for closed subsets of a manifold 
In this section Poincar6 duality will be utilized to obtain a generalization of 

the classical Alexander-Pontrjagin theorem. The basic task is to identify the 
exact Cech cohomology sequence for a manifold and an open set with a sequence 
on the singular homology groups of complementary dimension. 

Let M be an absolute orientable n-dimensional manifold and let h7 be a 
closed subset. Unless otherwise stated the coefficient group J will always be a 
discrete group. Let M ,  , i = 1, 2, , be successive barycentric subdivisions 
of M ,  and let N ,  be the smallest closed subcomplex containing N. Then The-
orem 3.3 asserts the following. 

LEMMA9.1. For each i ,  the sequence 

. - . -+ Hr(Mi)-+HT(illimod Mi  - Ni )  -+ 1ir+'(1lfi- N , )  --+ H'+'(M~)-+ .. . 
is exact. 

For each i choose a simplicial map a of Mi+l into Mi which carries each vertex 
v E Mi+l into a vertex of the lowest dimensional simplex of 111i which contains it .  
The simplicial map generates a map w on cochains of Mi to cochains on Mi+' 
which induces a homomorphism 8 of the sequence of Lemma 9.1 on Mi , Ni into 
the sequence on Mi+, , Ni+l . We then have a directed system, the integers, 
with projections 8, such that the direct limits of the terms of the sequence of 
Lemma 9.1 are defmed and, by virtue of Theorem 4.1, form an exact sequence. 

LEMMA9.2. The sequence 

.. -+ Dir Lim Hr(Mi)-+ Dir Lim Hr(Mimod Mi - Ni). 

-+ Dir I,im Hr+'(Mi - Ni)  -+ Dir Lim ~ ' + l ( M i )-+ 

is exact, this limit being taken under the map 8 generated by the simplicial map a. 
We now identify these limit groups. For a vertex v E let St v be the 

union of v and the interiors of all simplices of Mi+' of which v is a vertex. The 
sets St v are open and vo .. v, is a simplex of Mi+l if and only if fl St  v j  ,j = 0, 
... , q, is nonvacuous. Since Ni+l is the smallest complex containing N ,  
vo - - . v, is a simplex of Ni+l if and only if N fl (flSt  v i )  is nonvacuous. That is, 
Mi+l and Ni+l are geometric realizations of the nerve of the covering of M and N 
by the sets S t  v. Furthermore, since ?r carries v E Mi+l into a vertex of the 
smallest dimensional simplex of Mi containing v, S t  v C St  nu. Thus ?r is a 
projection of the nerve of the covering by {Stv 1 v E Mi+l) into the nerve of the 
covering by (St  v 1 v E iMi), carrying each set into a set containing it. We have 
thus shown the direct limit groups of Lemma 9.2 to be isomorphic to the cech 
cohomology groups; they are formally distinct only in that they are derived from 
a cofinal family of coverings instead of from the family of all coverings. This is 
stated precisely in the following lemma. 

LEMMA9.3. The exact sequence of Lemma 9.2 is equivalent to the folloingw 
sequence of Cech cohonwlogy groups. 

-+ H T ( M )-+ Hr(M mod M - N) +H'+'(M - N )  -+ H'+'(M) -+ . .. 
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I t  is notv necessary to  use Poincari5 duality t o  modi fy  the  form o f  this sequence. 
W e  require the  follotving results from manifold geometry. 

LEMMA9.4. Dual to the oriented complez M i  there i s  a subdivision M: of M 
into an  oriented cellular complex with the following algebraic and geometric prop- 
erties. 

a. There i s  a 1 - 1 correspondence associating with each q-dimensional simplex 
u,of M i  an  (n - q)-dimensional cell a: of M: . 

b .  This correspondence carries cocycles into cycles and coboundaries into bound- 
aries isomorphically . 

