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Examples of exotic stratifications

BRUCE HUGHES

LAURENCE R. TAYLOR

SHMUEL WEINBERGER

BRUCE WILLIAMS

We produce examples of manifold stratified pairs in which the lower strata do not
have neighborhoods that are mapping cylinders of fiber bundles, or even block
bundles. Moreover, the examples do not improve in this regard under stabilization
by products with tori. The examples are locally conelike and the lower strata
do have neighborhoods which are mapping cylinders of manifold approximate
fibrations. They are constructed by combining the classification of manifold
approximate fibrations with the authors’ classification of neighborhood germs.

57N80; 19J99, 55R65, 57N55, 57R80

1 Introduction

This paper is about the glue that holds together stratified spaces. Stratified spaces are
spaces that are made up out of manifold pieces; that is, one has a space X that is
decomposed into subsets, each of which is an open manifold and which “fit together
nicely.” The basic examples one has in mind are algebraic varieties and quotients of
group actions, but it is quite reasonable and occasionally useful to think of manifolds
with boundary or manifolds together with embedded (or immersed) submanifolds as
examples as well.

But, while one might have mental pictures of these examples, to some extent, just saying
“quotient of a group action” or “embedded submanifold” really begs the geometric
question. What kind of regularity shall we assume that the action or the embedding
has? The theory of Whitney stratified spaces (see, eg Whitney [44], Thom [38] and
Mather [28]) is based on modeling on the theory of smooth embedding and smooth
group actions, where one has a good bundle neighborhood (according to the tubular
neighborhood theorem). One assumes that each open manifold stratum in X has a
neighborhood, which is given a bundle structure.
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For instance, even nice locally flat topological manifolds do not necessarily have bun-
dle structures. A theory adequate for (and doubtlessly modeled on) PL topology was
introduced by Browder and Quinn [7], and is quite similar to the Whitney theory, but
essentially replaces the bundles by block bundles. We will call this an sss= strong strat-
ification structure. However, even this is not enough for topological applications: even
if one assumes that a group action is locally linear (ie each orbit has an invariant neigh-
borhood which is equivariantly homeomorphic to an open subset of a representation
space), the quotient space need not have an sss. Moreover, sss’s are not unique: had
they been, there would be no possibility for the celebrated phenomenon, discovered by
Cappell and Shaneson [9], of nonlinear similarity of linear representations; DeRham’s
original proof that linear representation spheres are not PL conjugate only made use
of the possibility of deleting in a well defined fashion open regular neighborhoods of
strata. Sss’s enable one to have a completely straightforward theory of Whitehead
torsion, and h–cobordism.

In this paper we shall be interested in weakly stratified (or homotopically stratified)
spaces, defined initially by Quinn [32], although our examples will also be CS spaces of
Siebenmann [37]. Both of these are nice topologically invariant notions, but the latter
are a bit less flexible than the former. These spaces are as topologically homogenous
as one could hope: any two points in the same component of a pure stratum can be
moved to one another by a homeomorphism of X isotopic to the identity. Typically, any
class of space defined by a local homeomorphism condition will sit in the framework,
but often compactifications of covers and similar “wild” constructions will also have
enough homological and homotopical control to fit into, at least, Quinn’s framework.

The work of Anderson and Hsiang [3], [4] (which predated Quinn’s definition, and
hence directly addresses triangulation) shows that, in some sense, the whole difference
between these theories can be attributed to the algebraic K –theory of the fundamental
groups of various links of strata in one another. Thus, for instance, in the situation of
locally flat embeddings, an sss does exist and is unique, because Wh1(e) = 0 = K̃n(e)
for n < 1.

It is a general yoga that algebraic K –theory obstructions tend to die when one takes
products with a circle; if there is a series of them one could imagine the need to take a
product of several circles: after crossing with a circle, h–cobordisms become products,
finitely dominated complexes become finite, open manifolds with tame ends can be
given (canonical) boundaries, and at the cost of using a number of circles, block bundles
become bundles (see Weiss and Williams [43]). The main result of this paper is that
even for the very simplest stratified spaces with just two strata, this fails for the issue
of a finding an sss.
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Main Theorem For every m > 5, there is a locally conelike stratified space X of
dimension m, with singular set a circle, and which has no sss (and certainly no Whitney
stratification) even after crossing with any torus. Moreover, X can be chosen so that
the singular circle possesses a mapping cylinder neighborhood.

It follows from the theory of Hughes, Taylor, Weinberger and Williams [17] that
there is no manifold M so that M × X has an sss. Our proof combines the teardrop
neighborhood theorem of [17], with the classification of approximate fibrations from
Hughes, Taylor and Williams [18], the classification of bounded concordances from
Anderson and Hsiang [2], [4], known calculations of Whitehead and K –groups, and
results of T. Lawson on inertial h–cobordisms [26].

A different approach to these results could be obtained by analogy to the theory of
Rothenberg characteristic classes from Cappell and Weinberger [8]; these were defined
in the PL context and measured the obstruction to concording a PL action with manifold
fixed point set to one which is PL homogeneous: the former all have homotopy stratified
structures and the latter are all sss’s. They take values in the (ordinary!) cohomology of
the fixed set with coefficients in the Tate cohomology of the group acting. In our setting,
the classes would be associated to the Tate cohomology of a truncated (nonconnective)
Whitehead spectrum associated to the fundamental group of the holink. Whatever
advantages there might be to such a development, brevity is not one of them; we hope
that the current treatment is both more direct and more broadly accessible.

This paper is organized as follows. The Anderson–Hsiang theory and its relation to
inertial h–cobordisms are recalled in Section 2. The theory of controlled homeomor-
phisms and the Hughes–Taylor–Williams manifold approximate fibration classification
are discussed in Section 3. That section also explains how the Hughes–Taylor–Williams
classification interacts with the classical classification of fiber bundles and the special
form that those classifications take on when the base is the circle S1 . The classifica-
tions are combined with known calculations in Section 4 in order to produce exotic
manifold approximate fibrations over S1 ; that is, manifold approximate fibrations that
are not controlled homeomorphic to fiber bundles even after euclidean stabilization.
Finally, these exotic manifold approximate fibrations are combined with the Hughes–
Taylor–Weinberger–Williams neighborhood germ classification in Section 5 in order
to produce the examples in the Main Theorem above.

Acknowledgements The first author was supported in part by NSF Grant DMS–
9971367. The second and fourth authors were supported in part by NSF Grant DMS–
0204169. The third author was supported in part by NSF Grant DMS–0204615.
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2 Anderson–Hsiang theory and inertial h–cobordisms

In this section we recall the theory of Anderson and Hsiang [2], [4] that relates bounded
concordances and bounded homeomorphisms, and give their calculation of the compo-
nents of the space of bounded concordances. This is important for us because manifold
approximate fibrations are classified by bounded homeomorphisms (see Section 3) and
neighborhood germs are classified by manifold approximate fibrations (see Section 5).
This section also contains a purely algebraic fact (Lemma 2.6) about interlocking exact
sequences that we will encounter.

For the remainder of this section, let F denote a closed connected manifold of dimension
n. Let TOPb(F×Ri) denote the simplicial set of bounded homeomorphisms on F×Ri

so that a k–simplex of TOPb(F×Ri) consists of a homeomorphism h : F×Ri×∆k →
F×Ri ×∆k such that h is fiber preserving over ∆k and bounded in the Ri –direction.
This latter condition means there exists a constant c > 0 such that p2h is c–close to
p2 where p2 : F × Ri ×∆k → Ri is projection.

Let Cb(F × Ri) denote the simplicial set of bounded concordances on F × Ri so that
a k–simplex of Cb(F×Ri) consists of a homeomorphism h : F×Ri × [0, 1]×∆k →
F×Ri× [0, 1]×∆k such that h is fiber preserving over ∆k , h| : F×Ri×{0}×∆k →
F × Ri × {0} ×∆k is the identity, and h is bounded over Ri .

A bounded concordance on F×Ri induces a bounded homeomorphism on F×Ri by
restricting the concordance to F × Ri × {1}. This defines a simplicial map

ρ : Cb(F × Ri) → TOPb(F × Ri)

by setting ρ(h) = h| : F × Ri × {1} ×∆k = F × Ri ×∆k → F × Ri × {1} ×∆k =
F × Ri ×∆k .

Euclidean stabilization induces a simplicial map

σ : TOPb(F × Ri) → TOPb(F × Ri+1); h 7→ h× idR

and, in particular, a group homomorphism π0TOPb(F×Ri) σ−→ π0TOPb(F×Ri+1) for
each i ≥ 0.

Proposition 2.1 (Anderson and Hsiang) There is a homotopy fibration sequence

Cb(F × Ri)
ρ−→ TOPb(F × Ri) σ−→ TOPb(F × Ri+1) .

