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Preface 

This book is about the physics of spacetime at a deep and fundamental 
level, encoded in the mathematical assumptions of differentiability. We 
understand the phrase, “physics of spacetime” in the sense that general 
relativity has taught us, namely that the geometry, the topology, and now 
the smoothness of our spacetime mathematical models have physical sig- 
nificance. 

Our aim is to introduce some of the exciting developments in the mathe- 
matics of differential topology over the last fifteen or twenty years to a wider 
audience than experts. In particular, we are concerned with the discoveries 
of “exotic” (sometimes called “fake” or “non-standard” ) smoothness (differ- 
entiable) structures on R4 and other topologically simple spaces. We hope 
to help physicists gain at least a superficial understanding of these results 
and their potential impact on physical theories involving spacetime mod- 
els, i.e., all fundamental theories. Diffeomorphisms, the basic morphisms of 
differential topology, are the mathematical representations of the physical 
notion of transformations between reference frames. As we have learned 
from Einstein the investigation of these transformations can lead to deep 
insights into our physical world, as embodied for example in his General 
Relativistic theory of spacetime and gravity. What the mathematicians 
have discovered is that the global properties of diffeomorphisms are not at 
all trivial, even on topologically trivial spaces, such as R4. Yet in general 
relativity and other field theories physicists continue to assume that the 
global covering of such spacetime models with smooth reference frames is 
trivial. This is strongly reminiscent of the assumption of geometric triviality 
(flatness) of spacetime physics before Einstein. We hope that by presenting 
an overview of the mathematical discoveries, we may induce physicists to 
consider the possible physical significance of this newly discovered wealth 

vii 
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of previously unexamined spacetime structures. 
Within each section we attempt to accompany the mathematical pre- 

sentation with parallel narratives of related physical topics as well as more 
informal “physical” descriptions if feasible. The abundant cross-fertilization 
of physics and mathematics in recent differential topology makes this en- 
deavor quite natural. 

Chapter 1 is an introduction, discussing the traditional interaction of 
physics and mathematics and speculations that this interaction extends 
to these differential topology results. We also review some “exotic” and 
unexpected or at least counter-intuitive facts in elementary topology and 
analysis to provide somewhat easier analogs to the more technically chal- 
lenging “exotic” mathematics coming later. We then survey possible phys- 
ical consequences of these unexpected structures. Chapter 2 begins with a 
review of some of the mathematical tools and techniques of algebraic topol- 
ogy. Chapter 3 concentrates on the notion of “smoothness” as defined by 
the introduction of differential structures on topological spaces. The field 
of differential topology is built on these constructions. In Chapter 4 we 
provide our first introductory look at some additional structures: bundles, 
geometry and gauge theory. These topics are considered in more detail 
later. Chapter 5 delves more deeply into gauge theory and introduces the 
concepts of moduli space especially those associated with solutions of the 
Yang-Mill theory. The important, but rather technical, tools associated 
with surgery and Morse theory are presented in Chapter 6. The remaining 
chapters then deal with the surprising and we believe physically intriguing 
discoveries of “exotic” smoothness in the unexpected context of topologi- 
cally uncomplicated spaces. The first results (1957) along these lines were 
obtained by Milnor, his exotically smooth seven spheres. These are rela- 
tively easy to construct and analyze, and can be immediately associated 
with physics as having the underlying topology of the bundle of Yang-Mills 
SU(2)  gauge fields over compactified spacetime, S4. These topics occupy 
us in Chapter 7. For the next 20 years or so, much work was done in the 
field, but some important outstanding questions remained. By various tech- 
niques, it was shown that Euclidean topology, R” of dimension n can carry 
only the standard smoothness structures for all n # 4. The discovery that 
the missing dimension, 4, the dimension of classical spacetime, concealed a 
wealth of surprising results came as the results of the work of F’reedman, 
Donaldson et al, having roots in the physically motivated work on moduli 
space of Yang-Mills connections over a four-manifold. We review the orig- 
inal techniques for studying exotic R4 in Chapter 8 and the more current 
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ones based on Seiberg-Witten theory in Chapter 9. Chapter 10 discusses 
possible physical implications and Chapter 11 introduces some ideas still in 
the speculative stage. 

We have been warned by many colleagues of the difficulty inherent 
in writing this book with its mix of recent deep mathematics probably 
unfamiliar to many physicists and physical topics similarly unfamiliar to 
mathematicians. Nevertheless, the long and rich history of the interplay of 
these two disciplines, and a wide variety of books aimed at non-experts on 
these subjects, makes us believe that this is not a hopeless task. However, 
we must remind the reader that since the presentation is aimed at %on- 
experts,” we will necessarily be somewhat superficial and informal in our 
treatment of many topics, both from the physics and mathematics sides. 
Full rigor will sometimes be sacrificed, but not at the price of introducing 
egregious error we hope. 

In all of our work we were patiently helped by many colleagues. Especial 
thanks should go to our mathematician colleagues who showed admirable 
patience in helping us through the mathematical intricacies leading to the 
beautiful exotica. Among these we must single out Duane Randall whose 
patient, expert, and always friendly help was absolutely essential to the 
completion of this book. We have also received help from others, including 
R. Gompf, T. Lawson, T. Mautsch, A. Nestke, D. Randall, andH. Rose. We 
repeat the standard phrase that this work incorporates the knowledge and 
insights of many people, but any errors are ours alone. This statement is 
especially true in a book such as this which includes topics from a very wide 
area. We also were aided by the financial support of a LASpace grant. The 
second author gratefully acknowledges the hospitality of the Institute for 
Advanced Studies, Princeton, a Humboldt Senior Research Prize, the hos- 
pitality of Friedrich Hehl and others at the Institut &r Theoretische Physik, 
Koln, and the J. C. Carter Professorship at Loyola. Melissa Minneci and 
Stella VonMeer generously contributed excellent and much needed proof 
reading assistance. Most importantly, the second author is deeply indebted 
to Ron Fintushel, then at Tulane, for introducing him to the exciting pos- 
sibilities of exotic smoothness during stimulating talks. Finally, the second 
author must affirm the indispensable help of Bill Wilson, Bob Smith and 
their students, without whom he could not have contributed to this work. 
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Chapter 1 

Introduction and Background 

1.1 Interaction of Physics and Mathematics 

The history of physics, especially over the last several hundred years, is 
replete with examples of the cross fertilization between Physics and (oth- 
erwise) Pure Mathematics. Examples and anecdotes abound. In the con- 
text of this book, the development of geometry (and its generalizations) as 
mathematics and as physics is especially noteworthy. In the 1700’s math- 
ematicians began in earnest the questioning of the minimal structure of 
Euclid’s axioms, in particular, the necessity or not of including the postu- 
late pertaining to parallel lines. Max Jammer [Jammer (1960)l summarizes 
this history very well. Underlying the mathematical discussion is the addi- 
tional question of whether or not the axioms are physical or mathematical 
in nature. Of course, today, we are quite comfortable with the separa- 
tion of pure mathematics from physics, but this has not always been so 
clear. Thus, for example, as described in [Jammer (1960)], Gauss actually 
performed a physical experiment with surveying equipment to determine 
if the sum of the angles in a triangle is indeed T ,  as it should be in flat, 
Euclidean, geometry. He bounced light off of three mirrors constituting the 
three vertices of a triangle. Of course, with the technology available to him 
at the time, such an experiment could be done with only crude accuracy, 
but it presaged a whole set of experiments on the behavior of light rays 
undertaken over the last thirty years or so within the solar system. 

Such work by Gauss, Riemann, Lobachevski and others on the appar- 
ently very abstract and non-physical subject of ‘‘non-Euclidean” geometry 
was precisely what was needed to provide the foundation for Einstein’s 
theory of General Relativity, in which gravity is described in terms of the 
geometric properties of spacetime. The path by which Einstein was led to 

1
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consider what must have appeared to him to be very abstruse and abstract 
mathematics as a possible tool for physics has recently been reviewed in 
the various volumes celebrating the centennial of his birth. A very nice 
summary is provided by Norton[Norton (1992)l. 

Later investigations of Einstein’s theory led to the natural introduc- 
tion of non-trivial topology in addition to geometry. In the meantime, the 
parallel development of quantum theory and quantum field theory has led 
to the introduction into physics of branches of mathematics such as func- 
tion theory, Hilbert spaces, bundle theory, moduli space structures, etc. In 
fact, the second half of the twentieth century has seen a virtual explosion 
of applications of various branches of mathematics, many of which were 
considered to be of only abstract interest, to physics. Conversely, in many 
cases the direction of “applicability” has been reversed, some of which will 
be touched on in this book. Questions of interest in theoretical physics 
have turned out to have value in the pursuit of “pure” mathematics. 

In summary, the rich interplay between physics and mathematics is ob- 
vious to contemporary workers. Certainly, there is no theorem that says 
“Good mathematics makes good physics,” but certainly there is strong 
anecdotal evidence that this has been true in many important situations. 
The purpose of this book is to introduce to physicists some recent excit- 
ing discoveries in pure mathematics that prove the existence of non-trivial 
structures on spacetime models which have always been assumed by physi- 
cists, and probably most mathematicians, to be trivial only. Can these new 
structures have physical significance? 

The relevant mathematical arena is “differential topology,” a very de- 
scriptive name since it is concerned with global (topology) smoothness (dif- 
ferential) questions. Since almost all current physical theories make use of 
calculus at some level, the notion of differentiation on any spacetime model 
is certainly essential to physics. Furthermore, since the early days of rel- 
ativity, the importance of global features of spacetime, i.e., topology, has 
been apparent. Recently, of course, topological features of various theo- 
retical models have been important in a much wider class of theoretical 
constructs such as quantum field theory and attempts to quantize gen- 
eral relativity. The basic question motivating the studies in this book is 
whether or not there is any non-trivial relationship between the purely lo- 
cal nature of differentiation and the global nature of topology. The answer, 
since the pioneering work of Donaldson, Freedman, et al., is a resounding 
“yes,” opening the door to obvious re-investigations of some fundamental 
assumptions of theoretical physics. 
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Before beginning the detailed study of the mathematics surrounding 
contemporary differential topology, let us recall briefly the roles that space- 
time models play in physics, and what is required of them in this process. 
The history and philosophy of this subject is rich and much too involved 
and extensive for us to consider here. See the book of Jammer[Jammer 
(1960)] for one overview. Also, the history of general relativity is obviously 
intimately related to the development of spacetime structures, so the stud- 
ies generated by the anniversary of Einstein’s birth provide a more recent 
look at this subject. It is clear that spacetime models serve at least two 
roles: 

(1) A spacetime model carries structures such as topology, smoothness, and 
geometry. To some extent or another, these features seem to have real, 
observable consequences’. 

(2) A spacetime model serves only as a computational “scratch pad,” on 
which theories are expressed, calculations done, and experimental pre- 
dictions made. Apart from this purpose, the model has no direct phys- 
ical significance. 

It is important to keep in mind these distinct roles. Someone trying to “un- 
derstand” the physics of spacetime has an entirely different set of standards 
than one, perhaps as a worker in quantum field theory, who merely regards 
spacetime as a necessity for expressing field equations, perturbation theory, 
path integrals, etc. To the former, the innate difficulties in trying to give 
operational significance to spacetime in the light of quantum uncertainty 
principles for measurements are of profound importance. To the latter, 
these issues are peripheral at best and spacetime exists only as a platform 
for calculating integrals. Of course, most physicists at one time or another 
in their research probably find themselves taking each of the positions. In 
this book, of course, we clearly are prejudiced toward position (1). 

]The observability of these structures and thus their operational significance continues 
to be a deep unresolved issue. See, e.g., [Brans (1980)],[Brans (1999)l 
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1.2 Manifolds: Smoothness and Other Structures 

Consider the following sequence: 

. . .  

I? 
I7 

1s 

1G 

la 

I? 

Point Set 

Topological Manifold 

Smooth Manifold 

Geometric Manifold 

Bundle 

representing what seems to be the minimal set of necessary component 
assumptions that go into the underlying spacetime models of almost all 
physical theories. 

At the lowest level some sort of point set structure seems to be required. 
That is, except for a brave few who attempt to replace point-set structures 
by something “derived” from more basic quantum structures the idea that 
spacetime is a point set seems to be universally, if generally tacitly, assumed. 
Historically the quantification of geometry led to the identification of this 
point set with Euclidean space, RFs, whose points are the ordered sets of n 
real numbers. At its foundation, physics has not strayed too far from this 
point set model. 

First, the transition 7: With the development of topology over the last 
100 years, it has become obvious that more than the identity of points in a 
set is of significance. In fact, the notion of limit defining a topology is indis- 
pensable to any reasonable spacetime model. In modern usage, a topology 
can be defined in terms of open sets, or their generators, neighborhoods. 
Historically the “default” topology for numerical point sets such as RFs 
has generally been that defined by the real numbers which have provided 
the point set structure, the Euclidean metric topology. Thus, in the transi- 
tion 7 in 1.1 from RFs to RFop, the latter uses neighborhoods defined by 
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the balls generated by the real numbers chosen to define the point set2. But 
current mathematics and physics make use of a generalization of pure global 
Euclidean topology while still maintaining this structure locally. This leads 
to the notion of a topological manifold as a point set with topology which is 
locally Euclidean. That is, each point has a neighborhood homeomorphic 
to R~,,, This latter, tautologically topological manifold, is the one most 
often used by physicists outside of general relativity, with little thought to 
alternatives. 

Next, S: Since physics uses fields and field equations, we need the ma- 
chinery to perform differentiation. This is provided by a definition of how 
to do calculus locally, a “smoothness (or differentiable) structure.” The def- 
inition and study of such structures, in the large, will be the main preoccu- 
pation of this book. At its most basic, we need to define which (real-valued) 
functions on R$,, are to be regarded as “smooth,” or equivalently “differ- 
entiable,” and then decide how to construct the derivative. For simplicity, 
we restrict the notion of differentiability to “infinitely differentiable,” or 
C” in the usual notation. There are several routes to defining smoothness 
structures, the transition S in 1.1, and much of this book will be dedicated 
to this topic. 

Current physics is based on the tacit assumption that this transition, 
S, is trivial, that there is some natural, standard smoothness structure on 
RF,, given by the topological coordinates, xi. So, in what seems to be a 
natural, minimal, and harmless (but in reality not) process, let us define 
the class of smooth functions on this smooth structure, .F~(RFop), where 
the “0” means the standard structure, to be those real valued functions 
of these topological coordinates, f (xi), which are C” differentiable in the 
usual real analysis sense. This defines R;4,,,,o as a candidate for “the” 
standard smooth Euclidean manifold. 

Of course, it soon becomes clear that these naive procedures may not be 
well defined because of built-in assumptions that might not be obvious to 
those concerned only with physical applications. In particular, within the 
topological category we are really only concerned with equivalence classes 
under homeomorphisms. Such topological changes to RF,, and the corre- 
sponding {xi} can play havoc with the resulting notions of differentiability 
using the path above. That is, continuous functions need not be smooth! 
This fact is at the heart of the issues of central concern to this book. 

Finally, assuming the smoothness issue has been adequately addressed, 

2The open ball of radius E centered on zb is defined by {xi] C(xa - < e 2 } .  
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physics needs geometry and more: 9, the establishment of a geometry by 
appending a metric, connection, etc., and B, some sort of bundle structure 
for defining “internal symmetry” spaces and their connections, e t ~ . ~  These 
topics will be discussed in the next chapter. 

Such questions as these are addressed on the mathematical side by ap- 
propriately named category theory, which provides an organized way of 
looking into the study of specific properties such as topology, smoothness, 
etc., on families of sets. The isomorphisms of a given category correspond 
to the physical notion of “equivalence” of the corresponding spacetime mod- 
els. The book by Geroch[Geroch (1985)] provides a useful summary of this 
and other topics germane to our subject. 

1.3 The Basic Questions 

The fundamental issues with which we are concerned lie in defining the step 
S in 1.1 imposing a smoothness structure on a given topological manifold. 
However, something like this ambiguity even arises earlier in I where some 
point set isomorphisms can drastically alter the topology. As a specific 
example consider RFs. In the definition of the standard Euclidean topology 
giving R”,,,, the standard metric, 

is used. However, there are clearly infinitely many point set isomorphisms 
of RFs with R& for any other m. For example, if I is the unit interval, 
consider (x,y) E 1’. Map (x,y) --f z E I1 by interlacing the binary digits 
of x and y. This is clearly a one-to-one map, I2 -+ I’, that is not a home- 
omorphism. That is, the topological notion of dimension is not determined 
by the point-set one apparently inherent in the definition of RFs. Thus, we 
could impose a topology on RFs using one such isomorphism of it with R& 
and the Euclidean metric in 1.2 but with n repiaced by m. This clearly re- 
sults in a different topology, RTop, for the same point set RFs. Although 
there seems little or no obvious motivation for studying such alternative 
topologies as physical models at the present time, this example does point 
out ambiguities in definitions that seem so natural as to almost be unique. 
~~ 

3The order in which these two steps are listed in 1.1 is somewhat arbitrary since it 
could be argued that the imposition of a metric only comes after an establishment of the 
principal bundle of frames. However, this point is not critical here. 
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Returning to the issue of defining S in 1.1, consider the simple example 
of n = 1, so that the topological space is simply the real line with points 
identified with real numbers and defining the usual Euclidean topology. For 
clarity, let us use p to denote one such point, so that p is a real number and 
a point in a topological space. Now, suppose we define a smoothness, S, 
by defining a global coordinate patch, with coordinate x numerically equal 
to the real number p, 

4 P )  = P, P(Z) = 2. (1.3) 
Here p E R T O ~  and x E W, where the latter is the set of real numbers 
with standard smoothness. Then a function f : RTop 4 W will be smooth 
if and only if it is C“ in the usual real variable sense when expressed in 
terms of the coordinate, x. If fc(x) is the coordinate expression, then 

fd.) = f(P(Z)). (1.4) 
Let 3 denote this class of smooth functions. Trivially then, the variable x 
is itself smooth. 

However, suppose we had first performed a homeomorphism of WTOp 
onto itself, replacing p by p3. The topology of the manifold clearly has been 
unchanged. Now let us define a new global patch and coordinate, y, in 
terms of this homeomorphic image, 

Y(P> = P3, (1.5) 
defining a new smoothness, S’, on the same topological space. Now the 
class of smooth functions, 3’, is defined to be those functions f‘(p) such 
that fA(y) = f’(~’/~) is C” in the usual sense. Clearly, 3 # 3’. The 
identity map is an element of 3, but, since y’i3 is not differentiable at the 
origin, it is not an element of F’. Thus, we have a simple example of one 
point set, with two different smoothness structures, S # S’. 

From the viewpoint of physics, and many mathematical applications, 
the difference we have established in this example is not essential. In fact, 
mathematicians have found that the most fruitful object for study in dif- 
ferential topology is the equivalence class of smooth structures under dif- 
feomorphisms, that is, homeomorphisms that are smooth when expressed 
in terms of local coordinates. This equivalence class is the proper object, 
“differential manifold,” with the mathematical category being normally de- 
noted as DIFF. Later chapters will contain more details on this category. 
For now, let us look at a simple 1-dimensional example provided by the 
homeomorphism, 

h(P) = (1.6) 
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of RTop onto itself which is surprisingly a diffeomorphism! Its coordinate 
expression is simply the identity map, 

hc(x) E y(h(p(x)))  = X -  (1.7) 

Thus, from the viewpoint of differential topology, these two diflerent 
smoothness structures on RTop are actually difleomorphic and equivalent. 
Diagrammatically, 

R& A R1 

RiOP 2 R1 

hl 4 (1.8) 

is commutative. The two horizontal maps are coordinate maps, defining S 
and S’, respectively, the left downward map, h, in 1.6 is a homeomorphism, 
and the combined map expressed in the two coordinate systems, 1, is the 
identity diffeomorphism. The existence of such a diagram provides the 
fundamental definition of the equivalence, mathematical and physical, of 
two different smoothness structures. 

In parallel with the mathematics, physics after Einstein is thoroughly 
imbued with the idea from General Relativity that all coordinations of 
spacetime should be physically equivalent. From the viewpoint of physics, 
diffeomorphisms are the mathematical embodiment of the notion of coordi- 
nate, reference frame, transformations. In other words, from the viewpoint 
of physics the two structures are equivalent, S N S’. 

This discussion leads naturally to some basic questions: 

Question 1 (existence): 
a given topological manifold? 

Does there exist any smoothness structure on 

and, if so, 

Question 2 (uniqueness): Is the smoothness structure on a given topo- 
logical manifold unique up to diffeomorphism? 

We will expend much of our effort on these questions. As stated, Ques- 
tion 2 is too general for present mathematical tools, but special forms of 
it for restricted classes of topological manifolds, has turned out to be of 
central importance in recent differential topology and forms the basis for 
this book. Our main concern will be 
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Question 3 (Euclidean): How many  smoothness structures (up to  diffeo- 
morphisms) can be put on  Euclidean topological spaces, RFOp ? 

To summarize the results discussed more thoroughly in the rest of this 
book, the answer is 

Answer 3(exotic RhIFF): Up to  diffeomorphisms, there is one and only 
one smoothness on  REIFF f o r  n # 4, and uncountably many  for  the remark- 
able case of n = 4. 

For RbIFF, these assumptions are fairly easy to establish. A very nice 
and compact proof is provided in the Appendix of Milnor’s book[Milnor 
(1965b)l. For n = 2,3 the proof is much more technical and difficult. 
For n > 4, developments in cobordism theory settled the question. How- 
ever, until the discoveries of Donaldson, Freedman, et al., the n = 4 case 
remained an open question. Their surprising result for this spacetime di- 
mensional case is the main motivation of this book. 

1.4 Some Basic Topological Exotica 

1.4.1 Whitehead continua 

An important thread in understanding exotic smoothness is associated to 
the assumptions of how properties are inherited in the process of forming 
mathematical products of spaces. That is, if 

X = M x N ,  (1.9) 

how are various mathematical properties of A4 and N related to their point 
set product, X ?  Thus, the product formation in 1.9 may be topological or 
smooth, etc. Our chief concerns will be in the smooth category, but it is 
instructive to look at a more basic class of non-intuitive results in low 
dimensions as provided by Whitehead continua[Whitehead (1935)l ,[Bing 
(1959)J,[Glimm (1960)],[McMillan (1961)l. 

Whitehead constructed an open, contractible three-dimensional topo- 
logical manifold, W ,  which has the following exotic properties: 

0 W is not homeomorphic to R3, but, 
0 R1 x W is homeomorphic to R4. 

In other words, it is not correct to assume that when an R1 is factored in 
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R4 the result wall necessarily be R3. 
This too is a profoundly counter-intuitive result. The construction of 

Whitehead spaces can be visualized using an infinite sequence of twisting 
tori inside each other. For a discussion with diagrams see [McMillan (196l)l. 
The limit of the infinite iteration of this process produces a set whose 
complement in R3 is a Whitehead space. What the implications of this 
construction are for the smooth case are not now fully understood, but 
seem to be highly intriguing. In fact, these spaces are used in handlebody 
constructions of exotic manifolds. 

1.4.2 Weierstrajl functions 

A naive conjecture from elementary calculus is that every function which 
is continuous over some interval must be at least piecewise smooth, i.e., its 
derivative exists except at isolated points. “Physical” intuition might well 
suggest that this conjecture is valid. However, it is not, as demonstrated 
by the “WeierstraP functions, such as 

00 

W(t )  = ak cos(bkt), 
0 

(1.10) 

where la1 < 1. Clearly, this series is absolutely convergent to a continuous 
function for all t. However, naive term by term differentiation under the 
summation results in 

M 

(1.11) 

If lab1 is chosen to be greater than one, the convergence of this series is 
dubious at best. In fact, it can be shown rigorously that the derivative of 
W(t )  does not exist anywhere over certain intervals. For more details on 
such functions see a standard real analysis book such as [Stromberg (198l)l. 

1.5 The Physics of Certain Mathematical Structures 

Finally, let us again come back to the issue of the importance of choice of 
mathematical structures for physical theories. Einstein’s general relativity 
is nothing other than a theory of the physical importance of the choice 
of the mathematical structure geometry. Later developments indicate that 
the same may be true with topology. In this book we are suggesting that 
something similar could conceivably be true for the choice of the even more 
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abstract idea of smoothness. Because this last concept is more difficult to 
“visualize” than geometry or even topology, let us conclude this introduc- 
tion with a toy model of another mathematical structure, complex structure. 

Our model begins with two-dimensional vacuum electrostatics. Using 
familiar vector notation, the electrostatic field is represented by a vector on 
a two-manifold, E E T ( M ) ,  which satisfies 

V x E = O ,  V - E z O .  (1.12) 

For simplicity, let M = EX2, and define the standard complex structure by 

2 = 2 + iy, (1.13) 

and the complex function 

E E, - iEy.  (1.14) 

Then, it is well known that the physical equations, 1.12, are equivalent to 
the complex analysis statement that E is a holomorphic function, or 

d 
-€ = 0. dz 

(1.15) 

Now suppose that we decide to express the physical theory of vacuum 
electrostatics in terms of the statement 1.15. Recall that we are choos- 
ing this path to explore the possibility that some analytic structure might 
influence physics. So, what happens if we change the complex structure de- 
fined by 1.13. Is there a “complex relativity” in action here? Is the physics 
dependent on the choice of complex structure? 

Before getting into this, let us recall the notion of relativity in the 
spacetime geometry of standard general relativity. There the basic field 
can be taken as the metric, which is generally expressed explicitly in terms 
of components relative to a particular coordinate patch. The basic prin- 
ciple of general relativity then asserts that the more physical expression, 
“change of reference frames,” associated with a change of coordinates leaves 
the physics itself invariant. Thus, the physical field is represented by the 
equivalence class of local metric component representations mod coordinate 
changes. In other words, the physics is not contained in a particular func- 
tional form of local coordinate components, but rather in the equivalence 
class. The “practical” question of whether or not two coordinate presenta- 
tions of metrics are equivalent is solved by extracting all possible invariant 
information from the metric. This is a problem that leads to the definition 
of curvature and its invariants. 

So, returning to our toy complex model, suppose we decide that the 
corresponding complex relativity principle would be that the physics is 
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defined by fields and equations expressed in the same form in different, but 
biholomorphic (the complex analogue of diffeomorphic) complex structures. 
So, for example, suppose we choose our complex structure to be defined by 

zI = z - i y .  (1.16) 
Then clearly z‘ is not an analytic function of z ,  but does the physics change? 
The answer is no, since the underlying recoordination: (z, y) + (z, -y) 
provides a biholomorphism between the z and the 2’ complex structures. 
Or, if F(z, y) = (z, -y), then the statement that the following diagram is 
commutative with I being the identity biholomorphism, 

R2 C 

(1.17) 4 
R2 A C 

The problem of determining the equivalence class by evaluating complex 
invariants is a deep one which we will not go into here. Suffice it to say 
that the statement 

N o  bound: every non-constant holomorphic function is unbounded f o r  
standard analyticity on C, 

is a well known fact. If we now take the complex structure form of 
vacuum electrostatics seriously, we would have 

N o  bound(physics): Every non-constant plane electrostatic vacuum field 
is unbounded. 

So, can we explicitly find another complex structure for which “NO 

F : ( 5 , Y )  (z/l,Y”), (1.18) 

be a diffeomorphism of the entire plane onto the unit open ball at the origin. 
Then 

bound” is false? The answer is yes! Let 

211 = 2/1 + iy”, (1.19) 
defines a different complex structure for which the self-defined holomor- 
phic function z” itself is non-constant and unbounded. Thus, there is no 
biholomorphism between 2’’ and the standard z. In terms of the physical 
interpretation, electrostatics with 2’’ is truly different from the standard 
electrostatics, since for this new structure, the “No bound(physics)” state- 
ment is false for this z” complex structure. 
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1.6 The Physics of Exotic Smoothness 

Can differential topology really have anything to do with physical theories? 
Clearly the answer to this question must be “Yes” because of the principle of 
general relativity. In light of this principle, the physical content of theories 
must be invariant under changes of local coordinate patches, provided that 
the new smoothness structure is diffeomorphic to  the original one. This is 
in fact the prototype of “gauge” theory. However, the discovery of exotic 
smoothness structures shows that there are many, often an infinity, of non- 
diffeomorphic and thus physically inequivalent smoothness structures on 
many topological spaces of interest to physics. Because of these discoveries, 
we must face the fact that there is no a priori basis for preferring one such 
structure to another, or to the “standard” one just as we have no a priori 
reason to prefer flat to curved spacetime models. We note that these exotic 
structures are by definition all locally equivalent, so the local expression 
of physical laws is unchanged. This leads to the apparently paradoxical 
fact that the implications of exotic smoothness are global, but not in the 
topological sense! 

Unfortunately, the technical difficulties encountered in applying these 
new results have resulted in only qualitative results for physical applications 
so far. In the last two chapters we review some of these results and speculate 
on new ones. 

1.7 In Sum 

The general question of equivalence for various mathematical structures is a 
fundamental one in mathematics, and, by extension, to physics. Of course 
defining what “equivalence” should mean is the indispensable first step. 
Much of the beauty of mathematics is in the discovery of counter examples 
to intuitively anticipated equivalences, such as the Weierstrafi functions and 
the Whitehead continua examples discussed above. 

In general relativity two structures are equivalent if one is obtained 
from the other by a coordinate transformation (diffe~morphism)~. We have 
long since passed the point in physics of wondering about the principle of 
general relativity, of saying that two different coordinate statements of the 
flat metric are physically equivalent while no coordinate transformation can 

4Generalizations of this phenomenon lead to  “gauge theory” in contemporary mathe- 
matical physics. 
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take a flat metric into a non-flat one. Our toy plane vacuum electrostatic 
model above displays a similar situation in which a complex structure has 
replaced geometry, and biholomorphisms have replaced diffeomorphisms: z 
is equivalent to z' but not to z". 

The motivating factor for this book is the exploration of possible ex- 
tension of these ideas to the realm of differential or smooth structures. We 
thought all such were equivalent on It4. We now know this is not true. Does 
this present a situation parallel to the discovery of non-euclidean geometries 
as models for spacetime? 



Chapter 2 

Algebraic Tools for Topology 

2.1 Introduction 

In this chapter we review certain mathematical concepts specifically related 
to algebraic tools for investigating topology, assuming that the reader is 
familiar with the basic concepts of topology. The understanding of defini- 
tions is often enhanced by counterexamples, so we will try to present such 
with physical interpretations when possible. 

Why are apparently abstract mathematical subjects such as topology 
of interest to physics? We tried to answer this question in the introductory 
chapter. Basically the answer is to be found in the fact that physical theo- 
ries have evolved in such a way as to require a spacetime model consisting 
not only of a point-set (events), but one with a notion of limits (topol- 
ogy) and some mechanism for doing calculus (smoothness). The simplest, 
and historically first, way of accomplishing this is to assume that space- 
time is topologically and smoothly Euclidean, that is, one in which events 
are identified with ordered sets of real numbers, and calculus is done in 
the usual way with these numbers. Of course, as it stands, this model is 
insufficient for any sort of relativity principle, since it assumes one global 
set of coordinates without any way to re-coordinatize, or, in a physical 
sense, to allow other reference frames, or observers. The generalizations 
from this primitive model required by extensions of the physical relativity 
principles to include arbitrary reference frames ultimately leads us into the 
realm of topology and differential topology of manifolds. In fact, one can 
discern a certain parallel in the developments of physics and mathematics 
with respect to the basic “relativity” question: Are two presentations of a 
given structure, e.g., topology, smoothness, geometry, or a physical theory, 
truly distinct or merely different representations of the same structure as 

15 
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evidenced by an equivalence map, homeomorphism, diffeomorphism, isom- 
etry between the two? Progress for studying this problem for topology 
and geometry as been made by finding readily computable constructs such 
as homology, homotopy, curvature, etc., widely used in both physics and 
mathematics. Recent progress with respect to the problem of equivalent 
smoothness structures is the main motivation of this book. The subject 
necessarily has both mathematical and physical implications. 

So perhaps in this sense, the histories of physics and mathematics have 
seen parallel developments with respect to “relativity principles.” In physics 
we have long been concerned with distilling the essence of physical theories 
moduli any specific representation of the model. This includes not only 
(external) spacetime coordinate transformations, but also internal, gauge 
transformations. Similarly, mathematics has sought to study equivalence 
classes of structures, such as point-set, topological, and smoothness, under 
corresponding “isomorphisms.” 

The reader can find full treatments of the foundations of these subjects 
in many books. There are many excellent textbooks and reference books 
on algebraic topology. We recommend especially those of Greenberg and 
Harper[Greenberg and Harper (198l)l and Vick[Vick (1994)]. 

2.2 Prerequisites 

First, let us identify and describe the basic functional categories of inter- 
est. The standard notation, Co, Cn, C”, C“, defines the sets of functions 
which are respectively continuous, continuous together with their first n 
derivatives, continuous with derivatives of all order, and finally, analytic. 
Unless otherwise specified we will be interested in only the real, R, and 
complex, C, fields for functions and coordinates. For the most part we will 
use the terms smooth and differentiable to mean C”. 

These functional categories for real functions are naturally extended 
to spaces. In particular, one of the central themes of this book is the 
relationship between various structures (categories, CAT) on spaces which 
are locally topologically Euclidean, that is, topological manifolds. Here 
note three particular such structures, topological (TOP), piecewise linear 
(PL) and smooth or differentiable (DIFF). In decomposing a manifold into 
coordinate patches (an atlas), we have the following possibilities: 

0 the transition functions are homeomorphisms (TOP case) 
0 the transition functions are piecewise-linear homeomorphisms (PL case) 
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0 and the transition functions are diffeomorphisms (DIFF case). 

How are these three related? 
In dimension 1, 2 [Rado (1925)l and 3 [Moise (1952); Cerf (1968)l the 

three cases TOP, PL and DIFF coincide, i.e., every topological manifold 
admits an essentially unique PL and a DIFF structure. In the higher dimen- 
sions 2 5 obstruction theory plays an important role. The locally trivial 
property of manifolds means that locally all three CAT’S exist. But the 
problem of continuing these local structures is in general non-trivial. Ob- 
struction theory studies this problem and defines “obstructions” (generally 
cohomology elements) for such a continuation. For example, there is a sin- 
gle obstruction to the extension of the TOP structure to PL defined by 
Kirby and Siebenmann [Kirby and Siebenmann (1977)]. This obstruction 
lies in H 4 ( M , Z z ) .  The extension of the TOP structure to DIFF is basic 
to our interests in this book and will be studied in some detail in 6.3. In 
all dimensions < 7 the two cases PL and DIFF coincide, i.e., it is always 
possible to 5-ound the corners.” 

Of course our main interest is in the gap between TOP and DIFF. As 
mentioned above, tools exist for dimensions less than four and greater than 
four, but four itself remained inaccessible until the 1980’s. 

Remark 2.1. 
There are some interesting counter examples of the difference between continuous, Co, and 

smooth, Cm functions. Intuitively i t  might seem reasonable t o  conjecture that  a continuous 

function would be differentiable except perhaps at  discrete jumps of slope. However, a class of 

functions introduced by WeierstraB in the 1800’s of the form C;P=l bk cos(akz), with Ibl < 1, 

but lab( > 1 is everywhere continuous, but nowhere smooth. See Stromberg ([Stromberg 

(1981)] pp 562-563) for more details. This is an interesting example for this book since we 

are intimately concerned with the difference between topology, e.g., Co, and smoothness, e.g., 

Cm. Of course our problems are inexorably tied t o  global questions. 

We assume familiarity with the definition of a topological space in 
terms of neighborhoods, open/closed sets, and the notions of contin- 
uous, open, and homeomorphic maps between two such spaces. 

Some terms of special interest follow: 

0 Metric: This is a positive definite symmetric function which satisfies 
the triangle inequality, d(z,  y) + (d(y ,  z )  5 d(z ,  z) .  These properties 
are distilled as the essential elements of what a metric should be from 
the Pythagorean metric of flat Euclidean geometry. We must point 
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0 

0 

out, however, that the term “metric” is used in spacetime physics to 
refer to an indefinite (but non-singular) form, the so-called Minkowski 
or Lorentz signature metrics. We will try to be careful to distinguish 
these cases when appropriate. 
Metric space: This is a topological space for which metric disks, 
{zld(z, zo) < a} ,  for fixed z and positive real number a are a basis. To 
be a metric space is a very strong restriction and such spaces have to 
fulfill the so-called fourth separation axiom. 
Euclidean space: This is the prototype for all spacetime models of 
physics, and indeed, for spaces used in much of mathematics. The 
Euclidean n-space, R” is a set whose points are the ordered set of real 
numbers. In addition, the topology is given by the metric 

n 

d(z, y) = C(zi - yi)2 . 4 i= 1 

Also, note that the question of whether or not the further structure of 
smoothness should be induced by these global coordinates is a central 
issue in this book. 

A couple of important constructs in Euclidean space are: 

Disk or synonymously Ball: This is a closed subset of R” defined by 

0 Sphere: This is the boundary of a disk, a closed subset of Rn defined 
{z(d(z,zo) L a} ,  for some fixed zo and real, positive a. 

by {zld(z, zo) = a} ,  for fixed zo and positive real a. 

Finally, we mention a few important terms: 

0 Compactness: A topological space X is compact if for every open 
covering of X one can choose a finite sub-covering. In particular, every 
closed subset of a compact metric space is also compact and vice versa. 
Also, in B” every disk and sphere are necessarily compact and every 
compact set can be contained in some disk. 

0 Product topology: The point-set product X x Y of two topological 
spaces is defined as the set of tuples (z, y) E X x Y with z E X and 
y E Y .  This space is then given the product topology. If there are two 
open subsets U c X and V c Y containing and y, respectively, then 
U x V is an open subset of the product topology. 

0 Quotient topology: Now we define the process of “dividing out” some 
relationship. Consider an equivalence relation R, i.e., a subset R of the 
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product X x X of a topological space with itself, where (z,z) E R, 
(z,y) E R then (y,z) E R and if (z,y) E R and (y,z) E R then 
(z, z )  E R. The space 

X / R =  {[XI I z EX} 

of equivalence classes [XI = {y E X I (z, y) E R} is a topological space 
with the finest topology such that the inclusion map of a point into its 
equivalence class is continuous. 

Remark 2.2. 
The reciprocal relationship of cancellation between products and quotients familiar in 

ordinary arithmetic does not hold in the topological category. A very interesting counter 

example is provided by Whitehead manifolds, first defined in 1935, [Whitehead (1935)l. 

These are open, contractible 3-manifolds, W, that are not homeomorphic to  standard 

W3, but, as shown by Glimm, [Glimm (1960)], the topological product W’ x W is home- 

omorphic to W4. Thus, in this product, “factoring out” W’ from W4 does not necessarily 

result in w3. 

Next, unless otherwise stated, we assume that our topological models 
are 

0 Hausdorff separable, that is, disjoint points are contained in dis- 
joint open sets and the topology is generated by a countable basis of 
neighborhoods,l 

and 

0 Topological manifolds, that is, each point is contained in a (topo- 
logical) coordinate patch, U, with a coordination, 4~ : U -+ Rn which 
is a homeomorphism. 

Counter example: A standard example of a non-Hausdorff manifold 
consists of three intervals, X = 11 u 12 U 13,  where 11 = (510 < z < I}, 12 : 
{y( - 1 < y 5 0},13 : {zI - 1 < z 5 0}, with topology generated by the 
standard Euclidean disks about every point except y = 0 and z = 0. The 
neighborhoods of these points are sets of the form {-a < y 5 0) U { -b < 
z 5 0) U (0 < z < c }  for all of a,  b,c positive. Thus, the disjoint points 
y = 0 and z = 0 are not contained in disjoint open sets. Furthermore, 
a single convergent series, 2 = 1/n converges to both of these disjoint 
points. There are many obvious examples on topological spaces which are 
not locally homeomorphic to Rn. 

lEvery metric space is Hausdorff separable. 
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2.3 Concepts in Algebraic Topology 

In this section we continue with the theme of looking for tools or “metrics” 
for determining whether or not two structures are “equivalent,” in this 
case, topologically homeomorphic. Recall that in manifold theory, or 
its physical correlative, general relativity, a central question is whether or 
not two spaces or spacetime models are diffeomorphic, that is, essentially 
the same, just presented, or represented, in different coordinate systems. 
So too here, if we describe two different topological spaces from different 
routes, how can we tell whether or not the resulting spaces are topologically 
equivalent? 

Examples abound: 

0 Consider planes and spheres, R”, and S”. How do we know that these 
two are not homeomorphic? In this case, there is an easily applied topo- 
logical tool to distinguish these two, namely, the second is compact 
while the first is not. 

0 What about R1 and R2? We can easily provide explicit maps between 
the two as point sets, but can we find a homeomorphism? That the 
answer to this question is “no” is most. easily derived from the tools 
of homology theory discussed below. The result is that the homology 
groups in the dimension of the space are different. In particular, 

H,(Rn,Rn - 0) = S,& m > 1. 

0 Consider two compact spaces of the same dimension, S2 and the torus, 
T 2  = S1 x S1. Are these two spaces homeomorphic? The study of this 
question led to the notion of topological genus, which is a measure of 
the number of “holes” in a space. 

The study of such problems has led to the development of various math- 
ematical techniques. Here we will concentrate on algebraic topology. As 
its name implies this subject is concerned with algebraic structures built 
from topological ones. Appropriate choices for these structures, will provide 
tools to detect important changes of topology by doing algebra. Since these 
structures depend only on the topology, we can say that two spaces with 
different algebraic structures are not homeomorphic. However, in general 
the converse will not be true. One of the most important long stand- 
ing problems in mathematics revolves around this issue for the apparently 
elementary space, S3.  The Poincar6 conjecture, described more carefully 
below, is that any topological manifold with the same homotopy groups 
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as standard S3 must necessarily be homeomorphic to it. Later, we will 
visit the PoincarB sphere, a topological manifold with the same homology 
groups as standard S 3 ,  but known to be not simply connected, and thus 
not homeomorphic to standard S3.  

We review and summarize the important algebraic topological struc- 
tures, homotopy and homology in the following. 

(1) Homotopy. Consider equivalence classes of maps defined by con- 
tinuous one-dimensional deformations. In particular, define the ho- 
motopy groups of a space by considering such deformation-equivalent 
classes of maps of spheres into the space, subject to certain restric- 
tions. This results in a family of groups, 7rn(M, T O ) ,  n = 0,1, .... Since 
these groups are invariant under homeomorphisms, we know that if 
r n ( M ,  ZO) # 7rn(M’, z;) for some n then the two spaces are not home- 
omorphic. 

(2) Singular Homology. First define simplices, disks presented in a 
convenient form. Next, define the notion of boundary, d, for such 
objects. We then investigate a space, M ,  by looking at the maps of 
simplices into it, carrying into M the notions of boundary, etc., leading 
ultimately to singular homology groups, H,. Again these groups 
are invariant under homeomorphisms and thus are sufficient metrics for 
determining that two spaces are not homeomorphic. 

This technique, available only for smooth 
manifolds, constructs algebraic structures, cohomology, dual to homol- 
ogy, using exterior forms and the exterior differential as the boundary 
operator. The pairing of this with homology is through integration over 
singular simplices and their boundary. 

(4) Axiomatic approach. This extracts the essentials of what homology 
and cohomology can say about the topology of a space into a set of 
axioms. We only mention this briefly to point out that tools are avail- 
able for determining when different approaches, simplicial, singular, 
deRham, etc., all produce the same information. 

(3) deRham cohomology. 

2.3.1 Homotopy groups 

Define groups, r n ( X ,  ZO), for each manifold X relative to a point zo in X 
and each n > 0 by considering homotopy-equivalent classes of maps of n- 
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spheres into X . 2  These groups are invariant under homeomorphisms and 
thus contain sufficient information to determine that two spaces are not 
topologically equivalent. However, as with homology, these groups are not 
sufficient for determining the converse. Thus, for example, we will find 
that 7r,(Rn, 0) are all trivial, but as homology theory shows these spaces 
for different n are not topologically equivalent. 

First consider the definition of homotopy as applied to a pair of maps) 
f , g  : x + Y. 

Definition 2.1. Let f , g  : X -+ Y be continuous functions. f and g are 
homotopic to each other, denoted by f N g if there is a continuous function 
F : X x [0,1] -+ Y with F ( z ,  0) = f (z) and F ( z ,  1) = g ( z )  for all z E X .  

The function F provides a deformation of one map into the other. Clearly, 
this relation is an equivalence relation. The equivalence class of homotopic 
maps between X and Y will be denoted by 

[ X ,  Y ]  = { f : X -+ Y continuous }/ 11 . 
This relation leads to the notion of homotopy-equivalence of spaces. 

Definition 2.2. Two topological spaces X and Y are homotopy- 
equivalent, if there are two smooth maps f : X + Y and g : Y + X 
so that 

f o g N I d y  g o f N I d X  

where I d x  and I d y  are the identity maps on X and Y ,  respectively. 

In general define 

G ( X ,  20) = [(Say so), ( X ,  z0)l 7 

the homotopy equivalence class of maps of the pointed sphere into the 
pointed space. Since we have used the word LLgroup” to refer to them we 
must define a combining operation. 

Start with the n = 1 case, 7r1, the fundamental group. This is the 
loop space, modulo smooth deformations or contractions. There are several 
ways to define the group combining operation. We choose one which is easily 
extendible from n = 1 to the general case. Let S1 V S1 be the one-point 
union defined by 

s’ v s1 = s1 x {Sl} u s o ~ s l  {so} x s1 c s1 x s1 3 (so, s1). 
2Since we will be interested in pathwise connected spaces only, the choice of 20 will be 

irrelevant. 
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Now define the product y1 * 7 2  : S1 --t X of the maps y1 , 7 2  : S1 --t X 
to yl2 : S1 4 X as defined geometrically by the process described in the 
following sketch in which we deform S1 into the one-point union of two 
other circles, with naturally defined map. We then combine this map with 
the maps 71, 7 2  to define the product, y1 7 2 .  This provides a group 

0 
S’ 

Fig. 2.1 Definition of the map S : S’ +. S’ V S’ 

product structure which will in general not be abelian, since there is no 
map homotopic to  the identity which switches the upper and lower circles 
in this diagram. The proof of the associativity of this product can be found 
for instance in [Bredon (1993)] Proposition 14.16. 

A product structure for n > 1 can be defined by the same sort of 
diagram, replacing Sl’s with Sn’s. For the higher dimensional spheres, 
however, it is easy to see that a rotation about an axis passing through 
the pinched equator can exchange the upper and lower spheres, and still 
be continuously deformed to  the identity. Thus, the product structure for 
n > 1 is abelian. So, 

Fact: The sets, 7rn(X, XO), are endowed with natural product structures. 
For n > 1 this structure is abelian, but for n = 1, that is, the fundamental 
group, this may not be true. 
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In general, we will only be concerned with pathwise connected spaces. 
For this class, a change in the reference point, xo + yo E X ,  only changes 
homotopy groups by isomorphism, so we will drop the identification of the 
fixed point, 

Consider some examples. First, if X is contractible to xo then n n ( X )  = 
Xn(X0). This latter is easily seen to consist of a single element for each n. 
This single element is generally called 0, but recall that for n = 1 it is the 
unit multiplicative element. So, in particular, nr,(Rn) = 0. 

The first non-trivial space is the circle itself. Consider the map n : R + 

S1 given by n(r) = exp(i2m). A closed loop around the circle is given by 
nl[o,ll and a closed loop going twice around the circle is nl[o,zl. Intuitively it 
seems obvious that neither is homotopic to the other and so they represent 
two different elements in 7r1(S1). It is an interesting exercise to construct 
a rigorous proof of this fact, however. See for example the book of Massey, 
[Massey (1967)]. Continuing with this argument we obtain an isomorphism 

What about 7rq(Sn) for q < n? It turns out that each such group is zero 
but a rigorous proof of this fact is not easy. We need to show that every 
continuous map f : SQ -+ Sn is contractible. An easy way to do this would 
be to show that the image of every such map does not contain all points of 
S”. If that were the case, the image o f f  would be contractible so that the 
map would be homotopic to a map to a single point, thus establishing the 
statement. It would seem to be “intuitively obvious’’ that the continuous 
image of a lower dimension sphere in a higher dimensional one is not onto. 
However, this is not true, in fact there are continuous maps SQ onto S”. 
Examples can be constructed from generalizations of “space filling” curves. 
Perhaps the most famous of these is that due to Peano, which Munkres 
describes in great detail in his book[Munkres (1975)]. This function maps 
the closed unit interval continuously onto the closed unit square in the 
plane. As a “dimension changing” map, it is in fact a fractal curve, and 
is pictorially presented by an iterative scaling sequence of replacements 
of straight line segments by triangular segments. While continuous, this 
map cannot be a homeomorphism since the homological tools developed 
below will establish that Euclidean spaces of different dimensions cannot 
be homeomorphic. 

However, the existence of such maps does raise a problem for the compu- 
tation of 7rq(Sn). The resolution is provided by the cellular approximation 

7r1(S1) = z. 
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theorem quoted in Spanier [Spanier (1966)], p 404. This implies that even 
though f : Sq + S” may be onto, it is homotopic to one whose image is not 
the entire S” space, as required. This argument again illustrates the im- 
portance of carefully questioning those spacetime model assumptions based 
only on notions of being “intuitively obvious.” 

What about the other groups 7r,(Sn) for m > n? The calculation 
of homotopy groups is notoriously non-trivial and attacks on the problem 
have led to the development of many ancillary tools. One of these is the 
Hurewicz theorem relating homotopy to homology (often easier to com- 
pute). Other tools are provided by bundle theory, as evidenced by the fact 
that Steenrod spends about one third of his classic work, The Topology of 
Fibre Bundles[Steenrod (1999)] to the homotopy theory of bundles. 

The importance of the fundamental group, 7r1(X), the set of equivalence 
classes of closed loops in X ,  leads to the definition that X is simply con- 
nected if and only if 7r1 ( X )  = 0, that is, if every closed loop is continuously 
contractible to a point. As the example above shows S1 is not contractible. 
An important tool for studying non-simply connected spaces is the notion 
of covering space. X is a covering space for X if X is simply connected 
and there is continuous epimorphism, 

f : X + x ,  
which is a local homeomorphism. Thus, if x E X ,  there is a neighborhood, 
U of x such that f is a homeomorphism when restricted to each component, 
U,, of f -’ (U) .  The inverse map, f is called a lifting, and the lift of every 
closed path in X is a path in 2 which may or may not be closed. For the 
example S’ above the map n(r)  is a covering map from R -+ S’. 

Remark 2.3. 
Physicists will of course be familiar with the important role that closed loops play in some 

approaches to gauge theories in general and quantum gravity in particular. The action re- 

sulting from parallel translation around a closed loop generated by a gauge connection is an 

important tool for studying such theories. We will say more on this in our later discussion of 

gauge theories and bundle formalisms. 

2.3.2 Singular homology 

The original attempts to “quantify” topology with algebraic structures were 
based on what is now known as simplicia1 homology. The spaces con- 
sidered are called triangulable which means that they can be topologi- 
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cally decomposed into “simple” disk-like pieces of dimensions n = 0, 1 ,2, . . . , 
called simplices. If we denote the “triangulated” space by K formal lin- 
ear combinations of these simplices constitute the simplicial chain groups, 
Cn(K), of various dimensions. The next step is to define the notion of 
boundary and look for chains which have null boundaries (cycles) but 
which are themselves not boundaries of a higher dimensional element. De- 
note the n-cycles by Z,(K) and chains which are themselves boundaries by 
B,(K). The occurrence of “cycles which are not boundaries” is then mea- 
sured by the nth simplicial homology group, of K defined by Z,(K) 
mod B,(K), or 

& ( K )  = Zn(K)/B,(K). 

An alternative, perhaps more widely used, tool is singular homology. 
This is based on probing the target space, say X, by continuous images of 
simplices and constructing the algebraic structure, the chains, boundaries, 
etc., on these maps, rather than completely triangulating K. First, choose 
a sequence of naturally ordered simplices, one in each dimension, defined 
by some natural basis, eo, el, ... in Roo. The standard n-simplex is defined 
bY 

n. n. 

Thus co is a point, eo, c1 is the line from eo to el ,  0 2  is a triangle formed 
by the tips of eo, el, e2, etc. Note that each such simplex contains n + 1 
faces, eb defined by 

(2.2) eJ n = - {x E cn1tj = 0). 

Clearly the union of faces defines qualitatively what is meant by the bound- 
ary of the simplex, but to construct an algebraic tool we need to quantify 
and, in particular, orient these constructions. 

First, define a singular n-simplex, f as a continuous map from 0, into 
X. This map can be explicitly stated as a function with real arguments, 
the coordinates used in (2.1). Thus f is explicitly a function of n + 1 
real variables, ti, restricted to CZoti = 1. We earlier talked informally 
of forming the abelian chain group by taking formal sums of simplices. 
To make this more precise, choose the coefficient group, G, an abelian 
group, to be one of the three: the reals, R( or R’), the integers, Z, or the 
binary set, the integers mod 2, Z2. The n-singular chain group with 
coefficients G is technically defined as the “free abelian group with G 
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coefficients generated by singular n-simplices." This can most easily be 
understood as the set of formal sums, 

C n ( X ; G )  = {c" = C x j f l x j  E G, f : (T, -+ X } ,  (2.3) 
f 

and where only a finite number of x f  are not zero. From this construction 
it is easy to see that C,, has a natural abelian structure. 

Next comes the definition of boundary operators, a, : C, ---t C,-l. First 
define the face maps, 

F i  : ( ~ " - 1  + (T$ c (T", 

by 
Fi(t0,  ..., tn-l) = ( t o ,  ..., 0, ... tn-l) E on, (2.4) 

where the 0 is in the j t h  place. Finally, the boundary operator, a,, taking 
C,(X; G )  -+ Cn-1 ( X ;  G )  is defined by linearity starting from 

n 

a,J, = C(-l)jfn 0 F i .  (2.5) 
j=O 

Clearly -1 E G ,  so this is defined. What we are defining here is a formal 
sum of oriented boundaries in a sense familiar vector integration in physical 
applications in three-space, such as Stokes and divergence theorems. In fact, 
shortly this integration aspect will be used in the definition of deRham 
cohomology in the next chapter. 

A straightforward computation using the alternating signs in (2.5), leads 
to the important result, a defining feature for the topological notion of 
boundaries, 

an-l 0 a, = 0. (2.6) 
At this point define the notion of cochains as the abelian groups dual 

to chains. That is, C n ( X )  = Hom(C,(X) -+ G). This then leads to a 
natural coboundary operator, 6" : C" -i C"+', with dn+' o 6" = 0. 
Finally, C*, C* denote the complex of chains, cochains of all dimensions. 
Similar notation will be applied to derived structures, such as H,, H* .  

We now proceed to define homology groups to detect generalized 
"holes" in a space, by looking for chains which themselves have null bound- 
ary, but are not themselves boundaries. For example consider two loops, 
1-chains, in a punctured plane, figure 2.2. Both chains clearly have no 
boundary, but the one on the left cannot itself be realized as the boundary 
of any 2-chain, whereas the one on the right can be. Homology provides a 
tool to quantify this distinction in an algebraic manner. 

So, begin by defining two subsets of C,(X),  the cycles and the bounds, 
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non-trivial curve trivial curve 

Fig. 2.2 Non-trivial and trivial curves on the punctured disk 

0 Chains with no boundary, 
Z, (X)  = { c E C,(z) I a,(c) = 0 } = ker(a,) 

These are called q-cycles. 
0 The set of chains which are themselves boundaries, 

Bq(X)  = {aq+,(C’)lc’ E C,+l) = i W , + l )  
This is the set of q-bounds. 

According to the remarks above, we look for q-cycles which are not q + 1- 
boundaries using the equivalence relation: 

0 Two q-chains c1,cz E C,(X)  are homologous to each other, if and 
only if c1 - c2 E B,(X) .  

The equivalence classes define the (singular) homoIogy groups, 

Perhaps the most important property of homology groups is summarized 
by the fact that homology is a topological invariant, 

Theorem 2.1. If X and Y are homeomorphic then 
H , ( X ) % H , ( Y )  V q € N  . 
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In other words, equality of homology groups is a necessary, but, unfortu- 
nately not sufficient, condition for two spaces to be topologically equiv- 
alent. There are many examples of non-homeomorphic spaces which have 
identical homology groups. In terms of our central relativity task of de- 
termining the equivalence of structures, homology provides only a partial 
answer. 

Actually, there is the stronger statement that H, is a functor from the 
category of topological spaces to the category of abelian groups, or, if 

f : X + Y ,  (2.7) 

(2.8) 

then there is an induced homomorphism of abelian groups, 

f, : % ( X )  + H,(Y). 
An important extra tool is provided by relative homology, which we 

will briefly review now. Suppose A is a subset of X, so C , ( A )  is naturally 
defined as a sub-complex of C , ( X ) .  Then generalize the notion of cycle to 
include those singular chains whose boundaries lie entirely in A ,  labeled 
Z , ( X ,  A ) .  Thus 

Z , ( X , A )  = { c  E C,(X)ld,c c A } .  (2.9) 

Similarly, B , ( X ,  A )  are chains which are homologous to chains in A ,  

B, 3 { C  E C,(Z)IC = dq+ld + a, d E C , + l ( X ) ,  u E C, (A) } .  (2.10) 

The relative homology complex, H ,  ( X ,  A )  is then defined 

H,(X ,  A )  = ~ , ( X ,  A)IB , (X ,  A ) .  (2.11) 

The usefulness of relative homology is based on the so-called “exact homol- 
ogy sequence,’’ 

. . .  H,(A)  H , ( X )  a H , ( X , A )  H , - l ( A ) . . .  (2.12) 

In this equation, the map i, is a natural chain injection map, T, is a projec- 
tion one, and the map A, is generated by the boundary operator, projected 
to relative homology. Finally an important fact about (2.12) is that it is 
an example of an exact sequence, that is, it is a sequence of homomor- 
phisms of abelian groups having the property that the image of one map 
is exactly the kernel3 of the following one. Another important feature 
is an extension of the homology functorial property of maps. We write 
f : ( X , A )  -+ ( Y , B )  for a map from X to Y which also maps the subset 
3The kernel of a map is the set of elements mapped into the zero of an abelian group. 



30 Exotic Smoothness and Physics 

A into B C Y .  Then this map induces homology maps, f* such that the 
following diagram, 

. . .  H q ( A )  A H q ( X )  2 H q ( X , A )  - A, H q - l ( A ) . . .  

(2.13) 

A, 
If* If* If* 

. . .  H q ( B )  H q ( Y )  a H,(Y ,B)  - H,- l (B) . . .  

is commutative, that is f* . A, = A, . f*, etc. 
Another very useful exact sequence is provided by the Mayer-Vietoris 

theorem. Let X be covered by the union of the interior of two sets, X = 
IntU UIntV. Then it is possible to define chain homomorphisms, g,, H,, A, 
such that following sequence is exact, 

This theorem is especially useful for investigating the homology of a space 
which can be covered by a pair of open sets with known homology properties 
as we will see in our brief presentation of some examples below. 

Finally, we mention the useful excision theorem which essentially says 
that the excision of certain open sets from an homology pair does not 
change the homology. Specifically, let U be an open set with closure, c 
A c X. Then the homology sequence H,(X,  A )  is isomorphic to that of 

We should point out that we have been assuming one fixed coefficient 
group, G. In general, it can occur that two spaces have the same homology 
with respect to one G but different homologies relative to another. It turns 
out that the integers provide a “universal coefficient” group as described in 
the universal coefficient theorem, discussed in many textbooks, for ex- 
ample, Vick[Vick (1994)], page 73. This essentially means that if homology 
groups agree when G = Z then they will for any other G. 

Recall that the H p  are formed by quotients of abelian groups. As a 
result the elements of H p  fall into two classes, the free elements, those up 
for which g c p  = 0 implies g = 0, and torsion elements for which g c p  = 0 
for some g # 0. For example, if Z p  = Z and Bp = 22, that is, the even 
integers, then H p  = Zz, and multiplication of any element by 2 gives zero. 
We summarize, using G = Z, 

H,(X - U ,  A - U ) .  
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Define b, (= rank of the homology group H,) as the q-th Betti number 
of K .  Then define the weighted sum x ( K )  

n 

x ( K )  = x ( - l ) i b i  

as the Euler characteristic x ( K )  of k, dim K = n. Of course, the Euler 
characteristic is also a topological invariant. 

2.4 Interplay between Homotopy and Homology 

So far we have introduced two different ways to construct algebraic tools 
which are topological invariants of a space, namely their homotopy and 
homology groups. The study of the interaction between these two has a 
long and fruitful history in topology. In fact, one of the most widely studied 
conjectures in topology over the last 100 years or so is the famous Poincar6 
conjecture, 

Poincarh: If a compact topological manifold without boundary has the same 
homotopy groups as a three-sphere, S3 ,  must it be homeomorphic to S3? 

While we certainly can’t answer this question, we can point out some 
useful known facts. First, if a pair of maps, f, glX + Y, are homotopic, then 
they produce identical homomorphisms H , ( X )  H , (Y )  as in (2.8). In 
particular, if X is a deformation retract4 of Y then H , ( X )  is isomorphic 

Next are the famous Hurewicz results. Recall that the homology 
groups are all abelian, as are all homotopy groups after the fundamen- 
tal group. Also recall that we have restricted ourselves to path-connected 
spaces. 

Now, since closed loops and spheres are simplices, with null boundaries, 
that is, cycles, there is a natural map 7r, 4 H,. Hurewicz showed that 
in fact, if 7rq(X) = 0 for 1 5 q < n then this map is an isomorphism in 
dimensions in all q 5 n. That is, the first non-trivial homotopy group 
is isomorphic to the homology group in this dimension, and all H,(X)  = 
0 , l I  q < n. 

Clearly dimension n = 1 has to be exceptional since the fundamental 
* X  is a deformation retract of Y if X C Y, with inclusion map, i, and there is a map 

to H,(Y) .  

g : Y -+ X with i . g homotopic to the identity. 
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group can be non-abelian. However, in this case Hurewicz showed 

7r1/[7rl,7rll = H1, 

that is, the abelianized fundamental group is isomorphic to the first ho- 
mology group. Recall that we are assuming path-connectedness. Chapter 
12 of [Greenberg and Harper (198l)l provides an extensive look at applica- 
tions of this relationship between 7r1 and H I  for many simple but important 
examples. 

2.5 Examples 

Of course, the entire purpose of homotopy and homology theory is to pro- 
vide a tool for answering the fundamental topology equivalence questions, 
so actually calculating these groups is an important task. At the end of the 
section above on homotopy we computed a few homotopy groups. However, 
unfortunately and perhaps surprisingly, the task of computing these groups 
even for relatively simple spaces such as spheres is difficult in general. In 
fact, there is no known formula for 7rn(Sm) for general n, m. 

However, the computational task for homology groups is often easier 
and we will review a few examples. The simplest non-empty space is a 
single point, pt. Because every map to a point is identical to every other 
one, it is easy to see that the alternating signs in the boundary operator 
result in the fact that if f i n - l  and f2n are singular simplices of odd/even 
dimension, then 

af2n-1 = 0, a f i n  = f2n-1, n > 0, 

so that Zn(pt) = B,(pt), n > 0, while Zo(pt) = K ,  Bo(pt) = 0, and 

K n=O, 

0 n > 0 .  
H n  (Pt) = (2.14) 

Next, we use the homotopy invariance property to note that any con- 
tractible space, that is, one for which the identity map is homotopic to 
a map to a single point, has the same homology as this point, (2.14). In 
particular, the Euclidean spaces and disks are homologically trivial, 

K n=O, 

0 n > 0 ,  
Hn(Rm) = Hn(Dm) = (2.15) 

for any m. 
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An application of the Mayer-Vietoris sequence enables us to investigate 
the homology of spheres. In fact, Sn can be written as the union of two 
disks, with overlap including the equator, 

the last term on the right side is clearly homotopic to Sn-l itself. This, 
together with the homological triviality of the disks themselves leads to the 
following part of Mayer-Vietoris, 

the exactness of this sequence then implies that Hq(Sn) is isomorphic to 
Hq-l(Sn-l) for q > 1, n > 1. These are but a few illustrative examples, and 
may more may be found in the standard texts such as [Vick (1994)],[Green- 
berg and Harper (198l)l. 

But we cannot leave the discussion of spheres without mentioning the 
famous counterexample to the homology version of the Poincar6 conjecture. 
In fact, Poincar6 was able to construct a class of spaces called homol- 
ogy three-spheres, spaces Q with H,(Q) = H,(S3) ,  but with different 
fundamental groups, so that Q cannot be homeomorphic to S3.  See the dis- 
cussion pages 150ff in Greenberg and Harper[Greenberg and Harper (198l)l 
for a construction of such spaces using knots, which of course have been 
playing increasingly important roles in theoretical physics recently. Thus, 
these spaces provide powerful counter examples showing that while homol- 
ogy equality is necessary, it is not sufficient for topological equivalence, i.e., 
homeomorphism. 

Finally, we briefly mention the important technique of attaching 
spaces with maps. Let A c X, and f : A -+ Y, then define Yf = X Uf Y 
as the space obtained from X U Y by identifying z E A c X with f(x) E Y. 
An important special case is the attachment of cells, X = Dn,  A = dDn = 

This leads to the definition of an important special class of spaces, the 

sn = D; UD;, D; no; = II x sn-l .  

. . .o  L Hq(Sn) - A, Hq-1(S"-1) a 0 . .  . 

sn-1 

CW complexes as spaces defined by a decomposition, 

in which X' is a finite set of points and Xk is obtained from Xk-l by 
attaching a finite number of k-cells. 

xo c x1 f a -  c xn = x, 

2.6 Axiomatic Homology Theory 

In addition to the singular approach to homology there is also the simplicia1 
one we mentioned briefly in the introduction, and at least two other fairly 
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well-known approaches for cohomology, those of Cech and dertham. The 
latter will be discussed in the next chapter. 

However, this multiplicity of techniques leads to the question of how 
unique the results are. This problem was studied extensively by Eilen- 
berg and Steenrod, who were able to distill certain essential aspects of 
what a homology/cohomology should be in what is now known as the set 
of Eilenberg-Steenrod axioms. For more detail on these see Vick[Vick 
(1994)], chapter 3. Informally, we can summarize these results by saying 
that an algebraic chain complex constructed from topological spaces satis- 
fying the functorial and boundary properties expressed in (2.13), the 
excision theorem, together with the point property expressed by (2.14), is 
uniquely determined by the coefficient group, K on the right side of this 
equation. 

2.7 Conclusion 

We have reviewed, all too briefly, some of the tools available for construct- 
ing algebraic tools, “metrics” in a certain sense, to investigate a particular 
topology that has been applied to a given point set. It is important to 
recall that all of this is prior to having imposed any smoothness or defi- 
nition of differentiability which will be discussed in the following chapter. 
Nevertheless we will find that these algebraic topological tools are neces- 
sary for our investigation of the various notions of smoothness that can 
be imposed on certain spaces. Furthermore, in the physical sense of the 
relativity principle, it is crucial to know whether or not our construction 
of various spacetime models has led to physically equivalent results at the 
topological level, i.e., whether there is a homeomorphism of one onto the 
other. Algebraic topology provides us with powerful tools for studying these 
questions. 



Chapter 3 

Smooth Manifolds, Geometry 

3.1 Introduction 

In this chapter we consider the basic subject of our considerations: smooth 
manifolds. We start by reviewing the essential definitions and tools for 
studying these objects. In particular, we return to the algebraic topological 
considerations of the previous chapter using the de Rham cohomology 
which smoothness allows us to introduce. Next we review some basic dif- 
ferential geometry first using an older, coordinate explicit formalism 
more familiar to most physicists, and then the differential form techniques 
of Cartan. 

3.2 Smooth Manifolds 

Starting from a topological manifold as defined in the previous chapter, 
we now get to the heart of our problem: “smooth manifolds.” This sub- 
ject is sometimes referred to as differential topology, and the reader 
can find excellent and complete treatments of the subject in many places. 
We recommend especially books by Bredon[Bredon (1993)], Brocker and 
JanichIBrocker and Janich (1987)], or HirschIHirsch (1976)]. Also, Mil- 
nor(Mi1nor (1965a)l provides an informal review of many important ba- 
sic topics in a compact book. Treatments of the same subject slanted 
toward physicists can be found in Trautman[Trautman (1984)] or Naka- 
hara(Nakahara (1989)]. 

Recall that “smooth” is synonymous with “infinitely differentiable” for 
our purposes. These spaces form the basis for almost all spacetime models 
in mainstream theoretical physics, since the latter requires at least local 
coordinates with which to do calculus on fields. For this to be consistent, 

35 
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the notion of smooth in one coordinate patch must be consistent with that 
in an overlapping one, or, equivalently, one set of coordinates must be 
smooth functions of any other where both are defined. 

To put this more precisely, we use a standard definition: 

0 Smooth Manifold: Let M be a Hausdorff topological space covered 
by a (countable) family of open sets, U ,  together with homeomorphisms, 
$u : U E U --t UR, where UR is an open set of Rn. This defines 
M as a topological manifold. For smoothness we require that, where 
defined, $u.$v' is smooth in Rn, in the standard multivariable calculus 
sense. The family A = {U,  $u} is called an atlas or a differentiable 
structure. Obviously, A is not unique. Two atlases are said to be 
compatible if their union is also an atlas. From this comes the notion 
of a maximal atlas. Finally, the pair ( M ,  A), with A maximal, defines 
a smooth manifold. 

An important extension of this construction yields the notion of smooth 
manifold with boundary, M ,  defined as above, but with the atlas such 
that the range of the coordinate maps, UR, may be open in the half space, 
RT, that is, the subspace of R" for which one of the coordinates is non- 
positive, say xn 5 0. As a subspace of Rn, RT has a topologically defined 
boundary, namely the set of points for which xn = 0. Use this to define the 
(smooth) boundary of M ,  d M ,  as the inverse image of these coordinate 
boundary points. 

Remark 3.1. 
For notational brevity, the symbol representing the atlas is generally omitted and M is referred 

to as a smooth manifold. An open set, U, of an atlas will be called a coordinate patch and 

the list of n real functions, c$b, i = 1 , .  . . , n describing the corresponding map, c $ ~ ,  will be 

local coordinates. Note that we follow the standard physical notation of representing the list 

of n coordinates with superscripts. This provides the mathematical formalism for the physical 

notion of a reference frame. 

From this definition naturally flows the definition of smooth maps be- 
tween manifolds: f : M -+ N is smooth if its expression in terms of local 
coordinates is C" in the usual real variable sense. If the map is also a 
homeomorphism and its inverse is smooth, then it is a diffeomorphism. 
Explicitly, if U ,  V are elements of the atlases of M and N respectively, then 
$v. f . $6' is a map from an open subset of R" onto another which must be 
a homeomorphism and smooth together with its inverse in the usual sense 
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of n-variable real calculus. From this it is easy to build the category, DIFF, 
of smooth manifolds and maps. 

0 “Relativity” of Manifolds: The category, DIFF, is central to our 
interests in this book. From the mathematical viewpoint the natu- 
ral equivalence question is whether or not two smooth manifolds are 
equivalent in the sense of being diffeomorphic to each other. From 
the physical viewpoint, a diffeomorphism represents a global change of 
coordinates. The foundational principle of General Relativity is that 
the laws of physics should be invariant under such changes. However, 
if two manifolds are not diffeomorphic, then there is some underlying 
physical difference between them. 
Misunderstandings between physicists and mathematicians can easily 
arise on this issue. Thus diffeomorphic manifolds with different smooth- 
ness structures are distinguished as “different” manifolds in most math- 
ematical literature, whereas physicists are apt to tacitly assume a rel- 
ativity principle and identify them as the “same” manifold. Perhaps 
this issue can be clarified by a simple analogous matter in differential 
geometry. Consider “two” metrics on R2, 

dsf = dx2 + dy2,  

d s i  = cosh2 x d x 2  + dy2.  

(3.1) 

(3.2) 

and 

Taking these two presentations literally, (3.1) and (3.2) are clearly 
different, and might be called “different metrics” by mathematicians. 
However, physicists are likely to immediately recognize that (3.2) can 
be obtained from (3.1) simply by the replacement z -+ sinh z, a diffeo- 
morphism (mathematically) or a change of reference frame (physically). 

0 An important example: The following example may help to clarify 
some critical points. Let M be the topological manifold R1. Thus a 
point of M is simply a real number, say p .  This identification leads to a 
natural smoothness structure on M generated by an atlas consisting of 
a single set, U = M ,  and coordinate $ q ~ ( p )  = x where z is numerically 
equal top. The maximal atlas generated by this makes M into a smooth 
manifold, called standard R1. Now consider a second maximal atlas 
generated by the single chart U’ = M, but with coordinate &-,,(p) = y 
where y is p1/3. Clearly the the two atlases are incompatible since 
p1/3 = &,,(p) is not a smooth function of p = +u(p). However, the two 
manifolds are diffeomorphic since the homeomorphism, h : p + p 3 ,  
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0 

0 

is the identity diffeomorphism when expressed in the local coordinates, 
#&,(h(&’(x))) = (x3)’I3 = z. We would not get any new physics 
from M’ as compared to M since the two differ simply by changes of 
reference frames. Actually, the uniqueness of the smooth structure on 
IR’ is extremely important to the rest of smooth manifold theory since 
much of the remaining structure of manifold theory such as vectors, 
forms, etc., depends on the definition of smooth real valued functions. 
If the smoothness on IR1 were not unique up to diffeomorphism, the 
rest of differential topology would be drastically different! 
Triviality of Structures: A central, driving, question in much of 
differential topology is whether or not a given structure is “trivial.” 
Here triviality means that a structure, such as an atlas, can be reduced 
to one in simplest form, one coordinate patch for an atlas. In this sense, 
as we will learn later, every smoothness structure on IRn is trivial for 
all n # 4, but an infinite number are not trivial for n = 4. When we 
expand to bundle and other structures defined locally relative to some 
atlas, the structure will be trivial if the atlas can be reduced to one 
coordinate patch. Another way to look at the question of triviality is 
to pose it in terms of whether a local construction can be extended to 
a global one. Much of the developments of differential topology can be 
traced to exploration of such questions. 
Tangent vector: Roughly, the modern definition of a tangent vector 
is as “differentiation in a direction.” More precisely, let f be a smooth 
function on M ,  then up is a tangent vector at p E M, if it provides a 
real number, up(f), in such a way that 

(1) up depends only on the germ of the function. That is, up(f) = 

up(g) if f = g over some neighborhood of p, 
(2) up is linear. That is, up(clf + czg) = clv,(f) + czvp(g) for real 

constants c1, c2, and, 
(3) up satisfies the Leibnitz rule: up(fg) = f(p)wp(g) + g(p)vp(f). 

This is naturally extended to smooth tangent vector fields, defined 
as those for which up(f) is smooth in p for each smooth f .  Within 
a local patch, the coordinate representation of points, xi = &@), 
provides a natural basis for vector fields over U, so we can write’ 

We remind readers (especially mathematicians) of our summation convention com- 
monly used in relativity that indices repeated in products are to be summed. 
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providing the component representation of vectors, with the standard 
“contravariant” transformation properties. Notation: the vector space 
of tangent vectors at p is denoted by T p ( M ) .  Also, a smooth map, f : 
M 4 N ,  naturally defines f* : T p ( M )  4 T f ( p ) ( N ) .  Note the important 
definition of bracket of two vector fields: 

b, 4(f) = 440) - 44f)). 
0 One-Form: These are algebraic duals to tangent vectors, with natu- 

rally inherited notions of smoothness. A natural way to define a one- 
form is as the exterior derivative, d, of a function, df. This form is 
defined by 

df@P) = VP(f). 

We will use Greek letters to denote forms. As with vectors, local coor- 
dinates provide a basis for one-forms, 

ap = aJp)dzC”, 

with local components transforming “covariantly.” Notation: the vec- 
tor space of one-forms at p can be denoted as T;, signifying the duality, 
or, by a;, a special subset of the exterior algebra defined immediately 
below. Also, smooth f : M -+ N ,  leads to f* : Ticp , (N)  4 T;(M) .  

0 Exterior Algebra and Calculus: The totally anti-symmetric part 
of the tensor algebra generated by one-forms is of especial interest. 
Restricting to smooth fields, the family of q-forms is denoted by 02Q(M),  
with algebraic product, the wedge, 

A : @ ( M )  8 a “ ( M )  4 aq++‘(M),  
linearly and smoothly. An element of W ( M )  provides a totally anti- 
symmetric linear map on the tensor product of q tangent vectors. The 
exterior derivative, d ,  defined above maps W ( M )  linearly and differ- 
entially into Rp+’(M). Note especially that dd = 0. This structure will 
be the basis for de Rham cohomology discussed more thoroughly 
below. 