c. Mi+l i s  a common subdivision of M i  and M: . 
d .  I f  u, = vo . . v, E Mi then the closure of the cell ui i s  the intersection of the 

closures of the stars in of the v j  . 
e .  I f  L i s  a closed subcomplex of M i  the cells of L' form a n  open set containing L .  
Making use o f  the  ' isomorphism we shall replace the  r-dimensional cohomology 

groups o f  Lemma 9.2 b y  ( n  - r)-dimensional homology groups o n  the  dual 
subdivision. W e  first note that  the  map e o f  9.2, carrying the  cohomology se-
quence o f  M i  , M i  - N i  into that  o f  M i  ,.l , Mi+l - Ni+l , can be written &A , 
where 01 is an isomorphism o f  the  cohomology sequence o n  M i ,  M ;  - N i  t o  
that  on  M,+1, Mi+l - Sd N i l  wi th  Sd = subdivision, and O2 is  induced b y  the  
identity map o f  the  pair Mi+l , Mi+l - Ni t l  into the  pair M i + l ,  Mi+l - Sd N i  . 
Using the ' ison~orphism we m a y  then  state the following lemma. 

LEMMA 9.5. The exact sequence of Lemma 9.3 i s  equivalent to the sequence 

. +Dir Lim H,-,.(M:+~)+Dir Lirn H,-,(M:+~ - Ni+l) 

+- Dir L im H ~ - , + ~ ( M : + ~  - Dir L im Hn,+l(M:+l) t- .mod ~ : + 1 )+ 

the direct limit being taken under O : O ~  . Here 0: i s  an  isomorphism of the sequence 
on M:  , M: - N :  to that on M : + ~, M:, - (Sd Ni)' and 0: i s  induced by the 
identity map of M:+1 , M : + ~- N : + ~to M:+1 , M:+l - (Sd N:.)'. 

W e  now identify these groups. T h e  sets Li = M:  - N: are closed polyhedra 
i n  the complement o f  N and form a monotone increasing set o f  sets whose union 
is M - N .  T h e  map 8' is the  map induced b y  the  identity. An argument 
essentially the  same as one which is given t o  show the  singular homology groups 
o f  a polyhedron are identical wi th  those obtained 'by subdivision then establishes 
the  following lemma. 

LEMMA 9.6. The exact sequence of Lemma 9.3 i s  equivalent to the sequence 

. . . t n-r ( M )+Xn,(M - N )  t-X,,+l(M mod M - N )  Xn++l(M)t' ' ' 

where X denotes the singular homology groups. 
Collecting results, we have the  following theorem. 
THEOREM Let M and N a closed subset. 9.7. be an  n-dimensional manifold 

Let H' denote the tech cohomology groups and 3C, the singular homology gmups, 
both being based on a discrete coejkient group J .  Then the following sequences are 
equivalent. 
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-+ Hr(M) --+ Hr(Mmod M - N) +H'+'(M - N) -4H'+'(M) -i . . 
-+Xn-,(M) +X,-,(M mod M -N) +3Cn-,-1(M - N )  +Xn-r-l(M) +. . . . 

This result, by means of Theorem 8.3, can be stated entirely in terms of 
homology. This leads to the following theorem. 

DUALITYTHEOREM FOR MANIFOLDS9.8. Let M be a n  n-din&ensionalmani-
fold and N a closed subset. Let Hr denote the cech homology group, Xrthe singular 
and J a n  arbztrary discrete group. W h e n  one permits identification of equivalent 
sequences the following two exact sequences are dual to each o t h ~ r .  

. . . -Hr(M, J*) +Hr(M mod N, J*) +Hr-1(N, J*) -iH,-I(-$~,J*) -i . . 

. . +Xn-,(Af, J )  +Xn-r(M - Nl J) 

tXn-r+l(Mmod M - N, J )  t X n - r + l ( A l , ;> . . a 

The Alexandroff lemma asserts that for any homomorphism j : A  + B, 
CfA)* 3 f*B*. Thus in Theorem 9.8 the character group of the image-kernel 
in each group of the second sequence can be identified with an image-kernel 
from the first sequence. In the following theorem we have stated these dualities, 
using in each case the description of the groups which appears intuitively 
simplest. 

THEOREM 9.9. Each group in one of the following pairs i s  isomorphic to the 
characbr group of Ute other. All mappings mentioned are induced by the identity. 

