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GENERALIZED NORMAL BUNDLES 
FOR LOCALLY-FLAT IMBEDDINGS 

BY 

EDWARD FADELL(1) 

1. Introduction. Let M denote a compact differentiable manifold, not 
necessarily orientable, with fundamental class A E Hn(M; Z2). Then, there 
exists a unique class Vi & H'(M; Z2) such that 

(1) (Sqa, A) = ( Vi a, A) 

for every a E H'-'(M; Z2), and the Stiefel-Whitney classes of M, Wk, 0 < k 
_ n, are given by 

(2) Wk= E Sq'Vj 
i+j=k 

according to Wu (see [13] and [9]). 
Since (1) remains valid for compact manifolds which are not necessarily 

differentiable, Wu's formula (2) may be employed to define Stiefel-Whitney 
classes in the more general situation. Let W = E Wk denote the so-called 
total Stiefel-Whitney class of M. Then, by a simple algebraic argument W 
is a unit in the cohomology ring H*(M; Z2) thereby giving rise to a unique 
"dual" class W such that W , W = 1. If M possesses a differential struc- 
ture, then the Whitney Duality Theorem identifies W geometrically in 
terms of the normal bundle of any differentiable imbedding of M in a 
Euclidean space, Rn+k. Thus, in the differentiable case, one obtains informa- 
tion on the dimension of W, namely that Wi = 0 for i > k (in fact, for 
i ? k) if M is differentiably imbedded in Rn+k. In the nondifferentiable 
case where one defines W (purely algebraically) by the condition W , W 
= 1, it also has been shown (see Wujl13] and Haefliger [6]), at least if M 
is a complex, that M C Rn+k implies Wi = 0 for i _ k. 

The objective here is to prove a Whitney Duality Theorem in the topo- 
logical (nondifferentiable) situation, thus giving the dual classes a geo- 
metric interpretation in terms of an appropriate "normal bundle" asso- 
ciated with "locally flat" imbeddings of the topological manifold M in an 
(n + k) -manifold S. We construct first a theory of Stiefel-Whitney classes 
for topological manifolds (not necessarily compact or triangulable) using 
essentially the tangent space of Nash [10]. We then associate to every 
"locally flat" imbedding M C S a "normal fiber space" and prove the 
Whitney Duality Theorem in this setting. We include also a proof of Wu's 
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formula (2) for M compact, thus showing the equivalence of our Stiefel- 
Whitney classes with those defined by (2), in the compact case. Such an 
approach, namely the use of a normal fiber space, has certain advantages, 
in addition to avoiding triangulations and compactness. First, one can ob- 
tain certain geometric results through its use and secondly one can adapt 
the numerous techniques used in the differentiable case to the topological 
situation, with the concept of n-plane bundle being replaced by the concept 
of a generalized n-plane bundle (see ?2). 

Singular homology and cohomology is employed throughout and, unless 
otherwise clearly stated, when the coefficient group is suppressed, the co- 
efficient group of integers Z is assumed. 

2. Preliminaries. 
DEFINITION (2.1). An n-manifold Mn is a connected separable metric 

space which is locally homeomorphic to Rn (Euclidean n-space). Thus an 
n-manifold is an ANR (separable metric). 

DEFINITION (2.2). Let 0: Mn .. Mn+k denote an imbedding of the mani- 
fold Mn into another manifold Mn+k. 0 is said to be "locally flat" if for 
each p E k (Mn), there exists an open subset Up of Mn+k containing p and 
a homeomorphism fp: Rn? Up,,fp(O) = p and fI1(+(Mn)) = Rn, where 
Rn C Rn+k are those points whose last k coordinates are 0. By identifying 
Mn with O(Mn) we simply say Mn C Mn+k is a locally flat imbedding. 

DEFINITION (2.3). Let ?= (E,p, B) and Y0 = (Eo,po, B) denote fiber 
spaces in the sense of Hurewicz [8] over the same base B. Y0 is called a 
fiber subspace of Y provided Eo C E, po = pI Eo and Y admits a lifting 
function X with the additional property that X lifts paths in B into paths 
in Eo if the preassigned initial point is in Eo, i.e., if eo C Eo and wc B', 
then X(eo, w) C EI. ( , 50) = (E, Eo, p, B) will be called a fibered pair if 
(Eo,po, B) is a fiber subspace of (E,p, B), where Eo C E and po = p IEo. 
If (E, Eo, p, B) is a fibered pair, the fiber is a pair (F, Fo), where F = p `0), 
Fo= FnEo,b C B. 

Suppose ( 5, 50) = (E, Eo p, B), (Y e', ') = (E', Eo, p' B) are fibered 

pairs over the same base B. A map of fibered pairs 4': (YX, 50) - (Ye`, _b') 
is a map 4: (E, Eo) -> (E', Eo) such that p'l = p, i.e., A is fiber preserving. 
If o: (3, Y-o) _(e', Y0o) is another map of fibered pairs, then +b-- 4 

(read fiberwise homotopic) provided there exists a homotopy H: (E, Eo) 
X-I (E', Eo) such that p' (H(x, t))=p(x), x E E, 0 ? t ? 1. 

DEFINITION (2.4). (, Yo) ~j( Y, Y') (read fiber homotopy equiva- 
lent) if, and only if, there exist maps of fibered pairs 

0: (E _F1JF) T-(> , _FI F'1) : 

such that 4' fl and 44'f . Both 0 and 4' will be called fiber homotopy 
equivalences. 
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The following theorem is useful in this connection. Its proof can be con- 
structed by a simple extension of the proofs for the corresponding result 
for single fiber spaces (rather than pairs) given in [4] or [2]. 

THEOREM (2.5). Let ( .Y, 5F) = (E, Eo, p, B), ( eY', o') = (E', Eo, p ,B) 
denote fibered pairs over a connected space B which is dominated by a locally 
finite polyhedron, with respective fibers (F, FO) and (F', Fo). Suppose 0: (2, 0) 

-( eY', 50) is a map of fibered pairs such that the restriction 

,oo = 0 I (F, Fo): (F, Fo) -4 (F', Fo) 

is a homotopy equivalence of pairs. Then, 0 is a fiber homotopy equivalence. 
In fact, if t'0: (F', Fo) -* (F, FO) is a given homotopy inverse for c0, then the 
fiber homotopy inverse 41: (Y', R')(7, 5%) for o may be chosen as an 
extension of 410. 

Let us recall the concept of locally trivial fiber subspace. Let E7 

- (E, p, B, F), _F0 = (Eo, po, B, Fo) be locally trivial fiber spaces over the 
same base B, with fibers F and Fo, respectively. 5F is a locally trivial fiber 
subspace of E7 provided Eo C E, po = pI Eo and for each x E B there is an 
open set U and a homeomorphism of pairs 

ou: (UX F, UX Fo) -4 (p'(U),p'1(U) 

such that 

p r u(b, z) = b, (b, z) E U X F. 

DEFINITION (2.6). (-E, Y0) is called a locally trivial pair if YF0 is a 
locally trivial fiber subspace of R. 

PROPOSITION (2.7). (See [1].) If (E,k YF) is a locally trivial pair over a 
paracompact base B, then (2E, 27F) is a fibered pair. 

If (2E, Yo) = (E, Eo,p, B) is a fibered pair with fiber 

(F, Fo) = (p -'(bo), p-T'(bo)), bo E B, 

and if Q (B) designates the space of loops of B based at bo, then a lifting 
function X for (-F, _F,) induces, in the usual manner, an action 

X: Q(B) X H*(F, Fo; G) -H*(F, Fo; G) 

of Q(B) on H*(F, FO). This action is trivial provided X(w, h) = h, w Co (B) 
h E H*(F, Fo; ). 

DEFINITION (2.8). The fibered pair (EE, 2) = (FEo, p, B) with fiber 
(F, FO) is said to be G-orientable provided the action Q (B) X H*(F, Fo; G) 
H*(F, Fo; G) (defined above) is trivial. Orientable will mean Z-orientable. 