0 Orbits, Exponential Maps: The idea of “flux lines” associated with 
force fields is familiar to all physicists. The mathematical formulation 
of this idea is embodied in the notion of orbits. Given w(p) E T p ( M ) ) u  
with U a coordinate patch, define the local orbit through po to be the 
locally defined path, p ( t ) ,  expressed in local coordinates by the unique 
solution to 

d z p ( p ( t ) )  = wp(p( t ) ) ,  with p ( 0 )  = P O .  
d t  (3.3) 
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From basic studies of ordinary differential equations, we know that if wp 
is smooth (stronger results can be stated, of course) a unique solution 
to (3.3) exists locally. This leads to the definition of the exponential 
map, [Kobayashi and Nomizu (1963)], taking an open set in the tangent 
vector bundle (defined below) onto an open set of M diffeomorphically. 
This is a very useful tool as will be seen in the section on Morse theory 
below. We should note that if a Riemannian geometry is defined on 
M the term exponential map can have a different meaning, using 
geodesics generated at least locally by the vectors at one fixed point 
of the manifold. See, for example, [Kobayashi and Nomizu (1963)], 
volume 1, page 140. 

Finally, we close this section with a necessarily too brief reference to 
two important special manifolds. 

First, complex manifolds are smooth manifolds as above, but with the 
added condition that the local coordinates can be represented as complex 
numbers (so the dimension is necessarily even), and, in some atlas, the 
transition functions are biholomorphic. As we have learned from the 
simple theory of functions of one variable the difference between smooth and 
complex analytic is profound and has vast implications. However, because 
of space limitations, we restrict ourselves essentially to this definition that 
will be used in certain important examples, such as complex projective 
spaces, CP". 

Next, a Lie group, G, is a topological group which is also a smooth 
manifold with local expressions of group products also smooth. Actually, a 
deep result is that the atlas can be chosen so that the transition functions 
are not just smooth but real analytic. Furthermore, group multiplication 
provides a natural translation of a neighborhood of any point to that of 
any other. This, together with analyticity, implies that the full group topo- 
logical and manifold structure in the connected component of the identity 
is determined by the behavior of tangent vectors in any neighborhood of 
the identity. The group action of left multiplication leads to the generation 
of a canonical (left-invariant) vector field for each element of the tangent 
space at the identity. The set of left-invariant vector fields is called the Lie 
algebra, g, of G. Given a basis for g, say {wi}, 

k [.i,'Uj] = c i j 'uk .  

It turns out that the quantities ckij must be constants and are called the 
structure constants of g, The pioneering work of E. Cartan has shown 
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how these constants completely determine the group structure, topology, 
and geometry of a wide class of Lie groups, the semi-simple ones. 

The smoothness structure is only the first step in preparing a space- 
time model for physics. Two major superstructures are Geometry and 
Bundles. In later sections in this chapter we review several formalisms for 
studying differential geometry in more or less historical order. In a follow- 
ing chapter on bundles we return to differential geometry but in a more 
powerful modern formulation. 

First, let us review an important topological tool that arises from the 
smoothness of a manifold, namely, de Rham cohomology. 

3.3 de Rham Cohomology 

de Rham cohomology is built on the notion of differential forms and the 
exterior algebra generated by them. Of course, we need smoothness to 
make sense of this, so for the rest of this section, we tacitly assume that all 
relevant objects are smooth. Furthermore, for simplicity, we assume that 
M is orientable, with fixed orientation. 

Tangent vectors and their duals, one-forms, were briefly introduced in 
a previous section. Recall that a tangent vector has been defined as a 
differentiation operator on functions. Conversely, every function f : M + IR 
induces a linear map (df), : TxM 4 R, the differential of f at x E M .  In 
local coordinates this differential can be written 

This set of the differentials spans the linear space, T,*M, the cotangent 
space (dual of T, M ) .  Clearly the basis a, = & of T, M and the basis dxp 
of T,* M are dual to each other 

where 6; denotes the Kronecker delta function. With the help of linear 
algebra we can form multilinear functions T,M x . . . x T,M + R. Among 
these multilinear functions there is the class of alternating linear n-forms 
defined by the relation 

w ( X 1 , .  . . ,xi,. . . ,xj,. . . X n )  = - W ( X 1 , .  . . , xj,. . . , x i , .  . . ,Xn) (3.4) 

for the exchange of one pair of indices i, j and where the Xi’s are elements of 
T x M .  Denote by An(TxM)  the set of alternating functions satisfying (3.4). 
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A differentiable function which assigns to each point x E M a member 
wx E Ap(T,M) is a differential pform w on M .  The set of such forms 
is denoted by R*(M). Now construct such functions from the one-forms, 
elements of Tx* by algebraic means. The following definition is useful in 
defining pforms, 

Definition 3.1. Let w and q be two alternatingp and q-forms, respectively. 
The form w A q is an alternating p + q-form and thus the wedge product A 
is defined by 

w A 7 = (-1)"~ A w . 

If xi are local coordinates, then {dxi} is a basis for one-forms and {dxil A 
. . , A dxzp lil < . . . < ip}, provide a basis for p-forms. Finally, over the 
coordinate patch an arbitrary w E RP can be represented 

w = c f,, ,..., ,p(x)dxpl A . .  . A dxpp. (3.5) 
, l< ... <ILp 

The (i) independent functions f,l,...,,p are the local components of w. 

Given a map g : M --+ N and, as above, g* : T,M + Tg(x )N  denotes the 
push-forward of a tangent vector, then the pull-back g* : W ( N )  4 W ' ( M )  
of a differential pform is defined by: 

g*(w)(X1,, . . * ,XPz)  = W(g*(Xlz ) ,  . . . ,g*(Xpz) ,  
where X I , ,  . . . , X,, are tangent vectors to M at x and w is an element of 
RP(N). Thus a dual of a map changes the direction, i.e., if g and h are 
smooth mappings of manifolds then ( g  o h)* = h* o g* but ( g o  h ) ,  = g* o h,. 

Note that R o ( M )  is the space of all real smooth functions M + R, so 
the differential is a linear map d : @ ( M )  4 O1(M) .  The extension of 
this map to all pforms w also called the exterior derivation dw is simply 
given by the local coordinate description: 

dw = c 
,1< ... <,g 

df,, ,..., ,,,(x) A dxp' A .. . A dx'p, 

because f,l,...r,p(x) is an element of @ ( M ) .  This gives a linear map d : 
W ( M )  -i Rp+l(M). 

The main properties of the exterior derivation are collected in the fol- 
lowing theorem: 

Theorem 3.1. Let w and q be two differential f o m s  of rank p and q re- 
spectively. Then 

d(w A 77) = dw A 17 + (-1)'~ A dv  . (3.6) 
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Furthermore, for any differential form, w, 

d o d w = O  . (3.7) 

The first part of the theorem is easily confirmed. For the second part note 
that an arbitrary pform can be written as a sum of forms of the type 
wf = fdx' A . .  , A dx*. Then 

df 
d X P  

dwf = df A dx' A .. . A dxp = c -dxp A dx' A .. . A dxP, 
p= 1 

so that 
n n  

ddwf = c &dxV A dxp A dx' A . . . A dxp. 
I/=' p=1 

From the lemma of Schwarz the second derivative is symmetric while the 
expression dxV A dxp is anti-symmetric so the sum is zero. From linearity, 
this argument leads to ddw = 0 for all forms w. 

(3.7) has a deep and important relationship to d o dc = 0 in homology 
theory. In fact, these two equations are dual to each other. Thus d is a 
coboundary operator, and 

Z P ( M )  = ker{d : Clp(M) -+ sZp+'(M)}, 

is the set of closed forms, or p-cocyles. The vector space, 

B P ( M )  = im{d : Clp-'(M) + Rp(M)}, 

is the set of pcoboundaries, the vector space of all exact pforms. Finally, 
define the p t h  de Rham cohomology group as the quotient, 

Before proceeding to justify this structure as a cohomological one in the 
sense used in the chapter on algebraic topology, we should point out that 
the coefficient group here must be the reals, R, not the integers Z. The re& 
son for this, of course, is that the basic khain" groups, W, are described 
in terms of real smooth functions. To be non-trivial, the range of such a 
function cannot be merely Z, and it is not useful to regard f and fif as 
functionally independent. As a result of this, the topological information 
encoded in de Rham groups is less complete than that of singular homol- 
ogy/cohomology based on Z as a coefficient group. Of course, the de Rham 
construction satisfies the Eilenberg-Steenrod uniqueness axioms, so the de 
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Rham groups in (3.8) are isomorphic to the singular cohomology ones with 
real coefficients. 

The elementary Euclidean metric vector calculus in three dimensions 
uses the familiar terms gradient, curl, and divergence. These can be 
interpreted in terms of de Rham structures. First, we must realize that 
as usually presented three dimensional vector calculus does not distinguish 
contravariant vectors, or simply vectors, from covariant ones, one-forms 
because the Euclidean metric provides a natural isomorphism between the 
two which can be interpreted as an identification. Let M = R3, with coor- 
dinates {Pin = I, 2,3} with the standard Euclidean base vectors, en, but 
now regarded as “covariant” vectors, identified with the one-form basis, 
dz”, in current terminology. The “vector cross product,” en x em becomes 
the exterior dz” A dzm, after using the natural (Poincarb duality) identi- 
fication of one- and two-forms in dimension three. The de Rham complex 
for this space is 

0 -+ @ ( M )  5 R’(M) -5 R2(M) 5 R3(M) 5 0 

with d2 = 0. The map Ro(M) 5 R1(M) is nothing other than the gradient 
grad(f) leading to a “covariant” vector field. R1(M) 4 R2(M) becomes 
the curl(V) of a vector field V identified with a one-form. Finally, the 
map R2(M) 5 R3(M) is the divergence div(V) of a vector field V with 
respect to the previous identification j and the natural duality identification 
dx’ A dx2 A dx3 4 1. Then we obtain the complex: 

0 M g ?  ( M ) - cud P ( M )  2 R~(M)-+o O - + R (  ) 

and the familiar relations: curl o grad = 0 and div o curl = 0. If we gen- 
eralize from EX3 to an arbitrary three manifold and go from local to global, 
the information in the de Rham cohomology determines whether the equa- 
tions curZ(V) = 0 and diw(V) = 0 have global solutions V = grad(f) 
and V = curZ(A), respectively. In algebraic terms, can we identify 
Icer(cur1) = im(grad) and Icer(diw) = im(curl)? The de Rham coho- 
mology measures the deviation of the exactness of the above sequence, i.e., 
H&(M)  = 0 for p > 0 guarantees the existence of the solutions f so that 
V = grad(f) for curZ(V) = 0 and A so that V = curZ(A) for div(V) = 0. 

The circle, S1, provides an easily understood non-trivial global example. 
Let 0 be the usual angle on S1, which is of course not a globally defined 
smooth function since 8 = 0 is the same point as 8 = 2n. Nevertheless, d8 
is a well defined smooth element of R’(S1). Clearly d0 E Z1(S1), so this 
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set is not empty, but this one-form is not the differential of any smooth 
function, and in fact 

(3.9) 

agreeing with the singular cohomology group of this space. This is a simple 
illustration of the interpretation of the de Rham complex as a co- homology, 
that is as the dual to some homology group. 

Generalizing from the circle example, we describe some of the tools 
needed to justify the use of the term "co" for de Rham cohomology by 
using integration of forms over singular simplices as the means for defining 
de Rham cohomology as dual to singular homology (with real coefficients). 
The classic book of de Rham himself[de Rham (1984)] is still an excellent 
reference for the following discussion, and much more. Another text on the 
subject is by Bott and Tu[Bott and l'u (1982)l. 

First, define the integral of a differential form over the image of a sin- 
gular simplex in a manifold. Basically, we use local coordinate charts to 
define integration in terms of ordinary Riemannian integration over sub- 
sets of Rn. For simplicity start with an n-form with compact support 
U = supp(w) in some coordinate patch. In terms of these coordinates, 
w = f(zl , .  . . , z")dzl A .. . A dz" on $u(U)  = UR C Rn. Define 

J w = J f(z1,. . . , zn)dzldz2.. dzn, 

where the right-hand integral is an ordinary Riemann integral. By straight- 
forward use of local patches this definition can be extended to subsets of M 
which are images of singular simplices. For other degrees, let r] E P ( M )  be 
a pform on M and let a : ap -+ M be a singular p-simplex. The simplex 
ap is a subset of Rp and we know how to integrate a pform on this set, 
defining 

u UR 

as the integral of p-form on a pdimensional submanifold of M defined by 
the image of a. For an arbitrary pchain c = c n k ( ( T ) k  with different 

singular simplices (CJ)k and n k  E R linearity leads to 
k 



46 Exotic Smoothness and Physics 

This leads to 

q ( w )  : S,(M) -i R, 
which is a homomorphism \k : f P ( M )  --+ Hom(S, (X) ,R)  where S, are the 
p-simplicia1 chains and Hom(A,  B )  is the set of homomorphism between A 
and B. To formulate the relation between homology and cohomology we 
need the following important theorem: 

Theorem 3.2. Stokes theorem 
Let w be a p-form and c a p + 1-chain then 

If we use the notation (c ,w)  for Q(w)(c)  = J w  then we can write Stokes 

theorem in the form 
C 

(c ,  = (dc,  w )  , 
showing that d and d are adjoint to each other with respect to the pairing 
( , ) : S,(M) x W ( M )  -+ R. Let w E Z p ( M )  be a cocycle and c E Z,(M) 
be a cycle. For any r] E RP-'(M) and chain b E Sp+l (M) ,  

((c+db,w+dr])  = ( c ,w) ,  

extending the pairing to ( , ) : H,(M,W) x HZR(M) -i R, ultimately 
leading to the following theorem: 

Theorem 3.3. (de Rham theorem) 
The de Rham cohomology H;R(M) is the dual of the (real) singular homol- 
ogy H* ( M ,  R) * 

A simple linearity argument leads to the fact that 

Theorem 3.4. The wedge product A extends to the de Rham cohomology 
class: 

A : HZR(M) X H&(M)  + H : i q ( M ) ,  

making the de Rham cohomology into a ring. 

Thus de %am cohomology has a (natural) product inducing a ring struc- 
ture. In fact, this is true of any cohomology theory where such a product 
is called the cup product, U. 
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Recall we have assumed a fixed orientation for M .  Two important 
objects will be needed: a volume form and the Hodge duality operator. 
For these we must choose some arbitrary, but fixed, (pseudo-) Riemannian 
metric g defining the line element locally in physics notation as ds2 = 
gpVdxhdx”. If xi are local coordinates in some coordinate patch U ,  then 
the volume element is defined by patching together forms such as 

UM” = Idetg,,Jdz’A . . .  Adzn. 
The result is a globally defined volume form, dependent only on M and the 
choice of metric, U M , ~ .  invariant with respect to coordinate transformations. 
Next, define a linear map * : W ( M )  + W - p ( M )  called the Hodge star  
locally by 

r 

m E P I P l . . C L p  dXPP+1AdxPP+2A.. . ~ d ~ P n ,  *(dxp’Adz”2A.. .AdzPp) = (n - p ) !  
PP+lPp+Z..+%t 

where E ~ ~ ~ $ ; ~ ~ . . . ~ , ,  is the totally antisymmetric tensor. The proof of the 
global validity of this definition is straightforward. 

Remark 3.2. 
In the simple Euclidean three-vector notation we reviewed earlier, the dual of the exterior 

product provides the basis for identifying the cross product of two vectors as a vector. Physics 

refer to  this as a “pseudovector” because of its obvious dependence on choice of orientation. 

In fact, because of this the magnetic field three-vector is a pseudo-vector, and a famous Nobel 

prize winning experiment in the 1960’s verified that the fundamental atomic force, the weak 

force, is also orientation dependent. 

Note especially that *1 = V M ,  naturally and uniquely patched from coor- 
dinate segments. This operation is idempotent up to f l ,  

Theorem 3.5. If ( M , g )  is a Riemannian manifold then 

and if ( M , g )  is a Lorentz manifold then 
* * w  = (-l)p(n-p)W, 

* * w  = (-l)p(n-p)+lW . 
Of course the operation extends to the de Rham cohomology as well and 
we obtain a map * : HzR(M)  + H:iP(M)  mapping each generator of 
HZR(M) to each generator of H&’(M), leading to 

Theorem 3.6. (Duality) 
Let ( M , g )  be a smooth compact manifold with an arbitrary, fixed metric g 
then 

is an isomorphism. 
* : HZZ,(M) + H;;P(M) 
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In particular, the group HdOR(M) is (Hodge-)dual to H&(M).  The gener- 
ator of H&(M)  is the volume form V M  generating H j R ( M )  by duality. 

Now combine the Hodge-dual with the induced dual from the pairing 
( .  , . )  : H P ( M , R  x H&(M)  + R to obtain 

Theorem 3.7. (Poincare' duality) 
Let M be a compact manifold without boundary of dimension dimM = n 
then there is a isomorphism 

HP(M,W + H i i P ( M ) ,  
mapping one generator of the free part of the homology to  one generator of 
the de Rham theory. The torsion group of H p  is mapped to  zero. 

Note that the compactness and the nonexistence of a boundary is crucial 
to the validity of this result. Historically, the dual of H p  for simplicia1 
homology was constructed from a dual cell decomposition of the space where 
every p cell is mapped to a n - p cell. 

Now define the pairing: 

< w , q  >= 1. A*r], 

M 

for two p forms w ,  q E Rp(M).  Analogously, define the dual S of the deriva- 
tive d by: 

< dC, >=< C, 67 > + 6 = (-l)p(n-p)+' * d*, 

for a p - 1 form C. This derivative 6 : RP(M) + RP-l(M) with S2 = 0 
lowers cohomology degree, and in fact, because of the (Hodge-)duality, the 
cohomology induced by S is the same as that from d. In fact, a cocycle [w] 
is also coclosed S[w] = 0. 

Finally we obtain the manifold generalization of the Laplacian, 

Ap = (d + 6)2 = d6 + Sd : R p ( M )  + R p ( M ) .  
Now, assume that the chosen metric is definite. Then an important result 
is 

< A P w ,  w >=< (dS + Sd)w,w >=< dw, dw > + < SW,  6~ >= 0 . 
This leads to the famous theorem of Hodge, 

Theorem 3.8. (Hodge theorem) 
The  kernel of the Laplacian Ap, i.e., the vector space generated by all 
solutions A p w  = 0 is isomorphic to the p t h  de Rham cohomology group 
HdpR ( M ) .  
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This is a very important interpretation of cohomology in terms of the solu- 
tion space of a differential equation. Again, note, however, that this applies 
only to closed manifolds with definite metric. For example, for Lorentz sig- 
nature metrics, the pairing < A p w , w  > may be zero even though neither 
factor is. 

3.4 Geometry: A Physical/Historical Perspective 

Einstein’s profound contribution was to suggest that spacetime has a phys- 
ical structure, geometry, described by a metric of Lorentzian signature, 
and that this describes the physical field gravity. From the metric there 
is a naturally induced torsion free connection. Geodesics defined by this 
metric/connection then describe the action of the “force” of gravity on 
particles. See for example, some of the earlier relativity texts, such as 
Bergman [Bergmann (1942)], Adler et al. [Adler et al. (1965)] or Wein- 
berg [Weinberg (1972)]. The older notation emphasizes local coordinate 
representations, with vectors and tensors introduced in terms of matrices 
representing their components in a particular coordinate patch. Distinc- 
tions are made between contravariant vectors represented by component 
matrices with superscripts and covariant ones with subscript components. 
These components “transform” as dxp and d/dzp respectively. From this 
beginning the full “tensor” formulation can be generated. 

Einstein’s relativity started with the special principle of relativity, 
stating that all laws of physics should be the same, i.e., invariant in form, in 
all inertial reference frames. The latter frames are those in which Newton’s 
mechanics are valid, or in which a free particle is unaccelerated. One of 
the laws of physics is Maxwell’s electrodynamics, which predicts a definite 
constant value of the speed of electromagnetic waves in a vacuum, which 
happens to be the same as the observed speed of light, usually denoted by 
c. So Einstein’s principle requires the extremely non-intuitive assumption 
that all relatively moving observers should measure the same speed for a 
light wave. From this, Einstein developed the physics of length and time 
comparisons in terms of a mathematical formulation, the Lorentz transfor- 
mations. Ultimately, this theory of special relativity can be summarized 
mathematically by asserting that spacetime has a flat metric, of Lorentz 
signature, (-, +, +, +) and that the inertial reference frames are those with 
coordinates, xP, for which the metric expression is 
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After this major step, two important issues arose for Einstein: 

(1) Why restrict physics to a particular class of “inertial” reference frames? 
(2) How can gravity fit into this spacetime formalism? 

Point (1) led to a “generalization” of special relativity. Physicists often 
learn of this in explicit local coordinate formulation, which we review next. 
Point (2) led to Einstein’s general relativity as a theory of gravity. We 
will discuss that in the next section. 

First, in local coordinates we can replace (3.10) by 

ds2 = gpvdx”dx”, (3.11) 

with variable metric components, gpy(p), often described as the components 
of a covariant (symmetric) tensor field of rank 2. This metric tensor 
provides an “infinitesimal distance/time” interval, a scalar derived from 
coordinate displacement, dx”. In addition to providing a “physical” metric 
for infinitesimal displacements in (3.11), the metric and its inverse provide 
isomorphisms between the spaces of contravariant and covariant vectors. 

Of course, a basic mathematical question is whether or not a given 
smooth manifold can support a metric. In the case of Riemannian (that 
is, definite) signature, the answer is yes. Since every coordinate patch is 
diffeomorphic to R” a metric exists locally. The question then is whether or 
not this local construction can be “patched” together to give a global one. 
The proof that this can be done for definite metrics is best defined in terms 
of bundle cross sections, as discussed below. For indefinite signatures, such 
as Lorentzian of physical four-spacetime, the answer is yes only if a certain 
topological condition is met. Again, this is a question of whether or not a 
given construction can be extended from local to global. 

So now, in keeping with the idea of generalizing special relativity, we 
must allow arbitrary, not necessarily linear, smooth transformations. In 
this case, the ordinary coordinate derivatives, 

of the components of a vector do not result in components of a tensor. The 
same obviously apples to the components of the metric tensor. However, 
the peculiar combination 
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transform linearly and thus define the components of a tensor where the 
Christoffel symbols are defined as 

(3.12) 

The components, A$, are called the covariant derivative components. 
Recall that a vector is a differentiation of functions. Use the preceding for- 
mulation to generalize this scalar differentiation to a covariant derivative 
of the vector field A along B,  

(3.13) 

The physical motivation provided to physicists for studying this for- 
malism as described in early books, such as that of Bergmann[Bergmann 
(1942)], is to find a formalism in which the equations of physics are “invari- 
ant in form.” To achieve this the equations must be of the form 

tensor = 0, 

such as 

Af = 0, 

for example. On the other hand 

is not invariant under diffeomorphisms and is thus not a candidate for 
a physical law under the principle of general relativity. Actually, Einstein 
and Grossman briefly considered non-invariant field equations involving the 
Christoffel symbols before finally settling on the now standard (3.21) be- 
low. This interesting history is reviewed in a very readable fashion by 
Norton[Norton (1984)], reprinted in the Einstein studies, volume l[Howard 
and Stachel (1986)l. 

The formation of tensors from vectors, etc., by covariant differentia- 
tion is a necessity for expressing physical theories invariantly. In fact, one 
(strong) form of the Principle of Equivalence can be expressed by say- 
ing that special relativistic theories are “generalized” by replacing ordinary 
with covariant differentiation. 

We will not trouble the reader with further explicit description of this 
approach to general relativity, but proceed to the “differential form” one, 
which uses form-frames, or “anholonomic coordinates” adapted to the met- 
ric leading to the statement of Einstein’s General relativistic gravity 
equations, (3.2 1). 
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3.5 Geometry: Differential Forms 

An important improvement on the earliest differential geometric formalisms 
was provided by E. Cartan’s idea of a “repkre mobile,” a moving frame 
which may or may not be “holonomic,” that is, always along coordinate 
lines. Another expression to describe this formalism is vielbein, or for 
four-spacetime, vierbein. The “legs” are a basis for the tangent vectors 
chosen conveniently a t  each point. Here, we use the dual, form, basis 
originally suggested by Cartan, and explained extensively and graphically 
for the physics audience in the book of Misner, Thorne, and Wheeler[Misner 
et al. (1973)l. 

The basic idea is to choose a one-form basis at each point adapted to the 
metric. That is, one in which the metric takes some convenient constant 
form. In spacetime models we might write, 

ds2 = ~ ~ ~ 8 ” 8 ” ,  (3.14) 
with the (8”) constituting a basis for one-forms (with dual { e ” }  for vec- 
tors) so defined that the metric components q”,, are some constant, standard 
values. For example, the matrix q is diag(-l,+l ,...) in physics (Lorentzian 
geometry), and the unit matrix in most mathematical applications (Rie- 
mannian geometry). The “gauge” freedom inherent in (3.14) keeping the 
form of q fixed is thus some classical Lie group, SO(1, n - l), or SO(n).  
The old Christoffel symbol description of the connection can then be sum- 
marized by one-forms, w””, the connection forms uniquely defined by 

do” = 8” A wPv, (3.15) 

W p v  + W W ”  = dqPv = 0. (3.16) 
Here the indices are “lowered” with the metric components, qpu, as usual. 

As one-forms, the connection forms have components relative to the 8 
basis, 

In writing (3.15) and (3.16) we have made certain assumptions. (3.15) is 
the assumption that the connection is torsion free, and (3.16) is that the 
connection is metric. For a very complete exposition of generalizations of 
these equations and their possible physical significance see the review paper 
of Hehl et al. [Hehl et  al. (1995)l. 

We now generalize the notion of covariant differentiation defined in 
terms of coordinate bases in (3.13) to the P , e V  bases. Note that the ev 
components of a vector A are @”(A) ,  

A = O”(A)e,. 

W”” = y’lv,8P. 
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The covariant derivative of A along B is then 

VBA = ( B ( P ( A ) )  + 9v(B)Wp,(A))ep. (3.17) 

Finally, the connection forms lead to the Curvature two-form, fl$, 
dwpv + w”’ A w”, = flp,. (3.18) 

The components of the curvature form can then be expressed in a general- 
ization of the coordinate form of the curvature tensor, 

(3.19) 

From this the Ricci tensor is defined as usual, 

Rpv = Rpppv. (3.20) 

Einstein’s theory of General Relativity was based on his remarkable 
observation that the physics of gravity could be understood in terms of 
the curvature of the spacetime manifold. Thus, geometric structures, met- 
ric, connection, and curvature describe the physical gravitational field. 
Explicitly Einstein proposed the gravitational field equations relating ge- 
ometry to “matter” as 

(3.21) 

where R = vPwRp, is the scalar curvature, G is Newtons gravitation con- 
stant and all matter is represented by the stress-energy tensor, with com- 
ponents Tpv relative to the 9 basis. 

While an improvement over the older coordinate basis formalism, these 
equations are still replete with indices, a bane to most mathematicians and 
many physicists. Fortunately, the modern approach to differential geometry 
using bundles as described in the following chapter obviates many of these 
complications. 

1 
2 

Rp, - -vpvR = 8xGTp,, 
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Chapter 4 

Bundles, Geometry, Gauge Theory 

4.1 Introduction 

We continue with our study of structures on smooth manifolds, starting 
with the central topic of bundles, including the classical examples of tan- 
gent and frame bundles. We discuss the critical issue of triviality of a 
bundle. Next, we discuss geometry and connections in the bundle for- 
malism. We close the chapter with a brief review of two important physical 
fields, the electromagnetic field and the Dirac spin 1/2 field. The U( l )  
invariance of the Dirac field leads in a classical way to understanding its 
electromagnetic interactions in terms of a U (  1) bundle connection, which 
is then identified with the electromagnetic potential one-form. This pro- 
cedure turns out to be the prototype for the physics of gauge theory. 
We provide a summary of the generalizations of importance to recent el- 
ementary particle physical models as well as mathematics. We conclude 
with mention of some mathematical applications. The reader may find this 
chapter to be an introductory survey to topics covered in much more detail 
in the next chapter. 

4.2 Bundles 

The notion of a bundle, E ,  is built from the intuitive idea of tying or 
attaching copies of one space, the fiber, F ,  to each point of another, the 
base space, M ,  in some standard way. Thus, the bundle construction can 
be thought of as a generalization of the Cartesian product formation, 

E M  M"x"F .  (4.1) 

55 
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The notation “x”  is meant to indicate that this is not literally a product 
but only a local one, “patched” together globally in some well-defined way. 
If (4.1) is actually a product, the bundle is said to be trivial. An example 
of a trivial bundle is the tangent vector bundle over euclidean R” discussed 
below. This difference between local and global, non-trivial and trivial, 
product structures for bundles is closely related to the gauge formalism in 
physics, corresponding to requirements of local vs global symmetries. This 
distinction is at the heart of the various SU(n) models of contemporary 
particle or “high energy” physics, as we will discuss in more detail below. 

In general the patching is done in the TOP category but in this chapter, 
unless otherwise noted, we will restrict the discussion to DIFF, so that the 
patchings will be required to be smooth. This “patching” will involve a 
bundle group, G, which acts on E through its action on the fiber, F .  
Unless otherwise noted, G is also smooth, and thus a Lie group. The 
projection, T ,  maps the fiber space, E ,  onto the base space, M .  A map, 
inverse to T ,  from the base space to a point in the bundle above the point is 
called a section of the bundle. It is clear that this construction epitomizes 
the fundamental physical operation of constructing a physical field as a 
section in which the fiber defines the possible values of the field, e.g., scalar, 
real or complex vector, spinor, etc. The bundle itself is the set of all values 
at all points for some physical field, represented at each point by an element 
of the fiber. The group action on fibers corresponds to some symmetry 
group of the field theory. 

By way of introduction, we begin with the tangent vector bundle 
of a smooth manifold. In a sense this is the prototype of a bundle. Let 
M be a smooth manifold of dimension n. In section 3.2 we introduced the 
tangent space T p ( M )  at p E M .  Now put all of these spaces together to get 
T ( M )  = U{Tp(M)Ip E M } .  This is the set of all ordered pairs ( p , < )  where 
E E T p ( M )  together with the natural projection T : T ( M )  + M ,  ~ ( p ,  6) = p .  

At this point, all we have defined is T ( M )  as a point set. To provide the 
additional DIFF structure (smoothness) it is most convenient to make use 
of the localization already inherent in the smoothness of M itself. So, let z : 
U -+ R” be a coordinate chart of M with local coordinates z1 , . . . , z” near 
p .  Thus any tangent vector at a point of U can be written aE([ ,xV)&,  
and we require that these functions be smooth. Use this coordination of the 
vectors to provide the diffeomorphisms required to make T ( M )  into a 2n 
dimensional smooth manifold, the tangent vector bundle to M .  Thus, 
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if r-’(U) = 6 c T ( M ) ,  then define q 5 ~  : U x R” 4 U by 

Consider another chart on V, with y : V 4 R”, and V n U # 0. Then over 
this intersection 

These local coordinations, &J, q5v provide matrix representations, au, a v ,  
elements of the fiber, Rn, in this case, for vectors E over each point. The 
transition between the representations q 5 ~  and q5v is given by an element 
of GZ(n, R) ,  whose matrix representation is 

the usual transformation role for ‘‘contravariant vector components.” 

bundle group, GZ(n, R),  in this case, satisfying the cocycle condition, 
This collection of maps from the intersection of coordinate patches to 

gvuguw = gvw. 
These transition group elements contain the essence of the bundle, tangent 
vector in this case, but also for the generalizations discussed below. In 
this case, we have defined the bundle coordinate patch transformations in 
terms of the smoothness patches, (4.4), of the base space, but this will not 
necessarily be true for the more general bundles defined below. 

A natural question then is whether the bundle group can be reduced, 
that is, if the bundle is equivalent to one with a smaller group. Of course, 
reduction to the identity means triviality, that is, the bundle is equivalent 
to a global product. 

As in Chapter 3, T,(M) is the dual space to the tangent space T p ( M ) ,  
leading to the cotangent bundle T * ( M )  = U{T,*(M)lp E M } .  Recall that 
the space of one-forms is the dual to vectors, so the cotangent bundle is the 
one-form bundle. If w is a one-form at p ,  then a local coordination leads to 

q5b(P7 .up) = W p d X P  E qw). 
A discussion similar to that leading to (4.5) for vectors then results in the 
“covariant vector” transformation rules for the local one-form components, 
aP. 
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Example: a non-trivial vector bundle 
Clearly, if M = R", there is a global coordination of both M and T ( M )  

and the factoring in (4.1) is global. That is T(R") is a trivial bundle. 
This is a special case. In general a manifold admitting such a trivial tangent 
bundle is called parallelizable. Such a manifold will necessarily have a 
global family of n smooth linearly independent vector fields. 

But not every manifold is parallelizable, so it is helpful to display an 
easily understood counter example of a non-trivial bundle T ( M )  which is 
not diffeomorphic to M x R". Such an example is provided by the two- 
sphere 5'. Several methods lead to the conclusion that this space cannot 
support a globally non-zero smooth vector field. One of these is topological 
and involves the algebraic topological characteristic of the space called the 
LLEuler number.'' However, here we look at the matter directly in terms of 
the coordinate bundle representation. Let us realize S2 as the subspace of 
R3 = { (z, y, z ) }  for which z2+y2+z2 = 1. Consider the (extended) northern 
and southern hemispheres H+ and H-,  defined by the extra conditions 
z > -1 and z < +1 respectively. Now choose coordinates on these two 
subspaces by stereographic projections and denote them by ( X f ) ,  i = 1 , 2  
respectively. The range of these coordinates is the full space R2 and their 
transformation equations are clearly 

XZ X l  xp = - ( X y  + ( X Z Y  x: = ( x y  + ( X z p  

Letting 4 be the azimuthal coordinate, the transformation matrix described 
in (4.4) here becomes at the equator 

Now, suppose the bundle were trivial, so that there exists a global basis for 
the tangent vectors, say (e l ,  e2). Then there would exists elements, p k ,  of 
GZ(2, R), defined over H* respectively by 

and on the equator 

It is a well known fact from group theory that every non-singular matrix 
can be written as a product of a symmetric matrix times an orthogonal 
one. So, we can LLreduce" the maps to their orthogonal components, 
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PO%. But each of PO%, is then a map of the contractible disks, H*, into 
SO(2, R) = S’ and as such is homotopic to a constant map. But, from (4.8) 
we would then have that the map of S’ on itself defined by g-+ : 4 --, 24 
in (4.7) is homotopic to a constant map. Since this is clearly impossible 
(a double winding of the circle on itself is not homotopic to the identity1), 
there is no such global basis, (el, ez), and S2 is not parallelizable. 

Remark 4.1. 
What we have just looked at in some detail for the special case of S2 is the prototype of the 

more general bundle theoretic studies of the trivialiaation, or obstruction to trivialization of 

bundles that has been so important to recent mathematics. The classic work on the subject 

continues to be the book of Steenrod,(Steenrod (1999)l. 

Generalizing this argument to S” is a natural and productive enterprise, 
as discussed in Steenrod, [Steenrod (1999)l. In dividing a sphere into two 
overlapping disks, with intersection I x Sn-’, homotopic to S”-’ the coor- 
dinate patch overlaps then involve maps of Sn-’ into SO(n, R). Thus, the 
questions of triviality reduce to questions concerning the homotopy group, 

For n = 3, it is known that ~ z ( S o ( 3 ,  R))  = 0, so the argument against 
a global trivialization used in the S2 case does not hold. While this is 
not a sufficient condition to guarantee triviality, it turns out that other 
arguments insure that T ( S 3 )  is trivial. For example, embedding S3 in 
R4 = {t,xP}, p = 1,2,3,  we find that the set of of three vectors in T ( S 3 )  
defined by 

Tn-l(SO(n, R)). 

(ta/axP - x”a/at) + EP”px”d/dxP, 
where cpVp is the standard alternating symbol, defines a global basis for 
T(S3).  

Using the tangent vector bundle as a model, we can proceed to define a 
general fiber bundle. Again the basic idea is to associate to every point of 
a manifold (the base space) a copy of another space (the fiber), locally, in 
bundle charts. On the overlap of two charts, we have to choose a function 
mapping a fiber copy of the one chart to a corresponding copy of the other 
chart. These maps are assumed to be group actions of the bundle group on 
the fiber. 

Definition 4.1. The structure ( E ,  M ,  F, G, T )  defines a coordinate fiber 
bundle. B. over M if 

‘We are making use here of some interesting elementary topology, namely that 
7rl(Sl,ZO) = z. 
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(1) E ,  M ,  and F are smooth manifolds and 7r : E -+ M is a smooth map. 
(2) G is a Lie group of left actions on F .  
(3) There is an open covering of the base space, M = U U and diffeomor- 

(4) Suppose 5 E U n V # 0. Then if f E F, 
phisms, q5u : U x F --+ 7r-'(U) with 7r. q 5 ~  the identity on U. 

q5u(x, f) = 4v(x,gvu(5)f), (4.9) 

with gvu : U n V -, G smoothly. 

E is the bundle space, M the base space, and 7r is the projection map. 
F is the fiber and G the structure group. The maps q5u are the local 
bundle coordinates and gvu the transition functions. It is easy to see 
that these functions must satisfy the important relationships, the cocycle 
conditions, 

gwu = g w v  . QVU, 
with the combination taken as group multiplication. 

What we have presented in this definition is a coordinate bundle. 
This is reminiscent of defining a smooth manifold by giving a particular 
local coordinate patch representation of it. So, in a similar fashion, we say 
that two coordinate bundles over the same base space are bundle equiv- 
alent if the union of their coordinate patches provides a self-consistent 
coordinate bundle. This results in a definition of a bundle in a coordi- 
nate independent way as an equivalence class. However, in physical, and 
many mathematical, applications, it is often most convenient to work in a 
particular coordinate representation. 

Of course, bundles can be generated in ways other than a coordination, 
and another notion of bundle equivalence can be expressed in terms of 
bundle maps, Hom(E, 19'). These are smooth maps preserving fibers, that 
is, commuting with projections in a natural way, 

f E - El 

M & MI 
The notion of bundle equivalence can then be defined in a natural way in 
terms of such maps. 

An additional important bundle construct is that of section of the 
bundle. A map s : M -+ E with 7r o s = i d M  is called a section of the 
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vector bundle. The set of all sections of the bundle E over M is denoted by 
r ( M ,  E ) ,  or sometimes as Ro(M; E) .  The latter notation describes sections 
as 0-forms, functions, over M with values in E. In physical applications, 
a section is just a physical field. Geometrically, an important question is 
whether or not there is a global cross section to the principal (tangent) 
bundle of frames. If such a cross section exists, the tangent frame bundle 
is trivial, i.e., a product. We will return to these points in more detail in 
the next chapter. 

General fiber bundles can be characterized by special features of the 
fiber. For example, if the fiber is a vector space of a field K and G C 
GZ(n,K) then the bundle is a vector bundle. One-dimensional (either 
real or complex) vector bundles are called line bundles. Perhaps the most 
important type is a principal bundle for which F = G and the action 
is left G multiplication. However, in this case, the group can also act on 
the fiber from the right, an important point in defining connections in the 
following chapter. If e E P ,  a principal G bundle, and g E G, then we can 
define e g  as + U ( . r r ( e ) , g u g ) ,  where e = 4 u ( x ( e ) , g u ) .  Since left and right 
multiplication commute, this result is independent of the choice of $u. An 
important class of problems is associated with the notion of the reduction 
of the bundle group. The bundle group is said to be reduced from G 
to Go c G if a local trivialization can be found in which the transition 
functions, (4.9), are all in Go. As a special case, the bundle is trivial, or a 
product, if and only if the group can be reduced to its identity element. 

From a principal bundle other bundles with group G can be defined 
for fibers on which G acts using the same transition functions. These are 
called associated bundles. Suppose we have a principal bundle, P and a 
fiber, F ,  on which G acts from the left. Then define an equivalence relation 
on P x F by ( e , f )  M ( e g , g - l f ) ,  for g E G. The resulting equivalence set, 
P X G  F, is then easily seen to be a fiber bundle, B,  with group G and 
having the same transition functions as P. In most of our applications, F 
will be a vector space, generally denoted by V over the group G. Finally, 
note that there is an important natural right action of G on the associated 
bundle B defined in the natural equivalence class invariant way. 

Remark 4.2. 
The associated bundle transition functions can be explicitly obtained as follows. Suppose 
m E U n V # 0 and e = + ~ ( m , l )  = +v(m,gvu) E P. Then an element, b E B, in the 
associated bundle can be defined as an equivalence class, [e ,  f], f E F. Then define the local 
coordination of B by 

iu(m,f) = [+u(m, l )9 f l  = [ + v ( m , g v u ) , f l =  [ 4 v ( m , l ) , g v u f l =  i v ( m , g v u f ) .  
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4.3 Geometry and Bundles 

An important application of bundle theory is to differential geometry and 
its generalizations. As discussed in 3.4 and 3.5, differential geometry is con- 
cerned with norms of vectors (metric) and methods for parallel displacement 
and covariant differentiation of tangent vector fields (connections). With 
tangent vectors replaced by elements of a more general fiber it is natural 
to look for generalizations of these differential geometric tools to bundles. 

A connection solves the important problem of lifting a path in the base 
space to one in the fiber in such a way that the lifted path represents paral- 
lel displacement in some sense. Recall that the fiber elements are values 
of a field at the projected point. So, given a path in the base space, use 
the connection to lift it to the bundle, obtaining the parallel displacement 
of the field element along the path. From here, it is an easy step to define 
the notion of covariant derivative which is perhaps more usually associ- 
ated to the idea of a connection by physicists. Nevertheless, the definition 
of connections and covariant differentiation finds its most natural home at 
the principal bundle level. This will be especially clear when we discuss 
gauge theories and their physical applications below. 

We begin by considering a principal bundle, since the discussion of as- 
sociated bundles in the preceding section allows us to produce connections 
in associated bundles from ones defined in the principal one. Or, we can 
think in terms of lifting vectors, by reducing a base space path to its tan- 
gent vector at a point, lifting the path and considering the resulting bundle 
tangent vector. 

Note that the action of the group induces a natural subspace of bundle 
tangent space, Tb(E), defined by paths along fibers, or equivalently, vectors 
whose projection under T is zero. This is called the vertical vector space. 
For a principal bundle, the dimension of this subspace is clearly the dimen- 
sion of G. Let b E E be the value of $u(m,g) for some U,m,g .  Then the 
vertical vector space at b, Verb is the image of T,(G) under the map $U 
for fixed m. Because of the homogeneity of Lie groups there is a natural 
identification T,(G) M g = Tl(G),  where 1 is the group identity and g is the 
Lie algebra of G. Using right translation, we can map g into the bundle 
vector space naturally. Let A E g be tangent to the curve at in G, with 
a0 = 1. Then A: is defined to be the tangent to the curve bat at t = 0. 
The tangent to the curve at b is called the fundamental vector defined 
by A E g. The set of fundamental vectors generates the vector subspace 
at b, vertical vectors, Verb. It is easy to see that the vertical vectors are 
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precisely the set of vectors with zero projection to the base space. 

Remark 4.3. 
We pause to make explicit some of the abstract group notation used in the discussion of the 
notion of vertical vectors in a principal bundle. For notational simplicity, stay in one bundle 
coordinate patch, and locally identify an element of the bundle with a pair (m,  g )  E U x G .  
Left multiplication in G lifts to tangent vectors, as 

L h A g ( f )  = A g ( f ( h g ) ) .  

The family of left invariant vectors then constitutes the Lie Algebra, g of G. Each element 
of g is thus uniquely defined by an element of A E T l ( G ) .  It is easy to show that if A is 
defined as differentiation along a path at the identity, a t ,  a0 = 1, then A, is generated by the 
path gat .  This notation carries over immediately to  the bundle definition of the fundamental, 
vertical, vector A', as acting on f ( m ,  g )  by 

Now consider right translation, Rh, 

where a d ( h - l ) A  is generated by the path h-lath.  
Left invariant vector fields satisfy 

Lhxg = Xhgr that is, X g ( f ( h g ) )  = X h g ( f ( h g ) ) .  

Clearly such a field is uniquely determined by its value at the identity, X I .  A similar definition 
applies to forms. Now the general definition of g as the set of left invariant vector fields means 
that it can be identified 

g = Ti  (GI.  (4.11) 

Let { E l , , a  = 1, ..., N } ,  where N is the dimension of the group, span T l ( G ) .  Then each 
element of g as a left invariant field is defined by N constant components, X a ,  

x ,  = X'L,El ,  (4.12) 

Lie s t ruc ture .  It is easy to see that for any X ,  Y E g, 

[x ,  y ] g  = L g [ x ,  Y ] I  = (Cab,XbYC)LgEga, 

giving the famous structure constants. 
Let 0; be the dual basis for forms at  g ,  

e;(E,b) = 6:. 

Fkom this, the famous Maurer-Cartan equations, 

can be derived. Then the canonical form, 0 E n(G; g) is defined by left translation of 

el = E ~ ,  Q e; .  (4.13) 

Let the Lie algebra generator indices, a, be identified with the components of the matrix 
representation of G, so a + ',, and 

so 
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a 
E,, +ski---. 

a g k j  

In this case, a left-invariant field is, from (4.12), 

a x,’ = gkiX: Jbs”.’ 
3 

so, in terms of components, 

Xs’i = ( 9 .  X l ) i j ,  (4.14) 

and left translation merely multiplies the  components. 
Finally, we will attempt t o  make transparent the often used (e.g., see [Atiyah (1979)], 

p. 8, or [Moore (ZOOl)], p. 12) notation g-’dg as an  element of n’(G; g) by making use of 
explicit components. Suppose X ( g )  = X i j ( g ) L .  Then define 

Bg’ . 

9 K 1 d 9 ( X ( g ) )  = (9 - ’ ) r sxs l (g )a : , .  

g - ldg (X , ’ )  = x1 E 8.  

g - l d g  = ( g - l ) i j d g j k  8 at i .  

so, 

Making membership in n1 (G; g) more evident, write 

Clearly (4.15) implies that  

g-’dg = 6 ,  

the  fundamental form on the Lie group, G. 

(4.15) 

(4.16) 

4.3.1 Connections 

Having defined the vertical subspace, we still find arbitrariness in the choice 
of a complementary space to fill out Tb(E). Resolving this ambiguity is 
precisely what a connection does. This complementary space is called the 
horizontal space, HOrb, and is required to satisfy 

Tb = Verb @ HOrb, (4.17) 

(4.18) 

The condition (4.18) is essentially the “naturality” of the horizontal plus 
vertical decomposition as we move along fibers under the group action. The 
splitting in (4.17) and (4.18) is used to define the lift of vectors in T(M) 
to horizontal vectors in T ( E )  in a “natural” way. Given V E T,(M) and 
some b E E ,  ~ ( b )  = m. Choose any X E Tb(E) such that T ( X )  = V. Then 
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is the horizontal component of X defined by (4.17) and defines the lift 
of V .  Condition (4.18) is then the "naturality" condition, 

Given some (smooth) path in the base space, u : I + M ,  we can find 
many smooth '' lifts" of this path to one taking I +  E. Any local bundle 
coordination provides at least a part of this lift. What the connection 
provides is a uniquely defined horizontal lift, 12 : I -+ E ,  defined so that 
the tangent vector to I? is the horizontal lift of the tangent vector to u. 

A more easily handled alternative to (4.17) and (4.18), is provided by 
the connection form, w E R1(E;g) taking a vector X E T ( E )  into its 
vertical component generated by w(X) E g. Specifically, 

W b ( x )  = A E g, Verb(X) = Ai(A), (4.19) 

so that 

Wbg = adg-'wb. (4.20) 

Thus, (4.17) and (4.18) lead to the definition of w satisfying (4.19) and 
(4.20). Conversely, these two equations lead to the definitions of Hor, Ver 
satisfying (4.17) and (4.18) by choosing 

Horb(X) = X - (wb(X))*. 

Note that 

W b ( A i )  = A. (4.21) 

This bundle definition of connection applies to any bundle and can 
be represented by generalizations of the Christoffel symbols of elementary 
coordinate geometry. Consider a local trivialization of the bundle given by 
q5u : U x G 4 7r-' (V) C P for some principal bundle P. The pullback of 
this applied to forms provides 

4u* : R1(7r-'(V);~) + R'(U;g)@R1(G;g),  (4.22) 

giving 

$U* (wb) = YU + X U .  (4.23) 

Using (4.21), we see that x must be the canonical form, 8. The behavior 
under right translations implies that the first term is of the form 

Yu = s-lrus, (4.24) 
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where ru  depends only on m = n ( b ) ,  and thus is an element of R1(U; g), 
which can be expanded in terms of local coordinates, 

(4.25) 

where we are assuming a general vector bundle, with group G a subset 
of Gl(n?K) ,  thus represented by matrices, (g i j ) .  These I?-symbols are the 
bundle generalization of the Christoffel symbols of elementary coordinate 
geometry. Thus (4.23) expands to 

$u*(Wb) = g-lru(T(b>)g + g-ldg.  (4.26) 

Clearly the local representation of the connection form depends on the local 
trivialization, $u. From the bundle equation, (4.9), $u(m,g) = $v(m, h) 
where h = gvu(m)g. Note that the group elements are, in general, functions 
of the base space point, m = .rr(b). Replacing U -+ V, g + h in (4.26) 

1 -1 g-lru (m)g+g-%7 = 9- gvu (mFv (m)gvu(m)g+g-lgvv (m)-ld(gvu(m)g). 
(4.27) 

The dependence of guv on the base space point, m, then implies that 

ru(m) = gvu(m)-l~vgvu(m) + g;:dgvu E fll(U; €4). (4.28) 

This equation is the bundle generalization of the non-linear Christoffel 
transformations under coordinate changes familiar in elementary coordi- 
nate differential geometry. 

Consider the lift of T,(M) for the tangent bundle of a smooth manifold. 
Start by computing the lifts, 8 / a x p ,  of the bases, d/dxp, using the local 
coordinate trivialization, $u(z, 9) .  Since T X  = X, 

8 / a x p  = a/axp + Bij,a/agj . (4.29) 

From (4.26) and (4.25), the horizontal condition, w(8/axp) = 0 gives 

(4.30) 

so 

x = $; (xw/axp  - rb , ,xpg;a/ag;) . (4.31) 

Now consider an explicit construction of the bundle of frames or 
repere bundle , B F ,  as a principle GZ(n, R) bundle. Start with the point 
set { (m ,E) } ,  where E is a frame at m E M ,  that is a set of n linearly 
independent tangent vectors, E = {&}, cp E T,(M). Since not every 
manifold is parallelizable, this cannot in general be a trivial bundle. So, 
local coordination is required to define this as a principal GZ(n, R) bundle 
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using smooth coordinate patches as follows. If g = (gc”,) E G, and U is a 
local coordinate patch over M, with coordinates x p ,  define 

4u(m, 9) = (m, El, 

where 

and the xu are local coordinates in U .  The usual tangent vector bundle can 
then be reproduced as the associated vector bundle. Thus if F = Rn is the 
vector space of column matrices, then an element of the associated bundle, 
B F  X G  F is an equivalence class, [(m, a), f], that can be identified with a 
tangent vector, 

[(m, a), fl -+ f”5v  E Tm(M).  

The equivalence 

[(m, Eh) 7 fl = [(m, > hfl, 
describes the usual “contravariant transformation law” for the vector com- 
ponents under a change in basis. 

Finally, the last and perhaps most familiar term associated to a con- 
nection is that of covariant derivative. This is closely related to the 
horizontal lift idea above. Given a tangent vector to the base space, 
X E T,(M), defined by differentiation along the path u through x. The 
horizontal lift, 2, then provides a path in any associated vector bundle, and 
differentiation along 2 provides Vx. 

As usual, let P be a principal G bundle over M ,  with local coordination, 
&J. Now assume G is a linear group of matrices, {gij}, acting on a vector 
space, V = {d}, and E = P X G  V be the associated bundle. A cross 
section, 0 E Ro(M; E )  is a V vector field, 

4 % )  = [P(x)g,g-l~(x)l E E ,  (4.32) 

where [*, *] represents the G-equivalence class. The covariant derivative, 
V ,  can then be defined as a map 

V : Ro(M; E )  + R1(M; E ) ,  (4.33) 

as follows. Let X E T ( M ) ,  represented locally X = Xpd/dx”, with lift, X ,  
defined in (4.31). Then 

V(a)(X) = [P(x)g, &-lv(x))l. (4.34) 
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At g = 1, in terms of the local q 5 ~ ,  

x(g-lv(z))zlg=l = X ( ~ Z ( ~ ) )  3- r; j p d ( z ) x ~ .  (4.35) 

In more familiar notation, the covariant derivative expressed in (4.34), lo- 
cally in (4.35), is written 

Vxff. 
The generalization to associated “tensor” bundles corresponding to repre- 
sentations, p, of G (so elements of V may have multiple indices, superscripts 
for vectors, subscripts for forms) is 

Vxff, = [P(z)g, x P ( g - 1 ) ( 4 w  (4.36) 

For example, for one-forms (co-vectors in older terminology), v i  -+ vi, and 
p(v)j  = vigij, so (4.35) becomes 

x(g- lv (z ) ) i lg=e  = x(vi(z)) - rj, i l L ~ j ( z ) ~ ~ .  

v : W ( M ;  B) -+ W + l ( M ;  B) ,  

(4.37) 

Alternatively, the connection can be considered as a differentiation 

as follows. Given a connection on a principle bundle with group G and 
an associated vector bundle, B = E @G V ,  recall that W ( M ;  B )  are the 
B-valued p-forms over the base space, M .  First consider the case p = 0. 
An element of Ro(M; B )  is a smooth cross section, in this case a smooth 
vector field. The covariant derivative defines from this a B-valued (that 
is, vector field-valued) one-form. So, if X E n 0 ( M ; B )  let X(z) = [P,v(z)] 
be the associated bundle equivalence class definition of the section. Now 
consider some Y E T,(X) defined by differentiation along u with lift G. 
The vector field, X, along the path is represented by [ G ( t ) ,  G ( u ( t ) ) ] ,  and 

(4.38) 

The extension to higher values of p is easy to define, using the Leibniz rules 
for a derivative operator. 

Finally, we present these abstract definitions in perhaps more familiar 
terms, using local coordinate representations for the principal bundle of 
frames, P, and the associated tangent vector bundle. Let the bundle co- 
ordinate patches be the local manifold patches for the base space, U ,  with 
manifold coordinates {x”} : U 4 R”. The group, G, is the general linear 
group. Define the bundle maps from 3: and g 6 G by 

d 
dt 

v y x  = [ G ( t ) ,  - G ( u ( t ) ) I t = o .  

(4.39) 
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Then, the most general connection form will have the local representation, 

w = ( g - l ) ” p [ g ~ ~ I ” ’ ~ b d ~ ‘  + dgPJ @ 8; v. (4.40) 

It is a straightforward exercise to show that this definition is independent 
of the manifold and bundle coordinations and does indeed satisfy the con- 
nection conditions (4.19) and (4.20). 

The last topic of interest to us here is the curvature form defined by 
the connection. Starting from the connection as the g-valued one form on 
P,  define 0 as the g-valued two form, 

52 = dw 4- w A w .  (4.41) 

Here the wedge product in the second term on the right side includes the 
Lie bracket. The components of 52 can then be related to the curvature 
tensor components for the tangent vector bundle case, (3.19), by 

(4.42) 

4.4 Gauge Theory: Some Physics 

In this section we will introduce ideas and constructs from physics which 
are necessary for understanding the broad area of gauge theory that has 
crept from physics into mathematics and been of significant value in study- 
ing the mathematics of differential topology. We will try to provide some 
background and physical motivation that will help to justify the introduc- 
tion of these equations for the mathematicians. 

For various reasons, it is easier to start off using the mathematically old- 
fashioned formalism of local coordinates and components. Later, we will 
summarize matters in the more compact and elegant formalism of bundle 
connections and differential forms. 

Begin with the formalism appropriate to Special Relativity which as- 
sumes (global) coordinates and flat metric. So M = R4 = { x P I p  = 0,1 ,2 ,3}  
is the spacetime model, with standard smoothness and Minkowski metric, 
7. Recall also the summation and raising/lowering of indices conventions. 

In classical (that is, pre-quantum) physics, the basic elements are point 
particles, whose histories are time-like curves x ” ( T )  in M ,  restricted by 
some dynamical law, such as Newton’s, modified for special relativity to 
the form 

(4.43) 
d2x” 
d r 2  

m- =3”, 
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where m is a constant, the particle’s mass, and Ffi are the components 
of the four-force, representing external influences. d r  is defined in (4.45) 
below. 

At this point, we pause to review some important and relevant issues 
at the basis of relativity. First, note that the Minkowski metric form, r ] ,  is 
central to this theory. The homogeneous group leaving this metric invari- 
ant in form (with positive determinant) is S0(1,3), the proper Lorentz 
group. It was tacitly assumed in the original form of special relativity 
that the spacetime model, M ,  is simply standard W4. Each smooth atlas 
on M describes one physical Reference Frame. The xfi can be thought 
of as results of physical measurements, perhaps only idealized, of locations 
in space and time provided by some physical reference frame. Those refer- 
ence frames in which the metric components are the standard Minkowski 
values and the laws of mechanics as expressed in (4.43) are valid are called 
Inertial Reference Frames, IRF’s. Of course, we must first assume that 
at least one IRF exists. Historically, Einstein was led to special relativity 
from study of Maxwell’s electromagnetic field theory, summarized 
in a set of four partial differential equations for two 3-vector fields over 
pre-relativistic space and time. These equations are presented below in 
relativistic form as (4.49) and (4.50). These equations predict a specific 
speed, now called the speed of light, c, for all electromagnetic radiation. 
Einstein’s first formulation of his Principle of Special Relativity was 
that this speed, c, should be the same for all observers. If we choose units 
in which this value is one,2 the intervals which are zeros of 

ds2  = r ] f i u d x ~ d x u  = -dt2 + d x 2  + d y 2  + d z 2 ,  (4.44) 

are invariant under change of IRF, mathematically a diffeomorphism. Such 
intervals are called light-like. If ds2  > 0, the interval is space-like. Fi- 
nally, if ds2  < 0 the interval is time-like and d s 2  is replaced by the square 
of proper time interval, 

d-r2 = -ds2.  (4.45) 

One further assumption of spacetime homogeneity (linearity for the diffeo- 
morphisms) and overall scale invariance leads to the definition of S0(1,3) 
as the group of matrix transformations, L ,  for which 

LqLT = 7, det L = 1. (4.46) 
2 0 f  course, since the speed of something depends on choice of units, which are arbitrary, 

we must be careful in formulating this principle. However, a full discussion of this would 
take us too far afield. 
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A final expression of the Principle of Special Relativity might now be 

Principle of Special Relativity: All laws of physics, including Maxwell’s, 
must be invariant in form in all Inertial Reference Frames. 

This was of course later generalized by Einstein to the Principle of 
General Relativity, which requires all laws to be invariant in form under 
all (smooth) changes of reference frames, or, mathematically, all diffeo- 
morphisms of M .  The extension of these relativity principles to include 
internal space transformations, i.e., bundle group operations on fibers, 
gives rise to gauge theory as understood in contemporary physics. 

Returning to mechanics, note that from the definition of d r  the velocity 
vector must have constant norm (square= -l), so in particular, (4.43) 
implies 

(4.47) 

The problem of understanding these influences, forces, led to classical 
field theory. Roughly, a physical F-field is an F valued function over M ,  
later replaced by section of a bundle with fiber F. We will now focus on 
the electromagnetic field. One easy way to satisfy (4.47) is to have the 
force be of the form 

FP = qFP“- dxu 
d r  ’ with FPV + FUp = 0, (4.48) 

a form actually provided by Maxwell’s electromagnetic theory formulated 
in its complete form only some 40 years before Einstein’s work. So, we can 
satisfy (4.48) by choosing q to be the electric charge, an intrinsic property 
of the particle and FP” as the components of an antisymmetric two-tensor 
representing electromagnetic field. 

(4.48) provides the influence of the field on particles. But physics must 
also provide a theory of how the charges produce the field. This is provided 
by Maxwell’s equations, expressed here as 

FPV ,” = J P ,  (4.49) 

FP”,P + F”P,P + FPP,Y = 0, (4.50) 

where J P  are the components of the charge current density, which acts 
as the “source” of the electromagnetic field and describes how matter pro- 
duces electromagnetic fields. This form of particle-field interaction was the 
basis for fundamental physics before quantum theory. Finally, we note that 
these equations, (4.49) and (4.50), its well as their later forms, (4.53) and 
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(4.52) are invariant in form under Lorentz transformations, as required by 
special relativity. 

Since Cartan we have learned that a more productive way to  handle anti- 
symmetric objects is by use of exterior forms and calculus. Thus define the 
electromagnetic field as a two-form 

1 
2 

F = -Fpvdxp A dx", 

and (4.50) becomes simply 

(4.51) 

dF =o,  (4.52) 

and (4.49) becomes 

d *  F = *J. (4.53) 

Note that we are using the Hodge star operator defined using the Minkowski 
metric of signature -, +, +, + so 

*1= dx' A d d  A dx2 A dx3, * * 1 = -1, 

and J is the current density one form, with 

J = -pdX' -t J,dxl.. . , (4.54) 

p is charge density, J ,  is the usual x-component of spatial charge current, 
etc. To relate this formalism to the pre-relativistic Maxwell theory, note 

Fol = -E,, F23 = B,,etc., 

(*F)ol = B,, (*F)23 = E,,etc. 

and the two three-vectors, (E,,E,,E,) and (B,,B,,B,) are the pre- 
relativistic descriptions of the electric and magnetic fields, now unified in 
the single field, electromagnetic form, F. From (4.54) the total charge in 
a spatial volume, V is 

Q(V) = / J'dxdydz, 
V 

or considering V as a singular chain, and integration as the de Rham co- 
homology pairing, this equation can be written 

&(V) = V(*J) = *J. (4.55) s, 
From the Maxwell equation (4.53), 

Q ( v ) = /  d * ~ = /  *F = @(S), (4.56) 
V s=av 
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where @(S) is called the electric flux through the surface S. 

expressed locally as 
Finally, the physical requirement of “conservation of charge” can be 

J$ = 0, 

or 

d * J = O .  (4.57) 

So, conservation of charge is built into the Maxwell equations in the form 

Of course, since we are dealing with a topologically trivial space, (4.52) 
(4.53). 

can be replaced globally by 

F = dA, (4.58) 

for a one-form, A, called the electromagnetic gauge potential. In pre- 
relativistic terms, 

A = -Vdzo + A,dd  . . . , 
with V the scalar potential of electrostatics. Then (4.53) becomes 

d * dA = *J. (4.59) 

In terms of local spacetime coordinates in vacuum, J = 0, 

(4.60) 
a2 a2 a2 a2 
at2 a x 2  a92 a22 

*d*dA = CI2A = (-- + - + - + -)A = 0, 

with solutions which are “moving shapes,” that is, waves, moving with 
speed of light, 1 in standard units. So, again, Einstein’s principle of special 
relativity by requiring invariance in form of Maxwell’s equations, and thus 
(4.60), predicts the invariance of the speed of light. 

These equations lead naturally to the physical idea of a gauge trans- 
formation. Physical observations are only of forces, and thus of F. How- 
ever, this physical field does not uniquely determine the gauge field, A, 
which at this stage may only seem to be of formal importance. With the 
tools of exterior calculus at hand, it is of course quite easy to express this 
ambiguity: 

F = dA = d(A + dX), (4.61) 

for any smooth scalar field A. Physics expressed A + A + dX as a gauge 
transformation, while mathematically it is obvious that this entire structure 
is ripe for expression in terms of de Rham cohomology. Recall that this 
discussion has been initially constrained to the topologically trivial case, 
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but if we relax this condition, then de Rham cohomology will give rise to 
wormholes replacing charges. For example, if H2(M)  # 0, there is a closed 
2-cycle, S which is not a bound. So we could have d * F = *J = 0 but 

S,.F = qs) = Q # 0. (4.62) 

If this is not zero, the space containing a closed surface, S, not a bound, 
can support a F corresponding to non-zero charge, even though there is 
no charge in classical sense of (4.55). In fact, such exploration has been 
on going in physics since the pioneering work of Wheeler, Misner, et al., 
in the 1950’s, under the general heading of geometrodynamics[Whecler 
(1962)]. While very interesting in its own right, illustrating the potential 
applications of topology even in classical physics, this topic is not an integral 
part of our aim in this book, so we will leave wormholes with this brief 
mention. 

Classical and contemporary physics have found a much more fruitful 
way to express the field equations and conservation laws of a theory from 
actions using Lagrangians. For simplicity begin again with local, coordi- 
nate representation, and assume that the physical field can be represented 
as an N-vector with components, a = 1, .  . . , N in some vector space 
with properties discussed later. A Lagrangian density is then a function 
of the fields and their derivatives, L(da,6:$. If V is some 4-volume1 the 
action, S is then defined by 

s = J, L * 1. 

The physical field equations are then to be derived from the “least-action” 
(more properly L‘extremal-action’’) principle 

6,s = 0, (4.63) 

subject to certain conditions. An explicit evaluation of this is 

(4.64) a a~ aL 
a x h 5 y p  a@ + (--- + -)S@] * 1. 

The first term, the “divergence,” can be converted to a surface integral (we 
will do this using forms later), 

where dSp are the components of the three-area element of d V .  
The standard approach to deriving field equations is then to require 

B(V, 64) = 0 either because dV is empty, or by requiring that 6q5”lav = 0. 
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Given this condition then, we have that the variational principle, (4.63), 
produces the Euler-Lagrange equations, 

d dC dC + - = o .  
dXw4; ,  a@ (4.66) 

This variational principle formalism for a field theory lends itself directly 
to a theorem of central importance to our gauge theory studies, Noether’s 
theorem relating symmetries to conservation laws. Suppose the theory has 
a symmetry group, G, a Lie group. Using the explicit coordinate repre- 
sentation in (4.64), suppose a variation is the result of an “infinite~imal”~ 
symmetry, so that SS is zero for any q5a. If the fields also satisfy the field 
equations, then the quantity in the second set of parenthesis vanishes and 

or, in form notation, 

(4.67) 

for a symmetry variation, S, and C any constant. J6 is then the conserved 
current associated to this symmetry. 

Using this formalism, the Maxwell field equations (4.49), (4.50) can be 
derived from a Lagrangian, 

dC 
d * 5 6  = 0, J6 = C ( - S @ ) ~ p u d x U .  

8% 

(4.68) 
1 
4 

C = --FpuFpu + J’Au, 

In this case, the index a is the coordinate index p, $a 4 A p .  

the more satisfying index-free formalism of exterior forms. Note that 
Before proceeding further, let us re-express the action formulation with 

1 11 
4 4 2  

1 1 
2 

F A  *F = -Fpu(*F)pv~puPv * 1 = - - F p , ~ L n  p,,FLn~puPq * 1. 

This reduces to 
2 2  F A  *F = -F F ( IlKgUL - g p L g u n )  * 1 = -FpuFp” * 1 = (-E + B ) * 1. 4 pu Ln 9 

The Lagrangian,(4.68), can then be expressed in terms of forms 

S = ( - - d A  A * d A  + A A *J), (4.69) L:: 
and variation, 

bS= ( - d b A A * d A + b A A * J )  = B ( V , d $ ) + L S A A ( - d * d A + * J ) .  

(4.70) 
s, 

3Think of Scja as X ( Y )  for X an element of the Lie algebra of G. 
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The term, 

B(V, 64) = L v 6 A  A * d A  (4.71) 

is often referred to as the “topological” part, since it depends on the topol- 
ogy involved in the transition between a volume and its boundary. Under 
the usual assumption that B must be zero, this variational principle gives 
(4.59) where the physically observable field, F, is given by (4.58). 

At this point we must pause, however, to note that the interaction 
term has removed gauge invariance. That is, in (4.69), the free part, 
SEM = J v ( - a d A  A * d A ) ,  containing only A terms, is invariant under the 
gauge transformation, (4.61), while the interaction part, SI = J ( A  A *J), 
is not as it stands. Of course, we have only a theory of the electromagnetic 
field, A, and must also construct one for the source matter/fields that 
contribute the current, J. Thus, we need another Lagrangian and action, 
SJ = J L J ,  so that the total action is 

S = S E M + S J + S I =  ( - - d A A * d A + A A J + L j ) .  (4.72) 

It is in the analysis of equations of this form, (4.72), that the physics, and 
later mathematics, of gauge theory has been formed. 

To explore this further, we begin by looking at the transition moti- 
vated by quantum theory and build field theories (models) for what were 
classically described as particles. In the first steps, these fields were “prob- 
ability densities,” e.g., the Schrodinger wave function, $(xP) was such that 
I$(xP)12dxdydz is proportional to the probability of finding the classical 
particle in the spatial volume, dxdydz  at time t = 2’. This originally pro- 
vided a workable tool for investigating certain basic problems such as the 
behavior of an electron moving through slits, or being in a stationary states 
in a Hydrogen atom, etc. However, it soon became clear that this was inade- 
quate to solve more complicated problems and to include special relativity. 
Most importantly however, this original approach to quantum fields had 
to be modified because it involved a hybrid approach in which some fields, 
such as the electromagnetic ones, described forces, and others, such as $ de- 
scribed probability. In fact, Planck’s first steps toward quantum theory in- 
volved “quantizing” the electromagnetic field, making it the field associated 
with “particles,” later called photons. So, in some sense, Schrodinger’s 
$ is the quantum field for electrons, and F is the field for photons, etc. 
Quantum field theory, currently the most well established formalism for 
quantum phenomena, developed from this point. Fortunately, we need go 

s i  
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no further into this complex subject, but merely sketch the mathematics of 
the subject which are important for gauge theory. 

From special relativistic mechanics we identify the classical mechanical 
quantities energy, momentum, with certain time/space components of a 
four vector p, .  For example, for a point particle, 

with pP = (E,p3, relating the four-vector relativistic notation to pre- 
relativistic energy and three-momentum. From the definition of d r ,  we 
get 

p p p ,  + m2 = 0, 

E2 = lA2 + m2, 

(4.73) 

(4.74) 

Now we make the huge leap to quantum theory, replacing the notion of 
a point particle with that of a (generally complex) field, 4. 

Remark 4.4. 
We do not have time or space to give more than a passing idea of the physical interpretation 

of quantum fields. Suffice it to say that originally they provided probability information 

about outcomes to experiments asking classical questions such as “where-when, what are 

the values of momentum, energy,” etc., but in the later development these fields, such as A 

for electromagnetism, and our sample 6, become operators on a Hilbert space whose rays 

represent states describing number of particles, such as photons for A, or some idealized 

scalar particle (Higgs?) for 6, having specific properties. In particular, these field-operators 

“create/annihilate” particles. 

In making the transition from classical to quantum physics various rules 
were formulated, replacing classical variables (numbers) with quantum o p  
erators, and then imposing classical conditions, such as (4.73). In par- 
ticular, the four-momentum components become complex differentiation 
operators, 

(4.75) 

where here i = a, and not an index. We are also using an abbreviation 
familiar in quantum physics, 

(4.76) 
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So the classical (4.73) becomes a differential equation 

(4.77) n2+m 2 4 = 0 .  

This is the Klein-Gordon equation which was first proposed as the 
relativistic generalization of the famous Schroedinger equation. In quan- 
tum mechanics, we associate particles to fields, or, more precisely, classes 
of particles to classes of fields. Thus, for (4.77) the field is a spacetime 
scalar (albeit complex) and with further analysis turns out to have zero in- 
ternal angular momentum, or spin in the physical sense. We thus describe 
the particle as a scalar, spin zero, particle. Such particles are also called 
Bosons, and satisfy “Bose-Einstein statistics.” A complete explanation 
of this fact would lead us far away from our purposes here. Suffice it to 
say that such particles have never been directly observed, but speculation 
on their existence continues because they might resolve certain theoretical 
difficulties. 

It turns out that most matter in the everyday world, and probably 
in the local cosmological neighborhood, consists of particles of spin 1/2, 
called Fermions, because of their statistical behavior. We refer to the 
familiar classes of electrons, protons, neutrons, although there is increasing 
evidence that the latter two are not elementary but rather bound states 
of quarks. So, perhaps we should say that almost all familiar matter 
consists of electrons and quarks, both spin 1/2 fermions. It was Dirac who 
successfully developed the appropriate relativistic equation to describe such 
particles/fields. 

We have always understood causality or time evolution in terms of equa- 
tions of first order in time derivative, whereas (4.77) is obviously of second 
order. So Dirac searched for a “square-root” of this equation, postulating 

(+ap + m)$ = 0, (4.78) 

such that the application of (-iy”a, +m) to this would result in the quan- 
tum energy-momentum relation of (4.77). Of course, this is not possible if 
the yp are scalars, so he suggested that they be matrices/operators, satis- 
fying 

y”y” + y”y” = -27)””. (4.79) 

Introducing the very useful notation 

p = Y a p ,  

(ip + m)$ = 0. 

(4.78) becomes 

(4.80) 
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Mathematicians will recognize (4.79) as the defining relation for the 
Clifford algebra leading to the definition of the Spin group, covering the 
isometry group of the metric qp'. In mathematics, the indefinite qp" might 
be replaced by a positive definite one. The book by Elie Cartan[Cartan 
(1966)] presents a definitive classical summary, including both definite and 
indefinite metrics. A more brief summary of Spin from the mathemati- 
cal viewpoint is given in the first chapter of the book by Morgan[Morgan 
(1996)l. 

For the case of physical interest, the metric is indefinite, so the mul- 
tiplicative group of Clifford algebra units should be labeled Spin(l,3). In 
any event, it provides a covering 2-1 representation of the Lorentz group, 
the isometry group of qpv, as follows. If u p  are the components of a real 
spacetime vector, define v = vpyp. Then if u1, ..., u k  are Clifford algebra 
units, 

v v' = u1 "'uk'Vuk""lL1, (4.81) 

is a Lorentz transformation. Because of the indefinite character of the 
metric, Spin(l,3) cannot be a unitary representation4, so $t$ will not be 
a spacetime scalar. However, &+l~ is, where 4 = $tro. Furthermore $yp$ 
transform as the components of a spacetime vector. Finally, we note that 
the lowest dimensional representation (if m # 0) of $ is a complex four- 
dimensional one, so the Fermion field can be thought of as a cross section of 
a spinor bundle, with fiber C4, and group (apparently, see below) Spin(l,3). 

Of course we should point out that we have been dealing only with the 
free particle case. The problem of understanding interactions for such 
fields will then lead us to our goal of gauge theory. The key to this will be 
the observation above that in this quantum representation, with complex 
field, the group of the spinor bundle is actually Spin(l,3) @ U(1). This 
extended group is the quantum symmetry group of this spin 1/2 model, 

Remark 4.5. 
The extension of the group from the spacetime symmetry of the Lorentz group, or its cover, 

Spin(1,B) to Spin(1,B) 18 U(1) is a noteworthy construction. The symmetry group of the 

theory is now a direct product group consisting of an internal part, U(l) ,  and external, or 

spacetime part, Spin(1,B). Later we will mention the natural extension of the internal U(1) 

to larger groups. The suggestion that the rather artificial "direct product," internal cross 

external, nature of this symmetry group of the theory points to  an extension of the group to 

4The Lorentz group is not compact. 
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one in which the two parts are “mixed” in some ways. A famous ‘‘no-go” theorem however, 

showed that this cannot be done in a non trivial way for arbitrary Lie groups and led to the 

introduction of supersymmetries. We will refer to this in Chapter 5. 

Return to the program of representing the theory by an action. Note 
that (4.80) could be obtained by extremising the free Fermion action 

s, = /S(iQ+m)$*l. (4.82) 

Recalling that we have been assuming special relativity, with flat spacetime 
and constant metric components, qPV, we see that this action is clearly in- 
variant under Spin( 1,3) transformations. Furthermore it is also invariant 
under constant U(1) transformations on $. The constancy of these trans- 
formations is summarized by saying that we are considering global U(1) 
symmetry. As mentioned earlier, the Noether theorem implies that this 
symmetry is associated with a conserved current, (4.67). For U(l) ,  the 
group action on the fiber, C4, is multiplication by eia, that is, 

II, -+ cia$, 6$ = iSa$. (4.83) 

The conserved form, (4.67), becomes 

J = iC&yP$dxP. (4.84) 

Following Planck’s discovery of photons, we are led to a “quantization” 
of F, taking over the field equations or action formulation. If we omit the 
source terms, we have the wave equation for A, (4.60), of the same form 
as (4.77) for q5, if we set m = 0. This fact results in the statement that the 
particle associated to the electromagnetic field, the photon, is massless. 
But now we must describe the source, J,  in quantum terms such as II, or 
others, as well as the interaction of these two fields. Classically, this 
was described in the electromagnetic Lagrangian, (4.68). The problem of 
understanding how to do this in general is at the foundations of the physical 
subject of gauge theory and the intimately related topics of symmetries 
and conservation. 