In particular, there is a short exact sequence

π0Cb(F × Ri)
ρ−→ π0TOPb(F × Ri) σ−→ π0TOPb(F × Ri+1) .
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Proof This is essentially the fibration of Anderson and Hsiang [4, Lemma 9.3]. One
must use Anderson and Hsiang [2, Theorem 4] to identify Cb(F × Ri) with the fiber
in [4]. Similarly one needs a reinterpretation of TOPb(F × Ri). See Hughes, Taylor
and Williams [19, Theorem 1.2] for an explicit proof of the reinterpretation. See also
Lashof and Rothenberg [25, Section 8].

An inertial h–cobordism on F is an h–cobordism (W; ∂0W, ∂1W) with ∂0W = F and
∂1W homeomorphic to F . It is possible to define the simplicial set of h–cobordisms
on F (eg Waldhausen [39]) and the simplicial set of inertial h–cobordisms on F .
However, for this paper we only need the sets of components of these simplicial sets.
Thus, let π0hcob(F) denote the set of equivalence classes of h–cobordisms on F
such that (W; ∂0W, ∂1W) is equivalent to (W ′; ∂0W ′, ∂1W ′) if and only if there exists
a homeomorphism H : W → W ′ such that H| : ∂0W = F → ∂0W ′ = F is the
identity. The set π0Ihcob(F) of inertial h–cobordisms on F is the subset of π0hcob(F)
consisting of all classes represented by inertial h–cobordisms.

The s–cobordism theorem gives a bijection

π0hcob(F) τ−→ Wh1(Zπ1F)

provided n ≥ 5, which sends an h–cobordism (W; ∂0W, ∂1W) to the Whitehead torsion
τ (W, ∂0W) in Wh1(Zπ1F). In general, the image of π0Ihcob(F) in Wh1(Zπ1F) need
not be a subgroup (cf. Hausmann [16], Ling [27]).

We now recall the well–known region between construction (cf. Anderson and Hsiang
[2, Section 8]) which defines a function

β : π0TOPb(F × R) −→ π0Ihcob(F) .

If h : F × R → F × R is a bounded homeomorphism representing a class [h] ∈
π0TOPb(F × R), choose a L > 0 so large that h(F × {L}) ⊆ F × (0,∞). Let
W = h(F × (−∞, L]) \ F × (−∞, 0), ∂0W = F × {0} = F , and ∂1W = h(F × {L}).
Then (W; ∂0W, ∂1W) is an inertial h–cobordism on F representing a class [W] ∈
π0Ihcob(F). Set β([h]) = [W]. The function β is well–defined by the Isotopy
Extension Theorem of Edwards and Kirby [11]. One should not confuse τ

(
β(h)

)
with

the torsion of the homotopy equivalence

h1 : F = F × {0} ↪→ F × R h−→ F × R proj−−→ F .

To see the relationship between these two torsions let j : W → [0, 1] be any map
with j−1(0) = ∂0W and j−1(1) = ∂1W . Since F × {0} ↪→ F × (−∞, 0] and
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h(F × {L}) ↪→ h
(
F × [L,+∞)

)
are homotopy equivalences, so is the inclusion

i : W ↪→ F × R, and there is a homotopy equivalence of triads

γ = (proj ◦ i)× j : (W; ∂0W, ∂1W) → (F × [0, 1]; F × {0}, F × {1}) .

Therefore,

τ (h1) = τ (γ|∂1W : ∂1W → F × {1}) = τβ(h)− (−1)nτβ(h) ∈ Wh1(Zπ1F),

where · is induced from the standard involution on Zπ1F . Although the composition

π0TOPb(F × R)
β−→ π0Ihcob(F) τ−→ Wh1(Zπ1F)

need not be a group homomorphism (cf. Ling [27]), it is a crossed homomorphism; ie,
τβ([h ◦ k]) = h1]τβ([k]) + τβ([h]) for [h], [k] ∈ π0TOPb(F × R) where h1] is the
homomorphism induced by the homotopy equivalence h1 : F → F .

We will need the following version of the Alexander trick in the proof of Proposition 2.3
(cf. Hughes [21, Lemma 6.4]).

Lemma 2.2 If h : F × R → F × R is a bounded homeomorphism such that h = id
on F × (−∞, 0], then h is boundedly isotopic to idF×R .

Proof For 0 ≤ s < 1 define θs : R → R by θs(t) = t − s
s−1 . Define a bounded

isotopy H : h ' idF×R by

Hs =

{
(idF × θs)−1 ◦ h ◦ (idF × θs) if 0 ≤ s < 1

idF×R if s = 1.

Proposition 2.3 If n = dim F ≥ 4, then the sequence

π0TOP(F) σ−→ π0TOPb(F × R)
β−→ π0Ihcob(F) −→ 0

is exact in the sense that β maps the set of cosets of π0TOPb(F×R)/Im(σ) bijectively
onto π0Ihcob(F); ie

(i) If [h1], [h2] ∈ π0TOPb(F×R), then β([h1]) = β([h2]) if and only if there exists
[g] ∈ π0TOP(F) such that [h−1

2 h1] = σ([g]), and

(ii) β is surjective.

Proof (i) Let hi : F×R → F×R be bounded homeomorphisms for i = 1, 2. Choose
L > 0 such that hi(F×{L}) ⊆ F×(0,∞) so that Wi = hi(F×(−∞, L])\F×(−∞, 0) is
an h–cobordism from F = F×{0} to hi(F×{L}) and β([hi]) = [Wi] ∈ π0hcob(F) for
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i = 1, 2. If [W1] = [W2], then there exists a homeomorphism H : W1 → W2 such that
H| : F×{0} → F×{0} is the identity. In particular, Hh1(F×{1}) = h2(F×{L}). Let
g : F → F be the homeomorphism defined by h−1

2 Hh1(x, L) = (g(x), 1) ∈ F × {L}
for all x ∈ F . Extend H via the identity on F × (−∞, 0] to a homeomorphism
H̃ : (F × (−∞, 0]) ∪ W1 → (F × (−∞, 0]) ∪ W2 . Define a hybrid homeomorphism
h̃ : F × R → F × R by

h̃(x, t) =

{
H̃h1(x, t) if t ≤ L

h2(g(x), t) if t ≥ L.

According to Lemma 2.2 both h̃h−1
1 and h̃(g−1 × idR)h−1

2 are boundedly isotopic to
the identity. Thus h̃ is boundedly isotopic to h1 and to h2(g × idR) so that h−1

2 h1 is
boundedly isotopic to g× idR showing [h−1

2 h1] = σ([g]).

Conversely, if h−1
2 h1 is boundedly isotopic to g × idR for some homeomorphism

g : F → F , then h1 is boundedly isotopic to h2(g × idR). If L is large enough,
then the isotopy restricts to an isotopy of embeddings carrying h1(F × {L}) onto
h2(g(F) × {L}) = h2(F × {L}) in F × (0,∞). The Isotopy Extension Theorem [11]
shows that there is an isotopy of F × R to itself which is the identity on F × (−∞, 0]
and carries h1(F × {L}) to h2(F × {L}). In particular, there is a homeomorphism
H : W1 → W2 such that H|F×{0} is the identity. Hence [W1] = [W2] ∈ π0hcob(F).

(ii) follows from Ling [27, Proposition 3.2].

Anderson and Hsiang [2] calculated the homotopy groups of the simplicial set of
bounded concordances. We will need their calculation of the group of components.

Proposition 2.4 (Anderson–Hsiang) If n = dim F ≥ 5, then there exists a group
isomorphism

α : π0Cb(F × Ri) −→


Wh1(Zπ1F) if i = 1

K̃0(Zπ1F) if i = 2

K2−i(Zπ1F) if i > 2.

We need to recall the explicit construction of the isomorphism when i = 1,

α : π0Cb(F × R) → Wh1(Zπ1F) .

If h : F ×R× [0, 1] → F ×R× [0, 1] is a bounded concordance representing a class
[h] ∈ π0Cb(F×R), choose L > 0 so large that h(F×{L}×[0, 1]) ⊆ F×(0,∞)×[0, 1]
and let

W = h(F × (−∞, L]× [0, 1]) \ F × (−∞, 0)× [0, 1],
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∂0W = F × [0, L] × {0}, and ∂1W = h(F × (−∞, L] × {1}) \ F × (−∞, 0) × {1}.
Then (W; ∂0W, ∂1W) is a relative h–cobordism. In particular, over the boundary of
∂0W , W restricts to a product h–cobordism

(F×{0}×[0, 1]∪h(F×{L}×[0, 1]); F×{0, L}×{0}, F×{0}×{1}∪h
(
F×{L}×{1})

)
.

Define α([h]) to be the Whitehead torsion τ (W, ∂0W) ∈ Wh1
(
Zπ1(F × [0, L])

)
=

Wh1(Zπ1F).

Recall that dim F = n. Define the norm homomorphism

N : Wh1(Zπ1F) → Wh1(Zπ1F); x 7→ x + (−1)nx

where · is induced from the standard involution on Zπ1F .