PROPOSITION (2.9). If (2E, _F0,p, B) is a fibered pair, with fiber (F, FO), 
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such that the base B is contractible, then (Y, -o), f(B X F, B X Fo, ir, B), 
where ir is projection of first coordinate. 

Proof. The proof is just the same as the corresponding result for single 
fiber spaces as given in [3]. 

3. Generalized bundles. 
DEFINITION (3.1). A homology n-plane bundle (n-hpb) is a fibered pair 

(YE, Y) = (E, Eo,p, B) with fiber (F, Fo) such that 

Hi(F,Fo)=O, i74n, 

Hn(F, Fo) =Z, i = n. 

An n-hpb ( <, +o) is G-orientable if ( +, <,o) is G-orientable as a fibered pair. 
DEFINITION (3.2). A generalized n-plane bundle (n-gpb) (E, 0) 

- (E, Eo, p, B) is a fibered pair with fiber (F, Fo) and the following addi- 

tional properties: 
(i) There exists a cross section v: B -4 E such that Eo = E - v(B). 
(ii) (F, Fo) - (Rn, Rn - 0), where Rn is a Euclidean n-space, Rn _ 0 is 

Rn minus the origin and - designates homotopy equivalence of pairs. 
REMARK (3.3). Not all the conditions imposed on an n-gpb are necessary 

for the results in this paper. However, a more general concept at this 
point would be rather academic in this setting. 

Let Dn C Rn denote the unit n-ball in Rn, i.e., Dn= {Rx E Rn il _ 1<} 

and let Vn denote the interior of Dn. Furthermore, let 

hn(x) = x C Rn. 

Then, hn is a homeomorphism hn: Rn .. Vn with inverse gn given by 

gn(Y) = -Y yE . 

Note that hk = hnIRk:Rk _ VI, for 1 ? k ? n. A map 7': VnX VX 'DonDn 
is obtained by setting 

(yzw) hn(gn(W) + gn(Z) -gn(Y)), w EV v, 

w, w E- aD,n 

l' induces, in the usual fashion, a map _y: Vn X Vn - GO(Dn), where Go(Dn) 
is the group of homeomorphisms of Dn (c-o topology) which are pointwise 
fixed on aDn. We list the following standard properties of ay: 

(i) y(y, Z) (y) = z, (y, Z) V' X V"; 

(ii) Y (y, y) = 1, y C V't; 

(iii) -y (y,z)IaDn= 1, (y,z) C VILX Vn. 
-y also satisfies additional properties which will be useful to us later. Let 
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Dk = Dn Rk, vk = vn n Rk, 1 - k _ n. Furthermore, let Go(Dn) denote the 
subgroup of GO(Dn) consisting of homeomorphisms which take Dk onto it- 
self. Then 

(iv) y: Vk X V- Go(Dn) C G (Dn). 
Now, let Wn-k = { y Vn,yi = 0, 1 < i < k }. Then, there are natural pro- 
jections ir: Vn - Vk, 2: Vn - Wn-k given by 

7ri(y) = rin(Yi, , Yn) = (Yl, Yk)X 

7r2(Y) = 7r2(Y, , Yn) = (Yk+l, *,Yn), 

yC Vn. Define a map Sn,k: Vn -Vn by 

(n,k(Y) = Y(0,i1(y))(1r2(y)), yE Vn. 

PROPOSITION (3.4). 0n,k - 1: (Vn, V, _ 0) _> (Vn, Vn - 0) and the origin 

O remains stable during the connecting homotopy. 

Proof. First observe that indeed n,( Vn - 0) C (Vn - 0). By direct compu- 
tation (using the explicit formulas for hn and gn above) 

in,k(Y) = A(y)irjy) + B(y)ir2(y), 

where A and B are continuous positive real functions on Vn. If y E Vn - 0, 
then the line segment joining (0,k(Y) and y necessarily avoids the origin and 
provides the required homotopy. 

Suppose now that M is an n-manifold and let U denote an open set in M 
whose closure is homeomorphic to Dn with Vn corresponding to U. Using 
part of the above material, there is a map 

ey: U X U -G(M), 

where G(M) is the space of homeomorphisms of M (c-o topology), such that 
(i) y(x,y)(x) = y, (x,y) C U X U; 
(ii) y(X,x)=1, xCU; 
(iii) Y(x, y) IM -U = 1, (x, y) (= U X U._ 

If Go(U) denotes_the space of homeomorphisms of U which are fixed on 
on A U, then Go(U) is a topological group naturally imbedded in G(M), 
since U is compact. Hence if i: G(M) -* G(M) is given by i(h) = h ', the 
function iy: U X U-- G(M) will be a map (i.e., continuous) even though 
M is not compact. 

We are now in a position to give some examples. 

PROPOSITION (3.5). Let M denote an n-manifold, A the diagonal in M X M 
and -n: M X M - M projection on the first factor. Then 

(- -4) = (M x M, M X M-a, ir, M) 
is an n-hpb and in fact a locally trivial pair with fiber (M, M - bo), bo E M. 



1965] GENERALIZED NORMAL BUNDLES 493 

Proof. Let us first observe that we merely have to show triviality at a 
fixed point bo E M. Choose an open set U such that bo E U and U is homeo- 
morphic to Dn. The local product structure at bo is given by 

(Xr-1(U),xO-(U)) -u (UX M, UX (M -bo)) 

where ou(b,y) = (b,-y(bo,b)(y)). qu is a homeomorphism since ii1, given 

by o i(b,Y) = (b, [,y(bo,b)] (y)), is a map by our above remarks on the 
map iy. 

REMARK (3.6). If M is compact, G(M) is a topological group. If Go(M) 
is the subgroup of G(M) leaving bo fixed, then Go(M) acts (effectively) 
on the fiber (M, M - bo). It is a simple matter to show that in this case both 
X and f0 are in fact Steenrod bundles with group Go(M). 

REMARK (3.7). (f,f0) is essentially the tangent microbundle of M in 
the sense of Milnor. 

Again, let M denote an n-manifold and To C M' denote those paths w 
such that w(t) = w(O), 0 < t < 1, if, and only if, t = 0. Thus, To are those 
paths which never return to their initial position (see Nash [10]). Further- 
more, let T denote To plus all the constant paths in M. Define a map 
p: T-M by p(w) = w(O), w E T. 

PROPOSITION (3.8). (X, 50) - (T, To, p, M) is an n-gpb and, in fact, a 
locally trivial pair with fiber (F, FO) having the same homotopy type as 
(Rn, Rn_ 0). 

Proof. The proof of the local product structure in (_9% ?0) is similar to 
that used in (2.10), employing the map ay. Let (F, FO) denote the fiber over 
a base point bo E M. Define a: M-- T by a(b) = b, the constant path at b. 
a is obviously a cross-section, and condition (i) for an n-gpb is satisfied. 
All that remains is to show that (F, Fo) - (Rn, Rn _ 0). This is accomplished 
as follows. Let U denote a Euclidean neighborhood of the base point bo, 
and U= Fn U', UO= Fon U. Then, by suitably shrinking paths (see 
[7], Theorem 7.2), (U, U0) - (F, Fo), where, in fact, the inclusion map 
(U, U,) C (F, FO) is a homotopy equivalence. It suffices now to show that 

(, U0) (U, U - bo). There is a map 3: (U, Us) --(U, U - bo) given by d(w) 
= w(1), and another map t: (U, U - bo) -- (U, U0) given by letting t(b) 
denote the line segment path from bo to b (there is no loss of generality 
here in assuming U = Rn and U - bo= n_ 0). Clearly, At = 1 and it is 
a simple matter to show that 0 -~ 1: (U, U0) -- (U, U0) and our proof is 
complete. 

DEFINITION (3.9). (5 50) (as in Proposition (3.8)) is called the tangent 
fiber space of the manifold M. 