Recall the manner in which equations of physical theories can be ex- 
pressed in terms of an action principle defined from a Lagrangian for each 
field, the electromagnetic, F, and I), for example. When we consider each 
field alone, we speak of them as “free,” and have 

1 1 
2 2 

(4.85) LEM * 1 = --dA A *dA = - - F A  *F, 

and 

L, * 1 = 4(iP+m)$ * 1, (4.86) 
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for (4.82). 
Non-trivial physics only arises in interactions, which in this case is rep- 

resented by the A A J term in (4.69). However, as noted earlier, this 
interaction term breaks the electromagnetic gauge invariance. Similarly, 
we note that (4.86) is not invariant under local U( l )  transformations, for 
which the parameter a in (4.83) is variable. Gauge theory then balances, or 
cancels these two non-invariances in a striking, elegant and very inventive 
manner. 

From bundle theory, we are naturally led to look at this phenomenon 
using bundles. Thus the physical field $ is a cross section of a complex line 
bundle, with group U (  1), over spacetime. The coordinate differentiation, 
a,, applied to fields in the Lagrangian will not be invariant under general 
actions by U(l )  along the fiber, so, we must replace it by bundle covariant 
differentiation by introducing a U(1) connection. Since the Lie algebra 
of this group is simply the additive group of iR, we can describe the U(l)  
connection in terms of a purely imaginary one-form, I?. We can then replace 
the p in (4.86) with@, defined by 

@ = -yp(a, - F,), where l? = l?,dxp. (4.87) 

From the local transformation expressions for the connection described in 
(4.28), with the groiup action multiplication by ei", the combined actions 

$ -+ $' = cia$, r -+ I" = e-i"l?ei" + ida, (4.88) 

leave the expression 

4(@ + m)$ 

invariant. 
So, U(l)  gauge theory leads us to replace (4.86) by 

C+,r * 1 = 4(@ + m)$ * 1 = $(ip - iyr, + m)$ * 1, (4.89) 

or, in terms of Lagrangians 

* 1 = cclo*i - ir A *J+, (4.90) 

where I' = l?,dx", and J+ = &y7$dxY is (up to a multiplicative constant) 
the conserved 11, probability current density one form described in (4.84). 
Now, the surprising and interesting fact is that the last term in (4.90) is 
exactly of the same form as the $-EM interaction term in (4.72), if we relate 
the U ( l )  bundle connection form to the electromagnetic potential, A, up 
to constants. Specifically, 

r = i q ~ ,  (4.91) 
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where q is the electromagnetic charge of the particle corresponding to the 
$J field.5 Furthermore, we then have that the pure EM Lagrangian, (4.85) 
is simply proportional to the second Chern class of the curvature of 
the gauge connection field. That is, the curvature form is simply dA 
in this (abelian) (U(1)) case, and fl A *fl is clearly U(1) invariant. We can 
then summarize what we have seen so far by describing the $J field as a cross 
section of a U(1) bundle, with connection form r, and curvature fl = CZT. 
The full EM interaction of this field of charge q is then fully described by 
the gaugegeometric action, 

(4.92) 

Remark 4.6. 
Note that we have full local U(1) invariance, but still only global Lorentz or Spin(1,B) invari- 

ance. To accommodate an expansion to  local Lorentz invariance, we would have to incorporate 

general relativity, again leading us far afield from our current topics. 

4.5 Physical Generalizations, Yang-Mills, etc. 

What we have just described for the electromagnetic-fermion interaction 
has formed the model for much of the progress of contemporary elementary 
particle physics, at least in its pre-string, pre-supersymmetry stages. We 
can summarize this procedure as follows: 

0 “Elementary” particles: In the Standard models the elementary 
particles, including the familiar electrons, neutrinos, quarks, etc., are all 
fermions of half odd spin, but with some internal structure, described 
by a Lie symmetry group, say G. Mathematically this means that 
the field is a cross section of a G bundle, generally, G = SU(n).  We 
then form an action for each such field in an external, Spin(l,S), cross 
internal, G, invariant manner. 

0 Connection/gauge fields: For non-trivial bundle structure, we will 
need a connection form, g-valued. This connection form then de- 
scribes another physical field, the gauge or force field, and, in keeping 
with “wave-particle duality,” is associated with its own class of gauge 

5q2 is a measure of the strength of the interaction of the + field with the electromagnetic 
one, and is sometimes referred to as the electromagnetic coupling constant. In natural, 
atomic units, it is referred to as the fine structure constant and has the dimensionless 
value of about 11137. 
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particles. Because this connection field is a one-form, or vector, it has 
spin one and is a boson. Roughly, quantum field theory then describes 
the gauge particles as the exchange particles for the force defined by 
the symmetry group G. 
Actions and field equations: The total action is formed from the 
free particle action, but with gauge covariant derivatives. This provides 
the interaction between the particle and the gauge, or force, field. The 
gauge field equation is derived from an action formed from the second 
Chern class of Lie algebra trace of the curvature form of the gauge field. 
Standard model(simp1ified): The three basic forces, electro- 
magnetic, weak, strong are associated with three classical groups 
V (  l), SU(2) ,  SV(3), respectively. The corresponding particles are 
called photons, W-bosons, gluons respectively. 

4.6 Yang-Mills Gauge Theory: Some Mathematics 

Many of the mathematical applications of the physics of gauge theories 
come from analysis of the differential equations for the gauge field. How- 
ever, as is usual, mathematics is more comfortable with a positive definite 
metric, replacing qclv with euclidean dpv, and Spin(l,3) with Spin(4). The 
resulting positive definite metric contains no trace of physical time, so the 
pseudo-particles associated to the fields are called instantons. Of spe- 
cial importance is the first non-abelian gauge group, SU(2) ,  leading to the 
Yang-Mills equations. The resulting theory closely parallels the electro- 
magnetic, U(1), theory, but now the connection form is su(2) valued, and 
the curvature form is the non-linear curvature form 

F = dA + A  A A E R2(M;5u(2)). (4.93) 
The field equations, generalizing the electromagnetic case are obtained by 
extremising an action 

sYM = - S, TT(F A *F). (4.94) 

The resulting generalization of the Maxwell equations leads to non-linear 
partial differential equations, of elliptic type, since the metric is definite. 
The analysis of these equations for closed M ,  such as S4, leads to the famous 
Atiyah-Singer theorems. For a survey of this topic, see the lecture notes 
of Atiyah[Atiyah (1979)l. However, in the following chapter we also will 
look more closely into these mathematical applications arising from the 
physics of gauge theory. 
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Chapter 5 

Gauge Theory and Moduli Space 

5.1 Introduction 

In this chapter we concentrate on the mathematics of bundle theory, 
Chapter 4, corresponding to the physics of gauge theory, expanding on 
the introductory discussions of the previous chapter. After reviewing the 
definition of vector bundles and their isomorphism classes, we proceed to the 
classification problem for vector and principal bundles over (paracompact, 
smooth) manifolds, using the tools of K-theory, universal bundles and 
classifying spaces. This leads to the section on characteristic classes, 
cohomology elements of the base space defined by a bundle over that space. 
Then we apply these characteristic classes to the existence question for 
Spin and Spinc structures on given manifolds. We close the chapter with 
discussions of various gauge theories and their resulting moduli spaces, 
i.e. the parameter spaces of gauge-equivalent connections with respect to 
particular field equations. The special cases of Donaldson and Seiberg- 
Witten moduli spaces so important to the study of smoothness questions 
bring the chapter to a close. 

The reader may well ask why we need to discuss this vast machinery 
of bundle classifications. The reason is the central role such formalisms 
play in moduli spaces, one of the main components in the study of exotic 
smoothness. To build the moduli spaces of various connections over bun- 
dles, we start with a gauge group, G, a base manifold, M ,  and a G-principal 
bundle, E ( M ,  G). The moduli space for this E ( M ,  G) is the space whose 
points are classes of g-valued connections on E ,  modulo gauge transforma- 
tions. Somewhat surprisingly, such spaces turn out to be finite dimensional 
smooth manifolds (with isolated singular points) for cases of interest to 
us. Since M and G by themselves do not uniquely determine the bundle E ,  

85 
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any bundle equivalent to E (which necessarily has the same M ,  G) will have 
the same moduli space, since the equivalence map of bundles lifts to the 
moduli spaces. So a G-moduli space over M depends on the equivalence 
class of G-bundles over M .  Such classes of bundles are studied with the 
tools discussed in this chapter. Thus a given G-moduli space over M can be 
identified by whatever tool we use to identify the corresponding equivalence 
class of G-bundles over M .  

For example, Chern classes and numbers are bundle classification tools, 
and Donaldson’s work describes the dimension of the moduli space of SU(2)  
bundles over a given M as a function of k ,  the second Chern number. If 
we are looking at S U ( 2 )  bundles over a 4-manifold, M ,  which has second 
Chern number, k = 1, the moduli space of SU(2)  connections over any 
representative bundle from this class will be of dimension 5 if M is simply 
connected. For M = S4 Atiyah, Hitchin and Singer [Atiyah et al. (1978)] 
solved this problem for a wide class of groups as we discuss later in this 
chapter. 
Assumptions in this chapter: Unless otherwise noted, we will be dealing 
with smooth, paracompact manifolds and Lie groups. 

5.2 Classification of Vector and Principal Fiber Bundles 

In 4.2 we presented a brief overview of bundle theory, an important mathe- 
matical underpinning for the expression of physical theories. In this chapter 
we will delve into certain tools for investigating bundles, in particular their 
isomorphism classes and other characterizations. 

We begin with vector bundles and their isomorphism classes. Recall that 
we can regard a vector bundle as a family of vector spaces parameterized 
by an underlying smooth manifold, the base space. A section of the bundle 
can then be thought of as a generalization of a function over a manifold. 
For the purposes of this chapter we re-state the coordinate definition of a 
real rn-dimensional vector bundle over M starting with the local transition 
function representation: 

(1) a smooth manifold M with a given open covering M = UaEA U,, 
(2) (smooth) transition functions gap : UanU0 4 Gl(rn,R) for each a, ,B E 

A satisfying the so-called “cocycle” condition: 

gap . gpr = gar on ua n UP n u, # 0 (5.1) 

where . denotes the group operation in Gl(rn, W). 
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Now consider the set 
equivalence relation: 

= {(a,p,v) E A x U, x R"} together with the 

From this define the total space E of the bundle, E = E/ - as the 
set of equivalence classes E = { [ a l p ,  w]}. The naturally defined map, the 
projection, 7r : E -+ M is defined by 7r([a,p,v]) = p. This definition 
of E is based on the set of local trivializations of E l  i.e. the bijective 
maps 7r-'(Ua) 4 U, x R". The space 7r-'(p) is called the fiber over p. 
Locally, that is in each U, containing p, there is an isomorphism of the 
fiber to R". Thus, each fiber is a real m-dimensional vector space, but in 
general with no natural or canonical isomorphism to R". However, if there 
is one preferred isomorphism, so that all fibers ~ - ' ( p )  can be canonically 
identified with R", then the bundle is said to be trivial, or a product 
bundle, that is, E = M x R". A central problem of bundle theory, and 
its physical applications, is determining effectively whether or not a given 
bundle is trivial. Recall that what this procedure defines is a coordinate 
bundle and clearly contains the explicit choice of covering and transition 
functions. 

Now consider a smooth map f : El -+ E2 between the total spaces of 
two vector bundles (El ,  T I )  and (E2, 7r2) over M .  f is a bundle map if it 
commutes with the projections and is linear on fibers, that is 7r2 . f = T I ,  

and the restriction of f to rF1(p), denoted by f p ,  is a linear map of fibers. 
If this linear map is actually an isomorphism, then the bundle map, f is 
said to be a (vector) bundle isomorphism between El and E2. In terms 

bundle isomorphism condition can be expressed by requiring 

of the transition functions, gap (1) and g$ of El and E2, respectively, the 

g$ = ( f p 1 - l  . gh"d . f,. (5-2) 

Now define the equivalence set under (5.2), that is 

2 ' ( { U a } ,  Gl(m, R)) = { E  : gap : u, n up ---t Gl(m, R) 1 gap . Spy = g q }  
mod (5.2). 

then describes all equivalence classes of coordinate vector bundles with 
respect to a fixed covering {U,} of M ,  i.e. the construction depends on the 
covering of the manifold. By means of a limiting process of refinements of 
the coordinate patch covers, we can obtain a covering-independent defini- 
tion by the process called "the inverse limit." Thus define the set resulting 
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from this limit, 

Vectw(M,rn) = lim fil({V,}, Gl(rn,R)). 
+-{Urn) 

This then is nothing but the set of equivalence classes of rn-dimensional 
coordinate vector bundles over M .  One element of this set is a vector ex- 
ample of the general fiber bundle as defined by Steenrod[Steenrod (1951)], 
page 9. 

Remark 5.1. 
As an example, consider the space VectR(S2, 2). It turns out that this set has an infinite 

number of elements, defined by the Euler class discussed later. At this point we merely point 

out that the product bundle, S2 x W2, and the tangent bundle, T S 2  must be distinct elements 

of VectR(S2, 2) since the first has a non-zero global cross section, while the second does not. 

Pullback bundle and homotopy theory of bundles 
Homotopy again proves itself to be very useful in studying the dependence 

of Vectw(M, rn) on the base M.  Consider a change of the base space and a 
map F : N + M .  The pullback of the vector bundle E over M is a vector 
bundle F*E over N constructed by the following steps, 

0 the induced covering {F-’(V,) : Q E A }  on N is defined naturally 

0 similarly, the transition functions {gap o F : a,P E A }  come from the 

0 the total space is defined F*E = {(p,v)  E N x E : F(p)  = ~ ( v ) }  with 

from the covering {V, : Q E A }  on M ,  

transitions functions gap on E and, 

the projection T : E + M inducing a new projection ~ * ( p ,  v) = p .  

In other words, we use the same transition functions from the original 
bundle, but “pulled back” by F ,  to define those of the new bundle. The 
following theorem illustrates an important feature of pullbacks: 

Theorem 5.1. If Fo, F1 : N -, M are smoothly homotopic maps and E is 
a vector bundle over M ,  then F,*E and F:E are isomorphic vector bundles 
over N .  

The problem of determining whether or not two bundles over a given N 
are isomorphic, the bundle classification problem, is an important one 
in differential topology and physical field theories. Theorem 5.1 shows that 
this classification problem can be reduced to finding whether or not the two 
bundles are pullbacks of homotopic maps. 
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Let us briefly review why the classification tools are important. Mathe- 
matically one coordinate bundle may be constructed by one technique, and 
a second by another. A basic question then is whether or not the two struc- 
tures are truly different, or are they in fact isomorphic. For example, if the 
bundles are both pullbacks by homotopic maps from the same bundle, then 
we know they are isomorphic from the preceding theorem. An analogous 
physical problem might go something like this. Two theories involve the 
construction of bundles, Ei, i = 1,2, and each asserts that a certain cross 
section of the corresponding bundle, Ei, say fi, describes a given physical 
situation. Are the predictions of the two theories physically “equivalent?” 
To answer this, we first need the mathematical machinery to see whether or 
not El is isomorphic to Ez. If so, the isomorphism, 4, then carries f1 into 
4 . fi, which can then be directly compared to fz,  to answer the physical 
question. Of course, in this example, we assume the same base space, a 
priori. 

A sketch of the proof of Theorem 5.1 using a bundle connection follows. 
A more general proof, without use of a connection can be found in $11 of 
Steenrod’s book[Steenrod (1951)l. 

Remark 5.2. 
Let Jo,  J1 : N --t N x [O,l] be the smooth maps defined by: J o ( p )  = ( p , O ) ,  J l ( p )  = (p,l). 
If Fo is smoothly homotopic to F1, there exists a smooth map H : N x [0,1] + M such that 
H o Ji = F, for i = 0 , l .  Thus it suffices to show that if E is a vector bundle over N x [0,1], 
then J,’E is isomorphic to J ; E .  Give E a connection and let T~ : E(p,o)  - E ( , , I )  denote 
parallel transport along the curve t H ( p ,  t )  in the total space which goes along the fiber over 
p E M .  We can then define a vector bundle isomorphism T : J,’E + J ; E  by 

T ( P , ~ )  = ( P , T ~ ( ~ ) ) ,  for w E E(p,o)  = J,’Ep, 

which completes the proof. 

An important special application is to a bundle over a contractible 
base space. Since such a space is homotopic to a point, and any bundle 
over a point is trivial, we arrive at the very important fact, particularly 
important in our later discussion of universal bundles: 

Fact: Any  bundle over a contractible space is trivial. 

For the most part we will be concerned with vector bundles. However, 
many results, such as the homotopy theorem above, carry over to the as- 
sociated principal bundles. Recall that a bundle is principal if its fiber is 
equal to its group, with left multiplication as group action. For any bun- 
dle with group G the associated principal bundle is constructed as the 
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bundle over the same base space, with the same group and transition func- 
tions, but the fiber is G itself. The construction of a bundle from transition 
functions is spelled out in coordinate detail in Steenrod[Steenrod (1951)], 
$3. Conversely, given a principal fiber bundle and a space F on which G is 
an effective transformation group, we can construct an associated bundle 
with fiber F by similar techniques. 

Although we have been discussing general vector bundles, an obviously 
important special case is that for which the vector space fiber is actually 
“soldered” to the base space as is the case for the tangent vectors to a 
smooth manifold. An obvious decomposition of each matrix of Gl(m, R) 
into column vectors allows us to identify each such matrix as a frame, 
or basis, of m independent tangent vectors. Thus, for the tangent vector 
bundle to an m dimensional manifold, the bundle of linearly independent 
sets of vectors at each point can be identified with a principal Gl(m, R) 
bundle and is sometimes referred to as the principal bundle of frames. 
Refer to our discussion of tangent bundles in chapter 4. 

Remark 5.3. 
We note that Milnor has generalized the notion of a tangent bundle with smooth manifold 

base space, to the more general TOP category through his construction of microbundles. 

Looking again at the basic classification question of whether or not a 
bundle is trivial, we have the important “cross section” theorem, 

Theorem 5.2. A principal bundle with group G is trivial, that is, isomor- 
phic to  a product, i f  and only if it has a global cross section. 

From this it follows as a corollary that any bundle is trivial if its associ- 
ated principal bundle has a global cross section. On the other hand, there 
are many examples of non principal fiber bundles which have global cross 
sections, but whose associated principal bundle has no global cross section. 
For example, every vector bundle admits a global cross section of zero vec- 
tors, but not all associated bundles are trivial. A particular example is the 
tangent vector bundle to S2. 

We note that the questions associated with constructions and extensions 
of cross sections were historically central to the development of character- 
istic classes which we will treat later in some detail. For now, we restrict 
ourselves to some preliminary results as explored in Steenrod[Steenrod 
(1951)], $12. Of particular interest is his Theorem 12.2 which establishes 
that it is always possible to construct a cross section of a bundle with fiber 
F which is “solid,” a topological definition which includes the more familiar 
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cases of open or closed cells, sufficient for our purposes. From elementary 
matrix analysis it is easy to see that the subset of Gl(m,R) consisting of 
real, positive definite, symmetric matrices is convex and thus an open cell. 
From this Steenrod’s theorem 12.2 establishes the important result 

Fact: It  is always possible to  construct a Riemannian metric on a real 
vector bundle. 

Another important class of questions is related to the reduction of 
the bundle group to a subgroup. If H is a subgroup of the bundle 
group, G, then we can ask whether or not a coordinate representation of 
the bundle exists in which all transition functions lie in H.  Before looking 
at the linear group case of interest for our vector bundles, let us review 
especially important examples of bundles provided by groups and their 
subgroups, namely, 

Coset bundles: I f  H i s  a subgroup of G with a local cross section, then 
G is a bundle over GIH with group H .  

The condition that H have a local cross section is satisfied if G is a Lie 
group, which is always the case in our considerations. For more details on 
this topic see 57.4 in Steenrod[Steenrod (1951)]. 

Returning to vector bundles, let E be one with structure group GZ(m, EX) 
over M .  An important sequence of theorems outlined in Steenrod clar- 
ifies the situation when H = O(m,R). A basic result in real matrix 
theory ensures that we can write Gl(m,R) as the Cartesian product, 
O(m,R) x A(m,R) ,  where A(m,R) is the set of real symmetric positive 
definite matrices. One way to see this is to consider a non-singular matrix 
as defining a basis. We can then choose a metric, an element of A(m, R) ,  
and the Gram-Schmidt procedure then results in an orthonormal basis, an 
element of O(m, R). At any rate, this decomposition proves that the coset 
space, GZ(m, R ) / O ( m ,  R) reduces to A(m, R). But, in discussing Rieman- 
nian metrics above, we showed that this latter space is a cell, and thus 
solid, even contractible. It is also the base space of Gl(m, R)  as an O(m, R) 
bundle. Thus, this coset bundle is trivial, and has a global cross section, 
and, from Steenrod’s Corollary 9.5, we arrive at the general linear group 
reduction theorem, Steenrod, page 57, 

Theorem 5.3. A n y  bundle with group Gl(m, R) is reducible to one with 



92 Exotic Smoothness and Physics 

group O ( m ,  R). 

Operations on vector bundles 
The fibers of a vector bundle are vector spaces of equal dimension so we 

can easily extend a fiber-wise operation to the whole bundle over a given 
base space. Consider the following operations on vector bundles El and E2 
over the same base space: 

0 direct sum bundle El @ Ez,  
tensor product bundle El 8 Ez, 

0 exterior product bundle El A E2, 
operator bundle Hom(E1, Ez) (the homomorphisms between El and 
E2, or, the linear maps). 

These operations, and others, are extensively used in differential geometry. 
For example, a map g : T M  8 T M  -+ IR defines a metric tensor, sections 
in the bundle Ak T M  are k-differential form fields etc. Here, we use these 
operations to introduce more structure on the set Vectw(M, m). 

In general, of course, the operations of direct sum and tensor product 
change the dimension of the bundle. So, we form the union of spaces 
Vectw(M,m)  to get Vectw(M) the set of all vector bundles on M .  The 
space Vectw(M) forms a semi-group with respect to the tensor product 8. 

We will now discuss two techniques for studying the structure of classes 
of isomorphic vector bundles. 

0 First, we impose additional structure on Vectw(M) to define a purely 
algebraic object, K-theory, which is a cohomology like structure 
(theory) for vector bundles. The third edition of the book by 
Husemoller[Husemoller (1994)] contains two chapters on the subject, 
and can serve as an excellent reference. We also note that recently the 
tools of K-theory have been of increasing interest in string theory to 
classify “D-brane charges’’ [Witten (1998)]. 

0 The second approach describes Vectw(M) using homotopy theory of 
the base space and constructing a universal bundle into which all 
vector bundles can be embedded. 

Now we take up the K-theory approach. 
K- t heory of vector bundles 
By way of introduction, we review how the direct sum procedure can be 

used to simplify the structure of a non-trivial vector bundle. For example, 
consider the non-trivial tangent bundle of the sphere TS’. By using the 



Gauge Theory and Moduli Space 93 

standard embedding S2 -+ R3 we can define the bundle N S 2  of all normal 
vectors to the sphere. Obviously this bundle is trivial. The direct sum of 
the two bundles 

where & ( M )  denotes the trivial vector bundle of rank k over M ,  is trivial 
as we expected by the embedding. In other words, even though TS2 is not 
trivial, its sum, TS2 @ N S 2  is. 

Now we review a generalization of this approach as another tool for 
the vector bundle classification problem. First, a vector bundle over a 
manifold is said to be stable if the dimension of the fiber is greater than 
the dimension of the base space, M .  Next, let E, F be two vector bundles 
over M of rank Ic and m, respectively. E is stably equivalent to F 
denoted by E w S  F if there are trivial bundles & ( M )  and t h ( M )  with 

E @ Q ( M )  = F @ & ( M )  

and k + 1 = m + h. Here = means bundle isomorphism. In the example 
above we have shown that TS2 mS &(S2) but the tangent bundle TS2 itself 
is non-trivial. 

Now consider 3 vector bundles E, F and G over M with E@G = FBG. 
Then [Husemoller (1966)] there is a vector bundle G’ so that G @ G’ E 

t n ( M )  for some n. From E @ G = F @ G it follows that E @ G @ G’ E 
F @ G @ G’ or E @ & ( M )  = F @ & ( M ) ,  so E w S  F. Thus, 

Theorem 5.4. If El F and G are vector bundles over M satisfying E@G = 
F @ G for some vector bundle G, then E and F are stably equivalent, i e . ,  
E wS F. 

The direct sum process for vector bundles, @, makes the set of all complex 
vector bundles Vec t@(M)  into an algebraic structure known as a semi- 
group, a set with associative combining operation, but not necessarily 
having an identity or inverses. Using an idea of Grothendieck we can then 
complete such an Abelian semi group to a full group, as follows. Suppose, 
that S is any semi-group. The corresponding Abelian group associated to 
S is the product S x S modulo the following equivalence relation - 

(s1, t l )  - (s2,tz) - for some u E S, s1 + t 2  + u = s2 + tl + u 
Thus, although S may not have inverses, the equivalence relation could 

be formally restated as saying s1 “-”tl - s2“-” t2.  In fact, the equivalence 
classes [ (s, t )]  are often denoted by the formal differences [s] - [t]. A standard 
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example starts with the natural numbers N (the additive positive integers) 
as an Abelian semi-group. The completion N x N/ N is nothing else than 
the full set of integer numbers Z, with [(z, y ) ]  M x - y ,  so [ ( y ,  z ) ]  H y - z. 

For our application, start with complex vector bundles, and the semi- 
group is provided by (Vec t@(M),  @). Its completion is 

called the (complex) K-theory of M .  Thus two pairs (E ,  F )  and (G, H )  of 
complex vector bundles over M are equivalent ( E ,  F )  N (G, H )  if and only 
if there is a complex vector bundle K over M with E @ H @ K  = G@ F @ K .  
Then, every element of K ( M )  can be written as formal difference [El - [F]  
or [ E e  F ]  of two complex vector bundles. Notice that any element [El - [F]  
of K ( M )  can be written in the form [HI - [cn(M)]  for some bundle H and 
some integer n. The proof is very simple: Consider the bundle F’ with 
F @ F’ = & ( M )  for some n. Then, 

with H z E @ F’. Define the virtual dimension of this element to be the 
difference r k ( E )  - r k ( F )  of the ranks of the two complex vector bundles. 
Reduced K-theory K ( M )  consists of all equivalence classes of complex vec- 
tor bundles of virtual dimension 0, that is, the stable equivalence pairs of 
complex vector bundles of the same dimension. In fact, the elements of 
k ( M )  are exactly the stable equivalence classes of complex vector bundles 
over M .  Let Em and Fn complex vector bundles over M of rank m and 
n, respectively. These bundles induce the elements [Em] - [ t m ( M ) ]  and 
[F,] - [&(Ad)] in K ( M ) .  First, assume that these classes are in fact equal, 
i.e. [Em]-[ tm(M)]  = [Fn]-[<n(M)]. So Em@Cn(M)@K E Fn@<m(M)@K 
for some bundle K .  By the theorem 5.4 we get Em@<n(M) N~ Fn@<m(M) 
or equivalently Em N~ Fn. For the converse, start with Em N~ Fn or 
Em @ t j ( ( M )  E F, @ & ( M )  and write down the corresponding elements in 
k ( ~ ) ,  i.e. [E, CB < j ( ~ ) 1  - [ ~ m + j ( ~ ) ]  = [Fn CB J ~ ( M ) ]  - [ < n + / c ( ~ ) ]  where 
the right hand side is equal to [Em] - [em(M)] and the left hand side is 
[Fn] - [ t n ( M ) ] .  Thus we obtain [Em] - [<m(M)I = [Fn] - [<n(M)I, SO 

K ( M )  = Vect@(M) x Vec tc (M) /  N (5.3) 

[ E ] - [ F ]  = ( [ E ] + [ F ’ ] ) - ( [ F ] + [ F ’ ] )  = [ E @ F ’ ] - [ F @ F ’ ]  = [ H ] - [ < n ( M ) ]  

Fact: K ( M )  consists of all stable equivalence classes of complex vector 
bundles over M .  

We should remind the reader that the classification of vector bundles 
provided by K-theory, both K ( M )  and l?(M), is only up to stable equiv- 
alence, which is, of course, weaker than full equivalence under bundle iso- 
morphisms. 
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As a concrete example we will calculate the K-theory of a point {*}. The 
set Vectc({*}) consists of all complex vector bundles over one point. So, for 
every possible rank we get only one complex vector bundle over that point, 
the trivial bundle. Thus, Vect@({*}) = N and we can use the Grothendieck 
construction above, both for the integers and bundles, to show K({*} )  = Z. 
For I?({*}) we can use the correspondence to the stable equivalence classes 
of complex vector bundles to show that all complex vector bundles over 
a point belong to the same element in I?({*}), i.e I?({*}) = 0. This 
calculation motivates the isomorphism K ( M )  = I? (M)  @ Z as explicitly 
shown in the next remark. 

Remark 5.4. 
The isomorphism K ( M )  = k ( M )  @ Z can be shown by abstract algebra. From above, all 
vector bundles over a point are classified by their rank, thus K({*}) = Z. Then we have a 
map T : M -+ {*} mapping all points of M t o  one point. Of course there is also a reversed 
map i : {*} + M where one point is mapped to  one fixed point in M(inc1usion). The induced 
maps of K-theory are: 

i' : K ( M )  + K({*}) = z T *  : K({*}) -t K ( M )  

The first map can be seen as the rank map, i.e. keri' = k ( M ) .  Then we obtain the exact 
sequence: 

.I 

k ( M )  5 K ( M )  K({*}) = Z 4 0 

where I is the inclusion of 2 ( M )  into K(M) and the last map i' has a (right) inverses T * .  
Thus the sequence splits, i.e. 

K ( M )  = keri' @ K ( { * } )  = k ( M )  'CBZ 

the  required relation. 

Remark 5.5. 
Now consider a few examples of K-theory for s o c e  simple complex line bundles. Since every 
complex line bundle over 5'' is trivial, we have K ( S ' )  = 0. For higher dimensional spheres, 
recall that  every Sn,n > 1 is coverable by two balls, intersecting in set homoto ic t o  Sn-'. 
Thus, the bundle can be defined in terms of transition functions mapping Sn-' ---t U ( k ) .  If 
k > n the  bundle is stable and we can build the stable unitary group U which is something 
like U ( m )  by the process of the "projective limit" 

Finally we arrive at 

k (P)  = 7rn-1(U) , 

which identifies the K-theory and (stable) homotopy groups of the unitary group pointwise. 

With much more effort one can prove this isomorphism also for the algebraic structures. With 

the help of the Bott periodicity theorem one can determine these groups. 

Remark 5.6. 
Now we can calculate the groups k(Sn). For that  purpose we need the definition of the smash 
product 

X X Y  
X A Y = -  

X V Y  
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of spaces X ,  Y ,  where X V Y is the one point union of X and Y ,  i.e. we identify one point 10 

in X with one point yo in Y .  Consider the case S' A S '  which is the torus T Z  = S' x S' with 
all one point unions of circles S' V S' L'contracted." To visualize this process, we consider the 
torus as a square with opposite sides identified. Each identified side in the torus is a circle 
S'. Thus, the contraction of S' V S' is equivalent t o  the contraction of the boundary of the  
square, which is equivalent t o  S2.  This motivates the identification S' A S '  = Sz and also the 
general result Sk A S" = S"". The definition of the smash product can also be described by 
considering the exact sequence 

X V Y - + X  x Y - - r X A Y  

of spaces leading t o  a corresponding exact sequence 

0 -+ k ( X  V Y )  -+ k ( X  x Y) --r k ( X  A Y )  + 0 

in K-theory. The Bott periodicity states that  K ( X )  €3 K ( S 2 )  is isomorphic t o  K ( X  x S'). 
F'rom the relation K ( X )  = K ( X )  @ Z we obtain the exact sequence 

K ( X )  €3 K(S2)  = ( k ( X )  €3 k ( S 2 ) )  63 k ( X )  @ k(S2) @ Z 
1 isomorphism 

K ( X  X S2) = k ( X  A S2)  @ k ( X  V S2)  @Z - 
R ( X ) @ R ( S Z )  

where we have used the obvious relation k ( X  V Y )  = k ( X )  @ k ( Y )  (a vector bundle over a 
point union of two spaces always splits into two subbundles). Thus we obtain the isomorphism: 

k ( X )  €3 k ( S 2 )  -+ k ( X  A S 2 )  

as another formulation of Bott periodicity (the KO-case is similar). Finally we obtain for 
X = S2" with S2" A S2 = S2"+' 

k(S2")  = k ( S 2 )  € 3 . .  . €3 k ( S 2 )  - 
n times 

and for X = SZn+' 

k(S2")  = k ( S ' )  €3 k(S2) €3 . . . €3 k ( S 2 )  . , 
n times 

Without proof we state that  k ( S ' )  = 0 (all complex vector bundles over S' are trivial) and 
k ( S 2 )  = Z (generated by the Hopf bundle r : S3 4 S2).  Thus, we have 

getting the "classical" Bott periodicity theorem: 

rn(U) = rn+2(U) 

or r z n ( U )  = 0 and nzn+1(U) = Z. In some sense this periodicity in the  homotopy groups of 

Lie groups is the source of all periodicities in topology (4-periodic L-groups in surgery etc.). 

Note the tensor product map 

extends K ( X )  to a ring. With this ring structure K-theory satisfies all 
of the Eilenberg-Steenrod axioms for a cohomology theory, except for the 
dimension mzom. In fact the K-theory of a point does not vanish. This is 
why K-theory is described as a generalized cohomology theory. Although it 
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does not satisfy the dimension axiom, the rest of the cohomological struc- 
ture makes K-theory very useful in (stable) classification problems. The 
ring structure means that K-theory of a manifold can be calculated by 
breaking up the manifold into simpler pieces. This is in contrast to the 
(full, not just stable) classification tool defined by the homotopy equiva- 
lence set of maps, [M,  BG], with classifying space, BG, which we define 
later. 

Although we defined K-theory in terms of complex bundles, the real case 
proceeds similarly, resulting in the ring KO(M).We now state without proof 
(see Chapter 11 of Husemoller[Husemoller (1994)l) one of the highlights of 
algebraic topology, 

Theorem 5.5. (Periodicity theorem of Bott) 
For a compact space, M ,  the tensor product map induces the isomorphism 

K ( M )  €3 K(S2)  = K ( M  x S2) 

in complex K-theory and 

K O ( M )  €3 KO(S8) E KO(M x S8) 

in real KO-theory. 

The consequences of this theorem for so many of the topics central to our 
study, such as group theory, surgery on manifolds, algebraic geometry and 
especially differential topology (Atiyah-Singer index theorem) are very im- 
portant. Although we have constructed K-theory for the complex linear 
groups, it can be extended to more general groups. In the next subsection 
we remark that every (generalized) cohomology theory, and thus K-theory, 
can be represented by the map (homotopy functor): M H [ M ,  BG] for a 
suitable space BG. In particular, we will now look at the construction of 
this (classifying) space for (complex group) K-theory K ( M )  = [ M ,  BU] . 
The Universal bundle over the classifying space 

The homotopy theory of bundles leads us to suspect that there might 
be a space containing all the information about vector bundles of given 
rank, at least those over manifolds. In fact, every homotopy class of a map 
from the base manifold into such a “universal” (or “classifying”) space de- 
fines a specific vector bundle, up to isomorphism, over that base manifold. 
Good sources for this subject include the bundle theory book of Steen- 
rod[Steenrod (1951)], especially $19, the book of Husemoller[Husemoller 
(1966)], especially Chapter 4, and the characteristic classes book of Mil- 
nor and Stasheff,[Milnor and Stasheff (1974)], especially their $5. In broad 
terms we can identify two approaches to the construction of these classes. 
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Informally, we begin with the following definition: 

A universal bundle: For dimension n and group G, a universal bundle, 
EG, (our notation) is a bundle in to  which any  other bundle over a manifold 
of dimension n and group G can be embedded. 

Steenrod then points out that the base space, BG, of such a bundle is 
a classifying space in the following sense 

Classifying space: T h e  homotopy classes of maps of any  n manifold M 
in to  BG, denoted by [ M ,  BG], precisely describes (classifies) the equivalence 
classes of principal G bundles over M .  

He then proves a theorem that characterizes universal bundles as those 
for which the bundle space, EG, is n-connected that is, ri(EG) = 0, 
for all 1 5 i 5 n. In particular, this is satisfied if EG is contractible. 
This can then be used as an effective test to determine whether or not a 
bundle is universal with respect to principal G bundles over all manifolds 
of dimension 5 n. 

On the other hand, Husemoller starts from the classifying space view- 
point. He defines a universal bundle as one, EG, for which the pullbacks 
of homotopy classes of maps of the M into BG construct all bundles over 
M .  Of course, an immediate consequence of this is that all bundles over M 
can be embedded in EG. He relegates the proof that EG is contractible to 
an excercise. 

Milnor and Stasheff restrict themselves to vector bundles and emphasize 
a more constructive approach. Using a local patch presentation of a real 
vector bundle of rank m over a manifold of dimension n allows us to regard 
the bundle locally as the product of R" x R". Thus, informally, the total 
space of the bundle can be thought of as a union of subsets of Euclidean 
space of sufficiently high dimension. For complex vector bundles, the second 
factor is C". In the following we will focus the discussion on this complex 
case. Recall we are restricting the base space to be a paracompact manifold. 

In more detail, the base space of the universal bundle is constructed 
from the linear subspaces of C". This set of Ic-planes in C", appropri- 
ately topologized and smoothed, is called the Grassmannian manifold, 
Grk,"(C).  Each point in this manifold is a Ic-plane, which we identify 
with the fiber over that point. This results in a (canonical) complex vector 
bundle over Grk,"(C) with fiber Ck and group Gl(lc,C). The total space of 
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the associated principal bundle is called the Stiefel manifold. 

Remark 5.7. 
Given a k-plane lying in C”, choose some (not unique) complementary n - k plane. Then the 
full action of Gl(n ,C)  can be decomposed into two subgroups leaving each subspace invariant. 
Since the full Gl(n ,C)  takes any k plane into any other, the family of all such planes, the 
Grassmannian manifold, can be identified with 

It is easy to see that the imposition of some Hermitian metric on C” can be used to reduce 
the groups to their unitary subgroups, so 

Similarly, the full bundle space, the Stiefel manifold, is 

From our earlier result on coset spaces and bundles, it follows that the 
Stiefel manifold, V&(C), is indeed a principal bundle over the Grassman- 
nian, G T ~ , ~ ( C ) ,  with group U(lc). Further analysis shows that for suffi- 
ciently large n, Vk,,(C) satisfies the connectivity requirements in order for 
any vector bundle over some fixed compact manifold with group U(lc) to be 
mapped into it. For this reason, Milnor and Stasheff [Milnor and Stasheff 
(1974)], page 61, refer to this Stiefel manifold as a “universal bundle,” with 
Grassmannian, Grk,n (C) , the classifying space. However, the dimension n 
in the Stiefel manifold depends on the particular compact M, so that this 
usage of the term “universal” is not so widespread currently. In fact, this 
construction can be generalized to the general paracompact, not necessarily 
compact, case by letting n go to infinity. This can be done rigorously as 
described in some detail later in this same book. Formally, we have a chain 
of embeddings - G T ~ , ~ ( C . )  -+ Grk++l(C) -t . . . -t Grk,oo(C) = Grk(C). 

The limiting bundle is obtained similarly, Vh,oo(C) = Vk((C), resulting in 
the Stiefel manifold as the total space of the universal bundle over the 
classifying space G T k ( @ . ) ,  with projection 7r : vk(C) 4 GTk(C). 

We can now use these tools to classify vector bundles in terms of maps 
from the base manifold to the Grassmannian, the base of the universal 
bundle. Given a map f : M 4 Grk (C) we can use the pullback construction 
to get a vector bundle E = f*Vk(C) of rank lc .  From the homotopy bundle 
theorem, 5.1, we know that any other bundle lying in the homotopy class 
[f] of f is isomorphic to E. Thus 
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Fact : 
bundles of rank k over M is given by  

The set of equivalence classes, Vec t@(M,k ) ,  of complex vector 

Vect@(M, I C )  = [ M ,  Grk(c)lhomotopy. 

For the real case we get a corresponding result. 
But how does the classifying space change as we look at an arbitrary 

group G instead of the U ( k )  or O(k)  subgroups of the general linear one? 
In a pair of papers, [Milnor (1956a)l and [Milnor (1956b)], Milnor provides 
the answer by constructing a space BG depending only on the group G, 
generalizing BU(k) and BO(k). Here we sketch his ideas. 

First recall the topological operation, the join X * Y between two 
arbitrary topological spaces X , Y  as the quotient space of the product 
X x Y x [0,1] with respect to the following equivalence relation. For each 
point z E X identify all points of the set {z} x Y x {0 }  - {z} and for each 
point y E Y identify all points of the set X x {y} x (1) N {y}. For example 
the join S" * S" is homotopic (and even homeomorphic) to SnSm+' for all 
n, m. Now consider the k-join 

G*k=G*G*. . .*G - 
k 

of a topological group G. Then the union 
00 

EG = U G*'" 

equipped with the direct limit topology is a contractible space denoted by 
EG. On this space there is a natural action of G and the quotient EGIG is 
the classifying space BG. Thus every countable vector bundle with group 
G action on each fiber, and so every principal G-bundle, can be classified 
by an appropriate map into BG. 

k=l 

Remark 5.8. 
The hornotopy properties of EG, in particular its contractibility, are key to its role as a 
universal bundle. Fkom the exact sequence of hornotopy groups associated to the fibration 
EG -+ BG we get from the contractibility of EG: 

rk+i(BG) = rk(G)  . 

Consider the set R(BG) of maps S' -t BG, the loop space of BG. The relation above shows 

that there is a (weak) homotopy-equivalence R(BG) N G. So let G be a discrete group then 

BG = K(G,  1) is an Eilenberg-MacLane space K(G,  l), i.e. (universal) covering described by 

the action of the discrete group G can be classifying by the fundamental group. 
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Finally, we remark that an important example of a universal space occurs 
in quantum mechanics. The space BU(1) = BS1 is CPM which is the space 
of all non-vanishing states in the Hilbert space. In physical terms, a state 
is a “ray” in Hilbert space, that is, an equivalence class of unit vectors up 
to multiplication by a U ( 1 )  phase factor. We will discuss this example in 
more detail below. 
Summary review of K-theory and classifying spaces. K-theory pro- 
vides a cohomology-like structure whose ring properties make it a very 
useful tool for classifying stable equivalence classes of vector bundles. The 
complete, not just stable, classification is provided by classifying spaces 
and bundles, BG, EG, for principal G bundles over M by identifying the 
equivalence classes of such bundles with the homotopy classes [ M ,  BG] of 
maps M -+ BG. For the groups U(k),O(lc)  and Sp(lc), we obtain spaces 
BU(lc), BO(k) and BSp(lc) classifying the bundles with structure group 
U ( k ) ,  O(lc) or Sp(k), respectively. While the information in these vector 
bundle classifying spaces is complete they are often harder to compute than 
K-theory. In fact, stable classifying spaces are obtained by taking a limit 
k -+ 00 giving U, 0 and Sp, for complex vector spaces. The corresponding 
classifying spaces BU, BO and BSp classify the stable equivalence classes of 
bundles with structure group the unitary, orthogonal and symplectic group 
(of arbitrary dimension). As expected, K ( M )  = [ M ,  BU] for complex vec- 
tor bundles, etc. The incompleteness of stable equivalence is shown by the 
example of the tangent vector bundle to S2 which is stably equivalent to 
the trivial bundle, but not actually isomorphic to it. 

5.3 Characteristic Classes 

Characteristic classes are algebraic constructions, elements of the cohomol- 
ogy groups of a base space, M ,  defined using a given bundle, E ,  over that 
space. Thus each class depends on the base space and the bundle over it. 
Originally, these structures were investigated iteratively as obstructions 
to continuing a bundle cross section from the base space simplicia1 skele- 
ton of dimension n to that of dimension n + 1. Steenrod [Steenrod (1951)] 
discusses this early approach extensively. Later, they developed into impor- 
tant tools for both the bundle classification and cobordism problems. 
Milnor and Stasheff devoted a classic book [Milnor and Stasheff (1974)l 
entirely to characteristic classes. Various approaches are characterized by 
the type of vector bundle, the choice of cohomology coefficient group, and 
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the role of K-theory, universal bundles and classifying spaces. 
In particular, we will be dealing with: 

0 Chern classes, defined for integer cohomology coefficients, R = Z, 
and complex bundle groups. 

0 Chern classes with real cohomology coefficients, IK = R, using deR- 
ham cohomology representations, 

0 Pontrjagin Classes, defined for integer cohomology coefficients, K = 
Z, and real bundle groups. These are defined in terms of Chern classes 
by complexifying the real bundle, 

0 Stiefel-Whitney classes, defined for integer mod 2 cohomology coef- 
ficients, R = Z2, and arbitrary vector bundles. 

In all of the approaches, a universal characteristic class associates to 
every G-principal fiber bundle 7r : E -+ M an element c ( E )  E H*(M,IK) 
in the cohomology ring of M with coefficient group K being one of R, Q, Z 
or Zz. Obviously the choice of group for cohomology coefficients is im- 
portant. The classes are required to satisfy certain naturality conditions, 
including invariance under maps. Thus from f : M --f N we have 
f * c ( E ( N ) )  = c ( f * E ( M ) ) .  Note the reversal of direction for cohomol- 
ogy maps. This naturality means that equality of characteristic classes 
can be used as a necessary condition for bundle equivalence. In fact, 
characteristic classes of G-bundles are uniquely determined by the classes 
c(EG) E H*(BG) of the universal bundle TG : E G  3 BG. 
Complex Case 
We start with complex vector bundles, or equivalently U(n)-principal 

fiber bundles for which the universal bundle is flu(,) : V,(C) -+ Grn(C), 
where V, is the Stiefel manifold and Gr, is the Grassmannian classify- 
ing space discussed above. As we explained there: EU(n) = Vn(C) and 
BU(n) = Gr,(C), the space of all k-planes in Cm. In this section, we will 
restrict the coefficient group to be the integers. The first step is to find the 
cohomology H*(BU(n), Z). Without proof we state ([Milnor and Stasheff 
(1974)l Theorem 14.5): 

Theorem 5.6. The cohomology ring H*(BU(n)) is a polynomial ring over 
Z freely generated by  n generators { C I ,  . . . , c,} with ck E H2'(BU(n), Z). 

So, to investigate U ( n )  bundles over a manifold M ,  start with a clas- 
sifying map f : M + BU(n). From this, the pull back produces the cor- 
responding bundle E(M, U ( n ) )  = f* (EU(n)) .  From the universal bundle 



Gauge Theory and Moduli Space 103 

classes ck(EU(n)) E H2k((BU(n),Z)  lying in the even dimensional coho- 
mology groups we obtain 

C k ( E )  = f*Ck(EU(?2)) E H y M ,  Z) 

called the k-th Chern characteristic classes of the U ( n )  bundle E over 
the base space M .  We will study these classes in more detail below, both as 
bundle classifiers and as obstructions to cross sections and other structures. 
Also, we will review the original presentation of these classes by Chern in 
terms of de Rham cohomology, with real rather than integer coefficients. 

As an introductory example, consider the (generalized) Hopf bundle 7rk : 
S2"l -+ CPk.  Each of these is a U(1)-principal fiber bundle with associated 
complex line bundle. Note that in the construction of the universal U(1) 
bundle each Grl(lc) is just CPk.  The limit process Ic -+ 00 then results in 
the universal bundle 71" : S" + CP", with S" contractible. 

There is an interesting interpretation of this bundle in terms of quantum 
mechanics. First, recall that historically Schroedinger described the state 
of a physical particle in terms of a complex valued function over space (time 
is a parameter in this presentation), 4 ( x ) .  All such realistic representations 
must also be non-zero and square integrable, or in physics terminology, 
"normalizable." In the development of the physical interpretation of quan- 
tum theory, it became evident that all physically observable properties of 
this representation were actually encoded in the absolute value of $(x). 
That is, the physics is invariant under 

-+ ei"4(z), (5.4) 

where Q is real. These transformations of representation leaving the physics 
unchanged are called gauge transformations. This set of transformations 
obviously constitutes a group, in this case, the U(1) gauge group. For now 
we leave unsettled the matter of whether or not Q is a constant. As we 
noted earlier, and will review later, looking at the generalization to non- 
constant (Y provides deep insights into the physics of electromagnetism, and 
opens the door to much of modern high energy theory. 

Shortly after physicists began these initial steps formulating quantum 
theory, von Neumann [von Neumann (1955)] undertook to make the formal- 
ism more rigorous. In particular, he pointed out that the space of physical, 
that is, normalizable, $(x) could naturally be identified as, topological S", 
in which a Schroedinger wave function is a vector in a Hilbert space. Dirac 
introduced the notation, 14), to represent the Schroedinger state function 
as a (ket) vector. In this formalism, each point of space, 2 E M ,  is assigned 
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a state vector (its eigenstate), denoted by lz), and the physical state, I$), 
corresponding to the Schroedinger wave function, $(z) E C, by the formal 
sum, 

2 

Because of physical invariance under U(1) gauge, (5.4), the physical 
state ought properly be regarded as a one-dimensional "projection opera- 
tor," an element of CP" rather than s". For the moment, let us restrict 
to the case a a constant in (5.4). Thus, the proper mathematical represen- 
tation of all physical states is the complex projective space, CP". As a 
bundle, we have 

In 
as 

U(1) - S" 

-1 (5.6) 

CP" 
fact, this displays S" as the U(1) universal bundle, EU(l),  over CP" 
the classifying space, BU(1). The cohomology of CP" is a polynomial 

algebra over Z generated by one generator lying in H 2  (CP" , Z). This el- 
ement has a dual homology class represented by the space CP1 C CP". 
Thus the classical Hopf bundle TH : S3 + S2 = CP1 is the generator of 
all other U(1)-principal fiber bundles and we obtain the first Chern class 
c1 E H 2 ( S 2 ,  Z). Now consider a map, D+ : M --+ S", defined by 

D+(Ic) = $(z)/z) no sum over z. 

Now combine this with the bundle projection in (5.6) to get another map, 

f+ = T * D +  : M + CP". 

As a representative of a class in [ M ,  BU(l)] the wave function classifies a 
U ( 1 )  principal bundle over M .  The corresponding characteristic class is 

Thus we can say that the homotopy class of a wave function, expressed 
by f+, classifies a U(1) bundle over space. However, in general, there is no 
obvious physical interpretation for this homotopy class of wave functions. 

We now look at the application of the K theory, K ( M ) ,  for a manifold 
M ,  to the study of characteristic classes of vector bundles over M .  The 
sum of all Chern classes 

c1 ( E )  = .f&. 

c(E) = 1 + Cl(E) + CZ(E) + . . . + cn(E) 
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of an n-dimensional, complex vector bundle E over M defines the total 
Chern class. For a complex line bundle L1 we obtain c(L1) = 1 + ci(L1). 
In K ( M ) ,  we can use the so-called splitting principle[Hirzebruch (1973)] 
as an aid in studying an n-dimensional, complex line bundle E ( M ) .  This 
principle asserts that for every such bundle there exists another manifold, 
M I  and a map, f : M1 + M such that the pullback bundle, El(M1) = 
f * E ( M )  splits into a direct sum of n complex line bundles L1 @&@. . .@L, 
and f * : H* ( M )  -+ H* ( M I )  is a monomorphism. For more details see pages 
251ff in [Husemoller (1994)]. 

With the help of the relation (see [Nakahara (1989)], [Milnor and Stash- 
eff (1974)l) c(L1 @ L2) = c(L1)c(L2) we obtain 

c(E)  = c(L1 a3 L2 @ * * * @ L,) 
n n 

= n c ( L i )  = n ( l  + x i ) ,  where xi = cl(Li)  . 
i=l i=l 

Thus the ci(E) are elementary symmetric functions in the xi. This split- 
ting principle then facilitates algebraic manipulations with the generators. 
Define the Chern character ch(E) of E by 

n 

ch(E) = eli 
i=l 

The development of the sum leads to 

1 ch(E) = n + c l ( E ) +  -(c?(E) -2c2(E)) +..-  
2 

The properties of the Chern character are summarized in the following 
theorem: 

Theorem 5.7. The Ghern character induces the following isomorphism 

c h :  K ( M )  @ Q  -+ @ H Z i ( M , Q )  

between the K-theory and the even dimensional rational cohomology of M .  
Furthermore, given two complex vector bundles E ,  F then the relations: 

i20 

ch(E 
ch(E 8 F )  = ch(E)ch(F) 

F )  = ch(E) -I- ch(F) 

extends the isomorphism ch to a rang isomorphism. 
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Of course because this is expressed in terms of rational rather than integer 
coefficients the torsion part of K theory does not appear in this isomor- 
phism. That is why characteristic classes do not give a complete answer 
to the classification problem, i.e. two bundles with identical characteristic 
classes need not be isomorphic. 
Real Case 
Now consider other groups including real ones. The case of an SO(n) prin- 

cipal fiber bundle leads to classifying spaces denoted by BSO(n). These 
spaces have a much more complicated structure than BU(n) or BSU(n) 
although with appropriate modifications real results parallel the complex 
ones sketched above. Corresponding to 5.6, we combine Theorem 15.9 and 
7.1 from [Milnor and Stasheff (1974)l to get: 

Theorem 5.8. The (rational) cohomology ring H*(BO(n), Q)  divides into 
two parts. The (rational) cohomology ring H*(B0(2k + 1 ) , Q )  is a poly- 
nomial ring over Q freely generated by k generators {PI,. . . , p k }  with 
p, E H4,(B0(2k + l), Q). Otherwise, the (rational) cohomology ring 
H*(B0(2k),Q) is  a polynomial ring over Q freely generated by k - 1 gen- 
erators {PI,. . . ,pk-l} with p, E H4"(B0(2k),Q) and an additional class 
e2k E H2'(B0(2k), Q). The Z2 cohomology ring H*(BO(n), Z2) is a poly- 
nomial algebra over Z2 freely generated by  n generators {wi, . . . , w,} with 
wm E Hm(BO(n),Z2). 

We remark that instead of using the full rationals, Q, as coefficient group 
it is enough to consider a ring over Z containing 1/2. The classes described 
in this theorem are those mentioned at the beginning of this section. 

From a map f : M + BSO(n) we obtain the corresponding classes on 
M by pullback. That is, let E be a real vector bundle over M defined by 
the homotopy class of the map f, then pk(E) = f * p k  E H4k(M,Z) etc. 
These classes, pk(E) are called the Pontrjagin classes of the bundle E .  

There are several notable relations between the characteristic classes. 
Let E be an n-dimensional, real vector bundle and E c  = E @ C. its com- 
plexification. The expression ~ ( E c )  and p(E) denotes the sum over all 
Chern and Pontrjagin classes, respectively. 

0 Let F be another vector bundle, then p(E  @ F )  = p(E)p(F). 
0 pk(E) = (-1)'c2k(EC) 
0 Let P be a complex n-dimensional vector bundle. Using a real rep- 

resentation of the complex structure we obtain a real 2n-dimensional 
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vector bundle P, with 

C((Pr)C) = 1 - Pl(P,) + PZ(P,) - . * * 

= [1+ c1 (P) + CZ(P) + . . . ] [1 - c1 (P) + c2(P) - * * * I  
In particular, pl(P,) = (cf - 2cz)(P). 

highest Pontrjagin class is pk(E) = (e(E))2. 
0 Let E be an even-dimensional real vector bundle with n = 2lc then the 

0 For complex bundles we have (e(P,))2 = pk(P,) = (Ck(p,.))2.  

The corresponding map from KO-theory (K-theory for real vector bun- 
dles with orthogonal group) to cohomology is much more complicated and 
depends on the torsion in cohomology. The interested reader is referred 
to the standard literature [Husemoller (1994); Karoubi (1978)] where the 
necessary relationship to Clifford algebras is worked out. 
The Weil homomorphism 
To this point our discussion of characteristic classes has been rather ab- 

stract and formal. We now shift gears and review an approach pioneered 
by Chern, which makes use of a bundle connection, and thus is at least 
formally related to the physics of gauge theory. In this original form, 
the Chern classes are defined as elements of the deFtham cohomology, with 
real coefficient group, in distinction to the integer classes we used in and 
following Theorem 5.6. First recall some facts from group theory. We 
know that every G-principal bundle over the manifold M is given by a 
map f : M 4 BG and the isomorphism classes are given by the homo- 
topy classes [f]. Furthermore as shown in Steenrod[Steenrod (1951)l or 
Husemoller [Husemoller (1994)], homotopy groups .TTk(G) and T k + 1  (BG) are 
isomorphic, since the bundle space, EG, is contractible. The Hurewicz the- 
orem provides a relation between the cohomology of H*(BG) and H*(G). 
Since the cohomology of a Lie group is determined by the cohomology of 
the corresponding Lie algebra we are led to seek a map “H*(g)  4 H*(M)” 
corresponding to f* : H*(BG) 4 H*(M).  

Specifically, let G be a Lie group with Lie algebra g. Let Ik(G) be the 
set of symmetric multilinear mappings 

x g 4 R  :gx... 
k 

such that f(atla-’, . . . ,atka-’) = f(t1,. . . , t k )  for t l , .  . . , & , a  E G. The 

original Chern construction is based on a mapping from I(G) = C Ik(G) 

to the 2lc-forms defined on the total space P of a principal fiber bundle over 

00 

k=O 
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M with group G. Choose a connection form w in P with curvature form 
R. For each f E I k ( G ) ,  let f (R)  be the following 2k-form on P: 

for tangent vectors X I ,  . . . , X2k E T,P in u G P where the summation is 
taken over all permutations u of (1,2,. . . ,2k) and E, denotes the sign of 
the permutation n. The following theorem defmes the Weil homomorphism 
I ( G )  E H * ( M , R )  and its properties. 

Theorem 5.9. Let P be a principal fiber bundle over M with group G and 
projection T : P 4 M .  Choosing a connection in P ,  let R be its curvature 
form on P .  

(1) For each f E I k ( G ) ,  the 2k-form f(R) on P projects to  a (unique) 
closed 2k-form, say fl(R), on M ,  i.e., f (R)  = r*(f(R)); 

(2) If we denote by w(f) the element of the deRham cohomology group 
H2‘“(M,R) defined by the closed 2k-form f(R), then w(f)  is indepen- 
dent of the choice of a connection and w : I ( G )  + H * ( M , R )  is an 
algebra homomorphism. 

Detailed proofs are available in Husemoller[Husemoller (1994)], Milnor and 
Stasheff[Milnor and Stasheff (1974)l and Nakahara[Nakahara (1989)l. The 
critical issue in this theorem is the independence of the deFtham cohomol- 
ogy element, w (  f), from the specific choice of connection. Informally, this 
is a consequence of an argument along these lines. First, we can reduce any 
change of connection to an “infinitesimal” one, dw, a g valued one form. 
Then, to first order in dw, f (0) changes by an exact differential plus terms 
corresponding to the adjoint action of g on R. The differential term van- 
ishes since the map is into the deRham cohomology group and the adjoint 
action is trivial because of the invariance of I .  This is indeed a beautiful 
result, relating the geometry and physics of gauge theory to  topology. We 
should again point out that the Chern cohomology classes as just defined 
are all elements of deRham cohomology, which is necessarily based on real 
coefficients, rather than the integers as we used in the earlier introduction of 
Chern classes. This can lead to some confusion in the meaning of “Chern” 
class unless care is taken. 

More concretely, we now investigate the algebra I (G)  (or commutative 
ring) for the classical (semi-simple) Lie groups U ( n ) ,  SO(n) and S p ( n ) .  It 
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turns out that the full set of invariant polynomials can actually be gener- 
ated from determinant evaluations reminiscent of the eigenvalue problem. 
See [Milnor and Stasheff (1974)], page 299 ff. The polynomial functions 
f1,. . . , fn on the Lie algebra g of G for these groups are, respectively: 

(1) For G = U(n), 
n 

det(XIdn + iX) = A" + x(-l)nfn(X)Xn-k for X E ~ ( n )  

These fn are algebraically independent and generate the algebra of 
(invariant) polynomial functions of u(n). 

k=l 

(2) For G = O(m)  (where m = 2n or m = 2n + l), 
n 

det(A Id, - X) = An + fn(X)An-k for X E o(m) 
k=l 

These fn are algebraically independent and generate the algebra of 
(invariant) polynomial functions of o(m). 

(3) For G = Sp(n), 
n 

det(XId2, + iX) = X z n  + x(-l)nf,(X)X2(n-k) for X E sp(n) 

These fn are algebraically independent and generate the algebra of 
(invariant) polynomial functions of sp(n). 

(4) For G = SO(m) and m = 2n + 1, we have the functions f l , .  . . , f n  
analogous to the O(m) case. But for m = 2 n  there exists a polyno- 
mial function g such that f n  = g2 and the functions f1, . . . , f n - l ,  g 
are algebraically independent and generate the algebra of (invariant) 
polynomial functions of so(2n). 

k=l 

The algebra I (G)  for the exceptional Lie groups F4, G2, E6, E7, E8 is also 
generated by a finite number of polynomial functions i.e. 2 functions for 
G2, 4 for F4, 6 for E6, 7 for E7 and 8 for Es . We will not go into the details 
here. 

Now let P be a GZ(n, C)-principal fiber bundle over M with curvature form 
0 defined on P. By theorem 5.9 there is a unique closed 2k form Yk such 
that 7r*(yk) = f k ( R ) .  Thus 

Chern-Weil theory 
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leading to the kth Chern class as Ck E H 2 ‘ ( M 1 R )  generated by yk. Let F 
be the curvature form on M projected to P, i.e. x*F = R then the total 
Chern class c(P) is 

c ( P ) = c ( F ) = d e t  Id,+-F = l + c l ( F ) + c z ( F ) + . . .  . (5.7) 

As a simple example, consider a 2-dimensional complex vector bundle 
P over a 4-dimensional manifold M with structure group G = SU(2). The 
curvature form F on M can be chosen locally to be: 

( ;x ) 

1 
2 

where gal a = 1,2 ,3  are the Pauli matrices, a basis of su(2). From this 

F = Fa(oa/2i) = -F,4,(~a/2i)d~’” A dx” 

1 + (i/27r)(F3/2i) (i/27r)(F1 - iF )/ 
( i / 2 ~ ) ( ~ l +  i ~ ~ ) / 2 i  1 - ( i / 2 ~ ) ( ~ ~ / 2 i )  2i) 

= det 

= 1 + ~ ( i / 2 x ) ~ ( F ~  A F3 + F1 A F1 + F2 A F 2 )  

or c l (F)  = 0 and c2 = (i/27r)’tr(F A F )  = det(iF/2x)l. For a general 
k-dimensional complex vector bundle the Chern classes are 

1 

i 
2x 
1 

8x2 

C l ( F )  = -ttr(F) 

C z ( F )  = -[ttr(F A F )  - t r ( F )  A t r (F) ]  
..... 

c k ( F )  = ( i / 2 ~ ) ~  det(F) . 

Because of the tracelessness of the Pauli matrices, this agrees with our 
previous example. 

Now shift to the real case. Consider a real Ic-dimensional vector bundle 
P over M with structure group O(k)  (by introducing a fiber metric leading 
to a Riemannian metric on M ) .  The curvature form F on M defines the 
Pontrjagin classes (recall theorem 5.8) by 

lThe trace and determinant are always understood to be taken with respect to a suitable 
representation of the structure group. 
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2 
-1 2 (L) 27r t r ( F 2 )  

1 (L) [ ( t r (F2))2  - 2tr(F4)] 
8 27r 

4 

6 & (k) [ - ( t r (F2) )3  + 6(tr F2) ( t r  F 4 )  - 8( t r  F 6 ) ]  

k (&) det F. 

We will now look more closely at the Euler class, referred to in theorem 5.8. 
Let M be a 2m-dimensional (if the dimension is odd, the Euler class van- 
ishes) orientable Riemannian manifold with tangent bundle T M .  Denote 
the curvature form by R. By introducing an orthonormal frame reduce the 
structure group of T M  down to SO(2m). Let p ,  be the highest Pontrjagin 
class of M .  The curvature R is a 2-form and is thus commutative under the 
wedge product A. The form R is also so(2m)-valued, that is, its value is a 
skew-symmetric 2m x 2m matrix. Note that the determinant of a 2m x 2m 
skew-symmetric matrix A can be written as a square of a polynomial called 
the Pfaffian P f ( A ) ,  

det A = (Pf (A) )2  

The Pfaffian is given by 

where the sum is over all permutations P weighted by the sign of the 
permutation, sgn(P). For more details, see pages 309ff of [Milnor and 
Stasheff (1974)]. In our notation above the Euler class e(R) is then given 
by 

e (R)=Pf  - (3 (5.9) 

By way of illustration consider the example of the (unit-)sphere M = 
S2 with tangent bundle T S 2 .  Recall that theorem 5.9 assures us that 
the classes will be independent of choice of connection, so we choose the 
simplest, spherical geometry. The Lie algebra of the SO(2) group is of 
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course the one dimensional set of antisymmetric 2x2 matrices. The Lie 
algebra-valued curvature form then has only one component, given by 

R 1 2  = sin Ode A d4 

in the coordinate system (O,4). Formally we obtain for the Pfaffian with 
m = l  

P f ( A )  = - A 1 2  = A21 

and thus for the Euler class 

In the coordinate system of the sphere we obtain the Euler class, 
1 

21T 
e(S2)  = - sin Ode A d4 

It is interesting to note that 
27r R 

which agrees with the topologically defined Euler characteristic, or number, 
of the sphere, x(S2)  = 2. This agreement is the content of the Gauss- 
Bonnet theorem: 

J ~ ( M )  = x ( ~ ) ,  (5.10) 

for a compact orientable manifold M without boundary. If M is odd- 
dimensional both e and x vanish. 

As a second example we will write down the Euler class for an orientable 
four-manifold M .  The structure group of T M  is SO(4) and we obtain for 
the Pfaffian of a 4 x 4 skew-symmetric matrix A: 

M 

1 . .  

4! Pf (A)  = ~ 4 1 2 ~ 4 3 4  - ~ 4 1 3 ~ 4 2 4  + ~ 4 1 4 ~ 4 2 3  = - fZ3"AijAkl 

and finally for the Euler class 

with the totally anti-symmetric tensor fzj'l. 

(5.11) 

Remark 5.9. 
This Euler characteristic, or number, for a compact space, M ,  E ( M )  has a long and fruitful 
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history connecting topology, differential topology, and geometry. It was originally defined as 

the signed sum of the dimensions of homology groups of M .  See for example, Vick [Vick 

(1994)], p 63. If M is smooth, it is related to the existence of fixed points for flows generated 

by vector fields [Milnor (1965b)l. In turn, this implies that it is an “obstruction” to  the 

continuation of a global non-zero vector field. Finally, the Gauss-Bonnet theorem ties it to 

geometry, in a manner presaging Chern classes. 

Stiefel- Whitney classes 
Stiefel-Whitney classes are characteristic classes, generally denoted by 
wi (E( M)), lying in the cohomology group Hi ( M ,  Z2) but dependent on the 
choice of vector bundle, E over M .  Because the coefficient group is Z2, these 
cohomology groups cannot be described by the differential forms of deRham 
cohomology over IK = R. However, the wi have their own special applica- 
tions as we will shortly see. In the book by Milnor and Stasheff[Milnor and 
Stasheff (1974)], dedicated to characteristic classes, Stiefel-Whitney classes 
are the first ones introduced and then using an axiomatic presentation. 
Their construction in a later chapter makes use of the techniques of Steen- 
rod squares and the Thom isomorphism, [Milnor and Stasheff (1974)], page 
90, as we will briefly review below. Here we will comment on a few salient 
points. First, the fact that the coefficient group is Z 2  rather than Z leads 
to the rather mysterious looking equations 

1 + 1  = 0 ,  1 = -1. over Z2 (5.12) 

Next, a multiplicative operation, the cup product in cohomology (see, for 
example, [Vick (1994)]) can be used to convert H * ( M ,  W) into a ring. This 
product generalizes the wedge product for forms in deRham cohomology 
and shares the antisymmetry properties of latter. However, in the Stiefel- 
Whitney case of IK = Zz, all antisymmetry is replaced by symmetry since 
-1 = 1, noted in (5.12). 

An important property of this cup product for Stiefel-Whitney classes 
is the Whitney “Theorem,” which is actually presented as an “Axiom” by 
Milnor and Stasheff, 

k 

W k ( E  Cf3 F )  = C w i ( E )  U W k - i ( F ) ,  (5.13) 

where E, F are two vector bundles over the same base space. When applied 
to the total class, defined by 

i = O  

w(E) = l + w i ( E ) + w z ( E ) + ~ ~ ( E )  + - . a  
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we get 

w(E @ F )  = w(E) u w(F) 
For the special case of E = T M ,  the tangent vector bundle, it turns out that 
the total class is generated by one element. More precisely, we paraphrase 
Corollary 11.15 to Wu’s theorem as stated by Milnor and Stasheff[Milnor 
and Stasheff (1974)], 

Corollary: Let M be a manifold of dimension k m  f o r  which H*(M,Z2)  is 
generated by one generator a E H k ( M , Z 2 )  1 5 k. T h e n  the total Stiefel- 
Whitney class is given by 

w ( T M )  = (1 + a ) m f 1  . 

Note that the condition on H * ( M ,  Z2) will be satisfied for m = 2 and 
k = 1,2 ,4 ,8 .  

We again refer the reader to Milnor and Stasheff[Milnor and Stasheff 
(1974)], 58, for the explicit construction of Stiefel-Whitney classes using 
the Steenrod squaring operation. We close this section by noting some 
applications of Stiefel-Whitney classes for the tangent bundle T M  of a 
manifold M .  

0 w1 is an obstruction to orientability of M .  That is, M can be oriented 
if and only if w l ( T M )  = 0. 

0 w2 is an obstruction to the definition of a (global) spin structure on an 
oriented manifold M .  That is, such a spin structure exists on oriented 
M if and only if w2(TM) = 0. 

We will discuss these points further in the next section. 
Because of the importance of a spin structure in physical theories and 

their implications for mathematics, the obstruction to a spin structure pre- 
sented by w2 limits the range of useful base manifolds. However, it turns 
out that a generalization of Spin to Spinc, is not subject to this limitation, 
at least for four manifolds. 

5.4 Introduction of Spin and Spinc Structures 

Einstein’s principle of (special) relativity requires the invariance of the 
spacetime distance measured by the Minkowski (flat) metric to insure that 
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all reference frames see the same speed of light. This bedrock principle is 
based on the observations of Michelson and Morley in the late 19th century 
showing the independence of light speed on direction as the earth moves 
through its orbit. Mathematically, such reference frame transformations are 
described by the group SO(3,l) also known as the (proper, homogeneous) 
Lorentz group.2 Quantum mechanics or quantum field theory incorporates 
Einstein’s relativity by requiring that the presentation of its theories also be 
invariant under the Lorentz group. Since quantum states are represented 
by complex vectors, this means that quantum theory requires complex rep- 
resentations of this group. Elements of the Lie algebra, described physically 
as “infinitesimal” transformations, turn out to be related to physical ob- 
servables, and invariance of a theory under elements of a transformation 
group can be shown to correspond to the conservation (time constancy) 
of some corresponding physical quantity. This deep and important connec- 
tion between invariance and conservation laws is summarized in Noet her’s 
Theorem as we discussed in the previous chapter. For more insights into 
this subject, refer to standard quantum field theory texts, such as [Ramond 
(1990)],[Hatfield (1992)]. 

First, recall a fundamental fact of Lie theory: A Lie group determines 
its algebra, but its algebra only determines the local structure of the group. 
One obvious difference occurs when the group is not connected. But even 
if connected it may not be simply connected. In fact, this is the case for 
SO(3,l)  for which nl(SO(3,l)) = ZZ. If the physics resides in the Lie 
algebra, then we must search for a uniquely related group. This is where 
the physics of spin appears. 

The “unentangling” of a non simply connected space is accomplished by 
the mathematical structure known as a covering space. For the Lorentz 
group, SO(3, l), this is provided by SL(2, C), the spin group of Minkowski 
spacetime. 

The indefinite nature of the Lorentz metric deprives it of an essential 
feature for many mathematical applications. In particular, the Lorentz 
metric distance cannot be used to generate the locally Euclidean topology 
of spacetime manifolds. For this, and other reasons, physicists often in- 
vestigate formal theories resulting from the replacement of the metric of 
signature (-, +, +, +) by the Euclidean one, (+, +, +, +). 

’The full group representing all possible reference frame transformations satisfying the 
Einstein’s principle of special relativity includes dilations, translations and inversions. 
However, its structure does not play a role in our considerations here. 
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Remark 5.10. 
Since the Hodge operator equation (generalization of Vz) for the  Minkowski metric produces 

a hyperbolic equation, with wave motion of finite speed, while the Euclidean metric produces 

an  elliptic equation (“infinite” speed), quantum particle models for Euclidean signature met- 

rics are referred t o  as instantons. While the physics of such structures is certainly dubious, 

they have proven t o  be useful in exploring theoretical constructs in both quantum physics and 

related mathematics, such as, especially, the Seiberg-Witten formalism. 

For now we deal with Euclidean space with group SO(4) for which the spin 
group can be represented as Spin(4) = SU(2)  x S U ( ~ ) ~ .  Note, however, that 
it is standard terminology to use the term “spin” to refer to the covering 
groups of the special orthogonal groups for metrics of both definite and 
indefinite signature. 

First, we note that for a manifold to support a spin structure, it must 
at least be orientable. Let T M  be the tangent bundle of a manifold M 
with structure group O(rn). To T M  we associate a frame bundle LM with 
transition functions gij : UinUj  -+ O(rn). Referring to Nakahara[Nakahara 
(1989)], pages 402ff, we can define 

f(Ui7 U j )  = det gij = f l ,  SO, f E Ct ( M ) ,  Cech 
as a Cech chain. In fact, it is a cocycle since for ui n Uj n u k  # 0, 

g i j g j k g k i  = IdO(rn). 
As a cocycle it has a projection into an element of H t  which turns out 
to be the first Stiefel-Whitney class, 201. On the other hand, this class is 
trivial, i.e., equal to one, if and only if f is a cobound. In the Cech sense, 
this would mean 

f ( U i ,  U j )  = det gij = X(Ui)X(Uj), 

for some X as a function of coordinate patch, which can be taken as its 
orientation. Thus, the orientability of M ,  i.e., the existence of a covering 
for which every f(Ui, U j )  = +1, is precisely the condition that ‘w1 = 1 using 
multiplicative representation, or 0 for the additive one. 

Remark 5.11. 

Cech 

At this point we should clarify the relationship between two possible representations of the  

coefficient group Zz, namely as the additive group with elements (0, l}, or equivalently as the 

multiplicative group of elements (1, -1). The map x -+ exp(iTz) can serve as the  isomor- 

phism. In the orientability discussion above we use the  multiplicative representation. 

3Recall that SU(2)  is isomorphic to the multiplicative group of unit quaternions, so 
SU(2)  is diffeomorphic to S 3 .  
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From here on assume an orientation of M.4 Furthermore, we will be 
interested only in the case of a compact, even closed, M. Introducing a Rie- 
mannian metric on TM, we can construct a principal bundle, represented as 
LM, the frame bundle with transition functions gij E SO(m). Now we look 
into the question of building a Spin bundle over M. Denote the covering 
map by q5 : Spin(m) + SO(m). We look to lift the SO(m) frame bundle, 
LM, to a spin bundle, Spin(M,m). Such a lift is called Spin structure. 
This requires the existence of transition functions tjij in Spin(m) such that 

q5(jij) = g i j ,  (5.14) 

with bundle consistency conditions, 

t j . . - .  zjgjkgki - = IdSpin(m) 4ii = Idspin(m). (5.15) 

Assuming a “good covering” [Bott and Tu (1995)] all intersections Ui n Uj , 
are contractible, so the local lifting in (5.14) is ensured. However, the 
“cocycle” condition in (5.15) may not be satisfied. An argument extending 
that above for orientability is described both in Nakahara[Nakahara (1989)l 
and Moore[Moore (2001)l and leads to the following theorem. 

Theorem 5.10. Let M be a manifold. The tangent bundle of M admits 
a spin bundle structure i f  and only i f  wl(M) and w2(M) are trivial (i.e. 
M is orientable and a unique transport of spinors is possible). The spin 
structures are in one-one correspondence with the elements of H (M, Z2). 