The image in Hr(Mmod N, J*) The image i n  Xn_,(M, J )  of 
-f Hr(M, J*) and SC.,(M - X, J )  

The h r n e l  of the m a p  The kernel of the map
and

b' H,-I(N, J*) --+ Hr-l(M, J*) 3Cn-,(M - N ,  J )  --+ Xn-r(M, J) 

The image in H,(M, J*) The image in K _ , ( M  mod 
'' of Hr(N, J*) 

and ill - N, J )  of Xn-,(M, J ) .  

An immediate corollary of Theorem 9.8 is the following. 
ALEXANDER-PONTRJAGINDUALITYTHEOREM 9.10. I f  M has oanishing r- and 

( r  - 1)-dimensional homology groups, then 

H,i(N, J*) 3 [Xn-r(M - N1 J)I** 

10. Chain Mappings 

The principal theorem of this section is a more elegant and inclusive formula-
tion of a theorem announced several years ago by one of the authors [EP 21. 
Let M and N denote Mayer complexes and f :  M +N a chain mapping of M 
into N, characterized by the fact that it commutes with the boundary operator 
in the sense that fa = Pf is an identity on chains of M. We distinguish a sub-
complex of M, namely 
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whose groups are the kernels of the map of r-chains of M into r-chains of N ,  
and a subcomplex of N ,  namely 

f M  = ( fCr(M),PI 
whose groups are the set of images. The relations /i?C,+l(Mo) C C,(Mo) and 
PC,+lCfM) C C,CfM) follow from the comrn~~tativity. By applying Theorem 3.4 
to M and its subcomplex and to N and its subcomplex we arrive a t  the following 
theorem. 

THEOREM 10.1. A chain mapping f of the chains of one Mayer complex M into 
another Mayer complex N gives rise to the following pair of exact homomorphism 
sequences. 

. . -t Hr(M) 7'Hr (fill) 8 ~ Hr-I (Mo)  7Hi-l(M) -t . . .1 

. . + Hr(N)-+ Hr(N mod f M )  -;d Hr-l(fM) 7Hr-i(N) + . . 

The  homomorphism marked f i s  induced by the chain mapping,  the one m a r h d  ~ f - '  
by the inverse of the isomorphism on H,(M mod illo)to HrCfM) induced by f fol-
lowed by the boundary homomorphism and the one marked i by the identity. The 
homomorphisnls marked a and 7 are induced by the identity and P b y  the boundary 
homomorphism. 

In applying Theorem 3.4 we have used the fact that H,(M mod M )  w H,(fM) 
under the isomorphism induced by f .  

Our principal application of this theorem occurs in the following section. 
However, some applications will be cited in the follo~ving examples. It will be 
convenient to use the vocabulary of simplicia1 complexes, the application in the 
present formulation being to the >layer complexes of the groups of chains. 

EXAMPLE Let iV be a simplicial complex covered by two closed sub- 10.2. 
complexes N1 and N2 . Let fM be a complex consisting of two disjoint sub- 
complexes, M1 and M2 , copies respectively of N1 and N z  . Let f :  M -+ N be 
the map identifying M1 and M2 with their copies. Then 

Hr(M)  = Hr(Mi)+ H7(M2) H,(Ni) X Hr(N2) 

Hr(Mo) = Hr(N1 n lvz) 
HrCfM) = Hr(N).  

The kernel-image in Hr(N)consists of homology classes containing a cycle which 
can be written as the sum of a cycle in N1 and a cycle in N2 . The kernel-image 
in Hr(Mo)corresponds to homology classes of cycles of the intersection which 
bound on N1and N z  . The first exact sequence of Theorem 10.1is readily identi- 
fied with the formulation of the Mayer-Vietoris formulas in [A-H, pp. 297-2991 
while the second is trivial. 

EXAMPLE10.3. Let M be a simplicial complex containing two disjoint sub- 
complexes which are copies of a complex which we denote by MO, since this will 
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presently agree with previous notation. We identify the two compleses to 
obtain a complex N. (One must require that no simplex have a vertex in each 
subcomplex or achieve this by subdivision in order that N be a simplicia1 com- 
plex.) The first exact sequence of Theorem 6.1 provides a formulation of the 
extension of the Mayer-Vietoris formulas obtained by one of the authors [EP 11. 