Proposition 2.5 If n = dim F ≥ 5, then the following diagram commutes:

π0Cb(F × R) α−−−−→ Wh1(Zπ1F) N−−−−→ Wh1(Zπ1F)

ρ

y xτ

π0TOPb(F × R)
β−−−−→ π0Ihcob(F) ⊆−−−−→ π0hcob(F).

Proof If [h] ∈ π0Cb(F × R) adopt the notation above in the explicit description of
α so that α([h]) = τ (W, ∂0W) = x . For k = 0, 1 let ik : ∂kW → W denote the
inclusion and rk : W → ∂kW a strong deformation retraction. Then x = τ (r0). Since
(W; ∂0W, ∂1W) is a relative h–cobordism between (n + 1)–dimensional manifolds, it
follows that (r0i1)∗τ (r1) = (r0i1)∗τ (W, ∂1W) = (−1)n+1x by the duality theorem of
Milnor [29, page 394]. Thus, τ (i1) = (−1)n+1τ (i0) ∈ Wh1(Zπ1W).

Let j1 : F × {0} × {1} → W and j2 : F × {0} × {1} → ∂0W denote the inclusions
and let j3 : F × {0} × {1} → ∂0W be the map j3(z, 0, 1) = (z, 0, 0). Since ∂0W =
F × [0, L]× {0}, τ (j3) = 0.

Since τβρ([h]) is the Whitehead torsion of (∂1W, F × {0} × {1}) in Wh1(Zπ1F), it
suffices to show that

i1∗τ (j2) = τ (i0) = (−1)nτ (i0) ∈ Wh1(Zπ1W) .

The composition formula gives

τ (j1) = τ (i1j2) = i1∗τ (j2) + τ (i1) .

Since j1 ' i0j3 and τ (j3) = 0, the composition formula also gives τ (j1) = τ (i0j3) =
τ (i0). Thus

i1∗τ (j2) = τ (i0)− τ (i1) = τ (i0) + (−1)n+1τ (i0) .

A similar argument has been used by Siebenmann and Sondow [35, page 266].
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Lemma 2.6 (i) Suppose there is a diagram

Ayσ1

A′
ρ1−−−−→ B

β−−−−→ Cyσ2

C′

such that

(1) A, B, A′, C′ are groups (written additively), C is a set, and σ1, ρ1, σ2 are group
homomorphisms,

(2) A σ1−→ B
β−→ C is exact in the sense that β is surjective, and if b1, b2 ∈ B then

β(b1) = β(b2) if and only if b2 − b1 = σ1(a) for some a ∈ A,

(3) A′
ρ1−→ B σ2−→ C′ is an exact sequence of groups.

If b ∈ B, then σ2(b) ∈ Im(σ2σ1 : A → C′) if and only if β(b) ∈ Im(βρ1 : A′ → C).

(ii) Suppose further that the diagram above is extended to a diagram

Ayσ1

A′
ρ1−−−−→ B

β−−−−→ C τ−−−−→ Wyσ2

D
ρ2−−−−→ C′yσ3

E
such that

(1) A, B, A′, C′, W, D, E are abelian groups and ρ2, σ3 are group homomorphisms,

(2) τ : C → W is a set inclusion,

(3) there is a B–module structure on W which satisfies: if b1, b2 ∈ B and σ2(b1) =
σ2(b2), then b1w = b2w for all w ∈ W ,

(4) τβ : B → W is a crossed homomorphism with respect to the B–module structure
(ie , τβ(b1 + b2) = b1τβ(b2) + τβ(b1) for all b1, b2 ∈ B),

(5) τβ(−b) = −τβ(b) for all b ∈ B,
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(6) N = τβρ1 : A′ → W is a homomorphism,
(7) D

ρ2−→ C′ σ3−→ E is an exact sequence of groups.

There exists a function β̃ : Im(σ2) → W/Im(N) such that if b ∈ B, then σ3σ2(b) ∈
Im(σ3σ2σ1) if and only if the class of τβ(b) in W/Im(N) is in β̃[Im(σ2) ∩ Im(ρ2)] .

Proof (i) Suppose first that σ2(b) = σ2σ1(a) for some a ∈ A. Then the exact sequence
of groups implies that there exists a′ ∈ A′ such that ρ1(a′) = b + σ1(−a). Thus
−b + ρ1(a′) = σ1(−a) and exactness of the other sequence implies β(b) = βρ1(a′).

Conversely, suppose β(b) = βρ1(a′) for some a′ ∈ A′ . Exactness implies that
b = σ1(a) + ρ1(a′) for some a ∈ A. Thus σ2(b) = σ2σ1(a) + σ2ρ1(a′) = σ2σ1(a).

(ii) Define β̃ : Im(σ2) → W/Im(N) by β̃(x) = τβσ−1
2 (x). In order to show that β̃ is

well–defined, suppose that σ2(y1) = σ2(y2) and show that τβ(y1) − τβ(y2) ∈ Im(N).
Since ker(σ2) = Im(ρ1), it follows that τβ(y1 − y2) ∈ Im(N). Now

τβ(y1 − y2)−[τβ(y1)− τβ(y2)] = (−y2)τβ(y1)τβ(−y2)− τβ(y1) + τβ(y2)

= (−y2)τβ(y1) + τβ(−y1) = (−y1)τβ(y1) + τβ(−y1)

= τβ(y1 − y1) = 0

.

Thus, τβ(y1 − y2) = τβ(y1)− τβ(y2) showing β̃ is well–defined.

Suppose that σ3σ2(b) ∈ Im(σ3σ2σ1), say a ∈ A with σ3σ2b = σ3σ2σ1(a). Then
σ2(b)− σ2σ1(a) ∈ ker(σ3 = Imρ2 , so let d ∈ D with ρ2(d) = σ2(b)− σ2σ1(a). Thus,
σ2(b) = ρ2(d) + σ2σ1(a) and ρ2(d) ∈ Im(σ2) ∩ Im(ρ2). It follows that β̃ρ2(d) =
τβσ−1

2

(
ρ2(d)

)
= τβ

(
b − σ1(a)

)
= τβ(b) − τβ

(
σ1(a)

)
. Thus, we will be done

by showing that τβ(σ1(a) ∈ Im(N). By part (i), this is equivalent to showing that
σ2σ1(a) ∈ Im(σ2σ1), which is obviously true.

Conversely, if the class of τβ(b) in W/Im(N) is in β̃[Im(σ2) ∩ Im(ρ2)], choose
x ∈ Im(σ2) ∩ Im(ρ2) such that β̃(x) = τβ(b) + Im(N). Thus, there exists y ∈ B

such that σ2(y) = x and τβ(b) − τβ(y) ∈ Im(N). By exactness of A σ1−→ B
β−→ C

there exists a ∈ A such that σ1(a) = b − y, from which it follows that σ3σ2σ1(a) =
σ3σ2(b)− σ3σ2(y) = σ3σ2(b)− σ3σ3(x). But x ∈ Im(ρ2) = ker(σ3), so σ3σ2σ1(a) =
σ3σ2(b).

3 Controlled homeomorphisms and manifold approximate
fibrations

In this section we recall the Hughes–Taylor–Williams classification of manifold ap-
proximate fibrations, specialize that classification to base spaces S1 × Ri , and discuss
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the relationship with the classical classification of fiber bundles. The main result is
Theorem 3.7, which gives necessary and sufficient conditions for a manifold approxi-
mate fibration p : M → S1 with trivial fiber germ to be controlled homeomorphic to a
fiber bundle projection (likewise for p× idR ).

Recall that an approximate fibration is a map with the approximate homotopy lifting
property. More precisely, we say a map p : M → B is an approximate fibration if for
every commuting diagram

Z
f−−−−→ M

×0

y yp

Z × [0, 1] F−−−−→ B

there is a controlled map F̃ : Z×[0, 1]×[0, 1) → M from F to p such that F̃(x, 0, u) =
f (x) for all (x, u) ∈ Z × [0, 1). To say F̃ is a controlled map from F to p means the
function Z × [0, 1]× [0, 1] → B defined by

(z, t, u) 7→

{
pF̃(z, t, u) if u < 1

F(z, t) if u = 1

is continuous. See Hughes, Taylor and Williams [18, Section 12] for an explanation of
how this definition relates to others in the literature.

A proper map p : M → B between manifolds (without boundary) is a manifold ap-
proximate fibration if p is an approximate fibration.

A controlled homeomorphism between two maps p : M → B and p′ : M′ → B is a
one–parameter family hu : M → M′ , 0 ≤ u < 1, of homeomorphisms such that the
function M × [0, 1] → B defined by

(x, u) 7→

{
p′hu(x) if u < 1

p(x) if u = 1

is continuous.