REMARK (3.10). Both Nash [10] and Hu [7] showed that (To,po,M) 
was a fiber space in a sense strong enough to imply the universal covering 
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homotopy theorem. Neither seemed to observe the local product structure. 
REMARK (3.11). Let Go(M) denote the topological group in (3.5) when 

M is compact. Then Go(M) acts on the fiber (F, FO) in (X, 70). Again, it 
is a simple matter to check that 5 and SU0 are Steenrod bundles with 
group Go(M). 

There is a natural map 41: (7 ) 4o(Z ) given by 

,(tw) = (w(O),W(1)). 

When restricted to fibers, 

410 = 4I1IF: (F,FO)--(M,M- bo) 

has the following property. 

PROPOSITION (3.12). 410*: H*(F, FO) -* H*(M, M - bo) is an isomorphism. 

Proof. Let U denote a Euclidean neighborhood of bo such that the in- 
clusion map j: (U, U - bo) -* (M, M - bo) induces an isomorphism j*: 
H*(U, U - bo) -* H*(M, M - bo). It follows from the proof of (2.13) that 
the map 4: (U, U - bo) -* (F, FO), which assigns to b E U the line segment 
path from bo to b, is a homotopy equivalence. The commutativity of the 
following diagram completes the argument. 

(U, U - bo) (M,M - bo) 

(F,Fo) 

PROPOSITION (3.13). If G is any coefficient group, (},X0) is G-orientable 
if, and only if, (X, 50) is G-orientable. 

Proof. Let X', X' denote lifting functions for (5, Y0) and (X,X0), re- 
spectively, and let w E Q(B) denote a loop based at bo. Define wI: (F, Fo) 

(F, Fo) and w": (M, M- bo) (M, M- bo) by 

o/(y) = '(y, w) (1), y E F, 

w" (Z) = X" (Z,W) (1), z E M. 

Then, the following diagram (using Proposition 1 of [121) is homotopy 
commutative 

(F, Fo) - (F, Fo) 

I/o { 
{~o 

(M, M - bo) - (M, M - bo). 

Hence, at the homology level wc'410* = 410* Since 41o* is an isomorphism, 
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it follows that wc" is the identity homomorphism if, and only if, W4 is. Thus, 
the action of Q(B) on H*(F, Fo; G) is trivial if, and only if, the action of 
o(B) on H*(M, M - bo; G) is trivial, and our result follows. 

DEFINITION (3.14). A manifold M is orientable if the n-hpb (k, f0) is 
orientable. 

REMARK (3.15). The above definition is justified since geometrically it 
means that when a generator g of H*(M, M - bo) is "carried" around a 
loop based at bo, we "return" to g. It is easy to show that this definition 
is equivalent to others usually employed (e.g. the sheaf-theoretic definition 
or the definition of orientable in the triangulated case). 

PROPOSITION (3.16). A manifold M is orientable if, and only if, its tangent 
fiber space (J7, Y0) is orientable as an n-gpb. 

Suppose that the n-manifold M possesses a differential structure and let 
= (E, q, M) denote the tangent bundle of M and tf = (E, qo, M), qo 

-qI EO, the sub-bundle of nonzero vectors. Then, (SW, S) is clearly an 
n-gpb, in fact, the fiber is precisely (Rn, Rn _ 0). It is known, Nash [10], 
that i?O is fiber homotopy equivalent to 50 and the same techniques show 
the following. 

PROPOSITION (3.17). (5, X0) >f(S -). 

REMARK (3.18). Theorem (2.5) may also be used to prove the above 
proposition. 

Fibered pairs admit a "Whitney sum" as follows. Suppose (Y, RF) 
- (E,Eo,p,B), (Y', Yo) = (E',El,p',B) are fibered pairs with respec- 
tive fibers (F, Fo) and (F', FoP). Let 

E= (x, x') C E X E' ip(x) = p'(x') 

and 

Eo= [(E X Eo) U (Eo X E')]nE". 

Then, we have the diagram (commutative) 

P " P2, 

E B, 

where Pi and P2 are projections on the first and second coordinates, respec- 
tively. Set p" = PP1 = P'P2, po' = p"I Eo', F" = F X F', and F6' = (F X Fo) 
U (Fo X F'). 

PROPOSITION-DEFINITION (3.19). (Y", Y0') = { E", Eo,p", B } is a fibered 
pair with fiber (F",Fo') called the Whitney sum of (Y, 5F) and ( F', 5) 
and is designated also by (5w, 3F) D ( ', Y/). 
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Proof. Suppose X, X' are lifting functions for (E, _0) and (Y5', -Ro), 
respectively. A lifting function X" for (Y", Y6') is obtained by setting 

X"((x,x'),w)(t) = (X(x,w)(t),X'(x',w)(t)), 0 < t < 19 

where (x, x') C E", ECB'. 
REMARK (3.20). (E",p1,E) is just the fiber space induced by the map 

p:E-*B and the fiber space 5F' over B. 

PROPOSITION (3.21). If (E, YF) is an n-gpb and (Y', 5U) is a k-gpb, 
then their Whitney sum (E, &0) f (Y', F0) is an (n + k)-gpb. 

Proof. A simple exercise. 

4. The normal fiber space. Suppose M C S is a locally flat imbedding of 
the n-manifold M in an (n + k) -manifold S. Let No denote those paths 
w C S such that w(t) C M if, and only if, t = 0. Let N denote No together 
with all the constant paths on M. Define a map q: N - M by setting q(w) 
-W(0), wEN. 

PROPOSITION (4.1). (,AI'o) = (N, No, q, M) is a k-gpb and, in fact, a 
locally trivial pair with fiber (F', Fo) having the same homotopy type as 
(Rk, Rk_ 0). 

Proof. Let D?n+k denote the closed unit (n + k) -ball in R?n+k and Dn the 
sub-ball of dimension n given by those points of D?n+k with last k coordi- 
nates 0. Let Go(Dn+k) denote the space of homeomorphisms (c-o topology) 
of Dn+k which carry Dn onto Dn. Then, if Vn+k is the interior of Dn+k and 
Vn = V-+k lDn, there is a map (see ?3) 

-y: V X Vn - Gon(Dn+k) 

such that 
(i) Y (X, y) (X) = y, (X, y) C Vn X Vn; 

(ii) y(x,x) D= 1, xy V C; 

(iii) oy(x, y) I a Dn+k == 1, (X, y) (= Vn X Vn. 

Now, if bo C M, we may identify D n?k with a closed neighborhood (in S) 
of bo such that Dn+k f M = D", since M C S is a locally flat imbedding. 
Then, Go(Dn+k) is a topological group naturally imbedded in G(S), the 
space of homeomorphisms of S. Hence, if i: G(S) - G(S) is given by i(h) 
= h-1, the function iy: V7 X Vl -> G(S) is a map, without assuming S com- 
pact. The local product structure of (.14" A410) at bo is given as follows. Let 
(F', Fo) = (q'(bo), q- 1(bo)), where, of course, qo = q INo. Define 

(q - l( Vn), q - l(Vn)) <Vn ( Vn x F , Vn X Fo') 

by ovn(b,w)(t) = y(b0,b)(@(t)), O< t < 1, (b,w ) E VX F'. ,o is a homeo- 
morphism with -71 given by 0Q1(cw) = (w(O),W'), with w'(t) = (iy)Go(t)), 
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O ? t ? 1. Since bo is arbitrary and since for any other point b1 C M, we 
have (q1-(b1), q -1(b J) homeomorphic to (F', Fo), (4/ Jo) is a locally trivial 
fibered pair. 

Now, the cross-section a': M ->N, required of a k-gpb is obtained by 
assigning as a'(b) the constant path at b and obviously No = N - a'(M). 

It remains to show that (F', Fo) - (R k, Rk -0). Let Vn+k = V denote 
the neighborhood in S of bo employed above and let V = F' n vi, vo 
- FOn V. By suitably shrinking paths (again see [11, Theorem 7.2]), 
( VO) - (F', Fo) with the inclusion (V, VO) C (F', Fo) giving the homo- 
topy equivalence. Let W = V, = vn Dn as above and observe that (V, W) 
- (Rn?k, Rn) and hence 

((V- W) U bo, V- W) = ((R n+- Rn) U 0, Rn?k - Rn) (Rk Rk _ 0). 