From Clifford algebra arguments, the covering group Spin(m) can be rep- 
resented as a matrix group acting on Ck where k = 2[m/21 and [.] is the 
integral part of 2. Associated to the principal bundle, Spin(m,M) then 
is a vector bundle, Spinor(m, M), with fiber C k .  Sections of this bundle 
are called spinors. If we choose a non-trivial spin structure, corresponding 
to a non-trivial element of H1(M,Z2), then the sections of Spinor(M,m) 
associated to this structure are called exotic spinors. 

For realistic physics we need a pseudeRiemannian manifold with struc- 
ture group SO(n, k). Specifically, this group is the set of real (n+k) x (n+k) 
matrices leaving invariant a “metric,” represented by a diagonal matrix with 
n positive and k negative diagonal entries. For a thorough study of these 
groups using Clifford algebras, see [Morgan (1996)l and [Moore (2001)]. 
The double cover of this group is the spin group Spin(n, k) of the man- 
ifold defining the corresponding spin bundle. Manifolds which can carry 
41t should be mentioned that even in the non-oriented case there is a precursor to Spin, 

the so-called Pin structure defined by a map q5 : Pin + O(m)  with kernel ker q5 = Z2. 
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a pseudo-Riemannian structure and a spin structure are described by the 
following theorem. 

Theorem 5.11. Let M be a m-dimensional manifold. M can be given a 
pseudo-Riemannian structure of type (n, k) if and only if the tangent bundle 
admits a decomposition T M  = C" @ qk into a time-like and space-like sub- 
bundle. M can be given a spin structure if and only if 

W 2 ( M )  = 'uI1 ( C )  u 201 (q) 

in H 2 ( M ,  232). The distinct spin structures are in one-one correspondence 
with the elements in H 1 ( M ,  ZZ). 

The preceding discussion points out that not every manifold will support 
a Spin structure. However, a generalization, Spinc can be provided for any 
oriented Cmanifold M .  Furthermore, this is precisely the structure we need 
to formulate Seiberg-Witten theory. 

First, the group Spinc(n)can be defined by the exact sequence 

0 -+ Z2 -+ Spinc(.) -+ SO(n) x U(1) + 0 .  

In dimension four, of interest to us, the Spin group can be written Spin(4) = 
SU(2)  x SU(2)  with explicit representation as the set of 4 x 4 matrices of 
type 

with A& E SU(2) .  This Lie group of real dimension six is contained in a 
Lie group of dimension seven , 

Spinc(4) = { B }  = { ('2 ,:-) : Ah E SU(2),X E U(1) 

This results in a homomorphism a : Spinc(4) -+ U(1) with a(B)  = 
det(XA+) = det(XA-) = X2. 

Remark 5.12. 
Another representation of Spin, is based on the space of spacetime quaternions, V, complex 
2 x 2 matrices of the form 

t + i z  - x + i y  
Q = ( z + i y  t - i z  ) 

Define p : S p i n c ( 4 )  -+ GI(V) by 

P ( ( Q )  = ( A A - ) Q ( A A + ) - ' .  

The Euclidean spacetime metric is given by det Q which is preserved by p. However, the U(1) 

component, A ,  factors out of this, giving the map of Spinc onto SO(4) x U(1) described above. 
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A Spinc structure on a 4-manifold M is the extension of the structure group 
SO(4) of T M  to Spinc(4). Let gij  : Ui n Uj 4 SO(4) be the transition 
function of T M  and j i j  : Ui n Uj 4 Spinc(4) the extension of gij  known 
to exist in the contractible Ui n Uj .  The obstruction presented by a non- 
trivial w2 to the global extension of this map for Spin is not present for 
Spinc precisely because of its additional U(1) component, so that 

Theorem 5.12. Every compact, oriented four-manifold possesses (at least 
one) Spinc structure. 

For details of the proof of this see [Moore (2001)] and [Hirzebruch and 
Hopf (1958)]. The proof rests on the fact that if M 4  is a compact, oriented 
4-manifold, then w2 E H2(M4,Z2) is characterized by the equation z2 = 
w2 U z for all z E H 2 ( M 4 ,  Z2). In fact, w2 is the &-reduction of an integer 
class in z E H 2 ( M ,  Z), i.e. z2 = w2 U II: mod 2. 

In general, an oriented vector bundle, cn, over a manifold M possesses 
a spin structure if and only if w2(<) is the mod 2 reduction of an integral 
class. 

5.5 More on Yang-Mills Theories 

In the previous chapter we discussed an important insight into the signifi- 
cance of local phase shifts of the wave function and a resulting U(1) gauge 
theory, which in its simplest form is formally identical to electromagnetic 
theory derived from macroscopic experience. Here we will briefly review 
this argument from the time evolutionary viewpoint. First, recall that the 
quantum state is properly represented by a ray in Hilbert space, that is, 
a point in (CPoo. However, practical equations are generally expressed in 
terms of “wave functions.” For brevity in presentation and ease of com- 
parison with the physics literature, we divide space from time, replacing 
z --+ (t ,  r) so the wave function is typically something like $(t, r) and its 
time evolution expressed in terms of a Hamiltonian operator, H ,  by the 
Schroedinger equation, 

(5.16) 

where h is Planck’s constant. Also, we will assume a constant spacetime 
metric to replace forms by vectors. Typically H is an operator which con- 
tains spatial derivatives, say V. Now, recalling that the physical state is 
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actually the equivalence class of all {cia$}, we are naturally led to investi- 
gate the question of invariance of (5.16) under local phase transformations, 
$ + eia(rit)$. If we can do this we will have constructed a U ( 1 )  gauge 
theory. In fact, the replacement 

d 
at 0 = (-, -V) + 0 - A, 

where 

(5.17) 

(5.18) 

and where the transformation $ --t eia(rit)$ is accompanied by 

(5.19) 
i 
tL A + A - -ma, 

achieves two important results: 

0 a formulation describing the effect of an external (independent of $) 
field, represented by potentials (4, A), on the particle, $, and, 

0 a U ( 1 )  gauge theory, if A is regarded as the U ( 1 )  connection, with stan- 
dard gauge transformations (rewritten from exterior derivative form) 
(5.19). 

Of course, before we can claim to have a complete theory, we must write 
the equations for the connection. If we choose the most “natural” and 
“simple” we arrive a formalism which we can, at least f o m a l l y ,  identify 
with electromagnetism, as discussed in the previous chapter. 

Our next step is to generalize the gauge group from the abelian U ( 1 )  
acting on a state representation contained in the single $, to the more 
general non-abelian case, for example, S U ( n )  acting on matrices ( $ O ) ,  a = 
l...n. 
Non-abelian Yang-Mills theory 
Prompted by the U(1) physical model, consider now a principal fiber bundle 
P over the smooth manifold M with structure group G. Let A and F be the 
(local, base space) connection l-form and corresponding curvature 2-form. 
The covariant (exterior) differentiation is defined by D w  = dw + A A w + 
( - l ) k w  A A for a k-form w with values in the Lie algebra g of G. Recall 
that F = D A  = d A +  A A A  and D F  = d F  + A  A F - F A  A = 0 (Bianchi 
identity). Also note that the wedge product of Lie algebra valued forms 
implicitly involves the Lie bracket operation. 

Our task now is to obtain field equations for the connection. Using the 
models in the previous chapter, we look to variational principles as the 
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means to this end. That is, we construct a functional from an integral, 
called the action, and obtain field equations by extremizing this action, 
subject to boundary conditions, which are not needed, of course, if the 
manifold is closed. If the manifold is open, these boundary conditions are 
generally of the form “vanishing sufficiently rapidly at infinity.” For an 
action, we look at the G-invariant expressions such as t r ( F ) ,  t r (F  A * F )  
etc. The simplest non-trivial one of these is t r (F  A * F ) .  We now select the 
integral 

S = -- t r (F  A * F )  (5.20) 
4 ‘s 

M 

as the action of the (free) Yang-Mills theory for group G. Extremizing 
S with respect to variations of A with suitable boundary conditions, gives 
the (free) Yang-Mills equations 

D F = O  D * F = O  (5.21) 

where the first equation is nothing but the well-known Bianchi identity. We 
now note some facts about these equations. For the definition of the action 
we need a metric on the manifold encoded into the Hodge operator * and 
a representation of the group G needed for the definition of the trace. We 
can either assume a pre-given metric, or look to Einstein’s general relativity 
to give us one. The group representation is a priori undetermined, but we 
are guided by how interesting the resulting theory is, either in physics or 
mathematics, or ideally by both. 

The action in (5.20) and equations (5.21) are incomplete because they 
do not include a coupling to matter. To set this question in context, let us 
review the physics of matter f--) connections, assuming a spacetime model 
of four dimensions. 

“Matter” is represented by a matrix of wave functions, say 

9 = ($a), a = l...n. 

From physics we have reason to suspect the existence of a symmetry, a 

Again from physical considerations, we construct a “free” matter action 
group G acting linearly on Q. 

for Q, 
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From spacetime invariance of Smatter we obtain a one form, J ,  whose 
dual is closed. This is a particular application of Noether’s theorem 
with respect to spacetime translation invariance. We interpret J as 
the matter current, and d * J = 0 describes conservation of matter 
(represented by XP in this case). 

0 Gauge, G, invariance of Smatter can be accomplished by replacing V 
by a gauge covariant derivative, involving a connection, A,  with values 
in the Lie algebra of G. 

0 We choose some appropriate “free” action for A, such as in (5.20). 
0 The replacement of V by gauge covariant derivative in Lmat ter  typically 

results in a replacement of this “free” Lagrangian, 

Lmat ter  -+ Lmatter + Linteraction (J, A ) .  

0 Finally, the total action is 

S = Smatter + Sconnection + Sinteraction. 

Physical Gauge Theories: The physical assumption of G gauge inwari- 
ance has led to a n  explicit form for the interaction Lagrangian and action, 
which in turn describes how the matter produces the connection field, and 
then how the connection field effects the matter field. This is the standard 
quantum field theoretic model for understanding the classical notion of force 
interaction between particles. 

Returning to our explicit Yang-Mills model, excluding the action for the 
matter itself, we arrive at field equations 

S = -- t r ( F  A * F + A A  * J )  

D * F = * J  . 
4 ‘s 

M 

D F  = 0 

(5.22) 

(5.23) 

Recall our extensive discussion of this procedure for the U(1) representation 
of electromagnetism starting with equation (4.87) in the previous chapter. 
For a given matter action (like a Dirac field action) we can construct such 
a current by changing the partial derivative to a covariant derivative. 

We now note a few additional points related to physical gauge theories. 
The strength of the connection (force) field is properly meashred by the cur- 
vature form, F .  For quantum gauge theories derived from classical theories, 
this form measures the macroscopically observed classical “force per unit 
charge.” Another, specifically quantum quantity is the Wilson loop which is 
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the exponential of the integral of connection A around a closed curve. This 
is also called holonomy. For example, if a stream of particles represented 
by this quantum field is split into two paths, corresponding to closed loop, 
and then recombined the Wilson loop measures the phase difference and 
can be directly measured by the interference pattern. this is known as the 
Aharonov-Bohm effect , originally described (and experimentally detected) 
for the V (  1) electromagnetic field. 

We should briefly discuss possibly confusing usage of the term “gauge 
group.” Originally this term applied to G itself, corresponding to the phys- 
ical notion of a global group of transformations acting on a fixed vector 
representation space. However, in more recent applications G is the struc- 
ture group of a bundle over a base manifold, M ,  providing the mathematical 
underpinnings for the physical notion of local gauge transformations, where 
the group element varies with the point in M.  For a topologically trivial 
manifold (contractible) for which the bundle is simply a product, the group 
action is on sections, provided by functions from the manifold to the struc- 
ture group G acting on each section point by point. This is often referred to 
as the local gauge group. For non-trivial bundles we have to consider the 
smooth automorphisms Aut(P) of the principal bundle P together with the 
projection 7r : P -+ M which projects Aut(P) to the diffeomorphism group 
D i f f ( M )  by way of a group homomorphism h : Aut(P) t D i f f ( M ) .  The 
kernel ker h of this homomorphism forms a group again, 8,  which is the 
proper representation of the physical notion of the local gauge group. 

Remark 5.13. 
In more detail, consider the principal bundle P and form its associated adjoint bundle Ad P .  

The bundle Ad P is the associated bundle over M where each fiber is an isomorphic copy of 

the group G but the action of the group is conjugation (g H a .  g .  a-’) rather than right 

translation; we write this as Ad P = P X A ~ G  G. Then one can now show that G is given by 

all smooth sections r ( M ,  Ad P )  of Ad P .  

Finally, we note that a non-abelian structure group G, leads to A A A ( A  is 
the connection form) terms in F (curvature form) in the Lagrangian den- 
sity. In turn this leads to non-linear field equations. Physically, this is 
described as self-interaction, which is, of course, absent in the electro- 
magnetic interaction, which is linear. 
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5.6 The Concept of a Moduli Space 

In a general sense, a moduli space is a space labelling a particular set of 
structures on manifolds, topological spaces, etc. The etymology of the term 
“moduli” lies in the fact that generally we are not interested in particular 
structures, but in equivalence classes of such structures under some group 
action. Thus, we are interested in a structure “modulo” this group action. 
Again we find similarity to the relativity principle in physics. 

Formally, if A is the set of structures, and G is the group, then 

moduli space = A/G. 

As an example, consider the set of all complex structures on a compact 
Riemannian surface. Here the appropriate group is the set of biholomor- 
phisms. The resulting moduli space is called Teichmiiller space. 

In general these spaces are singular (having a varying dimension) and 
can be described as stratifying spaces. Some special cases, such as the 
moduli space of Donaldson and Seiberg-Witten theory which we discuss 
in detail below, are manifolds with singularities. Another example is the 
universal space BG which can be regarded as the moduli space of all possible 
G principal fiber bundles under the group of bundle isomorphisms. In 
physical applications, a solution space of a gauge theory (possibly coupled 
to a matter field), is the moduli space. This space is a parameter space 
(sometimes called moduli) for the solutions of the field equations, modulo 
gauge action. 

We now provide more detail in an important example, a complex line 
bundle L over a compact manifold M .  This is the associated bundle to 
a U(1) principal fiber bundle over M .  A connection (unitary because of 
U(1)) on L can be written as a purely imaginary differential form A E 
R1(M,iIR) on M .  Thus the space of unitary connections A is the space of 
one-forms on M .  In this case of U(1)-bundles, a gauge transformation of 
L is described locally by smooth maps over neighborhoods, g : V c M -+ 

U(1) = S1 inducing a vector bundle isomorphism g : L .+ L,  g acting by 
scalar multiplication. Let 9 denote the gauge group (understood as this 
group of local gauge transformations) and GO be the subgroup of based 
gauge transformations. That is, for some base point po E M and g E 9 
with g ( p 0 )  = 1. Every gauge transformation can be decomposed into a 
based and a constant (global) gauge transformation, G = 90 x S1. Locally, 
the action of such an element of 0 on a connection is described by 

A -+ A - ida, where g ( p )  = eicr(p).  (5.24) 
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This leads to the space of equivalence classes of connections on L as B = 
d/G = A/&. Clearly, the curvature form, F = dA, is gauge invariant. 

Interpreting these fields as electromagnetic, our previous action princi- 
ples lead to the gauge invariant, source free Maxwell equations 

d F = d ( d A ) = O  d * F = O  

for the unitary curvature F = dA. Thus F is a closed and co-closed 2- 
form with values in the Lie-algebra of U(1) isomorphic to iIR, and -iF 
represents a cohomology class in H2(M,IR). Vice versa, a cohomology 
class R is the curvature iR of a unitary connection of a line bundle when 
this cohomology class lies in the image of the coefficient homomorphism: 
H2(M,  Z) + H 2 ( M , I R ) .  

Remark 5.14. 
For the case of a two sphere, it is easy to see this in detail. Cover S2 with two hemispheres, 
B k ,  intersecting in the equatorial sphere, S'. From (5.24) above, the difference between the 
connection form on these two regions is A+ - A -  = -idol. The evaluation of the cohomology 
class generated by - iF on the top homology class, S2 itself, gives 

because of the single valued requirement on g ( p )  in (5.24). 

From the physical point of view, this result can be interpreted as the 
quantization of the magnetic monopole charge, if this is ever non-zero in 
our universe. The full argument requires the expansion of the connection 
from S2 to (punctured) space and time, IR x (IR3 - (0)) = R2 x S2. For 
more details on this see [Trautman (1984)l and [Moore (2001)l. 

Proceeding with the construction of the moduli space of connections 
modulo V (  1) gauge transformations, consider simply-connected and the 
non-simply-connected base spaces separately. For the first case, we have 
an isomorphism between the moduli space and the space of closed 2-forms 
C representing the first Chern class of the line bundle and given by the 
cohomology class of the curvature R. The other case of a manifold with 
non-trivial fundamental group is more complicated. Let 71, . . . , yn be the 
generators of the first homology group H1(M,IR) represented by closed 
curves. A unitary connection A of the line bundle L defines a parallel 
transport of a section along the closed curve y i .  Let L, be the fiber of L 
above p E A4 which is the beginning and end point of the closed curve then 
Ti : L, + L, defines an isomorphism defined by 
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the holonomy around yi. Note that because of the local nature of A, this 
expression makes sense only for closed paths, for which s da = 0. Without 
proof we state that the moduli space is isomorphic to C x S1 x S1 x . . . x S1. 
That is, the equivalence class [A] of a unitary connection on L is mapped 
to (F~/(27r),71(A), . . . , T ~ ( A ) )  (see [Moore (2001)l). 

In general, the space of connections d is an affine space and thus con- 
tractible. By dividing out the gauge group 6 we obtain a topologically 
non-trivial space d/G, the moduli space. This moduli space can be seen 
as a base space of a principal bundle d t d/Q with structure group 0. 
Because of the contractibility of the space d, the moduli space is the clas- 
sifying space BG = d/9 of the gauge group B, i.e., any principal bundle 
over M with structure group B can be classified by the homotopy classes 
[M,BB] .  Thus the homotopy properties of the moduli space are of cen- 
tral importance for any gauge theory. This classifying space also appears 
naturally in the physical context of functional integrals over gauge fields. 
Because of the gauge invariance of the action, we have to integrate over 
the classes of gauge-equivalent gauge fields (connections) instead over all 
possible gauge fields. Physically this is referred to as the Gribov ambiguity. 
We stop here with these general remarks. In the next section we will look 
at an important example of a moduli space which was of central importance 
in the early discovery and study of exotic I%;. 

5.7 Donaldson Theory 

Now we proceed to the gauge theory and resulting moduli space used by 
Donaldson [Donaldson (1983)] to get his famous characterization of smooth 
structures on simply-connected, oriented 4-manifolds. In a later chapter 
these results will be applied to obtain smoothness classifications for the base 
space itself. For details of the proof we refer to [Freed and Uhlenbeck (1990)l 
and to [Donaldson and Kronheimer (1990)] for the Donaldson polynomials. 

Consider a Yang-Mills theory with respect to a compact Lie group G 
over a compact simply-connected 4-manifold M .  Thus we are looking at 
connections on some G principal fiber bundle P over this manifold. The 
field strength of the Yang-Mills theory F is the curvature of P while the 
connection A is the gauge potential. After choosing some Riemannian met- 
ric to define the Hodge dual, the natural (i.e. simplest) action functional 
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is 

where tr  is the trace with respect to the representation of G. Note the 
essential results will be independent of the particular metric choice. As 
usual, the variation of the functional with respect to the gauge potential A 
leads to the Yang-Mills equations, 

D F  d F + A A  F - F A A  = 0 ,  D + F = O .  (5.25) 

Solutions to this will lead to local minima of S ,  of which there may be more 
than one. Note that the first of these equations, D F  = 0, is just the Bianchi 
identity, automatically satisfied by any curvature form. Thus, if F satisfies 
either of 

F = *F or F = - * F, (5.26) 

it is automatically a Yang-Mills solution. Because of the positive definite 
metric signature, these solutions are known as instantons in physics and as 
self-dual and anti-self-dual connections respectively in mathematics. From 
the splitting 

1 1 
2 2 

F = - ( F  + * F )  + - (F  - *F)  = F+ + F-. 

into self-dual and anti-self-dual curvatures, the action becomes 

In section 5.3 we introduced various characteristic classes. From these the 
important characteristic numbers of Chern and Pontrjagin are evaluated 
as integrals of an invariant polynomial of the curvature. In this case of a 
4-manifold the expression 

is exactly the second Chern or the first Pontrjagin number. The physics lit- 
erature refers to such k as the topological charge defined by the bundle. 
The generalizations to higher dimensions and bundles are called topologi- 
cal quantum numbers, since they are integers, that is, discrete, a defining 
property of many observed quantities in quantum theory. Recall that these 
numbers depend not only on the base space, but also on the bundle over it 
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and particularly the choice of the group G. Using the splitting above, we 
obtain 

IIF+I12, - IIF-112, k =  
8r2 I 

and the important condition 

where the middle “5” becomes the equality “=” only solutions which are 
either self-dual or anti-self-dual. This provides an important and productive 
bridge between topology and physics: the absolute minimum of the Yang- 
Mills action is a topological quantity, the Chern number. 

Remark 5.15. 
Consider self-duality in the context of Einstein theory. 
relativity are the  vanishing of the Ricci tensor, locally described by 

The vacuum equations of general 

0 = Rfiv = e;eb,R,b = e;e:Racbd7)Cd 

where e: are the vierbeins (solder forms), Raebd  are the Riemann tensor components and 
qab = eaeb,gfi” are those of the flat metric of the  tangent space, simply the  identity matrix 
in this kemannian  case. The torsion-free condition of the Levi-Civita connection can be 
expressed by 

€abed 
R e b e d  = 0 

where PbCd denotes the totally anti-symmetric symbol. The conditions for the curvature to  
be (anti)-self-dual are 

1 
2 R a b c d  = f - -saTnRmncd 

Then together with the torsion-free condition we obtain: 

1 

= f ( R q a e  - 2Ra.s) 

0 = €abed Rebcd r € e b  mn Rmncd 

with the curvature scalar R = Rabqab. Thus (anti)-self-dual curvatures are also solutions of 

Einstein vacuum equations. Of course, not all Einstein metrics are (anti-)self-dual. 

Now, we focus in more detail on the solution space (moduli space) of the 
(anti)-self-dual equations. Let q = P X G  V be the vector bundle associated 
to a G principal bundle with respect to a representation G 4 Aut(V). The 
remarkable fact is that for a large class of interesting groups, such as U(1), 
or SU(2) ,  and related Yang-Mills equations, this moduli space actually has 
the structure of a smooth finite dimensional manifold, at least locally. The 
details of this argument are spelled out in [Freed and Uhlenbeck (1990)]. 
Here we only review the high points. 

First, the establishment of a finite dimensional manifold structure de- 
pends on developing a formalism to parameterize moduli space. Next, we 
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note that certain families of connections may be more general than oth- 
ers. This is similar to the classification of metrics, those with symmetries, 
and those without. In particular, a connection is said to be reducible if 
A = A1 @ A2, where each Ai is the connection on a sub bundle, Xi ,  and 
the bundle splits, X = XI @ X I .  Clearly then reducibility depends on the 
reduction of the Lie algebra of G, g = g1 @ 82, so that Ai is gi valued. 
Otherwise, the connection is said to be irreducible. In some sense, irre- 
ducible connections are more general, and thus require more parameters, or 
dimensions. If we consider the parameterized space of all connections, the 
irreducible connections generate a smooth manifold part, with the reducible 
ones singularities where the dimension is lower. First, we note 

Lemma 5.1. Let A k  be the space of all irreducible, anti-self-dual connec- 
tions with respect t o  the second Chern number equal to k. The group of 
gauge transformations B = C" (Aut(v)) act transitively on this space. Thus 
we can form a quotient Mk = Ak/B which is the moduli space of irreducible, 
anti-self-dual connections with second Chern number k. 

The next crucial step was first obtained by Atiyah, Hitchin and Singer 
[Atiyah et al. (1978)] who showed that this moduli space Mk admits a 
smooth manifold structure. The dimension is given by the following table 
with respect to the compact group G, the compact 4-manifold M = S4, the 
second Chern number k and the irreducibility condition. 

G I Irreducibility condition I 

The general formula of the dimension dimMk in terms of characteristic 
classes can be found in [Atiyah et al. (1978)]. In this article only so-called 
self-dual manifolds were considered but a result of Taubes [Taubes (1982)] 
leads to the extension of the formula to nearly all interesting smooth 4- 
manifolds. In particular, the results obtained for dimMk using M = S4 
agree for those for which M is an arbitrary l-connected manifold as long 
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as it has a positive definite intersection form, discussed more fully in the 
next chapter. 

Now specialize to the standard Yang-Mills G = SU(2). From obstruc- 
tion theory we find that every principal SU(2) bundle over a compact 
simply-connected 4-manifold is completely classified by the second Chern 
class. Let q be the complex rank-2-vector bundle associated to the principal 
SU(2) bundle P .  We now look for a condition for to split in our special 
case. Assume it does, so q = X I  @ X2.  This corresponds to a reduction of 
the structure group from SU(2) to U(1) @I U(1). First, note 

c1(q) = Cl(P) = 0 c2(q) = c2(P) . 

Because of the relation cl(X1 @ XZ) = cl(X1) + cl(X2) we obtain cl(X1) = 
-cl(X2). Thus the two bundles are conjugated to each other and we write 
X I  = X and A2 = X - l .  From c2(q) = cl(X) U cl(X-l) = -c1(X) u cl(X) ,  
integration gives 

Ic = - c2(7) = C l ( 4  u C l ( X ) ,  
M I S  M 

where the sign is pure convention and depends on the orientation of M .  
Here and in the following we assume that M is a compact, 1-connected 
smooth 4-manifold without bounda y and has a positive definite intersection 
form. The 1-connectedness condition means 7r1(M) = 0 and so H I  ( M ,  Z) = 
0. According to the universal coefficient theorem H2(M, Z) has no torsion 
and we can define the intersection form as a bilinear from over Z. The 
manifold M is closed and so H2 ( M ,  Z) is dual to H 2  ( M ,  Z) via the Poincar6 
duality map. Thus we can evaluate the intersection from also as a bilinear 
pairing between cohomology classes. Furthermore all complex line bundles 
over M generate the full cohomology group H 2 ( M , Z )  via the first Chern 
class. 

Remark 5.16. 
For more details, see [Mosher and Tangora (196S)l and [Moore ( 2 O O l ) l .  Here we sketch the 

argument. Let X be a complex line bundle over M .  Such bundles are classified by the homo- 

topy classes [ M ,  B U ( l ) ]  with the classifying space B U ( 1 ) .  But B U ( 1 )  is the infinite complex 

projective space C P m  with az(CPm) = Z and s,(CPm) = 0 for all other n. Such a space 

is called an Eilenberg-MacLane space K ( Z ,  2). Such spaces are important because there is 

an isomorphism between [ M ,  K ( Z ,  2 ) ]  and H2(M,Z). This completes the argument. Thus 

complex line bundles are completely classified by their first Chern class c1 E HZ(M,Z). 
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Let QM be the intersection form of M and PD denote the PoincarB dual, 
then 

k = QM(PD(c~(X)), PD(ci(X))) = &ncr(ci(X),ci(X)) (5.27) 

where the first paring is defined in homology and the second in cohomology. 
This expression can be interpreted geometrically as the self-intersection of 
a surface representing PD(c1 (A)). On the other hand, the classification 
property of c1 E H 2 ( M ,  Z) for line bundles means that for each E H 2 ( M ,  Z) 
there is a line bundle, A, such that cl(X) = Q and c2(X @ X-') = -k. So q 
is bundle equivalent to X @ X - l ,  so we have 

Lemma 5.2. Let X be a complex line bundle over M completely classified 
by its first Chern class c1 (A). The bundle q splits topologically into two line 
bundles q = X @ X-l  if and only i f  the equation k = Q M ( ~ , Q )  admits a 
solution f o r  some Q = *cl(X). 

To complete the relation between splittings of bundles q and reducible 
connections, we need the following lemma, [Freed and Uhlenbeck (1990)]. 

Lemma 5.3. Suppose M has positive definite intersection form. Then for  
split SU(2) bundles q = A @  X-' there is a unique self-dual Yang-Mills field 

which respects the splitting. 

Thus we have the following situation: According to the table above, the 
moduli space of irreducible (anti-)self-dual SU (2) Yang-Mills fields is 8k-3- 
dimensional whereas the space of reducible fields is 1-dimensional (the only 
freedom is multiplication by a real number). As we have seen the singular- 
ities in the moduli space come precisely from these reducible connections, 
whose appearance is very important for studying smoothness conditions. In 
fact, (5.27) relates the existence of reducible connections to the intersection 
form. Following Donaldson we note the following facts: 

0 The moduli space of SU(2) instantons has for k = 1 the dimension 
dimM1 = 5 (see the table above). 

0 A (5-dimensional) cobordism between two oriented 4-manifolds is 
smooth if and only if the corresponding 4-manifolds each admit a dif- 
ferentiable structure. 

0 The signature n ( M )  of the intersection form is an invariant of the 
cobordism. 



132 Exotic Smoothness and Physics 

From these three points, one may ask whether the moduli space is itself 
the cobordism between two 4-manifolds leading to possible restrictions on 
the intersection form of smooth 4-manifolds. The following theorem of 
Donaldson [Donaldson (1983)l clarifies the structure of the moduli space. 

Theorem 5.13. Let 77 be a principal SU(2)-bundle with second Chern num- 
ber k = 1 over a compact, l-connected, oriented, smooth 4-manifold M with 
positive definite intersection form Q M .  hrthermore, let M1 be the moduli 
space of all (not just irreducible) anti-self-dual connections of 77, then it 
follows: 

(1) Let m be half of the number of solutions of Q M ( C Y ,  a)  = 1. Then there 
are points P I , .  . . ,pm E M I  for a (generic) dense set of metrics g of 
M such that Ml\{pl,. . . , pm}  is a smooth 5-manifold. The points p i  
are in 1-1 correspondence to the topological splitting 77 = X @ X - l .  

(2) There is a neighborhood Opi of pi  so that Opi is homotopic to a cone 
in C P 2 .  

(5') M1 is an orientable, possibly singular, manifold. 
(4) Ml\{pl,. . . , p m }  is non-empty. In fact there is a collar (0, XO] x M c 

M1 and -= M1 U M 3 [0, A,] x M which is a smooth manifold with 
boundary. 

(5) is a compact manifold. 

The Figure 5.1 visualizes the structure of this moduli space. A critically 
important point of this result is that the base manifold, M ,  itself is smoothly 
collared into the moduli space of connections, M I ,  so that the smoothness 
properties of M can be gleaned from a study of M I .  For more details on 
this collar theorem, see s9 of [Freed and Uhlenbeck (1990)]. 

An easy, but important, corollary is 

Corollary 5.1. M is oriented cobordant (with respect to the cobordism 
M I )  to the disjoint union f C P 2  LI . . . LI *CP2 

J' 

Now note the following algebraic lemma (see Chapter 6).  

Lemma 5.4. Let Q be a positive definite symmetric unimodular form of 
rank r = r(Q),  and let m be half the number of solutions CY to Q(a ,a)  = 1. 
Then m 5 r with equality if and only if Q is diagonalizable over the integers. 

A proof of this lemma can be given by an induction with respect to the 
rank r. Now we know from the above corollary, the definiteness of QM and 

m 
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Moduli space of irreducible 
anti-self-dual connections 

Fig. 5.1 Structure of the moduli space M1 

the cobordism invariance of the signature cr(M) that 

But we know from the preceding lemma that m 5 ~ ( Q M ) .  Hence m = 
r ( Q M )  and Q M  is diagonalizable over Z. This provides a sketch of the 
proof of the all important Donaldson’s theorem: 

Theorem 5.14. T h e  intersection form of a compact, simply connected, 
oriented smooth 4-manifold M as diagonalizable over the integers Z. 

An extension of these discussions to Chern numbers, k > 1, leads to the 
formalism of Donaldson polynomials, which we will briefly review now. 
Let P be an SU(2)-principal bundle over M with second Chern number 
k .  The moduli space of irreducible, anti-self-dual, gauge-equivalent connec- 
tions is denoted by Mk as usual. Assume now that this moduli space is 
even-dimensional, dim M k  = 2d(k). Rather detailed considerations show 
that this dimension can be computed as dimMr, = 8k - 3(1 + b $ ( M ) )  
with bzf(M) as the number of self-dual 2-cocycles (elements of H 2 ( M , R ) ) .  
Thus, we can ensure that the dimension is even by assuming that b $ ( M )  
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is odd. While this is a restriction on the manifold M it does include all 
interesting cases. Furthermore, it can be shown that the rational cohomol- 
ogy ring H*(Mk,Q) of the moduli space is generated by d(k) classes in 
H2(Mk, Q) and one class in H4(Mk, Q). Donaldson constructed a map 
p : Hz(M,  Q) + H2(Mk, Q) as  follow^. 

Let 0 be the gauge group of P and A the space of irreducible connec- 
tions. From the bundle P one can induce the tautological bundle e = Ax P. 
But the gauge group Q does not freely act on A, recall (4.26) in Chapter 4. 
So we must factor out the center of the SU(2) ,  given by the group ZZ. This 
procedure results in a universal SO(3) bundle Pad = e/Q over Mk x M 
with the first Pontrjagin class p l ( P a d )  generating H4(Mk, Q). Next define 
the map p : H2(M, Q) - H2(Mk, Q) by 

T 

where C is a 2-dimensional submanifold of M generating an element of 
H z ( M ,  Q) and T c M is a compact 2-dimensional submanifold of the 
moduli space. Another more useful realization of the p-map is given by 
the following construction. We choose a Dirac operator & on C and the 
trivial SU(2) bundle E over C .  Next we twist the Dirac operator with a 
connection A of E to get &,A. By B we denote the set of all (framed) 
connections and by E the bundle over (BISO(3))  x C induced by E. The 
family index id(&, E )  of the Dirac operator can be considered as a vector 
bundle over BISO(3). Donaldson defined a line bundle by 

Lc = u (Amaz ker&,A)* ‘8 Amax ker&A, 
A€B/S0(3) 

i.e. as determinant bundle of the index bundle ind(&, E ) .  This line bundle 
Cc has the following property 

C l ( L C )  = P([CI) (5.28) 

For more details see [Donaldson and Kronheimer (1990)l. 
Given this definition, consider [C] E H2(M,Z), generated by a 2- 

dimensional submanifold C in M .  With the help of the p-map we get 
the corresponding cohomology element p(C) E H2(Mk, Q) and define the 
diffeomorphism invariant as the pairing 

Q k ( C )  = / p(C)  U . . . U p(C),  (d cup products). (5.29) 

“I 
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Because of the non-compactness of the moduli space this definition may 
lead to convergence problems, but as Donaldson showed one can “repair” 
this defect by evaluating the cup-product p ( C )  U . . . U p(C) on a regular 
subset of Mk. We then combine all the polynomials 4 k  into one analytic 
function or formal power series q : Hz(M,  W) -+ W by 

(5.30) 

Using Donaldson’s invariant of a smooth simply connected 4-manifold of the 
so-called simple type, Kronheimer and Mrowka [Kronheimer and Mrowka 
(1994)l proved the existence of p classes K1, . . . , K p  E H 2  ( M ,  Z) (also called 
basic classes) and non-zero rational numbers a l ,  . . . , ap such that 

(5.31) 

where Q is the intersection form of M regarded as quadratic form. This 
representation of the Donaldson polynomials was the starting point for 
many investigations. Later [Fintushel and Stern (1995)], Fintushel and 
Stern established a relationship between the Donaldson invariants and the 
newly discovered Seiberg-Witten invariants. We will discuss this matter 
briefly in the next section and in chapter 9 more extensively. 

Using these Donaldson polynomial techniques, we arrive at a crucial 
step in the discovery of the first exotic W4. In brief, 

Theorem 5.15. ([Donaldson (1990)]) There is a 5-dimensional h- 
cobordism which is not a smooth product. 

This implies the existence of two h-cobordant 4-manifolds which are thus 
homeomorphic but not diffeomorphic. On the other hand, a result of Wall 
insures that two diffeomorphic 4-manifolds are also h-cobordant. 

5.8 From Donaldson to Seiberg-Witten Theory 

The so called “Seiberg-Witten” theory so important in recent studies of 
the differential topology of 4-manifolds has its roots Witten’s formulation 
of Donaldson theory as a topological quantum field theory based on N = 2 
supersymmetry. In this section we give an overview of these topics. Unfor- 
tunately, the amount of physics required to properly understand Witten’s 
path to his equations is vast indeed so we will only be able to skim the 
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surface,[Witten (1994)l. The book by Nash, “ash (1991)], contains a more 
complete and pedagogical review of the relevant formalisms. 
Quantum field theory and symmetry groups 
The story begins in the 1930’s when the founders of quantum mechanics be- 
gan to develop a quantum theory respecting the Poincari! group, now called 
quantum field theoy as a result of attempts to include the electromagnetic 
force field as a quantum field in its own right. The particles associated with 
this field, photons, are created/annihilated as exchange particles mediat- 
ing the electromagnetic force between “stable” particles such as electrons, 
protons, etc. This formalism came to be know as quantum electrody- 
namics, QED and was generalized to what is now known as “quantum 
field theory.” This theory extends the notion of “stable” particles to par- 
ticles which are created/annihilated in interactions. The formalism uses 
new operators, U k ,  a:, called annihilation/creation operators for particles 
in states defined by quantum numbers, k ,  and the eigenvalues of the Her- 
mitean operator N k  = a t a k  correspond to the number of particles in state 
k .  At this point the question of the spin of the particle turns out to be criti- 
cal when special relativistic invariance is required5. For half-odd integer the 
particles are called fermions and for integer spin bosons. From the spin- 
statistics theorem, the ak operators for bosons must satisfy commutation 
relations 

+ +  
[ a k ,  a k ’ ]  = 0, [ak 7 a k , ]  = 0, [ a t ,  ak’] = 6 k k j  

while for fermions, these are replaced by anti-commutators 

{ a k ,  a k ! }  = 0, {a:, a;} = 0, {a:, arc!} = bkk’  . 
As a result for fermions the operator N k  has only eigenvalues 0 or 1, i.e. 
one state k can only be occupied by at most one fermion (“Pauli exclusion 
principle”). For more details we refer the reader to the standard quantum 
field theory books, such as [Hatfield (1992); Kaku (1993)], or others. 

High energy nuclear accelerator experiments in the 1950’s and 1960’s led 
to an explosive expansion of the list of known“partic1es.” In fact, during this 
period Oppenheimer was reported to have suggested that the next Nobel 
prize should be awarded to someone who had not discovered a new particle. 
Attempts to systematically classify this new zoo of particles during this time 
led to a taxonomy based on observed ad hoc conservation laws. By assigning 
appropriate numbers to various particles participating in an interaction it 
was found that the totals before and after the interaction were the same, i.e., 

5This is the spin-statistics theorem of Pauli. 
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something was “conserved.” As discussed in chapter 4, Noether’s theorem 
derived from the Lagrangian formulation of field theories provides a crucial 
link between symmetries of the action and conservation laws. From this, 
theorists began to postulate symmetries, internal symmetries, that could 
be understood as acting on some internal particle space. 

Remark 5.17. 
Recall that the quantum mechanical state of a system can be represented by a one dimensional 

projection operator in a complex vector space (generally a Hilbert space). For our purposes, 

we can replace the projection operator by a single vector. A symmetry group action then 

defines a representation of itself as a linear action on such vectors. For example, the behavior 

of protons and neutrons led to their description as two states of the spin 1/2 representation of 

the internal isotopic spin group, S U ( 2 ) ,  with the proton as the “spin up” and the neutron 

as “spin down.” The important point here is that this isotopic spin space is internal, and not 

at  all related to physical space in which the angular momentum carrying spin, corresponding 

to the S U ( 2 )  representation of SO(3)  resides. This early notion of isotopic spin was soon 

subsumed into larger groups, including the famous SU(3)  group for which the three base 

vectors were identified with the original quarks. Using these tools, the vast zoo of particles 

began to be tamed and organized according to irreducible representations of the symmetry 

groups. Of course, these early models have continued to evolve. We mention these points here 

only to give the reader an idea of the notion of internal symmetry groups, as opposed to 

external, spacetime symmetries, such as the Poincar6 group for flat spacetime, or for the 

tangent vector space in general relativity. 

Clearly, this artificial, but apparently rigidly observed, division between 
internal and external (spacetime) symmetries was not satisfactory to the 
natural desire for ultimate simplification. The theoretical search was for a 
unification of these two groups, internal and external, as parts of a larger 
group, in some non-trivial way, that is, not simply as a direct product. This 
hope was quickly destroyed by the work of Coleman and Mandula [Coleman 
and Mandula (1967)] in 1967, who showed that under certain reasonable 
assumptions, namely, Lorentz invariance, existence of finite presentations 
and some technical properties about the analyticity of the scattering am- 
plitudes and the group representation via integral kernels, any connected 
symmetry Lie group G (of the S matrix) must be locally isomorphic to 
the direct product of an internal symmetry group and the Poincar6 group. 
Note the emphasis on the Lie structure. 

Another, apparently artificial, division of quantum theory pertained to 
the division of particles according to their spin representation, in particular 
the fermion/boson dichotomy, which was introduced above. Up to now, 
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direct observation has detected “elementary” particles with spins of only 
1/2 or 1, but the general classification would apply to higher values. 

Remark 5.18. 
As an aside, we note that fermions seem to refer to “permanent” particles, such as electrons, 

muons, neutrinos, perhaps quarks, etc., while the bosons correspond to the “exchange” par- 

ticles of various forces, photons for electromagnetic, W-particles for the weak force, gluons 

for the strong force, and, very speculatively, gravitons for gravity. Furthermore, in quantum 

field theory the basic creation/annihilation operators for these two particle types satisfy 

commutation relations (bosons), and anti-commutation relations (fermions). This famous 

“spin-statistics’’ theorem is a result of a deep analysis of relativistic quantum theory. The 

anti-commutation properties of fermions will show up later in the supersymmetry algebra. 

Shortly after the Coleman-Mandula result, Veneziano [Veneziano (1968)l in- 
troduced an important suggestion concerning the strong interaction. From 
mathematical sources, he recognized a striking correspondence between 
properties of scattering amplitudes in the strong interaction with the Beta 
function introduced by Euler. Later this model was extended by Nambo 
and Goto [Nambo (1970); Goto (1971)l to the first ideas of string theory, 
which, of course, has recently exploded as a field of theoretical interest. 
Except for the introduction of additional space dimensions, the Veneziano 
theory had another serious problem: there were no fermions in the theory. 
Of course, a natural objective might be to explore extending symmetries to 
include both fermions and bosons, resulting in what is known as a super- 
symmetry, SUSY. Wess, Zumino, et al., developed what is now called 
the Wess-Zumino model. 

It is important to note that not only does supersymmetry mix fermions 
with bosons, but also internal with spacetime supergroups, in a sense unify- 
ing them in a way forbidden by the Coleman-Mandula theorem for ordinary 
internal and spacetime groups. Formally, the transition from a Lie alge- 
bra to a Lie superalgebra involves generalizing the Lie bracket operation (a 
commutator) in an ordinary Lie algebra to include some anti-commutators. 
We will sketch one such Lie superalgebra in (5.32) below. 

Green, Schwarz and Scherk suggested that combining strings with su- 
persymmetry, producing superstrings, could lead to a theory of quantum 
gravity. Later, 1984, Green and Schwarz published an advanced version 
of superstring theory which was anomaly-free and finite in the first or- 
ders of perturbation theory. As investigation proceeded it became clear 
that many superstring theories could be proposed, an “embarrassment of 
riches.” This first stage of the “superstring revolution’’ was followed by a 
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second one in 1995 when Witten proposed a unified theory of the five 10- 
dimensional superstring theories in 11 dimension with the low energy limit 
being a supergravity theory now generally called “M theory”. One of the 
big problems in superstring theory is the 10 space-time (or 11 in case of M 
theory) dimensions instead of the 4 apparent to us. The obvious answer 
is to compactify 6 dimensions (or 7 dimensions in case of M-theory) to be 
left with the 4 observable dimensions. Here we use the word “compactify” 
in both the mathematical topological sense and in the physical sense of 
making “small.” It turns out that a special kind of supersymmetric field 
theory, called the twisted N = 2 supersymmetric Yang-Mills theory will do 
this for us. The development of this theory motivates the construction of 
the so-called topological quantum field theories which we will define later. 
These are used to relate Donaldson [Witten (1988)] and Seiberg-Witten 
theory [Seiberg and Witten (1994a,b)], and of course, the SW equations of 
interest in our study of differential topology. First we will briefly introduce 
supersymmetry. 
Supersymmetry 

Recall that particles seem to be unnaturally segregated into the 
fermion/boson dichotomy. Fermions are classified by representations of 
internal symmetry groups. Our discussion in chapter 4 related how the 
U(1) symmetry of charged particles could be extended to a local, bundle, 
symmetry with the addition of a connection corresponding to the quantum 
field for the photon, the electromagnetic potential. So, the groupbundle- 
connection model was used in attempts to explain other force fields in terms 
of internal symmetries, but unification of these symmetries with the ba- 
sic spacetime Lorentz group was stymied by the Coleman-Mandula result. 
This obstacle could be overcome by extending the concept of the unifica- 
tion group. We know that symmetry groups in quantum field theories and 
spacetime physics are represented by Lie groups having a Lie algebra as in- 
finitesimal generators. What was proposed was an extension to a “super” 
Lie algebra containing not only ordinary Lie brackets [ , ] , but also a second 
product given by the anti-commutator { , }. Mathematically the result is a 
&-graded Lie algebra. 

Remark 5.19. 
In general such an algebra is vector space S which is the set-theoretic union of two subspaces 

S = SO U S1 of dimensions NO and N1, respectively. Every element of S has grade which is 0 

if the element belongs to  So and 1 if it belongs to S1. To complete S to  an algebra we need 

a product [ ,  } respecting the grading i.e. [So,So} C So, [Sl,S1} C SO and [So,S1} C S1 
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with some additional relations (syrnmetry/anti-symmetry and Jacobi relation with respect to 

grading). 

Informally, we introduce operators, Q, which change 

Qlfermion of spin s) = lboson of spin s - i) , 
fermions to bosons and vive versa. As generators the Q fulfill anti- 
commutator relations among themselves resulting in the Poincar6 group 
generators of a general form (indices and other details omitted), 

(07 Q} = yI”Pp, 

where PI” is the generator of infinitesimal translation in the Poincar6 group 
and yp are Dirac’s spin matrices. 

In 1975, Haag, Lopuszahski and Sohnius [Haag et  al. (1975)l obtained 
all possible (infinitesimal) generators of supersymmetric theories. Let G be 
a generator of a supersymmetric transformation of S-Matrix. G acts on the 
Hilbert space of physical massless states which are the square-integrable 
functions L2(F) over the superspace F. The operator G is assumed to 
fulfill two basic assumptions for massless states:(l) G commutes with the 
S-matrix, establishing the symmetry and ( 2 )  G acts additively on the states 
of several incoming particles. In addition, for a massive theory we require: 
(3) G connects only particles having the same mass. Consider the simplest 
non-trivial example: the supersymmetric extension of the Poincar6 algebra 
with a single set of supergenerators. Use subscripts a ,b ,  ... = 1,2, for a 
self-conjugate (Majorana) spinor. The supergenerators must themselves 
transform as components of such a spinor, and so are denoted by Qa. Let 
PI” be the usual generators of displacement and MI”” ( p  = 0,1,2,3) be 
the homogeneous Lorentz transformations. The super Lie algebra is then 
defined by 

{&a, Q b }  = -2(7”),$p [&a, MI””] = i(upV)abQb 
[MI””, PP] = i ( f @ P ”  - qP”P@) [PI”, Pv] = 0 [P,, Qa] = 0 

) [MI””, MP“] = i(qI”PM”“ + q”“MI”P - qI”CM”P - q”PMI”“ 

in which up” = +[TI” ,  y”], and qp” is the Minkowski metric. 
Notice the desired mixing of internal and spacetime indices. Thus, the 

restrictions imposed by Coleman-Mandula on unifying internal and external 
symmetries have been eliminated by extending the Lie algebra to a super 
or graded one. Clearly, the next step is to include gravity (spacetime ge- 
ometry) in supersymmetry, leading to supergravity. For more on this, see, 
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for example, [West (1990)]. Later supergravity became part of superstring 
theory, but so far has not led to any significant contributions to differential 

The physical notion of a multiplet refers to a set of particles which are 
naturally grouped as a result of having similar quantum numbers, such as 
spin, internal group representation parameters, etc. Often in the first pre- 
sentation of a theory members of a (super)multiplet have the same mass. 
However, physically they may not. The breaking of this symmetry from 
the original larger theoretical one to the smaller observed one is an im- 
portant phenomenon in quantum field theories, including supersymmetric 
ones. What are the corresponding “supermultiplets” ? In a supermultiplet 
fermions and bosons of the same mass are grouped together. The struc- 
ture of the supermultiplets are strongly determined by the number N of 
supersymmetry generators Q. This number N is just the (generally com- 
plex) dimension of the internal symmetry group, with the generators, Qf, 
providing a representation of this internal group. In the case N = 1, de- 
scribed above, in each supermultiplet we must have one fermion of spin s 
and one boson of spin s - 1/2 or one boson of spin s and one fermion of 
spin s - 1/2. The next interesting case is N = 2 (for example, internal 
symmetry=SU(2)) where for instance a boson of spin 1, two fermions of 
spin 1/2 and one boson of spin 0 are grouped in one supermultiplet. As 
before, all particles in one supermultiplet must have the same mass, which 
we do not expect to be realized in nature. Thus, supersymmetry must be 
broken. 

Physical considerations lead to the following list of properties to be 
satisfied by all supersymmetric theories: 

(1) The spectrum of a supersymmetric Hamiltonian contains no negative 

(2) Each supermultiplet must contain at least one boson and one fermion 

(3) All states in a multiplet of unbroken supersymmetry have the same 

(4) Supersymmetry is spontaneously broken if and only if the energy of the 

topology. 

eigenvalues. 

whose spins differ by 3. 
mass. 

lowest lying state is not exactly zero. 

The next step is the construction of meaningful field theories from the con- 
cept of supersymmetry. A natural approach for this is to introduce a su- 
perspace (supermanifold, see deWitt, [DeWitt (1984)l) on which the super 
group (the super Poincark group for instance) acts. The superspace is an 
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ordinary manifold with the addition of a vector space of anti-commuting 
numbers (also called Grassmann numbers) attached to each point of the 
manifold, in a bundle-like formalism. Fields over that superspace are func- 
tions which are to be used in some Lagrangian. A formal integration of the 
Lagrangian over these anti-commuting numbers produces a supersymmet- 
ric Lagrangian on the original real manifold. To supplement this obviously 
skimpy review, the reader should consult the, by now classical, books such 
as [West (1990); Wess and Bagger (1992)l. 

But what has any of this to do with the differential topology of mani- 
folds? 
Witten's way to the Topological Quantum field theory 
In [Witten (1982)l Witten gave a physically inspired approach to Morse 
theory using supersymmetry. Consider the algebra R*(M) of all differen- 
tial forms on a manifold M ,  naturally divided into odd and even degree. 
In fact the forms of odd degree anti-commute, while those of even degree 
commute, i.e. 

r] A p = -p A r ] ,  r] ,p E RZp-'(M) 

11, A t  = < A + ,  11,Yt E R Z P ( M )  
for 0 < 2p < dim M .  Formally, then, we identify forms of odd degree 2p - 1 
with fermions of spin (2p - 1)/2 and forms of even degree 2p with bosons 
of spin p .  A supersymmetry provides a definition of the maps (generators) 
Q1 : Rm(M) + Rm+l(M) and Qz : Rm(M) + R"-'(M). Witten then 
suggested that the Hamiltonian of the theory be defined by H = Q1Q2 + 
QZQI. Returning to differential forms, there is a natural choice of Q1, Qz 
by 

Q i = d ,  Q z = 6  
where 6 is the codifferential 6 N *d*, so that this Hamiltonian is just the 
Laplace operator H = d6 + dd. To relate this to Morse theory, Witten 
introduced a smooth function f : M -+ R with isolated critical points, a 
Morse function, and defined 

Q1 = e-tfdetf, Qz = e-tf6etf 

with the real number t as parameter. Clearly, the Hamiltonian becomes 
much more complicated, but Witten was able to show that the spectrum of 
H encodes all relations between the number of critical points of f and the 
number of generators of the homology group, known from Morse theory. 

That was the beginning of the use of supersymmetry in understanding 
the topology of manifolds. In 1988 Witten [Witten (1988)] inspired by the 
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work of Atiyah (Atiyah (19SS)l constructed a topological quantum field the- 
ory which is now conjectured to produce the Donaldson polynomials as a 
vacuum expectation value of some operator. 
General structure of a topological quantum field theory 
We will now review the highlights of the formalism of topological field the- 

ory, TQFT. Refer to the book by Nash, [Nash (1991)], for a more complete 
and pedagogical review of the relevant formalisms. As usual, our spacetime 
is modelled on an n-dimensional Riemannian manifold M endowed with 
a metric gpv. In quantum field theory, the quantum fields themselves are 
subject to probability laws to answer the question: What is the probabil- 
ity that the spacetime evolution of a quantum field is given by a particular 
function, r$i(zp)? In the Feynmann approach to quantum theory, sometime 
referred to as the path-integral formulation, the probability of a path, 
that is a spacetime evolution of such quantum fields is postulated to be 
proportional to something of the form exp(-iS(r$i)) where S is the action 
integral, which is a functional of the “path” of r$i, that is, the form of the 
functions, r$i(zp). For example, see (4.92) for the action representing the 
electromagnetic field interacting with a Dirac particle. In general, an ob- 
servable, a quantity which could, in principle, be measured, is represented 
by an operator, say d, quantum mechanically, and as a function of the 
fields, say 0, classically. From this probability for a path, use standard 
quantum techniques to obtain the expectation or average value of such 
an observable, 

(5.32) 

where g denotes the coupling constant. The left side is the standard no- 
tation for expectation value of the observable 0. To make sense out of 
the right side of this equation we really need to cover much more material 
than we can give here. The reader can refer to any standard quantum field 
theory book, such as Kaku’s, [Kaku (1993)], especially chapter 8. Briefly, 
the measure for the integral, [Dr$i] is a measure on the space of all paths, 
that is functional expressions, for all of the fields. Making sense of this 
“space of paths,” and finding its measure is the major difficulty in this 
approach. In addition to other mathematical problems, the notion of con- 
vergence must be addressed. A standard way of handling this issue involves 
“euclideanization,” replacing the indefinite spacetime metric by the posi- 
tive definite Euclidean one, and also replacing i + 1. The assumption then 
is that some sort of analytic continuation will allow us to make physical 
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sense of the result. Thus, (5.32) will be replaced by 

(8) = / 1 0 4 i 1 ~ ( 4 i )  exp(-s(+i)/g) (5.33) 

(b€ * . . bd) = /[~4)lOrn(4))0€(4)) . . * Qd(4)) exP ( - W))/}). 

The coupling constant, g, not to be confused with the metric determinant, 
was added to facilitate limits. Now, extend (5.33) to a product of observ- 
ables, 

(5.34) 
A quantum field theory is defined as topological if the following relation is 
satisfied, 

(5.35) 

ie., if the expectation values of some set of selected operators is indepen- 
dent of the metric gpv on M ,  and thus dependent only on the topology of 
this space. If such is the case those operators are called “observables.” 

There are two ways to guarantee, at least formally, that condition (5.35) 
is satisfied. 

(1) Schwarz type: S(4i), Oi are explicitly metric independent (for instance 

(2) Witten type: there exist a symmetry, which will be denoted by Q, 
Chern-Simons gauge theory), or, 

satisfying the following properties: 

QOi = 0. T p v  = QGpv, (5.36) 

Note that 
6S 
9 

T p v  = 6 1  (5.37) 

is the standard definition for the energy-momentum tensor, but the require- 
ment (2) above is that it can be derived from the action of some Q on some 
other tensor Gp”. We will see an example of this in the following. 

The reader will note that the same symbol, Q, is used above as for 
supersymmetry generators and for the map Q in Witten’s approach to 
Morse theory. This is no accident, as we will see. 

We now skip over many technical details and formulate the result of 
interest to our study of differential topology, that is, Witten’s TQFT. 
Suffice it to say that the tools and motivations of both supersymmetry and 
TQFT were used to arrive at the following formalism. 
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Let M be a compact oriented four-dimensional manifold endowed with 
a metric gPu, and let us consider on it a principal fiber bundle P with group 
G (not to be confused with its use as a generator of a SUSY earlier) which 
will be assumed to be simple, compact and connected. Let E be the vector 
bundle associated to  P via the adjoint representation, and let A be the 
space of G-connections on E. A connection in A will be denoted by A and 
its corresponding covariant derivative and self-dual part of its curvature by 
D, and F+, respectively. Let us introduce the following set of fields: 

E E f121+(M,d, 11, E f11(M,8), @, A, $ E f lO(M,d,  (5.38) 

with local components E , u , ~ p  respectively. In (5.38) g denotes the Lie 
algebra associated to G. Now we will choose G = SU(2)  with Lie algebra 
g = 5 4 2 ) .  The action of the theory has the form: 

1 
+;4{Epu, E W V )  + &bp, - @.DpDP4 + &A7 A) + p, 412) . 

This action was not just arbitrarily constructed, but in fact was motivated 
by the fact that it is a twisted N = 2 supersymmetric field theory. This 
fact and the motivation is discussed by Baulieu-Singer [Baulieu and Singer 
(1988)l (or Brooks-Montano-Sonnenschein [Brooks et al. (1988)]) and by 
Labastida-Pernici [Labastida and Pernici (1988)] (see [Birmingham et al. 
(1991)l for an overview of the whole theory). Furthermore, the TQFT 
nature of this theory follows from definition and action of the following 
operator Q: 

1 
QAp = 11,p, QC = F + 5 * F, 

Q$ = d ~ $ ,  Q A  = i[@,$I, 
Q$ = 0, Qa) = A. (5.40) 

where dA is the covariant derivative with respect to the connection A. 
Remark 5.20. 
In fact, we can construct the energy-momentum tensor T,, from T,,, = QGp,, 

T,, = QG,, 
1 1 

1 1 

G,u = ~m(FfiotZ + Fuo€E - s g p v F o r C o T )  

+ sm(dJ,Du@ + dJvDF@ - gpvdJoD'@) + q S p v n ( X [ 4 ,  @I).  

Thus, this is a TQFT according to (5.35) since the expectation values of the observables are 

thus topological invariants. 
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Now we take up the observables of the theory. For SU(2), there is one 
expression +2 of the Lie algebra su(2)-valued scalar field + commuting with 
all generators of the Lie algebra, the Casimir operator. Define the invariant 
operator 

1 
2 wo = -Tr (+2)  (5.41) 

leading to the observable 

with 70 E Ho(M) which is a point in M .  With the help of the descent 
equations 

QWi = dWi-1, 

generate the operators 

wo = ;Tr(+2) w1 = T r ( + A $ ) ,  

w2 = n( f $ A TJJ + i+ A F )  , w3 = in($ A F ) ,  (5.42) 

leading to the following observables: 

(5.43) 

Remark 5.21. 
As an example, we verify the equation dWo = QW1, i.e. 

1 
-dn(#') = m(dJ A d A 4 )  2 

Q'W4 A $1 = 'WWJ A $1 + m(4 A WJ) = 'W4 A d ~ 4 )  

where we use the transformations (5.40) and the fact dTr(.) = T r ( d ~ . ) .  

Consequently, we have the important fact that every functional integral of 
the form 

Z ( 0 )  = (d(") = 

= ] [DA DE DQ D+ D$ DX] dk) exp(-SWTQFT/g), (5.44) 

with respect to the action SWTQFT (5.39) is a topological invariant, called 
the vacuum expectation value of the observable. Now, what is the 
topological invariant defined by such vacuum expectation values? 
The relationship to Donaldson polynomials 
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In [Witten (1988)l Witten analyzed the functional integral (5.34) by using 
the property that the Lagrangian L of the action (5.39) is Q-exact, i.e. 

L = Q V  
1 

V = xTr(FpvEpv + 2$pD”@ - v[$, a]) 
which leads to the independence of the theory of the coupling constant g. 
Thus the limit g -+ m6 where perturbation methods apply is equivalent to 
the limit g -+ 0 where non-perturbative methods are needed. The previous 
argument for g + m implies that the “semiclassical approximation” of 
the theory is exact. That means that in this limit the contributions to the 
functional integral are dominated by the field configurations which minimize 
S. These are precisely the solutions to the equations defined by 6s = 0. 
Witten showed that these solutions are equivalent to the solutions of the 
anti-self dual equation F+ = 0. Thus, the functional integral of the theory is 
equivalent to an integral over the moduli space Mk of irreducible solutions 
of the anti-self dual equation which is finite dimensional dim Mk = d(k) = 
8k - 3(x + ( ~ ) / 2 ,  where x is the Euler number and (T the signature of the 
4-manifold M .  This is an important result: every expectation value of an 
observable can be expressed by an integral over the moduli space Mk. Now 
specialize to the operators WO, Wz (see 5.42) together with the homology 
cycles p E Ho(M) ,  S E H z ( M )  leading to the observables 

O(P) = Wo(P) 

O(S) = s,w2 

Then the expectation value (see the definition (5.44) 

Z(P, S) = b P ( m  + m?)) 
is a topological invariant. By expanding the exponential we see that the 
expectation value Z(S ,p)  is a polynomial with respect to the cycles S and 
p .  Now we fix the cycle p and obtain the important 

0 TQFT - Donaldson polynomials conjecture: The map Z : 
H2(M) -+ R is the Donaldson polynomial. 

The way to Seiberg-Witten theory 
Thus, there is a reasonable conjecture that Donaldson theory can be for- 
mulated as a topological quantum field theory (TQFT). This TQFT is also 
6Remember, the g is inverse in the definition of the functional integral (5.44). 
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referred to as Donaldson-Witten theory. In [Witten (1988)l and later in 
[Moore and Witten (1998)l Witten et.al. the structure of the functional in- 
tegral (5.44) for the action (5.39) is analyzed in some detail. As we stated 
above, in the limit g + 00, the functional integral is dominated by the 
anti-self dual solutions F+ = 0 and this led to the possible relation to the 
Donaldson polynomials. The other limit g 4 0 is not so fruitful because we 
need non-perturbative methods to get any results. In 1988, Seiberg discov- 
ered new techniques to obtain very explicit formulas for the perturbative 
expansion for N = 2. This approach related non-perturbative effects to 
instantons, the solutions of the anti-self dual equation. In 1994, Seiberg 
and Witten [Seiberg and Witten (1994a,b)] expanded on earlier work to 
obtain new results for the non-perturbative structure of N = 2 supersym- 
metric quantum field theories including the action (5.39). The main point 
of the Seiberg-Witten approach was the discovery of “S-duality” exchang- 
ing the couplings g +-+ 1/g, i.e. transforming a perturbative situation into a 
non-perturbative one and vice versa. So, what is the S-dual of Donaldson- 
Witten theory, i.e. the TQFT leading to the Donaldson polynomials as 
vacuum expectation values of special operators? The answer is provided by 
Seiberg-Witten theory, as we review next. 

Recall that a possible N = 2 supermultiplet has one boson of spin 1, two 
fermions of spin 1/2 and one boson of spin 0, that is a scalar. The action 
of the corresponding field theory looks like a gauge theory with group G 
coupled to this scalar field, possibly a Higgs field. Higgs had introduced 
a complex scalar field (spin 0) 4 as a mechanism for breaking symmetry 
and leading to mass in a previously massless theory. In this N = 2 su- 
persymmetric theory, this scalar takes values in the group SU(2) ,  interacts 
with the gauge field as usual and in addition has a self-intersection with the 
potential V ( 4 )  = -21412 + 1414 where = c,P& and a = 1 , 2  is the group 
index for the group SU(2) .  The absolute minimum of the potential V(4)  
is given by the non-zero values 141 = 1, i.e. we choose 4 that the non-zero 
component is given by $1 = ei@. At these values, the full gauge symmetry 
is broken and only a reduced version given by the subgroup U(1) c SU(2)  
remains. In other words, the SU(2)  gauge theory is broken to a U(1) gauge 
theory by the Higgs potential V(4).  Now consider the energy of the whole 
theory and ask for the absolute minimum. Surprisingly, this minimum is 
also determined by 141 = 1. Thus the energy minimum (the classical vac- 
uum) is parametrized by the phase of 4. It was Seiberg’s [Seiberg (1988)l 
insight that a similar process occurs for the quantized version of a N = 2 
supersymmetric field theory. Here the expectation value u = (Wo) E C pa- 
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rameterizes the “moduli space of quantum vacua”, i.e the set of quantum 
states with lowest energy. Call that parameter space the u-plane. Seiberg 
and Witten showed that 

(1) Among u = 00, there are two other singularities of the quantum theory 

(2) There is a symmetry u H -u. 
(3) The S U ( 2 )  is broken at u = f l  to U(1). 
(4) The coupling constant g is mapped to - l /g  at u = fl. 

In [Moore and Witten (1998)], Moore and Witten analyzed this U (  1) theory 
to show that the instanton equation F+ = 0 must be modified at u = $1. 
Also, they found that at u = f l  there is a U(1) gauge field A coupled to a 
spinor field a. Mathematically, this coupling is given by a Spinc structure 
on a 4-manifold M (see section 5.4). After a long argument, Moore and 
Witten derived the field equations of the U(1) theory 

at u = fl .  

(5.45) 
(5.46) 

which replace the anti-self dual equation F+ = 0 of the SU(2)  theory. 

0 These are the famous Seiberg-Witten equations. 

Remark 5.22. 
In physics (explicit spinor) notation, these equations can be written as follows. Using Clifford 
matrices (with anticommutators {I?,,, r,} = 29,,), r,,, = i[r,,r,] and the curvature in 
components FPy = a,A, - 8,Ap. we obtain 

F:, = -;Gr,,,@ 
r p D , @  = O .  

In the second equation, P D , ,  is the Dirac operator 

derivative corresponding to the Levi-Civita and to the U(1) connection A. 

where D, denotes the covariant 

The corresponding invariants and the moduli space of these equations will 
be discussed in chapter 9. 

We close with some remarks about the open conjecture that Seiberg- 
Witten theory is related to Donaldson theory. The S-duality between 
Donaldson-Witten and Seiberg-Witten theory described above also predicts 
particular formulas that relate Donaldson invariants to Seiberg-Witten in- 
variants. A rigorous proof of this result is still lacking, however, since 
Seiberg and Witten’s work does not constitute a proof. There remain a 
number of non-rigorous arguments, ranging from assuming that no other 
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factors arise from integration in the u-plane, to the whole notion of func- 
tional integration (which is still not founded on rigorous mathematics, even 
today). However, the conjectured relationship between the Donaldson and 
Seiberg-Witten invariants does actually occur in the many cases where the 
Donaldson invariants and the Seiberg-Witten invariants are both known. 
This “empirical” evidence may be convincing, but for mathematicians (and 
physicists) concerned with calculating these invariants, the lack of a rigor- 
ous proof is of course problematic. 

In 1995, Victor Pidstrigach and Andrei Tyurin proposed a program to 
prove the relationship between the Donaldson invariants and the Seiberg- 
Witten invariants. Their approach is to consider a theory that contains 
both the scalar field @ and the non-abelian gauge group SO(3)  (which is 
basically SU(2) ,  except it identifies +I with -1). The theory they examine 
is analogous to the Seiberg-Witten equations (5.45), though slightly more 
complicated. 

Carrying out their program involves a great deal of difficult mathemat- 
ics, and this mathematics is being developed by Paul Feehan and Thomas 
Leness in a series of papers (see [Feehan and Leness (2003)] for instance). 
Meanwhile, with what they have accomplished so far, Feehan and Leness 
have proved Witten’s conjectured relationship between Donaldson invari- 
ants and Seiberg-Witten invariants for a large class of manifolds, up to a 
certain number of terms. Given the impressive work so far, it is reason- 
able to hope that this program will eventually prove the equivalence of the 
Donaldson invariants and the Seiberg-Witten invariants. 



Chapter 6 

A Guide to the Classification of 
Manifolds 

The topics discussed in this chapter can be compared to those that arise 
in the various “relativity principles” of physics. There we need to know 
whether or not two representations of spacetime and physical fields are 
essentially different, or whether they can be transformed from one to the 
other by coordinate transformations, within a class specified by the prin- 
ciple. For Galilean relativity, the transformations are restricted to time 
changes which are linear and space changes which are linear in Cartesian 
spatial coordinates and time. Obvious extensions of this lead to special and 
general relativity principles respectively. For a thoughtful presentation of 
these ideas in a novel bundle setting, see [Trautman (1984)l. 

In this chapter we look at the mathematical version: the classification 
of manifolds. Note that we are using the term “manifold” in this introduc- 
tory discussion to mean a space which is mapped locally into some standard 
archetype by coordinate patches. In its most general form this problem has 
not been completely solved. In fact, even at the topological level, it has 
been proved by A.A. Markov [Markov (1958)] that there cannot exist any 
algorithm (in the sense of the theory of recursive functions) that would 
allow one to determine if two Euclidian simplicia1 complexes X , Y  of di- 
mension greater than three are homeomorphic or not’. Thus, by extension, 
there can be no algorithm (or computer program) which would solve the 
topological classification for manifolds with dimension greater than three. 
Notwithstanding this pessimistic fact, much progress has been made for 
restricted types of manifolds. Because the notion of equivalence implies a 
class of transformation, we need to organize the study according to restric- 

lThe proof connects this problem with the so-called “word problem” in group theory. 
One has to decide whether the two fundamental groups s l ( X )  and A~(Y) are isomorphic 
or not. But it is known that no such algorithm exists. 

151 
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tions on the transition functions between the charts defining the manifold. 
Specifically, we have: 

0 homeomorphisms (TOP case) 
0 piecewise-linear (PL case) 
0 or diffeomorphisms (DIFF case). 

As mentioned above, the TOP case cannot be effectively solved. However, 
the additional structures in the last two are so restrictive that some classi- 
fication results are known. 

Actually, a more basic question than classification is that of existence. 
So we can ask under what conditions a TOP manifold can carry a PL or a 
DIFF structure. In fact, this extension problem from TOP to PL or DIFF 
has now been solved, except for our notorious dimension 4. In dimensions 1 
and 2 the classification problem was solved at the end of the 19th century. 
The reader can find in [Rado (1925)] a proof that every topological manifold 
of dimension less than 3 admits a unique PL and DIFF structure. An 
extension of this result to dimension 3 for any TOP manifold can be found 
in [Moise (1952); Cerf (196S)l. 

In dimension 4 there is a complete classification for TOP manifolds for 
a certain restricted class of fundamental groups. See [Freedman and Quinn 
(1990)l. Furthermore, every PL-Cmanifold admits a unique induced DIFF 
structure. However, the question of the transition from a topological (TOP) 
to smooth (DIFF) structure on an arbitrary 4-manifold is still open. Don- 
aldson [Donaldson and Kronheimer (1990)] and Seiberg-Witten theory [Ak- 
bulut (1996); Morgan (1996)l provide some strong conditions on a topolog- 
ical 4-manifold for it to admit a smooth structure. In all other dimensions 
(2 5 )  fairly complete results are known concerning extensions from TOP 
to PL, PL to DIFF and TOP to DIFF, as described in Kirby and Sieben- 
mann [Kirby and Siebenmann (1977)]. For dimension 3 the classification 
problem is closely connected to the famous Poincark conjecture, which, as 
of this writing in 2004, is not yet completely resolved. However Thurston’s 
“Geometrization Program”[Thurston (1997)] is being used as the basis for 
many current attacks on the problem. Thus again the physically interesting 
dimensions, three and four, stand out as uniquely important in differential 
topology, as well as for our studies in this book. 

We begin with a look at Morse theory on smooth manifolds. This tech- 
nique decomposes manifolds into simple pieces, handles, using the critical 
points of a real valued function on the manifold, called a Morse function. 
This procedure is appropriately called surgery. The initial and final level 
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surfaces of an appropriate Morse function are then said to be cobordant. 
Next, we apply these and other techniques to study low dimensional mani- 
folds, dimensions 1,2,3. For the first two cases, algebraic topology, that is, 
homology theory, is sufficient for classification. The theory of 3-manifolds 
is much more complicated and has recently been greatly enhanced by the 
work of Thurston and others. We temporarily skip in section 6.3 to higher- 
dimensional n-manifolds n > 4, using the h-cobordism theorem to explore 
wider questions of the relationship between the categories, TOP, PL, and 
DI  F F .  Two simply-connected higher-dimensional manifolds are diffeomor- 
phic iff they are h-cobordant. Note that the h-cobordism theorem is valid 
only for compact manifolds,and so excludes R”. To get that, we need the 
engulfing theorem. See Stallings, [Stallings (1962)], discussed in our chap- 
ter 8. The next two sections are concerned with the case of most interest to 
us, four dimensional smooth manifolds. These methods are very specific to 
4-dimensions: Casson handles and Kirby calculus. We discuss the failure 
of the higher-dimensional methods (h-cobordism etc.) in the 4-dimensional 
case. This failure is due to the failure of Whitney’s trick used in finding an 
embedding of a disk for doing surgery in dimensions greater than four. the 
last two sections are concerned with the important tool, the intersection 
form, as applied to 4-manifold topology. In fact, it is possible to construct 
4-manifolds with any given intersection form. But what is the TOP class 
of such constructions? This topic was explored successfully by Freedman. 
We close with a brief algebraic discussion of the (integer) equivalence class 
of quadratic forms. 

Assumption: Unless otherwise specified, all manifolds in the remainder of 
this chapter will be smooth, compact, and connected. 

6.1 Preliminaries: From Morse Theory to Surgery 

6.1.1 

Morse theory is, on the one hand, a theory about the relationship between 
the critical points of a function f : M ---t R and the topology of the under- 
lying space M ,  and, on the other hand, a theory about the decomposition 
of a space M into simple pieces called handle bodies (see Figure 6.1 for a 
description). Standard, very readable, references including many explicit 
local chart presentations are in two books based on lectures by Milnor, 

Morse theory and handle bodies 
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[Milnor (1963)l and [Milnor (1965a)l. 
We begin with a review of classical dynamics of particle motion. In 

standard elementary Cartesian non-relativistic form we have the equations 
of Newton for a particle of unit mass subjected to a conservative force with 
potential energy f, 

d 3  
d t  = 21, - 

dv' 
d t  - = -v f (3(t)). 

From the physical point of view, the critical points of this dynamical system 
are the equilibrium, force-free, points. In mathematics, the solution of 
the system (6.1) generates local diffeomorphisms in T M  3 (3,G) between 
starting values, (Ic"(O), v ' ( O ) ) ,  and ending values, ( Z ( t ) ,  .'(t)). Of course, the 
diffeomorphism breaks down precisely at the critical points, v' = 0 and 
V f (.'(t)) = 0. A study of the number and nature of these critical points, 
and their relationship to the differential topology of M is precisely the 
subject matter defining Morse theory. 

' t  

Fig. 6.1 
and Stipsicz (1999)l p. 104, Fig. 4.4) 

From critical points of functions to handle decomposition (figure from [Gompf 

Specifically, p E M is a critical point of a function f : M + R, if 
all first-order partial derivatives vanish at p .  That is, the induced map 
f* : TpM -+ Tf(p$R is the zero map. The real number f ( p )  is the critical 
value of f. Let U be a coordinate patch neighborhood of the critical point p 
with coordinates ( zl, . . . , zn). The matrix of second derivatives is known as 
the Hessian. The critical point is called degenerate if and only if the Hessian 
is singular at the point p ,  that is, the determinant of the matrix of second 
derivatives of f at p is zero. A smooth function f : M 3 R which has only 
non-degenerate critical points is called Morse function. The important issue 
of the existence of Morse functions is settled in [Milnor (1963)]. From this, 

2 0 f  course, equations (6.1) have been presented in global Cartesian coordinates, so the 
consideration of manifolds with non-trivial topologies requires extensions of the formal- 
ism to take into account the local nature of the 2. 
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and elementary analysis, it is easy to see that any Morse function contains 
only isolated critical points. 

The following important lemma clarifies the local structure in the neigh- 
borhood of the critical point of a Morse function. 

Theorem 6.1. (Lemma of Morse) 
Let p be a critical point of a Morse function, f ,  which, by  definition, must 
be non-degenerate. Then  there is a local coordinate system (y’, . . . , y”) in 
a neighborhood U of p with yi(p) = 0 and in which 

f = f ( p )  - (y1)2 - . . . - (y”2 + (yk+1)2 + . . . + (y”)? 