Fiber bundles have well–defined fibers up to homeomorphism. Analogously, manifold
approximate fibrations have well–defined fiber germs up to controlled homeomorphism
(see Hughes, Taylor and Williams [18]). Recall that if p : M → B is a manifold
approximate fibration with B connected, dim B = i and dim M = n ≥ 5, then the fiber
germ of p is the manifold approximate fibration q = p| : V = p−1(Ri) → Ri where
Ri ↪→ B is an open embedding (which is orientation preserving if B is oriented). A
trivial fiber germ is the projection F × Ri → Ri for some closed manifold F .
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In Hughes, Taylor and Williams [18] manifold approximate fibrations over B with total
space of dimension greater than four are classified up to controlled homeomorphism.
This result is recalled below for the special case B = S1 × Ri and trivial fiber germ, a
case that is particularly simple for three reasons. First, the tangent bundle of B plays a
role in the classification theorem, but S1 ×Ri is parallelizable. Second, the homotopy
type of S1×Ri allows us to view homotopy classes of maps of S1×Ri into a classifying
space of a simplicial group as just the components of the group. Finally, the triviality
of the fiber germ can be replaced by bounded homeomorphisms.

First recall the classical classification of fiber bundles over S1 × Ri with fiber F . Let
Bun(S1 ×Ri)F denote the simplicial set of fiber bundles over S1 ×Ri with fiber F , so
that there exists a homotopy equivalence Bun(S1×Ri)F ' Map

(
S1, BTOP(F)

)
. Since

π0Map
(
S1, BTOP(F)

)
= π0TOP(F), there is a classifying isomorphism

c1 : π0Bun(S1 × Ri)F → π0TOP(F) .

We next recall the classification of manifold approximate fibrations over S1 ×Ri with
fiber germ F × Ri+1 → Ri+1 . Let MAF(S1 × Ri)F×Ri+1 denote the simplicial set of
manifold approximate fibrations over S1×Ri with fiber germ the projection F×Ri+1 →
Ri+1 and assume dim F+i ≥ 4. Since S1×Ri is parallelizable it follows from Hughes,
Taylor and Williams [18] that there is a homotopy equivalence MAF(S1×Ri)F×Ri+1 '
Map(S1, BTOPc(F × Ri+1)

)
where TOPc(F × Ri+1) denotes the simplicial group of

controlled homeomorphisms on F × Ri+1 . Since TOPc(F × Ri+1)
)
' TOPb(F ×

Ri+1) by Hughes, Taylor and Williams [19] and π0Map(S1, BTOPb(F × Ri+1)
)

=
π0TOPb(F × Ri+1), there is a classifying isomorphism

c2 : π0MAF(S1 × Ri)F×Ri+1 → π0TOPb(F × Ri+1) .

The next proposition records the relationship between these two classifications.

Proposition 3.1 If dim F + i ≥ 4, then the following diagram commutes:

π0Bun(S1 × Ri)F
ϕ−−−−→ π0MAF(S1 × Ri)F×Ri+1

c1

y' '
yc2

π0TOP(F) σ−−−−→ π0TOPb(F × Ri+1)

where ϕ is the forgetful map and σ is euclidean stabilization [h] 7→ [h× idRi+1].

Proof This follows from Hughes, Taylor, and Williams [22, Theorem 0.3].
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If p : M → S1 is a manifold approximate fibration with fiber germ F × R → R, then
the monodromy of p is the class c2(p) = [h] ∈ π0TOPb(F × R) with h : F × R →
F×R a bounded homeomorphism. The monodromy induces a well–defined homotopy

equivalence F = F × {0} h|−→ F × R → F which in turn induces a homomorphism
h∗ : Wh1(Zπ1F) → Wh1(Zπ1F), also called the monodromy of p.

Theorem 3.2 Let p : M → S1 be a manifold approximate fibration with fiber germ
F × R → R and monodromy [h] with n = dim F ≥ 4.

(i) The following are equivalent:

(1) p is controlled homeomorphic to a fiber bundle projection with fiber F .
(2) τβ

(
c2([p])

)
= τβ([h]) = 0 ∈ Wh1(Zπ1F).

(ii) The following are equivalent:

(1) p× idR is controlled homeomorphic to a fiber bundle projection with fiber
F .

(2) τβ
(
c2([p])

)
= τβ([h]) ∈ ImN ⊆ Wh1(Zπ1F).

(iii) There exist a subgroup G of K̃0(Zπ1F) and a function

N0 : G → Wh1(Zπ1F)/ImN

such that the following are equivalent:

(1) p× idR2 is controlled homeomorphic to a fiber bundle projection with fiber
F .

(2) The class of τβ
(
c2([p])

)
= τβ([h]) in Wh1(Zπ1F)/ImN is in N0(G).

Proof (i) follows from Propositions 2.3 and 3.1.

(ii) Consider the diagram

π0TOP(F)yσ1

π0Cb(F × R)
ρ1−−−−→ π0TOPb(F × R)

β−−−−→ π0Ihcob(F)yσ2

π0TOPb(F × R2)

where σ1, σ2 denote euclidean stabilization and ρ1, β have been defined above. Ac-
cording to Proposition 3.1, p× idR is controlled homeomorphic to a fiber bundle with
fiber F if and only if σ2c2([p]) = σ2([h]) ∈ Im(σ2σ1). By Propositions 2.1, 2.3, 2.5
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and Lemma 2.6, σ2([h]) ∈ Im(σ2σ1) if and only if β([h]) ∈ Im(βρ1) if and only if
τβ([h]) ∈ Im(N). Thus, (1) and (2) are equivalent.

(iii) The diagram above can be extended to a diagram:

π0TOP(F)yσ1

π0Cb(F × R)
ρ1−−−−→ π0TOPb(F × R)

β−−−−→ π0Ihcob(F) τ−−−−→ Wh1(Zπ1F)yσ2

π0Cb(F × R2)
ρ2−−−−→ π0TOPb(F × R2)yσ3

π0TOPb(F × R3)

As above, p× idR2 is controlled homeomorphic to a fiber bundle projection with fiber
F if and only if σ3σ2([h]) ∈ Im(σ3σ2σ1). Since π0Cb(F × R2) ∼= K̃0(Zπ1F) by
Proposition 2.4, the result will follow from Lemma 2.6(ii) once it is observed that the
action of π0TOPb(F×R) on Wh1(Zπ1F) satisfies items (3) and (5) of Lemma 2.6(ii).
The first follows from the fact that if σ2([h]) = σ2([h′]), then the induced homotopy
equivalences h1, h′1 : F → F are homotopic and, hence, h1] = h′1] . The second
follows from the explicit construction of β .

Remark 3.3 It follows from Hughes, Taylor and Williams [20] that condition 3.2(i)(1)
holds if and only if p is homotopic to a fiber bundle projection with fiber F . It seems
reasonable to conjecture that condition 3.2(ii)(1) holds if and only if p× idR is properly
homotopic to a fiber bundle projection with fiber F .

We will now prepare for a version of Theorem 3.2(i) and 3.2(ii) where we allow the
fiber of the fiber bundle projections to vary (Theorem 3.7 below). A preliminary result,
Lemma 3.5 below, shows that we do not have to worry about non-manifold fibers.

In order to establish Lemma 3.5, we need to use a product formula for Farrell’s fibering
obstruction [12, 13, 14]. Such a formula seems to be well-known (and at any rate is
easy to deduce from the product formula for Whitehead torsion), but a statement does
not appear explicitly in the literature. We take this opportunity to provide a statement.
For notation, suppose p : M → S1 is a map, where M is a closed, connected manifold,
dim M ≥ 6, p induces a surjection π1M → π1S1 , and the infinite cyclic cover M of M
is finitely dominated. Farrell’s fibering obstruction is an element F(p) ∈ Wh1(Zπ1M)
with the property that F(p) = 0 if and only if p is homotopic to a fiber bundle
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projection with manifold fiber. We will use the version of the total fibering obstruction
as exposited in Ranicki [33], which we now recall. Let ζ : M → M be a generating
covering translation and let (d : K → M, u : M → K) be a finite domination (ie, K
is a finite complex and du ' idM ). There is a natural homotopy equivalence given as
a composition

h : T(uζd) → T(ζ) → M,

where T(·) denotes the mapping torus of a map, and the fibering obstruction F(p) is
defined to be the torsion of h: F(p) := τ (p) ∈ Wh1(Zπ1M).

Lemma 3.4 (Fibering Obstruction Product Formula) Suppose M and F are closed,
connected manifolds, dim M ≥ 6, there is a map p : M → S1 inducing a surjection
p∗ : π1(M) → π1(S1) such that the infinite cyclic cover M is finitely dominated, q

is the composition q : M × F
proj−−→ M

p−→ S1 , and i : M → M × F is the inclusion
x 7→ (x, y0) for a base point point y0 ∈ F . Then the fibering obstruction of q is defined
and satisfies

F(q) = χ(F)i∗F(p) ∈ Wh1
(
Zπ1(M × F)

)
,

where χ(F) is the euler characteristic of F .

