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Introduction

0.1. As is well known, classical knot theory studied the methods of
embedding a circle in three-dimensional Euclidean space {4]. Higher-
dimensional knots, that is. embeddings in the sphere §7+9 of manifolds
homeomorphic to §". were first intensively investigated in the early 60’s.
when modern methods of analysis of manifolds were created. By the mid-
60’s knots of codimension ¢ > 2 had been completely classified: Zeeman
{561 and Stallings {49] had proved that there are no non-trivial topological
or piecewise linear knots, and the set of smooth knots had been computed
by Haefliger {24] and Levine {36]. From these computations it followed
that there are not too many smooth knots either. For example. it was
shown that for fixed # and ¢ > 2 the smooth knots of 8" in §7* form a
finitely generated Abelian group.

The phenomenon of knottedness is most clearly exhibited in codimension. 2.
The isotopy types of knots of codimension 2 form an infinitely generat’ed
Abelian semigroup, and an idea of its size can be gained from the
realization theorems of Kervaire [33] and Levine [38], and also from the

-
g
2
2
4
]
]




64 M.Sh. Farber

classification Theorems 3.1, 8.13. 9.3, and 10.13 of the present paper. This
infinite variety of types is clearly the reason why the study of knots of
codimension 2 turns out to be so difficult.

Interest in knots of codimension 2 arose not only because they include
the classical knots; it was also stimulated by connections discovered by
Brieskorn with the study of singularities of complex hypersurfaces [5].
Another reason for the preoccupation with such knots was the fact that. as
it turned out, every homotopy sphere bounding a parallelizable manifold can
be realized as a smooth knot in codimension 2. Moreover, it turned out
that it is quite natural to construct and to study smooth structures on
spheres in the framework of knot theory [38].

The study of simple knots was initiated by Kervaire and Levine: they
occupy a special place in the theory of knots of codimension 2. There are
several reasons for this. In the first place. the class of simple knots includes
all classical knots in S3 and all two-dimensional knots in S* Furthermore,
the applications of knot theory of which we spoke above, in algebraic
geometry and the theory of exotic spheres, reduce precisely to the simple
knots. Finally. these knots are the simplest from the point of view of
existing methods of investigation (hence their name).

0.2. In the present paper simple knots of all dimensions except 1. 2. 3, 4.
and 6 are classified in terms of their algebraic invariants.

The most explicit results in the paper are about odd-dimensional knots.
the theory of which is not overburdened with technical details and seems to
be more lucid. This part of the paper is written in the style of a text-book:
references to the literature are Kept to a minimum and are replaced by
proofs. but references to original papers, comments, alternative approaches,
etc. are collected in ‘““Notes™ at the end of each section. Many of the results
about odd-dimensional knots are presented as a unified and simplified
account of a number of classical theorems of Kervaire, Levine, Trotter,
Kearton, and others. Of the new results we must single out first of all the
introduction of the notion of R-equivalence and the clarification of its role
(cf. Theorems 1.5, 3.1, and 5.1). Thanks to this the structure of the theory
is completely changed (Seifert matrices and S-equivalence are omitted from
the discussion), and many proofs have been simplified.

Another significant advantage of this new scheme of reasoning consists in
its universality. Using the same circle of ideas, we give an algebraic
classification aiso of even-dimensional simple knots. This result is new; in
previous papers only particular classes of such knots have been described.

0.3. The terminology of the paper is that of differential-topology. For
example, the term ‘‘submanifold” means smooth submanifold etc.

Let us define more precisely the fundamental concept of the paper—that
of a knot. Since we study here only knots of codimension 2 and knots of
other codimensions do not appear at all, we move away from the general
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definition of knots given above and adopt the following: an n-dimensional
knot is a pair (§***, k") consisting of the sphere §7*% and an n-dimensional,
closed, oriented submanifold k& of it that is homeomorphic (but not
necessarily diffeomorphic) to the n-dimensional sphere S*. Two knots
(S™*%, k) and (S™*2, k,) are said to be equivalent (or of the same isotopy
type) if there exists an orientation-preserving diffeomorphism from §n+2
onto itself that takes k, to k, with the orientations preserved. A trivial knot
is a knot equivalent to (§"+2, §") where §" < §7*# is the standard embedding.