Furthermore, there is a map A: (V, VO) -((V- W) U bo, V- W) given by 
B(c) =w(1) and another map t:((V- W)Ubo,V- W) -(V,VO) given 
by letting (b) denote the line segment path from bo to b. Clearly d{= 1 
and (just as in Proposition (3.7)) it is a simple matter to check that , -1. 

Thus, (F', Fo) - (Rk, Rk - 0) and our proof is complete. 
REMARK (4.2). Suppose S (as above) is compact, and let Gom(S) denote 

the subgroup of G(S) consisting of homeomorphisms h leaving the base point 
bo fixed and such that h(M) = M. Then, Go6(S) is a topological group and 
one checks easily that -I and A10 are Steenrod bundles with group Gom(S). 

DEFINITION (4.3). The k-gpb (A4 -'10) of Proposition (4.1) is called the 
normal fiber space to the locally flat imbedding M C S. 

Suppose M C S as above. 
DEFINITION (4.4). A tubular neighborhood of M is an open set UD M 

which admits a map p: U-- M such that the inclusion i: M -> U is a cross- 
section for p and if UO = U - M, then (U, Uo,p, M) is a locally trivial 
fibered pair with fiber (Rhk Rk _ 0). Furthermore, we assume the existence 
of a homotopy H: U X I- U such that 

(i) p(H(x,t)) = p(x), O < t < 1, x C U; 
(ii) H(x, t) = x, x C M, O < t < 1; 
(iii) H(X, t) E UO, X C UO, O < t < 1; 

(iv) HO = p, H1 = 1. 

REMARK (4.5). It is clear that if M C S admits a tubular neighborhood, 
then M is necessarily locally flat in S. The converse is an open question 
and appears perhaps difficult and certainly interesting. 

REMARK (4.6). It is likely that in Definition (4.4) the existence of the 
homotopy H is a consequence of the other conditions required of a tubular 
neighborhood. 

REMARK (4.7). If M possesses a differential structure and if M C Rn+k iS 

a differentiable imbedding, then M admits (via the classical normal k- 
plane bundle) a tubular neighborhood U. 
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PROPOSITION (4.8). If (U, Uo, p, M) is a tubular neighborhood of MC S 
(as above), then (U, UO, p, M) ( (4 AI), the normal fiber space of the imbedding. 

Proof. Let H: U X I -4 U denote the homotopy in Definition (4.4) asso- 
ciated with the normal neighborhood U. Then, H may be interpreted as a 
map H: U-4 U'. Note that if x C M, H(x) is the constant path at x, and 
if x C UO, H(x) is a path in U (hence in S) which begins at p(x) E M, 
ends at x and H(x) (t) G M if, and only if, t = 0. Hence, x E UO implies 
H(x) C No. Thus we have a map of fibered pairs 

H: (U, Uo,p,M) -4 (A'>,1'). 

It is a simple matter to check that on a single fiber H is a homotopy equiva- 
lence of pairs and hence H is also a fiber homotopy equivalence, using 
Theorem (2.5). 

COROLLARY (4.9). Suppose M C Rn+k is a differentiable imbedding of the 
differentiable n-manifold M and (A"', iI'') = (N', No, q', M) is the classical 
normal k-plane bundle written as a fibered pair with N' the space of normal 
vectors, No the space of nonzero normal vectors and q' assigns to each vector 
its initial point. Then V',iO') f 1(I 4 O). 

Proof. This is an immediate consequence of Remark (4.7) and Proposi- 
tion (4.8). 

DEFINITION (4.10). If (Y, Y0) = (E, Eo, p, B) is a fibered pair and A C B 
is a subspace of B, then (Y, 5o) I A, the restriction of (_F, 50) to A, is the 
fibered pair (p-'(A),p-'(A),p Ip-(A), A). 

We now reach the fundamental theorem of this section. 

THEOREM (4.11). Suppose M C S is a locally flat imbedding of an n-manifold 
M in an (n + k) -manifold S. Suppose further that (?, 50) is the tangent 
fiber space of M, (4 10) is the normal fiber space associated with the imbedding 
and (5*, 50*) the tangent fiber space of S. Then 

(, o9) (3 Or /o) -f<* 0 o*) l% M. 

Before we proceed with the proof, we will set forth a few lemmas, as- 
suming the hypotheses and notation of Theorem (4.11) as well as the fol- 
lowing notation. 

(5057) = (T,To,p,M), fiber (F,Fo); 

(AQV0) = (N,N0,q,M), fiber (F',Fo); 

(5S *? go *)Il M = (? , 0) = (T, To, p, M), fiber (F, Fo); 

(5 X, ) ? (Q-41) = (E", Ellq", M), fiber (F", Fo'). 

LEMMA (4.12). There is an open covering I Ua } of M and a local product 
structure for (X, 70) 
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(Xp l(U.)I po- 1(U.)) < (U. X F, U. X Fo) 

Ua 

such that 
(a) If wo is the unique constant path in F, qa(b, o) is the constant path 

at b. 
(b) )a(UaXFo)CNo. 
(c) Hence, 0,a (properly restricted) also provides a local product structure 

for (,Ao). 

Proof. Because the situation is homogeneous, we restrict ourselves to a 
fixed bo ( M, with bo also determining the respective fibers. Employing 
the notation of Proposition (4.1), we may identify Dn?k with a closed neigh- 
borhood (in S) of bo such that Dn+k (n M = Dn. Recall from ?3 the map 

,Y Vn+1 X Vn+k Go(Dn+ ) 

which also satisfies 

y: Vn X Vn Go(Dn+l) 

The local product structure for (?/, _5*), the tangent fiber space of 
S is given (Proposition (3.8)) as follows: 

(p * l(XV+k),pjkl(Vf+k)) Vn (/n+k X F*, Vn+k X Fo) 

vn+k 

where 0 Vn+k(b, w) (t) = ly(bo, b) (w (t)), 0 _ t < 1, w EC F*. A look at the proof of 
Proposition (4.1) tells us that Xvn+k restricted to (Vn X F', Vn X Fo) is pre- 
cisely 0 vn in that proposition. Since (F*, Fo*) = (F, FO), 0 vn+k restricted to 
(Vn X F, Vn X FO) gives a local product structure at bo satisfying condition 
(b) of the lemma. Condition (a) is easily observable and our lemma follows. 

LEMMA (4.13). There is a lifting function X for the fibered pair (i7, 0) 
with the following properties. 

(a) If wo is a constant path in M (hence wo EC T) then for any path a in 
M such that wo(O) = a(O), we have X(o, a) (t) is the constant path at a(t), 
0 ? t < 1. 

(b) If wo C No and a is a path in M such that wo(O) = a(O), then X(wo, a) (t) 
EN N O, t _ 1. 

Proof. Apply the proof of the Hurewicz Uniformization Theorem [8] (M 
is paracompact) to an open covering of M with the properties indicated in 
Lemma (4.12). 
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LEMMA (4.14). Suppose (Y, LF) = (E, Eo, p, B) is a locally trivial fibered 
pair, fiber (F, Fo), with a given open covering I Ua I and local product structures 

(p-1(U.)'pO 1(U.)) ( X (U. X F, U. X Fo). 

Suppose UO is a member of I Ua containing the base point bo and oo the 
homeomorphism giving the local product structure over UO. Then, for any open 
set V in B such that bo C V C V C UO, there is a lifting function x for 
(JY, 5F) with the property that if x C F and w is a path in V such that 
p(x) = w(O), then 

X(x, w)(t) = 0o(w(t),X), 0 ? t < 1. 