Proof If (d : K → M, u : M → K) is a finite domination of M , then

(d × idF : K × F → M × F, u× idF : M × F → K × F)

is a finite domination of the infinite cyclic cover M × F of M × F . Then F(q) is the
torsion of the composition

T(uζd)× F = T((uζd)× idF) → T(ζ × idF) = T(ζ)× F → M × F .

The required formula follows from the product formula for Whitehead torsion due to
Kwun and Szczarba [24].

Lemma 3.5

(i) If p : M → S1 is a manifold approximate fibration with m = dim M ≥ 6
and p is controlled homeomorphic to a bundle projection, then p is controlled
homeomorphic to a bundle projection with manifold fiber.

(ii) If p : M → S1 × R is a manifold approximate fibration with m = dim M ≥ 7
and p is controlled homeomorphic to a bundle projection, then p is controlled
homeomorphic to a bundle projection with manifold fiber.
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Proof (i) We may assume that p : M → S1 is a bundle projection. The fiber is a
compact ANR X such that X×R is a manifold of dimension 6. According to Hughes,
Taylor and Williams [20] it suffices to show that p is homotopic to a bundle projection
with manifold fiber; that is, we need to show that the Farrell fibering obstruction F(p)
vanishes. Let F be a closed, connected manifold such that χ(F) = 1. Thus, X×F is a

manifold and q : M×F
proj−−→ M

p−→ S1 is a fiber bundle projection with manifold fiber.
In particular, F(q) = 0. Since i∗ : Wh1(Zπ1F) → Wh1

(
Zπ1(M× F)

)
is an injection,

Lemma 3.4 implies that F(p) = 0.

(ii) We may assume that p : M → S1×R is a bundle projection. The fiber is a compact
ANR X such that X×R2 is a manifold of dimension ≥ 7. Let W = p−1(S1×{0}) and
q = p| : W → S1×{0} = S1 . It is unknown whether X×R is a manifold (cf. Daverman
[10, Problem 625]). In particular, W might not be a manifold. However, W × R is
homeomorphic to M so that W is resolvable by Quinn [31, 3.2.2]; that is, there exists
a manifold N , dim N = m − 1 ≥ 6, and there exists a cell–like map r : N → W .
Let F be a closed, connected manifold such that χ(F) = 1. Siebenmann’s cell-
like approximation theorem [36] theorem implies that there exists a homeomorphism
g : N × F → W × F (since W × F is a manifold, g arises by approximating r × idR ).

Clearly, the composition W×F
proj−−→ W

q−→ S1 is a fiber bundle projection with manifold
fiber (the fiber X×F is a manifold since X×R2 is a manifold and dim F ≥ 2). Thus,
the composition

q′ : N × F
g−→ W × F

proj−−→ W
q−→ S1

is a fiber bundle projection with manifold fiber. The map q′ is homotopic to

q′′ : N × F r×idF−−−→ W × F
proj−−→ W

q−→ S1,

which is seen to be
q′′ : N × F

proj−−→ N r−→ W
q−→ S1 .

By definition, F(q′′) = 0. Hence, by using Lemma 3.4 as above, it follows that
F(qr) = 0. Hence (by Hughes, Taylor and Williams [20]), qr : N → S1 is controlled
homeomorphic to a fiber bundle projection q̃ : N → S1 with manifold fiber. Since
p : M → S1 × R is fiber preserving homeomorphic to q × idR : W × R → S1 × R,
p is controlled homeomorphic to q × idR . Using Siebenmann’s theorem [36] again,
r×idR : N×R → W×R can be arbitrarily closely approximated by homeomorphisms,
so that q × idR is controlled homeomorphic to qr × idR : N × R → W × R. Finally,
q × idR is controlled homeomorphic to q̃ × idR , which is a bundle projection with
manifold fiber.
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Lemma 3.6 Let p : M → S1 be a manifold approximate fibration with fiber germ
F×R → R, monodromy [h : F×R → F×R], and n = dim F ≥ 4. Suppose F′ is a
closed manifold for which there is a bounded homeomorphism k : F × R → F′ × R.

(i) p is a manifold approximate fibration with fiber germ F′ × R → R and mon-
odromy [khk−1 : F′ × R → F′ × R].

(ii) If β : π0TOPb(F×R) → π0Ihcob(F) and β′ : π0TOPb(F′×R) → π0Ihcob(F′)
are the region between functions defined in section 2, then there exists x ∈
Wh1(Zπ1F) such that

τβ([h]) = (k−1)∗τβ′([khk−1]) + x− h∗(x)

where (k−1)∗ : Wh1(Zπ1F′) → Wh1(Zπ1F) is induced by the composition

F′ = F′×{0} k−1|−−→ F×R F−→. Moreover, x is represented by the torsion of the
h–cobordism associated to the bounded homeomorphism k−1 : F′×R → F×R.

Proof (i) If p is considered to have fiber germ F × R → R, then the affect of the
classifying map c2 is to turn p : M → S1 into a fiber bundle over S1 with fiber F ×R
and structure group TOPb(F×R). The monodromy h is then the classical monodromy
of this bundle. The bundle can be considered to be a bundle with fiber F′×R, structure
group TOPb(F′ ×R) and monodromy khk−1 . See Hughes, Taylor and Williams [18],
[22].

(ii) Choose L > 0 large. Let

W = (khk−1)(F′ × (−∞, L]) \ F′ × (−∞, 0) ⊆ F′ × R

so that
(W; F′ × {0}, khk−1(F′ × {L})

is an h–cobordism whose torsion is τβ′([khk−1]) . Let

Wk = k
(
F × [−L,∞)

)
\ F′ × (0,∞) ⊆ F′ × R

so that (Wk; k(F × {−L}), F′ × {0}) is an h–cobordism. Let

Wk−1 = F × (−∞, 2L] \ k−1(F′ × (−∞, L)
)

so that (Wk−1 ; k−1(F′ × {L}), F × {2L}) is an h–cobordism. Let

U = k−1Wk ∪ k−1W ∪ hWk−1 ⊆ F × R .

Note that k−1Wk ∩ k−1W = k−1(F′ × {0}), k−1W ∩ hWk−1 = hk−1(F′ × {L}),
k−1Wk ∩ hWk−1 = ∅, and that U = h(F × (−∞, 2L]) \ F × (−∞,−L) ⊆ F × R so
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that
(
U; F × {−L}, h(F × {2L})

)
is an h–cobordism with torsion τ (U, F × {−L}) =

τβ([h]) ∈ Wh1(Zπ1F). The standard sum and composition formulae imply that

τ (U, F × {−L}) =

τ (k−1Wk, F × {−L}) + (k−1)∗τ (W, F′ × {0}) + h∗(k−1)∗τ (kWk−1 , F′ × {L}).

Let x = τ (k−1Wk, F × {−L}) ∈ Wh1(Zπ1F). It is easy to see that

x + (k−1)∗τ (kWk−1 , F′ × {L}) = 0

so that τ (U, F × {−L}) = x + (k−1)∗τ (W, F′ × {0})− h∗(x) .

Theorem 3.7 Let p : M → S1 be a manifold approximate fibration with fiber germ
F × R → R and monodromy [h].

(i) If n = dim F ≥ 5, then the following are equivalent:

(1) p is controlled homeomorphic to a fiber bundle projection.

(2) τβ
(
c2([p])

)
= τβ([h]) = 0 ∈ Wh1(Zπ1F)/Im(1− h∗).

(ii) If n = dim F ≥ 6, then the following are equivalent:

(1) p× idR is controlled homeomorphic to a fiber bundle projection.

(2) τβ
(
c2([p])

)
= τβ([h]) = 0 ∈ Wh1

(
Zπ1F)/(ImN + Im(1− h∗)

)
.

Proof (i) (1) implies (2): By Lemma 3.5(i) we may assume that p is controlled
homeomorphic to a bundle projection with fiber a closed manifold F′ . By uniqueness of
fiber germs (Hughes, Taylor and Williams [18]) there exists a bounded homeomorphism
k : F × R → F′ × R. An application of Theorem 3.2(i) with F′ replacing F implies
that τβ′(c2[p]) = 0 ∈ Wh1(Zπ1F′). Now Lemma 3.6(ii) implies that τβ(c2[p]) =
τβ([h]) = x− h∗(x) for some x ∈ Wh1(Zπ1F).

(2) implies (1): If τβ([h]) = x − h∗(x) for some x ∈ Wh1(Zπ1F), choose an h–
cobordism (W; F, F′) such that x = τ (W, F). In fact, there is a bounded homeomor-
phism k : F × R → F′ × R such that W = k−1(F′ × (−∞, L]) \ F × (−∞, 0) for
some large L > 0 (this is the h–cobordism associated to k−1 ). Lemma 3.6(i) implies
that p is a manifold approximate fibration with fiber germ F′ × R → R and mon-
odromy khk−1 . It follows from Lemma 3.6(ii) that (k−1)∗τβ′([khk−1]) = 0. Hence
τβ′([khk−1]) = 0 ∈ Wh1(Zπ1F′). Finally, Theorem 3.2(i) implies that p is controlled
homeomorphic to a bundle projection with fiber F′ .