The integer k is called the index of the critical point p of f. The proof of 
this lemma is a straightforward exercise in real analysis. Introduce local co- 
ordinates, yz, in a neighborhood of the critical point. The Taylor expansion 
o f f  can then be written 

f = f ( P )  + c HijYiYj + 0 ( Y 3 ) ,  (6.2) 
is j 

where Hij is the symmetric Hessian matrix of second derivatives at p. First 
order terms do not appear because 0,f = 0. A linear transformation of 
coordinates diagonalizes H and a rescaling reduces its eigenvalues to f 1. 
Finally, the removal of third order terms requires a little more work. See 
Milnor’s book, [Milnor (1963)l. 
Morse functions and topology 
Consider the “landscape” over the manifold spanned by the graph of the 
function f : M --+ W. Using terminology appropriate for such a picture, the 
height of points on the torus manifold, as indicated in Figure 6.2, defines 
such a function, f. Also, note that in this case all critical points are non- 
degenerate, as required of a Morse function. Define Ma = {x E MI f (x) 5 
a }  = f - l ( - m , a ] .  The behavior of these regions as a function of a leads 
to the conjectured relationship between critical points and topology. The 
heights 0, 1 , 2 , 3  are precisely the critical values of the height function. Now, 
let us explore the region free of critical points, say 0 < a < b < 1. Clearly 
the set f - l [ a ,  b] is compact and does not contain any critical point of f. 
Now consider the orbits of solutions to 

It is then possible to choose the normalization factor p so that f ( ~ ~ ( 0 ) )  = 
a ,  f ( d ( 1 ) )  = b. The absence of critical points in this region then implies 
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Fig. 6.2 Morse function of the torus T 2  = S' x S' with critical points 0 , 1 , 2 , 3  

that these curves generate a diffeomorphism between the two level sets, 
f - l ( a )  and f - ' (b) .  Furthermore, the region between them is diffeomorphic 
to the product, [0,1] @I f-'(a). Finally, requiring that p vanish outside a 
compact neighborhood of f -' [a,  b] leads to an argument showing that M a  
is indeed a smooth deformation retract of M b .  Details are available in 
[Milnor (1963)] ,§3. 

The other case 0 < a < 1 < b' < 2, that is, the intervention of a critical 
point, is more interesting and is described in the theorem of Morse, Bott 
and Smale which we state as 

Theorem 6.2. Let f : M --t W be a Morse function with critical point p 
of index k. W e  set f ( p )  = c and assume that f -'[c - E ,  c + E ]  is compact 
and does not contain any critical point except p for some E > 0.  Then 
for  suficiently small E the set MC+' is homotopy equivalent to  Me-€ U ek,  
that is, MC-' with a k-handle attached. To attach a handle, take a copy of 
D k x D n V k  and embeddDkxDn-k  i n d M C - €  withamapcp:  d D k x D n P k  4 

Furthermore, let bi = dim Hi(M,P)  for any field, P, be the ith Betti 
number of the smooth, compact manifold M and Ck be the number of critical 

dMC-€ 3 

3For details of this approach consider section 6.1.3. 
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values off  with respect to  the index k. Then 

C(-l)ibi = C(-l)’C’. 
i k 

It is important to emphasize that the equivalence discussed here is in the 
category of homotopy, not topology. But, within this realm of homo- 
topy equivalence, this result shows that it is possible to decompose a given 
manifold into handle bodies (see section 6.1.3 for the details) by using a 
Morse function over the smooth manifold M .  

Now, back to the example of a torus. Consider the levels a and b with 
0 < a < 1 < b so that the critical value, 1, intervenes(see Fig. 6.3). It is now 

level set at 
point a 

level set at 
point b’ 

M a  b’ 

Fig. 6.3 Level sets of the points a and b 

possible to visualize that the difference between Ma and Mb is the addition 
of a 1-handle D1 x D1 (see Fig. 6.4)). Continuing this analysis to the other 
critical points, we see that the 2-torus is homotopically decomposable into 
a 0-handle, two 1-handles, and a 2-handle (see Fig. 6 .5 ) .  

We close this section by mentioning some more recent extensions of 
Morse theory. One assumes that the critical points (now degenerate) are 
concentrated along a submanifold. Then we use the Poincarb polynomial 
of the submanifold instead of the Betti numbers to get the same relation 
as in the non-degenerate case (see “ash (1991)l). Another generalization 
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adding 
1 -handle 

a I M 
homotopy 1 

b’ 
Fig. 6.4 Getting from level set Ma to Mb via handle adding 

Fig. 6.5 
Stipsicz (1999)l p. 105, Fig. 4.5) 

Morse decomposition of the torus T2 = S’ x S’ (figure from [Gompf and 

involves the action of a Lie group on the manifold. This leads to equiv- 
ariant cohomology with respect to this group (see “ash (1991)l). Finally, 
there is a generalization of the manifold itself to a pseudo-manifold or more 
generally a stratified space. A good example of a pseudo-manifold is the 
cone, having a singularity on the peak. Examples of stratifying spaces occur 
often in moduli spaces of gauge theories where the dimension of the space 
jumps from area to area (i.e. area=strata). Morse theory for these kinds 
of space uses very complicated methods from algebraic geometry (sheaves, 
perversity of sheaves, intersection cohomology, etc.) to again obtain the 
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result (see [Goresky and MacPherson (1988)l) that the weighted sum of the 
Betti numbers of the intersection homology (see [Borel (1984)]) is given by 
the weighted sum of the critical points or subspaces of the Morse function. 
More details of these generalizations lie beyond the scope of this book. 

6.1.2 Cobordism and Morse theory 

Next we review the use of Morse function techniques to explore the rela- 
tionship between different manifolds which, as a disjoint pair, constitute 
the boundary of a third manifold. Let X - ,  X+ be two n-dimensional, 
closed, oriented manifolds. If there exists an (n f 1)-dimensional com- 
pact, oriented manifold W with boundary such that dW = x- LI X+ 
(x- is the manifold X -  with opposite orientation) then the two manifolds 
are said to be (oriented) cobordant to each other. Here LI indicates 
the disjoint union. Denote this relationship by X -  -C X+.  The triple 
(W, X - ,  X + )  is called a cobordism between X -  and X+.  Figure 6.6 sketches 
an example of a cobordism. There is an obvious equivalence: Two cobor- 

w \ 

Fig. 6.6 Cobordism W between X +  and X- 

disms W and W’ are equivalent if and only if there is a diffeomorphism 
g : ( W , X + , X - )  ( W ’ , X i , X L ) .  Recall that in this part of the chapter 
we are assuming that manifolds are smooth, which we must to talk about 
Morse functions. 

Remark 6.1. 
It is easy to see that - C  is an equivalence relation. The equivalence classes of n-dimensional 

cobordant manifolds form an Abelian group 0, with disjoint union II as addition. The equiv- 



160 Exotic Smoothness and Physics 

alence class of the n-dimensional empty manifold 0 plays the role of 0, and x (the manifold 

X with the opposite orientation) gives an inverse for X .  The class represented by X will be 

denoted by [XI E n,. Furthermore, we note that the Cartesian product M I  x MZ defines a 

product in n, which make it to a Zz-algebra. R. Thom [Thom (1954)l has investigated this 

very complicated algebra structure. 

The manifolds cobordant to 0 are called null-cobordant. So, a manifold X n  
is null-cobordant if and only if there exists Wn+’ such that d W  = X. 

We introduced cobordism using examples derived from Morse functions. 
Conversely, a cobordism (W, X + ,  X-) defines a Morse function f : W -+ 

[a,  b] satisfying conditions: 

(1) f - l ( a )  = X+ , f - l ( b )  = X - ,  
( 2 )  all critical points of f are in the interior of W .  

Define the Morse number p of ( W , X + ,  X - )  to be the minimum number 
of critical points of f with respect to all Morse functions f .  According to 
[Milnor (1965a)l we obtain the following important and powerful result: 

Theorem 6.3. E v e y  cobordism (W, X + , X - )  admits a Morse function. 
Furthermore eve y cobordism can be decomposed into a union of cobordisms, 
each with Morse number 1. 

The simplest example of a cobordism with one critical point is given by 
the so-called “pants” surface, providing a cobordism between the disjoint 
union of two circles S1 LI S1 and single circle S1 (see Fig. 6.7). The critical 

Fig. 6.7 The simplest cobordism with Morse number 1 

point lies in the crotch of the pants. Thus, the cobordism of any two non- 
homeomorphic manifolds must have a non-trivial Morse number. 
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Remark 6.2. 
A less trivial example confirming the assumption above can be given by later introduced 

surgery on a manifold X ” .  Attach a ( k  + 1)-handle to I x X” along d :  Sk x Dn-k + 

(1) x X C a ( I  x X ) .  As a result we get a cobordism between X = (0) x X and the surgered 

manifold X + .  

The tools from Morse theory and cobordism will be helpful for us in un- 
derstanding the smooth classifications in higher dimensions in the later 
sections and chapters. 

6.1.3 Handle  bodies and surgery 

In the preceding section we briefly reviewed Morse functions and cobordism 
providing an intuitive notion of an almost dynamic procedure for transform- 
ing one manifold to another cobordant one by “attaching” handles at the 
critical points of the Morse function. Following Milnor [Milnor (1959)] and 
[Milnor (1965a)l we look into the these technique more carefully, eventu- 
ally obtaining the h-cobordism and other powerful topological theorems. 
Of course, since we are so centrally concerned with smoothness questions, 
we must note that the Morse techniques, involving smooth orbits, necessar- 
ily apply only to smooth manifolds, whereas more general cobordism and 
surgery techniques can be studied in the more general TOP category. 

To have a physical model, consider a lump of clay as a model for a 
D3. A physically LLcontinuous” deformation of this lump can change its 
shape (geometry), for example into a bowl, but to change its topology 
we must “punch holes,” or, “attach handles” transforming the bowl to a 
cup-with-handle. These handlebody and surgery techniques allow us to go 
from topologically simple manifolds such as non-compact, euclidean R” or 
compact manifolds, such as the disk, D”, (with boundary) and the sphere 
S”, without boundary, to produce more complicated manifolds. In this 
process, we keep LLcontrol” of the topology in the sense of being able to 
calculate homology/cohomology changes at each stage. 

Finally, since we are concerned with differential topology, we must be 
sure that the surgery transitions are smooth. This last condition is ensured 
by the folk theorem that “corners can be smoothed.” So, even though for 
ease in rendition our diagrams may contain curves and surfaces with right 
angles, they should be thought of as smoothed. 

An n-dimensional k-handle is defined as a copy of D k  x Dn-k (for 0 5 k 5 
Handle and Handlebody 
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n). Thus, in 2 dimensions there are only three possible handles: a 0-handle 
(Do x D2 = D 2 ) ,  a 1-handle (Dl  x D') ,  and a 2-handle (D2  x Do = D 2 )  
which is dual to the 0-handle. The attaching of a k-handle to  an  n-manifold 
X is accomplished by means of an embedding cp: dDk x Dn-k + dX, 
known as attaching map, as represented in Figure 6.8. The case k = 0 
is exceptional, since then dDo = 0, and there can be no attaching map 
from the empty set to the dX. By convention, the attachment process here 
means adding D" by forming a disjoint union of D" with dX(which may 
be empty itself). Again, although this figure appears to have "unsmooth" 

belt sphere d 

attaching sphere 

Fig. 6.8 
(1999)l p. 100, Fig. 4.1) 

k-handle glued along the boundary of X (figure from (Gompf and Stipsicz 

corners, these can be smoothed. Dk x 0 is called the core of the handle, 
and 0 x Dn-k is the co-core, cp is the attaching map, dDk x Dn-k (or its 
image cp(dDk x D"-')) is the attaching region, dDk x 0 is the attaching 
sphere, and 0 x dD"-k is the belt sphere. The number k is called the index 
of the handle. Such a procedure is the basic technique for obtaining more 
complicated and interesting smooth manifolds from a trivial one such as an 
n-ball4. The great advantage of such procedures is the control they provide 
over the homology and cohomology by use of the Mayer-Vietoris sequence 
after the attachment of a k-handle. For a more complete discussion of these 
constructions, see Lawson [Lawson (2003)], or Gompf and Stipsicz [Gompf 
and Stipsicz (1999)]. 
Example: Handle attachment to D2 
Start with a disk D 2 .  A 0-handle is a copy of Do x D2 which is D 2 .  Glue 
this handle along the boundary onto D2 to get a disjoint union of two D2's. 
4Except for dimension 4 there is also a topological counterpart of this smooth procedure. 

The failure is directly related to the failure of Whitney's trick and will be explained in 
section 6.6. 
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Next, glue a l-handle D1 x D1 along the boundary of the disk dD2 = S1, 
using an embedding 

So x D1 = {*} x D1 U {*} x D1 -+ dD2 = S1. 

This produces a new manifold D$ which is now homeomorphic to the re- 
gion of a disk between two concentric circles. See Figure 6.9, noting that 
the last step is a deformation, or homotopy equivalence of the ring be- 
tween the two circles into a circle. For another example, attach a 2-handle1 

1 -handle 

disk 

Fig. 6.9 Gluing of a l-handle to get a circle (=l-sphere) 

D2 x Do = D 2 ,  to the boundary dD2 = S1 of a 2-disc to produce a 2-sphere 
S2 .  (See Figure 6.10). In terms of homology, we can say that the process 
of attaching a Ic-handle results in an additional generator in the lc-th h e  
mology group. 
Handlebody decomposition 
The above examples can be generalized, decomposing an arbitrary n- 
manifold X by handlebody attachment, providing a handle decomposition. 
More precisely, the handlebody decomposition of X is a sequence of sub- 
manifolds starting with D" and ending with X where each term is obtained 
from the previous one by attaching a corresponding handle. A manifold X 
with a given handle decomposition is called a relative handlebody. 

(1) We can arrive at DH in the previous example by starting with D2 and 
simply attaching a l-handle. This is, of course, what we did in going 
through the critical point at f(p) = 1, for the torus in Figure 6.2. 
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Fig. 6.10 Gluing of a 2-handle to get a sphere (=2-sphere) 

(2) Let us look at the full construction of the torus, T2 = S1 x S1, from 
the critical points of the Morse function in Figure 6.2. The first critical 
point, of index 0, is at the transition from the empty set. So we attach 
a 0-handle. Using the convention above, this gives the disjoint union 
of D2 with {x : f(x) < 0 )  = 8, or simply D 2 .  The next two critical 
points are of index 1, so we attach two 1-handles. Finally, we cap it off 
at the top, index 2, attaching the 2-handle, D 2 .  

As stated in thd previous section, and illustrated in simple examples, we 
can consider (in the case of smooth manifolds) the handlebody decomposi- 
tion using a Morse function on the manifold. But in itself this information 
is not enough to completely define the manifold. In fact, the information 
that we need about the attaching map is its LLdeformation” (homotopy) 
class, given by the degree map of the boundary. 
Framing 
An attaching map ‘p: dDk x DnVk + d X  is an embedding of the bound- 

ary of the handle dDk x Dn-k into the boundary d X .  Obviously, there are 
many such embeddings, so we need to determine the appropriate classifica- 
tion for them. It turns out that we need the isotopy class of the attaching 
map. An isotopy of two embeddings is a family (smooth in our case) of 
maps parameterized by t E [0,1]. Again referring to Gompf and Stipsicz, 
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[Gompf and Stipsicz (1999)] , especially chapter 4, consider the restriction, 
$0 : d D k  x (0) -+ HO c d X ,  for (0) E Dn-k. Consider the normal bundle, 
in No(H0) c T ( X ) ,  restricted to this image. It can be shown that this 
bundle is trivial, and a trivialization of it, that is, a map f identifying NO 
with dDk x Elnpk  then determines the full attaching map, 4, up to isotopy. 
Such an f is a framing. The choice of the term “framing” is appropriate 
since each such map can be understood as a map from dDk  = S“-’ to a 
“frame” of n - k independent vectors in Rn-k. 

Now pick some framing, fo,  as a standard. Then any other framing can 
be obtained by operating on the image of fo by an element of GL(n - k), 
that is, by a map Sk-l 4 GL(n - k). Since only the isotopy class of such 
maps is important we have the result that, given some standard fo, there is 
a bijection of the framings into nk-l(GL(n-k)) = 7rk - l (o (n -k ) ) .  It turns 
out that the dependence of this identification of framings with homotopy 
elements may not be entirely independent of the choice of fo, but we will 
not look into this question further here. 

To illustrate these technicalities, consider the example of a disk D2 and 
glue a 1-handle along the boundary dD2 = S1. The framing of the attach- 
ing map is an element of 7r1-1(0(2 - 1)) = ro(O(1)) = &. The figure 6.11 
shows both cases. It is interesting to note that the first non-finite framings 

trivial framing 

Fig. 6.11 The two possible framings for adding a 1-handle on 0’ 

occur for n = 4,lc = 2 leading to 7 r 1 ( 0 ( 2 ) )  = Z. That is, beginning with 
four dimensions we get the problem of possibly infinite framings. 
Surgery 
To this point we have been concerned with handle attachment, basically 

gluing a copy of S“’ x Dn-k onto the boundary of a piece of a manifold, 
Ma-B, to understand the transition across the level, a, of a critical point. 
Another way to look at this process is surgery theory, involving attaching to 
the interior of a manifold. For references and comparison see both of Mil- 
nor’s books, [Milnor (1963)] (for handle attachment) and [Milnor (1965a)], 
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or [Gompf and Stipsicz (1999)]. See [Lance (2000)] for a collection of papers 
surveying various topics in surgery theory. 

Specifically, surgery involves embedding cp: S k  -+ M n  (-1 5 k 5 n) 
with dDo = S-' = 0 with (normal) framing f .  Then (cp, f )  determines 
an embedding @: Sk x Dn-k 4 M ,  a procedure which is unique up to 
isotopy. Surgery proceeds by removing @(Sk  x int Dn-') and replacing it 
with 0"' x Sn-k-l, using the gluing map @lsk X S n - k - 1 .  In terms of Morse 
functions, this corresponds to passing a critical point of index k .  
Example: Surgery on the torus 
As an example, consider the case n = 2, k = 1 for the 2-manifold S' x S' = 
T2.  Embed the cylinder S' x int (D') = S' x (0,l)  into the torus T 2  in an 
obvious way, i.e. the cylinder wraps around the "hole part" of the torus. 
Then we cut out this cylinder (making the former torus into a cylinder) 
and glue in D2 x So (the disjoint union of two D2's).  This gluing "closes" 
the cylinder disjointly at both ends and results in a 2-sphere S 2 .  

For us, the important fact is 

Surgery and Smoothness: The smooth structure of the resulting manifold 
is only influenced by the isotopy class of the maps (cp, f). 

Another important cobordism result is that two closed, oriented man- 
ifolds MI and M z ,  can be transformed into each other by a sequence of 
surgeries if and only if M I  and M2 are oriented cobordant, i.e., there is a 
compact, oriented manifold whose boundary is a1 U M2 (and similarly for 
non-oriented manifolds and arbitrary surgeries) (see the section 6.1.1). 
Handle manipulation: Canceling and Sliding of Handles 
It turns out that the Morse function, or handlebody/surgery description of 
a manifold is not unique. For example, there may be more handles than 
necessary. A simple one dimensional example is described in Fig. 6.12, with 
one minimum, index 0, and a maximum, index 1. The first corresponds to 

Fig. 6.12 
[Gompf and Stipsicz (1999)] p. 110, Fig. 4.9) 

Annihilation/creation of handles described by Morse functions (figure from 

the attachment of a O-handle Do x D1 and the second a l-handle D' x Do. 
The obvious deformation eliminates these two curves without changing the 
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topology, as indicated in this figure. For a two dimensional model, where 
the maximum has index 2 and the minimum index 1, see the figure 5.2, 
page 49, of [Milnor (1965a)I. 

Fig. 6. 3 Three dimensional example of cancellation of criticr points 

Milnor’s book also contains a detailed proof that in general a (k - 1)- 
handle and a k-handle can be canceled if the attaching sphere of the k- 
handle intersects the belt sphere of k - 1-handle transversely in a single 
point. Such a pair of handles is called a canceling pair. By cancellation and 
other techniques it is possible to arrive at a canonical form for the Morse 
function presentation of a cobordism. 

Another important technique which does not influence the diffeomor- 
phism type involves handle slides. Given two k-handles hl and hz attached 
to ax, a handle slide of hl over ha is given by pushing the handle hl over 
ha according to the Figure 6.14. More carefully described, we isotope the 

Fig. 6.14 Sliding the handle A over B (figure from [Gompf and Stipsicz (1999)l p. 109, 
Fig. 4.8 

attaching sphere A of hl in a ( X  U hz), pushing it through the belt sphere 
B of hz (Figure 6.14). At the intermediate stage, the spheres will inter- 
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sect in one point p (with TpA @ TpB of codimension 1 in T p d X ) .  We will 
have a choice of directions for pushing A off B. One direction gives the 
original picture, and the other gives the result of the handle slide. Cerf 
has provided the definitive result for these techniques as summarized in the 
following theorem. 

Theorem 6.4. Cerf [Cerf (1970)l 
Given any two handle decompositions (ordered by increasing index) of a 
compact manifold X with boundary d X ,  it is possible to get from one to  
the other by a sequence of handle slides, creating/annihilating/cancelling 
handle pairs and isotopies. 

Before closing this section and proceeding to apply these techniques to 
manifolds of specific dimensions, we want to remark that there is a more 
general way to introduce surgery, initiated by Wall [Wall (1970)]. The main 
techniques make use of purely algebraic objects known as cell complexes 
(fulfilling the abstract Poincar6 duality) to construct topological manifolds. 
In this presentation, a surgery is given by an algebraic relation. Wall asso- 
ciated to the surgery operation so-called L-groups expressing obstructions 
to surgery involving an exact surgery sequence. These matters are more 
involved than we would like to pursue here. However, hopefully the further 
development of L-theory will provide tools for problems in 4 dimensions 
and help to unify all of manifold theory (see also [Kirby and Tylor (1998)l). 

The reader may wonder why we need to consider topologically non- 
trivial spaces, when we are largely concerned in this book with the topolog- 
ically trivial R4, and its possibly no-trivial smoothness. Without knowing 
whether an exotic R4 exists or not, we can know some of its properties. 
Consider an embedding R4 --i M4 into some compact 4-manifold then there 
are two possible cases: 1. M4 is a topologically non-trivial 4-manifold (i.e. 
different from S4) or 2. M4 is S4. In this case the image of the embedding 
cannot be homeomorphic to int(D4) but of course must be contractible. In 
both cases we will need to know something about non-trivial topology. In 
fact, the first exotic IR4 was constructed by finding it embedded in a non- 
trivial manifold and by the failure of the extension of topological surgery 
theory to the smooth case. 
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6.2 Application of Surgery to Low-dimensional Manifolds 

By low-dimensional, we mean here dimensions less than five. Starting with 
dimension 1 and 2 it turns out that the homological methods provide com- 
plete classification. In dimension, 3 the tools of Dehn surgery along a 
knot/link lead to the construction of all 3-manifolds. But this procedure is 
not unique i.e. given two different (i.e, non-isotopic) knots or links may lead 
to homeomorphic 3-manifolds. In fact, Kirby and Fenn, and Rourke intro- 
duced a set of knot/link moves which leaves the topology of a 3-manifold 
unchanged5. Thurston’s “geometrization program,” [Thurston (1997)l has 
introduced a new and entirely different approach to the classification prob- 
lem of 3-manifolds, relating geometry to smoothness starting with the fact 
that every smooth manifold can be endowed with a Riemannian metric. 

For dimension 4, previous techniques are inadequate. In fact, there is 
no guarantee that a handlebody theory on a given topological 4-manifold 
exists. However, a new tool, Casson handles, has been developed for this 
topological case. Smoothness on a 4-manifold leads to a new version of 
handlebody studies, the so-called Kirby calculus. These techniques will 
turn out to be of central importance for our purposes, since, in fact, if two 
handle bodies are transformed by the Kirby calculus then the 
corresponding 4-manifolds are diffeomorphic. But first, we look at 
dimensions 1 and 2 which are by now classical. 

6.2.1 

For l-manifolds, compactness divides the two possible cases. The non- 
compact case is simply the real line IR whereas the compact case is the 
circle S’. All other connected l-manifolds are homeomorphic to one of 
these. Furthermore, every l-manifold admits a differential structure which 
is unique. See the Appendix of [Milnor (1965b)l for a complete proof of 
these facts. 

The first non-trivial case involves 2-manifolds. The classification prob- 
lem for compact, connected 2-manifolds was solved in the 19th century by 
Klein, Poincar6 et al. We will sketch an approach to the ultimate result 
using handlebody techniques as discussed above. Especially note that the 
framing of a k-handle attached to an n-manifold is determined by the as- 
signment of a frame normal to the embedded 5’“’ and is thus an element 

1- and 2-manifolds: algebraic topology 

of nk-l(O(n - k)). 
5This was the original motivation for the development of Kirby calculus. 
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As an introduction to the theorem below, let us review handle body 
techniques for 2-manifolds discussed in section 6.1.1 above. Here we will be 
interested in arriving at closed 2-manifolds, compact with null boundary. 
Start with a 0-handle, equivalent to a D 2 ,  with boundary S1. To this 
we can attach either a 2-handle or one or more 1-handles. Attaching a 
2-handle, D2 x {pt}, means identifying the two boundary circles with a 
diffeomorphism, S’ + S1. If this diffeomorphism is isotopic to the identity, 
we obtain the standard S2.  In the second case we attach a 1-handle D’ x D’. 
This involves embedding the two disjoint intervals of dD’ x D’ into the 
S’ = 8D2.  Note that this can be done with either f l  framing. For +1, we 
can view this in terms of Morse functions as discussed in section 6.1.1 at 
the first critical point of the height function, at the bottom of the “hole.” 
This intermediate result is a cylinder. If we now attach another 1-handle 
we arrive at the middle image in figure 6.5. The boundary of this space 
turns out to be simply 5’’. An attachment of a 2-handle to this closes 
the space into the standard 2-torus, T 2  = S1 x 5’’. However, if we attach 
the first handle with a twist, -1 framing, the space is non-orientable, with 
boundary not two disjoint S1’s, but only a single one. We can close this off 
by attaching a 2-handle, but arrive at a non-orientable closed 2-manifold 
which is actually RP2. 

Summarizing, starting from the basic 0-handle, D 2 ,  

attach a 2-handle to get S 2 ,  
attach two 1-handles with +1 framing, then a %-handle, get T 2 ,  

0 attach one 1-handle with framing -1, then a 2-handle, get RP2.  

This procedure can be iterated. For the torus, if we attach 29 1-handles 
we arrive at the connected sum of g tori. The number g turns out to be 
the topological genus of the space, or equivalently the dimension of the 
first integral homology group. The last and important point is that this 
procedure turns out to be exhaustive, that is, it produces all smooth closed 
2-manifolds. The precise statement is the following theorem (see [tom Dieck 
(1991)l) using the connected sum notation #. 

Theorem 6.5. Every compact, closed, oriented 2-manifold is homeomor- 
phic to  either S2 or the connected sum 

T2#T2#.  . . #T2 
9 

of T 2  for  a fixed genus g. Every compact, closed, non-oriented 2-manafold 
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is homeomorphic to the connected sum 

RP2#RP2#. . . #RP2 
9 

of RP2 for a fixed genus g. 
Every compact 2-manifold with boundary can be obtained from one of 

these cases by  cutting out the specific number of disks D2 from one of the 
connected sums. 

Finally, every 2-manifold admits a unique differential structure. 

Homology provides the natural tool to describe this classification. Histori- 
cally, homology was developed by Poincar6 to understand the generalization 
of Euler’s polyhedra formula6. Consider the torus T 2  = S1 x S1 with ho- 
mology Hn(T2) = Z for n = 0,2 and H1(T2) = Z @ Z. For the connected 
sum of g copies of T2 ,  the first homology group changes to 

H1(T2#.  . . #T2) = Z@ . . . Z -- 
9 29 

whereas the other homology groups are unchanged. Thus, we have a method 
to compute the decomposition into tori for any compact, closed, oriented 2- 
manifold C ,  simply calculate the first homology group of this surface. The 
order of this group is twice the genus 9, so the space is the connected sum of 
g copies of T 2 .  Similarly for non-oriented 2-manifolds, the homology of the 
real projective space is Hn(RP2)  = Z for n = 0 , 2  and H1(RP2)  = Z2. Thus 
the number of &-factors in the first homology gives us the decomposition 
for non-orientable, compact, closed 2-manifolds. 

Let us now consider the two dimensional definition of a tool, the inter- 
section form, whose generalization to the 4-dimensional case will be of 
great importance later. Within a two-manifold consider two closed curves 
y1 and 7 2 .  As an example, look at the torus T 2 .  By deformations we can 
make y1 transverse to 7 2  so that the curves intersect in a finite number 
of points. This number is not an invariant with respect to small deforma- 
tions because some of the intersection points disappear after deformations’. 
However, this number modulo 2 turns out to depend only on the homol- 
ogy class of y1 and 7 2  in H1(T2, Z2) and thus is invariant with respect to 
6This formula is the relation: points-edges+surfaces=2. Today we formalize this rela- 

tion into the Euler characteristic. Every polyhedron is homeomorphic to S2 with Euler 
charmteristics x(S2) = 2. 

7The 1-handle can be glued along the boundary with 2-framings. That is the reason 
for using the ZZ. 
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small deformations. In our example of a torus, S1 x S1, we have two gen- 
erators of the first homology represented by the curves y1 = S1 x {point} 
and 72  = {point} x S1. These two curves intersect in a single point. In 
general, if x and y are two generators of H 1 ( T 2 , 2 2 ) ,  define the intersec- 
tion form p of T 2  as the map p : H1(T2 ,Z2)  x H 1 ( T 2 , 2 2 )  + Z2 with 
p(2,  y )  = (number of intersection points between x and y )  mod 2. Obvi- 
ously this form is a symmetric bilinear form on H I  (T2, Z2). With respect 
to the above defined basis ( y l , y 2 )  we obtain the symmetric matrix 

as the representation of the bilinear form, p. Thus, y1 and 7 2  intersect in 
one point but have no self-intersections. For the real projective space RP2 ,  
there is a curve which intersects itself. To visualize this, we construct the 
real projective space by gluing a disk along the boundary to the Mobius 
strip. Now we consider a closed curve on the Mobius strip which is the 
latitude of the strip. This curve8 then turns out to have one self-intersection 
point. Thus, the intersection form for the space RP2 is simply p = (1). 

This algebraic structure provides another classification tool for 2- 
manifolds and there have been extensive studies of such forms, represented 
by symmetric bilinear matrices over Z2. Such forms with non-diagonal 
elements equal to one, such as H above, are called type I. Others, i.e., diag- 
onal ones, are type I1 (including the sphere, p = 0). In terms of the general 
surface decomposition described in Theorem 6.5 above, the non-orientable 
RP2 is of type I, while the orientable surfaces, sphere and torus, are of type 
11. In fact, we have the following theorem (see [Lawson (1985)l): 

Theorem 6.6. Two compact connected surfaces are diffeomorphic if and 
only i f  their intersection forms are abstractly equivalent. Surfaces can be 
separated into two classes: type I and type II. Those of type I are non- 
orientable and can be decomposed into a connected s u m  of real projective 
planes. Those of type 11 are orientable and are either spheres, or can be 
decomposed into a connected s u m  of tori. 

Later we will see that the classification of simply-connected 4-manifolds is 
similar to this classification but a bit more complicated. 

8A tubular neighborhood of this curve is diffeomorphic to the Mobius strip. 



A Guide t o  the Classification of Manifolds 173 

6.2.2 %manifolds: surgery along knots and Thurston’s 
Geometrization Program 

Now consider 3-manifolds. There are many similarities between the surgery 
operations of 3- and 4-manifolds. Kirby [Kirby (1978)l established his cal- 
culus for surgeries on 3-manifolds but today the second Kirby operation 
(handle slides, see below) is only used in the 4-manifold surgery, so this 
section is in some sense a “warm-up” for later considerations, especially for 
4-manifolds with boundary. 

Historically after the complete topological classification of surfaces via 
homology, the next task was the classification of 3-manifolds. PoincarB, 
a major figure in the invention of the concept of homology, believed at 
first that homology is sufficient to classify 3-manifolds. But he found a 
counterexample, the “PoincarB homology sphere,” see, for example, pages 
353,354 in [Bredon (1993)l. The existence of such a counterexample means 
that a more subtle invariant is needed. He thought to have one which he 
denoted as the fundamental group, now called the first homotopy group. 
The corresponding conjecture is now known as Poincare‘ conjecture and is 
one of the hardest unsolved problemsg. Milnor has recently provided an 
excellent review of the problem in [Milnor (2003)], which, as of this writing 
may well have been established as we will see later. 

We may expect that the construction and classification of 3-manifolds is 
much more complicated than the lower dimensional cases. In fact, there are 
many different decompositions of a 3-manifold into manageable pieces: the 
prime-decomposition, the torus-decomposition and the Heegard decomposi- 
tion. This last one involves a surgery procedure, the so-called Dehn surgery. 
Dehn surgery 
Consider the S3 and cut out a filled torus D2 x S1 with boundary the usual 
torus T 2  = S1 x S1. Then glue in the filled torus S1 x D2,  having the 
same boundary as D2 x S1, by a diffeomorphism T 2  --+ T2 of the bound- 
aries. Every diffeomorphism of the torus can be decomposed by elementary 
transformations introduced by Dehn. In the trivial case that T 2  -t T2 is 
the identity we obtain the decomposition of the 3-sphere S3 by two filled 
tori D2 x S1 and S1 x D2 by the identity map of the boundaries T 2  --+ T 2 .  
The same is also true for a map T 2  -t T 2  which is isotopic to the identity. 
In all other cases, the isotopy class of the gluing map determines another 

gThe Clay Mathematics Institute (CMI) has founded a millennium prize for the solution 
of the seven hardest mathematical problems. One of these problems is the Poincar6 
conjecture. The other six problems are described in www.claymath.org. 
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3-manifold. A generalization of the above procedure is given by considering 
a knot K (i.e. an embedding K : S1 cf M )  in the 3-manifold M together 
with a tubular neighborhood uK NN K x D 2 .  The removing of uK and gluing 
in S1 x D2 by any diffeomorphism of the boundary tori T 2  + T 2  is called 
Dehn surgery or rational surgery (or sometimes just surgery, a term that 
we will avoid in this context). Of course this procedure depends strongly on 
the gluing map T 2  + T2 which will be considered now (See Rolfsen [Rolf- 
son (1976)l for further reading). According to the Dehn-Lickom'sh theorem 
[Lickorish (1962)l we can arrange any such diffeomorphism by a sequence 
of Dehn twists, i.e. we cut the torus along a curve, twist one side a num- 
ber of times and glue it together. Fig. 6.15 shows the case where we cut 
along the meridian a and make one curl. The self-diffeomorphisms of T 2  

Fig. 6.15 Dehn twist along the meridian of the torus 

are also derivable purely algebraically from the fact that the torus is given 
by T 2  = R2/Z2 i.e. the identification of opposite sites of a square. So every 
map iZ2 + Z2 of the lattice to itself generates a homeomorphism of the 
torus which is actually a diffeomorphism. These maps of the lattice form a 
group SL(2,Z)  and the Dehn twists are the generators of this group. Let 
(p,X) be a basis for H1(T2;Z) .  Note that the solid torus S1 x D2 can be 
built by attaching one 2-handle D2 x D1 to  D3 along the boundary by using 
a map dD2 x D1 = S1 x D1 -t dD3 = S2 .  For Dehn surgery, all that is 
needed is the homology class a in H1(T2; Z) of this circle. This class is then 
given uniquely by relatively prime integers, a = p p  + qX. Reversing the 
orientation of K or a reverses the signs of both p and q but doesn't affect 
the diffeomorphism type obtained by the Dehn surgery, so all we need is 
the quotient p / q ,  and we call this a Dehn surgery with coefficient (or slope) 

E Q U (03). 4 
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Remark 6.3. 
Let (B,q5) be two angle coordinates (range [0, P T ) ) ,  for each S' factor. If u(a) is a smooth 
function equal to one near T but zero elsewhere, we represent the ( p ,  q)  twist by 

(e,q5) - (0  + P ~ T u ( + ) , ~  -+ q 2 4 3 ) ) .  

Or, we can define the ( p ,  q )  E Z2 twisted torus as identification space resulting from identifying 

(x, y) - ( m p r ,  nqy) for any (m,  n) E Z2and ( r ,  y) E W2.  

Framing and Integer Surgery along a Link 
A link is a multi-connected generalization of a knot, a set of embedded 
circles, S1's, intertwined with each other. The Dehn surgery case q = f l  is 
called integer surgery. For a link we may have different coefficients for each 
component of the link. The following theorem shows that integer surgery is 
enough to describe 3-manifolds (for a proof see [Gompf and Stipsicz (1999)] 
p.159). 

Theorem 6.7. Any  closed, oriented, connected 3-manifold A4 is realized 
by integer surgery on a link L in S 3 .  

As we noted above this procedure is not unique, i.e. different (i.e. non- 
isotopic) knots and links can describe the same (i.e. homeomorphic or 
diffeomorphic) 3-manifold. Some of these moves will be described now. 
Blow-up and Blow-down Surgery 
Fenn and Rourke [Fenn and Rourke (1979)] introduced a set of moves de- 
scribed as blow-ups and blow-downs. We will not describe these moves 
in detail, but simply note that they are defined by the adding and remov- 
ing of unknotted circles with framing f l  to the link or knot. Using these 
techniques Fenn and Rourke proved the following theorem. 

Theorem 6.8. Let L and L' be two framed links in S3 describing 
(orientation-preserving) diffeomorphic 3-manifolds (by integer surgery). 
Then we can get from L to L' by blowing up and down (and isotopy). I n  
fact, we can realize any preassigned orientation-preserving diffeomorphism 
in this manner. 

Historically, Kirby [Kirby (1978)] proved the analogous theorem with han- 
dle slides also allowed, but Fenn and Rourke [Fenn and Rourke (1979)l 
eliminated the handle slides. The latter paper also proved a corresponding 
theorem for non-orientable 3-manifolds, where S3 is replaced by a twisted 
S1-bundle over S2 (classified by the elements of the group 7r1(S1) = Z), 
handle sliding is retained and an additional move is introduced. (For a dif- 
ferent proof, see [Lu (1992)] or [Matveev and Polyak (1994)l.) This theorem 
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has turned out to be particularly useful since the discovery in recent years 
of many new 3-manifold invariants (for example, [Reshetikhin and Turaev 
(1990, 1991)]). One can define such invariants by means of integer surgery 
diagrams, and then one only needs to prove invariance under blowing up 
and down. 

We now switch to an entirely different approach to 3-manifold classifi- 
cations, a geometric one, applicable, of course, only in the smooth case. 
Thurston’s Geometrization program 
In 1982, W.P. Thurston presented a program intended to classify smooth 
3-manifolds and solve the Poincar6 conjecture by investigating the possible 
geometries on such 3-manifolds. For a survey of this topic see [Thurston 
(1997)]. The key ingredient of this classification ansatz is the concept of 
a model geometry. Again, in this section, all manifolds are assumed to be 
smooth. 

A model geometry (G,X) consists of a simply connected manifold X 
together with a Lie group G of diffeomorphisms acting transitively on X 
fulfilling certain set of conditions. One of these is that there is a G-invariant 
Riemannian metric. For example, reducing the dimension, we can consider 
2-dimensional model geometries of a 2-manifold X .  From Riemannian ge- 
ometry we know that any G-invariant Riemannian metric on X has con- 
stant Gaussian curvature (recall that G must be transitive). A constant 
scaling of the metric allows us to normalize the curvature to be 0, 1, or -1 
corresponding to the Euclidean (IE2), spherical (S2) and hyperbolic (MI2) 
space, respectively. Thus, there are precisely three two-dimensional model 
geometries: spherical, Euclidean and hyperbolic. 

It is a surprising fact that there are also a finite number of three- 
dimensional model geometries. It turns out that there are 8 geome- 
tries: spherical, Euclidean, hyperbolic, mixed spherical-Euclidian, mixed 
hyperbolic-Euclidian and 3 exceptional cases. A geometric structure on a 
more general manifold M (not necessarily simply connected) is defined by 
a model geometry (G, X )  where X is the universal covering space to M i.e. 
M = X / n l ( M ) .  This is equivalent to a representation n1(M)  + G of the 
fundamental group into G. Of course a geometric structure on a 3-manifold 
may not be unique but Thurston explored decompositions into pieces each 
of which admit a unique geometric structure. This decomposition proceeds 
by splitting M into essentially unique pieces using embedded 2-spheres and 
2-tori in such a way that a model geometry can be defined on each piece. 
Thus, 
Thurston’s Geometrization conjecture can be stated: 
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The interior of e v e y  compact 3-manifold has a canonical decomposition 
into pieces (described above) which have one of the eight geometric struc- 
tures. 

For the all important Poincark conjecture we have an M which is sim- 
ply connected. The decomposition of Thurston’s conjecture implies that 
M must be an irreducible 3-manifold with finite fundamental group and, 
in fact, that M is geometric and thus M = S3/r for some finite group 
1’. But the fundamental group of M is zero (simple-connectivity) so M 
must be a geometric model for some group G. Since M is assumed to be 
closed, this together with a theorem of Hamilton, would imply that there 
is only one possibility: (S3,  SO(3)) the spherical geometry, so M would be 
diffeomorphic to standard S3 .  For more details, refer to Thurston’s book, 
[Thurston (1997)] and the review by Milnor, [Milnor (2003)l. 

Remarkable progress on the Thurston, and thus Poincark, conjecture has 
been made by G. Perelman by converting this Geometrization Conjecture 
to one involving the Ricci flow equations (see the original papers [Perelman 
(2002)], [Perelman (2003b)], [Perelman (2003a)l and the overview article by 
Anderson [Anderson (2004)l). The technicalities of this work are daunting, 
but many workers in the field now (2005) believe that a positive solution 
to the Poincark conjecture, if not the more general one of Thurston, is near 
at hand. 

6.3 Higher-dimensional Manifolds 

Now we skip the next dimension, 4, because it is so special, and instead 
go from 3 to L 5, where special techniques, not applicable in dimension 
4, solve the homotopy classification problem. A complete solution of this 
problem was found in the sixties and seventies culminating in the h- and s- 
cobordism theorem which include such powerful algebraic tools as algebraic 
K-theory and non-commutative localizations of rings. Here we concentrate 
on applications of the h-cobordism theorem leading to a classification of 
differential structures on higher-dimensional manifolds. 

6.3.1 The simply-connected h-cobordism theorem 

After the introduction and calculation of the cobordism ring in 1954, it 
became clear that this approach could be powerful enough to classify man- 
ifolds up to homotopy opening new doors in the description of equivalences 
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between manifolds using sophisticated algebraic techniques. A particularly 
important type of cobordism, h-cobordism (homotopy-cobordism) was de- 
veloped by Thom, Milnor, Smale and others leading to the h-Cobordism 
Theorem of Smale. These techniques provide important ingredients in the 
smooth classification program for manifolds with dimension n 2 5, which 
we will discuss later. 
The h-cobordism 
Two simply connected, closed n-dimensional manifolds X -  , X+ are h- 
cobordant if there is a cobordism W between them such that the inclusion 
ih :  X* ~f W induces a homotopy equivalence between X* and W .  An 
obvious trivial example is the product W = I x X as h-cobordism from X 
to itself. 
The h-cobordism theorem 
In 1961, Smale [Smale (1961)l proved the h-cobordism theorem for dimen- 
sion n > 4 showing that two simply connected manifolds are h-cobordant 
if and only if both are diffeomorphic. 

Theorem 6.9. (The h-Cobordism Theorem) If W is an h-cobordism 
between the smooth, simply-connected, closed n-dimensional manifolds 
X - ,  X+ and n 2 5, then W is diffeomorphic to  the product I x X - .  I n  
particular, X -  is diffeomorphic to  X+.  

Note: For our purposes, the outstanding point here is that the topological 
cobordism induces a diffeomorphism. 

The failure of this theorem in dimension 4 was a natural hint that there 
might be many exotic differential structures on certain 4-manifolds. We 
should note, of course, that since the h-cobordism theorem refers only to 
compact manifolds, modifications are required to understand diffeomor- 
phisms between non-compact manifolds, especially our important R4 case. 
One approach is the so-called “engulfing” theorem of Stallings, [Stallings 
(1962)]. These questions are discussed in Chapter 8 which specializes to 
the Euclidean case. 

We will now sketch an outline of the proof of this theorem and some of 
its consequences. For full details see [Milnor (1965a)l or [Rourke and B.J. 
(1972)l. An h-cobordism W between X-, X+ defines an (n+ 1)-dimensional 
manifold W with aW = X+ II X -  such that the inclusions i* : X h  -+ W 
induce homotopy-equivalences. Furthermore, there is a relative handlebody 
decomposition of (W, X - )  so that the interior int W is a handle body with 
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0, .  . . , n+l-handles. We are done with the proof if we can show that this rel- 
ative handle body decomposition is empty, that is, there is no handle body 
in int W .  If this is true, the handle body decomposition of W is induced 
from the boundary and W must be a product handle body W = X -  x I .  
To prove that the handlebody is trivial, use techniques of handle sliding 
and cancellation discussed in subsection 6.1.3. First, it is shown that the 
0-,l-,n- or (n + 1)- handles can be canceled". Note that this proposition 
holds for n = 4 too, that is, an h-cobordism between simply connected 
4-manifolds involves only 2- and 3-handles. After this, only the k-handles 
with 1 < k < n - 1 are left. 
Algebraic versus geometric intersection numbers 
Reviewing subsection 6.1.3 we find that the cancellation of the interme- 
diate dimension handles can be carried out if the attaching sphere of the 
k-handle and the belt sphere of k - 1 handle intersect transversely in one 
point. Of course, in general that may not be the case. To analyze the prob- 
lem consider geometric and algebraic intersection numbers. Let Yp, Y2" be 
transversely intersecting oriented, smooth submanifolds of complementary 
dimensions in the oriented manifold X n f m .  The geometric intersection 
number of Yp and Y2" is simply the cardinality of the set Yp n Y2". The 
algebraic intersection number of YF and YZm is by definition the sum of the 
signs of the intersection points. The important fact is that the cancellation 
of the k and k - 1 handles is only possible if the geometric intersection num- 
ber is equal to 1. Recall that the dimension of the attaching sphere of the 
k-handleisk-1 whilethat ofthebelt sphereisn+l-(k-1)-1 = n+l-k .  
However, the attaching is done in the boundary, dW, of dimension n. In 
fact, it turns out that by rearranging the handle decomposition through 
handle slides, we can pair up the intermediate dimension handles that the 
attaching sphere intersects the belt sphere algebraically once, fulfilling this 
condition". At this point we would have a proof of Theorem 6.9 if we can 
establish the equality of geometric and algebraic intersection numbers. For 
this, we need the Whitney trick. 
Whitney trick and generalized Poincar6 conjecture 
To show that Yp and Y2" can be homotopically deformed so that their al- 
gebraic intersection number (which is l) equals their geometric intersection 
number, we use the Whitney trick. 

l0Here use the fact that a h-cobordism has an equal number of k and k - 1. 
"This step involves some algebraic considerations based on the fact that 
H* (W, X - ;  Z) = 0 for the h-cobordism. 
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Theorem 6.10. (Whitney trick) Let YF, YZm be transversely intersecting 
connected, smooth submanifolds of complementary dimensions in the simply 
connected (n + m)-manifold Xn+m. Assume furthermore that n + m 2 5, 
m L 3 and n 2 2 (for n = 2 X \ YZ has to  be simply connected). If 
p ,  q are intersection points with opposite signs, then there exists an  isotopy 
(Pt (t  E [0,1]) (of i d x )  such that the intersection points p ,  q can be canceled. 

Using this result cancel all remaining handles in W to arrive at the h- 
Cobordism Theorem. For more figures, see also page 349 of [Gompf and 
Stipsicz (1999)]. Among many important consequences of this theorem is 
the following: 

Theorem 6.11. (Smale) If Xn is a closed, simply connected, smooth man- 
ifold of dimension n > 5 and H,(X"; Z) = H,(S"; Z), then X" is homeo- 
morphic to  S". 

This result is also known as the Generalized (Topological) Poincare' Conjec- 
ture. The case n = 4 is covered by the theorem of Freedman (Theorem 8.8). 
The n = 3 case is still open but the work of Perelman mentioned at the 
end of section 6.2 above holds great promise for establishing the general 
Thurston conjecture, or at least the special Poincar6 case, that every 3- 
manifold homotopic to S3 is also homeomorphic to S3.  The extension to 
the smooth case, that is, the question of whether a smooth manifold Xn 
that is homeomorphic to S" is actually diffeomorphic to it, is only known 
to be true in a few dimensions, e.g. 1,2,3,5,6. The question is still open in 
dimension 4 but there is a conjectured candidate. The higher dimensional 
cases, n > 6, are known to include some exotic spheres, homeomorphic but 
not diffeomorphic to S". We will look at these problems in section 7.8. 

6.3.2 The non-simply-connected s-cobordism theorem* 

Barden, Mazur and Stallings [Kervaire (1965)] extended the h-cobordism 
theorem to the non-simply connected case proving what is now called the s- 
cobordism theorem. Here an additional invariant, the so-called Whitehead 
torsion, is needed. This Whitehead torsion serves as an obstruction to 
the reduction of an h-cobordism to a product, but is generally difficult to 
calculate. We will give a brief overview of this interesting topic. First we 
state the theorem: 
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Theorem 6.12. Let (W, V, V’) be a compact connected cobordism V to V’ 
which is relative in the sense that d W  \ int(V U V’) N d V  x [0,1]. Suppose 
that the inclusions i : V -+ W,i’ : V‘ ~t W are homotopy equivalences, 
dim W 2 6, and i has zero torsion in the Whitehead group in Wh(.rrl(W)). 
Then (W,V,V’) N V x ([0,1],0,1). 

Since the Whitehead torsion depends only on the fundamental group .rr1 (W)  
of the cobordism W ,  if .rr1 ( W )  = 0,  so that V, V’ are simply-connected then 
the Whitehead torsion must be trivial Wh(.rrl(W)) = 1. 

We now briefly survey the rather technical tools needed to define the 
Whitehead torsion. 

Definition 6.1. Let R be a ring with unit. Let GL(n, R) be the group 
matrices with values in the ring R. From the natural inclusions 

. . . c GL(n - 1, R )  c GL(n, R )  c GL(n + 1, R ) ,  
we obtain the inductive limit GL(R) = u GL(n, R) .  Define an n x n matrix 

as elementary if it has 1’s in the diagonal and at most one non-zero off- 
diagonal entry, that is, if a E R and 1 I i , j  I n, i # j .  Now define a 
particular elementary matrix e i j (a )  to be the n x n matrix with elements 
(eij(a))kl  with 1 5 Ic,l 5 n 

n 

l i f Ic=Z 
a if Ic = i , l  = j { 0 elsewhere. 

(eij(a))kl  = 

The set of such matrices forms a subgroup E(n ,  R )  of GL(n, R )  with the 
limit denoted by E (R) .  
Remark 6.4. 
The elementary matrices over a ring R satisfy the relations 

eij (a)eij ( b )  = eij ( a  + b)  
eij(a)ekl(b) = ekl(b)eij(a) 

a ,  b E R 

i , j ,  k distinct 
j # k and i # 1 

[eij(a),e,k(b)] = eik(ab) 
[eij(a),ek,(b)] = ekj(-ab) i ,  j ,  k distinct 

Recall the definition of the group commutator, [gl,gZ] = glg2g;’g;’. Furthermore, any 

upper-triangular or lower-triangular matrix with 1’s on the diagonal belongs to E ( R ) .  

Next we state Whitehead’s lemma leading to the definition of the so-called 
K1 ( R ) ,  the first algebraic K-group. 

Lemma 6.1. For any ring R, the subgroup [GL(R),  GL(R)] formed by  the 
commutators between two elements of GL(R) is identical to  E (R) ,  i.e. 

[GL(R),GL(R)] = E ( R )  . 
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In particular E ( R )  is a normal subgroup and thus the quotient GL(R) /E(R)  
is the Abelian quotient. 

Now, a series of definitions: 

Definition 6.2. Let R be a ring with unit. The first algebraic K-group 
K1 ( R )  of the ring is defined by 

K1(R) = GL(R) /E(R)  . 

Definition 6.3. Let G be a group. We denote by ZG the integral group 
ring made from the group i.e. any element z E ZG can be represented by 
the formal sum 

z = C a , g  a , c Z  
gEG 

Note the special elements, images of the units f g ,  g E G. Finally, the 
Whitehead torsion is defined as follows. 

Definition 6.4. If G is a group, its Whitehead torsion W h ( G )  is the quo- 
tient of Kl(ZG) by the image of { f g  : g E G},  i.e., 

Wh(G) = K i ( Z G ) / { f g  : g E G} . 
This invariant can be difficult to calculate in general. Here are a few ex- 
amples. 

0 Let r l (W)  be trivial. From the standard fact K1(Z) = Zz we obtain 

0 Let rl(W) = ZZ then one obtains after a long calculation (see [Rosen- 
berg (1994)] for instance): Wh(Z2) = 1. 

0 For a less trivial case, consider G = Z, for a prime p .  According to 
[Rosenberg (1994)l p. 100, there is a surjective map W h ( G )  4 Z q  
showing that Wh(G)  must be non-trivial for some primes p > 3. 

W h ( n I ( W ) )  = Wh(1)  = 1. 

For further applications of Whitehead torsion in geometry and topology of 
manifolds and stratified spaces see [Weinberger (1994)]. 

6.4 Topological 4manifolds: Casson Handles* 

As mentioned above, the topological handle body theory in 4 dimensions 
is completely different from that in the other dimensions. In dimensions 
n = 1 ,2 ,3  every topological Rn admits a unique smoothness structure as 
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we described for each individual dimension. For n > 4 Witney’s trick 
is used to cancel handles of dimensions k, k + 1, proving the h-cobordism 
theorem and establishing that two h-cobordant manifolds must necessarily 
be diffeomorphic. The failure of the trick in dimension 4 (see [Kervaire 
and Milnor (196l)l) means that we cannot use it to guarantee a smooth 
embedding of a D2 in a general 4-manifold. Of course such a disk can be 
embedded, but perhaps not smoothly, or it can be smoothly immersed, 
but not embedded (it may have double points). However, these weaker 
conditions are not sufficient to cancel the handle bodies necessary to prove 
four dimensional h-cobordism theorem. In 1973, Casson developed a theory 
of flexible handles constructing something which “looks like” an open 2- 
handle at least up to “proper-homotopy” rather than finding the smooth 
2-handle directly. In 1981 Freedman showed that all Casson handles are 
homeomorphic to the open 2-handle D2 x R2 containing a topologically 
embedded disk which can be used as Whitney disk, topologically. Bizaca 
has applied Casson techniques to provide further insights into the handle 
body decomposition of exotic R4’s, as we will discuss later (see Chapter 8). 
Singular points, double points and the disk problem 
The four dimensional disk embedding problems focus on maps having only 
“double point” singularities. Specifically, a smooth map f : X” + M2n 
is said to have only double points if the following three conditions are 
satisfied: # I f  -l(  f (.))I 5 2, there are only a finite number of points with 
#If-l( f(z))l  = 2 and at each singularity p = f(z) = f ( y ) ,  there is a 
coordinate chart (u1, . . . , u,, v1,. . . , v,) in M2” around p where the two 
coordinate subspaces R” x O(v1 = . . = v, = 0) and 0 x Rn(ul = * = 
u, = 0) are exactly the immersed images of f near x and y respectively. 
That is, the map is “self-transverse.)’ The simplest example for such a 
double point is the figure “eight” in the plane. As a corollary of general 
position theorems in dimension 4, every map f : D2 + M 4  can be deformed 
by an isotopy, relative to aD2,  to a map which has only double points. 
All these questions about disk embeddings can be summarized in the long 
outstanding smooth disk problem: Under what conditions (on f and W )  
does there exist a smooth embedding g : D2 --+ W4 with g1aD2 = f laD2 such 
that framings determined by f, g are homotopic? 
The skeleton of a Casson handle 
Casson’s idea was that, instead of finding the smooth 2-handle directly, 

try to construct something which LLlooks like” an open 2-handle at least up 
to “proper-homotopy” . He named the objects he found “flexible handles” 
although they are now generally called Casson handles. We will introduce 
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the concept of a Casson handle in two steps. First consider immersed disks 
with one double point. An infinite construction to kill the singular points at 
each stage leads to a kind of “skeleton” of a Casson handle. In the second 
step this “skeleton” is enlarged through the use of the so-called “kinky 
handles” to produce the “real” Casson handle. 

The iterative construction of the Casson handle begins with the first 
stage tower. Consider the isolated double points of the disk immersion 
f : D2 4 M4 and construct a closed curve on every double point. For each 
double point, choose a closed curve bounding that point. Each such curve 
is a generator of the fundamental group r l ( f ( D 2 ) ) .  The double points in 
the first stage are killed by the singular disks of the second stage which also 
produce double points. After an infinite union of stages we end up with a 
simply connected space X, the skeleton of the Casson handle. 

Remark 6.5. 
Here is a very brief summary of Casson’s procedure. Suppose f : ( D , a D )  + (W,aW) is 
a proper immersion with isolated double points, with X I , .  . . , zk the  singular points. There 
are disjoint simple closed curves D’ := {cl, . . . , c k }  in f (D) such that  xi E ci for all i, and 
r l ( f ( D ) )  is freely generated by the homotopy classes of these curves D’ which provide a basis 
for f ( D ) .  Now suppose each element in a basis ci bounds a singular disk D? in W with the 
following two properties: 

(1) disjointedness: D t  n D: = 0 for all i # j ,  
(2) attaching property: D? fl D’ = ci . 

The union D’ U U i  D: is called the second stage tower. Similarly the i-th stage singular 

disks D i ,  . . . ,D:  are constructed by an inductive process from the i - 1-th stage. The union 

X = U Us DB defines the skeleton of the Casson handle. The space X is simply-connected 

( r l ( X )  = 0) because at any stage the  generators of r l ( D : )  are killed by the next stage singular 

disks. 

m 

i = O  

The pictures 6.16, 6.17 and 6.18 provide a symbolic representation of the 
procedure. Obviously, this is a rather technical procedure and we recom- 
mend the original work of Casson [Casson (1986)l and the review in [Gompf 
and Stipsicz (1999)] for more complete explanations. 

A Casson handle is a union of specially constructed regular neighborhoods 
of the Dj.’s. The corresponding double points can be described by the 
process of self-plumbing leading to the concept of kinky handles [Casson 
(1986)l. More technically, the neighborhood of the singular disk f ( D 2 )  
with double points can be illustrated as in Figure 6.19. 

Self-plumbing and kinky handle 

Remark 6.6. 
Choose 2k points in i n t ( D 2 )  x {0}, say {zi ,y i}?=, .  Let D ( z i ) , D ( y i )  be closed disks in 



A Guide to the Classijcation of Manifolds 185 

Fig. 6.16 The 1-stage tower (figure from [Freedman and Luo (1989)l p.51 Fig. 4.8) 

Fig. 6.17 
(1989)j p.51 Fig. 4.9(a)) 

The 2-stage tower built from the 1-stage (figure from [Freedman and Luo 

............. 

Fig. 6.18 
(1989)] p.52 Fig. 4.9(b)) 

Symbol description of the second stage (figure from [Freedman and Luo 

i n t ( D 2 )  such that  zi E i n t ( D ( z i )  and yi E i n t ( D ( y i ) ;  and let 6 : D ( z i )  -+ D 2 ,  and +i : 

D ( y i )  -+ D 2  be orientation preserving diffeomorphisms. Then the k-fold plumbing is the 

quotient space D 2  x D 2 /  - obtained by identifying D ( z i )  x D2 with D(yi) x D2 by sending 

( s , t )  t o  ( + t y l ( t ) ,  +i(s)) for a = 1 , 2 , .  . . , k. 

The Casson handle 
Replace the singular disks Dj by the regular neighborhoods N ( D j )  and de- 
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- 
Boundary of W 

Fig. 6.19 Self-plumbing of a 2-handle 

fine the infinite union C H  = U N(Dq) to be the Casson handle (CH, BCH),  

with BCH = N ( f ( 8 D ) ) .  CH is simply-connected and there is a (proper) 
homotopy to the open 2-handle (D2 x R2,dD2 x R2). Under some mild 
conditions, Casson [Casson (1986)l proved the existence of such a Casson 
handle. A very important result concerning Casson handles was obtained 
in 1981 by Freedman. It can be stated as follows: 

Theorem 6.13. Any Casson handle (CH,BCH) is homeomorphic to  the 
standard open handle (D2  x R2, BD2 x R2). 

In summary, even though the immersed disks at each finite stage of the 
tower have double points, the limit does not, but rather this limit is an 
embedded handle, but only topologically. That is, smoothness may be lost 
in the limiting process required to remove the double points and arrive at 
an embedding. 

As a corollary to this theorem one obtains disk embedding theorems 
for dimension 4 leading to the solution of many topological problems (see 
section 8.2). From the point of view of Casson handles we have a topolog- 
ical handle body theory solving important TOP classification problems in 
dimension 4 in a way similar to the higher-dimensional classification tech- 
niques. In particular, the topological h-cobordism theorem was proved by 
Freedman. Recall that the smooth variant of this theorem fails (see sec- 
tion 6.6). As a corollary Freedman obtained the complete classification of 
simply connected, compact 4-manifolds. 

Casson handle techniques solve the TOP classification problems in di- 
mension four, providing a TOP solution for the four dimensional Whitney 

i ,j 
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trick. Of course, we should point out that these procedures only solve the 
TOP classification problem for manifolds which are already known to be 
h-cobordant. For the smooth category, Gompf [Gompf (1988)], [Gompf 
(1989b)], shows that there are uncountably many diffeomorphism types of 
Casson handles (see also [Gompf and Stipsicz (1999)] p.372 Exercise 9.4.13 
(b)). Furthermore, as we will see in the following, Gompf and Bizaca used 
these techniques to construct the so-called small exotic R4’s. 

6.5 Smooth 4-manifolds: Kirby Calculus 

Kirby calculus is a technique for going from one decomposition of a 
smooth 4-manifold by handles to another. In Section 6.1.3, we intro- 
duced a complete set of moves for handle bodies, namely handle pair cre- 
ation/cancellation and handle sliding, which (together with isotopies) are 
sufficient to go between any two relative handle presentations of a given 
pair ( X ,  a - X )  (Theorem 6.4). In this section, we will describe these moves 
in the context of so-called Kirby diagrams providing visual representations 
of the handle body decomposition. 
Kirby diagram 
A Kirby diagram is a description of a 4-dimensional handlebody with 3- 
dimensional diagrams for a compact closed 4-manifold X .  In this case the 
attaching regions of the handles lie in the boundary manifold, locally R3. 
For instance, the attaching region of each 1-handle is D3 D3,  which we 
draw as a pair of round balls in R3. Because of non-trivial framings, the 
most interesting case is given by 2-handles, represented as embeddings of 
thickened circles (S’ x 0’) in R3 perhaps as links. For a closed, compact 
4-manifold X it turns out that the complexity of a 4-dimensional handle- 
body primarily resides in the 2-handles. [Trace (1982)l. 
Handle sliding 
The process of “sliding” involves smoothly moving, or sliding, the attaching 
region of one handle along the body of another. For a k-handle, D k  x Dn-k,  
the attaching region is Sk-I x Dn-k E d X .  We can then slide this (n - 1) 
manifold along the full n-dimensional body of a second handle and take 
advantage of the extra dimension to deform, link, unlink, etc., the S“l. In 
more detail, for a pair of handles hl and hz of the same index k attached to 
the manifold X the sliding can be described by an isotopy of the attaching 
sphere for hl in d ( X  U hz) along a disk Dk x p c dhz (hz = Dk x Dn-k) ,  
which “returns” the attaching sphere to d X .  This can perhaps best be un- 
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derstood in terms of an illustration. Figure 6.20 shows a 1-handle slide on 
a 2-manifold. In general, the handle slide will change the attaching sphere 
of hl (that is unlinking it from that of hz), as well as the framing12. It is 
also easy to draw 1-handle slides in Kirby diagrams for higher dimensional 
manifolds by pushing the attaching ball of hl through the 1-handle h2. 
Duality provides similar descriptions for the sliding of 3-handles. Because 

Fig. 6.20 
(1999)] p. 140, Fig. 5.1) 

Handle sliding of a 1-handle on a 2-manifold (figure from [Gompf and Stipsicz 

of the non-trivial framing, the sliding of 2-handles is more interesting and 
difficult. We will only touch on the highlights and again refer the reader to 
the [Gompf and Stipsicz (1999)], especially chapter 4 for more details and 
illustrative diagrams. For X a four manifold, M = d X  is three dimensional 
and the attachment of a 2 handle is defined by a map, 4 : S2 x D2 + M .  
The image of the circle, $Islxo is a knot, K .  This knot (and thus the han- 
dle) is framed by choosing some vector transverse to it, or equivalently a 
“neighboring” knot, K‘, which can be chosen to be the image q+siXp for 
some p near 0. Consider two 2-handles hl and h2 attached along the framed 
knots K1 and K2. Define the framing of K2 by a parallel curve Ki, which 
will bound a disk D2 x p c d ( Y  U h2). Now we slide hl by an isotopy of 
K1 over one such disk is the sliding of hl over h2. The result is called the 
band-sum of K1 and IT;. Figure 6.21 visualizes this procedure. Note that 
there are two possible types of such operations (depending on the orienta- 
tion): the handle addition and the handle subtraction. 
Framing for 2-handles after the handle slide 

Since the framing of a circle in a 3-space depends on the choice of a trans- 
verse vector, this choice can be identified with the homotopy class of a map: 
S1 4 0 ( 2 ) ,  that is, an element nS.rrl(O(2)) 2 Z. Figure (6.22) represents 
121n this case the framing is a well-defined element of ~o(O(1) )  Z2. 



A Guide to the Classification of Manifolds 189 

Fig. 6.21 
(right) (figure from [Gompf and Stipsicz (1999)l p.142, Fig. 5 .5 )  

Handle sliding of 2-handles: handle addition (left) and handle subtraction 

two such framings. The left hand one is the trivial one, n=O, while the 
right hand one corresponds to n = 3. Finally, note that handle sliding can 

Fig. 6.22 
4.18,4.19) 

Framing of knots (figure from [Gompf and Stipsicz (1999)l p. 118, Fig. 

change framings. If the framings of hl and h2 are n1, n2 before the slide, 
then after the slide of hl over h2, the resulting handle, hi will have framing 
N12, given by 

1212 = n1+ n2 f 2Clc(K1, K2) , 
where Clc denotes the linking number of the two knots and the sign is (+) 
for handle addition and (-) for subtraction. We note that this formula can 
also be applied in case of 1-handles. 
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6.6 Why is Dimension 4 so Special? 

As we noted in the subsection 6.3.1, the Whitney trick does not provide 
the needed smoothly embedded 2-disk to cancel the middle handles for 4- 
dimensional manifolds. This is the reason for the exclusion of dimension 
four in the proof of the h-cobordism theorem. However, not only does 
the displayed proof technique not work but in fact there are now counter 
examples to the possible extension of the statement in Theorem 6.10 to 
dimension four. 
Why does Whitney’s trick fail in dimension 4? 
Fortunately, Freedman, [Freedman (1984)], has provided an easily read in- 
formal account of this matter. Consider the 5-dimensional h-cobordism 
W between X I  and X2. The interior int W of W has n-handles for all 
n = 0,1,2,3,4,5. The proof techniques of Theorem 6.10 can still be applied 
to cancel all adjacent handle pairs, except for the n = 2,3 pairs. To en- 
sure these cancellations, we would need the Whitney trick, the embedding 
of a special disk, or more accurately, the embedding of an open 2-handle 
D2 x R2. Casson handle techniques discussed in section 6.4 show that such 
an embedding exists topologically. To visualize 
6.23 showing 2 submanifolds (indicated by two 

the situation, see Figure 
curves) intersecting each 

Fig. 6.23 Two intersecting submanifolds 

other. The Whitney trick involves the embedding of the disk, called the 
Whitney disk, indicated by the shaded area on the left side of Figure 6.24. 
An isotopy of this disk to a point results in the desired result in the right 
side of Figure 6.24. But, in dimension four, the Whitney disk may have 
self-intersections which cannot be removed smoothly to ensure the cancel- 
lation of the 2-handle, 3-handle pairs. However, the Casson techniques 
lead to such cancellation in the TOP category. So, we can say that topo- 
logically, W = X I  x [0,1] so that the two end 4-manifolds, Xi, X 2 ,  are 
homeomorphic but perhaps not diffeomorphic (see Kreck [Kreck (1999)l). 
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t Whitney disk + 

Fig. 6.24 Simple visualization of Whitney's trick 

Again, Whitney 's trick fails only for smooth 4-manifolds. 
Consequences for the handle calculus 
However, some results in the DIFF category for dimension four can be 
obtained. For example, there is a theorem of Wall: 

Theorem 6.14. [Wall (1964a)l If closed, smooth, simply connected, ori- 
entable 4-manifolds X , Y  are homeomorphic, then X # k S 2  x S2 is diffeo- 
morphic to  Y # k S 2  x S2 for some k 2 0. 

Thus, given two homeomorphic but not diffeomorphic 4-manifolds the con- 
nected sum addition of S2 x S2 k times to both manifolds results in dif- 
feomorphic manifolds. We can understand this theorem in the context of 
Casson handle theory. As Freedman shows, every Casson handle is home- 
omorphic to D2 x R2 which is equivalent to S2 x (S2  \ D2). Consider now 
an h-cobordism between two smooth X and Y which, from the work of 
Casson and Freedman, can be topologically trivialized by adding k Cas- 
son handles. But this is equivalent to changing X to X # k S 2  x S2 and 
Y to Y#lcS2 x S2 to get diffeomorphic manifolds, according to Theorem 
6.14. One consequence of this remarkable fact is that the exoticness of 4- 
manifolds is an unstable phenomenon, that is, the connected sum addition 
of rather trivial spaces destroys the exotic structure. This is in contrast to 
the differential structures on higher-dimensional manifolds where we have 
the product structure theorem of Kirby and Siebenmann (see section 7.9). 

The theorem 6.14 can be extended to any compact orientable 4-manifold 
(possibly with nonempty boundary). 

Remark 6.7. 
Actually Theorem 6.14 can be extended to non-orientable manifolds by allowing connected 

sums with S 2 x S 2 ,  that is, the non-trivial S2-bundle over S2, as well. (See [Gompf (1991)l.) 

However, the non-trivial product of the S 2 ' s  is necessary since there is an exotic smooth 

structure on W4 which can never be trivialized by connected sum additions of any number of 
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S2 X S2 [Cappell and Shaneson (1976)l. 

There are no general results concerning the minimum value of k for a given 
pair X ,  Y satisfying Theorem 6.14. There are many examples with k = 1, 
and it is possible that k = 1 is always sufficient. Up to now, pairs requiring 
k > 1 have not been detected due to the lack of suitable invariants. 
h-cobordant 4-manifolds 
To summarize, we quote the theorem Freedman [Freedman (1982)], the 
topological version of the h-cobordism theorem for dimension 4. Freedman 
used Casson handle theory to replace the smooth Whitney trick for the 
middle handles. 

Theorem 6.15. Simply connected, smooth 4-manifolds are h-cobordant if 
and only if they are homeomorphic, i. e. having isomorphic intersection 
forms. 

The existence of exotic (non-diffeomorphic) smooth structures on 4- 
manifolds shows that this result cannot be extended to the DIFF category 
in dimension 4 (see [Donaldson (1990)] for the first example). 

Remark 6.8. 
Using similar techniques it is possible prove the “converse” of Theorem 6.14 (see [Lawson 

(1998))): 

If X # k S 2  x S2 is diffeomorphic to Y # k S 2  x S 2 ,  then there exists an h-cobordism W between 

X and Y which is built on I x X with k 2-handles and k 3-handles. 

Akbulut corks 
We have seen that if W5 is an h-cobordism between simply connected 4- 
manifolds X and Y ,  then W 5  is not necessarily the trivial smooth product, 
I x X .  However, W is ‘hot far” from being trivial in the sense of the 
following theorem. The main statement of this theorem was found by Curtis 
and Hsiang. Variations and addenda were proved by Freedman and Stong, 
Kirby and Biiaca, and by Matveyev. (See also [Kirby (1997)f.) 

Theorem 6.16. [Curtis et al. (1997)] Let W be a cobordism between X and 
Y .  There is a sub-cobordism V c W between compact 4-manifolds Al,  A2 c 
X , Y  such that W-int V is the product cobordism ( i e .  diffeomorphic as a 
triple to  I x (X-int Al)), and V, Al,  A2 are contractible. 

Furthermore we have the additional properties: 

(1) W - V and each X - A1 , Y - A2 are simply-connected, 
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(2) A1 x [0,1] and A2 x [0,1] are diffeomorphic to D5,  
(3) A1 is diffeomorphic to A2 by a diffeomorphism which, restricted to 

dAl = dA2,  is an involution, i.e. a map T : M + M with T o T = i d M  
but r # f i d M ,  

(4) the boundary dA1 = dA2 is a homology 3-sphere. 

Please note that we have shifted from h-cobordism to simple cobordism 
(without the retract assumptions) for the boundary manifolds and the fail- 
ure of the h-cobordism can be confined in a small region. 

These V cobordisms are delicate objects; their non-triviality vanishes 
when a trivial h-cobordism is added. The V’s are called Akbulut corks 
after the first author to describe them. In subsection 8.5.1 we will use this 
theorem to construct the handle body decomposition of an exotic EX4. 

6.7 Constructing 4-manifolds from Intersection Forms 

In this section we will concentrate on 4-manifolds generally in the TOP 
category. It turns out that an integer symmetric matrix, the intersection 
form is a powerful tool for the classification of such spaces. So, certain 
topological results can be obtained from algebraic techniques associated 
with standard forms for integer matrices. We end this section and chapter 
with Freedman’s important theorem establishing existence and uniqueness 
results relating unimodular symmetric integer matrices to topological 4 
manifolds. 

6.7.1 The intersection form 

In subsection 6.2.1 we introduced a bilinear form for 2-manifolds. This 
form is derived from the intersection of pairs of representative elements 
H I  ( M 2 ,  2 2 ) .  This led to the classification of 2-manifolds (surfaces) from 
purely algebraic properties. Now, we double the dimension and look at the 
“middle” homology group H z  ( M4, Z) of a compact, oriented, topological 
4-manifold M4. 

Definition 6.5. Suppose a ,  b E H 2 ( M 4 ,  Z) can be represented by oriented 
surfaces A, B in M 4 .  Define 

Q M ~  : & ( M 4 , Z )  X Hz(M4,Z) -+ z 
by & ~ 4 ( a ,  b) = A . B,  where A . B is the (oriented) algebraic intersection 
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number of the cycles A and B. 

This bilinear form is clearly symmetric. From the work of Lee and Wilczyn- 
ski [Lee and Wilczynski (1993)] every homology class in H z ( M )  of a topolog- 
ical 4-manifold M can be represented topologically by locally flat 2-spheres. 
In general, this does not carry over to the smooth case. In fact, in dimen- 
sion four, it may be necessary to use surfaces of genus g > 0 to represent 
second homology classes smoothly. The genus depends on the complexity 
of the 4-manifold. 

H 2 ( M 4 ,  dM4, Z) we obtain an- 
other, fully equivalent, definition of the intersection using cohomology 
groups and the cup product. Recall that when M4 is oriented, it has a 
fundamental class [M4] E H4 ( M4, dM4; Z). 

From Poincark duality Hz(M4,  Z) 

Definition 6.6. The symmetric bilinear form 

Q M ~  : H2(M4,dM4; Z) x H 2 ( M 4 ,  dM4; Z) -+ Z 

defined by Q M ~ ( u ,  b) = (a U b, [M4]) = a . b E Z is called the intersection 
form. of M4. 

Recall that the cup product U is the generalization of the integral of the 
wedge product in deFtham cohomology. Furthermore, the pairing (. ,. ) 
between cohomology and homology is the integer coefficient replacement of 
the integral in deFtham, real coefficient, cohomology. If M4 is closed (so 
dM4 = 8), then by Poincark duality Q M ~  is unimodular, that is, det Q M ~  = 
fl .  So for this case, we can represent QM4 by a symmetric unimodular 
matrix with integer number entries. 

Remark 6.9. 
Note that  for this definition of QM4 we only need the topological structure of M4. From 

linearity, QM4 (a, b) = 0 if a or b is a torsion element. Thus QM4 descends t o  a pairing mod 

torsion, hence by choosing a basis of Hz(M4;Z)/Torsion, we can represent QM4 by a matrix. 

In case of a simply connected 4-manifold there is no torsion (by the universal coefficient 

theorem). The matrix M of QM4 transforms by a basis transformation C as C M C T ;  we 

say that  QM4 is represented by the matrix M if M is the matrix of QM4 in an  appropriate 

basis. Note that  the determinant det M is independent of the  choice of the  basis over Z; we 

sometimes denote it by det QM4. 