Proof. Take the covering { U,} and obtain a refinement as follows. UO 
and V are given so that bo E VC VC UO. For Ua # UO let Va, =(B - V) 

nl U,. Then I Va, UO0 is a refinement of { Ua,} with only UO covering points 
of V. Now, apply the proof of the Uniformization Theorem of Hurewicz 
[8] to the open cover V", UO} 

LEMMA (4.15). There is a lifting function X for the fibered pair ((7 %0) 
satisfying the three conditions of Lemma (4.13) and in addition the following. 
If Dn+? is a closed neighborhood of the base point bo, as in Lemma (4.12), 
with interior VIl?+, then for some subset W (open in M) of Vn = Vn+? nm 

X (co, a) (t) (s) = ;+ k(a (t), w) (s) = y(bo, a(t))o,(s), 0 < s,t < 19 

where w C F, a E WI, and w(0) = a(0). 

Proof. Combine Lemmas (4.13) and (4.14). 
We turn to the proof of Theorem (4.11). 
Proof of Theorem (4.11). Let X denote a lifting function for (3 ( (0) 

satisfying the conditions of Lemma (4.15). A map of fibered pairs 

41: (-- 3To) q) (// -40) -- (3- A-) 

is obtained by setting 

4t(a, T) (t) = (-r, O) 0 < t < 1. 

Note that 73(T) = J(O) = a(O), since (a, r) C E" and the application of X 

is permissible. If the path T C No, then the path X(f, a) (t) C NO, 0 ' t _ 1. 
Hence for t > 0, X(f-, a) (t) (t) i M and thus a fortiori, t(a, T) C To. If a C To 
and T C N is a constant path 41a, T) = aC To C To. Thus, if (a, T) C E', 
1'(a, T) C To. If (a, T) consists of constant paths, iP(a, -) is likewise the con- 
stant paths at a(0) = T(O). Clearly 754(u, r) = q"(a, T) and p is then a well- 
defined map of fibered pairs. All that remains is to show that the restric- 
tion of p to a fiber, namely, 

o: (F",9 Fo") = (F X F', (F X Fo) U (Fo X F')) -(F, Fo) 



1965] GENERALIZED NORMAL BUNDLES 501 

is an ordinary homotopy equivalence. Let bo denote our base poiht and 
Dn?k a closed neighborhood in S of bo as in Lemma (4.15), with interior 
Vn+k. Then there is a smaller open (n + k)-ball Wn+k C 'Vn+k such that Wn 
= Wn+k n M has the properties also given in Lemma (4.15) with W identi- 
fied with Wn. Let Wk denote those points of Wn+k whose first n coordinates 
are 0 and let XI: Wn+k __ Wn, r2: Wn+k __ Wk denote the natural projections 
on the first n and last k coordinates, respectively. Furthermore, if x ( Wn+k, 

let w(x) denote the line segment path from 0 to x. Define maps 

: (Wn+k, wn+k._ O)_ (F"F")I 

: (Wn+k, Wn+k _ 0) -- (F, Fo) 

by 

a(X) = (W(rl(X)),W(7r2(X))), f(x) = w(x), 

x E Wn+k. By previous arguments (Propositions (3.8), (3.21), (4.1)) a and 
f are homotopy equivalences. Consider, finally, the diagram 

(Wn k, Wn+k _ 0) 
a 

(F"" Fow 

(F, Fo) 

10 will be a homotopy equivalence provided we can show the diagram is 
homotopy commutative. Take x C Wn+k and 0 ? t ? 1. By Lemma (4.15) 

4to(a(x)) (t) = XMIXAX)), W(TX(X))) (t) (t) 

= y(bo, tlr1(X)) (o(r2(X)) (t)) 

= ly (bo, tlr(x) ) (t7r2(x)) 

= Gf+k,n(tX), 

where ;n+k,n is the map of Proposition (3.4), with bo identified with 0. On 

the other hand l(x) (t) = tx. By Proposition (3.4) ;n+k,n - 1 (Wn+k, Wn+k - 0) 

(Wn+k, Wn+k - 0). Consider a homotopy 

H: (Wn+k, Wn+k - 0) X I__ (Wn+k, wn+k - 0) 

such that Ho = 1 and H1 = {n+k,n. Recall that H keeps the origin fixed 
during the homotopy. Using H, we can define a homotopy 

G: (Wn+k, Wn+k _ 0) X I _(F, Fo) 

by 

G(x, s) (t) = H(tx, s), x E Wn+k, 0 s < t ? 1. 

It is clear that Go = f and G1 = 4a0a and the diagram is homotopy commu- 
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tative and hence t0 is a homotopy equivalence. Thus our proof of Theo- 
rem (4.11) is complete. 

5. The Thom isomorphism. Let us first recall [1] the following theorem 
which we state for cohomology. 

THEOREM (5.1). Let (E, 0) = (E, Eo,p, B) denote a fibered pair with 
fiber (F, FO). Then, there is a spectral sequence associated with a filtration of 
singular cochains C*(E, EO; G), G any coefficient group, whose E2-term is nat- 
urally isomorphic to H*(B,H*(F,Fo; G)), where H*(F,Fo;G) is a local co- 
efficient system determined by the action of Q(B) on H*(F, FO; G) as given in ?2. 

Let us denote the terms of the spectral sequence associated with the 
fibered pair (Y, _0) by Ep,q and the terms of the spectral sequence associated 
with the single fibration Y = (E, p, B) by EP.q Let us suppose that our 
coefficient group G is a commutative ring A with unit. Then, following the 
techniques in Serre [12], a mixed cup product of the type H*(X: A) 
0 H*(X, A; A) -4 H*(X, A; A) can be introduced into these spectral se- 
quences to induce pairings 

: EVPq($ EP ,q' EP+P q+q 

This cup product also behaves well with respect to the spectral sequence 
isomorphisms, i.e., the following diagram is commutative 

HP(B, H (F; A)) 0 HP'(B, H (F, FO; A)) E0P 'E,Pq' 

1-)p'q I V 

HP+P'(B, Hq+q'(F, FO; A)) E2P+P,q+q, 

where 0: HP(B, Hq(F; A)) -4 EP,q and 0: HP'(B, Hq (F, FO; A)) -*P qare the 
spectral sequence isomorphisms for e and (E, Yo), respectively, and the 
cup product on the left is induced by the cup product 

H*(F; A) 0 H*(F, FO; A) -4 H*(F, FO; A). 

THEOREM 5.2 (THOM ISOMORPHISM). Let (F, Y0) = (E, Eo, p, B) denote 
an n-hpb with fiber (F, FO) which is A-orientable and which has an acyclic 
total fiber, i.e., Hq(F; A) = 0 for q > 0 and HY(F; A) = A. Then, there is an 
element U ( Hn(E, EO; A) (corresponding to the unit in A) and a commutative 
diagram of isomorphisms, j arbitrary, 

Hj(B; A) - P-, HI(E; A) 

He+n (E, Eo; d). 

Proof. First, we observe the commutative diagram 
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HJ(B, H?(F; A)) 0 H?(B, Hr(F, Fo; A)) E-) E2?0 E20 

HI(B, Hr(F, Fo; A)) -2 

Since both spectral sequences are trivial and, in fact, EJ., = for q 5-4 0, 
E<oq = 0 for q 5,- n, we may replace the vertical homomorphism on the right 
by 

HI(E; A) 0 Hn(E, Eo; A) -* H1(E, Eo; A). 

Identifying H?(F; A) and Hn(F, Fo; A) with A, we then obtain the commu- 
tative diagram 

Hi(B; A) 0 A -Hi (B; A) O Hn (F Fo; A)P ( - H (E; A) 0 Hn(E, Eo; A) 

Hj(B; A) , HJ(B, Hn(F, FO; A)) )Hj+n(E, EO; A) 

where the vertical isomorphism is the standard one (0 = 0A) and p* 0 (i*)-1 
is readily identified, where i: (F, Fo) -- (E, Eo) is the inclusion map. Standard 
arguments show that p * and i *, are in fact, isomorphisms. Let U correspond 
to the unit of A under the identification A = Hn(F, Fo; A) and let U be chosen 
by i*( U) = U. Then, letting 0 denote the composition of the lower hori- 
zontal homomorphisms in the above diagram, we have the desired result. 