(ii) (1) implies (2): By Lemma 3.5(ii) we may assume that p × idR is controlled
homeomorphic to a bundle projection with fiber a closed manifold F′ . As in (i) there
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exists a bounded homeomorphism k : F×R → F′×R. By Lemma 3.6(ii) there exists
x ∈ Wh1(Zπ1F) such that τβ([h]) = k−1

∗ τβ′([khk−1]) + x − h∗(x). Lemma 3.6(i)
implies that p is a manifold approximate fibration with fiber germ F′ × R → R and
monodromy [khk−1]. Since p × idR is controlled homeomorphic to a fiber bundle
projection with fiber F′ , Theorem 3.2 implies that τβ′([khk−1]) = N′z for some
z ∈ Wh1(Zπ1F′) where N′ : Wh1(Zπ1F′) → Wh1(Zπ1F′) is the norm map. Thus
τβ([h]) = k−1

∗ N′z + x− h∗(x) = Nk−1
∗ z + x− h∗x .

(2) implies (1): Suppose τβ([h]) = Nz+x−h∗x . As in (i) there exist a closed manifold
F′ and a bounded homeomorphism k : F × R → F′ × R such that x is represented
by the torsion associated to k−1 via the ‘region between’ construction. Lemma 3.6(ii)
implies that τβ([h]) = k−1

∗ τβ′([khk−1]) + x − h∗x . Hence, k−1
∗ τβ′([khk−1]) = Nz

and τβ′([khk−1]) = k∗Nz = N′k−1
∗ z. Since p is a manifold approximate fibration with

fiber germ F′ × R → R and monodromy khk−1 , Theorem 3.2 implies that p× idR is
controlled homeomorphic to a fiber bundle with fiber F′ .

Remark 3.8

(i) As in Remark 3.3 it follows from Hughes, Taylor and Williams [20] that condition
3.7(i)(1) holds if and only if p is homotopic to a fiber bundle projection. It seems
reasonable to conjecture that condition 3.7(ii)(1) holds if and only if p× idR is
properly homotopic to a fiber bundle projection.

(ii) Another way to prove 3.7(i) is to identify τβ
(
c2([p])

)
with the Farrell fibering

obstruction of p.

4 Exotic manifold approximate fibrations

In this section we combine the results of the previous sections with known K –theoretic
calculations in order to produce exotic manifold approximate fibrations over S1 . These
are manifold approximate fibrations that are not controlled homeomorphic to fiber
bundle projections, even after euclidean stabilization.

Let Zq denote the finite cyclic group of order q.

Proposition 4.1

(i) If π1(F) = Zq , q > 3 is prime, and dim F = n ≥ 6 is even, then N : Wh1(Z[Zq]) →
Wh1(Z[Zq]) is not surjective, but τβ : π0TOPb(F × R) → Wh1(Z[Zq]) is sur-
jective.

Geometry & Topology XX (20XX)



1020 Bruce Hughes, Laurence R. Taylor, Shmuel Weinberger and Bruce Williams

(ii) If n ≥ 5 is odd and q > 3 is prime, then there exists a closed manifold F
such that dim F = n, π1(F) = Zq and N : Wh1(Z[Zq]) → Wh1(Z[Zq]) is not
surjective (in fact, it is the 0 homomorphism), but τβ : π0TOPb(F × R) →
Wh1(Z[Zq]) is surjective.

(iii) If q is prime, then K̃0(Z[Zq]) is a finite group and K−i(Z[Zq]) = 0 for all i > 0.
If, in addition, 5 ≤ q ≤ 19, then K̃0(Z[Zq]) = 0.

Proof Let q > 3 be a prime number. It is known that Wh1(Z[Zq]) is free abelian
of finite non–zero rank and the standard involution · acts by the identity (Bass [5],
Bass, Milnor and Serre [6], Wall [40]; see Oliver [30, esp. Ex. 1, p. 14 & Cor. 7.5,
p. 182] for an exposition). Let F be a closed manifold with dim F = n ≥ 5 and
π1(F) = Zq . Then N : Wh1(Zπ1F) → Wh1(Zπ1F) is multiplication by 2 if n is even
and multiplication by 0 if n is odd, and therefore not surjective. According to Lawson
[26, Corollaries 1,2], if n is even, π0Ihcob(F) = π0hcob(F), and if n is odd, there
exist manifolds F as above such that π0Ihcob(F) = π0hcob(F). Since Proposition 2.3
implies that β : π0TOPb(F × R) → π0Ihcob(F) = π0hcob(F) is surjective, it follows
that τβ : π0TOPb(F × R) → Wh1(Z[Zq]) is surjective. This proves (i) and (ii).

For (iii) see Rosenberg [34, pages 23, 157].

Theorem 4.2

(i) If q is a prime, 5 ≤ q ≤ 19, n ≥ 6 is even, F is any closed manifold
with π1(F) = Zq and dim F = n, then there exists a manifold approximate
fibration p : M → S1 with fiber germ F × R → R such that for all i ≥ 0,
p× idRi : M ×Ri → S1 ×Ri is not controlled homeomorphic to a fiber bundle
projection with fiber F .

(ii) If q > 3 is prime, n ≥ 5 is odd, then there exists a closed manifold F with
π1(F) = Zq and dim F = n and a manifold approximate fibration p : M → S1

with fiber germ F×R → R such that for all i ≥ 0, p× idRi : M×Ri → S1×Ri

is not controlled homeomorphic to a fiber bundle projection with fiber F .

(iii) If n ≥ 6 is even, F is any closed manifold with π1(F) = Z5 and dim F = n,
then there exists a manifold approximate fibration p : M → S1 with fiber germ
F×R → R such that for all i ≥ 0, p× idRi : M×Ri → S1×Ri is not controlled
homeomorphic to a fiber bundle projection.

(iv) If n ≥ 5 is odd, then there exists a closed manifold F with π1(F) = Z5 and
dim F = n and a manifold approximate fibration p : M → S1 with fiber germ
F×R → R such that for all i ≥ 0, p× idRi : M×Ri → S1×Ri is not controlled
homeomorphic to a fiber bundle projection.
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Proof (i) According to Proposition 3.1 we need a manifold approximate fibration
p : M → S1 with fiber germ F × R → R and monodromy [h] ∈ π0TOPb(F × R)
such that for all i ≥ 0, [h× idRi] ∈ π0TOPb(F×Ri+1) is not in Im

(
σ : π0TOP(F) →

π0TOPb(F×Ri+1)
)

. According to Propositions 2.1, 2.4, and 4.1(iii), σ : π0TOPb(F×
R2+i) → π0TOPb(F × R3+i) is injective for all i ≥ 0. Hence, it suffices to find a
manifold approximate fibration p with monodromy [h] ∈ π0TOPb(F × R) such that
[h× idR] ∈ π0TOPb(F×R2) is not in Im

(
σ : π0TOP(F) → π0TOPb(F×R2)

)
; that is,

such that p× idR is not controlled homeomorphic to a fiber bundle projection with fiber
F . According to Theorem 3.2(ii) this is equivalent to τβ([h]) 6= 0 ∈ Wh1(Zπ1F)/ImN .
Such monodromies exist by Proposition4.1(i).

(ii) This is similar to (i) except now we know only that σ : π0TOPb(F × R3+i) →
π0TOPb(F × R4+i) is injective for all i ≥ 0. Hence, it suffices to find a manifold
approximate fibration p with monodromy [h] ∈ π0TOPb(F×R) such that [h× idR2] ∈
π0TOPb(F × R3) is not in Im

(
σ : π0TOP(F) → π0TOPb(F × R3)

)
; that is, such that

p × idR2 is not controlled homeomorphic to a fiber bundle projection with fiber F .
According to Proposition 4.1(ii),(iii) Wh1(Zπ1F)/ImN = Wh1(Zπ1F) and is infinite
(cf. proof of 4.1). Hence, since 4.1(iii) implies that K̃0(Z[Zq]) is finite, the result
follows from Theorem 3.2(iii).

(iii) As in (i) it suffices to find a manifold approximate fibration p : M → S1 with fiber
germ F×R → R and monodromy [h] ∈ π0TOPb(F×R) such that p× idR is not con-
trolled homeomorphic to a fiber bundle projection. According to Theorem 3.7(ii) this
is equivalent to τβ([h]) 6= 0 ∈ Wh1

(
Zπ1F)/(ImN + Im(1− h∗)

)
. But Wh1(Zπ1F) =

Wh1(Z[Z5]) is isomorphic to Z so that h∗ = ±1 and 1 − h∗ = 0, 2. As noted in the
proof of Proposition 4.1, N = 0 so that Wh1

(
Zπ1F)/(ImN + Im(1− h∗)

)
6= 0 and the

result follows from Theorem 3.7(ii).