EXAMPLE Let X and Y be topological spaces and f a continuous func- 10.4. 
tion on X to Y. Then a map also denoted by f is defined on the complex M of 
singular chains of X to the complex N of singular chains of Y. Then the groups 
H,(Mo), H,CfM), H,(N mod flu) are homology invariants of the function f on 
X to Y. Conditions for the isomorphism of X,(J4) and X,(N) can be stated 
in terms of these groups. 

11. Coverings of Complexes 


Let M be an oriented cellular complex [L, p. 891 and Li ,i = 1, . - . ,n, a col- 
lection of subcomplexes whose union is M. It is natural, as an extension of the 
Mayer-Vietoris relations, to investigate the relations among the homology groups 
of 171,L; and the intersections of the L; . Helly's theorem [A-H, p. 2951 is an 
acyclic case of such a relation. This problem could be investigated under various 
sets of assumptions of which the following is an adequate set although by no 
means the only reasonable one. We shall assume that M and L; are augmented 
in the sense of [L, p. 1301 and is closure finite [L, p. 911. We shall use finite 
chains with coefficients from a discrete coefficient group J. 

We remark explicitly that the sets L; need not be distinct. We construct the 
nerve N of the covering of M by the sets L; . A q-dimensional simplex a, E N 
is an ordered subset Li, , .. . ,Li, of the elements of the covering whose inter- 
section contains cells of non-negative dimension. We impose an orientation by 
requiring that io < il < . - - < i, . In particular the subset consisting of no 
element of the covering is the (- 1)-dimensional cimplex a-1 E N. The incidence 
number [a,: u ~ + ~ ]is then defined for any two simplices of neighboring dimension. 
Notably [aml: ao] = +1 for all a. E N. The complex N is augmented in the sense 
of [L, p. 1301. 

Let C,(M) be the r-dimensional chain group of M with coefficients in J. For 
any subcomplex L of M me denote by C,(L), r = -1, 0, . . . , the subgroup of 
C,(M) consisting of chains which vanish outside L. For 

a, = Li,Li, . . . Li,cN 
we define 

(11.1) c,(u,) = c,( n L,~)  ( j  = 0, 1, ,q). 

In particular, 

Cr(a-1) = C,(M) 

We now define a Mayer complex &I,by defining C,(M,) to be the direct product 
PCr(M,) for a, E N .  The complex M, has a realization as disjoint copies of all 
the intersections of q + 1of the Li . In particular the following lemma holds. 
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LEMMA11.2. H,(M,) is the direct product of the r-dimensional homology groups 
of intersections of q + 1sets of the covering. 

We now construct a map D of M, into ,which can be interpreted as an 
analogue of the boundary in N and also as a step in a process of constructing M 
from the intersections of the Li . Since C,(M,) = PC,(o,), a e C,(M,) has the 
form a = (al , . . . ,a,), where ai e C,(a:) and a: are q-simplices of N, s in number. 
The chain Da is to belong to C,(Mq-l). We define the jthcoordinate of Da to be 

(Da) = :a:]a; . 
The principal property of this map, and in fact the reason for its construction, 
is given in the following theorem. 

THEOREM11.3. For r = 0, 1, . . . , the sequence 

is exact. Further, there is an isomorphism between C-l(M,) and C,(N) such that 
the sequence (11.4) with r = -1is equivalent to the sequence 

in which the homomorphism is the boundary homomorphism. 
We shall prove the second of these statements first. The group C-l(Mq) is 

the direct product of groups isomorphic with the coefficient group J ,  one factor 
for each a, c N. The isomorphism whose existence is affirmed is clear. A sim-
ple inspection of the definition of D shows the equivalence of the two sequences. 