REMARK (5.3). Theorem (5.2) is valid, a fortiori, for n-gpb's. 

6. Stiefel-Whitney classes. Now that a certain amount of fundamental 
theory of n-gpb's has been developed we rely strongly on the theory of 
Stiefel-Whitney classes already developed in the differentiable case. In 
particular, we follow the exposition of Milnor [9]. Throughout this section 
the coefficient group will be Z2, when no coefficient group is displayed in 
the notation. 

If (5w, 50) = (E,Eo,p,B), with fiber (F,Fo) is an n-gpb, we have the 
following diagram 

Hn(E, Eo) H?(B) 

Sqg 

Hn+iE, Eo) ( 0 Hi(B), 

where q is the Thom isomorphism of ?5, and Sq' is the ith Steenrod Square. 
DEFINITION (6.1). If (Y, 3F) is an n-gpb, the ith Stiefel-Whitney class 

Wi( F, Y0) is defined by 
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Wi(7, 50) = 0-hSq'0(1) 

where 1 is the unit of the cohomology ring H*(B). The total Stiefel-Whitney 
class W( Y5, -50) is given by 

W(-F, -FO) =1+ Wl(-i -FO) + WA-Fi -FO) + *-+ Wn(-F -5).- 

REMARK (6.2). If (5, 570) is an n-gpb, then Wi(5, -50) = 0 for i > n. 
Let M denote a (topological) n-manifold and (57 57)) its tangent fiber 

space, which is an n-gpb. 
DEFINITION (6.3). Wi(M) = Wi( 5, 59%) is called the ith Stiefel-Whitney 

class of M. W(M) = W(!, X05) is the total Stiefel-Whitney class of M. 
If MC S, where S is an (n + k)-manifold, is a locally flat imbedding, 

then we have an associated normal fiber space (.xV,4" 0) which is a k-gpb. 
DEFINITION (6.4). Wi(M) Wi( 'AVO) is called the ith dual Stiefel- 

Whitney class of M. W(M) = W(0A ) is the total dual Stiefel-Whitney 
class of M. W(M), of course, depends upon the imbedding MC S. 

REMARK (6.5). We have yet to justify the term "dual" for W(M). This 
will be done shortly when we prove the Whitney Duality Theorem in this 
setting (?6) which yields for the special case M C Rn+k, W(M) <, W(M) = 1. 

The following propositions are elementary. 

PROPOSITION (6.6). If two n-gpb's (5, 57)) and (5', 56) are fiber homo- 
topy equivalent, then Wi( 7, 57) = Wi( ', 57), 0 < i ? n. 

DEFINITION (6.7). The fibered pair (B X Rn,B X (Rn - 0), rk,B) where 
r1 is projection on B is called the trivial n-gpb over B. 

PROPOSITION (6.8). If an n-gpb (E7, 50) is fiber homotopy equivalent to 
the trivial n-gpb over the base for (EF, 57), then W( 5, 57)) = 1. 

PROPOSITION (6.9). If an n-gpb (F, 57) has a contractible base, it is 
fiber homotopy equivalent to the trivial n-gpb. 

THEOREM (6.10). If M possesses a differential structure, the classes Wi(M) 
are the classical Stiefel-Whitney classes [9]. Furthermore, if M is differen- 
tiably imbedded in Rn+k, the classes Wi(M) coincide with the classical dual 
Stiefel- Whitney classes [9]. 

Proof. This is an immediate consequence of Propositions (3.16), (4.4) 
and (6.7). 

THEOREM (6.11). If (7, 50) is an n-gpb and (5, 5) is a k-gpb over 
the same base B and if (e', 57') is their Whitney sum, then 

W(5", 70') = W(57 7)v W( ', 70) 

where multiplication on the right is cup product in H*(B). 

Proof. The proof is essentially word for word the argument in Milnor 
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[9] with the following comment supplied. If p: E -> B is an n-plane bundle 
in the usual sense then p is a homotopy equivalence. In fact if a: B -> E 
is the 0-cross-section, then up - 1 in a fiberwise manner, the homotopy 
being supplied by scalar multiplication in E. On the other hand, if p: E -> B 
is a Hurewicz fibration with contractible fiber, p need not be a homotopy 
equivalence. Nevertheless, using the Vietoris Mapping Theorem for fiber 
spaces and singular homology (Serre [12]), p induces isomorphisms at the 
cohomology level. 

Combining Theorems (6.7) and (4.11) we obtain the Whitney Duality 
Theorem for locally flat topological manifolds. 

THEOREM (6.12). Let M C S denote a locally flat imbedding of a topologi- 
cal n-manifold M in a topological (n + k) -manifold S and let (5, _5) denote 
the tangent fiber space of S restricted to M. Then 

W(M) \, W(M) = W( X, _5). 

COROLLARY (6.13). Let M C Rn+k denote a locally flat imbedding of a topo- 
logical n-manifold M. Then 

W(M) , W(M)=1. 

We now develop the formula of Wu (?1) and give what is needed to 
adapt the proof given in Milnor [9]. We will make use of the Poincare 
Duality for compact topological manifolds and the X-product in singular 
cohomology, both subjects being very carefully presented in Puppe [11]. 
Let M denote an n-manifold, fixed throughout the remainder of this sec- 
tion. Furthermore, let pi: M X M- M, i = 1,2, denote the usual projec- 
tions on the first and second factors, respectively, and let A denote the 
diagonal in M X M. As in Proposition (3.5), 

(Z Xo) = (MX M,MX M-A,P1,M) 

is an n-hpb with fiber (M, M - b), b a fixed base point in M. If (5, 50) 
= (T, To,p, M) is the tangent fiber space of M, there is a natural map 
(see ?3) of fibered pairs, 4: (5% 59) -4 (>',X0 ) given by 

/(a) = ((O),a(1)), a E T. 

Letting (F, Fo) denote the fiber over b in (iX, _5) we recall that 

{0*: H*(M, M- b; G) - H*(F, Fo; G) 

is an isomorphism for any coefficient group G, where 4t0 is the restriction 
of 41 to (F, Fo). 

A standard spectral sequence argument then gives the following 

PROPOSITION (6.14). If M is G-orientable, the above map 4 induces iso- 
morphisms 41*:H*(MXM,MXM-iA;G)---H*(T,To;G). 
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Let 

i: (F,Fo) -+ (T, To),j:MX M- (MX M,MX M- ),k:M - (M,M- b) 

denote inclusion maps and ib: (M, M - b) -* (M X M, M X M - A), fb: M 
-M X M denote sections given by ib(X) = (b, x), fb(x) = (b, x), x C Mo. 

These maps give rise to the following commutative diagram 

Hn(T, To) ? Hn(MxM,MxM-) H*(M X M) 

i * | 
* i{f| 

H FO) <-- Hn(M M - b) kHn(M) 

Let U designate the nonzero element of HI(T, To) and U' that unique 
element of Hn(M x M, M x M -,A) such that 4v*( U') = U. Furthermore, 
set U = j*(U') and assume M is compact throughout the remainder of 
this section. 

PROPOSITION (6.15). fb (U) = ,, the fundamental class of H"(M). 

Proof. Clearly ib* is an isomorphism and since k * is also, we have k * i (LU') 
f= 

* * 
(U ) = fb* (O 

The manifold M is an ANR. Hence, there is a neighborhood D of the 
diagonal A in M X M and a map H: D X I -M such that H(x, y, 0) = x, 
H(x, y, 1) = y, H(x, x, t) = x, (x, y) C D, 0 ? t < 1. This tells us that if 

d: D -- M X M is the inclusion map that pld - p2d. (This D will replace 
the normal tubular neighborhood of the diagonal which Milnor [9] employs 
in the differentiable case.) 

We now have sufficient material to use the arguments in Milnor [9] and 
obtain the following 

PROPOSITION (6.16). Let a{1, * , an be a basis for H*(M). Then, U 

- Zi,jci,j(ai X aj) E H*(M X M), where the matrix [cij] has [ykj] as its inverse, 

Ykj = (ak t. aj, Ai) = (ak ?, a) , , the fundamental class in Hn(M). 