(iv) is similar to (iii).

5 Neighborhood germ classification and proof of the Main
Theorem

In this section we recall the classification of neighborhood germs of manifold stratified
pairs given by Hughes, Taylor, Weinberger and Williams [17]. We then combine this
neighborhood germ classification with the results on manifold approximate fibrations
given in Section 4 to prove the Main Theorem of Section 1.
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We begin by giving the definition of the special type of stratified pairs that appear in
Theorem 1.1, namely, the locally conelike manifold stratified pairs.

Let (X, A) be a pair of spaces so that A ⊆ X . Then X is said to have two strata: the
lower (or bottom) stratum A and the top stratum X \ A.

Definition 5.1 A pair (X, A) is a locally conelike manifold stratified pair provided:

(1) X is a separable metric space and A is a closed subspace of X .

(2) A and X \ A are topological manifolds with i = dim A.

(3) For each x ∈ A there exists a closed manifold Fx and an open embedding
Ri × ◦

cFx → X such that (0, v) 7→ x and Ri × {v} is mapped into A. Here,
◦
cFx

is the open cone on Fx and v is the cone point.

Locally conelike manifold stratified pairs are precisely the locally conelike TOP strat-
ified sets of Siebenmann [37] with two strata.

The main source of locally conelike manifold stratified for us arise as follows. Let
p : M → B be a manifold approximate fibration with trivial fiber germ F × Ri → Ri ,
and let X = c

◦
yl(p), the open mapping cylinder of p. Then (X, B) is a locally conelike

manifold stratified pair. For if x ∈ B and Ri is an euclidean neighborhood of x (with
0 corresponding to x), then p| : p−1(Ri) → Ri is controlled homeomorphic to the
projection p2 : F × Ri → Ri . Thus, there is a homeomorphism h : c

◦
yl(p2) → c

◦
yl(p|)

that preserves the levels of the mapping cylinders and restricts to the identity of Ri

(see Hughes, Taylor, Weinberger and Williams [17, Proposition 3.16, p. 884]). Since
c
◦
yl(p2) =

◦
c(F)×Ri and c

◦
yl(p|) is an open neighborhood of x in X , this shows that X

is locally conelike.

Even though we are interested here in locally conelike stratified pairs, the classification
theorem of Hughes, Taylor, Weinberger and Williams [17] takes place in the more
general setting of manifold stratified pairs. The relevant concepts can be found in
Quinn [32] and Weinberger [42] as well as [17], but we collect here the necessary
definitions for the convenience of the reader.

If (X, A) and (Y, B) are two pairs, then a map f : (X, A) → (Y, B) is said to be strict,
or stratum–preserving, if f (X \ A) ⊆ Y \ B and f (A) ⊆ B. The subspace A of X is
said to be forward tame if there exists a neighborhood N of A in X and a strict map
H : (N × I, A× I ∪N ×{0}) → (X, A) such that H(x, t) = x for all (x, t) ∈ A× I and
H(x, 1) = x for all x ∈ N .
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Let Maps
(
(X, A), (Y, B)

)
denote the space of strict maps with the compact–open topol-

ogy. The homotopy link of A in X is

holink(X, A) = Maps
(
([0, 1], {0}), (X, A)

)
.

Evaluation at 0 defines a map q : holink(X, A) → A which should be thought of as a
model for a normal fibration of A in X .

The pair (X, A) is said to be a homotopically stratified pair if A is forward tame in X and
if q : holink(X, A) → A is a fibration. If in addition, the fiber of q : holink(X, A) → A
is finitely dominated, then (X, A) is said to be homotopically stratified with finitely
dominated local holinks. (When we say that the fiber of q is finitely dominated and A
is not path connected, we mean that each fiber of q is finitely dominated.) If the strata
A and X \A are manifolds (without boundary), X is a locally compact separable metric
space, and (X, A) is homotopically stratified with finitely dominated local holinks, then
(X, A) is a manifold stratified pair.

We now define the set of equivalence classes of neighborhoods that is the subject of
the classification theorem of Hughes, Taylor, Weinberger and Williams [17] recalled
below. Let B be an i–manifold (without boundary) and let n ≥ 0 be a fixed integer.
A germ of a stratified neighborhood of B is an equivalence class represented by a
manifold stratified pair (X, B) with dim(X \ B) = n. Two such pairs (X, B) and (Y, B)
are germ equivalent provided that there exist open neighborhoods U and V of B in X
and Y , respectively, and a homeomorphism h : U → V such that h|B = idB .

Let p : X → Y × R be a map. The teardrop of p, denoted by X ∪p Y , is defined to be
the space with underlying set the disjoint union X q Y and topology given as follows.
First, let c : X ∪p Y → Y × (−∞,+∞] be defined by

c(x) =

{
p(x) if x ∈ X

(x,+∞) if x ∈ Y.

Then the topology on X ∪p Y is the minimal topology such that

(i) X ⊆ X ∪p Y is an open embedding, and

(ii) c is continuous.

Here is the main result from Hughes, Taylor, Weinberger and Williams [17].

Theorem 5.2 (Neighborhood Germ Classification [17, p. 876]) Let n ≥ 5 and let
B be a closed manifold. The teardrop construction defines a bijection from the set
of controlled homeomorphism classes of manifold approximate fibrations over B× R
(with total space of dimension n) to the set of germs of stratified neighborhoods of B
(with top stratum of dimension n).
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We can now give the proof of the Main Theorem (which we first restate) of Section 1.

Main Theorem For every integer m ≥ 6 there exists a locally conelike manifold
stratified pair (X, S1) with dim(X \ S1) = m such that S1 has a manifold approximate
fibration mapping cylinder neighborhood in X , but for each i ≥ 0 S1 × T i does not
have a fiber bundle mapping cylinder neighborhood in X × T i . In fact, S1 × T i does
not have a block bundle mapping cylinder neighborhood in X × T i .

Here, T i denotes the i–dimensional torus, T i = S1 × · · · S1 (i times).

Proof of Main Theorem Let X be the open mapping cylinder c
◦
yl(p) of a manifold

approximate fibration p : M → S1 constructed in Theorem 4.2(iii) or (iv). Since p has
trivial fiber germ, it follows from the remarks above that (X, S1) is a locally conelike
manifold stratified pair.

Suppose there exists i ≥ 0 such that S1 × T i had a fiber bundle mapping cylinder
neighborhood in X × T i . Then there are a closed manifold N and a fiber bundle
projection q : N → S1 × T i such that (X × T i, S1 × T i) and (c

◦
yl(q), S1 × T i) are germ

equivalent. In other words, the teardrops

((M × T i) ∪(p×idTi×idR) (S1 × T i), S1 × T i)

and
(N ∪(q×idR) (S1 × T i), S1 × T i)

are germ equivalent. It follows from Theorem 5.2 that p× idT i × idR : M× T i ×R →
S1×T i×R and q× idR : N×R → S1×T i×R are controlled homeomorphic. Form
the pull–back:

Ñ
q̃−−−−→ S1 × Riy y

N
q−−−−→ S1 × T i.

It follows from Lemma 5.3 below that p × idRi+1 : M × Ri+1 → S1 × Ri+1 and
q̃× idR : Ñ ×R → S1 ×Ri+1 are controlled homeomorphic. Since q̃× idR is a fiber
bundle projection, this contradicts the choice of p. Hence, S1 × T i does not have a
fiber bundle mapping cylinder neighborhood in X × T i .

Since block bundles with fiber F are classified by BT̃OP(F), equivalence classes of
block bundles over S1 ×Ri correspond to π0T̃OP(F). Since π0TOP(F) → π0T̃OP(F)
is surjective, the result on block bundles follows from the fiber bundle case.
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The following is an elementary lemma used in the proof above.

Lemma 5.3 Suppose p : M → B, q : N → B are two maps, α : B̃ → B is a covering
projection and there are two pull–back diagrams:

M̃
p̃−−−−→ B̃

β

y yα

M
p−−−−→ B

Ñ
q̃−−−−→ B̃

γ

y yα

N
q−−−−→ B

If p and q are controlled homeomorphic, then so are p̃ and q̃.

Proof Let ht : M → N , 0 ≤ t < 1, be a controlled homeomorphism from p to

q. Thus, M × [0, 1] → B defined by (x, t) 7→

{
qht(x) if 0 ≤ t < 1

p(x) if t = 1
is continuous.

Define g : M̃×[0, 1] → B by (x, t) 7→

{
qhtβ(x) if 0 ≤ t < 1

pβ(x) if t = 1.
Thus, g is continuous.