To motivate the definition of a simple knot (see 0.7) we begin by quoting
some fundamental facts about the existence of Seifert manifolds. We recall
that a Seifert manifold of a knot (§™+2, k) is any compact connected
orientable (n+ 1)-dimensional submanifold ¥V < $™*2 with 9V = &,

0.4. Theorem. Every knot has a Seifert manifold.

For classical knots this was discovered by Frankl and Pontryagin [22].
Seifert [48] reproved this theorem and constructed a whole theory in which
a surface spanned on the knot is used to compute knot invariants. The
general higher-dimensional case was proved independently by Kervaire [33].
Zeeman {57], and Levine [37].

The following question now arises: under what conditions does a knot
bound an r-connected Seifert manifold? Interest in this question is explained
by the fact that an answer to it must give a criterion for being unknotted.
For if the knot bounds a contractible manifold, then this manifold is a disc,
hence, the knot is trivial. 4

0.5. Theorem. If a knot (S™*2, k) has an r-connected Seifert manifold, then
(8™ — k) = (S for all i <r. Conversely, if n # 2 and 7;(S™*? — k) =
= n;(8Y) for all i <r, then the knot (S™*2, k) bounds an r-connected Seifert
manifold.

The first assertion of this theorem, and also the second for n = 4, was
proved by Levine {37]. The case n = 1 follows from Dehn’s lemma. and
the case n = 3 from work of Levine [39] and Trotter [53].

A consequence of Theorem 0.5 and of Smale’s theorem {9] on the
characterization of the disc is the following criterion of Levine [37] for
being unknotted.

0.6. Theorem. For n + 2, 4 a knot (S™*2, k) is trivial provided that
7;(8™? — k) = ny(SY) for all i < (n+1)/2. This also holds for n = 4 under
the additional condition that k is diffeomorphic to the standard sphere.

0.7. After these theorems the definition of a simple knot will be
understandable. A knot (S™*2, k) is called simple if n;(§"*2 — k) = n;(SY)
for all i < (n—1)/2. As follows from Theorem 0.5, an n-dimensional knot
is simple if and only if it bounds an {(n— 1)/2]-connected Seifert manifold.




66 M.Sh. Farber

Such manifolds admit rather simple decompositions into handles. For
example, a Seifert manifold for a simple (2¢ — 1)-dimensional knot can be
obtained from the disc by attaching a certain number of handles of index q.
The arrangement of these handles in the ambient sphere is completely
determined by their mutual linkage coefficients. This gives a method of an
algebraic classification of the isotopy type of the embedding of the Seifert
manifold, hence. also of the knot bounding it: however, all this fits into
the framework of the present paper and will be discussed in detail later.

As Novikov [7] has shown. every locally flat topological knot (8"*2, k)
with n = 5 is carried by a homeomorphism into some smooth knot. Thus.
the principal results of this paper are also true for topological locally flat
knots.

1 wish to thank A.V. Chernavskii and O.Ya. Viro for reading the paper in
manuscript form and for making a number of valuable comments.

CHAPTER |
HOMOLOGICAL INVARIANTS OF KNOTS
§1. The homology of Seifert manifolds

In what sense is the homology of a Seifert manifold an invariant of the
knot bounding it? The point is that a Seifert manifold of a knot is far from
being unique: isotopies and surgeries along embedded handles. whose effect
is illustrated in Fig. 1, can modify the Seifert manifold so as to change its
homotopy type and its homology, but not its boundary.

In this section the homology groups of a Seifert manifold are equipped
with the structure of modules over the ring P of integral polynomials. It
turns out that if the homology is interpreted as a P-module, then it can be
shown that in some sense it is not changed at all by surgeries on the Seifert
manifold, and consequently is an invariant of the knot itself. Formally, what
happens is this: a certain equivalence relation is introduced on the set of
P-modules and it is shown that the equivalence class of the homology module
of a Seifert manifold is an invariant of the knot.