To prove the first statement, let A be a fixed rdimensional cell of M. For 
each q let C,(M,)A be the set of all a e C,(M,), such that for each a,e N the corre- 
sponding coordinate of a vanishes a t  cells of M other than A. Clearly C,(M,) is 
isomorphic to the weak product of the groups C,(M,)A for all r-dimensional 
cells A. Further, D carries C,(Mq)A into C,(M,-I)A so that it is only necessary 
to show D exact on the homomorphism sequence - . .-+ C,(M,)A -+C,(M,-I)A -+ 
C,(M,-JA + . . . generated by restricting the domain of the homomorphism D. 
Let Lia, . . . , Li, , io < . . . < i, , be the set of all Li containing A and let these 
form the simplex a, . If a e C,(Mq)A is of the form (al, . . - , a,) where ai e C,(u:), 
a: being the q-simplices of N, s in number, then a; is zero unless a6 is a face of a, . 
Thus C,(M,)A is isomorphic with the r-dimensional chain group on a, . Further, 
under this isomorphism D on C,(M,) is the boundary operator on u, . Since 
the boundary map on a simplex is exact, the theorem is proved. 

It is clear if the definition is written out explicitly that D commutes with the 
boundary homomorphism P on the complexes M, so that D is a chain mapping 
on M ,  to M,-, . Let I<, be the Mayer complex of the kernels of the homomor- 
phisms D:C,(M,) -+ C,(Mq-l). Except for r = -1 ( M q K )  = 
C,(LM,)/C,(K,) M C,(Kq-l), the isomorphism being that of the Noether theorem. 
From Theorem 3.3 the truth of the following lemma is seen. 

LEMMA11.5. The sequence 
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i s  exact. Homomorphisms which preserve dimension are induced by the identity 
and those which reduce dimension by the boundary homomorphism. 

It is clear from the construction of C-l(Mq) that H-l(Mq) vanishes, so that 
the last non-triaial term in the sequence is generally H-l(K,). Computing, we 
find that Z-l(Kq) = C-l(Kq) and B-l(Rq) = pCo(Kq) = PDCo(Mq+l) = 
DpCo(Mq+l) = DC-l(Mq+l). In view of the isomorphism affirmed in Theo- 
rem 11.3, one sees the truth of the following lemma. 

LEMMA11.6. The groups H-l(Kq) and H,(N) are isomorphic. 
It is not hard to see, in view of Theorem 11.3, that for r 2 0, 

H,(M,/K,) m H,(K,-I). Then Lemmas 11.5 and 11.6 imply the following 
theorem. 

THEOREM For each integer q the following sequence i s  exact. 11.7. 

If the complexes Li and all their intersections have vanishing homology groups 
the theorem above shows that H,(KqJ m HTdl(Kq)for r 2 0. In particular, 
H,(M) = H,(K-1) H-,(K,) E H,(N). The following corollaries are then 
clear. 

COROLLARY11.8. If the complex M i s  covered by complexes Li such that the 
homology groups of all intersections of the Li vanish, then the homology groups of M 
are isomorphic with the homology groups of the nerve of the covering. 

In this corollary, homology groups are homology groups of the augmented 
complexes. The covering of a geometric complex by its cells meets the condi- 
tions of the corollary trivially. Thus, in particular, i t  follows that the homology 
groups of finite geometric cell complex are isomorphic with those of the simplicia1 
complex obtained by subdividing its cells. Helly's theorem [A-H, p. 2951 is a 
special case of Corollary 11.8. 

REMARK. A somewhat stronger theorem has actually been established. A 
sufficient condition that H,(M) m H,(N) is that  H,-,(M,) and H,-q-l(M,) 
vanish for each q. 

COROLLARY I f f :M +M' i s  a simplicia1 map of M onto M' in which the 11.9. 
inverse of every simplex i s  acyclic, then f maps the homology groups of M isomorphi-
mlly onto those of M'. 

A situation which is in a sense the reverse of that of Corollary 11.8 is the 
following. Suppose that all intersections of two or more sets Li are acyclic and 
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that the nerve is acyclic. Then Hr(M,) = 0 and Hr(K,-l) x Hr-l(K,) for q > 0. 
On the other hand, the vanishing of Ho(M,) and H,(N) implies that Ho(K,-l) = 0 
for q > 0. Thus follo~vs this corollary. 