Another way to present the intersection form is to define elements of 
Hz ( M4, Z) by embedded surfaces. Suppose, for simplicity, that HZ ( M ,  Z) is 
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of rank 2 and that C1, Cz are surfaces representing the corresponding gener- 
ators [El], [CZ] E H z ( M 4 ,  Z). Then the intersection form can be computed 
as 

where C1 . C2 denotes the algebraic intersection number of C1 and C z .  

formula (see [Bredon (1993)]) for the second homology we have 
As a simple example consider the 4-manifold S2 x 5”’. Using the Kiinneth 

Hz(S2 x S 2 ,  Z) = Hz(S2 ,Z )  @ Hz(S2,  Z) = Z @ Z , 
so that H2(S2 x S2,Z) is generated by the two generators C1 = S2 x 
{point} and C2 = {point} x S 2 .  Obviously there are no self-intersections, 
i.e. Ci . Ci = 0 for all i = 1 , 2  but the spheres do meet at one point, so 
C1 . C2 = Cz * C1 = 1. Thus the matrix representing the intersection form 
Q S Z ~ S Z  is 

Representations of the intersection form 
Note that the cohomological definition of the intersection form via the cup 
product implies that we can omit the torsion. Recall the first Chern class 
c1 E H2(M4,Z), of a complex line bundle over M4 is defined as the cur- 
vature form of any holomorphic connection on the bundle. Furthermore, r cl(L) E Z. In fact every image of the map H 2 ( M ,  Z) -+ H2(M,W) is the 
M4 

Chern class of some line bundle. We can now relate the cohomology pair- 
ing to the intersection number approach by noting that the Poincar6 dual 
PD(c l (L ) )  is a non-trivial 2-manifold13 embedded in M4. An important 
result is that every embedded 2-manifold can be represented in this man- 
ner by an appropriate complex line bundle. Thus, given two complex line 
bundles L1 and Lz with corresponding surfaces C1 and Cz, respectively, we 
obtain for intersections between C1 and CZ 

Xi . cz = ci(L1) A ci(Lz) . s 
M4 

This formula is one of the key ingredients of the gauge theory approach to 
smooth 4-manifold theory known as Donaldson and Seiberg-Witten theory. 
I3Another construction of this 2-manifold is given by the zero set of a section in this 
line bundle L. 
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Some properties of the intersection form 
Let us now look at some of the relationships between algebraic properties 
of the intersection form and topological properties of a 4-manifold, X ,  and 
its 3-manifold boundary, d X .  A very useful and more detailed account of 
these properties can be found in [Gompf and Stipsicz (1999)], 51.2. 

For oriented 4-manifolds, the intersection form can be regarded as an 
integer valued bilinear form on the second integer homology group: 

Q x  : Hz(X,Z) x H z ( X , Z )  -+ Z. 

We will say more about the algebraic properties of such integer quadratic 
forms in 6.7.2 below. Here note that the vector space on which the form 
QX acts is over the integers. So any change of basis must be by invertible 
integer basis. However, it is easy to see that any invertible integer matrix 
must be unimodular, that is, have determinant fl .  So under any basis 
change described by the invertible matrix C, 

Qx -, Q', = CTQxC, 
with IdetCI2 = 1, so detQx is independent of the basis chosen for H z ( X ,  Z). 

From the standard exact sequence for relative homology we have 

... & ( X , d X )  -+ H z ( d X )  -+ HZ(X)  4 H z ( X , d X )  4 H l ( d X )  4 H I ( X )  -+ ... 
(6.3) 

Now assume that X is compact and simply connected, so H l ( X )  = 0. 
By Poincar6-Lefschetz duality, we then also have H 3 ( X ,  ax) = 0, so (6.3) 
reduces to 

... 0 -+ H z ( d X )  -+ H z ( X )  4 H z ( X , d X )  + H l ( d X )  -+ 0 -+ ... (6.4) 

Thus, 7r is an isomorphism if and only if 

H z ( d X )  = H l ( d X )  = 0. (6.5) 

But of course (6.5) is precisely the condition for d X  to be a homology 
sphere (or possibly disjoint union of such). Now return to the algebra of 
Qx, noting that it defines a map, L : H z ( X )  + H 2 ( X )  by 

L(u)  E H 2 ( X ) ,  by L(u)(v) = Qx(u,v).  (6.6) 

Thus, L is an isomorphism if and only if QX is invertible, and thus uni- 
modular. Also from PoincarbLefschetz duality we have the isomorphism 

P : P ( X )  -+ HZ(X,  ax). 
So, PL is an isomorphism, and thus so is 7r if and only if QX is unimodular. 
But as we saw from (6.4), d X  is an homology sphere if and only if 7r is an 
isomorphism. 



A Guide to the Classijication of Manifolds 197 

This brief discussion illustrates some of the interdependence between 
the algebraic properties of the intersection form and the topology of the 
underlying manifold. 

We should note that not all homology 3-spheres are realized as bound- 
aries of smooth, contractible, non-closed 4-manifolds (otherwise that would 
contradict the Donaldson theorem see chapter 8 theorem 8.11). For in- 
stance the Poincark homology 3-sphere cannot be the boundary of such 
smooth, contractible 4-manifold (see [Fintushel and Stern (1985)] for fur- 
ther examples). Also note that by the definition of the intersection form 
we have QX = -Qx. Given two 4-manifolds X I  and X Z  with the same 
boundary a homology sphere then the connected sum along this boundary 
leads to a new manifold X = X I  uax1=ax2 X Z  with Qx = Qx, @ Qx, . The 
reverse is also true (see [Freedman and Taylor (1977)l): the splitting of the 
intersection form leads to the topological splitting of the 4-manifold. Other 
properties of the intersection form directly connected with the topology will 
be reviewed at  the end of this chapter. 

6.7.2 Classification of quadratic forms and 4-manifolds 

We now digress to survey the rather specialized algebraic issues involved in 
the classification of unimodular integral forms. Husemoller and Milnor have 
provided a full, detailed treatment [Husemoller and Milnor (1973)]. For a 
nice summary see the introductory chapter in [Gompf and Stipsicz (1999)l. 
We follow this with some examples, and close the chapter with the cul- 
minating theorem of Freedman relating these apparently purely algebraic 
questions to the existence and uniqueness of four dimensional topological 
manifolds. 
Basic algebraic information about integral quadratic forms 
Consider symmetric, bilinear integer-valued forms Q on the (finitely gener- 
ated) free Abelian group A. Three classifying pieces of informations, rank, 
signature and parity are defined in the following way: 

0 The rank rlc(Q) of Q is the dimension of A. 
0 Extend and diagonalize Q over A@R. The number of positive/negative 

eigenvalues of Q is denoted by b t  . The difference b: - b, is the signature 
c(Q) of Q. Note that if Q is unimodular (i.e. de tQ = kl), then 
rk (Q)  = b: + b,. 
The parity of Q is even if Q(a, a )  = 0 ( mod 2) for every a E A; Q is 
odd otherwise. 
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In addition note, 

0 Q is positive (negative) definite if rk(Q) = u(Q) (rk(Q) = -u(Q) 
resp.). Q is indefinite otherwise. 

0 The direct sum Q = Q1 @ QZ of the forms Q1 and Q2 (given on Al,  A2 

respectively) is defined on A1 @ A2 in the following way. If a ,  b E A = 
A1 @ A2 splits as a = a1 + a2 (b = bl + b2) with ai, bi E Ai, then 
&(a, b) = Ql(a1, b l )  + Qz(a2, b2).  If k > 0 then kQ denotes the k-fold 
sum @kQ; for negative k we take kQ to be lkl(-Q); fmally if k = 0 then 
the form kQ equals the zero form on the trivial group (represented by 
the empty matrix 0) by definition. The form on A = Z @ Z represented 
by the matrix [ y  i] will be denoted by H .  

( 
mod 2) for all a E A. Note that if Q is even, then 0 E A is character- 
istic. An element a € A is primitive if a = d/3 (p E A, d E Z) implies 
that d = fl .  For any z E A there is a primitive element a such that 
x = d a ;  Id1 is the divisibility of x .  

0 An integer valued matrix, C, has an (also integer valued) inverse if and 
only if it is unimodular, that is, det C = fl. 

0 An element z E A is a characteristic element if Q ( a , x )  = Q ( a , a )  

Canonical forms for integral matrices, Q ,  are obtained by integral changes 
of basis, that is by 

Q -, CTQC, 

for some unimodular integral C. Thus, although every Q can be diagonal- 
ized (since they are symmetric) over the Teals, they may not be diagonaliz- 
able over Z. 
Classification of integral quadratic forms 
For the rest of the section, consider only unimodular forms. First, note that 
indefinite forms are fully classified by the three algebraic numbers, rank, 
signature and parity. 

Theorem 6.17. If indefinite unimodular forms Q1, QZ (defined on Al,  A2 
respectively) have the same rank, signature and parity, then they are equiv- 
alent. 

For a proof, see the Introductory chapter in [Gompf and Stipsicz (1999)]. 
Also note 

Lemma 6.2. If x E A is characteristic, then Q ( x , x )  = u(Q) ( mod 8); 
in particular i f  Q is even, then the signature u(Q) is divisible by  8. 
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- 
2 1 0 0 0 0 0 0  
1 2 1 0 0 0 0 0  
0 1 2 1 0 0 0 0  
0 0 1 2 1 0 0 0  
0 0 0 1 2 1 0 1  
0 0 0 0 1 2 1 0  
0 0 0 0 0 1 2 0  
0 0 0 0 1 0 0 2  

Thus every such a unimodular form is given by a matrix consisting of parts 
represented by 8 x 8 matrices. 

Remark 6.10. 
For a sketch of the proof of Lemma 6.2 note that if x is characteristic in (A ,  Q), then I + e 

is characteristic in ( A  @ Z, Q 8 (-l)), where e generates the Z summand. By Theorem 6.17, 

Q' = Q @ ( - 1 )  E b $ ( l )  8 (b;  + l ) ( -1) ,  and a characteristic vector has odd components in 

this new basis. Since the square of an odd number is congruent to 1 modulo 8 ,  we have that 

Q ( I ,  I) - 1 = Q'(I + e; x + e )  G b$ - ( b y  + 1) = u(Q) - 1 ( mod 8 ) .  If Q is even, then 0 is 

a characteristic element, which proves 81u(Q). 

Without further justification at this point, define the matrix Eg: 

. 

The perceptive reader will recognize this as the matrix corresponding to the 
Dynkin-diagram of the exceptional Lie-algebra. Soon we will relate this to 
a smooth four manifold. Straightforward algebraic calculations show that 
this matrix has non-integer eigenvalues, and thus cannot be diagonalized 
over Z, a fact of critical importance in our later smoothness studies. As the 
matrix of an intersection form Q on Z8 ,  E8 gives a positive definite, even, 
unimodular form with c(Q) = 8. By a slight abuse of notation, from now 
on E8 will denote that bilinear form. Recall that H is used for the form 
corresponding to the matrix [ y  k]. Using E8 and H as building blocks, 
for every pair (a,rk) E Z x N with 8la, rk 2 la1 and rlc s c ( mod 2) 
one can construct an intersection form Q = aE8 @ bH with c = c(Q) and 
rlc = r k ( Q ) ,  with a = and b = w. In fact, 

Theorem 6.18. Suppose that Q is an indefinite, unimodular form. If Q is 
odd, then in an  appropriate basis it is isomorphic to  b$( l )  @ b;(-l); if Q 
is even then it is isomorphic to  F E s  @ Tk(Q)-Iu(Q)LH. 2 QED 

On the other hand, in the definite case there is no such nice description 
of all unimodular forms. For a given rank there are only finitely many 
definite symmetric unimodular forms (see [Husemoller and Milnor (1973)l); 
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type 

type I 

type I1 

this number, however, can be very large. (For example, there are more 
than lo5' definite forms of rank 40.) Finally we state all results of the 
classification in the following table 6.1. 

definite form indefinite form 

f @(1) and many others e.g. 
E~ e (1) and r 4 ( 2 k + l )  
e.g. E8, I?'', Es @ Es . . . (rank 
can be divided by 8) 

P 

&(1) &-1) 

H CB . . . H CB E8 @ . . . @ E8 

6.7.3 Some simple manifold constructs 

We now review some elementary but still powerful techniques for construct- 
ing manifolds. 
Algebraic subsets of the R" 
This was perhaps the first source of non-trivial examples of manifolds. For 
example, the two sphere, S2 ,  is the subset of all tuples (3, y, z )  E R3 fulfill- 
ing the equation x 2  + y2 + z2 = 1. In four dimensions we have the sphere 
S4 = {x E R5 I llxll = l}. Since H2(S4; Z) = 0, the intersection form Q.94 
is identically zero. Generalizations of this approach lead to one of the main 
problems in algebraic geometry, determining whether or not the solution 
set of the polynomial equation ~ ( ~ 1 , 2 2 2 , .  . . , x,) = 0 form a manifold. If 
there are singularities can they be "unfolded" to get a smooth manifold? 
Such questions are important in catastrophe or bifurcation theory as well 
as number theory. 
Manifolds from equivalence classes and group actions 
Start with a simple space like S" or R" and define a relation on this space. 
For example on R2 define the relation: 

( 2 , y ) y  ( U , 7 J ) t f x + l = U , y + l = w .  

The set of equivalence classes R2/ -e is a manifold denoted by T 2 ,  the 
torus (or doughnut). It is easy to construct the 4-dimensional analog T4. 
Somewhat more complicated examples are the complex projective spaces. 
Given the obvious free action of C* = C \ (0) on Cn+' \ (0) (that is 
X(z0 ,..., z,) = ( X q ,  ..., X.zn)  for X E C"), take the quotient CP" = (C"+l\ 
{O})/C*. The resulting space is the n-dimensional complex projective space 
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CP"; CP' = S2 is the complex projective line and CP2 is the complex 
projective plane. Using R instead of C one defines the real projective spaces 
RP". If P E CP" and (zo, ..., z,) E P, then we can uniquely identify P by 
the ratios, the homogeneous coordinates [zo : z1 : ... : z,]. Note that CP" 
can be covered by the a f i n e  coordinate charts ?,bi : C" 4 CP" (i = 0, ..., n) 
where ?,bi(z1, ..., z,) = [z1 : ... : zi : 1 : zi+l : ... zn] provides the i-th 
coordinate map from C" into CP". As in the real case, it is easy to see that 
any two (distinct) points of CP2 lie on a unique projective line (CP1), and 
every two (distinct) projective lines in CP2 intersect each other in exactly 
one point. Since H2(CP2; Z) Z, and two generic lines intersect each other 
in a point with positive sign, QCP2 = (1). Subsets of CP" provide the basis 
for an important class of complex manifolds. 
Complex algebraic surfaces So far S4 and S2 x S2 are the only examples 
of manifolds we discussed with even intersection form. Now consider the 
zero set of a homogeneous polynomial p of degree d i.e. polynomials14 in 
the variables (20, ..., Zn} on CP" that is p ( k 0 ,  ..., kn) = Xdp(zo,  ..., z"). 

Definition 6.7. If p is a homogeneous polynomial of degree d then the 
set V, = { [ z ]  E (CP" I p ( z )  = 0) is called the hypersurface corresponding 
to the polynomial p .  The complex submanifolds of CP" are called complez 
algebraic manifolds. 

It turns out that not every complex manifold can be embedded into CP", 
so not all complex manifolds are algebraic. However, a very important class 
of them are algebraic. One such class is defined as follows 

where d is a positive integer. For these the following theorem follows 

Theorem 6.19. sd is  a smooth, simply connected, complex surface. If d 
i s  odd, then  Qs, is  equivalent t o  & ( I )  @ Pd(- - l ) ,  where Ad = i ( d 3  - 6d2 + 
l l d - 3 )  and pd = i ( d - 1 ) ( 2 d 2 - 4 d + 3 ) ;  if d is  even, then  Qs, is  equivalent 
t o  l d ( - & ) @ m d H ,  where ld = & d ( d 2 - 4 )  and md = 5 ( d 3 - 6 d 2 + l l d - 3 ) .  

141f the polynomial p vanishes at a point z E Cntl \ (0) then it vanishes on its entire 
equivalence class [z]  E CP". 
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- 
2 1 0 0 0 0 0 0  
1 2 1 0 0 0 0 0  
0 1 2 1 0 0 0 0  
0 0 1 2 1 0 0 0  
0 0 0 1 2 1 0 1  
0 0 0 0 1 2 1 0  
0 0 0 0 0 1 2 0  
0 0 0 0 1 0 0 2  

Again, the matrix Es defined by: 

mentioned above in the classification problem of quadratic forms (see sec- 
tion 6.7.2). It also describes the Dynkin diagram of the exceptional Lie- 
algebra Eg. 

The case d = 4 provides one of several possible constructions of a par- 
ticular simply connected complex surface of major importance in the first 
discoveries of exotic EX4, the K3-surface. Algebraic geometric methods can 
be used to show that different constructions lead to diffeomorphic K3- 
surfaces, so from the differential topological point of view, we can call S4 

the K3-surface. From the previous formula Qs, = 2(-Eg) CB 3H. We 
remind the reader not to confuse these sd with spheres, Sd. 

More examples of simply connected 4-manifolds come from generaliza- 
tions of the sd. Take homogeneous polynomials p i  of degree di  in n + 1 
variables (i = 1, ..., n- 2). Note that each pi defines a hypersurface in CP". 
Assume that 

S ( d 1 ,  ..., d,-z) = { P  E (CP" 1 pi(P) = 0; i = 1, ..., n - 2) 

is a smooth submanifold of complex dimension 2 in (CP". If so, S is called a 
complete intersection surface of multidegree ( d l ,  ..., d,-z). Furthermore, it 
can be shown that the diffeomorphism type of S ( d 1 ,  ..., dn-2) depends only 
on the multidegree ( d l ,  ..., d n - ~ ) .  Without loss of generality we can assume 
that each di 2 2. Furthermore by the so-called Lefschetz Hyperplane The- 
orem, the surfaces are simply-connected i.e. n l ( S ( d 1 ,  ..., dn-2))  = 1. For 
further information about complex surfaces we refer to the standard book 
[Barth et al. (1984)l. 
Gluing and sewing of spaces 
Here, we start also with a simple object like a n-ball Dn with boundary 
dD" = S"-l and glue a Ic-handle along the boundary to get a non-trivial 
space. This general scheme using Kirby calculus can be used to represent 
all smooth 4-manifolds. 
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Note that for simply-connected, closed 4-manifold, one needs only 1- 
and 2-handles. By the operation of the connected sum we can glue simple 
pieces together to get much more complicated spaces. For completeness 
we define the connected sum of two connected, oriented n-dimensional 
manifolds X I  and X2 by 

Definition 6.8. For i = 1 , 2  let Dl c X i  be an embedded disk, and 
let 'p: DY 4 D; be an orientation-reversing diffeomorphism. The smooth 
manifold (XI \ int 01) UIPpDl (X2 \ int 0 2 )  is called the connected sum 
Xl#X2 of X I  and X2; it does not depend on the choices of Dl or 'p (since 
any two orientation-preserving embeddings of a disk are smoothly isotopic). 
In particular, # m X  denotes the manifold we get by the connected sum of 
m (m 2 0)  copies of the same manifold X .  (If m = 0, then # m X  = S" 
by definition.) 

The iterated application of the connected sum operation for CP2, @p2 and 
S2 x S2 gives other examples of simply connected 4-manifolds. Applyin 
this result, one can easily prove that the intersection form of nCP2#mCP 
is equivalent to n(1) @ m(-1) (n, m 2 0), so these intersection forms can 
be realized by smooth manifolds. 

Of course, in physics the idea of cutting and gluing has been an integral 
part of general relativity from the early days in relation to Einstein-Rosen 
bridges, wormholes, etc. See, for example, [Visser (1996)l. 

-8 

6.8 Freedman's Classification 

We close this chapter with brief statement of a central topological theorem in 
the early studies of exotic R4's. For the simply connected case r l ( X )  = 0, 
the first and the third homologies and cohomologies vanish (by PoincarC 
duality), and H z ( X ;  Z) H 2 ( X ;  Z) Hom(Hz(X;  Z), Z) has no torsion, 
so Q X  contains all the (co)homological information about X .  For topo- 
logical manifolds, Q X  is more or less a complete set of invariants. More 
precisely, 

Theorem 6.20. (Freedman, [Freedman (1982); Freedman and Quinn 
(1990)]) For every unimodular symmetric bilinear form Q there exists a 
simply connected closed topological 4-manifold X such that Q X  S Q. If Q 
is even, this manifold is unique (up to homeomorphism). If Q is odd, there 
are exactly two different homeomorphism types of manifolds with the given 
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intersection form. 

Roughly speaking, simply connected topological manifolds are classified 
by their intersection forms. Thus in Table 6.1 every unimodular form is 
realized by the intersection form of one 4-manifold. Section 8.2 will contain 
a discussion of some of the contributions of Freedman relevant to this result. 
Section 8.3 will address the smooth form of these issues for four manifolds 
and intersection forms, and discuss their importance for exotic smoothness 
discoveries. 



Chapter 7 

Early Exotic Manifolds 

7.1 Introduction 

The successful classification of principal bundles and sphere bundles in the 
~ O ’ S ,  led to a plethora of interesting results, including a discovery by Milnor 
of topological seven spheres possessing non-standard, or exotic smoothness 
structures. This discovery was first published in his landmark paper [Mil- 
nor (1956c)l. Until this publication it was generally assumed that, at least 
for topologically simple spaces, topology would uniquely determine smooth- 
ness. Thus, the announcement of the first six exotic structures on a 7-sphere 
was a great shock for the mathematical community’. Fortunately, Milnor 
has recently [Milnor (2000)l given a brief but very informative retrospective 
review of this paper and its historical context. 

Milnor’s original paper was succeeded by further results relating topol- 
ogy to smoothness. Notable was the landmark theorem of Smale [Smale 
(1962)l now known as h-cobordism theorem, suggesting that smoothing (in- 
troducing differential structures on topological manifolds) is much simpler 
than expected for the higher-dimensional cases, 2 5. Kervaire and Mil- 
nor, [Kervaire and Milnor (1963)] were able to classify all possible differen- 
tial structures on higher dimensional spheres, and Kirby and Siebenmann 
[Kirby and Siebenmann (1977)l used Milnor’s notion of microbundle to 
classify both the smoothness and piecewise linear structures on manifolds 
of dimension greater than 4. 

We begin our study of these early exotic structures by reviewing Mil- 
nor’s original work, defining the first exotic 7-spheres as 3-sphere bundles 
over the 4-sphere. We compare this construction to the compactified Eu- 

‘In 1962, Milnor won the Fields medal, the most important award in mathematics, for 
this result. 
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clidean Yang-Mills models from quantum theory. Next, we briefly mention 
some consequences of exotic smoothness for geometry and spectra of 
the differential operators. After a review of the classifying work of Ker- 
vaire, Milnor and Siebenmann we close this chapter with the proof that 
the higher-dimensional Euclidean spaces (R” with n 2 5) have no exotic 
differential structures. 

7.2 Some Physical Background: Yang-Mills 

In quantum field theory it has become common to consider spacetime mod- 
els changed to remove some of the mathematically inconvenient features 
that apparently occur in physically “reasonable” models. In particular the 
indefinite Minkowski metric is replaced by the positive definite Euclidean 
one and spacetime is compactified. We will not attempt to provide jus- 
tification for these changes from the physics viewpoint, but simply point 
out that their use is widespread in quantum field theory. So, let us begin 
with the mathematically standard one-point compactification of the basic 
spacetime model R4 U {m} = S4. Many studies in quantum field theory 
thus start with S4 as the spacetime model. Furthermore, to make sense out 
of the path integral formulation of quantum field theory, it is customary to 
replace the indefinite Minkowski metric with the Euclidean one. Of special 
interest to us here are the Yang-Mills models proposing force fields con- 
structed as connection fields of an SU(2)  gauge symmetry. Formally then 
we look at SU(2)  principal bundles over this S4, 

S3 = SU(2)  + M 7  
1. 
s4 

This particular symmetry group was inspired by the “isotopic” spin symme- 
try recognized in low energy nuclear physics of the 50’s and ~ O ’ S ,  motivated 
by the apparently identical action of the nuclear (strong) force on neutrons 
as on protons. Thus, at that time the “elementary” particle in the nucleus 
was the nucleon, which could exist in two-dimensional isotopic spin state, 
C2, spanned by the two orthogonal base states, neutron and proton. Of 
course, this isotopic spin group was soon replaced by SU(3)  2 SU(2) ,  the 
original quark model of Gell-Mann et al., and then a plethora of generaliza- 
tions, but the Yang-Mills formalism is important as the first non-Abelian 
physical gauge theory. 
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As briefly mentioned in an earlier discussion, the physics of force fields 
starts with a connection on such a principal bundle and imposes field equa- 
tions through a variational principle involving some form of curvature in- 
variants. For this four dimensional case, the second Chern class, the trace 
of the “square” of the SU(2)  curvature, T r ( 0  A 0), provides the natural 
Lagrangian density. This interplay between the topology, geometry and 
index theory of differential equations has proved to be very productive for 
contemporary mathematics, especially in the work of Donaldson and others 
leading to exotic R4’s as we discuss in chapters 5 and 8. For now, we simply 
recall the importance of SU(2)  bundles over S4 in certain physical models. 

7.3 Mathematical Background: Sphere Bundles 

Let us start with a general discussion of bundles over S4. The basic one 
is of course the bundle of frames, an SO(4) principal bundle, a non-trivial 
bundle. The standard two hemisphere chart decomposition of the base 
space sphere S4 is S4 = H+ u H- with H+ n H- = IR1 x S3. Since 
this latter space is homotopically equivalent to S3,  a principal bundle is 
defined by the transition map g+- : H+ n H- + SO(4) with homotopy 
class in 7r3(so(4)). First, recall that Spin(4), the two-fold covering of 
S0(4) ,  is homeomorphic to SU(2)  x SU(2) .  Since SU(2)  = S3 and Spin(4) 
and SO(4) have the same xn for n > 1, we find that every element of 
x3(so(4)) = Z @ Z can be described by a pair of maps S3 + S3 classified 
by 7r3(S3) = Z. For Milnor’s argument, we will need a reduction of the 
bundle group, SO(4) + Spin(4) --+ SU(2)  given by a relation based on 
two numbers (i,j) E ~ s ( S o ( 4 ) )  characterizing the topological class of the 
bundle. 

In physics, using a natural generalization of the Yang-Mills formalism, 
we can interpret the sections of such a bundle as particles with left- and 
right-handed isospin. Milnor’s discovery of exotic smoothness on some of 
these bundles then leads us to speculate on possible physical significance of 
such “exotic” Yang-Mills models. 

Before proceeding with the details of Milnor’s results, let us review 
the classical Hopf bundle presentation of S7, starting with the projective 
representation of spheres. If u represents a Euclidean vector in IR”, and 
(t ,u) E Rn+l, with t E IR1, then S” is the locus: t2 + 1uI2 = 1. Now define 
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two maps, L ‘ p r ~ j e ~ t i o n ~ ”  

Clearly, 

The hemispheres H& discussed in the n = 4 case above are clearly the im- 
ages of p & .  Now use this formalism to define the base space, S4, replacing 
R” by W, the space of quaternions, so that u now has multiplicative alge- 
braic properties. Finally, let u represent a unit quaternion, thus a general 
element of S3.  We can now explicitly describe S7 as a Hopf bundle using 
the functions in (7.2) as projection maps. The two coordinate patches are 
H+, and the local presentations are, on H+ x S3,  

and, on H- x S 3 ,  

where u and u’ correspond to the same point in S4, so p+(u)  = p -  (u’), or 
u‘ = u/1uI2. The fact that the right side of these two equations represent 
the same point in S7 then is equivalent to 

21’ = uu/IuI = g+-(u) . u,  (7.5) 

and the transition functions are 

as required. 

7.4 Milnor’s Exotic Bundles 

Milnor’s original description uses a generalization of the Hopf bundle for- 
mulation of S3 bundles over S4 described by the quaternion algebra above. 
Here we follow the spirit of Milnor’s argument, but modify the order some- 
what. We begin with a summary of the main points: 

(1) A closed smooth seven manifold, M l ,  is defined as the total space of 
an S3 bundle over S4, for each odd integer Ic. This bundle is denoted 
by & j ,  where h + j  = 1 , h -  j = Ic = 2h- 1 = odd. 
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(2) Using Morse functions, we find that M l  is homeomorphic to S7. 
(3) M l  is the boundary of a compact topological manifold, B8.2 
(4) Milnor defines an integer (mod 7), X(M7) ,  where M7 = dB8 ,  using the 

topology of B8. However, its value is independent of the actual choice 
of B8, with dB8 = M 7 .  

(5) For the total space of the bundle ( h j ,  h- j  = k, X(Ml) = k2 - 1 mod 7. 
(6) If X(M7) # 0, B8 cannot be homeomorphic to the Euclidean eight- 

ball, or disk. 
(7) If M l  were diffeomorphic to standard S7, it would be the boundary of 

the standard eight-ball. 
(8) Therefore if k2 - 1 # 0 mod 7, then M l  is homeomorphic, but not 

diffeomorphic, to the standard S7. Together with (2) this establishes 
the fact that such a M l  is an exotic sphere. 

Milnor’s striking result can then be summarized by his Theorem 3, [Mil- 
nor (1956c)], the item (8) above, which we quote here 

Theorem 7.1. For k2 $1 mod 7 MZ is homeomorphic but not diffeomor- 
phic to  S7. 

Now we fill in a few of the technical details. For each pair of integers, 
(h ,  j )  where h + j = 1, we define a generalization of the transition function, 
(7.6), by ghj(U).v = u ~ v u ~ / ~ u ~ ~ .  Since h and j are not independent, we can 
characterize the pair by k = h- j .  Denote the sphere bundle corresponding 
to this transition function by ( h j .  Explicitly, take two copies of R4 x S3 
and identify the subsets (R4 - (0)) x S3 under the diffeomorphism 

u u h v d  

llull llull (u,v) - (U’,V’) = (7, -) (7.7) 

using quaternion multiplication. This presents M i  as a smooth manifold, 
point (1). 

Referring back to the standard S7 Hopf construction, (7.3), (7.4), we 
see that the first coordinate in the enveloping R8 is 

and 

t = Re( d-)l 73/21‘ in H-. 
1 + 121’12 

(7.8) 

(7.9) 

2Please note that Bs will not necessarily be a ball. 
3The standard Hopf bundle presentation of the standard S7 above clearly corresponds 

to h = 1. 



210 Exotic Smoothness and Physics 

Using this as a “height” function, with precisely two critical points (at the 
poles), Morse theory confirms that this is a topological S7. We discuss this 
in more detail in the 7.5. Now, Milnor uses the same function, but with the 
non-standard transition function defined by (h , j ) .  Again, it has only two 
non-degenerate critical points, from which Morse theory establishes that 
M l  is topological S7, that is, point (2). 

F’rom the definition and calculation of the cobordism ring due to Thom 
[Thom (1954)l we know that every closed 7-manifold is the boundary of a 
compact 8-manifold, establishing point (3). 

The next step is the most technical. First, since each fiber, S3 of &j 
is the boundary of a standard ball, B4, the bundle can be embedded in a 
4-cell bundle. The total space of this bundle is one of the B8 in point (3). 
Milnor begins with some basic mathematical facts about oriented closed 
seven-manifolds, M 7 ,  which are boundaries, M7 = dB8. Assume Milnor’s 
hypothesis *, 

* : H 3 ( M 7 )  = H 4 ( M 7 )  = 0. (7.10) 
From the exact sequences of algebraic topology this implies that 

i* : H4(B8, M 7 )  H4(B8), (7.11) 
is an isomorphism. Next, let p E H7(M7) be an orientation. There then 
exists v E H8(B8, M 7 ) ,  p = dv, which defines the orientation of M7 in B8. 
Because 8 = 2 x 4 we can then define a quadratic form over the cohomology 
group, H4(B8, M 7 )  by 

la1 2 =< v,a2 >, E H4(B8, M7) .  (7.12) 
In deFtham cohomology, a would be a four-form and a2 = a A a. From 

physics we are accustomed to defining the signature of a quadratic form as 
the sum of f l ,  corresponding to the signs of the diagonal elements. Milnor 
uses the term index for the signature of the form defined in (7.12) and 
labels it T (  B8). 

of the tan- 
gent bundle to B8. F’rom the isomorphism in (7.11), let p = (i*)-’(p~) E 
H4(B8, M 7 )  and the function q is defined by 

q(B8) =< v , p 2  > . (7.13) 
We now state Milnor’s first important theorem: 

THEOREM 1:The residue class of 2q(B8) - .(B8) modulo 7 does not 
depend on the choice of the manifold B8. 

Now let pl(B8) E H4(B8) be the first Pontrjagin class 

4See the discussion in section 5.3. 



Early Exotic Manijololds 211 

That is, this number depends only on dB8  = M7 and is denoted by 
X(M7). We will not repeat Milnor’s proof of this theorem which calls on 
the Hirzebruch index theorem and other results. This establishes point (4). 

Next, in two Lemmas, Milnor is able to compute 2q - T for the total 
space of the bundle, &j, to be 8k2 - 1, so that 

X(MZ) = 8k2 - 1 = k2 - 1 mod 7, (7.14) 

establishing point (5). 
In particular, if H4(B8,R) = 0, then the quadratic forms defining .(B8) 

and q(B8) ,  and thus X(M7) are identically zero. This is point (6). On the 
other hand, if M7 = S7, the “standard” sphere which by definition can be 
smoothly embedded in Rs as the boundary of the standard ball. Since this 
ball is topologically trivial point (6) then results in point (7). Finally, point 
(8) summarizes these points and establishes Milnor’s main theorem. 

Of course, what this establishes is simply that these M l  are not diffeo- 
morphic to the standard S7. However, at this point we do not know whether 
any of them are diffeomorphic to each other, or precisely how many exotic 
spheres there are. The answer to these questions is found in the work 
of Kervaire and Milnor [Kervaire and Milnor (1963)], which we review in 
section 7.8. 

Finally we mention that Brieskorn has been able to construct certain 
exotic spheres by algebraic geometric means. The Brieskorn spheres are 
defined by 

C ( U ~  ,..., U , ) = { ( Z ~  ,..., z , ) E ~ ~ I z ~ ~ ’ + . . . + z ~ = O } ~ S ~ ~ - ’  (7.15) 

where (a1 , . . . , a,) is an arbitrary n-tuple of integers ai > 1. For n = 3 these 
manifolds are homology 3-spheres and C(2,3,5) represents the PoincarC 
sphere. In higher dimensions n > 3 with n = 1 mod 4 these manifolds are 
homeomorphic to S2n-3 but in general not diffeomorphic. In particular, all 
Milnor spheres, A4l can be obtained from this construction for n = 5. We 
refer the reader to the original paper [Brieskorn (1970)]. 

7.5 Coordinate Patch Presentation 

In physical applications, explicit coordinate patch presentations are often 
required. Of all of the exotic manifolds the Milnor spheres seem most likely 
to be explicitly coordinatized. In this section we will look at this problem 
by reducing Milnor’s bundle presentation of M l  to one explicitly involving 
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a gluing of the S6 boundaries of two disks. Consider the standard seven 
sphere as a subset of R8, defined by 

( t ,  w), with t2 + lwI2 = 1, w E R7. (7.16) 
Define DL as the two polar caps, up to the equator. Thus, DL are defined 
by the conditions f t  1 0. Clearly the embedding identifies each with the 
standard D7. The corresponding boundaries are two (orientation reversed) 
copies of the equatorial six-sphere. This provides a model for the standard, 
smooth 

S7 = D7 U1 D7,  (7.17) 
two standard disks patched together by the identity map on their bounding 
spheres. Alternatively, the boundaries of the two D7’s can be joined by a 
collar, [ O , 1 ]  x S6, 

S7 = D7 U1 ([0,1] x S6) U1 D7. (7.18) 
Return to the Hopf bundle presentation of Milnor’s M z ,  with the height 
function, t ,  defined in (7.8) and (7.9). It is easy to see that the critical 
points of t occur at u = 0,v = fl ,  both in u’ # 0, and that these are 
non-degenerate and of positive index. First, we follow the argument of 
Reeb[Reeb (1952)l as outlined in Hirsch[Hirsch (1976)], pages154,155. Use 
the height function, t ,  to divide M l  into three pieces, 

Ml=t- ’[ l ,a]Ut- ’[a ,b]Ut- ’[b , - l ] ,  with - l < a <  b < l ,  (7.19) 
where the Morse function argument, discussed in more detail in Chapter 
6.1.1, shows that the first part is a disk, D:, the second part, C ,  is dif- 
feomorphic to [0,1] x S6, and the last is another 0:. Now we look at 
the relationship of the two sets defined in (7.18) and (7.19). Let F be the 
diffeomorphism of [0,1] x S6 onto C,  with F[O, z] = 5, the identity on the 
boundary of the top cap of S7 in (7.18), and F[l,z] = f(z), a diffeomor- 
phism of the boundary of the bottom cap with S6. The only remaining 
task is to extend this map from the boundary of the bottom cap to the full 
disk. For this, we can use “Alexander’s trick,”5 defining it on the full disk 
D7 from the boundary sphere map, f, by 

(7.20) 

where we use the usual vector notation within D7. Now, the important fact 
is that the homeomorphism, (7.20), cannot be a diffeomorphism, else M z  

5An alternative procedure is given by Milnor[Milnor (1965a)], pages 109,110. 
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would be diffeomorphic to S7. Clearly any breakdown of the smoothness 
is “concentrated” at the origin. On the other hand, i f f  were (smoothly) 
isotopic to the identity, it could be isotoped to this identity using 1x1 as 
a re-scaled parameter before it gets the zero. In this case, F ,  defined in 
(7.20) would actually be a diffeomorphism. So, defining 

for some diffeomorphism, f : S6 + S6, then Milnor has shown: 
Fact :The  space Cf is d ieomorphic  to the standard smooth S6 if and 

only i f f  is smoothly isotopic to  the identity. 
The very enlightening historical review by Milnor, [Milnor (2000)], of 

his path in the late 1950’s to the exotic seven-spheres closes with a review of 
the critical relationship between the smoothness structures of seven-spheres 
and the smooth isotopy classes of maps between the boundaries of the two 
coordinate patches, S6 -+ S6, or equivalently, n6(s6). 

We close this section by noting very interesting recent constructive re- 
sults obtained by Durbn et al., [Durbn (2001)],[DurBn et al. (2004)],[Abresch 
et al. (2005)]. These papers provide an explicit statement, using algebraic 
quaternion methods, of just such an S6 diffeomorphism not isotopic to the 
identity which constructs Milnor’s M z ,  with(h,j) = (2, -1). These purely 
algebraic quaternion techniques appear to offer insights to further exotic 
constructions. They also describe natural geometries, as we discuss in the 
next section. 

7.6 Geometrical Consequences 

Of course, an essential component of physical models is geometry and the 
possibilities of interesting, non-standard, geometric characteristics for ex- 
otic manifolds is one of the main lures of exotic smoothness. Certain well 
known relationships between curvature and homology hold for any smooth 
manifold and thus can be used in studying exotic ones. For example, the 
basic theorem of Gauss-Bonnet, and its generalization by Chern and other 
developments are described in some detail in [Gallot et al. (1980)], espe- 
cially in their chapter 111. Milnor’s book on Morse theory, [Milnor (1963)], 
also contains an excellent survey of the topic. For the case of Lorentzian sig- 
nature metrics the indefinite character of the norm requires some changes. 
In fact, Beem et a1 have devoted an entire book to the subject, [Beem et al. 
(1996)l. 
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In many cases the presentation of a geometry, i.e., metric and/or con- 
nection, is given in terms of coordinate patches, which are not explicitly 
available to us for exotic spheres. However, Gromoll and Meyer [Gromoll 
and Meyer (1974)] have been able to use a group theoretical representation 
of the Milnor spheres MZ to obtain explicit geometries on these spaces. In 
particular, they construct a metric with nonnegative sectional curvature. 
Today we know (see [Grove and Ziller (1999)]) that 15 of all 27 exotic 
spheres in dimension 7 admit metrics of non-negative sectional curvature6. 
Work of Hitchin [Hitchin (1974)l demonstrates the existence metrics on ex- 
otic spheres with non-positive scalar curvature. Another class of problems 
relates exotic spheres with positive Ricci curvature. The paper [Wraith 
(1998)] shows that every exotic sphere has a metric of positive Rcci curva- 
ture. For additional recent work see [Abresch et  al. (2005)l. 

We now present a brief review of the work of Gromoll and Meyer. Let 
Sp(n) denote the symplectic group of n x n quaternion matrices. Identify 
the field of quaternions with the R4. Consider the action (T of Sp(1) x 
Sp(1) pv SU(2)  x SU(2) on Sp(2) given by 

CJ : (Wl) x Wl)) x SP(2) - 
where & denotes the conjugate of qz. The action (T is free, i.e. if u(q1 x 
qz, Q) = Q for all Q, then q1 x q2 must be the unit element e x e (or unit 
quaternion 1). Then we can define the equivalence relation: 

Qi - Q2 * I q i ,  qz E Sp(1) a(qi x q z ,  Qi) = Qz 
for all Q1,Q2 E Sp(2). The quotient manifold Sp(2)/ N (sometimes de- 
noted by Sp(2)/Sp(l) x Sp(1) is diffeomorphic to S4 (see [Gromoll and 
Meyer (1974)l). The diagonal A = ((4, q )  E Sp(1) xSp(1)) C Sp(1) xSp(1) 
also acts freely on Sp(2). The quotient manifold C7 = Sp(2)/A is a 7- 
manifold admitting the structure of an S3-bundle over S4 , providing an 
alternative route to Milnor’s construction of MZ [Milnor (1956c)l. The 
following diagram reflects this bundle structure. 

Sp(1) x Sp(l)/A 
1 

1 

21 Sp(1) = S3 

SP(2)lA = c7 

S P ( 2 ) l W l )  x Wl) 21 s4 
6These are exactly all Milnor spheres i.e. each sphere can be written as an S3  bundle 

over S4. 
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In Milnor’s notation this bundle corresponds to &,-I  as shown by Gromoll 
and Meyer [Gromoll and Meyer (1974)]. Thus C7 is diffeomorphic to the 
exotic sphere M i .  

On the geometric side, Gromoll and Meyer were able to provide an ex- 
plicit expression for the sectional curvature of embedded surfaces in terms of 
their S p ( 2 )  group presentation of the sphere. Among other results is a pos- 
itive definite Rcci curvature. For further results we have the work of Kreck 
and Stolz[Kreck and Stolz (1988)], showing that there are 7-dimensional 
manifolds with the maximum number of 28 exotic smooth structures each 
of which admits an Einstein metric with positive scalar curvature. 

7.7 Eells-Kuiper Smoothness Invariant 

The work of Eells and Kuiper [Eells and Kuiper (1962)], and others, has led 
to some important relations between the spectral properties of differential 
operators on certain topological spheres and their smoothness structures. 
The important theorem is 

Theorem 7.2. Suppose k = 7 , l l  and M I ,  M2 are two topological k-spheres 
with codimension one metrics. If M I ,  M2 are isospectral then they are dif- 
feomorphic. 

Here the phrase “codimension one metric” means that the manifolds are 
endowed with a metric geometry from an immersion in an Rk+’ of one 
higher dimension. “Isospectral” means that the Hodge operators (gen- 
eralized Laplacians) of these metrics have the same eigenvalue spectrum. 
This result comes from relating the Atiyah-Patodi-Singer spectral invari- 
ant [Atiyah et al. (1973)] to a differential topological invariant defined by 
Eells and Kuiper. Although we will not explore this result further at this 
time, we mention it here because it provides another tool to investigate our 
fundamental question of whether or not two manifolds are diffeomorphic. 

7.8 Higher-dimensional Exotic Manifolds(Spheres) 

In this section we will review the work of Kervaire and Milnor [Kervaire and 
Milnor (1963)l which together with the work of Smale [Smale (196l)l gives 
an (almost) complete classification of possible non-diffeomorphic smooth- 
ness structures that can be put on topological spheres by using the h- 



216 Exotic Smoothness and Physics 

cobordism theorem stated in section 6.3.1. The number of such structures 
for each dimension up to 18 is given in Table 7.1. The argument proceeds 
as follows: 

(1) First it is shown that every manifold homotopic to a sphere, called 
a "homotopy sphere," is actually homeomorphic to it, for dimension 
n 2 6 using the (topological) h-cobordism theorem. 

(2) A group action using connected sums # is established on the set of 
homotopy spheres of dimension n, defining the group 0,. 

(3) Define the group of all homotopy spheres bPn+l that bound paralleliz- 
able manifolds and show that O,/bPn+l is finite. 

(4) The group bPn+1 is finite too. The order of the group is divided into 
two cases with respect to n and can be calculated. 

(5) With much extra work, the order of 0, can be calculated. The factor 
On/bPn+1 is determined by the stable homotopy groups of spheres. 

(6) The smooth h-cobordism and Alexander's trick shows that there is 
precisely one smoothness structure for each element of 0,. 

(7) Finally, this implies that the number of smooth manifolds of dimension 
n which are homeomorphic to the standard sphere, but not diffeomor- 
phic to any other is the number of elements in 0,. 

Starting with (l), let us denote a general homotopy sphere by the 
symbol C". First note that every homotopy sphere can be decomposed 
Cn 2 D" Uf Dn, a union of two balls glued by the diffeomorphism 
f : S"-I 4 S"-l. To see this, cut out two small disks from C", viewed 
as the "polar caps" of the homotopy sphere. What remains is a manifold 
W" with the homotopy type of the cylinder and two boundary components 
each homeomorphic to S"-l. Since n - 1 2 5 and S"-' is simply con- 
nected, the hypotheses of the h-cobordism theorem 6.9 are satisfied and 
there is a diffeomorphism from W to S"-l x [0,1] which is the identity 
on the boundary component corresponding to the south polar cap, and is 
the diffeomorphism f on the boundary of the other cap. This provides the 
decomposition of the homotopy sphere by C" E D" Uf D". 

The diffeomorphism equivalence class of this homotopy sphere depends 
only on the isotopy class of f ,  since an isotopy of the f's gives an h- 
cobordism of the corresponding homotopy spheres and we can apply the h- 
cobordism theorem again. Conversely, if there is an orientation-preserving 
diffeomorphism from Dn Uf Dn to the standard sphere, it is not hard to 
see that there must be an isotopy from f along the cylinder to the identity. 
Thus the smooth homotopy spheres are classified by the isotopy classes of 
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the equator, that is, by the elements .rro(DIFF(Sn-l)). In the topological 
case, any self-homeomorphism f of S”-l extends via “Alexander’s trick” 
described in (7.20) above to a self-homeomorphism of D” itself. This yields 
a homeomorphism from Dn Uf D” to S”, proving the generalized Poincarc‘ 
conjecture. Thus every homotopy sphere (n 2 5) is topologically equivalent 
to the standard sphere[Smale (196l)l. However, Alexander’s trick is only in 
the TOP category, so we do not yet know about smooth equivalence of En 
to Sn. This discussion leads to a classification of the smooth structures on 
the sphere Sn for n 2 6 in terms of homotopy spheres. 

The fundamental work of Kervaire and Milnor [Kervaire and Milnor 
(1963)l led to the result that there is only a finite number of exotic spheres 
in higher dimensions. The key ingredient in this approach is the relationship 
between the exotic spheres and the (stable) homotopy groups of spheres. 
Thus a problem in differential topology is converted to a problem in alge- 
braic topology for higher dimensions (2 5). The proof can be described in 
steps (2)-(4) indicated above. 

(2) provides an abelian group structure for the homotopy spheres 0,. 
Let M I  and M2 be manifolds with the connected sum Ml#M2. This defines 
a group operation on the set of h-cobordism classes of manifolds endowing 
this set with an Abelian group structure. Next, the subset of homotopy 
spheres defines a subgroup 0,. We note that a simply connected manifold 
M is h-cobordant to the sphere if and only if M bounds a contractible 
manifold (Lemmas 2.3 and 2.4 in [Kervaire and Milnor (1963)l). If M is a 
homotopy sphere then M # B  bounds a contractible manifold and is itself 
h-cobordant to the sphere 5’”. This gives the group structure on 0,. The 
sphere Sn is the identity element in this group. 

As preparation for (3), we introduce the concept of S-parallelizability to 
characterize the elements of the group 0, further. Recall that a manifold 
is defined to be parallelizable if its tangent vector bundle is trivial. That is, 
vector fields can be described in terms of one fixed global frame. 

Definition 7.1. Let M be a (smooth) manifold with tangent bundle7 
T ( M ) .  Denote by d the trivial line bundle over M .  M is said to be S- 
parallelizable if the Whitney sum T ( M )  @ 

In some sense these manifolds are “almost” parallelizable. As an example 
we know that S2 is not parallelizable (If a billiard ball had hair, it couldn’t 
be combed flat all over without a “whirl”). Thus the tangent bundle 7(S2) 
7According to Milnor [Milnor (1964)] it is possible to introduce a tangent bundle, known 

is a trivial bundle. 

as micro tangent bundle, also in case of a topological manifold. 
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is non-trivial. However we can always embed f : S2 -+ R3, from a standard 
result (see e.g. page 31 [Milnor and Stasheff (1974)l) 

f*T(R3) = T(S2) @ V(S2). 

The triviality of f*.(IR3) and v (S2)  then establishes that S2 is S- 
parallelizable: 

f*T(R3) = E3 = T(s2) @ V ( s 2 )  z= T(s2) @ E l .  

Clearly this proof extends to all spheres Sn. But Kervaire and Milnor go 
further to show: 

Theorem 7.3. Every homotopy sphere is S-parallelizable. 

Of course this theorem contains our example. The next remark gives a 
short outline of the proof which also summarizes the arguments of Kervaire- 
Milnor. 

Remark 7.1. 
The proof of this theorem can be obtained by considering the obstruction on@) t o  the 
triviality of T ( C )  8 for a homotopy n-sphere C. By the standard methods of ob- 
struction theory (see the  next point below) this element on@) is contained in the  group 
H " ( C , ~ ~ - l ( S 0 ( n + l ) ) )  = ~ ~ - l ( S O ( n + l ) ) .  Now it is enough t o  switch t o  the stable groups 
.rr,-l(SO) which are periodic of period 8 according t o  Bott. Then for n = 3 , 5 , 6 , 7  mod 8 the  
group nn-1(SO) = 0 vanishes and thus the  obstruction vanishes also. The case n = 0,4 mod 8 
is related t o  the signature theorem of Hirzebruch, but because of H Z k ( C )  = 0 the signature 
and thus the obstruction vanish. For the last case n = 1 , 2  mod 8 Kervaire and Milnor used 
the fact that  the  J-homomorphism, 

Jn : Tn(SO(k ) )  --t r n + k ( S b )  

is actually a monomorphism in the stable range k > n. consequently, on@) = 0 in the stable 

range. 

To complete step (3) consider the following subgroup bPn+l of 0, and show 
that Qn/bPn+l is finite. 

Definition 7.2. A homotopy n-sphere M (E 0,) represents an element of 
bPn+l if and only if M is the boundary of a parallelizable manifold. 

Of course, it must first be established that this defines bPn+l as a subgroup. 
Assuming this, we have the following important theorem: 

Theorem 7.4. The quotient group O,/bPn+l is finite. 

Thus it remains to consider the subgroups bPn+i. 

Remark 7.2. 
We briefly outline the  proof of this result. First choose an  embedding i : M + Sn+k of a 
closed S-parallelizable manifold M of dimension n with k > n + 1. The Pontrjagin-Thom 
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construction defines a map p ( M ,  4) : S n f k  + Sk depending on the framing 4. For a varying 
frame we define the class p ( M )  to be { p ( M ,  b)} which is a subset of elements of the stable 
homotopy group II, = 7 r , + k ( S k ) .  The kernel of the map 

P' : e n  -+ n n / p ( S n )  

forms a group which is indeed bP,+1. Thus 0, /bP,+l  is isomorphic to a subgroup of 

n,/p(Sn) and according to  Serre [Serre (1951, 1953)] II, is finite and thus e,/bP,+l is 

also finite. Note that these quotient groups are actually isomorphic if n # 2j+' - 2. 

For step (4) we must consider the two possible cases (bP2k+l) and (bPzk). 
The key theorem for the first case is 

Theorem 7.5. If a homotopy sphere of dimension 2k bounds an S- 
parallelizable manifold M ,  then it also bounds a contractible manifold MI. 

To prove this, Kervaire and Milnor produce M I  using surgery operations 
on M leaving the boundary invariant. These operations can be considered 
as killing the homotopy groups of M .  Then by definition of bPn+l we 
obtain bPzk+l = 0. The non-trivial case bP2k is much more complicated. 
First note that bP4k+2 has at most two elements, i.e. bP4k+2 = ZZ. Thus 
we have to consider only the case k = 2m. The first value k = 2 is still 
unresolved because Kervaire and Milnor surgery technique excludes this 
case. In particular, a homology class H 2 ( M 4 )  of a 4-manifold need not be 
representable by a smoothly embedded sphere. 

Again, we have the special circumstance arising in the critical dimen- 
sion four. 

However, for k = 2m # 2. Kervaire and Milnor did establish: 

Theorem 7.6. Let M be a (framed) S-parallelizable manifold of dimension 
4m > 4, bounded by  the (4m - 1)-sphere. Consider the collection MO of 
such manifolds M .  The  corresponding signatures u(M0) E Z form a group 
under addition. If (T, is the generator of the group, then bP4, has order 
% .  8 

To understand this theorem consider the surgery operation on M as a 
cobordism between two manifolds M and M' of dimension 4m having the 
same boundary. An important invariant of this process is the signature of 
M .  The next problem is to calculate the signature (T, of the generator. 
[Kervaire and Milnor (1958)] and [Adams (1963)] then obtain the closed 
formula: 

(T, = a,22m+1(22m-1 - l)numerator(~,/4m) 
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m 
dim 3 

Order of @4m-1 l ?  

where B, is the mth Bernoulli number and a, = This result 
was obtained with a combination of the signature theorem of Hirzebruch 
and some results of Adams about the J-homomorphism. This completes 
the third step in calculating bP,+1. The last step (step (5) above) involves 
a great deal of work involving some very strong theorems about the J- 
homomorphism etc. We only state the result for the full group @4m-1: 

order [04,-1] = amorder [7r4,-1+k(Sk)] 22m-4(22m-1 - 1)B,lm, 

where Ic > 4m. In particular: 

1 2 3  4 5 
7 11 15 19 
28 992 16256 130816 

n 
Order of 0, 

n 
Order of 0, 

1 2 3 4 5  6 7 8 9  
1 1 l ?  1 1 1 2 8 2 8  
10 11 12 13 14 15 16 17 18 
6 992 1 3 2 16256 2 16 16 

for dimension > 4. To show this last statement we have to fill in the steps 
(6) and (7) above. So again, the set 0, is the set of homotopy n-spheres. 
Equivalently, an h-cobordism between two homotopy n-spheres induces also 
a homotopy-equivalence. Thus 0, is also the set of h-cobordism classes of a 
homotopy n-sphere. By the h-cobordism theorem, two h-cobordant home 
topy n-spheres are diffeomorphic. Then, two different elements a, b E 0, 
represent two non-diffeomorphic homotopy n-spheres. So, as shown in step 
(1) every homotopy n-sphere C can be decomposed as D" Uf Dn via some 
diffeomorphism f : S"-' .+ S"-'. Thus, if the homotopy n-sphere C' 
is constructed by gluing two disk D" along a diffeomorphism f', we may 
try to construct a diffeomorphism C --f C' by beginning with the iden- 
tity map of one disk in each sphere. This map induces a diffeomorphism 
f' o f-l  of the boundaries of the other disks, which extends across those 
disks by using Alexander's trick. Such an extension is a homeomorphism 
which is smooth perhaps except at the origin, i.e. the map f is extended 

Thus, collecting these results we have a classification of the homotopy
spheres given by table 7.1 leading to the classification of exotic spheres
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to f : Dn .+ Dn with maps the origins f(0) = 0 of the disks continuously 
to each other. Thus, if f’ o f-’ is homotopic to the identity then C and C’ 
are h-cobordant or diffeomorphic by the h-cobordism theorem. This com- 
pletes the answer to step (6). Finally we have to show that the elements of 
0, are all homeomorphic but non-diffeomorphic n-spheres. The arguments 
above complete step (7) but there is more. Every homotopy n-sphere is 
an element in 0, and two diffeomorphic homotopy n-spheres define equal 
elements in 0, (see step (6) above). The connected sum C#C’ between 
two homotopy n-spheres C, C’ is the group operation in 0, which is com- 
mutative. According to the steps (3),(4) the group 0, is finite and must be 
a direct sum of cyclic groups. As an example consider the group 0 7  which 
is isomorphic to Z28. Thus, there is a homotopy 7-sphere C7 (which is M7,  
in Milnor’s notation, see above) which generates all other 28 spheres by the 
connected sum operation. All homotopy 7-spheres 

c, C#C, . . . , C#C#. . . #C 

represent all exotic 7-spheres and the homotopy 7-sphere 

C#C#. . . # C  = s7 
28 

is diffeomorphic to the standard 7-sphere, i.e. the identity element e in 0 7 .  

Let a be the generator of 0 7  represented by C and we obtain the relation 
a + a +. . . + a = 28a = e where the connected sum operation # is mapped 
to the +-operation and the identity element is e. But that is by definition 
the cyclic group z28. Now the step (7) is complete. 

Additionally, this solves also the (topological) Poincar6 Conjecture in 
dimension > 4, stating that every topological n-manifold homotopic to the 
n-sphere is also homeomorphic to it but not in general diffeomorphic as the 
table above shows. For more details, see the review paper by Lance [Lance 
(2000)l. 

7.9 Classification of Manifold Structures 

Kirby and Siebenmann [Kirby and Siebenmann (1977)] have been able to 
extend the previous results to a more general class of metrizable manifolds 
of dimension greater than 5. Consider metrizable, topological manifolds 
M of dimension L 6 with d M  # 8 and 2 5 with d M  = 8. Recall that 
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the manifold structure is defined by local coordinate patches with transi- 
tion functions in their overlaps which are continuous, piecewise linear, or 
smooth. The categories of such manifolds, with corresponding morphisms, 
are described by the terms TOP, PL, and DIFF respectively. We will use 
the notation for which the generic case is CAT = {TOP, PL, DIFF} with 
the subset CAT0 = {PL,DIFF} c CAT. For general CAT we cannot de- 
fine a tangent bundle (in the smooth sense) but we can define a substitute 
for such a bundle introduced by Milnor [Milnor (1964)l and called a mi- 
crobundle. The classification of manifold structures is facilitated using the 
classification of microbundles and obstruction theory. We now provide a 
brief review of this technique. 

In particular, the main questions are 

0 Can we “extend” a TOP-manifold to become a PL- or DIFF-manifold? 
That is, can the coordinate patch overlaps be made into PL or smooth 
functions? 

0 What are the conditions for the existence of such an extension? 
0 Is such an extension unique? 

Now assume (2 5). The logical flow of arguments proceeds as follows: 

(1) Define the structure “microbundle” to encode any CAT structure on 
the (topological) manifold M as a TOP generalization of the DIFF 
notion of tangent bundle. 

(2) Define the stable CAT structure on M and use the stable concordance 
of CAT structures as equivalence relation. 

(3) The Product Structure Theorem of Kirby and Siebenmann relates a 
CAT structure on M x W” (s > 2) to the CAT structure on M .  

(4) The reduction of the TOP structure to CAT0 is equivalent to the mi- 
crobundle reduction of TOP to CATo. The equivalence classes of CAT0 
structures are isotopy classes which are identical to these microbundle 
reductions. 

(5) Obstruction theory leads to necessary and sufficient conditions for the 
extension of a TOP to a CAT0 structure (the lifting problem). 

(6) For the cases PL and DIFF we calculate this obstruction. 

In step (1) we seek a TOP version of the DIFF tangent bundle. In the 
smooth case we have smoothly consistent local trivializations of M into 
copies of R”, over which the notion of tangent vector is well-defined since 
locally the tangent vector fiber is also W” . Milnor considered a TOP gener- 
alization for which the local DIFF copies of Wn are replaced by TOP ones. 
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In [Milnor (1964)] Milnor recounts his thoughts on this as follows: 
“...Suppose that one tries to construct something like a ‘tangent bundle’ for 
a manifold M which has no differentiable structure. Each point x E M has 
neighborhoods which are homeomorphic to Euclidean space. It would be 
plausible to choose one such neighborhood U, for each x ,  and call ( x )  x U, 
the ‘fiber’ over x .  Unfortunately however, it seems difficult to choose such 
a neighborhood U, simultaneously for each x E M ,  in such a way that U, 
varies continuously with x. Furthermore even if such a choice were possible, 
it is not clear that the resulting object would be a topological invariant of 
M .  To get around these difficulties we consider a new type of bundle, in 
which the fiber is only a ‘germ’ of a topological space. ...” 
This led him to the following: 

Definition 7.3. A TOP-n-microbundle E over the topological space M is 
a diagram E : M A E 3 M of spaces and maps such that p o i = i d M  and, 
for each x E M ,  there exist neighborhoods U of x in M and V of i ( x )  in E 
and a homeomorphism h : V 4 U x B”, so that 

V 

u x Rn 

commutes, where X O ( X )  = ( x ,  0 )  and p1 (z, r )  = x. 

For 

0 

0 

the illustration we consider two important examples: 

The diagram E” : M f M x B” 3 M defines via the canonical maps 
the trivial microbundle E”. 

The diagram T ( M )  : M d$g M x M -% M with the diagonal map 
diag(x) = ( x , x )  E M x M for all x E M defines the (topological) 
microtangent bundle of M .  Of course this bundle agrees with the 
usual tangent bundle if M carrying a DIFF structure. (see [Milnor 
(1964)l for details of the equivalence proof). 

Definition 7.4. A micro-isomorphism & 4 & of n-microbundles over M 
consists of a neighborhood U1 of i l ( M )  in the total space E(&)  of 61 and a 
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topological embedding h onto a neighborhood UZ of i z ( M )  in E(&),  making 
this diagram 

u2 
commutative. If h is an inclusion of a subspace it is called a micro-identity 
and (1, & are called micro-identical & 
Next we try to detect the equivalence classes under this relation. Milnor 
used these tools to introduce a CATo(=DIFF or PL) structure on a TOP 
manifold M .  The starting point of the construction is the observation 
that any TOP M can be embedded in sufficiently high dimension Euclidean 
space. When M is so embedded in W n  as a retract8 of a neighborhood N 
by the retraction r : N --+ M ,  then the pull-back r*T(M)  over N of the 
tangent microbundle T ( M )  of M contains a copy of M x Wn as an open 
neighborhood of the embedded M .  Thus the pull-back tangent microbundle 
r*T(M)  reflects the deformation of the TOP structure after the embedding. 
There results a mapping from concordance classes of CAT0 microbundle 
structures on T*T(M) or on the stable bundle r*T(M)  CB E', s 2 0, to 
isotopy classes of CAT0 structures on M ,  which means the class of mappings 
ht : M x [0,1] -, M such that ho is the identity map id1,v.r and hl is a map 
M -+ M leaving the CAT0 structure fixed. Call this mapping the smoothing 
rule. As Milnor [Milnor (1964)l shows there is a homotopy theorem of the 
form: 

Theorem 7.7. Any CAT microbundle 5 over a product [0,1] x M (M being 
Hausdorflparacompact) admits a CAT micro-isomorphism f : E -+ [0,1] xE, 
where 0 x < is just a copy of J ~ o ~ M .  

Before we can state the whole classification theorem we have to introduce 
the notions of stability and concordance, step (2) above. Introduced by 
Freudental 1937 for the homotopy groups of spheres, today it plays a key 
role in the unification of algebraic and analytical techniques in topology. 
For a simple definition we will cite J. Adams [Adams (1974)]: 

12 .  

sA subspace A of a space M is a retract if there is a map f : M + A called retraction 
that fixes every point of A. 
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" ... We say that some phenomenon is stable, if it can occur in any di- 
mension, or in any sufficiently large dimension, provided perhaps that the 
dimension is sufficiently large. .." 
The idea of concordance is defined by a one-parameter deformation of a 
structure on an n-manifold to another structure. This process can be de- 
scribed by building a new structure on the (n + 1)-manifold by a process 
similar to isotopy. An important example is cobordism. 

Definition 7.5. A stable CAT structure on E means a CAT structure 
r] on E @ E', s 2 0, where ts : M -+ M x Rs + M is the trivial microbundle. 
If r]' is a CAT structure on E @ 8,  t 2 s, then write r] A r]' if r] @ et-' = 77'. 
Let E be a TOP microbundle over a CAT object M .  A concordance 
between CAT structures t o ,  (1 on is a CAT structure y on [0,1] x 5 such 
that the restriction y l i x ~  is CAT micro identical to i x for i = 0 , l .  We 
write <o &. 
A stable concordance of stable CAT structures co,& on is defined by 
50 Co for stabilizations of <O and CI of (1. 

The relation between concordance and isotopy classes of CAT0 structures 
leading to a stable classification of manifold structures contains as a key 
ingredient the Product Structure Theorem of Kirby and Siebenmann, step 
(3) above: 

Theorem 7.8. Let 0 be a CAT manifold structure on M x R', s 2 1. 
There exists a concordant CAT structure C x R' on M x Rs obtained from 
a CAT structure C on M by taking the product with with Rs. 

The main step in the proof of this theorem includes the usage of the s- 
cobordism theorem 6.12, the version of the h-cobordism theorem for non- 
simply connected spaces, which only works in higher dimensions 2 5. 
Kirby and Siebenmann's classification theorem 
Because of the close relationship between the concordance classes and iso- 
topy classes of CAT0 structures we can focus on the corresponding concor- 
dance classes of microbundles. According to Milnor's homotopy theorem 
for microbundles, concordance classes and homotopy classes of microbun- 
dles are the same. So, given a fixed TOP structure, in order to determine 
compatible CAT0 structures, we can look at the (stable) classification of 
CAT0 microbundles over a TOP-manifold. This is equivalent to consid- 
ering the reduction of the TOP to the CAT0 (=PL or DIFF) structure 
leading to a microbundle reduction. Briefly, the question is analogous to 
that of the structure group reduction in vector bundle theory. Let G be 
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the structure group of a vector bundle over a manifold M and H c G a 
possible subgroup acting on G by left multiplication. Then this bundle 
admits a structure group reduction to H if and only if the bundle over 
M with fiber G/H has a global section. Because of the close relationship 
between micro bundles and CAT0 structures, microbundle reductions can 
be studied as reductions from CAT to CATo. The number of such possi- 
ble reductions should be equivalent to the number of equivalence classes 
of CAT0 structures. As in the case of vector bundles any micro bundle is 
determined up to homotopy so that isotopy classes of CAT0 structures are 
the equivalence classes of CAT0 structures. These facts are summarized in 
the Classification theorem of Kirby and Siebenmann, step (4) above: 

Theorem 7.9. Let M be a (metrizable) topological manifoldg of dimen- 
sion 2 6 (or 2 5 if the boundary dM is empty). There is a one-to-one 
correspondence between isotopy classes of CAT0 (=PL or DIFF) manifold 
structures on M and vertical homotopy classes of sections of a fibration over 
M expressing the classes of microbundle reductions from TOP to CATo. 

Thus, what can be done to the tangent bundle, T ( M ) ,  can also be done 
to M .  Or, another way to state this is that putting a refined structure 
on the tangent bundle (or even the stable tangent bundle) of a topological 
manifold produces such a refined structure on the manifold compatible with 
the given refinement on the tangent bundle. 

According to Milnor[Milnor (1964)], the theory of microbundle reduc- 
tions is equivalent to the theory of principal bundle reductions but with 
respect to the structure groups TOP, PL or DIFF. 

Recall earlier discussions on determining the homotopy equivalence 
classes of bundles in sections 5.2 and 5.3. Let P be a G-principal fiber bun- 
dle over M .  Any two such bundles over homotopy-equivalent base manifolds 
M1 and Mz have isomorphic classes, [ M I ,  BG] = [M2, BG] . The formation 
of a universal bundle containing all information about all G-principal bun- 
dles is the basic tool. Consider the infinite joint EG = G * G * - .  . defined 
bY 

G*G = G x [0,1] x G/ - 
with respect to the equivalence relation 

(91,0,92) - (9:,o,gz) and ( g 1 , L g z )  - (g1,1d79. 
This space EG is contractible and admits a natural G-action. The orbit 
space BG = EG/G is known as universal classifying space of the group 
gThe non-compact case is included in the consideration! 
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G. Thus, we have a projection 7~ : EG -+ BG which makes EG to a 
G-principal bundle over BG. Because of the homotopy classification of 
G-principal bundles, the set of homotopy classes 

are in one-to-one correspondence to the isomorphism classes of G-principal 
bundles over M. Now we consider any subgroup H c G with a restricted 
action of H on EG defining the space BH = EG/H. Thus BG is naturally 
a quotient of BH, indeed we have a bundle B : BH -+ BG with fiber GI€€. 
Fix a class c : M --f BG and consider the diagram: 

where c = B o c1. This defines the lift c1 of the map. Now it is obvious 
that the existence of a map s : BG -+ BH with i d B G  = B o s (in other 
words, a section) leads to the construction of the lift ci = s 0 c. Thus the 
set of lifts and the set of sections are equivalent. When does such a section 
(or lift) exist? The answer is given by obstruction theory: the obstruction 
is an element of the (Cech) cohomology group Hn+l(M, r n ( G / H ) )  and 
the number of elements of Hn(M, xn(G/H)) is the number of inequivalent 
sections (or liftings). 

Remark 7.3. 
We now sketch some highlights of obstruction theory, assuming for simplicity that BG and 

BH are CW-complexes. For more details, see Steenrod(Steenrod (1999)], Part 111. Because 

.rl(BG) = ?ro(G) = 0, the group xI (BG)  acts trivially on the fiber G/H of the bundle 

B : BH - BG and we assume rrl(G/H) = 0. Suppose u : BG("-') 4 BH is a section over 

the (n - 1) skeleton. For each n-cell en of BG we have a trivialisation of B-'(en) + en as 

en x G/H.  Because s l ( B G )  = 0, the trivialization can be uniquely defined. Then a section 

u on BG(n-') induces a section of B-'(en) + en over aen N S- ' .  The product structure 

allows us to  define some arbitrary map G : aen + en x G/H.  So KZ o t : aen = Sn-' + G/H 

with ?rz(z,y) = y. ?rz then defines an element of ?r,-x(G/H). Using this construction for 

each n-cell en we obtain the obstruction cocycle en : Cn(BG) -+ a,-l(G/H). Two such 

cocycles define the same section if and only if they are cohomologous. Therefore, the class 

un E Hn(BG, xn- l (G/H))  is the obstruction to extending a section defined on BGn-' over 

BGn, keeping it fixed on BGn-'. 
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In our case G = TOP and H = CAT0 for the stable version" of the 
theorem, step (5) above. 

Theorem 7.10. Let M be a (metrizable) topological manifold of dimension 
>_ 6 (or >_ 5 if the boundary d M  is empty). There is a one-to-one correspon- 
dence between isotopy classes of CAT0 (=PL or DIFF) manifold structures 
on M and the number of elements of the groups Hn(M,rn(TOP/CATo)) 
af and only if all obstructions in HP+l(M,rp(TOP/CATo)) vanish for 
0 5 p I n . .  

Furthermore Kirby and Siebenmann proved the following results on the 
homotopy groups x,(TOP/CATo): 

Theorem 7.11. It is sufficient and necessary to consider the stable version 
of rn(TOP/CATo) instead of the unstable version T , (TOP~/ (CATO)~) .  
Let OzATo be the Abelian group of oriented isomorphism classes of oriented 
CAT0 m-manifolds homotopy equivalent to Sm then for m 2 5 there is an 
isomorphism: 

r,(TOP/CATo) + 0, CAT0 . 

In the last step, (6 )  above, we give the concrete results for the cases PL 
and DIFF. 

Theorem 7.12. Let M be a (metrizable) topological manifold of dimension 
2 6 (or >_ 5 if the boundary d M  is empty). For the homotopy groups 
?rk(TOP/PL) we obtain: 

If the Kirby-Siebenmann class in H 4 ( M , Z z )  vanishes then there is a 
one-to-one correspondence between isotopy classes of PL manifold struc- 
tures on M and elements of the group H3(M,Zz ) .  The homotopy groups 
of rk(TOP/DIFF) are known as the Kervaire-Milnor groups. Thus 
rk(PL/DIFF) vanishes fork < 7.  

Consider two simple examples: S" and Rn for n >_ 5. The n-sphere 
has the non-vanishing cohomology groups Ho(Sn ,  Z) = Hn(Sn, Z) = Z. 
Thus for n 2 5 we obtain the fact that a topological n-sphere always 
l0Let TOP, be the group of homeomorphism between In. By T O P  we mean the 
inductive limit T O P  = UnTOP, and call the corresponding space the stable limit of 
TOP,. 
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admits a PL structure (because H4(Sn,Z2)) = 0) which is unique (be- 
cause H3(Sn,Z2))  = 0). The fact that every topological n-sphere can 
be given a DIFF structure has been long known. If we use the fact that 
Hn+l (9, r,(TOP/DIFF)) = 0 because of dimensional reasons then we 
obtain for the number of distinct differential structure the long-known re- 
sult Hn(Sn ,  r,(TOP/DIFF)) = @:IFF. There is also another way to look 
at this. The tangent bundle .(Sn) of the sphere is stably trivial. Thus lift- 
ings of maps s" 4 BTOP from BTOP to BCATo trivially exist in the 
fibration TOPICATO -+ BCATo + BTOP. So, we can enumerate liftings 
by [Sn,TOP/CATo] = r,(TOP/CATo) as stated above. 

The second example is given by the non-compact space Rn with n 2 5 
for which the classification theorem also applies. Because of the con- 
tractibility of this space, all cohomology groups except of Ho(Rn, Z) = Z 
vanish. Thus the topological Euclidean space admits a unique PL and DIFF 
structure. There is no exotic R" for n 2 5 .  



This page intentionally left blankThis page intentionally left blank



Chapter 8 

The First Results in Dimension Four 

In this chapter we review certain results for manifolds of dimension 4. We 
begin with a brief look at the more general problem of smoothing the pro- 
totypical manifold, Wn. Then we proceed to the dimension 4 case, starting 
with the result of Freedman relating the intersection form to existence and 
uniqueness of TOP 4-manifolds. Later Donaldson was able to find a restric- 
tion on the set of possible intersection forms for smooth simply-connected 
4-manifolds. The first exotic W4 was found using these techniques and we 
review this process in some detail. In contrast to the compact case, there are 
uncountably many (non-diffeomorphic) exotic smooth structures for non- 
compact manifolds, and we review Gompf’s techniques for representing a 
set of exotic W4’s as a two-parameter family and finding a universal exotic 
R4 in which all other exotic R4’s can be embedded. Further classification 
and construction results of Taylor and Gompf are also reviewed. Finally, 
we remind the reader that Gompf and Stipsicz have dedicated an entire 
book to the tools and results for 4-manifolds, [Gompf and Stipsicz (1999)l. 

8.1 The Smoothing of the Euclidean Space 

We begin by reviewing some history of the questions surrounding exis- 
tence and uniqueness of a smooth structure for the topologically trivial Wn, 
starting from perspectives of the early 1960’s, before the work of Kirby, 
Siebenmann et al. In this period it was clear that this problem depends 
critically on the value of n in spite of the topological triviality of each Wn. 
In fact, the tools available at that time were able to resolve the question 
for all n # 4, but were not sufficient to settle the issue for n = 4. The com- 

’The notation, Wi, is often used for an exotic W4, that is, a manifold homeomorphic 
to the smooth product of four real lines, but not diffeomorphic to it. 

231 
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mon wisdom of the time was perhaps summarized by the following quote 
from a paper of Stallings, [Stallings (1962)l. This paper, important to the 
following discussion, starts with the remarkable statement: 
“Euclidean space R” ought to  have a unique piecewise-linear structure and 
a unique differentiable structure.” (emphasis in the original) 
What is notable here is the use of the phrase (almost a moral impera- 
tive) “ought to have,” which some 20 years later was proven to be a false 
expect at ion. 

Let us note two important definitions: 

0 An n-manifold is simplicially triangulable if it is homeomorphic to a 
(locally finite simplicial) complex. 

0 Two PL complexes K1, K2 are combinatorially (PL) equivalent if 
there are simplicial subdivisions Ki and Ki of K1 and K2, respectively, 
such that K{ and Ki  are isomorphic, i.e. there is a one-to-one corre- 
spondence between the simplices of Ki and those of Kb, preserving 
incidence relations. 