Now, using the identical argument in [9, p. 54] we obtain the Wu formula. 
Namely, by Poincare Duality, there is a unique class Vn_, C Hn M) such 
that 

(Sq ni a-) = (Vni, 

for every a C H'(M). Let V= Vo + V1 + + V[n/2,1 

THEOREM (6.17) (Wu). If M is a compact topological n-manifold and if 

W(M) is the total Stiefel- Whitney class of M defined in terms of the tangent 

fiber space of M (Definition (6.3)), then 

W(M) = Sq V 

where V is characterized by the equation 
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(Va)= (Sq a,) 

for all ae EH*(M). 

7. The top dual class. Throughout this section MC S will represent a 
locally flat imbedding of the n-manifold M in an (n + k)-manifold S, 
(i, 0) will denote the tangent fiber space of M and (-/4' _40) the normal 
fiber space of this imbedding. Our general objective here is to study the 
top dual class Wk(M) associated with this imbedding. The main difficulty 
in studying this problem in this particular setting is the lack of a normal 
tubular neighborhood (as far as our present knowledge is concerned) and 
we need to develop certain techniques which avoid this ignorance. 

Let (4; Yt) = (N, No, q, M) designate the normal fiber space above with 
fiber designated by (F', Fo). Recall that with ( , -0), the tangent fiber 
space of M, there is a useful n-hpb (X, X0) (see Proposition (3.5)) asso- 
ciated. In a similar manner, we will associate with (X A'0) a k-hpb 
(2<<o, q, M), with fiber (F, FO) which will also prove useful. Define 

No= MX (S-M), 

N= (Mx (S- M)) U, 

where A is the diagonal in M X M C S X S. Furthermore, set q(x, y) = x, 

(x,y) EN. Note that if bo0M, F = q-1(bo) = (S-M) Ubo and Fo 
= q-1(bo) = S - M, where qo q= No. 

PROPOSITION (7.1). (11vo0) = (NNo q, M) is a k-hpb with fiber (F, FO). 

Proof. The proof that (Al; 4) is a locally trivial fibered pair is similar 
to the corresponding proof for (4J,4x0), i.e., the proof of Proposition (4.1) 
and is left to the reader. The homology type of the fiber (F, Fo) is seen 
as follows. Identify the closed (n + k)-ball Dn?k with a closed neighborhood 
(in S) of the base point bo such that Dn?+ q M = D'. Let V = interior Dn+k 

and W WnD'. Then, by excision, the inclusion map induces isomor- 
phisms 

i*: H*(( V-W) U bo, V-W) H*((S-M) U bo, S-M), 

where ((S - M) U bo, S - M) = (F, FO). Just as in Proposition (4.1) 

((W- V) U bo W- V) = ((Rn+k- Rn) U 0, Rn+k - Rn) ' (Rk Rk _ 0) 

and hence the homology H*(F, FO) is precisely that of (Rk, Rk _ 0). 
There is a natural map (of fibered pairs) x: (<4 i'10) -(, ( O), defined 

as follows 

x(w) = (E(0), (1)), EN. 

Let xo: (F', Fo) - (F,Fo) denote the restriction of x to (F', Fo). The fol- 
lowing commutative diagram 
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((V -W) Ubo, V -W) W, Fo) 

Xo 

(F', Fo), 

where D(x) is the line segment path (in V) from bo to x, tells us that 

xo*: H*(F', Fo; G) - H*(F, o; G) 

is an isomorphism for any coefficient group G, since v is a homotopy equiva- 
lence (Proposition (4.1)). 

PROPOSITION (7.2). (v ) is G-orientable if, and only if, (AV, A?) is 
G-orientable. 

Proof. Copy the proof of Proposition (3.13). 

PROPOSITION (7.3). If (A,' _IV) is G-orientable, the above map x induces 

isomorphisms 

x*: H*(N, No; C) -*H*(J41o); G). 

Proof. A standard spectral sequence argument as in Proposition (6.14). 

THEOREM (7.4). Let X denote an ANR (sep. metric), Y a separable metric, 
space and X C Y, so that X is a closed subset of Y. Let go = X x (Y - X) 
and i = (X X (Y-X)) UA, where A is the diagonal in X X XC Y X Y. 
Define a: (FI,Fo) - (Y, Y- X) by a(x,y) = y, (x,y) C N. Then, 

a *: H (F, Fgo) -> H* (Y, Y - X) 

is an isomorphism (integral coefficients). 

Proof. Let V denote an open subset of Y which admits a retraction r: 
V- )X, onto X. By excision, we have an inclusion induced isomorphism 

i : H* ( V, V -X) --- H*I (Y, Y -X). 

Let Fl(V) = X X (V- X), F(V) = o0(V) U A. Again by excision, we have 
an inclusion induced isomorphism 

j *: H* (9(V), go (V)) --*H *(, go). 

Let a denote the restriction of a to N( V). Then 

a: (RmV),RomV) )-- (V, V - X). 

Define a map 

P: (V, V - X) )-- (R(V),RomV) 

by p (y) = (r(y), y), y C V, where r: V-> X is the previously mentioned re- 
traction. Note that iap = 1 and hence a is surjective. Since aj*= i*a*, 
we conclude that a* is surjective. 
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Now, let I = { W., x C M } denote an open cover of X such that any 
two maps into X which are ?-close are homotopic (recall that X is an 
ANR). For each x C M, choose an open set U. C V such that r(Ux) C W. 
and let U = U XEM U. X UX. U is then a neighborhood of the diagonal A 
in V X V. Let N(U) = 2Qn u, Nvo(U = N1 U. Again excision applies to 
give us an inclusion induced isomorphism 

k *: H*, (R(M , Ro(M) ,-- H* (, Ro) . 

a, restricted to V(U), yields a map 

a': (N(U), No(U) -)) (V, V - X). 

Letting m: (N( U) , No( U) -) (X( V), F70( V)) denote inclusion map, the fol- 
lowing diagram is seen to be homotopy commutative. 

(lv(W ivo(m) 
m 

(Xv(v V) Rom ) 

a p 

(V, V- X). 

Since jm = k, m * is an isomorphism and hence p *a is an isomorphism. 
Hence a' is injective. But a*k* = i*a, and hence a* is injective. Thus a* 
is an isomorphism and our proof is complete. 

THEOREM (7.5). Suppose the imbedding MC S has the additional prop- 
erties that M is a closed subset of S and the normal fiber space (/V,4 _40) is G- 
orientable. Then, the mapping 

t: (N,NO) -(S,S - M) 

given by c(l) = w(l) induces isomorphisms 

t *: H* (N, No; G) -> H* (S, S - M; G). 

Proof. = ax where x* is the isomorphism of Proposition (7.4) and a* 
the isomorphism of Theorem (7.4). 

REMARK (7.6). Theorem (7.5), of course, remains valid for cohomology. 
The proof of the following proposition follows standard lines and we 

leave it to the reader. 

PROPOSITION (7.7). Suppose (5F -&), (Y', -6) are, respectively, n- and 
k-gpb's over the same base B and (aY", Y6') is their Whitney sum. If any 
two of the three are orientable, so is the third. 

COROLLARY (7.8). If M C S is a locally flat imbedding where both M and 
S are orientable n- and (n + k) -manifolds, respectively, then the associated 
normal fiber space is orientable. 

Theorem (7.5) together with the Thom isomorphism gives as an auxiliary 



510 EDWARD FADELL [February 

result the following form of Alexander Duality. Let A denote a commuta- 
tive ring with identity. Then, if (IV, X?0) is A-orientable we have the Thom 
isomorphism 0: HL(M, A) -- Hk+i(N, NO; A) given by + (a) = q*(a) <, U', 
where U' = (1) C Hk(N, No; A). If further M is locally flat in S as a closed 
subset then the composition Ot*: H+l(S, S - M; A) -* HL(M, A) is an iso- 
morphism, where (* is the isomorphism of Theorem (7.5) for cohomology. 