COROLLARY11.10. If M i s  covered by complexes Li in such manner that the 
homology groups of the intersections of two or more of the sets L ;  and the homology 
groups of the nerve vanish, then H,(M) i s  isomorphic to the direct product of the 
groups Hr(Li) .  

REMARK. AS in the case of Corollary 11.8 a slightly stronger theorem has 
been proved. A sufficient condition that PHr(Li) % H,(M) under the natural 
mapping induced by the identity is that Hr(Ko)and H,-~(Ko)vanish. 

The general case in which the nerve of the covering is one dimensional, that is, 
the case of coverings in which no three sets intersect is of interest. I t  is handled 
in the following corollary. 

COROLLARY If the nerve of the covering of iV1 by  LC i s  one dinmtsional, 11.11. 
then there is a group G such that the following sequences are exact. 

Actually, G = Ho(Ko). We phrase the corollary in this fashion since each 
group except G permits geometric interpretation if bhe Mayer complex is a 
geometric complex. Of course, if H1(N) = 0, G % PHo(Li). If the nerve is 
acyclic, this reduces to the form of the Mayer-Vietolis formulas. 

REMARK:Let X be a topological space, covered by the open sets Ul , .. . ,Li, , 
and let S ( X )  and its subcomplexes S ( U i )be the singular complexes of the spaces 
X and Ui. I t  can be shown that S ( X )  has the same homology groups as the 
union of the S (Ui ) ,  using essentially the methods of Chap. IV of [El. The 
results of this section can then be applied to Li = S(U,)  and M = U S(Ui)  to 
yield relations between the singular homology groups of X and those of the 
sets Ui . 

12. Remarks on the theory of critical levels 

A part of the theory of critical levels can be deduced easily from the exact 
sequence construction, and it appears to us that this construction furnishes a 
combinatorial basis for a substantial part of the theory. See [MM 1, 2, 31. 
We discuss critical level theory briefly, deriving inequalities analogous to those 
of Morse for a simple case. A somewhat similar method has been used earlier 
by Mayer [JVM 3].for the same purpose. 

The plan of statement and proof are valid for any homology theory in the 
sense of [E-S], i.e., any homology theory for which an exact sequence theorem 
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can be proved. In particular, singular homology theory with discrete coefficients 
or cech or Vietoris homology theory with a coefficient group which is compact 
or a field could be used. Variations would occur from case to case, notably in 
that the singular theory can be developed on an arbitrary topological space with 
no restriction resembling semi-continuity on the function, the restriction being 
in the critical levels only. For this reason the development will be sketched 
here for the case of singular homology. 

Suppose X is a topological space and %(A) denotes the r-dimensional singular 
homology group of a subset A of X. The two basic lemmas are the statement of 
the exact sequence construction and the description of another exact sequence. 

LEMMA12.1. If B C A C X then the homomorphimn sequence 

. .. 4 3C;(A) ;:X,(A mod B) 7X L ( B )  7X;-l(A) + - - -
is ~ ~ a c t .  

LEMMA12.2. If C C B C A C X then the homomorphism sequence 

. . . .+X;(A mod C) 3 Xr( A  mod B) ;;;? "3Cr-1(B mod C) 

r;;, XL1(A mod C) + . . . 
is exact. The maps at and 7' are induced by the identity while 0' is induced by the 
boundary homomorphism. 

It has been shown by Eilenberg and Steenrod [E-S] that Lemma 12.2 is an 
algebraic consequence of Lemma 12.1. For our purposes we remark that if L is 
a &layer complex, M a subcomplex of L and N a subcomplex of M, then M / N  
is a subcomplex of L / N  and the quotient complex is equivalent to M I L .  This 
establishes Lemma 12.2. 

Now let f be a real valued function defined over X. For convenience we 
assume 0 < f < B but do not initially restrict f further. We define the set 
f t  = ( a  1 a E X  and f 1 a 5 t )  and consider the homology groups X,Cfi) and 
X,Cffmod f,), s < t, which we abbreviate to Xr(t) and x ( t ,  s). We shall com- 
pare X,(t, s) with Xr( t  f E, s) for E > 0 and with Xr(t,  s + e) for t - s > s > 0. 
Lemma 12.2 implies the following lemma. 