One important link between topology and smoothness was obtained by 
Whitehead, [Whitehead (1940)], who showed that any differentiable man- 
ifold has a (smooth) piecewise-linear triangulation which is unique with 
respect to the differentiable structure. Munkres [Munkres (1960)], Corol- 
lary 6.6, established 

Theorem 8.1. Two differentiable manifolds homeomorphic to  Rn are dif- 
feomorphac i f  and only af their smoothly canonical piecewise-linear triangu- 
lations are combinatorially equivalent. 

Thus, on R”, the smoothness structures are categorized by the canonical 
PL ones. 

Remark 8.1. 
The general smoothing results were obtained by Munkres using obstruction theory ([Munkres 

(1960)l Theorem 6.2). Let M and N be combinatorially equivalent differentiable mani- 

folds. Consider the abelian group rn of orientation-preserving diffeomorphisms of Sn-’ mod- 

ulo those diffeomorphisms which are extendable t o  diffeomorphisms of the  full n-disk D“ 

([Munkres (1960)l Proposition 1.8). If H 4 ( M ;  r4) = 0 for all q < n - k, there is a homeomor- 

phism g : A4 -+ N which is a diffeomorphism mod the k-skeleton of a smooth triangulation of 

M ([Munkres (1960)l Theorem 6.2). Later this theory was extended by Kirby and Siebenmann 

[Kirby and Siebenmann (1977)l stated in the section 7.9 earlier. For the  case of a manifold 
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homeomorphic to Rn, and thus homologically trivial, this argument justifies the "if" part of 

the preceding Theorem. 

Thus, Rn admits more than one non-diffeomorphic differential structure if 
and only if it admits more than one PL triangulation not combinatorially 
equivalent to the trivial one. Therefore, smoothness questions for R" re- 
duce to those of PL triangulations on Rn. Of course, there are really two 
questions: 

(1) does a PL triangulation of R" always exist, and, 
(2) if it exists, is it unique under combinatorial equivalence. 

The first question is easily resolved since there is always a triangulation 
of R" induced from the trivial topology. The second question is much 
more difficult, and is, in fact, one of the central concerns of this book. 
It reduces to the question of whether or not the set of homeomorphisms 
is the same as the set PL morphisms (combinatorial maps). That is, is 
there a homeomorphism of Rn changing the standard triangulation to a 
non-combinatorially equivalent one? As noted above, the tools available in 
the early 1960's were not sufficient to answer this for n = 4. In fact, the 
approaches were qualitatively different for the two ranges, n < 4 and n > 4. 

First, look at n < 3. In subsection 6.2.1 we reviewed the known classifi- 
cation of 1- and 2-manifolds. For n = 1 there are only 2 possible connected 
smooth manifolds without boundaries: S1 (closed,compact case), R (non- 
compact case). All other l-manifolds can be constructed from these (see the 
appendix of [Milnor (1965b)l for a proof). This also answers the question 
for PL structures for n = 1. The 2-manifold case was completely solved by 
Radon [&do (1925)] by using methods from complex analysis. Thus, 

Theorem 8.2. The Euclidean space R" has a unique PL and DIFF struc- 
ture for n < 3. 

Moise[Moise (1952)] was able to resolve the n = 3 case, using some 
basic theorems in 3-dimensional topology: Dehn's Lemma, the Loop and 
the Sphere Theorem proved previously by Papakyriakopoulos2 [Papakyri- 
akopoulos (1943)]. Most important for the proof of Moise was the Sphere 
Theorem which states that if a 3-manifold M is orientable and T ~ ( M )  # 0, 
then there is an embedded S2 in M which is not contractible. Moise's com- 
pletion of the proof is an involved tour-de-force using these results, so here 
we merely state his result: 

2This 154-page-article is written in Greek. 
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Theorem 8.3. The Euclidean space R" has a unique PL and DIFF struc- 
ture for n = 3. 

Now consider n > 4. Stallings [Stallings (1962)l was able to show that 
any contractible PL manifold, 1-connected at infinity, is in fact PL homeo- 
morphic to R" with the standard PL if n > 4. Thus, since R" meets these 
conditions, 

Theorem 8.4. The Euclidean space Rn has a unique PL and DIFF struc- 
ture for n > 4. 

The condition that M be 1-connected at infinity means that it is not com- 
pact, and for every compact subset C C M there is a compact D with 
C c D c M so that M \ D is 1-connected. Given this condition, the main 
effort of the paper is to prove the engulfing theorem ([Stallings (1962)] the- 
orem 3.1). From this, and other procedures which are valid only if n > 4, 
Stallings arrived at the result summarized in the preceding theorem. It 
should be noted that part of the proof involves deformation of 2-dimensional 
polyhedrons reminiscent of the Whitney trick central to the h-cobordism 
theorem so important in establishing DIFF equivalence for compact man- 
ifolds. However, such movements of 2-manifolds in n-manifolds could be 
shown to work only when n > 4. In fact, with the retrospective advantage 
of knowing the existence of exotically smooth (and PL) R4, we can see that 
all of the strategies above which were effective for n < 4 and n > 4 could 
not, in fact, be extended to this exceptional case, n = 4, which will concern 
us in the remainder of this chapter. 

8.2 Freedman's Work on the Topology of 4-manifolds 

The counterexample to Whitney's trick by Kervaire and Milnor [Kervaire 
and Milnor (196l)l shows the importance of considering the embedding of 
a disk into a 4-manifold. In section 6.4 we described this disk embedding 
problem to motivate the introduction of the Casson handle. If we have such 
an embedding then we can perform Whitney's trick and we are done (see 
section 6.3 for the explanation). The reader can find a very easily read, 
non-technical, overview of this process and the peculiarities of dimension 
4 in a review by Freedman, [Freedman (1984)l. We recommend this as an 
excellent introduction to this subject. 

For our purposes, the main difference between dimension 4 and the 
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higher-dimensional case is the difference between the topological and the 
smooth h-cobordism theorem and the failure of the smooth h-cobordism 
theorem in dimension 4. By using this failure, it is possible to construct 
exotic (or fake) R4’s (see [Casson (1986); De Michelis and Freedman (1992); 
Biiaca and Gompf (1996)l). In some cases, there is also a non-compact 
version of the h-cobordism theorem (used in the previous section) called the 
engulfing theorem which also makes use of the Whitney trick. The landmark 
paper [Freedman (1982)l of Freedman presented the theorem (theorem 1.1 
on page 361): 

Theorem 8.5. Any Casson handle CH is homeomorphic as a pair to  the 
standard open 2-handle ( D 2  x i n tD2 ,dD2  x intD2).  

The next important result requires a technical condition, 7r1(M) is NDL 
(Null Disk Lemma), on the fundamental group of the manifold. Rather than 
going into this rather involved topic, we will refer the reader to Freedman 
[Freedman (1983)] and Freedman and Teichner [Freedman and Teichner 
(1995)l for details. The basic questions refer to the word problem for finitely 
generated groups, and how they grow (polynomial, subexponential, etc.) as 
functions of the number of generators. These questions are important in 
group theory itself, as well as in the theory of computation. See also [Milnor 
(1968)l. For our purposes a sufficient condition is that ~1 be a finite group, 
or the integers. 

At any rate, Freedman was able to show, [Freedman (1983); Freedman 
and Quinn (1990)l 

Theorem 8.6. Let j : ( D 2  x D2,  dD2 x D 2 )  --f (M4, dM4) be a local home- 
omorphism of a %handle into a topological manifold which is an embedding 
near j (dD2  x 0’). Suppose that there exists another local homeomorphism 
of a 2-sphere x disk, Q : S2 x D2 + M4 and that the intersections are 
transverse and satisfy: 

0 the algebraic self-intersection numbe? of j ( D 2  x 0 )  = 0 
0 the algebraic self-intersection number of a(S2 x 0) = 0 
0 the algebraic intersection number of ( j ( D 2  x 0),a(S2 x 0)) = 1. 

Assume 7r1(M) is NDL. Then j is topologically regularly homotopic (rel- 
ative t o  a neighborhood of dD2 x 0’) to  a topological embedding i : 
( D 2  x D2,dD2  x D 2 )  c+ (M4,dM4). 

3 S e e  Wall [Wall (1970)] for the definition and interpretation of these “numbers” in the 
non-simply connected case, i.e. ~1 # 0, to have values in the module Z(nl(A4)). 
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This can be regarded as Freedman’s topological version of the Whitney 
trick, which does not work smoothly in dimension 4. As discussed in Chap- 
ter 6, the failure of the smooth Whitney trick was one of the basic reasons 
for the anomalous smoothings in dimension four. 

Theorem 8.7. Topological h-cobordism theorem in dimension 4 
Let (W, V, V’) be a smooth 1-connected compact 5-dimensional h-cobordism. 
Then W is topologically a product, i.e. W =TOP V x [0,1]. 

We note that theorem 10.3 in [Freedman (1982)l also covers the non- 
compact case for simply-connected 4-manifolds. A direct consequence of 
the topological h-cobordism theorem is the well-known classification of 1- 
connected, compact 4-manifolds first stated at the end of section 6.7.2. 

Theorem 8.8. (Freedman, [Freedman (1982); Freedman and Quinn 
(1990)l) For every unimodular symmetric bilinear form Q there exists a 
simply connected closed topological 4-manifold X such that Q X  2 Q. If Q 
is even, this manifold is unique (up to homeomorphism). I f  Q is odd, there 
are exactly two different homeomorphism types of manifolds with the given 
intersection form. 

For our purposes an important result of this is the existence of a closed, 
1-connected, compact, topological 4-manifold corresponding to the form 
E8 (see section 6.7.2 for a discussion). But of course, as a topological 
theorem, this result does not tell us whether or not this manifold also 
admits a smooth structure. In fact, Rohlin’s theorem (see the next section 
below) establishes one of the major steps in the study of exotic smoothness, 
the amazing conclusion that this manifold does not admit any smooth 
structure. Because of the fact that PL=DIFF in dimension 4, this manifold 
also admits no combinatorial structure. 

The extension of this result to the multiply-connected case is accom- 
plished by restricting the fundamental groups to be NDL, as in the disk 
embedding theorem 8.6. In fact, Freedman [Freedman (1983)] proved as 
a corollary to 8.6 (theorem 1 and corollary 1 in [Freedman (1983)]) the 
topological s-cobordism theorem (see section 6.3.2 for dimensions > 4). 

Theorem 8.9. Topological s-cobordism theorem in dimension 4 Let 
(W, V, V’) be a compact topological 5-dimensional s-cobordism. If r l (W)  is 
NDL then W is homeomorphic to W ?TOP V x [0,1]. 

From this there follows a classification of 4-manifolds with NDL fundamen- 
tal groups by changing the intersection form from coefficients in Z to a 
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form with coefficients in the module Z ( r l ( M ) ) .  However, there remains 
the non-trivial problem of determining the homotopy-type of a 4-manifold 
with NDL fundamental group. The most general form of this problem has 
not been solved. 

8.3 Applications of Donaldson Theory 

We can summarize the issues associated with establishing a smooth struc- 
ture on a given topological 4-manifold as follows: 

0 Question 1 Existence: Can a topological manifold defined by an in- 

0 Question 2 Uniqueness: If so, how many non-diffeomorphic smooth 
tersection form carry a smooth structure? 

manifolds can be supplied to this given topological manifold? 

The following list of theorems illustrates some of what we know about the 
answers for Question 1 and Question 2. For simplicity, assume that X 
is a simply connected, closed, oriented, smooth 4-manifold. 

Theorem 8.10. (Rohlin [Rohlin (1952)l) If X is smooth and QX is even, 
then 16lcr(X). 

This and the next theorem imply the very important fact that topological 
manifolds corresponding to E g  cannot carry any smooth structure. 

Theorem 8.11. (Donaldson[Donaldson (1983, 1986)]) If X is a smooth 
simply connected closed 4-manifold and Q X  is negative definite, then Qx 
is equivalent to (- 1). 

Note that X must be closed since a non-empty boundary would be a 3- 
manifold, which is known to have a PL structure. This PL structure could 
extend to the full X ,  and PL=DIFF in this dimension. This theorem takes 
care of manifolds with positive definite intersection forms as well. 

For indefinite even intersection forms the following estimate has been 
proved: 

Theorem 8.12. (Furata [Furata (2001)]) If X is a smooth, simply- 
connected, closed, and oriented 4-manifold with even intersection form 
equivalent to 2kEg @ l H ,  then 1 2 21kl + 1. 

The theorem partly solves a strong conjecture known as the *-conjecture 
(Matsumoto [Matsumoto (1982)l). Consider the K3 manifold K with 1 = 
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3, k = 1 (see next section for a definition). The relation between the second 
Betti number bz(K) = 22 and the signature a ( K )  = 16 is given by 

Matsumoto conjectured the relation 

for all smooth, simply-connected 4-manifolds M with intersection form 
2kEg @ZH. The Matsumoto conjecture (11/8 conjecture) is that the condi- 
tion at the end of the previous theorem is actually 1 L 3k. With the help of 
Seiberg-Witten theory, F’urata [F’urata (2001)] was able to prove the weaker 
relation 

5 
h ( M )  2 ,I.(M)I + 2 

know as the ?-conjecture. Thus the only remaining question for answering 
Question 1 in the simply connected case lies in the difference between 
F’urata result and the +-conjecture. 

To review the argumentation to answer Question 1, 

(1) From PoincarC duality it is easy to show that the Q for any closed 
4-manifold is unimodular, and thus either definite or indefinite. 

( 2 )  If it is definite, Donaldson’s theorem, 8.11, shows that it must be 
n < f l > .  

(3) If it is indefinite, theorem 6.18 shows that it is either a sum of multiples 
of < fl > or sums of E8 and H with coefficients to which F’urata 
theorem and the + conjecture apply. 

At the end of Chapter 6 in this book, or $1.3 of [Gompf and Stipsicz (1999)], 
explicit examples are provided of smooth manifolds having intersection 
forms described in (1),(2),(3) above, thus proving their existence. 

In contrast to the result of Kirby and Siebenmann [Kirby and Sieben- 
mann (1977)] in dimension 2 5 ,  there are no finiteness results on the number 
of non-diffeomorphic smooth structures on a topological 4-manifo1dl but the 
following is known: 

Theorem 8.13. [Friedman and Morgan (1994)l The simply-connected, 
topological manifolds corresponding to  the intersection form 2n(-E8)  @ 

(4n - l)H (n 1) and (2k  - 1)(1) @ N(-1) ( k  2 1, N 1Ok - 1) 
each carry infinitely many  distinct (non-difeomorphic) smooth structures. 
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In Chapter 9 we will review constructions by Fintushel and Stern [Fintushel 
and Stern (1996)l of a large family of smooth structures on 4-manifolds. 

Theorem 8.14. [Fintushel and Stern (1996)l Let X be a simply-connected 
4-manifold with b2(X) > 1 which contains an embedded torus F with no  
self-intersections and the complement of F in X is still simply connected. 
Then  there are infinitely many  distinct smooth structures on  X (labeled by 
the number of knots). 

Throughout the previous part of this section we assumed that the 4- 
manifolds were simply connected. This assumption can be relaxed in some 
cases, but the general case (arbitrary fundamental group) is too difficult, 
since: 

Theorem 8.15. For every finitely presented group G there is a smooth, 
closed, oriented 4-manifold X with x,(X) 

The invariants we have discussed until now depend only on the homotopy 
type (which is the same as the homeomorphism type according to Freed- 
man) of the manifold. All these invariants are given by algebraic topology 
(fundamental group, cohomology ring H*(X; Z)). For smooth structures we 
need finer invariants defined by topological invariants of the moduli space 
of an appropriate gauge theory. The corresponding invariants of Donald- 
son and Seiberg-Witten are defined in chapter 9 and provide new tools to 
distinguish homeomorphic but non-diffeomorphic Cmanifolds. 

G. 

8.4 The First Constructions of Exotic R4 

In this section we present a brief review of the first two constructions of ex- 
otic R4. A critical component was provided by Donaldson theory. Consider 
a closed, simply-connected, smooth 4-manifold with negative or positive 
definite intersection form which is diagonalizable over Z. Next, define a 
surgery such that the final intersection form cannot be diagonalizable over 
Z. By Donaldson’s theorem, this manifold admits no smooth structure. 
The excised part generates the exotic R4 by considering the embedding of 
the complement of one point. We now sketch the argument, with a few 
details. 
The K3 surface 
Consider the following set: 

K3 = { [ZI, Z 2 , 2 3 , Z 4 ]  E (cP31Z? -k Z: -k Zi -k 2: = 0 }, 
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which is a complex 2-manifold, and a real 4manifold. This manifold is 
called the Kummer or K3 surface4 and was an important starting point in 
constructing an early example of a non-smoothable topological space. For a 
detailed description of this manifold refer to section 6.7.2. The intersection 
form of K 3  is 

where the last expression contains three copies of the matrix H also known 
as the hyperbolic form. The proof that K 3  actually has this intersection 
form can be seen in Milnor[Milnor (1958)l. 

According to Freedman (theorem 8.8, also [Freedman (1982)]), there 
exists a unique TOP manifold with given Q K ~  built from connected sums 
of standard manifolds, IE8l#I&l#(#3S2 x s2). However, the intersection 
form, E8 is not diagonalizable over Z5, so, from Donaldson’s theorem (our 
theorem 8.11 and [Donaldson (1983)]), this manifold and also IE8l#IEsl = 
IE8@E8I cannot be realized by a smooth manifold. Nevertheless, the 
surprising result is that there is a manifold, W homeomorphic R4 which 
is diffeomorphic to standard R4 if and only if it I & )  is smoothable. This 
will establish W as the desired fake R4. The proof depends on the fact 
that although K3 is smooth, it contains a topological part with intersection 
form E8 @ E8 that cannot be smoothed by the previous argument. 

Consider the manifold X = #3S2 x S2 \ Int D4. A corollary to F’reed- 
man’s theorem is: 

Corollary 8.1. A subset of K 3  representing the homology of 3 H  in the 
intersection form of K 3  can be presented as a topologically collared em- 
bedding of X in K3, i.e. a topological embedding i : X L+ K 3  with a 
neighborhood of i(i3X) which is a product, Ci = a ( i ( X ) )  x R. Furthermore, 
there is another collared embedding of j ( X ) ,  back into #3S2 x S2, with col- 
lar Cj = a ( j ( X ) )  x IR such that U = i ( X )  U Ci and V = j ( X )  U Cj equipped 
with the induced smooth structures are diffeomorphic. 

The diffeomorphism I$ : U 4 V can be chosen such that 4 o i = j ,  i.e. the 

4Named after the three great mathematicians Kummer, Kronecker and Kodaira. 
5This fact can be simply proven by calculating the eigenvalues of Ea. If a form has at 

least one non-integer eigenvalue then it cannot be diagonalizable over the integers. See 
section 6.7.2. 
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following diagram commutes. 

i ( X ) u  U- K3 

It should be noted that Freedman in his review [Freedman (1984)] used 
the term “bizarre” to describe the embedding, j ,  of X ,  which is a subset of 
S2 x S2, back into that set in such a way the map q5 (of the collared neighbor- 
hoods) is smooth. In other words, we only know that i is a homeomorphism, 
but adding the collars, Ci, Cj, results in a diffeomorphism between U and 
V. 

Now an application of the 5-dimensional topological h-cobordism theo- 
rem shows that W = #3S2 x S2 \ j ( X )  is homeomorphic to R4. Since j ( X )  
is the homeomorphic image of X = #3S2 x S2 - IntD4, it seems reason- 
able that W = #3S2 x S2 - j ( X )  would be homeomorphic to IntD4 = R4. 
However, we will review a more careful argument. 

8.4.1 The first exotic R4 

In [Freedman (1982)], Freedman gave the following criteria for the existence 
of this homeomorphism. 

Theorem 8.16. A n y  non-compact 4-manifold W without boundary which 
is simply-connected, satisfies H2(W,Z)  = 0 ,  and has a single end homeo- 
morphic to  S3 x [ O , o o )  is homeomorphic to  R4. 

Thus it is only necessary to check these three conditions to show that 
W =home0 R4. 

Remark 8.2. 
Since #3S2 x S2 is simply-connected and is the union of two open subspaces W , V  with 

intersection W n V C Cj(cz,,omeo S3 x W), and since V, W n V are simply-connected, Van 

Kampen’s theorem shows tha t  W is also simply-connected. Applying the Mayer-Vietoris 

sequence in homology t o  the same subspaces (W, V, W n V )  one proves that  H2(W, Z) = 0 

since j : X --t #3S2 x S3 represents the homology of #3S2 x S3 (see the corollary above). 

Lastly, because the embedding j is collared, W has a single end homeomorphic t o  S 3  x [O,oo).  
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In the next step we check whether W is diffeomorphic to the standard 
R4,t (see Figure 8.1). The idea is to construct a compact subset 0: c W 

V 

Fig. 8.1 Kirby’s example of an exotic R4 

which cannot be contained in any smoothly embedded S3. Clearly, such a 
property is not compatible with the standard smoothness on R4. The line 
of argument we present follows that of the review of Fkeedman[F’reedman 
(1984)]. 

Since j ( X )  c V ,  W intersects an open subset of Cj. Since W is home- 
omorphic to R4 it contains an infinitely expanding family of O4’s each 
having a topological S3 as boundary. Eventually one of these, say 004, 
will have a boundary, S: contained in Cj. Suppose S: could in fact be 
smoothly embedded in W .  Then S: = q5-’(S:) would be a smooth subset 
of Ci c K‘ = K3 - i ( X )  and in fact separate the two ends of Ci and thus 
K3 itself. That is, we can write 

K3 = K‘ Us; HI 

with H’ containing i ( X )  and S,” smoothly embedded. Clearly the smoothly 
embedded S,” can then be identified as the boundary of a smooth disk, 
S: = dD4, resulting in 

K” = K’ us: 0 4 ,  (8.1) 

defining K“ as a closed smooth manifold with Q p  = 2E8, which is im- 
possible from Donaldson’s result, theorem 8.11. This implies that the as- 
sumption that the ever increasing disks in W will have smoothly embedded 
boundaries is false. So W cannot have the standard smoothness of R4. 
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Thus there is no diffeomorphism between W and R4st. 
The space W is topological, but not smooth R4, and 
is thus referred to as exotic R4. 

8.5 The Infinite Proliferation of Exotic R4 

In this section we will review the construction of families of (non- 
diffeomorphic) exotic R4’s labeled by one and then two real numbers. This 
proves that there are uncountably many exotic smooth structures on R4. 
Furthermore, it is possible to divide the set of exotic R4’s into two classes: 
large and small exotic according to whether or not they can be embedded 
smoothly in compact subsets of standard R4. The work of Gompf, Taubes 
and others led to these results. 

The previous subsection introduced the two embeddings i and j of X = 
#3S2 x S2 \ Int D4 into K and #3S2 x S2 to obtain the first exotic R4. 
The argument included the collared neighborhoods U = i ( X )  U Ci and 
V = j(X)UCj diffeomorphic with respect to the induced smooth structures. 
Because, Ci is a product neighborhood of i(aX), Ci is homeomorphic to 
( 0 , l )  x S3. With respect to this homeomorphism, the image of { t }  x S3 
(t E (0 , l ) )  in Ci will be denoted by St. Hence i ( a X )  can be expressed near 
the 0-end as u St with E small. Define Ur = i(X)U u St, Vr = 4(Ur) ,  

and R4, = #3S2 x S2\Vr. The argument in the previous section can be used 
to show that R4, is homeomorphic to R4 for all r ( 0 , l ) .  Taubes [Taubes 
(1987)l extended Donaldson’s work to special non-compact manifolds (with 
one periodic end). His work and that of Gompf led to [Gompf (1985); 
Taubes (1987)l: 

t E ( O , € )  tE(O,r)  

Theorem 8.17. Let R4, and R4s, 0 < r < s < 1 be two manifolds homeo- 
morphic to the R4 defined by the previous process. Then as long as r # s, 
the induced smoothness structures inherited from #3S2 x S2 make Rg and 
R: non-diffeomorphic smooth manifolds. Thus, there are uncountably infi- 
nite many non-diffeomorphic exotic structures on topological R4. 

Gompf’s end sum construction 
Gompf [Gompf (1985)l introduced an important tool for finding new exotic 
R4 from others. 

Definition 8.1. Let R, R’ be two topological R4’s. The end-sum RhR’ is 
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defined as follows: Let y : [O ,cm)  + R and 7’ : [O,cm) --f R‘ be smooth 
properly embedded rays with tubular neighborhoods u c R and u’ c R’, 
respectively. For convenience, identify the two semi-infinite intervals with 
[0,1/2), and (1/2,1] leading to diffeomorphisms, 4 : u + [0,1/2) x R3 and 
4’ : u’ + (1/2,1] x R3. Then define 

RhR’ = R U+ I x R3 Ud! R’ 

as the end sum of R and R’. 

With a little checking, it is easy to see that this construction leads to RbR’ 
as another topological R4. However, if R, R’ are themselves exotic, then so 
will RhR’ and in fact, it will be a “new” exotic manifold, since it will not 
be diffeomorphic to either R or R’. Gompf used this technique to construct 
a class of exotic R4’s none of which can be embedded smoothly in the 
standard R4. 
2-parameter family of exotic R4 
With the help of this sum, it is possible to construct a 2-parameter family of 
exotic R4’s. Gompf’s original construction uses a special manifold in which 
the exotic R4 can be embedded. By an iteration process he obtained a class 
of countably infinite exotic R4. In the same paper [Gompf (1985)] the result 
of Taubes was used to produce a 2-parameter family of uncountably many 
exotic R4. The difference between this family and Taubes construction is 
given by the fact that this class of exotic R4’s changes by an orientation- 
reversing diffeomorphism. That is, R, and R, are non-diffeomorphic R 4 k  

Theorem 8.18. Let R, be the one-parameter family in theorem 8.17. Then 
the family {R,,t = R,hRt 10 < s, t < cm} defines a %parameter family of 
exotic R4 ’s such that R,,t embeds (orientation-preserving) in R,l,tt if and 
only if s 5 s’ and t 5 t’. 

Of course, the space Ro,o is the standard R4. A natural question is: what 
happens for the limit R,,,? 
Freedman and Taylor’s universal exotic R4 
Freedman and Taylor [Freedman and Taylor (1986)l constructed a certain 
smoothing of the half space $R4 = ( ( x ~ , ~ 2 , 1 ~ 3 , ~ 4 ) l  2 4  2 0) denoted by H 
with the properties: 

H contains all other smoothings of i R 4  
H is unique with respect to the previous property 
the interior of H denoted by U can be naturally identified with a 
smoothing of R4 
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U contains every smoothing of R4 embedded within it. 

Thus, U is called a universal R4. 
Gompf conjectured in [Gompf (1985)l that the space Rw,w is diffeo- 

morphic to the universal space U .  That would imply that the moduli space 
of equivalence classes of exotic smoothings of R4 forms a space which is 
equivalent to a Riemann sphere S2 rather than to an R2. 

8.5.1 

In the previous subsection we reviewed how Gompf defined the 2-parameter 
family determining the cardinality of the set ?33 of exotic R4’s. In the fol- 
lowing we review another construction of exotic R4’s from the failure of the 
smooth h-cobordism theorem. Such R4’s are called ribbon R4 ’s. In contrast 
to the previously defined exotic R4’s these ribbon R4’s can be embedded 
into the standard smooth 4-sphere S4 (or into the standard R4). This leads 
to the division of the set ?33 into two classes defined via the existence of an 
embedding into S4. In the first class (non-existence of embedding) the ex- 
oticness of the R4 is “located” at the end of the space which means in some 
sense the neighborhood of the infinity. Then, the second class (existence of 
the embedding) can be characterized by the property that the exoticness is 
in some sense “localized” in the interior of R4. Thus, this is a candidate of 
an exotic R4 which can be used as coordinate patch. A description of these 
two classes follows. 
The failure of the smooth h-cobordism theorem and ribbon R4 
In 1975 Casson (Lecture 3 in [Casson (1986)l) described a smooth 5- 
dimensional h-cobordism between compact 4-manifolds and showed that 
they “differed” by two proper homotopy R4’s (see below). F’reedman knew, 
as an application of his proper h-cobordism theorem, that the proper ho- 
motopy R4’s were R4. After hearing of Donaldson’s work in March 1983, 
F’reedman realized that there should be exotic R4’s and, to find one, he 
produced the second part of the construction below involving the smooth 
embedding of the proper homotopy R4’s in S4. Unfortunately, it was nec- 
essary to have a compact counterexample to the smooth h-cobordism con- 
jecture, and Donaldson did not provide this until 1985 [Donaldson (1987)l. 
The idea of the construction is simply given by the fact formulated in the- 
orem 6.16 that every such smooth h-cobordism between non-diffeomorphic 
4-manifolds can be written as a product cobordism except for a compact 
contractible sub-h-cobordism V ,  the Akbulut cork. An open subset U c V 

The existence of two classes 
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homeomorphic to [0,1] x R4 is the corresponding sub-h-cobordism between 
two exotic R4’s. These exotic R4’s are called ribbon R4. They have the 
important property of being diffeomorphic to open subsets of the standard 
R4. That stands in contrast to the previous defined examples of Kirby, 
Gompf and Taubes. 
Akbulut corks and exotic R4’s 
To be more precise, consider a pair ( X + , X - )  of homeomorphic, smooth, 
closed, simply-connected 4-manifolds. The transformation from X -  to X+ 
visualized by a h-cobordism can be described by the following construction. 

Theorem 8.19. Let W be a smooth h-cobordism between closed, simply 
connected 4-manifolds X -  and X+.  Then  there is an  open subset U c W 
homeomorphic to  [0,1] x R4 with a compact subset K c U such that the pair 
(W \ K ,  U \ K )  is diffeomorphic to  a product [0,1] x ( X -  \ K ,  U n X -  \ K ) .  
The  subsets Rh = U n X& (homeomorphic to  R4) are diffeomorphic to  
open subsets of R4. If X -  and X+ are not diffeomorphic, then there is no 
smooth 4-ball in R* containing the compact set Y% = K n Rh, so both Rh 

are exotic R4 ’s. 

Thus, remove a certain contractible, smooth, compact 4-manifold Y- c X -  
(called an Akbulut cork) from X - ,  and re-glue it by an involution of dY-,  
i.e. a diffeomorphism r : dY- 4 dY- with r o r  = I d  and r ( p )  # f p  
for all p E dY-. This argument was modified above so that it works for a 
contractible open subset R- c X -  with similar properties, such that R- 
will be an exotic R4 if X+ is not diffeomorphic to X - .  In the next section 
we will see how this results in the construction of handlebodies of exotic 
R4. 
Structures on the set R of smoothings of R4 
Let R be the set of smoothings of R4 up to orientations preserving diffeo- 
morphisms. The end-sum RltlR2 between two elements R1, R2 E R gives 
R the structure of a monoid (R, b). Furthermore following [Gompf (1985)], 
define the following partial order 5 on R. 

Definition 8.2. Let R1, R2 E R and write R1 5 R2 if every compact 4- 
manifold R1 smoothly embeds (preserving orientation) in R2. If R1 5 R2 5 
R1 then R1 and R2 are defined as compactly equivalent. The set of compact 
equivalence classes in R is denoted by R-. 

It can be proven that the monoid structure of R descends to !%. 
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Definition 8.3. Call an exotic R4 large if it contains a 4-dimensional com- 
pact submanifold that cannot be smoothly embedded in standard R4. Oth- 
erwise call the exotic W4 small. 

Note that a R1 # R4 is compactly equivalent to R4 if and only if it is 
a small exotic R4. Thus, the class of exotic small R4 maps to a point 
in Rw, the equivalence class of R4. At the same time, this equivalence 
class is the unique minimal element with respect to the relation I. The 
unique maximal element U is the universal R4 of Freedman and Taylor 
[Freedman and Taylor (1986)l. In [Gompf (1989a)], Gompf introduced a 
metrizable topology with countable basis into 9%- although the usefulness 
of this topology is not presently clear. 
Taylor’s invariant 
Taylor’s invariant is conjectured to distinguish between large and small 
R4’s. It is defined by 

Definition 8.4. For R E R, define y(R) E (0, 1,2, .  . . , m} to be 

where K ranges over compact 4-manifolds embedding in R and X ranges 
over closed, spin 4-manifolds with signature 0 in which K smoothly embeds. 

Clearly, if R1 I Rz then y(R1) 5 y(R2), so y is well-defined on compact 
equivalence classes (see Definition 8.2) and gives an order-preserving func- 
tion y : Rw --t {0,1,2,. . . , m}. For R to be a small R4 then y(R) = 0 but 
it is not clear that y(R) > 0 for all large exotic R4. A striking application 
by Taylor is that for R any exotic W4 with y(R) > 0 ,  any handle decompo- 
sition of R must have infinitely many 3-handles, in contrast to the examples 
of small exotic W4’s considered in the next section, which are built without 
3-handles. 
Remark 8.3. 
Following are some properties of this invariant y(R): 

If R E R has a handle decomposition with only finitely many 3-handles, then y(R) = 0. 
If R1 and Rz have diffeomorphic ends then y(R1) = ~ ( R z ) .  
Any end sum satisfies sup,(y(R,)} 5 y(bnRn) 5 C,y(R,) .  In particular, for R, 

For infinitely many n including n = M there are exotic B4’s L, C @Pz with y(L,) = n. 
If y(R) = M then R does not embed in any compact spin 4-manifold. 

satisfies y(R,) = sup,(y(Rn)}. 

Using this invariant, Taylor [Taylor (1998)l obtained results related to the 
isometry group of some exotic W4’s. A smooth manifold has few symmetries 
provided that, for every choice of a smooth (C’ or better) metric, the 
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isometry group for that metric is finite. Let E4 be a smooth manifold 
homeomorphic to R4. Recall, an embedding of a manifold M into W is 
(topologically) f lat  if M x [0,1] embeds into W .  A flat embedding S3 c E4 
is a barrier S3 provided that, given any open set U c E4 containing S3 
and any smooth embedding e: U -+ E4, then e(S3)nS3 # 0. Note that the 
flatness of the embedding S3 L--) E4 is essential, because it determines how 
S3 lies inside of E 4 .  Also, the embedding e must be required to be smooth, 
or otherwise, the whole construction is trivial. If there is an E4 which is 
not diffeomorphic to the standard R4, then there is an exotic region inside 
of E4 which is not separated from the rest by a smooth(!) embedding of 
some S3.  In that case there is no barrier S3 surrounding the exotic region. 

Given a barrier S3 c E4,  the inside is the component of E4 - S3 whose 
closure is compact. Note that it is a smoothing of R4. 

Theorem 8.20. Let E4 be a smoothing of R4 with a barrier S3 whose 
inside does not smoothly embed in any integral homology 4-sphere. Then 
E has few symmetries. 

In [Taylor (1997)], Taylor constructed many examples of smooth R4’s. 
There are examples for which the isometry group is not trivial: e.g. the 
end-connected sum of E with itself. Furthermore, any E4 which embeds 
in the standard R4 has no barriers. Based on these results, Sladowski 
[Sladkowski (1999)l showed that an empty exotic 4-space (like E4) act as a 
non-trivial gravitational system, see section 10.3. 

8.6 Explicit Descriptions of Exotic R4’s 

In this section we look at the problem of constructing a coordinate patch 
representation of an exotic R4. From the mathematical point of view, this 
representation is equivalent to describing the handle body decomposition. 
In [BiYaca and Gompf (1996)], such a handle body is constructed from the 
existence of an Akbulut cork (see theorem 6.16). Of course the handle body, 
and thus the coordinate patch presentation, is infinite. 

Start with the construction of the Akbulut cork. The procedure in 
[BiZaca and Gompf (1996)l has two main steps (we follow the argumentation 
in [Gompf and Stipsicz (1999)l very closely.): 

0 construct an Akbulut cork A1 in a special manifold E(n)#CP2 
0 construct an h-cobordism V of A1 to itself relative to the product struc- 
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ture [0,1] x I3Al 
0 construct from that a non-trivial (=non-product) h-cobordism W, be- 

tween E(n)#CP2 and X ,  x #(2n - 1)CP2#10nD2 such that the 
pair (W,, V )  satisfies the conclusion of Theorem 8.19 

0 apply Theorem 8.19 to  each of the examples W, 
0 construct the exotic R4, R, as the interior of some subset of W, 

Since all of the handles at each stage have well known coordinate patch 
representations, this results in a coordinate patch representation, albeit 
infinite, of an exotic R4. 

0 begin with the handle S1 x D3 
0 glue one 2-handle along the boundary d(S1 x D3)  = S1 x S2 according 

to Link in Figure 8.2 (the circle with the dot represents S1 x D3)  to 
get the Akbulut cork V 

0 consider an infinite sequence of 2-handles D2 x D2 with one self- 
intersection (self-plumbed handle) homeomorphic to D2 x R2, or a 
Casson handle CH 
glue the Casson handle to the boundary of the Akbulut cork V accord- 
ing to Figure 8.3 

0 the interior of the resulting manifold is an exotic R4 

Fig. 8.2 Handle decomposition of the Akbulut cork 

Note that the gluing of the Casson handle to the Akbulut cork is absolutely 
necessary. According to Freedman [Freedman (1982)], the interior of every 
Casson handle is diffeomorphic to the standard R4. But after the gluing 
to the Akbulut cork, the interior is modified to be an exotic R4. Thus, for 
the simplest Casson handle the exotic R4 R [Biiaca and Gompf (1996)l is 
obtained as the interior of Figure 8.3, displaying the formalized coordinate 
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. . .  

Fig. 8.3 
and Stipsicz (IQQQ)] p. 207, Fig. 6.16) 

Simplest handle decomposition of an (small) exotic W4 (figure from [Gompf 

description of an exotic R4 by an infinite handle body containing only 2- 
handles. This special exotic R4 admits a diffeomorphism to some open 
subset of the standard R4. 

8.7 Other Non-compact 4-manifolds 

Before we proceed to the modern approaches Seiberg-Witten theory, con- 
sider other non-compact manifolds different from the Euclidian space R4. 
For all detailed theorems refer to [Gompf and Stipsicz (1999)l (see Corol- 
lary 9.4.25 in [Gompf and Stipsicz (1999)],p. 378, Theorem 9.4.24 is the 
corresponding more general, technical theorem). Recall that every non- 
compact Cmanifold can be chosen to admit a smooth structure. Let X be 
a connected, compact, topological Cmanifold X ,  so the non-compact man- 
ifold X \ {*} is always smoothable. There are various results of this kind, 
e.g., given a %manifold M = d Y  then the non-compact 4-manifold Y \ M 
admits uncountably infinite many smooth structures. The following list of 
examples can be extracted from the general result in [Gompf and Stipsicz 
(1999)l. Assuming that X is a connected topological 4-manifold and M a 
compact %manifold, then there is the following partial list of spaces with 
uncountably many smoothings: 

0 S 3 x R  
X \ { * }  

0 X \ M if M is a rational homology sphere except for some linking forms 
(see [Edmonds (1999)] for the exceptions) 
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-2 
0 M x W if M admits a smooth embedding into #nCP for some n 

So far, these are the strongest results. 
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Chapter 9 

Seiberg-Witten Theory: The Modern 
Approach 

This chapter is dedicated to a review of the Seiberg-Witten invariants, de- 
rived from the Seiberg-Witten equations introduced in Chapter 5. These 
invariants have provided additional powerful tools for understanding the 
differential topological problems of low dimensional manifolds. Unfortu- 
nately the topic involves many technical issues which we will not be able to 
cover in any detail. A more thorough introduction can be found in [Akbu- 
lut (1996); Morgan (1996)l and a briefer one with a view of the topological 
applications in [Gompf and Stipsicz (1999)l. 

We begin by presenting the Seiberg-Witten field equations which replace 
the Yang-Mills equations of Donaldson theory. These equations provide a 
generalization in the sense that they require the existence only of a Spinc 
structure, whereas Yang-Mills require a Spin structure. From the moduli 
space of (perturbative) solutions to the SW equations, the SW invariants 
are defined. These play a role generalizing Donaldson invariants defined in 
section 5.7 for the Yang-Mills moduli spaces. In the SW case, the invariants 
are maps from the set of Spinc structures to the integers. Most importantly, 
these invariants characterize the smoothness of the base manifold, at least 
partly. That is, if two manifolds are diffeomorphic then they must have the 
same SW invariants, but the converse is not necessarily true in general, as 
shown by counter examples of Fintushel and Stern. After defining these 
invariants we look briefly at surgery on manifolds, the so-called logarithmic 
and knot transformations which change the SW invariants, and thus the 
diffeomorphism class, without changing the topology. We end the chapter 
with some brief comments on cohomotopy extensions of SW work. 
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9.1 The Construction of the Moduli Space 

The moduli space of Seiberg-Witten (SW) formalism is formed from solu- 
tions to the SW equations to first perturbation order, as defined below. In 
order to state these equations, we need to review some facts about bundles 
with Spinc structures introduced in 5.4. SW theory extends Donaldson 
theory by requiring the existence only of a Spinc structure rather than a 
full Spin one. This is a weaker condition on the bundle. In fact, let M be 
a smooth, simply connected, closed, oriented 4-manifold with b: ( M )  odd 
and b$(M)  > 1. As pointed out in section 5.4, any such manifold can be 
the base space for at least one bundle with a Spinc structure, although 
it may not support a Spin structure. Furthermore, the set of such Spinc 
bundles is characterized by the second Stiefel-Whitney class, w2 ( M ) ,  which 
is an element of H 2 ( M ;  Z) mod 2. So, 

CM = {K E H 2 ( M ;  Z) I K = w2(M) ( mod 2)) (9.1) 
is the set of the so-called characteristic elements defining the family of 
inequivalent Spinc structures over M .  Recall that the Spinc-group decom- 
poses as 

Spinc(4) = {B}  = : Ah E SU(2),X E U(1) 

Note that this group acts on C4. (9.2) results in a homomorphism a : 
Spinc(4) + U(1) with a(B) = det(XA+) = det(XA-) = X2. Let W be 
a Spinc spinor bundle, with fiber C4, and cross sections Spinc spinors. 
The fiber map, a, gives rise to a map, p,  from the bundle W onto a line 
bundle, L,  whose fiber elements are the X2 in (9.2). This is called the 
determinant line bundle. The first Chern class of L defines w2(M), as 
discussed in Proposition 2.4.16 of [Gompf and Stipsicz (1999)l. In fact, 
it is this characteristic class that identifies the Spinc bundle. Using the 
matrix decomposition in equation (9.2), we have the natural decomposition 
W = W+ @ W - ,  where the groups in each factor are copies of U(2) and 
the fibers are copies of C2. 

Remark 9.1. 
Although the group Spin(%) is originally defined over the reals in terms of a Clifford algebra 

generated by an orthonormal tangent vector basis, el, ..., ell, there are familiar ways of pro- 

viding complex representations in the interesting cases TI = 2 and n = 4. This provides the 

basis for equation (9.2). Note that multiplication by a single vector, regarded as a Clifford 

algebra element of degree one, maps W* -+ WT. 
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This same splitting leads to a (local) bundle splitting with W* = S* 8 a. 
Remark 9.2. 
The complex line bundle is something like the '<square root" of a complex line bundle 

L, corresponding locally to extracting the U(1) fiber dement, A * ,  into one of its two square 

roots. The f l  ambiguity may not be resolvable globally, so it may not be possible to define 

globally as a bundle, so in fact Moore [Moore (ZOOl)] describes it as a virtual bundle. 

Using the notation above, every element K E CM leads to a unique 
definition of a Spinc bundle, W, and in the following we will speak of K as 
Spinc-structure. Let d L  denote the space of U(1)-connections on L. By 
choosing A E d L  and coupling it to the Levi-Civita connection V on M one 
gets a covariant differentiation VA : r ( M ;  W+) + r ( M ;  W + @ T * M ) .  Note, 
the bundle W is a hermitian vector bundle of complex rank 4. We introduce 
the notation y(w), w E T M  to denote the vector w acting as a generator of 
the Clifford algebra. We can define a map y : T M  t End(W) satisfying 

all w, w E T M  with llw - w I I  > 0. Then the Spinc connection VA on W is 
defined by: 

Y ( V )  + (Y(V))* = 0, Y(V)(Y(V))*  = -ll4I21d and Y(v)Y(w) = -Y(w)Y(v) for 

( v A ) v ( Y ( w ) @ )  = y(w)(VA)v@ + 'Y(vvw)@ 

for all sections @ E r ( M ;  W )  and w, w E r ( M ;  T M ) .  This connection maps 
sections of W* to W*. Note that the map y : T M  + End(W) extends 
Clifford multiplication to C : W+ @ T M  + W -  by C(w, @) = y(w)@. 

Definition 9.1. The composition of the Clifford multiplication C and VA 
gives an operator 

@A = C o VA: r ( M ;  W+) 4 r ( M ;  W - ) ,  

which is the Dirac operator of the Spinc structure K associated to the 
connection A E d L .  

Let { e k }  be a base of the tangent space T,M, then the Dirac operator is 
defined locally by: 

@A@ = Y(ek)(VA)ek 
k 

where @ E r ( M ;  W+)  is a section on W+. Note, that y(ek) can be real- 
ized by the y-matrices of Dirac. In arriving at equation (9.2) we used an 
Hermitian structure which extends to W fiber wise as ( , ) : W, x W, + C 
with (w,w) = ((w,w))*. We should also recall that the very definition of 
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Clifford algebra and Spin or Spinc assumed a Riemannian metric on M .  
Also note that on a 4-dimensional oriented, Riemannian manifold M the 
Hodge *,-operator (given by the metric g )  is defined and maps 2-forms 
to a 2-forms *,: R2(M) + R2(M). Since *2 = 1, the eigenvalues of * 
are f l ,  and the space of 2-forms divides into corresponding eigenspaces, 
R2(M) = R+(M) @ R-(M). These subspaces span the self-dual and anti- 
self-dual 2-forms. 

As above, let A be a U(1)  connection of the determinant line bundle L 
with curvature FA in L .  A Spinc connection V A  leads to Dirac operator 
PA. The Lie algebra of U(1) is isomorphic to ilw and thus the curvature 
FA given by a Lie-algebra valued 2-form is an element of iR2(M) i.e. a 
purely imaginary 2-form on M .  Let FA+ be the self-dual part of FA i.e. 
*,FA = FA. Then we can write down the Seiberg-Witten equations: 

PA@ = 0 
1 
4 

FA+ = - (T (e i ) y (e j )@,  @)ei A ej = a(@). (9.3) 

These are an equivalent expanded form of the equations obtained from 
supersymmetry considerations in Chapter 5, (5.45) where { e j }  is the dual 
basis for T * M  and @ E r ( M ;  W+)  is a section of W+. Refer to the remark 
in Chapter 5 following the equations (5.45). 

The space of solutions belongs to r ( M ; W + )  x AL and the space of 
maps Map(M,  S’) (the gauge group) acts on both r ( M ;  W+)  (by point- 
wise multiplication) and on AL (as the automorphism group of the principal 
U(1)-bundle PL 4 M ) .  In other words, the gauge group acts on the prod- 
uct r ( M ;  W+) x AL. The resulting quotient space 

r ( M ;  W+)  x dL 
BK = 

M 4 M ,  Sl) 
is called the configuration space. Let B& denote { [ A ,  @] E BK I @ is not 
identically 0). We state without proof that the reducible solutions to (9.3) 
are given by @ = 0. Thus, the moduli space M K ( ~ )  of irreducible solutions 
of the Seiberg-Witten equations is defined by 

M K ( g )  = { [ A ,  @] E B& I [A,  @] satisfy (9.3)) 

In general, it is not known whether M K ( g )  can be provided a structure as 
a smooth manifold, but if we take a generic perturbation 6 E R+(M), the 
solution set M$(g)  of the equations PA@ = 0, FA+ + i6 = in(@) will be 
a smooth manifold. In this context a perturbation is a shift of the 2-form 
FA+ E R+(M) by a 2-form 6 E R+(M) which is small with respect to the 
norm J, 6 A 6 = 116112. 
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The next theorem summarizes the most important properties of the 
moduli space M&(g).  These properties ensure us that the very important 
Definition 9.2 stated below does indeed provide a diffeomorphism invariant 
of M .  

Theorem 9.1. Assumefthat M is a simply connected, oriented, closed 4- 
manifold with b$(M)  odd. Fix a Spinc structure K E C M .  For a generic 
metric g and perturbation 6 E R+(M), the moduli space M&(g)  will be a 

An orientation of H o ( M ;  R) @ H + ( M ;  R) determines an orientation for 
M&(g).  If b$(M)  > 1, the homology class [M$(g)] E H ~ ( B K ; Z )  is inde- 
pendent of the choice of g and 6 .  The space M&(g)  is homotopy equivalent 
to CP". 

smooth, compact manifold of dimension d = i ( K 2  - ( 3 4 w  + 2 X ( W ) .  

This is the main theorem of Seiberg-Witten theory (see [Akbulut (1996); 
Morgan (1996)l for a proof) determining the structure of the moduli space 
and is the Seiberg-Witten analog to that of the Donaldson theory in Chapter 
5, Theorem 5.13. 

9.2 Seiberg-Witten Invariants 

We will now summarize some of the important properties of the Seiberg- 
Witten moduli space, leading to the definition of the Seiberg-Witten invari- 
ants. These are maps from the set of Spinc structures to integers which 
carry smoothness information on the underlying base space. For a more de- 
tailed discussion see [Salamon (1995)], [Akbulut (1996)] or [Morgan (1996)l. 

Let M be a smooth, simply connected, closed, oriented 4-manifold with 
b$(M)  odd and b$(M)  > 1. The set CM of the characteristic elements is 
identical to the set of Spinc structures on M .  The moduli space M&(g) of 
the solutions of the (perturbed) monopole equation can be defined. How- 
ever, as stated in Theorem 9.1, the top homology group of this space is 
independent of the choice for metric g on M and perturbation S E R+(M), 
leading to the following observations: 

The cohomology ring H * ( M & ( g ) ;  Z) = Z[p] is induced by one genera- 
tor p E H2(M&(g);  Z). 
Since K E C11.i and b$(M)  is odd, dim M&(g) = 2m is even. 
Since M&(g)  is a closed and oriented manifold, it defines a homology 
class [M&(g)] E Hzm(,13;; Z). This class is independent of the choice 



258 Exotic Smoothness and Physics 

of metric, g ,  and perturbation, 6. 

generalization of the integral in the deRham theory. 
0 The natural pairing ( , ) between homology and cohomology is the 

These observations lead to the following definition. 

Definition 9.2. The Seiberg- Witten invariant SWM : CM + Z is defined 
by the formula 

SWM(K) = (P", [ M % d l ) ,  
where dim M$(g)  = 2m. If dim M$(g)  < 0 then by definition 
SWM(K) = 0. 

The next theorem is of central importance and shows that the function 
SWM is in fact a diffeomorphism invariant. 

Theorem 9.2. The Seiberg- Witten function SWM : CM + Z is an invari- 
ant of the smooth 4-manifold M .  SWM does not depend on the chosen 
metric g and perturbation 6 .  For any orientation preserving diffeomor- 
phism f : M + M' we have S W M ~  ( K )  = *sWM( f * K ) .  

Our discussion has been entirely superficial, but the reader can find more 
details in the standard literature such as [Akbulut (1996); Morgan (1996)l. 

The Seiberg-Witten basic classes (Spinc structures) are defined over M .  

Definition 9.3. The cohomology class K E CM c H 2 ( M ;  Z) is a Seiberg- 
Witten basic class of M if SWM(K) # 0. The set of basic classes of M will 
be denoted by BasM C H 2 ( M ;  Z). 

Note that SWM(-K) = (-l)'SWM(K), where E = l+*i(') so K E  bas^ 
if and only if -K E  bas^. Further important properties can be divided 
into vanishing and non-vanishing cases. 

Vanishing results: 
Assume that M is a smooth, closed, simply connected, oriented 4-manifold 
with b$(M) > 1 and odd. 

(1) If M = MI#M2 and bi(Mi) > 0 ( i  = 1,2), then SWM 3 0. 
(2) If M admits a metric with positive scalar curvature (and, as always 

(3) If C c M is an embedded sphere with 0 # [C] E Hz(M; Z) and [El2 2 0, 
b i ( M )  > 1 odd), then SWM EE 0. 

then SWM = 0. 
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For the next class, recall that a 2-form w is a symplectic f o rm on M if it is 
non-degenerate ( w  A w > 0) and closed dw = 0. 

Assume that M is a smooth, closed, simply connected, oriented 4-manifold 
with b l ( M )  > 1 and odd. 

(1) If S is a simply connected complex surface (hence b$(S) is odd) and 

(2) More generally, if ( M ,  w )  is a simply connected symplectic manifold 

Non-vanishing results: 

@(S) > 1, then SWs( f s (S ) )  # 0. 

and bZ(M)  > 1, then SWM(*CI (M,W))  = *l. 

We close with the remark that manifolds with a zero-dimensional SW mod- 
uli space, referred to as manifolds of simple type, have been of central in- 
terest. We now turn to a brief look at  surgical techniques important in 
applications of the SW invariants. 

9.3 Gluing Formulas 

We now begin a review of certain surgery techniques that have turned out 
to be useful for applications of the SW invariants. This section is based 
mainly on the papers [Morgan et al. (1996, 1997)] of Taubes, Szabo and 
Morgan. 

A 4-dimensional extension of the Dehn surgery operations described in 
section 6.2.2 leads to the following definition: 

Definition 9.4. Suppose that M is a smooth closed oriented 4-manifold, 
and that M contains a smoothly embedded 2-torus T 2  L, M with triv- 
ial self-intersection number. Similarly to Dehn-surgery on knots in 3- 
manifolds, a generalized logarithmic transformation of M along T 2  is defmed 
by deleting a tubular neighborhood N ( T 2 )  of T2 from M and gluing it back 
via a diffeomorphism 

4 : d(D2 x T 2 )  + d ( M  \ N ( T 2 ) )  , 
defining a new manifold denoted by M (4).  

In more detail, the diffeomorphism 4 : d(D2 x T 2 )  = T 3  --t T3 = d ( M  \ 
N ( T 2 ) )  can be defined by an element in SL(3,Z) ,  that is, by a sequence 
of Dehn twists. Fixing a basis a,b,c E H1(T3,Z)  we can describe such 
a Dehn twist by a curve y = p a  + qb + rc  (again, refer to section 6.2.2), 
with the numbers p ,  q, r relatively prime. Using q57 for the diffeomorphism 



260 Exotic Smoothness and Physics 

defined by this curve, we get the resulting homology map (&), : Hl(d(D2 x 
T2) ;  Z) + Hl(d (M \ N ( T 2 ) ) ;  Z). From this we can recover the curve y as 
y = (&) , ( [d(D2 x p t ) ] ) .  y is in fact an element of the kernel of the inclusion 
i, : Hl(d (M \ N ( T 2 ) ) ; Z )  + Hl(M \ N ( T 2 ) ; Z ) ,  that is, i , ( y )  = 0. Using 
the definitions 

M7 := M(&)  := N Ub? D2 x T2  N := M \ N ( T 2 ) ,  

leads to an important relation between the logarithmic transformation de- 
fined by y and the SW invariants as summarized by 

Theorem 9.3. Suppose that b i ( N )  > 1, and that y E Keri,. Let BN, B M ~  
denote the set of basic classes of N and M,. Define the formal series on  
HZ(M,, R) by  

S W ~ ~  = C SW, (K)(exp K ) .  
K E B M ,  

Then 

where p : H 2 ( N , d N , Z )  -+ H 2 ( M y , Z )  is given by the Mayer-Vietoris se- 
quence, and where T, is the Poincare' dual of the so-called core {p t }  x T 2  ~ - 1  

MY. 

The proof of this result uses cylindrical end Seiberg-Witten moduli spaces 
over N .  Other product formulas along T3  for the generalized fiber sum 
operation can be found in [Morgan et al. (1997)] using different techniques. 

Next consider a set of surgery operations changing only the differential 
structure to a non-diffeomorphic one without changing the topological type. 

9.4 Changing of Smooth Structures by Surgery along Knots 
and Links 

Now we describe certain operations on a given smooth 4-manifold which 
preserve the underlying topological structure but alter its smooth structure. 
Let M be a simply connected smooth 4-manifold which contains a smoothly 
embedded torus T of self-intersection 0. Given a knot K in S3 ,  we replace 
a tubular neighborhood of T with S' x (S3  \ K )  to obtain the knot surgery 
manifold M K .  
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Remark 9.3. 
More formally, this procedure is accomplished by performing 0-framed surgery on K to obtain 
the 3-manifold M K .  The meridian m of K can be viewed as a circle in M K ;  SO in S' X MK 
we have the smooth torus T,,, = S' x m of self-intersection 0. Since a neighborhood of m 
has a canonical framing in M K ,  a neighborhood of the torus T,,, in S' X M K  has a canonical 
identification with T,,, x 0'. The knot surgery manifold M K  is given by the fiber sum 

M K  = M#T=T,,,S~ x M K  = ( M  \ T x 0') U (S' X MK \ T, X 0') 

where the two pieces are glued together so as to preserve the homology class [pt X aO']. This 

latter condition does not, in general, completely determine the isotopy type of the gluing, and 

MK is taken to be any manifold constructed in this fashion. 

Because S1 x (S3 \ K) has the same homology as a tubular neighborhood 
of T in M (and because the gluing preserves [pt x a D 2 ] )  the homology and 
intersection form of M K  will agree with that of M .  If it is also assumed that 
M\T is simply connected, then ( M K )  = 1 and MK will be homeomorphic 
to M .  

The Seiberg-Witten invariants can be used to distinguish the diffeo- 
morphism types of the resulting M K .  Let {&PI,. . . , *Pn}  be the set of 
nonzero basic classes for M and consider variables t p  = exp(P) for each 

E H 2 ( M ; Z )  which satisfy the relations t,+p = t,tp. A lengthy cal- 
culation which we skip shows that Seiberg-Witten invariant of M can be 
written as the Laurent polynomial 

n 
(e+sign)(M)/4 t -1  SWM = SWM(0) + c SWM(Pj) . (toj + (-1) pj 1. 

j=1 

The next theorem provides important information about the effect of 
knot surgery. First, a smoothly embedded torus representing a nontriv- 
ial homology class [TI is said to be c-embedded if it contains two simple 
closed curves which generate 7r1(T) and which bound vanishing cycles in 
M .  Note that a c-embedded torus has self-intersection 0. Next, the Alexan- 
der polynomial, A K ( t ) ,  of a knot K is a Laurent polynomial in the variable 
t characterized by the following axioms: 

(1) The Alexander polynomial of an unknot S1 is normalized to be 

( 2 )  AK ( t )  fulfills the so-called skein-relation 
Asl(t)  = 1. 

A K + ( t )  = A K - ( ~ )  f (t112 - t - l12)  . A K o ( t )  (9.4) 
where K+ is an oriented knot or link, K- is the result of changing 
a single oriented positive (right-handed) crossing in K+ to a negative 
(left-handed) crossing, and KO is the result of resolving the crossing as 
shown in Figure 9.1. 
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Fig. 9.1 Crossings used in the skein relation 

The theorem is 

Theorem 9.4. ([Fintushel and Stern (1998b)l) Let M be a simply con- 
nected oriented smooth 4-manifold with b+ > 1. Suppose that M contains 
a c-embedded torus T with r1(M \ T )  = 1, and let K be any knot in S3 .  
Then the knot surgery manifold MK is homeomorphic to M and has Seiberg- 
Witten invariant 

~ W M ~  = s w ~ .  A K ( t ) ,  

where AK(t)  is the symmetrized Alexander polynomial of K and t = 
exp(W1). 

Since the K3-surface S4 (see subsection 6.7.3) has a smooth c-embedded 
torus T the theorem 9.4 applies to it. Also, since S W E ( ~ )  = 1 every 
knot surgery along K changes the Seiberg-Witten invariant to S W E ( ~ ) ~  = 
A K ( t ) .  A theorem of Seifert states that any Laurent polynomial of the 

form P(t )  = uo + C uj(tj + t - j )  with coefficient sum P(1) = f l  is the 

Alexander polynomial of some knot in S3.  For each such polynomial P(t ) ,  
there is a manifold homeomorphic to the K3-surface with SW = P(t) .  If 
K1 and Kz have the same Alexander polynomial, Seiberg-Witten invariants 
are not able to distinguish MK,  from M K ~ .  For example, take M to be the 
K3-surface, see section 6.7.3. Then M K  has a self-intersection 0 homology 
class 0 satisfying 0 . [TI = 1 which is represented by an embedded surface 
of genus g(K)  + 1 where g(K)  is the genus of K .  Can these classes be used 
to distinguish M K ~  from M K ~  when g(K1) # g(Kz)? This is expressed in 

Conjecture of Fintushel and Stern: 
For M = Sq, the manifolds M K ~  and M K ~  are diffeomorphic if and only if 
K1 and K2 are equivalent knots. 

However, this conjecture is wrong as shown by Akbulut [Akbulut (1999)], 

n 

j=1 
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who constructed the handle body description of the knot manifold M K  from 
M .  Let -K be mirror of the knot K then MK is diffeomorphic to M-K 
contradicting the conjecture. 

We conclude this section by pointing out that the knot surgery con- 
struction can be generalized to manifolds with b f  = 1 and to links in S3 
of more than one component in a fairly obvious way. Glue the comple- 
ments of c-embedded tori in 4-manifolds to the product of S' with the link 
complement. See [Fintushel and Stern (1998b)l for details. For example, 
if to each boundary component of S1 x (S3  \ N ( L ) )  we glue S4 minus the 
neighborhood of a smooth c-embedded torus, we obtain a manifold with 
SW = AL(t1,. . . , tn), the multivariable Alexander polynomial of the link. 
Unfortunately as we will show in the next section, these invariants are not 
complete. 

9.5 The Failure of the Complete Smooth Classification 

We now look at an example of a pair ( M I ,  M2) of (symplectic) 4-manifolds 
with M I  homeomorphic to M2, S W M ~  = S W M ~ ,  but M I  is not diffeomor- 
phic to M2 establishing the fact: 

Seiberg- Witten invariants do not completely distinguish differential struc- 
tures on homeomorphic 4-manifolds. 

Following Fintushel and Stern [Fintushel and Stern (1998a)l choose a pair 
of fibered 2-bridge knots K(a ,  PI )  and K(a ,  P 2 )  with the same Alexander 
polynomials. For example, K1 = K(105,64) and Kz = K(105,76) with 
Alexander polynomial 

AK(t) = t-4 - 5t-3 + 13t-' - 21t-l + 25 - 21t + 13t2 - 5t3 + t4. 
Although these knots have the same Alexander polynomial, they can be dis- 
tinguished by the fact that their branch covers are the lens spaces L(a, PI )  
and L(a,  P 2 )  which are distinct. In this specific case L(105,64) is not dif- 
feomorphic to L(105,76). 

Perform the knot surgery construction of section 9.4 on the K 3  sur- 
face, replacing T 2  x D2 with S' x ( S K ~  \ K j )  with resulting 4-manifolds 
Mi,  i = 1,2. The Mi are not simply connected (but are homeomorphic). In 
particular, 7rl(Ml) = r l ( M 2 )  = Z,, and the a-fold covers a1 and of 
M I  and MZ are not diffeomorphic. It follows that 

ff 
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Since the linking numbers of the links L1 and LZ are different, it can be 
shown that the Alexander polynomials are different too and M I  is not 
diffeomorphic to il?~ completing the counterexample. 

9.6 Beyond Seiberg-Witten: The Cohomotopy Approach 

We close this chapter with a brief mention of approaches initiated by F'u- 
rata [Furata (2001)l on the %-conjecture by using the monopole mapping 
in the Seiberg-Witten formalism . Independently Bauer and Furata [Fu- 
rata (1998)l defined a cohomotopy invariant using the Pontrjagin-Thom 
construction for infinite-dimensional Hilbert spaces. Later both authors 
unified the approaches in a common paper [Bauer and Furuta (2002)l. In 
another paper [Bauer (2002)], Bauer showed a simple relation between the 
connected sum of two 4-manifolds and the corresponding cohomotopy in- 
variants. 

First, look at the construction of the monopole map. Let Sh denote the 
Spinc bundles over the 4-manifold M and let L denote their determinant 
line bundle. Furthermore, let A be the space of Spinc-connections. The 
map ,L2 is given by: 

fi : A x (r(S+) @ O'(M)  @ H o ( M ) )  4 A x (r(S-) @ 0 2 + ( M )  @ SZo(M) @ H ' ( M ) )  

( A ,  4, a,  f) (A,?A+a4, - fl(4), Sa -k f, 1.1) 
using the notation of section 9.1. Here [u] denotes the cohomology class 
of the l-form a,  6 is the co-differential introduced in section 3.3 and $A 

is the Dirac operator with respect to the connection A. This map can be 
simply interpreted as the perturbation of the Seiberg-Witten equations (as 
introduced in section 9.1). The gauge group Q is the set of maps M -+ S1. 
Fix a base point * E M to define the based gauge group GO. Let A be a 
fixed connection, then the subspace A + ker(d) c A is invariant under the 
action of the based gauge group with quotient space isomorphic to 

the so-called Picard group. Furthermore define 

& = (A + kerd) x (r(S+) @ Q1(M) CB H0(M)) /Bo  
3 = ( A  + kerd) x (I'(S-) @ R+(M)  CB Ro(M) @ H1(M))/Go 

which are bundles over PicS(M). Then the quotient p = ,L2/Qo : E -+ 3 is 
the monopole map, a S1-equivariant map over Pics(M). 
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Forgoing the details of a very complicated construction, we remark only 
that it results in a structure ~~~ , , (P ic" (M); ind (P) )  which is a cohomo- 

All of this lead up to the following theorem on the existence of the 
topy.' 

equivariant cohomotopy invariant induced by the monopole map. 

Theorem 9.5. The monopole map p defines an element in an equivariant 
stable cohomotopy group2 

[PI E T$,H(PicS(M); ind(P>>, 
which is independent of the chosen Riemannian metric. 

For b+ > dim(Pic"(M)) + 1, a homology orientation determines a ho- 
momorphism of this stable cohomotopy group to  Z, which maps [p] to  the 
integer-valued Seiberg- Witten invariant. 

In our applications, the most important property of this invariant is the 
behavior with respect to the connected sum of two 4-manifolds. 

Theorem 9.6. For a connected sum M = Mo#MI of 4-manifolds, the sta- 
ble equivariant cohomotopy invariant is the smash product of the invariants 
of its summands 

[ P M ]  = b M o l  A b M 1 1  

Remark 9.4. 
The so-called smash product M A Y between two spaces M ,  Y defined by: 

is the natural product in the cohomotopy group. 

Informally, the monopole map p~ has the same stable cohomotopy invari- 
ant as the product p~~ x p ~ , .  This is in strong contrast to the Seiberg- 
Witten invariants where gluing theorems are needed to get the same result, 
and then only for special manifold splittings. Other splitting theorems can 
be obtained. For example, 

Theorem 9.7. Let M be a connected sum of two symplectic 4-manifolds, 
each with b+ = 3 mod 4 and vanishing first Betti number. Then no con- 
nected sum decomposition of M contains a manifold with b+ = 1 mod 4 as 
a summand. 
lRecal1 a homotopy group r n ( M )  of a space M is a class of mappings S" -+ M up 

to homotopy. Then a cohomotopy group .rr"(M) is a class of mappings M -+ S" up to  
homotopy. 

*It is possible to introduce a cogroup structure on the cohomotopy set. But we omit 
this complicated fact in the construction above. 
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The interested reader can find many of the technical details in [Bauer 
(2002)l. Further gluing results can be found in the work of Manolescu 
[Manolescu (2003b,a)] extending the work of Bauer and Furata. 



Chapter 10 

Physical Implications 

In this chapter we will explore some possible physical implications of the ex- 
istence of exotic differential structures. We begin by surveying the Principle 
of Relativity in the light of these new structures, recalling the identifica- 
tion of the mathematical notion of diffeomorphism with the generalized 
notion of a change of reference frame. In particular, we review possible 
applications of varieties of differential structures to quantum gravity in five 
dimensions and its 1+4 spacetime foliation. The next section considers 
assumptions involved in the extrapolation of metric solutions to the Ein- 
stein equations from one coordinate patch to another when the smoothness 
may not be trivial. Perhaps localized exoticness can act as another type 
of source (rather than standard matter) for an external metric. In fact in 
the next section we mention the work of Sladkowski who showed that the 
empty space given by exotic R4 can lead to non-trivial solutions of the Ein- 
stein vacuum equations. Finally, we close with a review of the notions of 
global anomalies, gravitational instantons and tunneling and the possible 
implications of exotic manifolds in their study. 

10.1 The Principle of Relativity 

In Special Relativity, Einstein taught us to think in terms of a unified 
spacetime model, with no preferred a priori splitting of space from time, 
apart from the qualitative space-like, time-like, light-like ones. The trans- 
formation group preserving these spacetime properties, the gauge group of 
special relativity is of course the Poincarb group, that is, the homogeneous 
Lorentz group plus translations. 

With the many successes of special relativity, it seems that the ether has 
finally been put to rest. Indeed it has in this classical sense. “If you can’t ob- 

267 
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serve it, it doesn’t exist” is the standard motto of scientific operationalism. 
Or to paraphrase an old axiom: “NO stuff has existence until it is observed 
to have existence.” But, should we not apply this to “stuff”=manifold 
properties? So, is spacetime the new ether? Clearly, it does not play the 
same mechanical role of “transmitter of forces,” as the old mechanical one. 
Also, it clearly does not provide an “absolute rest reference frame.” But, 
it does have other properties which have generally been assumed without 
thorough analysis of alternatives. It provides, in operationally unobserv- 
able ways, the substratum to carry the many structures used by modern 
theories. Perhaps these assumed spacetime structures in modern theories 
have built it into a “new ether.” 

Einstein’s general relativistic gravitational theory logically begins with 
weakening one of the basic assumptions of special relativity, namely the ex- 
istence of a flat Minkowski metric, and associated preferred inertial frames. 
By dropping the assumption of a pre-given flat metric, the door is open to a 
geometric model of gravity. Many insights led Einstein to his theory of grav- 
ity, including the Principle of General Relativity, the Equivalence Principle, 
and Mach’s Principle. Of course, the actual history is more complicated and 
interesting, and the reader can consult the volume one of the Einstein Stud- 
ies[Howard and Stachel (1986)], for more complete and accurate accounts 
of the story. For our purposes, it is sufficient to point out that Einstein 
was aware of the rigid structure still remaining on the spacetime of special 
relativity imposed by the Lorentz metric and the associated preferred set of 
inertial reference frames. Mach’s Principle addresses the issue of why the 
fixed stars have constant velocity in the inertial frames, while the Principle 
of General Relativity proposes extending the physically acceptable frames 
beyond this restricted set. In other words, while special relativity had weak- 
ened the assumption of a preferred (zero) absolute-velocity-defining ether, it 
replaced it by a preferred (zero) absolute-acceleration-defining one. So, the 
next step toward generally covariant theories was a result of re-examining 
and loosening previous rigid structures’. This problem is one of finding the 
“correct” spacetime model. 

One way to sketch the logical development of the current spacetime 
models used in physics is as a diagram: 

point set -+ topological space -+ smooth manifold -+ bundles, etc. 
The middle transition has turned out to be rather mysterious and non- 
trivial as we have seen in the previous chapters. Einstein’s theory starts 

John Norton [Norton (1984)] has given us a thorough and highly interesting analysis 
of how Einstein arrived at his equations of General Relativity. 

?? 
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with the bundle calculus and assumes that the other levels are given (or can 
be defined). Thus, gravitation in the “classical” sense assumes a differential 
structure and concentrates on the possible geometries. The moduli space 
can be seen as the factor space M = R i e r n ( M ) / D i f f ( M )  where Riern(M) 
is the space of Riemannian (or Lorentzian) metrics and D i f f ( M )  is the 
diffeomorphism group of a 4-manifold M .  The physically significant as- 
pect of a solution of the Einstein equation, metric modulo diffeomorphism, 
is defined by an element of this space. Now one may ask: what changes 
if we try to unify GRT and quantum theory to quantum gravity? Then 
every element in the moduli space M is a state of the quantum gravity, 
i.e. one has to integrate over all possible elements in the functional in- 
tegral. Unfortunately this space is rather intractable. In the covariant 
approach to quantum gravity Wheeler and deWitt foliate the 4-manifold 
into 3-dimensional slices along the “time” axis. Later, Ashtekar [Ashtekar 
(1986)l introduced new variables to describe this situation and identified 
the space M with the space of loops. In that approach, M is described by 
graph-theoretical methods [Ashtekar and Lewandowski (1995)l. Then it is 
necessary to study the diffeomorphisms of the 3-dimensional slices where the 
diffeomorphism group of the 3-manifold naturally has a different topology 
from that of the 4-dimensional case. But, as we have been studying, 4 di- 
mensions gives rise to the phenomenon of exotic differential structures even 
on topologically trivial spaces such as EX4. This does not occur in dimension 
3. The four dimensional exotica then greatly complicate the structure of 
the 3-dimensional slices (after a suitable foliation). Thus a naive approach 
to 4-dimensional quantum gravity by a path integral over all possible met- 
rics in M should also include the exotic differential structures. Let g and 
gezotic be two different elements of M not connected by a diffeomorphism 
D i f f ( M ) ,  then these two metrics lie in different components of M leading 
to different elements in ro(M) .  From the fibration 

D i f f ( M )  + Riern(M) + M 

the contractibility of Riern(M) leads to an isomorphism r n ( M )  = 
r n ( D i f f ( M ) )  for all n 2 0. For the special case of M = Sk with k > 5 
we obtain the well-known relationship between isotopy classes lying in 
. . o ( D i f f ( M ) )  and exotic spheres (see section 7.8). Finally, any quantum 
gravity theory must have a classical limit which would include exotic four 
manifolds. Thus, quantum gravity should incorporate exotic structures. 
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10.2 Extension of Metrics 

Even though an explicit, effective coordinate patch presentation of W i 2  is 
not available, certain additional facts about such a space, including some of 
a geometric and thus physical sort can be discovered. For a more complete 
exposition and discussion of these results see [Brans (1994b)l and [Brans 
(1994a)l. Here we merely review some of the results. 

First, the question naturally arises concerning the given global topo- 
logical coordinates, {p”}, which define the topological manifold W4, and 
their relationship to the local smooth coordinates given by the coordinate 
patch functions, 4s. Both provide maps from an abstract p E W4, into 
W4 itself. Clearly the global topological coordinates cannot themselves be 
smooth everywhere since otherwise they would provide a diffeomorphism of 
I w i  onto standard W4. But can they be locally smooth? This is answered 
in the affirmative by 

Theorem 10.1. There exists a smooth copy of each Wi for which the global 
Co coordinates are smooth in some neighborhood. That is, there exists a 
smooth copy, = { (p“)},  for which pa  E C” for  ] P I  < E .  

The implied obstruction to continuing the {pa}  as smooth beyond the E 

limit presents a challenging issue for further investigation. Related to this 
is a defining feature of the early discovery work of Wi’s, namely the non- 
existence of arbitrarily large smoothly embedded three-spheres. 

There are also certain natural “topological but not smooth” decompo- 
sitions. For example, 

Theorem 10.2. I w i  is the topological, but not smooth, product, W1 x W3. 

Many interesting examples can be constructed using Gompf’s “end-sum” 
techniques [Gompf (1985)] discussed in 8.5 above. In this construction 
topological “ends” of non-compact smooth manifolds are glued together 
smoothly, X Uend Y. If one of the manifolds, say x, is also topological 
R4, the topology of the resultant space is unchanged, that is R4 Uend Y is 
homeomorphic to Y .  However, if X is an IR; which cannot be smoothly 
embedded in standard W4, then neither can the end sum. Thus, 

Theorem 10.3. Gompf’s end sum result: If X = Wi cannot be 
smoothly embedded in standard R4, but Y can be, then R& Uend Y is home- 
omorphic, but not diffeomorphic to Y .  
2Recall this is our notation for an exotic W4. 
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This technique will be used further below. 
To do geometry we need a metric of the appropriate signature. It is a 

well known fact that any smooth manifold can be endowed with a smooth 
Riemannian metric, go. This follows from basic bundle theory [Steenrod 
(1999)]. Similarly, if the Euler number of X vanishes a globally non-zero 
smooth tangent vector, u exists. go and u can be combined then to construct 
a global smooth metric of Lorentz signature, (-,+,+,+), in dimension 
four. A generalization of this result follows also from standard bundle 
theory, [Steenrod (1999)l. 

Theorem 10.4. If M is any smooth connected 4-manifold and A is a closed 
sub-manifold for which H 4 ( M ,  A; Z) = 0 ,  then any smooth time-orientable 
Lorentz signature metric defined over A can be smoothly continued to  all of 
M .  