If the Seifert manifold is even-dimensional. then its homology module of
middle-dimension, together with the intersection index form. is an object
first studied by Kervaire [34] under the name of an isometric structure.

Fig. 1
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We also introduce an equivalence relation on isometric structures and prove
an analogous theorem for them.

1.1. Let K = (8§"*%, k") be some knot and V*! — S§™*? some Seifert
manifold of it. Since the orientation of the knot & = 8V is fixed. V" has a
canonical orientation.

a)

Fig. 2

We denote by iy, i_: V— S"? — ¥V maps given by small displacements
along the positive and negative normal directions to V., respectively. It is
not hard to check that rhe homomorphism H.V — H_ (8™t — V) that takes
a class a € HV to iy (a) — i ¢ (a)is an isomorphism for all . (Throughout
this paper the symbol H, denotes the reduced integral homology group.) To
prove this we have to consider the corresponding Mayer-Vietoris sequence,
but we can also use the following intuitive argument. If a class ¢ € H, V.
realized by a cycle alying in int V., has the property that ij,(a) — i_,(a) = 0,
then there exists a chain §in S™2 — V with 8B = iy, (@) — i_4(a).
Adjoining to § the cylindrical chain over a we obtain an (r+ 1)-dimensional
cycle v in §7*2 — k whose intersection with V gives a. By the Alexander
duality theorem H, (8™ — &) = 0 for r > 0. Consequently, 7y bounds a
chain & lying in §"*2 — k, and the intersection of § with ¥ gives a chain
spanning o in int ¥. Thus, @ = 0. See Fig. 2a).

To prove surjectivity we assume that we are given a class {a} € H (S™*? — V).
The cycle o bounds some chain § in 87+ — k (for » > 1 this follows from
the fact that H, (§"** — k) = 0, and for r = | from the fact that
H,(8™* — k) is isomorphic to Z and is generated by any cycle whose linking
number with & is 1: the cycle a does not intersect V, hence, its linking
number with the knot is 0. If v is the intersection of 8 with int V, then
clearly, is4(y) — i-4(y)is homologous to a in $™*2 — V. See Fig. 2b).

let P = Z{z] be the ring of integral polynomials. To define a P-module
structure on H,V it is sufficient to specify a class za € H,V for each class
a € H,V. We do this in such a way that

¢)) (l4x — T4)(za) = i1g(a).
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Since i,, — i_y is an isomorphism, this formula gives a well-defined action
of z € Pon H,V. Geometrically, za is the homology class of the cycle
obtained as follows: we choose a cycle representing a and lift it above V;
the resulting cycle bounds in $"** — k a film whose intersection with V also
represents za. Let us now explain the connection between the module
structure on H,V and the intersection index of cycles.

1.2. Proposition. Ifa € HV, b € HV, r+s = n+ 1. then
@) (za, b ) =(a,zb),

where T denotes | —z € P and the brackets {,) denote the intersection index
on V.

m To prove this, we use the formula
(3) (i — i+*)(3—a) = 1_4la),

which is derived from (1). and also the following properties of the linking
numbers L: H.V ® H (8" — V) — Z (see [3]. [38]):

4) Lia @ i44(l)) = (—1)*'L(b © i _4(a)),
©) Lia ® (i1 — 1 4)(0)) = {a. 1)
We have

(za, by = (=1)*(b,y za) = (—1)"L(D @ (i.p — [ _4)(za)) =
= (—1)"L(b @ iy la)) — —Lla ® i_yb)) =

= L ® lisy — ig)Zh) - (a, zb),
which proves (2). ®

1.3. An isometric structure is a P-module A equipped with a Z-bilinear form
(,Y:4 x A > Z such that

(a) the module A is finitely generated as an Abelian group:

(b) the form ¢, ) is e-symmetric, where ¢ = 1.

(¢) the two homomorphisms 4 = Homy (4; 2Z) associated with (,) are
epimorphisms and their kernels are 7(4) = TorszA:

(d) (za, b) = (a, Zb ), where a, b € 4.

The number ¢ in (b) is called the pariry of the isometric structure A.
Two isometric structures A and B are isomorphic if there exists a
P-isomorphism 4 — B preserving the scalar product.