THEOREM (7.9). If M C S is a locally flat imbedding such that the associated 
normal fiber space is A-orientable (e.g. if both M and S are A-orientable, if 
w1(M) = 0, or, if A = Z2) and if M is a closed subset of S, there is an iso- 
morphism 

A: Hi?+(S, S - M; A) -4 H'(M; A) 

for all i, where k = dimS - dim M. Furthermore, if a C Hk+i(S, S - M, A), 

then A (a) is completely characterized by the equation 

q*(A (a)) o U' = *(a). 

Just as in Milnor [9] a k-gpb admits an Euler class. 
DEFINITION (7.10). The Euler class X C Hk(B, A) of a A-orientable k- 

gpb over B, is given by V-1(U U) where q is the associated Thom iso- 
morphism and U= (1). 

PROPOSITION (7.11). If (F, _0) = (E, Eo, r, B) is a A-orientable k-gpb 
and g: B -> E is any cross-section (at least one exists), then the Euler class 
X is given by 

X=g*i*(U) 

where i: E-- (E, EO) is inclusion and U = (1), 0 the Thom isomorphism. 

Proof. The proof in Milnor [9, Theorem 12] applies with only the fol- 
lowing comment necessary. The mapping ir:E -- B induces isomorphisms 
7r*: H*(B, A) -* H*(E, A) via the Vietoris Mapping Theorem for fiber spaces 
and singular cohomology. Since r-g = 1, g*,r* = 1. Hence, -r*g* = 1. 

Let us continue now under the assumption that the normal fiber space 
(A,V0) is A-orientable and set Wk(A) = X C Hk(M; A) where X is the 
Euler class of ( 4, 10). Also, it is clear that Wk(Z2) = Wk (Definition (6.4)), 
the top dual class. 

THEOREM (7.12). Suppose M C S is a locally flat imbedding with M closed 
in S and A-orientable normalfiberspace (IV, x1'O). Suppose U" E Hk(S, S - M; A) 
is given by t*(U") = U' C Hk(N, NO; A) where t is the cohomology iso- 
morphism of Theorem (7.5). Then, 

Wk(A) = m*j*( U), 

where j:S -(S,S-M), m:M -*S are inclusions. 
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Proof. Let g: M -> N denote the canonical cross-section, i.e., g(b) is the 
constant path at b E M. The following diagram is commutative 

(N, No) -(S,S - M) 

I I 
N M - S 

g m 
Hence, m*j*(U") =g*i*t*(U") =g*i*(U/) = Wk(A). 

COROLLARY (7.13). Suppose M C Rn?+ is a locally flat imbedding with M 
closed in S and A-orientable normal fiber space (,4V ). Then Wk(A) = 0. 

REMARK (7.14). The class U" E Hk(S, S - M; A) is geometrically the 

following. Choose a point b E M and let h: Rn X Rk V denote a homeo- 
morphism onto a neighborhood V (in S) of b such that vn M = h(Rn X 0). 
Then, identifying Rk = 0 X Rk, h: (Rk, Rk - 0) __ (S, S -M) such that 
h(O) = b. h induces an isomorphism h*: Hk(S, S - M; A) Hk(Rk, Rk _ 0; A) 

= A and h*(U") = 1 E A, the unit element of A. In short, U" is determined 
by a topological k-cell which pierces M at one point. 

8. Some geometric applications. 
DEFINITION (8.1). A set X C Y, Y a topological space, is said to be 

instantly deformable into its complement if there exists a homotopy H: X X I 
Y such that Ho is the inclusion map and Ht(X) C Y - X for 0 < t < 1. 
If M C S is a differentiable imbedding, where M and S are differentiable 

manifolds of dimensions n and n + k, respectively, then M is instantly 
deformable into its complement when k > n. This is because the classical 
normal sphere bundle is a (k - 1) -sphere bundle and all obstructions to 

finding a cross-section vanish. In fact, if the imbedding is such that the 
associated normal bundle is orientable, then this result remains valid for 
k _ n, provided S = Rn+k. We now proceed to investigate the corresponding 
result for locally flat imbeddings of topological manifolds. 

LEMMA (8.2). Suppose (E, p, B) is a fiber space and g: B' -* B is a dominating 
map, i.e., there is also a map h: B - B' such that gh - 1. Then, if (E', p', B') 
is the fiber space induced by g, p admits a cross-section if, and only if, p' does. 

Proof. Recall that E' = { (b',e) E B' X EIg(b') = p(e) }. Let p'(b',e) = b' 
and g'(b', e) = e and we have the usual commutative diagram 

pp'p 

g 
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If p admits a cross-section a, then a', given by r'(b') = (b', ag(b)) provides 
a cross-section for p'. On the other hand, if a' is a cross-section for p', set 
r(b) = g'ac'h(b), where h is a right homotopy inverse for g. Now, pr 
= pq'a'h = gp'a'h = gh 1. Thus, PT -1. This is sufficient (see p. 15 of 
[5]) to insure the existence of a cross-section a for p. 

THEOREM (8.3). Suppose M C S is a locally flat imbedding of a topological 
n-manifold M in a topological (n + k) -manifold S (M need not be closed in S). 
Then, if k > n, M is instantly deformable into its complement. 

Proof. Let (1" A's) = (N, No, q, M) denote the associated normal fiber 
space which is a k-gpb. Then, (NO, q0, M) is a fiber space with fiber Fo - Rk 

_ 0 _ Sk-1, a (k - 1)-sphere, where (k - 1) ? n. Since M is an ANR (sep. 
metric) and also of dimension n, there is an n-polyhedron P (locally finite) 
and a dominating map g: P-- M. Let (No, q6, P) denote the fiber space over 
P induced by the map g. A standard obstruction argument applied to 
(No, q', P) yields a cross-section for q6 and hence by Lemma (8.2), there 
is a cross-section av for q0. But No consists precisely of paths which start 
at a point of M and never hit M again. In particular, if b e M, a(b) (0) =b, 
and a(b) (t) CE S - M for 0 < t < 1. The required deformation H: M X I S 
is then given by 

H(b, t) = a(b)(t), 0 < t < 1. 

REMARK (8.4). Theorem (8.3) for the case k = n remains valid if M C Rn+k 

in a locally flat manner and if furthermore M is closed in Rn+' and the 
associated normal fiber space is orientable. The proof of this fact requires 
a development of more obstruction theory in this setting and this will be 
discussed in another work. 

Suppose M C Rn+k and one has given a tubular neighborhood (U, U0, p, M) 
(Definition (4.4) of M). This tubular neighborhood may be given by topo- 
logical methods and not through the normal bundle of a differentiable 
imbedding. The question as to whether this tubular neighborhood is actually 
a product is of interest. 

THEOREM (8.5). Let M C Rn?k, where M is a topological n-manifold, and 
(U, Uo,p, M) a tubular neighborhood of M in Rn+k. Then, if (U, Uo,p, M) 
is fiber homotopically trivial, W(M) = 1. 

Proof. First observe that the imbedding MC Rn+k is necessarily locally 
flat. Hence, we may consider (,I" -YV0) the associated normal fiber space. 
By Proposition (4.8), (U, Uo,p,M) f>V>J/o) and hence if (U,_Uo,p,M) 
is fiber homotopically trivial, so is (,I' 4VO0). This would imply W(M)-1 
and since W(M) , W(M) = 1 we have, necessarily, W(M) = 1. 

Added in proof. If M is a topological n-manifold, the group G(M) of 
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self-homeomorphisms of M is a topological group, using the c-o topology, 
without the assumption of compactness. The proof of this is simple and 
direct. Alternatively, a more general result of William Browder says that 
if X is locally compact and locally connected, G(X) is a topological group 
in the c-o topology. These remarks are pertinent to Remarks (3.6), (3.11), 
(4.2) and to slightly simplify a few arguments in ??3 and 4. Finally, the 
"conjecture" in Remark (4.6) is not difficult to establish and the author is 
indebted to James Kister for this observation. 
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