One immediate conclusion about certain geometries on R& can be drawn 
from an investigation of the exponential map of the tangent space at some 
point, which is standard R4, onto the range of the resulting geodesics. The 
Hadamard-Cartan theorem guarantees that this map will be a diffeomor- 
phism onto the full manifold if it is simply connected, the geometry has 
non-positive curvature and is geodesically complete. Thus, 

Theorem 10.5. 
ric with non-positive sectional curvature on a R$. 

The lack of localization of the “exoticness” means that it must extend to 
infinity in some sense as illustrated by the lack of arbitrarily large smooth 
three-spheres. However, it turns out to be possible that the exoticness can 
be localized in a spatial sense as follows: 

There can be no geodesically complete Riemannian met- 

Theorem 10.6. There exist smooth manifolds which are homeomorphic 
but not diffeomorphic to  R4 and for  which the global topological coordinates 
( t ,  x ,  y, z )  are smooth fo r  x 2  + y2 + z2  L c2 > 0, but not globally. Smooth 
metrics exists f o r  which the boundary of this region is time-like, so that the 
exoticness is spatially confined. 

The details of the construction of such manifolds are given in [Brans 
(1994b)l. First, Gompf’s end-sum technique is used to produce a R$ for 
which the global topological coordinates are smooth outside of the cylinder, 
that is, in the closed set co = { ( t ,  x ,  y, z)1x2 + y2 + z2 2 E }  described in the 
first part of the theorem. Next, a Lorentz signature metric is constructed 
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on CO.  This metric can even be a vacuum Einstein metric. The only con- 
dition is that the a / d t  be time like on CO. The cross section continuation 
result with A = co then guarantees the extension of the metric over the 
full space consistent with the conditions of the theorem. What makes the 
complement of co exotic is the fact that the (5, y, z,  t )  cannot be continued 
as smooth functions over all of it. This result leads to 
Conjecture: This localized exoticness can act as a source for some exter- 
nally regular field, just  as matter or a wormhole can. 
This conjecture was affirmed by Asselmeyer [Asselmeyer (1996)l for the 
compact case and by Stadkowski [Sladkowski (1999)] for the non-compact 
case. 

10.3 Exotic Cosmology 

In this section we will review some of the consequences of the existence 
of exotic differential structures on cosmology. Consider the exotic prod- 
uct, X = R e  - {O,O,O,O} = R X e  S3,  which arises from a puncturing 
of R;. This topology, but not smoothness, is a standard model used in 
cosmology. It is not hard to apply the same techniques used in the pre- 
vious section to show that this product can be the standard smooth one 
for a finite, or semi-infinite range of the first variable, say t. The result- 
ing manifold could then be endowed with a standard cosmological metric. 
However, this metric, and even the variable t itself, cannot be continued as 
globally smooth indefinitely, because of the exotic smoothness obstruction. 
Nevertheless, X is still a globally smooth manifold, with some globally 
smooth Lorentz-signature metric on it. Other interesting topological but 
not smooth products can be constructed by use of the end-sum construc- 
tion. One interesting example is exotic Kruskal, XK = R2 X e  S2. Using 
the cross section continuation theorem above, the standard vacuum Kruskal 
metric can be imposed on some closed set, A c XK, and then continued to 
some smooth metric over the entire space. However, it cannot be continued 
as Kruskal, since otherwise XK would then be standard R2 x S2. In sum, 

Theorem 10.7. O n  some smooth manifolds which are topologically R2 x 
S2 ,  the standard Kruskal metric cannot be smoothly continued over the full 
range, u2 - v2 < 1. 

We will now look at some qualitative issues associated with Einstein’s 
equation in the exotic settings. Sladkowski [Sladkowski (1999)] has provided 
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some valuable results based on the work of Taylor [Taylor (1997, 1998)] 
about isometry groups of exotic R4. We follow the paper of Sladkowski 
closely. Recall several definitions. A diffeomorphism q5 : M H M ,  where 
M is a (pseude)Riemannian manifold with metric tensor g ,  is an isometry 
if and only if it preserves g ,  q5*g = g. Such mappings form a group called 
the isometry group. A smooth manifolds has few symmetries provided that 
for every choice of differentiable metric tensor, the isometry group is fi- 
nite. L. R. Taylor [Taylor (1998)] presented examples of exotic R4's with 
few symmetries. Among these are examples with nontrivial but still finite 
isometry groups. Taylor's results apply to Riemannian structures, but a 
natural extension gives further insights into the possible role of differential 
structures in Lorentz manifolds physics. Define proper actions of a group 
on manifolds as follows. Let G be a locally compact topological group 
acting on a metric space X. G acts properly on X if and only if for all 
compact subsets Y c X ,  the set {g  E G : g Y  n Y # 0) is also compact. 
Thus G acts non-properly on X if and only if there exist sequences xn -+ x 
in X and gn -, ca in G, such that gnxn converges in X .  Here gn -+ ca 
means that the sequence gn has no convergent subsequence in G. Note 
that for many manifolds a proper G action, for G an isometry, is topolog- 
ically impossible. On the other hand, non-proper G action on a Lorentz 
(or pseudeRiemannian) manifolds is impossible for all but a few groups. 
Sladkowski used a result from the theory of transformation groups proved 
by Kowalsky (see [Sladkowski (1999)l for the reference). 

Theorem 10.8. Let G be Lie transformation group of a differentiable man- 
ifold X .  If G acts properly on  X, then G preserves a Riemannian metric on 
X .  The converse is true if G is closed in Diff(X). 

As a special case we have: 

Theorem 10.9. Let G and X be as above, with G connected. If G acts 
properly on X preserving a time-orientable Lorentz metric, then G preserves 
a Riemannian metric and an everywhere nonzero vector field on  X .  

If we combine these theorems with Taylor's results we immediately get: 

Theorem 10.10. Let G be a Lie transformation group acting properly on 
an exotic R4 with few symmetries and preserving a time-orientable Lorentz 
metric. Then G is finite. 

Further, due to Kowalsky, we also have: 
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Theorem 10.11. Let G be a connected non-compact simple Lie group with 
finite center. Assume that G is not locally isomorphic to SO(n, 1) or 
SO(n,2). If G acts non-trivially on a manifold X preserving a Lorentz 
metric, then G actually acts properly on X .  

and 

Theorem 10.12. If G acts non-properly and non-trivially on X ,  then G 
must be locally isomorphic to SO(n,l) or S0(n12) for some n. 

In many cases it is possible to describe the cover X up to Lorentz isometry. 
Now, suppose we are given an exotic R$ with few symmetries. Suppose 

we have found some solution to the Einstein equations on R$. Whatever the 
boundary conditions are we would face one of the two following situations. 

0 The isometry group G of the solution acts properly on R&. Then 
according to Theorem 3 G is finite. There is no nontrivial Killing 
vector field and the solution cannot be stationary. This gravitational 
field must be very “complicated.” Note that this conclusion is valid for 
any open subspace of R&. This means that this phenomenon cannot 
be localized on such spacetimes. 

0 The isometry group G of the solution acts non-properly on R$. Then G 
is locally isomorphic to SO(n,l) or SO(n,2 ). But the non-proper action 
of G on R$ means that there are points infinitely close together in R& 
(z, + z) such that a non-convergent sequence of isometries ( g ,  -+ co) 
in G maps them into infinitely close points in R$ (g,z, + y E R$). 
There must exist strong gravity centers to force such convergence (even 
in empty spacetimes). Such spacetimes are unlikely to be stationary. 

We see that in both cases Einstein gravity is quite nontrivial even in the 
absence of matter. Recall that if a spacetime has a Killing vector field c”, 
then every covering manifold admits a Killing vector field C’” projected onto 
ca by the differential of the covering map. This means that the properties 
discussed above are “projected” onto any space that has exotic R4 with few 
symmetries as a covering manifold, e.g., quotient manifolds obtained by a 
smooth action of some finite group. 

This result has further consequences as discussed in [Asselmeyer-Maluga 
and Brans (2002)]. If there were an exotic differential structure in the past 
then we cannot be sure about our interpretation of current observed data 
arriving now, at earth. That is, we cannot distinguish gravitational lensing 
by stars or by the change of a differentiable structure. Thus, null geodesics 
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arriving from distant sources may not be extrapolated back as good radial 
coordinate lines because of intervening coordinate patch transformations 
caused by global exotic smoothness. In summary, what we want to em- 
phasize is that without changing the Einstein equations or introducing yet 
undiscovered forms of matter, or even without changing topology, there is 
a vast resource of possible explanations for recently observed surprising as- 
trophysical data at the cosmological scale provided by differential topology. 

10.4 Global Anomaly Cancellation of Witten 

Anomalies present both problems and opportunities in the study of quan- 
tum field theories. Consider symmetries in a “classical” field theory gen- 
erated by Lie groups. Do all such symmetries survive the quantization 
procedure? If not, then the theory is said to have an anomaly. In fact, in 
most gauge theories (as well as string theory), some “classical” symmetries 
are no longer symmetries after the quantization process. Specifically, after 
quantization, certain observables may change under a group action, while 
these same observables were not changed at the classical level of group ac- 
tion. This loss of symmetry is called an anomaly to express this unwanted 
behavior of quantum field theories. On the other hand, quantum field theo- 
rists use this as an opportunity to select possible theories. If a quantum field 
theory either has no anomaly, or one that can be removed satisfactorily, it 
is a possible candidate for physics. Otherwise, the theory is unacceptable. 
The cause of such anomalies can be very complicated. From the physics 
point of view, the path integral measure is not an invariant with respect 
to an anomalous symmetry. This physical observation can be expressed in 
terms of the non-triviality of certain bundles related to non-trivial prop- 
erties of the moduli space d/B of the Yang-Mills theory, or D i f f ( M )  for 
gravitational anomalies, that is, anomalies associated with diffeomorphism 
induced metric changes. From relativity principles, metric dependent ob- 
servables must be diffeomorphism invariant. For more on the behavior of 
observables under gauge transformations see our discussion in Chapter 4 
and Chapter 5, especially 85.8. Also, Nash “ash (1991)], chapter X, pro- 
vides an excellent summary of these issues with many more details than we 
present here. 

It is standard to distinguish two kinds of anomalies: local and global. 
Refer to the discussion in Chapter 4. Global anomalies occur when the 
gauge group of the gauge theory (Yang-Mills or GRT) has more than 
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one connected component. In the following we will concentrate on the 
global gravitational anomalies which occur for non-trivial TO (Diff+ ( M ) )  
for a manifold M (Diff+ is the group of orientation-preserving diffeomor- 
phisms). Recall that global gauge transformations are originally defined 
as a group action which is constant on the base space. However, if the 
gauge group is disconnected, we can have different, but constant, gauges 
taking values in different components. Furthermore, specialize to Rieman- 
nian metrics and spheres. The argument of Cerf in section 7.8 shows that 
the isotopy classes of n-spheres (= ~o(Diff+(S~))) give the number of 
differential structures on Sn+l. Witten [Witten (1985)] fked the manifold 
to be M = S'O and restricted to the structure groups E8 x E8 or O(32) of 
string theory. He was able to show that for these gauge groups there are 
no global anomalies. 
Remark 10.1. 
The gauge group 8 is homotopy equivalent to the loop space 

S1"G = {[0,1] x . . . x [0,1] -+ G }  

10 

by an argument in [Nash (1991)], p.219. Then: 

xo(B) = xo(n"G) = xio(G) 

which is zero for G = Es x Es or O(32). 

Because of the fact 
TO (Diff+( S1O) z= 2992 

global gravitational anomalies might possibly occur. Thus, for our pur- 
poses, it is significant that these possible global gravitational anomalies on 
the 10-sphere S I O  are connected with the exotic differential structures on 
Sll. 

We now briefly sketch the outline of this anomaly problem and Wit- 
ten's resolution of it. Recall that the key element will be the behavior of 
the functional integral involving the action, as in 85.8, especially (5.33). 
The functional integral in this equation is over all values of all fields. In 
particular focus on an action such as given in (4.92) with a Dirac field, $, 
with m = 0 and a gauge fields A,  with curvature denoted in that equa- 
tion by S2. The partition function from which the expectation value of all 
observables can be obtained involves a path integration over all fields of 
exp(-S). For the Dirac part, this involves not only $ but the connection, 
A,  and a metric, p ,  on the base manifold, SIO here. It turns out that the 
Dirac part of the integration gives 
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The changes of the determinant det (g;g,) under quantization expresses 
the a n ~ m a l y . ~  Thus we study the variation of the quantized version of the 
Dirac determinant det($;$,) as the metric p changes to f . p where f is 
a global diffeomorphism belonging to some component of Diff+(Slo). To 
express the variation we consider the 1-parameter family of metrics pt = 
(1-t)p+tf.p. Recall that a gravitational anomaly is one that appears in the 
partition function when the metric is changed by a diffeomorphism.Then 
we consider the 11-dimensional manifold N with the line element ds2 = 
dt2 + ptdx2. Witten [Witten (1985)l constructed N as the total space of 
a fiber bundle over S1 with fiber SIO and structure group D i f f + ( S l o ) .  
Remember, the classification of such bundles is given by the elements of 
the group ~o(Diff+(S'~). 
Remark 10.2. 
Usually, in the classification such bundles is given by the set of homoto y classes from the base 

over S'. Thus [S', BDiff+(S'O)] is the set of equivalence classes of bundles N. Because of 
the isomorphism 7r,(G) = a,+l(BG) for all Lie groups G we obtain 

[S', BDiff+(S")] = ~1(BDi f f+ (S" ) )  = 7ro(Diff+(S")) 

and the set a ~ ( D i f f + ( S ' ~ )  classifies the bundles N. The group structure comes from the fact 

that BDiff+(S") is an H-space. 

manifold to some classifying space. The above bundle N is a Dif f P (S")-principal bundle 

That means, there are precisely 992 bundles or manifolds N parameterizing 
the exotic S1''s. To calculate the anomaly we must translate the data on 
SIO into the data on N .  Extend the Dirac operator 6 to the corresponding 
operator 4 on N with respect to the extended metric p which is nothing 
else then the family pt. Now the main result of Witten [Witten (1985)l was 
the calculation of the map 

where qq(0) is the eta invariant of the operator 4. The anomaly is absent 

if the square root form det a;$, is independent of f which means that 
qq(0) = 4k for any k E Z. With the input data of the string theory, Witten 
calculated the eta invariant to show that indeed for the gauge groups Es x E8 

or O(32) the theory is free from global anomalies. 
The general analysis of global anomalies is rather long and technical. 

Under certain conditions, however, global anomalies have a rather sim- 
ple manifestation: they show up in the existence of an instanton field in 
3Nash "ash (1991)], page 271, points out that while det(AB) = det(A)det(B) in finite 

dimensions, this is not necessarily true in the infinite dimensions of quantum space. This 
can be regarded as the source of this anomaly. 

T 
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which there are an odd number of fermion modes. In discussions of gravi- 
tational instantons, a basic fact about Yang-Mills instantons is sometimes 
overlooked. Let I be a Yang-Mills instanton in an Euclidean space M of di- 
mension d. Then there is always an anti-instanton 7 with the property that 
I+I can be reached continuously from A; = 0. Here I + I  is a pair consist- 
ing of an instanton and a widely separated anti-instanton. Because of the 
separation, the effect coming from I + 7 is the same as the effect from an 
isolated instanton. This is why instantons play a role in Yang-Mills theory. 

Consider an asymptotically Euclidean n-dimensional space with a local- 
ized topological defect which we wish to regard as a gravitational instanton. 
Except for very special cases, there does not exist an anti-instanton 7 such 
that J + 7 is diffeomorphic to R". If 7 does not exist there is no need to 
include J in path integrals. 

Now, Witten was able to determine when 7 exists. If one of the Betti 
numbers bi of J (seen as topological effect) is non-zero for 1 5 i 5 n - 1, 
then 7 cannot exist. Because of the non-negativeness of the Betti numbers, 
we obtain for bi(J + 7) = b i ( J )  + b i (7 )  L b i (J ) .  For J + 7 N R" we have 
bi ( J  + 7) = 0 and thus bi ( J )  = 0 for all 1 5 i 5 n - 1. Now, perform a one- 
point compactification X of J and thus J + 7 N s". If n is 2 or 3, 7 only 
exists if J = R" which follows from the classification of 2-manifolds and 
from the prime decomposition theorem for 3-manifolds. For n 2 4 we obtain 
from the generalized Poincari! conjecture that X must be homeomorphic 
(but not diffeomorphic) to S" if b i ( J )  = 0 for 1 5 i 5 n - 1. The existence 
of 7 is thus connected to the differential structure of S". For n = 4 it is 
not known whether there is an exotic differential structure on S4, so focus 
on n 2 5. Let r be a fixed diffeomorphism of S"-l and S: the topological 
n-sphere with the induced differential structure from r. We know that 
the order of the group ro(Diff(S"-l) is the number of non-diffeomorphic 
differential structures on S". Let T-' be the inverse diffeomorphism of r 
and let 5 f  = S:-l. Then X + x is diffeomorphic to S". If 7 is related to 7 
the way J is related to X (by removing a point and making the standard 
conformal change of metric to an asymptotically Euclidean space), then 7 
is the desired. Thus it follows that exotic spheres are the only gravitational 
instantons for which there is a sound basis within the presently understood 
framework of anomaly-free Yang-Mills fermion quantum field theory. 

At the end of this section, we briefly mention an interesting interpreta- 
tion of exotic spheres as tunneling events, just like Yang-Mills instantons. 
Let gPy be the Euclidean metric of Rn-' in some coordinate system, and 
gEy its conjugate under r (which, of course, is the Euclidean metric in the 
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transformed coordinates). Now, consider the metric 

ds2 = dt2 i- [(l - X(t))gPy + X ( t ) g ~ , ] d ~ ’ l d d ’  , 
where t is “time” and X is a strictly monotonic function with X(-oo) = 0 ,  
X(+oo) = 0. The one point compactification of this space is the exotic 
sphere St-l. Thus, the instanton connected with St-l is a tunneling event 
from g to 9”. 
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Chapter 11 

From Differential Structures to 
Operator Algebras and Geometric 

Structures 

This chapter surveys some of the interesting interplay of exotic smoothness 
with other areas of mathematics and physics. In the first section we consider 
the “change” of a differential structure on a given TOP manifold to a differ- 
ential structure on a second manifold homeomorphic but not diffeomorphic 
to the first one. Harvey and Lawson introduced the notion of singular 
bundle maps and connections to study this problem. This leads to specu- 
lations that such a process could give rise to singular string-like sources to 
the Einstein equations of General Relativity, including torsion. The next 
section deals with formal properties of a connection change and its rela- 
tion to cyclic cohomology, providing a relationship between Casson handles 
and Ocneanus string algebra. This approach motivates introduction of the 
hyperfinite 1 1  factor C* algebra 7 leading to the conjecture that the differ- 
ential structures are classified by the homotopy classes [ M ,  BGZ(7)+]. This 
conjecture may have some significance for the the 4-dimensional, smooth 
Poincark conjecture. The last section introduces a conjecture relating dif- 
ferential structures on 4-manifolds and geometric structures of homology 
3-spheres naturally embedded in them. 

11.1 Exotic Smooth Structures and General Relativity 

As discussed in chapter 10, exotic differential structures should certainly 
be included in any theory of quantum gravity. But to study the effect of 
exotic differential structures on quantum gravity we must first study the 
“change of a differential structure” on classical general relativity. We begin 
with a discussion of the notion of “changing” a smoothness structure and 
present conjectures on the effect of such a change on the tangent bundle as 
well on Einstein field equations. 

281 
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Consider two homeomorphic but non-diffeomorphic smooth 4-manifolds 
M,M’ with homeomorphism h : M 4 M’. Thus, h allows us to identify 
M and M’ in the TOP category. Since h also provides an isomorphism of 
point sets, we can say that the smoothness structure on M’ = h ( M )  is a 
change from that on M under the identification of points, m N m‘ = h(m). 
Consider a smooth map 

f : M + M ’  

which is near a homeomorphism’. Since f cannot be a diffeomorphism, 
it must have singularities, that is, there is a subset C c M on which 
the differential df : T M  --+ TM’ is not of maximal rank 4 , C = {x E 
M I ranlc(df,) < 4) so df has no inverse on this set. The following remark 
looks into this in more detail. 

Remark 11.1. 
See [Golubitsky and Guillemin (1973)l for an introduction to  the theory of singular maps. 
Begin with an equivalence relation on the set C m ( M ,  M’) of smooth maps M + M‘. De- 
fine two smooth maps, f , g  E C m ( M ,  M’) ,  to be equivalent f w g if and only if there are 
diffeomorphisms hM : M -+ M and h M ,  : M’ -+ M‘ such that the diagram 

M 1, M‘ 
hM 1 1 hM’ 

M -% M’ 

commutes. Consider the set C o ( M ,  M’)  of homeomorphisms with the compact-open topology. 
By a fundamental theorem (see [Hirsch (1976)] Theorem 2.6) the smooth maps C m ( M ,  M’)  
are a dense subset of C o ( M ,  M’) ,  i.e., in every neighborhood of a homeomorphism (in the sense 
of the compact-open topology) there exists a smooth map which approximates the homeomor- 
phism. We say that such a smooth, surjective map f : M + M’ is near a homeomorphism. 
Now we will give a criteria for these maps. Let p~ and pM, be the Pontrjagin class of the 
4-manifolds M and M’, respectively. Stingley proved in his PhD thesis [Stingley (1995)] 
a 4-dimensional version of the Riemann-Hurwitz theorem which states that  homeomorphic 
4-manifolds with a smooth map f : M + M’ near a homeomorphism fulfills the relation 

f’P,n,.ft = P M  . (11.1) 

From the Hirzebruch signature theorem this agrees with the classification result of Freedman 
[Freedman (1982)], that is, the two signatures of the intersection forms corresponding to M 
and M’ agree. 

The fundamental question of singularity theory is then how to  deform the manifolds M ,  M’ 
so as to remove the singularities of f, replacing it by f .  Such a procedure is called unfolding 
o f f  and Hironaka [Hironaka (1964)) proved the general theorem that for every singular map 
f between homeomorphic manifolds there is a sequence of operations which unfolds f .  These 
operations are usually called blow-up and blow-down. In our case f : M -+ M’ a blow-up 
leads to a map f : M#@PZ + M’#@PZ and a blow-down to f : M # m 2  -+ MI#@. Let 
C ( n )  and C(m)  be the connected sums 

C(n)  = C P # .  . . #@PZ C(m) = @p2#. . . #@p’ , 
P - 

n m 

then Hironaka’s theorem stated that the unfolding of f leads to a diffeomorphism 

f : M # C ( n ) # C ( m )  + M’#C(n)#C(m) .  

l I t  is known that all smooth maps are dense in the set of continuous maps. 
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Using the equivalence (see [Kirby (1989)l p.11) 

(S2 x SZ)#@PZ = @P2#@p2#@P2 

we obtain a diffeomorphism 

f : M # S 2  x S 2 . .  . #S2 x S 2 # C ( n  - m) + M ‘ # S Z  x S 2 # .  . . #S2 x S2#C(n  - m) . v d 

m m 

where we assume without loss of generality m < n. This is a weaker version of the famous the- 
orem of Wall about diffeomorphisms between 4-manifolds (see [Wall (1964a,b); Kirby (1989)l). 

Another important concept of use in determining the structure of the singular set C is 

that of a stable mapping. Let f E C m ( M , M ’ )  be a smooth mapping f : M + M’. Then 

f is stable if there is a neighborhood W f  of f in C m ( M , M ‘ )  (we use the compact-open 

topology for that space) such that each f’ in W f  is equivalent (in the above sense) to f. 
According to  Mather [Mather (1971)] stable smooth mappings between 4-manifolds are dense 

in the set of smooth mappings. Thus according to Stingley [Stingley (1995)l one can focus on 

stable maps between homeomorphic but non-diffeomorphic 4-manifolds. Locally such maps 

are given by stable maps between R4 + R4. For such a case there are two maps (rank 2 

singularities) with a 2-dimensional singular subset and five maps (Morin singularities or rank 

3 singularities) with a 3-dimensional singular subset. Here the “number” of maps with rank 

n singularities, means the number of equivalence classes of maps, called map germs. Stingley 

[Stingley (1995)l extended this result beyond R4 to all smooth 4-manifolds and showed that 

the rank 2 singularities can be killed by an isotopy for maps f : M --t M’ between two 

homeomorphic but non-diffeomorphic 4-manifolds. 

From this last result in the remark, we are only left with the rank 3 singu- 
larities. If the map has a local representation 

f : (z, Y, z ,  t )  (2, Y, z ,  d z ,  Y, z ,  4 )  
then the rank 3 singularities singularities look locally like the set of points, 
(2, y, z ,  t ) ,  for which all first derivatives of g(z, y, z ,  t )  vanish. That is, the 
singular set itself, which is in the domain of f ,  is defined as the locus of 
points where Vg = 0. For example, if g = 0, the rank 3 singular set is 4 
dimensional. If g = t2, the singular set is the 3-space) t = 0, etc. So, in 
general, the dimension of the rank 3 singularity set can be any number from 
0 to dim(M). For our purposes, we will restrict our considerations to rank 
3 singularities for which the singular subset C = {x E M I ~ a n l c ( d f ) ~  = 3) 
is 3-dimensional. These are exactly the Morin singularities defined by a 
map with local representation 

so that g’( t )  = 0 defines the 3-dimensional singular subset if there is only 
one isolated root, as we assume. The theorem 6.16 in chapter 6 addresses 
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the question of the singular subset of the smooth map f : M 4 MI encoded 
in the non-triviality of the h-cobordism, W ,  with boundary the disjoint 
union of M and M', each a deformation retract of W. In the theorem 6.16 
we have contractible submanifolds A1 c M ,  A2 c MI and a smoothly non- 
trivial h-cobordism V ,  called the Akbulut cork. In the following we will also 
denote the contractible pieces Al,  A2 as Akbulut corks but the meaning of 
the word will be clear from the context. Then the theorem implies2 that 
the singular set C of f has to be 3-dimensional and the boundary of the 
Akbulut cork A1 and Az. 

But the Akbulut cork A1, A2 is contractible and thus the boundary 
is homology 3-sphere, which is a compact, closed 3-manifold having the 
same homology as the 3-sphere S3. Such a 3-manifold is built from 1- 
and 2-handles and we obtain suitable surfaces as attaching regions. The 
complexity of the 3-manifold contains information about the "difference" 
between the differential structures. 

In section 9.4 we describe the change of the smooth structure by using 
a surgery along knots and links which is a modification of an embedded 
torus in a Cmanifold. But that approach leaves one important question 
open: What is the relation between the map f : M 4 MI discussed above 
and the surgery described in section 9.4? Thus we are looking for another 
description of the 3-manifold C by using a kind of fibration, also called 
branched covering. A branched covering of 3-manifolds is defined as a 
continuous map p : M 3  -+ N 3  such that there exists a one-dimensional 
subcomplex L1 in N 3  whose inverse image p- l (L ' )  is a one-dimensional 
subcomplex on the complement to which, M 3  \p-'(L'), the restriction of 
p is a covering. A central theorem in that approach states that for any 
closed, compact, 3-manifold M 3  there exists a %fold covering p : M 3  --t S3 
of the 3-sphere by this manifold branched along a knot (as the l-dimensional 
subcomplex L1). The proof of this theorem starts with a %fold covering 
S3 --t S3.  Then a solid 2-torus D2 x S1 is cut out, and glued back in 
using a non-trivial map. A simple example of a 2-dimensional branched 
covering is given by a map z E D2 -+ z2 E D2, z E @. Except for the point 
z = 0, called the branch point, this is a 2-fold covering. On 3-manifolds the 
map branches not on points but rather on closed knotted curves. The link 
between the two approaches is part of the following conjecture: 
Conjecture: For every surgery along a link L there is a map f : M -+ MI 

2This cannot be seen easily but we remark that the differential structure changes if 
we use an involution of the boundary of the Akbulut cork. Thus the boundary of the 
Akbulut cork contains the main information about the differential structure. 
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which is singular along a compact, closed 3-manifold C so that the branched 
covering of this 3-manifold branches along the lank L. 
This conjecture relates the two approaches. In general the map f : M + M' 
may not be explicitly available. However, the conjecture would provide 
a substitute approach which could be used to calculate the effect of the 
change of the smooth structure on the Levi-Civita connection. To preview 
this approach, consider a simple example of an n-fold branched cover on 
D2 given by a map z H p ( z )  = zn. The tangent bundle of the disk is 
a complex line bundle. Thus the map p induces a bundle map which has 
a singularity at z = 0. Harvey and Lawson [Harvey and Lawson (1993)] 
developed techniques to study this problem. We then extend this theory 
to the 3-dimensional case in which the singularity is located along a closed 
curve, a knot for short. This leads to a description of the non-trivial 3- 
manifold C by using a branched covering p : C -+ S3 which is determined 
by the map f via the h-cobordism. 

We proceed with the theory of singular bundle maps which we believe 
will be useful in applications to physics. 
Singular connections of complex line bundles 
Harvey and Lawson [Harvey and Lawson (1993)l described a theory of 

singular bundle maps used in [Stingley (1995)] to obtain a Riemann-Hurwitz 
type formula for stable maps between 4-manifolds. Here we use this theory 
to  obtain the change of the connection apart from a gauge transformation 
after performing a logarithmic transform of multiplicity p .  

To illustrate of the method of Harvey and Lawson, consider the special 
example of a complex line bundle. Let L1 and Lz be two non-isomorphic 
complex line bundles over the same oriented manifold M of dimension 4. 
Locally fix two frames e and f for L1 and L z ,  respectively. Consider a 
smooth bundle map a : L1 + La. If a vanishes nondegenerately we define 
its divisor to be the current Div(a)  = 6r, i.e. the delta function with 
support r, associated to the oriented codimension-2 submanifold I? = {z E 
M : a, = 0) .  Thus a vanishes on a 2-dimensional subset r c M where 
the rank of a is less than maximal, so the singular set I? is 2-dimensional. 
Let D L ~  be a connection on L2 with the corresponding 1-form defined by 
DL2 f = w2 f .  Then there is a complex function a so that the bundle map 
can be written as a(e)  = a f .  The connection 
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is the pull-back connection of D L ~ .  Outside of the singular set 

De = (a-l o D L ~  o ale (11.2) 

= ($ +w2)  e (11.3) 

determines the connection w apart from a gauge transformation. It is a 
surprising fact that Harvey and Lawson [Harvey and Lawson (1993)] were 
able to extend this formula to the singular set r as well. In particular, they 
made sense of the expression 

D i v ( ~ )  = d ($) . 

As a simple example, consider the complex function a : M --f C and define 
a 1-form !=$ on C\{O}. From the theorem of Cauchy we obtain 

for a closed curve y around z = 0 which is the boundary y = as of a 
surface S C C. Here the delta function 6s has the support supp(6~) c S. 
The pull-back via the function a leads to the expression a* (%) = which 
is a 1-form. Let SM c M be a two-dimensional submanifold of M with 
boundary y~ such that ~ ( S M )  = S, a ( y ~ )  = y. Furthermore, assume SM 
intersects I? only in a finite number of isolated points. In the following we 
will refer to SM as the “domain” of the singular form, so dorn(da/a) = SM.  
This curve is unique up to homotopy and satisfies, 

Y M  S M  

where dsM has support SM.  Note that the integral of the 1-form da/a can 
be regarded as the degree of the function a. The expression Div(a) denotes 
the curvature of the map Q which is singular on the 2-dimensional manifold 
SM i.e. a delta-function with support in SM.  

Now apply the previous techniques to calculate the connection changes 
caused by logarithmic transformations of embedded tori. Specifically, a 
logarithmic transformation of a smooth, simply connected, closed, oriented 
4-manifold M is defined by the following procedure: Let M contain a 
smoothly embedded 2-torus i : T 2  ~f M with trivial self-intersection num- 
ber. The image of the embedding i is denoted by i(T2) = F C M .  Using 

Connection change by a logarithmic transform 
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methods similar to those of Dehn surgery on knots in 3-manifo1dsl a gen- 
eralized logarithmic transformation of M along T 2  is defined by deleting a 
tubular neighborhood vF of F from M and gluing it back using a diffeo- 
morphism 4 : d ( v F )  4 d ( M  \ vF) .  The map 4 is defined by a composi- 
tion 4 = p o Q where p : d ( v F )  .+ d ( M  \ v F )  is a degree-one map and 
a! : a ( v F )  .+ d ( v F ) .  If the map cx has degree p ,  then 4 has degree p ,  and 
the manifold is M,. The manifolds M and M p  are homeomorphic but in 
general not diffeomorphic. Now calculate the connection change induced by 
the degree map of the boundary of vF.  First, define a smooth, surjective 
map f : M --t M p  by 

h Vx E M \ v F  f = { -  a Q x E v F  

where the diffeomorphism h is defined in [Griffiths and Harris (1994)] p.566 
for the case of elliptic surfaces and E : uF --t uF is the extension of Q to the 
whole tubular neighborhood vF as explained in the next remark. Outside 
of the tubular neighborhood vF,  this map is a diffeomorphism h. There the 
connection change is trivial, given by a pure gauge transformation g-ldg 
where g is the group element associated to h. So we need only consider the 
map f I v ~ .  Next, consider the tangent bundles T ( v F )  = T ( D 2 )  x T (T2)  = 
L o x T ( T 2 )  and T ( E ( v F ) )  = L,xT(T2) ,  where L,  is the tangent bundle over 
the pfold cover of D2 and Z is a map v F  --t uF defined in the remark below. 
This defines the two complex line bundles LO and L,, respectively, both 
over D2.  After an explicit description of the logarithmic transform we will 
relate this construction to the singular set of the singular, smooth function 
f : M .+ M' in the spirit of the conjecture above, the theory of branched 
coverings. From this procedure, 3-manifolds can be constructed using 2- 
dimensional submanifolds and knots. By a general position argument we 
can arrange that the tubular neighborhood of the torus D 2  x T 2  is embedded 
in the Akbulut cork A c M so that the 3-dimensional submanifold D2 x 
S1 lies on the boundary d A  = C of the Akbulut cork A. A logarithmic 
transform produces a branched covering of D2 x S1 from the trivial fibration 
D2 x S1. The covering branches along a closed 1-manifold lying at the 
center of the disk D2. But how can we describe that branching at the level 
of tangent bundles? The branched covering of a 3-manifold can be derived 
by a branched covering of a particular 2-dimensional submanifold. Thus 
we have a smooth, singular mapping f : M .+ M' with a 3-dimensional 
singular set where the essential part of the singularity is located at a 2- 
dimensional subset. In case of a logarithmic transform the essential part 
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is given by the disc D2 as base of the tubular neighborhood D2 x T2.  
The tangent bundle T(D2) is a trivial complex line bundle LO. The pfold 
mapping of that disc z H z p  for z E D2 produces a new complex line bundle 
L p .  A bundle mapping LO + Lp can be described by using the work of 
Harvey and Lawson to obtain the singular connection $. Some details of 
that construction are set out in the following remark. 

Remark 11.2. 
Identify the tubular neighborhood vF with D 2  x T2 with boundary a ( v F )  = S’ x T 2 .  Consider 
the splitting of the map # into two maps # = p o Q as defined above. The complexity of f is 
concentrated in the map a which we choose to be a(w,r) = ( w P , p r )  = ( z , p r )  E S’ x T = 
a ( v F )  where w E a D z  = S’ and T E T2. Here we are using complex notation for D 2  N @. 
Now we extend Q to the whole tubular neighborhood to obtain E : D 2  x T 2  + D 2  x T 2  as 
expression for f l v p ,  using an extension of the coordinates w,  z E S1 to  w,z E D 2 .  This map 
is non-singular outside of z = 0 and singular at  z = 0. This defines a fibration of the tubular 
neighborhood into the fibers F and the base 0’. All fibers are diffeomorphic to  T 2  except 
for the point z = 0. The fiber over z = 0 is the pfold cover of T 2  and is called the singular 
fiber S. Consider the map E well defined outside of the singular fiber. The change of the 
frames can be written 

( 1 1 . 4 )  

Let e = { &, &} and f = { &, &} be the frames of tangent bundles T(0)  = LO x T ( T 2 )  and 
T ( p )  = L ,  x T ( T z ) ,  respectively. The formula ( 1 1 . 4 )  can be expressed by dh-’(e) = a(w). f 
with a(w) = ( ~ ‘ - ~ / p ,  l / p ) .  Accordingto formula ( 1 1 . 2 )  and (11.3) we obtain for the pullback- 
connection of D T ( ~ )  

From this, we obtain 

(11.6) 

Note that the notation for the frames, e, f involves , z E D z ,  and T E T2, so the real dimension 
of sets (z,~) is four. Thus, in real notation w must be a four by four matrix, and in 11.6, % 
is a real two by two matrix. By a slight abuse of notation, identify a with the non trivial part, e. The work of Harvey and Lawson [Harvey and Lawson (1993)l helps us to interpret 
this for w = 0. From this, we see that the curvature is changed by an expression which is 
singular like Dirac’s delta function along the singular fiber S. 

Note also that the class dw/w represents the non-triviality of the embedded torus, i.e. 
the class 

i dw --d-=n 
2?F w 

represents the cohomology class R E H 2 ( X ,  Z) which is nothing else then the Poincar6 dual 

of the homology class P D ( R )  = [F] E H z ( X ,  Z) of the regular fiber F. 

This discussion relates the effect of a logarithmic transformation on the con- 
nection in a line bundle. But what can be said about such a transformation 
in terms of the four dimensional metric connection used in Einstein’s theory 
of general relativity? 
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Application to the theory of general relativity 
Now we will follow closely the article3 [Asselmeyer (1996)l and look at some 
physical questions raised by non-diffeomorphic differential structures in the 
theory of general relativity. Einstein's theory requires a given differential 
structure on a 4-manifold to express the field equations describing the grav- 
itational field. From the beginning Einstein questioned the need to find a 
separate source for gravitation which ultimately turned out to be the stress- 
energy tensor of the system. This of course. is not determined by relativity 
theory itself. So we now look to the singularities associated with change of 
differential structures as possible %ources." 

Choose two homeomorphic 4-manifolds M and MI with different dif- 
ferential structures and thus non-diffeomorphic tangential bundles T M  
and T M ' .  Consider a connection V on the tangential bundle T M  which 
produces the Riemannian curvature R ( X ,  Y ) Z  = V x V y Z  - V y V x Z  + 
V[x,y]Z. Here X ,  Y, Z E I ' ( T M )  are vector fields and I ' (TM)  denotes the 
set of all vector fields of M .  Let Ric (X ,  Y )  be the Ricci tensor, R the cur- 
vature scalar and g ( X ,  Y )  the metric defined for all X ,  Y E I '(TM). Then 
Einstein's vacuum field equations are 

1 
2 Ric(X,  Y )  - -g (X ,  Y ) R  = 0 in M (11.7) 

or simply 

Ric (X ,  Y )  = 0 .  (11.8) 

For (11.7) above we need a Levi-Civita connection, i.e. a connection l-form 
I?+ 3 = I'&dxi with i ,  j ,  k = 1,2,3,4 determined by a metric, g ( X ,  Y ) .  From 
the discussion above we know that the change of the differential structure 
can be interpreted in terms of a change (11.6) of the connection leading to 
a change in the curvature, at least for line bundles. But more is known. 
Consider the smooth, singular map f : M -, MI with a singular 3-manifold 
C .  In a neighborhood C x [0,1] of the singular 3-manifold we obtain a split- 
ting of the tangent bundle T ( C  x [0,1]) = TC@T[O, 11 into a l-dimensional 
and 3-dimensional subbundle. Such a splitting is equivalent to the exis- 
tence of a Lorentzian structure on C x [0,1]. We call the coordinates of C 
space-like coordinates and the coordinate of [0,1] time-like coordinates. In 
the following we assume that this splitting induces a foliation of the whole 
4-manifold. 

According to the discussion above (see theorem 6.16 in chapter 6), the 
change of the differential structure of M (leading to MI)  is given by a local 

3The article contains some errors in the argumentation which will be corrected now. 
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modification of the bmanifold C, i.e. the singular 3-manifold of the map 
f. Furthermore we know that this local modification is essentially defined 
on a 2-manifold. In the case of the logarithmic transform it is the disc D2 
which is modified using a pfold cover, i.e., z w z p  for z E @, IzI 5 1. Let 
0’ be the usual disc with metric ( g p v )  = diag(1,l) and p,  v = 1 , 2  in the 
coordinate system (u, w) with z = u + i w .  Then, let 0; be the pfold cover 
of D2 with metric g:, and coordinates (z,y) and z = !J?(zP),y = S ( z P ) .  
By solving the equations x = R((u + iw),) ,  y = S((u + iv),) we obtain 
functions hl(x,y)  = u,hz(z,y) = v. Then for the disc D, we obtain the 
new metric 

(11.9) 

2 
with functions bl (x ,  y) = ( % ) 2 ,  b2(x, y )  = (%) having a singularity at 
x = y = 0. Extend this to the whole tubular neighborhood D2 x T 2  to 
obtain the new metric 

(1 1.10) 

for the modified manifold D: x T 2 .  From the metric (11.10) we obtain for 
the Ricci tensor 

with the function 

By using the metric (ll.lO), we can calculate the scalar curvature AR from 
ARic. So, we obtain for p > 1 

1 1 
2 2 Ric (X ,  Y )  - -g (X ,  Y ) R  = A R i c ( X ,  Y )  - -g (X ,  Y )AR # 0 in M’. 

(11.11) 
where the right hand side of this equation represents the source of the 
gravitational field a singular energy-momentum tensor. The conservation 
law (with singularities) for this tensor follows from its construction as an 
Einstein tensor. 
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11.2 Differential Structures: From Operator Algebras to 
Geometric Structures on 3-manifolds 

In this section we present some ideas about the possible classification of 
smooth structures on 4-manifolds inspired by physical considerations. At 
this time we do not have a rigorous formulation, but the idea is to un- 
derstand the relationship between smooth structures and purely algebraic 
topics like algebraic K-theory. The main instrument is the structure the- 
orem describing the h-cobordism between two homeomorphic, but non- 
diffeomorphic 4-manifolds (see theorem 6.16). This theorem shows that 
the information about the differential structure can be localized into a con- 
tractible Cdimensional submanifold, called an Akbulut cork. The difference 
between two non-diffeomorphic differential structures is encoded in the non- 
trivial h-cobordism between these contractible submanifolds. By the work 
of Freedman we know that the non-triviality of the h-cobordism is related 
to the existence of a Casson handle defining the h-cobordism. The set of all 
Casson handles can be described by a binary tree, i.e., every path in that 
tree defines a specific Casson handle. For the smoothness change we need 
a pair of Casson handles or a pair of paths in the tree. But a pair of paths 
has the structure of an algebra 7 as was pointed out by Ocneanu. Thus 
we obtain the description of a differential structure specified by an Akbulut 
cork which is determined by the Casson handle construction. Algebraic 
methods can be used to study 7. First, this algebra can be related to the 
Clifford algebra of the infinite Euclidean space. Alternatively, this algebra 
is a C* algebra with finite valued trace (or a factor 11 for short). Then 
the differential structure is conjectured to be determined by a projective 
7-module bundle over the 4-manifold M classified by the homotopy classes 
[M,  BGL(7)+] = K 7 ( M )  and by fixing a class in [S3, BGL(7)+]  = K 3 ( 7 )  
which determines the boundary of the Akbulut cork. This last structure is 
well-known in abstract algebra as algebraic K-theory. The first structure 
K 7 ( M )  determines the Casson handle but how can we specify an element 
in K3(7)? By using homotopy theory one can show that an element of 
K3(7)  is specified by a map rl(C) -+ G L ( 7 )  from the fundamental group 
of a homology 3-sphere C (or the boundary of the Akbulut cork) to the 
linear group over the algebra 7. We know that the algebra 7 is a complex 
algebra and thus it is enough to have a representation r l ( C )  + SL(2,C). 
Such a map determines a geometric structure (see subsection 6.2.2 for the 
definition) and/or a codimension-1 foliation of the homology 3-sphere C. 

In the first subsection we construct the algebra of the change of the 
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differential structure by using formal properties of the connection in the 
tangent bundle. Then we describe a Casson handle determining the Ak- 
bulut cork by using a pair of paths in the tree. This approach leads to 
an unexpected relationship to the algebraic K-theory of a certain factor 11 
operator algebra 7. The main conjecture is then that the pair of homotopy 
classes [ M ,  BGL(7)+] and [S3,  BGL(7)+]  = K 3 ( 7 )  for a compact mani- 
fold determines the differential structures on M .  In the last subsection we 
study the classes in K 3 ( 7 )  and relate them to geometric structures and 
foliations on the boundary of the Akbulut cork. 

11.2.1 

In this subsection we will construct the operator algebra which is associated 
with the change of the differential structure. More details can be found in 
the publication [Asselmeyer-Maluga and Rose (2005)]. 

Start with a purely formal  discussion of the change of the smooth struc- 
ture by using singular maps. A singular smooth map f: M -+ M' can be 
interpreted as a change of the differential structure as discussed above. Let 
DM and D M /  be the covariant derivatives of the tangent bundles T M  and 
T M ' .  Any covariant derivative can be decomposed by D = d + w with the 
connection l-form w having values in some group such as SO(p,q) with 
p + q = 4. We get the transformation 

DM = fc lDw f* 
of DM to D M ~  with the element f* of the gauge group M -+ SO(p,q)  
induced by the differential d f :  T M  4 T M ' .  The connection l-form trans- 
forms formally by 

WM = f L 1 w ~ /  f* + f L 1 d f * .  

The inhomogeneous contribution of the change of the connection is given 
by the singular 1-form 

Differential structures and operator algebras 

'p = f L 1 d f * .  (1 1.12) 

This l-form is matrix-valued, taking values in g, the Lie algebra of the 
structure group G for the tangent bundle T M .  But this singular 1-form 
'p i s  ill-defined yet. Assuming the conjecture above, we can construct a 
1-form with domain a 2-dimensional manifold having point singularities in 
the domain. This form is given by a similar calculation as in the previous 
section using surgery along a link. Here we are not interested in the explicit 
expression of that l-form. According to our conjecture above, t o  every 
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singular l-form constructed above with %dimensional domain there is  a 
singular map with singular set a $dimensional manifold. This means we 
associate to every singular l-form with 2-dimensional domain (in the sense 
of Harvey and Lawson) a change of the smooth structure given by a smooth 
map f : M + M' with 3-dimensional singular set. Thus, we define the 
singular support singsupp(cp) of cp as 

singsupp(cp) = {x E M 1 rank(df,c) < 4) = C, 

Before proceeding with the definition of a singular l-form, recall the action 
of a diffeomorphism on a connection. Let 9:  M t M be a diffeomor- 
phism that induces a map dg:  T M  t T M ,  also a diffeomorphism. The 
application of g changes the derivative D to gTIDg* and keeps the trace 
TrM(D) (defined in the remark below) of operator D over M invariant: 
TrM(g;lDg,) = TrM(D) for all diffeomorphisms g .  The last relation is 
only true for diffeomorphisms and not for singular maps like f .  Thus in- 
stead of using the operator D ,  which is not diffeomorphism-invariant, we 
consider the diffeomorphism-invariant trace TrM (D) . 
Remark 11.3. 
The definition of the trace T r M ( D )  is not simple. We start with the remark that the covariant 
derivative Dei along the basis element ei can be made into a Dirac operator yi D e i .  Then we 
can form the square of the Dirac operator and its L2 norm with respect to spinor fields. Let 
S be the spinor (or S p i n c )  bundle over M with the set of sections r(S, M). Furthermore, let 
($1, $2) be the natural scalar product between two spinor fields $1, $2 E r(S, M) (induced 
by the Clifford product). Then we obtain for the trace 

I 
(11.13) 

The square of the Dirac operator guarantees the convergence of the integral. The heat kernel 

expansion formalism establishes the diffeomorphism invariance of the expression. 

Now define an algebraic structure on the set S of singular l-forms cp. The 
operations, sum and product, are related to the union and intersection 
of the singular supports. Start with two smooth maps with singularities, 
f : M t MI, g : M --+ M" with non-homeomorphic singular supports and 
singular l-forms by cp and $, respectively, with C ,  # C$. Now we ask 
for a new singular l-form x which defines a smooth map with singularities, 
h : M -+ MI, uniquely up to a diffeomorphism. Define the sum by 

cp + ?c, = x : cp, $ 7  x E s, SingsuPP(X) = sinWPP(cp) u singsUPP($) 1 

using the algebraic sum of one-forms. The construction of the product cp -$  
is a bit more complicated. Consider two forms (p, .1c, with their singular 
supports C,, C,. Any l-form is naturally associated with a closed curve 
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in the domain of the singular l-form: This associated curve C, is defined 
by the dual of the l-form cp. Recall that a singular l-form cp is a a l-form 
with point singularities in its domain and taking values in the Lie algebra 
of the structure group of the tangent bundle. Given a closed curve y in M 
which does not intersect the singular points in the domain of cp then we can 
integrate the l-form in the exponential 

defining the holonomy of cp (seen as connection l-form) along y. From the 
holonomy we get a representation of the fundamental group y E 7rl(C,) 
into the structure group G = SO@, q )  of the tangent bundle. The technical 
construction is given by 

where we take the mean value for the logarithm In and Tr is the trace 
with respect to a suitable representation of the structure group G. The 
corresponding curve C, of cp is determined only up to homotopy, but that 
is all that is needed in the following. Thus C, and C, are the associated 
curves to the singular forms cp and $, respectively. Furthermore, let S, be 
the surface (unique up to homotopy) with boundary as, = C, also known 
as Seifert surface. 

Because of the possible knotting of the curve C,, the Seifert surface 
can be very complicated (see [Rolfson (1976)l). The two curves C,, C, 
are linked if their corresponding surfaces intersect transversely. We denote 
linked curves by C, 0 C, and the transversely intersection by S, h S,. By 
this, we are able to define the product: The product between the singular 
l-forms cp and $ is a new singular l-form x = cp . $ with singular support 
s ingsupp(x )  = singsupp(cp) n singsupp($)  where the associated curve C, 
of the new singular form x is given by 

c, ij c, : s, m s, 
cx = { C,uC, :S,nS+=0 

The first case C,., = C, 0 C, represents a non-commutative product 
cp . # $ . cp because the link C,., = C, 0 C, is different from C,.,. 
In knot theory one calls C,., the mirror link of C,.,. In the second case 
one gets from Cq.@ = C, U C+ by using C, U C, = C, U C, the relation 



Prom Differential Structures to Operator Algebras and Geometric Structures 295 

C,.$ = C$.,. Thus, in this case the product is commutative cp.$ = $.cp. Fi- 
nally the product with a number field K is induced from the corresponding 
operation of differential forms. That completes the construction. The set of 
singular l-forms S endowed with these two operations forms 7 = (S, +, .) 
which is conjectured to provide an algebra of transitions of the differential 
structure of space-time, i.e., of transitions between non-diffeomorphic ref- 
erence frames. For each singular l-form cp E 7 there is a natural operator 
D, : 7 + 0' (7) - called the covariant derivative with respect to cp - map- 
ping an element I) of I to an l-form D,I) E n'(7) over 7 satisfying the 
Leibniz rule D,($ . x )  = (D,$) . x + $ . (D,x). The expression 

@ = D,cp, @ E n'(7) 
is called the curvature of cp. According to [Bourbaki (1989)], every algebra 
admits an universal derivative L with L2 = 0 which also makes 7 to a 
differential algebra. Furthermore, we can define formal differential forms 
Rp(7) on 7 by using L. Then, a pform is generated by cpoLcpl... Lcp, or 
1Lql . Lcp, (see [Connes (1995)l). Every two elements cp, $ E 7 define an 
element of nl(7) by D,$. By the universal property of the derivative L,  
f l l ( 7 )  is generated by forms like cpL$ or 1Lcp. Thus, also D,$ must be 
given by a form like this and we may choose 

D,$ = ( 4 1 1 , .  (11.14) 

In contrast to the usual representation we do not have a wedge product A 
and thus we cannot define the covariant derivative as D ,  = L+cpA. But we 
can choose the derivative L in such a way (using the universality property 
of L )  that the relation D,$ = cpL$ is fulfilled. Then the curvature can be 
written as @ = D,cp = cpLcp. 

Furthermore, we can introduce a trace of a singular form cp = f;ldf* 
by the integral 

Tr(cp,C) := cp < 00 
C s 

with respect to a suitable curve C. The universal derivative L extends 
the trace over 7 to all forms W(7)  by relation (11.14). Using general 
properties of L ,  one obtains the relation 

Tr(Q.9, C) = (-1)"Tr(9@, C), @ E OP('T),  9 E R'(7)  (11.15) 

for the trace on 7. The construction of one operation is unsettled: the 
star operation * which makes 7 to a *-algebra. A *-operation has to fulfill 
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the two relations: (cp*)* = cp and (cp . $)* = $* . cp*. Let cp be a singular 
l-form and C, the associated curve. We define cp*to be a l-form with curve 
C(cp*) = q, i.e. the curve C, with the opposite orientation. Then the 
first relation (cp*)* = cp is obvious. The second relation (9. $)* = $* . cp* 
is a standard fact from knot theory: the change of the orientation of a link 
transforms the link to the mirror link. Let cp.$ be a link then ( ' p a $ ) *  is the 
mirror link. By definition, $* . cp* is also the mirror link. That completes 
the construction of the algebra 7. 

Finally we obtain: 

(1) 7 is a differential *-algebra 7 = (S, +, ., L) ,  
(2) the covariant derivative D, is related to L by D,$ = pL$, 
(3) the finite trace Tr(cp, C) = Jc cp fulfills relation (11.15). 

In the sequel we will show that the algebra 7 is a Temperley-Lieb algebra 
over the complex numbers. 

A Temperley-Lieb algebra is an algebra with unit element 1 over a num- 
ber field K generated by a countable set of generators { e l ,  e2,. . .} with the 
defining relations 

ef = 7. e i ,  eiej = ejei : (i - j l  > 1, 

eiei+lei = T e i ,  ei+leiei+l = Tei+l,  er = ei (11.16) 

where T is a real number in (0,1]. By [Jones (1983)], the Temperley-Lieb 
algebra has a uniquely defined trace T r  which is normalized to lie in the 
interval [0,1]. 

This leads to: 

Let 7 be the differential *-algebra of singular 1-forms forming the set of 
transitions of the differential structure. Furthermore, let D ,  be the covari- 
ant derivative associated to the singular form cp and the universal derivative 
L of I defined by cpL$ := Dq$. Then the algebra 7 has the structure of 
a Temperley-Lieb algebra. The algebra of transitions 7 is extensible to  a 
C*-algebra comprising the algebra of field operators of particles. The com- 
plex Hilbert space is induced by 7 via the GNS construction. 

The details and motivation of the proof can be found in [Asselmeyer-Maluga 
and Rose (2005)]. In brief, the proof is carried out in the following steps: 

0 The support of the singular l-form is a 3-manifold which splits into ir- 
reducible pieces. The generators of the algebra are projection operators 
which correspond to these pieces. 
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0 It is possible to introduce an order structure on the set of generators 
by rearranging the pieces of the 3-manifold. 

0 The curvature (corresponding to a singular 1-form) for the sum and 
the product of two elements induces further relations in the algebra. 

0 The Bianchi-identity for the curvature supports the fact that the basis 
elements are projection operators. 

0 Finally, it is possible to introduce a star operation and to show that 
the number field is the set of complex numbers. 

Now we make a few remarks about the relationship between the algebra 
7 and the differential structure of the 4-manifold M .  Every smooth map 
f : M 4 M‘ with singularities produces a singular 1-form cp defined by an 
element of the algebra 7 given as a linear combination of the generators. 
The coefficients of a singular 1-form cp are a countable subset of the complex 
numbers. For example, consider a 4-manifold M and make a logarithmic 
transform to get Mpl . This procedure can be repeated to get Mplpz , . .pn .  To 
every singular fiber of Mplpz...pn corresponds a basis element ei and every 
number pi determines a coefficient a p i .  A more detailed analysis shows 
that the basis elements for Mplpz. . .pn commute with each other, i.e., we 
choose e2i-1 as generators. Then the singular 1-form cp associated to the 
map M -+ Mplp2. . .pn is given by 

n 

CP = C u p ,  e2i-1 
i=l 

Other generators are needed for the knot surgery of Fintushel and Stern (see 
section 9.4). Thus we have established a relationship between the elements 
of the algebra 7 and the differential structures on a given 4-manifold M .  

11.2.2 

Changes of differential structures can be understood in terms of the the- 
orem 6.16 on the existence of non-product subcobordism. Consider a 
5-dimensional TOP cobordism W between two homeomorphic but non- 
diffeomorphic simply-connected 4-manifolds M ,  M’ (i.e. aW = M U M’). 
Then there are (contractible) submanifolds V c M and V’ C M’ where 
M \ V and M‘ \ V‘ are diffeomorphic (i.e. the cobordism between these 
two manifolds is a DIFF product) while the subcobordism between V and 
V’ is not a DIFF product. From the topological point of view, everything 
is trivial and the cobordism W is a product. From section 6.6 we know 
the reason for this the failure of an extension of this from the TOP to the 

From Akbulut corks to operator algebras 
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DIFF category: the Whitney trick used to cancel pairs of k and k + 1 han- 
dles valid for TOP cannot be used for the DIFF case. In our situation, 
it is the 2-13-handle pair which cannot be canceled. As Freedman shows 
in the topological case, one can embed a Casson handle which contains an 
embedded topological disk in such a manner that the 2-13-handle pair can 
be canceled. Unfortunately, this disk is not smoothly embedded and so the 
2-13-handle pair is left. In some sense we can say that the DIFF difference 
between the two manifolds M ,  M‘ is given by the non-canceling 2-13-handle 
pair represented by a non-trivial Casson handle. 

According to Freedman ([Freedman (1982)l p.393), a Casson handle 
can be represented by a labeled finitely-branching tree Q with base point 
*, having all edge paths infinitely extendable away from *. Each edge has 
a label + or - and each vertex corresponds to a kinky handle where the 
self-plumbing number of that kinky handle equals the number of branches 
leaving the vertex. The sign on each branch corresponds to the sign of the 
associated self plumbing (see section 6.4 for the construction of a Casson 
handle from that data). The work of Freedman involves the construction of 
a special embedded disk (Whitney disk) inside of the Casson handle which 
is used to cancel the 2-13-handle pair topologically. The homeomorphism 
type of the Casson handle is described by re-embedding of Casson handles 
into a given one by using the re-embedding theorem showing that every 
7-stage tower embeds into a 6-stage tower. To describe the diffeomorphism 
type in this construction, Freedman ([Freedman (1982)] p.398) constructs 
another labeled tree S(Q) from the tree Q. There is a base point from 
which a single edge (called “decimal point”) emerges. The tree is binary: 
one edge enters and two edges leaving a vertex. The edges are named 
by initial segments of infinite base 3-decimals representing numbers in the 
standard “middle third” Cantor set4 C.S. c [0,1]. Each edge e of S(Q) 
carries a label re where re is an ordered finite disjoint union of 6-stage 
towers together with an ordered collection of standard loops generating the 
fundamental group. There are three constraints on the labels which lead 
to the correspondence between the f labeled tree Q and the (associated) 
r-labeled tree S(Q) .  

Now we will relate this formalism to the algebra of the previous subsec- 
4This kind of Cantor set is given by the following construction: Start with the unit 

Interval SO = [0,1] and remove from that set the middle third and set S1 = So\(1/3,2/3) 
Continue in this fashion, where Sn+l = S,\{middle thirds of subintervals of Sn}. Then 
the Cantor set C.S. is defined as C.S. = n,Sn. In other words, if we use a ternary system 
(a number system with base 3), then we can write the Cantor set as C.S. = {x : x = 
(O.ala2a3.. .) where each ai = 0 or 2). 
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tion. Start with the tree S(Q). Every path in this tree represents one tree Q 
leading to a Casson handle. Any subtree represents a Casson-handle which 
embeds in Q. Two different paths in the tree represent two homeomorphic, 
but smoothly different Casson handles. A change of the differential struc- 
ture can be defined relative to a reference Casson handle. Consider two 
paths in the tree S(Q), the reference path for the given differential struc- 
ture and a path for the new differential structure. Thus, a pair of paths 
corresponds to one element of the algebra. This algebra is isomorphic to 7 
constructed in the previous subsection. Thus we have another construction 
of 7. 

Now consider the so-called string algebra according to Ocneanu [Oc- 
neanu (19SS)l. Define a non-negative function p : Edges +. C together 
with the adjacency matrix A acting on p by 

where s(v) and r(v) denote the source and the range of an edge v. A path 
in the tree is a succession of edges = ( q , v z , .  . . , v,) where r(vi) = s(vi+l) 
and write G for the edge v with the reversed orientation. Then, a string on 
the tree is a pair of paths p = (p+,  p- ) ,  with s(p+)  = s ( p - ) ,  r (p+)  N r ( p - )  
which means that r (p+)  and r ( p - )  end on the same level in the tree and 
p+,p-  have equal lengths i.e., lp+l = Ip-I. Define an algebra String(n) 
with the linear basis of the n-strings, i.e., strings with length n and the 
additional operations: 

(P+,P-)  * ( r l + , 7 7 - )  = 4L,v+(P+7rl-)  
(P+,P-)*  = (P- ,P+)  

where . can be seen as the concatenation of paths. We normalize the func- 
tion p by p(root) = 1. Now we choose a function p in such a manner 
that 

A P  = PP (1 1.17) 
for a complex number P. Then we can construct elements e ,  in the algebra 

by 

. .  
Ivl=lwl=1 

fulfilling the algebraic relations (11.16) where T = P-’. The trace of the 
string algebra given by 



300 Exotic Smoothness and Physics 

defines on A ,  = (UString("),tr) an inner product by (z,y) = tr(zy*) 

which is, after completion, the Hilbert space L2(A,,  tr ) .  
Now consider the parameter T. Originally, Ocneanu introduced the 

string algebra to classify the splittings of modules over an operator algebra. 
Thus, to determine the parameter T we look for the simplest generating 
structure in the tree. The simplest structure in our tree is one edge which is 
connected with two other edges. This graph is represented by the following 
adjacency matrix 

n 

having eigenvalues 0, a, -a. According to our definition above, p is 
given by the greatest eigenvalue of this adjacency matrix, i.e., /3 = and 
thus r = ,8-2 = i. Then, without proof, we state that the algebra 7 is 
given by the Clifford algebra on Ro3. 

Now consider the projections en in more detail. Every en represents a 
tree with n levels, which is the same as a collection of Casson handles. All 
of these Casson handles are homeomorphic to each other. Thus every pro- 
jection represents an equivalence class of Casson handles. To get a further 
interpretation of the projection we need another important tool in Freed- 
man's proof [Freedman (1982)] of the topological equivalence of all Casson 
handles: the re-embedding theorems. Bizaca [Bizaca (1994)l presents an 
algorithm based on these theorems which explicitly calculates lower and up- 
per bounds for the number of self-intersections of Casson towers. One of the 
rules in building the tree S(Q) is that the number of self-intersections of the 
6th tower increases from level to level. By Bizaca's algorithm there is a rela- 
tionship between the number of levels and the number of self-intersections. 
In [Gompf (1984)] Gompf describes the diffeomorphism type of the Casson 
handles by considering the self-intersections of the so-called Casson disk 
embedded in the Casson handle which can be used for the Whitney trick. 
In general there are uncountably many diffeomorphism types (see [Gompf 
(1989b)I) but we can embed the Casson handle into a compact manifold 
and so we need only countably many described by these self-intersections. 
Thus, we obtain a connection between the order structure of the projec- 
tions en and the self-intersections of the Casson disk. Then the product of 
two projections eie j  is a Casson handle with a disk of i self-intersections 
which embeds in a Casson handle with a disk of j self-intersections. The 
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weighted sum a .  ei + b . ej of two projections is a disjoint union of two Cas- 
son handle having disks with i and j self-intersections, respectively. Every 
Casson handle is determined by its 6th Casson tower and the two factors 
express the self-intersections in the tower. So, if both Casson handles are 
identical, then not only the projections but also the two factors a, b must 
be identical. The only function which determines these factors is given by 
p : Edges  -+ C. 

So the most important thing seems to be the definition of the function 
p : Edges  4 C where the complex structure comes into play. In the 
tree S(Q) the edges are labeled by a 6-stage tower. We can interpret this 
function as the evaluation of the procedure of adding special embedded 
singular disks. The reason for the complex numbers comes from the fact 
that every complex line bundle over a Cmanifold is classified by the first 
Chern class given by an element in H 2 ( M ,  Z) having the Poincarh dual 
lying in H2(M, Z) represented by a disk. By definition the number of edges 
in Q from a given vertex is equal to the singular points of the disk (or the 
kinks of the kinky handle). So we define this function p by the value of the 
section of the complex line bundle in the singular point to which the edge 
corresponds. In the next subsection we will give another construction for 
this number based on global information. 

11.2.3 Algebraic K-theory and exotic smooth structures 

Now we start again with the same situation as in the previous subsec- 
tion. Consider two homeomorphic but non-diffeomorphic simply-connected 
4-manifolds M ,  M' and a 5-dimensional cobordism W (i.e. d W  = M U  MI)  
between them. Then there are (contractible) sub-manifolds V c M and 
V' c M' where M \ V and M' \ V' are diffeomorphic (i.e. the cobordism 
between these two manifolds is a DIFF product) and the sub-cobordism Y 
between V and V' is not a DIFF product. Both manifolds V, V' are con- 
tractible and have (according to Freedman [Freedman (1982)]) the bound- 
ary of a homology 3-sphere. There are many possible ways to describe this 
situation globally. As remarked above, the difference between M and M' 
is expressed by non-canceling pairs of 2-/3-handles. 

We know from the work of Freedman [Freedman (1982)] that two 
homotopy-equivalent 4-manifolds M ,  N are also homeomorphic. That 
means, if we have a space B which is chosen to be a so-called loop space 
and sets [M,  B], [ N ,  B] of homotopy classes of maps M ,  N + B then 
the homotopy-equivalence M 21 N means that the sets are isomorphic 
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[ M , B ]  21 [ N , B ]  with respect to the algebraic structure induced by the 
loop space structure of B. Now we will construct such a space B. Con- 
sider a simply-connected 4-manifold M with a contractible sub-manifold 
V containing the information about the differential structure and having 
a homology 3-sphere dV as boundary. Next we deal with the cofibration 
dV C M (dV is closed in M )  induced by the inclusion i : dV L) M with 
quotient map p : M --+ M / d V .  From standard homotopy theory we obtain 
the exact sequence 

[MIBV, B] 2 [ M ,  B] 5 [dV, B] 

which determines the set [MIBV, B] in terms of [ M ,  B] and [dV, B]. At first 
we will concentrate on the set [dV, B] and consider the I1 algebra 7 repre- 
senting pairs of Casson handles. In the topologically trivial sub-cobordism 
Y we need an embedded Casson handle for the topological trivialization. 
The interior of every Casson handle CH is diffeomorphic to the R4 and 
thus non-compact. We need a substitute for the boundary, also called a 
frontier F r ( C H ) ,  defined by Fr (CH)  = closure(closure(CH) \ C H ) .  Em- 
bed the Casson handle CH into the sub-cobordism Y in such a manner 
that the interior of CH lies in the interior of Y and the frontier F r ( C H )  
is mapped to the cobordism between the boundaries dV,BV'. The tree 
S(Q) constructed above represents the frontiers of the Casson handle Q 
(see [Freedman (1982)] p.398). In the previous subsection we constructed 
the algebra 7 with every element of the algebra representing one or more 
Casson handles. Now consider 7 c Ro the algebra 7 as a sub-algebra of 
the hyperfinite factor I1 algebra Ro with index [Ro : I] = 2 (see [Jones 
(1983)] for the definition). The hyperfinite factor Ro can be seen as a 
projective 7-module. The reason for this embedding of 7 into Ro is the 
fact that the tree is binary leading to the coefficient r = 112 (in the re- 
lations (11.16)). Thus, the set of all possible, embedded Casson handles, 
CH,  in Y can be described by a projective 7-module bundle over 8V. The 
equivalence classes of such bundles is given by the variety of group represen- 
tations n l ( d V )  -+ G L ( 7 )  up to conjugacy. Unfortunately, the differential 
structure on M depends on the structure of V .  Recall, the boundary of 
V is a homology 3-sphere. To eliminate this ambiguity, consider the map 
dV --+ B G L ( 7 )  up to homotopy induced from n l ( d V )  --+ G L ( 7 ) .  Then, 
the +-construction on both sides leads to map (dV)+  = S3 -+ BGL(T)+ or 
better to homotopy class [S3 ,  BGL(T)+] = K 3 ( 7 )  also called the algebraic 
K-theory of the ring 7 (every algebra is trivially a ring). Thus we deter- 
mine the space B above to be BGL(7)+.  This space is a loop space. Thus 
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we obtain two possible invariants of the differential structure: the group 
[ M ,  BGL(I )+]  and K3(7).  So, if the differential structure is determined 
by the Casson handle, we can conjecture: 
Conjecture: The differential structures o n  a simply-connected compact, 4- 
manifold M are determined by the homotopy classes [ M ,  BG1(7)+] and 
by the algebraic K-theory K3(7)  where 7 is the hyperfinite 1 1  factor C*- 
algebra. 

Flom a general theorem of algebraic K-theory of C*-algebras it follows 
that 

K4(7) @ Q = ~4(BG1(7)*)  @ Q = [S4, BGl(7)+] @ Q = Q 
and so if this conjecture is valid there must be infinitely many distinct 
differential structures on S4. This would provide a counter example to the 
smooth Poincark conjecture in dimension 4. The algebraic K-theory K3(T) 
can be further simplified to uncover a relationship between 4 dimensional 
differential structures and geometric structures as well as codimension-1 
foliations in 3 dimensions. Note the decomposition: 

BGl(7)’ = BGl(7) XBG~(C)+ BGl(C)+ 
i.e. the space BGI(7)+ is in some sense a “BGl(C)+-module”. In the next 
section we will see that the hyperbolic structures on the homology 3-sphere 
d V  are contained in K3(C). 

11.2.4 Geometric structures on %manifolds and exotic dif-  
ferential structures 

In this section we will partly give an answer to the question: How can we 
detect the exotic differential structure of a 4-manifold M by considering 
its boundary dM? Or better, which structure on the boundary can detect 
the exotic differential structure in the interior? Every 3-manifold has a 
unique differential structure. So, we have to look for another structure on 
the 3-manifold. 

Above we introduced the two classes [M,BGL(I )+]  = K T ( M )  and 
K3(7)  = [S3,BGL(7)+] to characterize the differential structure of M .  
Up to now we only considered the structure K 7 ( M ) .  Now we will study 
the structure K3(7)  and its main substructure K3(C). As we will see, an 
element in K3(C) is induced by a map from the boundary C = dV of the 
Akbulut cork to the group SL(2,C). This 3-manifold C is a homology 3- 
sphere. Now we consider a hyperbolic structure on this homology 3-sphere, 
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i.e. a map a : r l ( C )  4 PSL(2, C) = SO(3,l). The group SO(3, l )  is 
familiar to physicists as the Lorentz group. At the same time, this group is 
also the isometry of the hyperbolic geometry of the light cone in Minkowski 
space. This map can be lifted to CE : r l ( C )  -+ SL(2, C),  i.e. a spin structure 
on C which gives a spin bundle S. Of course there are homology 3-spheres 
which do not admit a hyperbolic structure. As an example we have the 
Poincar6 sphere which does not appear as the boundary of a smooth, con- 
tractible 4-manifold and admits only a spherical geometry. 

By homotopy theoretic manipulations, this map CE induces a map C 4 

BGl(C). Now we use the +-construction of Quillen, to define a map C+ = 
S3 -+ BGZ(C)+. The homotopy class of this map is one distinct hyperbolic 
structure on C and is related to an element of K3(C). In general, we have 
a homology 3-sphere C and a representation a : r l ( C )  -+ G L N ( ~ )  for a 
ring 7 then the pair [C, a] defines an element in K 3 ( 7 ) .  

By the vector bundle classification in chapter 5 we know that every 
SL(2,C) bundle V, over C is trivial and the space of connections of such 
bundles is given by 

Horn(r1(C),  SL(2, C ) )  = {f : r l ( C )  -+ SL(2, C) I f homomorphism} . 

Now define a twisted Dirac operator D, 

acting on the sections r(S 8 V,) of the twisted spin bundle S 8 V, where 
the bundle V, has a flat connection (i.e. the curvature vanish) defined 
with respect to a E Horn(r1(C),PSL(2,C)). Of course there is also the 
usual Dirac operator D : r(S) -+ r(S) and we define the following spectral 
invariant p(a, D )  = [ ( O ;  a,  D )  E C/Z. Let {A} and {A,} be the eigenvalues 
of D and D,, respectively. Now we define the so-called eta series by 

v(s;D) = c A- - c (-A)- v(s;cu,D) = 7)(s;Da) s E C 
R(X)>O R(X)<O 

and with h, h, as the number of vanishing eigenvalues and N as the di- 
mension of the representation a. Then the function 

h, + V ( S ;  a ,  D )  - N h  - N ~ ( s ;  D )  
2 E ( s ;  a, D )  = 

is well-defined for the value s = 0 and defines the homotopy-invariant of D 
bY 

p(a,  D )  = [ ( O ;  a,  D )  E C/Z . 
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The interpretation of this invariant is rather simple: ~ ( 0 ;  D) measures the 
asymmetry in the spectrum, i.e. the difference of the number of positive 
and negative eigenvalues. As proved by Jones and Westbury [Jones and 
Westbury (1995)l p ( ~ ,  0)  defines a map K3(C) --+ C / Z  Conversely, every 
homology 3-sphere defines an element in K3(C) by this procedure. Unfortu- 
nately, not all elements in K3(C) can be obtained in this way. But Jones and 
Westbury show that every element of finite order in K3(C) is of the form 
[C(p, q,  T),  a] with a suitable representation Q : r ~ ( C ( p ,  q, T))  + SL2(C) 
and C(p,  q, T) is the so-called Seifert homology sphere5. 

Now we consider a class in K T ( M )  = [ M , B G L ( I ) + ]  for a 4-manifold 
and a contractible 4-submanifold V with boundary dV = C defined by the 
Akbulut cork. The inclusion C L) M induces an injective map K T ( M )  -i 
KT(C) but the projection B G L ( I ) +  + BGL(C)+ leads to the surjective 
map 

where we use the functorial properties (BGL(I )+)+ = B G L ( I ) +  and 
C+ = S3. Thus we obtain a chain of maps defining a map K T ( M )  -+ 
K3(C). As we noted above, the class in K3(C) is induced by a representa- 
tion of the fundamental group r1 ( C )  of the homology 3-sphere C. Otherwise 
we know that a geometric structure on C is induced by a representation of 
the fundamental group into subgroups of SL(2, C) like PSL(2, C), S0(3),  
SL(2,R) and twisted version of them. Then, we have the following chain 
of arguments: a change of the differential structure on the 4-manifold M 
is the choice of another class in K T ( M )  which changes the class in K3(C) 
coming from another possible representation a : TI (C) -i SL(2, C), which 
is nothing other than the change of the geometric structure on C. 

Furthermore, the class in K3(C) is generated by a spectral invariant 
p ( a ; D )  of the Dirac operator. Thus from the map K 7 ( M )  + K3(C) we 
conjecture a relation between the spectral invariant p ( a ; D )  of the Dirac 
operator on C and a spectral invariant of the Dirac operator on the 4- 
manifold. Up to now, this invariant cannot determined exactly. 

But more is known: Every element of the structure K3(C) is a flat con- 
nection (i.e. vanishing curvature) A of a SL(2, C) bundle over a homology 
3-sphere C. Now we can form a 3-form = TT(A A dA) which is an 
element of the group H3(C,R). By the theory of foliations, every 1-form 
0 with d0 A 0 = 0 defines a codimension-1-foliation of C induced by the 

5C(2, 3,5) is the Poincarb 3-sphere for instance. 
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connection A by using the relation dt9 = AAB. The invariant is a cobor- 
dism invariant, i.e. two foliations with different invariants define two 
different (=non-cobordant) foliations of C .  But two different invariants 
are induced by two different elements in K3(C). 

To summarize, we hope to have provided support for the conjecture: 
Conjecture: The differential structures on a simply-connected compact, 4- 
manifold M are determined by the homotopy classes [M,  BGZ(7)+] and 
by the algebraic K - t h e o y  K3(7)  where 7 is the hyperfinite 11 factor C*- 
algebra. The  classes in K3(7)  are given by  the geometric structure and/or 
a codamension-1 foliation of a homology ,?-sphere in M determining the 
Akbulut cork of M .  
From the physical point of view, this conjecture is very interesting because 
it connects the abstract theory of differential structures with well-known 
structures in physics like operator algebras or bundle theory. Perhaps such 
speculations may provide a geometrization of quantum mechanics or more. 
We close this section, and book, which these highly conjectural remarks. 
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