LEMMA12.3. a. X,(t, s) m X,(t + E ,  s), E > 0, for all r under the map induced 
by the identity if and only if X ( t  + E ,  t) vanishes for all r. 

b. X,(t, s) m X,(t, s + E), t - s > a > 0, for all r if and only if Xr(s + E, 8) 

vanishes for all r. 
We shall say that a level t is ordinary if X,(t + , t - €2) vanishes for all r 

and for all positive numbers €1 and €2 sufficiently small. Levels of t not ordinary 
are termed critical. We assume for the moment that the levels of t which are 
critical are isolated, which implies that they are finite in number. Lemma 12.3 
then enables one to say that the relative homology groups Xr(t  + €1 ,  t - €2) 
are independent of €1, €2 when these are positive and sufficiently small and 
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accordingly we shall use the notation x r ( t + ,  t-). Likewise 3C;(t + e )  is inde- 
pendent of E for E positive and sufficiently small and the notation is replaced by 
X,(t+). Under sufficiently restrictive conditions, which include assumptions 
permitting one to replace X,(t+, t-) with X,( t ,  t - E ) ,  e > 0 ,  the ranks of these 
groups are the type numbers assigned to the level in the theory of Morse 
[MM 1, 2,  31. However, we shall not make additional restrictions. 

The intimate connection between the relative homology groups a t  critical 
levels and the homology groups of the sets f t  is seen in observing that the vanish- 
ing of X,( t ,  s)  and Xr-l(t ,  s)  implies that ' X L ( t )  % X, -~(s ) .  

We now derive a general set of inequalities. TO that end let tl , tz , . . , tn be 
any increasing sequence of values of t. Let C, = PXr(t i  , ti-I), i = 2, , n, 
and let G, = P3Cr(ti),i = 2, . , n - 1. Since the sequences 

are exact, so is the sequence of products. This is stated in the following theorem 
together with the consequence on ranks which follows from Corollary 3.6. 

THEOREM 12.4. If f i s  a bounded function on a topological space and 
t l ,  tz, . . , t, i s  an  arbitrary finite increasing sequence of real numbers then the 
homomorphism sequence. 

. . -+ G, X X,(tn) -+ C, -+ X,_l(t l)  X G,-1 -+ G,-1 X XT-l(t,) -. 
i s  exact, where 

c, = Pnc,(ti , ti-1) 

Gr = PX.i(ti) 

I f  the ranks of the groups C,  are finite then so are those of the rest of the groups and 

The inequality i s  an equality for q = m i f  C, = 0 for r > m .  
This theorem is a theorem about a finite number of nested but otherwise 

arbitrary subsets of a topological space X ,  i t  being possible to construct a func- 
tion which generates the sets in the prescribed manner. 

From this follows a theorem about critical levels. Suppose the critical levels 
are isolated and denoted by tl , . , tn in increasing order. Suppose ti < tl < 
ti < t2 < . . . < t: < tn < t)n+l. Then X,(t:  , % X,(tt-1 , tT-I), 
3C;(t:) % X,( t t - l ) ,  X,(t',+l) m X , ( X )  and ~ ( t : )= 0.  Then Theorem 12.4 
applied to the values ti yields the following result. 

THEOREM 12.5. I f f  i s  a bounded function on a topological space X whose critical 
levels i n  increasing order are tl , tz , . . . , tn then the sequence 

-+G, X X , ( X )  -+ C,-+G,-1 -+G,-l X Xr-1(X)  -+ 

i s  exact, where 
C,  = ~ X ( t t, tT) (i = 1, , n )  



If the groups C,. are of finite rank then so are all the groups i n  the scyuence. 
Setting M ,  = p[Cr] and R ,  = p [ X r ( X ) ] ,  then 

Mo 2 Ro 

M1 - Mo 2 R1 - Ro 

M ,  - M,-1 + . + (- l ) 'Mo 2 R ,  - R,-l + . . + (- 1)'Ro with equality. 
forr = m i f M r  = Oforr  > m .  
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