Since pβ = αp̃, there exists (uniquely) a map g̃ : M̃ × [0, 1] → B̃ such that g̃1 = p̃
and αg̃t = gt for all t ∈ [0, 1]. Thus, it is possible to define h̃t : M̃ → Ñ ⊆ N × B̃
by h̃t(x) =

(
htβ(x), g̃t(x)

)
for 0 ≤ t < 1. One can check that h̃t is a controlled

homeomorphism from p̃ to q̃.

Remark 5.4 (i) If (X, B) is a manifold stratified pair, it is the case that for a torus
of sufficiently high dimension, the quotient X × T/(B × T = B) does have a block
structure. Moreover, the block structure on the “links” is not arbitrary: it has some
nice transfer invariance properties. In other words, for each simplex ∆ of B one has
a nice manifold which maps to ∆ × T , with control in the T direction. (What we
have shown here is that one cannot block over simplices of B × T .) This structure
is called a STIBB1 in Weinberger [42] and is applied there to give a stable surgery
exact sequence for stratified spaces. Indeed, if one had block structures stably then the
L–cosheaves in the stable classification theorem [42, Section 6.2] would have to have
the “s” decoration (as in the “PT category” in [42, Section 6.1]) rather than the −∞
decoration that arises. The differences between these decorations are accounted for by
Tate cohomology calculations rather similar to those done here.

It is not too difficult to combine Theorem 5.2 with the classification theorem of Hughes,
Taylor and Williams [18], and the stabilization theorem of Weiss and Williams [43]

1An equivalent notion is used by Yan [45]: one has blocks over ∆ × E where E is an
Euclidean space, and the data is bounded in the E direction.
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to give a proof of the stable classification theorem for S−∞(X rel B). Using [18] the
stable germ neighborhoods are computed by maps [B, BTOPb(F × E)] which is the
same as [B, BT̃OP

b
(F × E)] by [43], the last of which is computed by bounded block

surgery using L−∞(holink). Different structures with the same germ near the singular
stratum can then be compared using ordinary rel ∞ surgery on the complement. The
result of this analysis is just a Poincaré duality away from the result as expressed in
Weinberger [42].

(ii) These examples are closely related to those constructed by Anderson [1]. In fact,
the examples in [1] are locally conelike manifold stratified pairs (X, S1) such that S1

has a manifold approximate fibration mapping cylinder neighborhood in X , but S1

does not have a fiber bundle mapping cylinder neighborhood in X . Anderson was not
concerned with the stability issues addressed here.

(iii) Husch [23] used nontrivial inertial h–cobordisms to construct exotic manifold
approximate fibrations over S1 . In fact, our Theorem 3.7(i) is just a precise formulation
of the analysis in [23]. In connection with this, it should be pointed out that a manifold
approximate fibration p : M → S1 with dim M ≥ 5 is controlled homeomorphic to a
fiber bundle projection if and only if p is homotopic to a fiber bundle projection by
Hughes, Taylor and Williams [20].

(iv) Ferry and Pedersen [15] construct interesting embeddings of S1 in Sn . However,
their examples (Sn, S1) need not be locally conelike manifold stratified pairs.

(v) Using the tables for relative class numbers in Washington [41, page 412], it is
possible to construct a few more even dimensional manifolds as in Theorem 4.2(i) for
primes q with 3 < q < 67. We do not know of other calculations which give more
manifolds as in Theorem 4.2(iii) and (iv).
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50 (1975) 9–13

[17] B Hughes, L R Taylor, S Weinberger, B Williams, Neighborhoods in stratified spaces
with two strata, Topology 39 (2000) 873–919

[18] C B Hughes, L R Taylor, E B Williams, Bundle theories for topological manifolds,
Trans. Amer. Math. Soc. 319 (1990) 1–65

[19] C B Hughes, L R Taylor, E B Williams, Bounded homeomorphisms over Hadamard
manifolds, Math. Scand. 73 (1993) 161–176

[20] C B Hughes, L R Taylor, E B Williams, Rigidity of fibrations over nonpositively
curved manifolds, Topology 34 (1995) 565–574

[21] C B Hughes, Bounded homotopy equivalences of Hilbert cube manifolds, Trans. Amer.
Math. Soc. 287 (1985) 621–643

[22] C B Hughes, L R Taylor, E B Williams, Manifold approximate fibrations are approx-
imately bundles, Forum Math. 3 (1991) 309–325

Geometry & Topology XX (20XX)



1028 Bruce Hughes, Laurence R. Taylor, Shmuel Weinberger and Bruce Williams

[23] L S Husch, Approximating approximate fibrations by fibrations, Canad. J. Math. 29
(1977) 897–913

[24] K W Kwun, R H Szczarba, Product and sum theorems for Whitehead torsion, Ann.
of Math. (2) 82 (1965) 183–190

[25] R Lashof, M Rothenberg, G-smoothing theory, from: “Algebraic and geometric
topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1”,
Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I. (1978) 211–266

[26] T C Lawson, Inertial h-cobordisms with finite cyclic fundamental group, Proc. Amer.
Math. Soc. 44 (1974) 492–496

[27] W Ling, Translations on M × R , from: “Algebraic and geometric topology (Proc.
Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2”, Proc. Sympos.
Pure Math., XXXII, Amer. Math. Soc., Providence, R.I. (1978) 167–180

[28] J N Mather, Notes on topological stability, Harvard Univ., Cambridge, photocopied
(1970)

[29] J Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358–426

[30] R Oliver, Whitehead groups of finite groups, volume 132 of London Mathematical
Society Lecture Note Series, Cambridge University Press, Cambridge (1988)

[31] F Quinn, Ends of maps. I, Ann. of Math. (2) 110 (1979) 275–331

[32] F Quinn, Homotopically stratified sets, J. Amer. Math. Soc. 1 (1988) 441–499

[33] A Ranicki, Lower K - and L-theory, volume 178 of London Mathematical Society
Lecture Note Series, Cambridge University Press, Cambridge (1992)

[34] J Rosenberg, Algebraic K -theory and its applications, volume 147 of Graduate Texts
in Mathematics, Springer-Verlag, New York (1994)

[35] L Siebenmann, J Sondow, Some homeomorphic sphere pairs that are combinatorially
distinct, Comment. Math. Helv. 41 (1966/1967) 261–272

[36] L C Siebenmann, Approximating cellular maps by homeomorphisms, Topology 11
(1972) 271–294

[37] L C Siebenmann, Deformation of homeomorphisms on stratified sets. I, II, Comment.
Math. Helv. 47 (1972) 123–136; ibid. 47 (1972), 137–163

[38] R Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969) 240–
284

[39] F Waldhausen, Algebraic K -theory of spaces, a manifold approach, from: “Current
trends in algebraic topology, Part 1 (London, Ont., 1981)”, CMS Conf. Proc. 2, Amer.
Math. Soc., Providence, R.I. (1982) 141–184

[40] C T C Wall, Norms of units in group rings, Proc. London Math. Soc. (3) 29 (1974)
593–632

[41] L C Washington, Introduction to cyclotomic fields, volume 83 of Graduate Texts in
Mathematics, second edition, Springer-Verlag, New York (1997)

Geometry & Topology XX (20XX)



Examples of exotic stratifications 1029

[42] S Weinberger, The topological classification of stratified spaces, Chicago Lectures in
Mathematics, University of Chicago Press, Chicago, IL (1994)

[43] M Weiss, B Williams, Automorphisms of manifolds and algebraic K -theory. I, K -
Theory 1 (1988) 575–626

[44] H Whitney, Local properties of analytic varieties, from: “Differential and Combina-
torial Topology (A Symposium in Honor of Marston Morse)”, Princeton Univ. Press,
Princeton, N. J. (1965) 205–244

[45] M Yan, The periodicity in stable equivariant surgery, Comm. Pure Appl. Math. 46
(1993) 1013–1040

Department of Mathematics, Vanderbilt University, Nashville TN 37240, USA

Department of Mathematics, University of Notre Dame, Notre Dame IN 46556, USA

Department of Mathematics, University of Chicago, Chicago IL 60637, USA

Department of Mathematics, University of Notre Dame, Notre Dame IN 46556, USA

bruce.hughes@vanderbilt.edu, taylor.2@nd.edu, shmuel@math.uchicago.edu,
williams.4@nd.edu

http://www.math.vanderbilt.edu/~hughescb/, http://www.nd.edu/~taylor/,
http://math.uchicago.edu/~shmuel/, http://www.nd.edu/~bruce/

Geometry & Topology XX (20XX)

mailto:bruce.hughes@vanderbilt.edu
mailto:taylor.2@nd.edu
mailto:shmuel@math.uchicago.edu
mailto:williams.4@nd.edu
http://www.math.vanderbilt.edu/~hughescb/
http://www.nd.edu/~taylor/
http://math.uchicago.edu/~shmuel/
http://www.nd.edu/~bruce/

	1 Introduction
	2 Anderson--Hsiang
	3 Controlled homeomorphisms and manifold approximate fibrations
	4 Exotic manifold approximate fibrations
	5 Neighborhood germ classification and proof of the Main Theorem
	Bibliography