If ¥ is a Seifert manifold of a knot (§"°2, k) and n = 2¢— 1 is odd, then
there is a scalar product on the P-module H,V given by the intersection
index, and H,V is an isometric structure of parity (—1)?. For (a) and (b) are
clear, (¢) follows from Poincaré’s duality theorem, and (d) was proved in
§1.2. H,V is called the isometric structure of the manifold V.
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1.4. Let m be a non-negative integer. Two P-modules 4 and B are called
madjoining if there exist P~homomorphisms @: 4 - Band $: B— 4 such
that each of the composites @ o 9 and P o @ coincides with multiplication by
(2 € P Similarly, two tsometric structures A4 and B will be called
meadjoining if there exist P-homomorphisms @: 4 — B, ¢: B — 4 such that
each of the composites @ o pand P o ¢ coincides with multiplication by
Czy"ePundforanva €A, b €B

(a, P(&)) = {o(a), ).

It is clear that P-modules and isometric structures are O-adjoining if and
only if they are isomorphic. If A4 m-adjoins B and B l~adjoins C. then A
(m+ N-adjoins C.

The equivalence relation generated by T-adjoining is called R-equivalence.
In more detail. two P-modules 4 and B are said to be R-equivalent if there
exists a finite sequence of P-modules (. ..., (. such that 4 = G, B = C,
and (; t-adjoins Cyay for all i = 1. .om— 1. Similarly. two isometric
structures of the same parity are said to be R-equivalent it they can be
joined by a finite chain of isometric structures of the same parity in which
consecutive structures are l-adjoining. The principal result of this section
consists in the following assertion.

1.5, Theorem. Let V, < 8™ be Scifert manifolds of knors K, = (§™*2, k)
(v=1or ). If Kyand K, are equivalent, then for any i the P-modules HiV,
and H;Vyare R-equivalent. If, in addition, n = 2¢ — 1 is odd. then the
isometric structures HgVy and HyVy are R-equivalent.

Theorem 1.5 is a trivial consequence of Theorem 1.7 und Proposition 1.8
below.

Fig. 3

1.6. Let (S™*2%, k") be a knot and V, W < S$™*? two Seifert manifolds of it.
We call them adjoining if int V [Jint W = @ (sec Fig. 3). To explain the
significance of this concept we note that VJ W is a closed manifold of
dimension #+ 1. bounding some (1 + 2)-dimensional body in S™?%.  This
body may be regarded as a cobordism from V to W. Decomposing it into
handles. we obtain a sequence of embedded handles such that surgeries along
them transform F into W.
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The property of adjoining is symmetric, but not-transitive and non-
reflexive. We call the equivalence relation on the set of Seifert manifolds of
a given knot generated by adjoining R-equivalence. In other words, two
Seifert manifolds ¥ and W are said to be R-equivalent if there exists a finite
sequence Uy, Uy, ..., Uy of Seifert manifolds of the knot in question such
that Uy, = V, Uy = W and U; adjoins Uiy foralli =01, .., N-1.

1.7. Theorem. Any two Seifert manifolds of a knot are R-equivalent.
Now, to deduce Theorem 1.5 it is sufficient to observe the following.

1.8. Proposition. If V, W < §™**are adjoining Seifert manifolds of a knot
(8™*2, k), then for all i the modules H;V and H;W are 1-adjoining. 1f.

moreover, n = 2q— 1 is odd, then the isomerric structures H,V and H,W are .

also 1adjoining.

In the remaining part of this section we prove Theorem 1.7 (§§1.9-1.14)
and Proposition 1.8 (§§1.15-1.17).

The proof of Theorem 1.7 consists in successively removing parts of the
intersection ¥ N W by replacing ¥ and W by R-equivalent Seifert manifolds.
In the first step we reduce the general case to the situation when there is no
intersection in a neighbourhood of the boundary. that is, when the set
int ¥ 1 int W is compact. After that we remove all remaining intersections.

We assume that a Riemannian metric is fixed on the sphere S7+2 . Every
Seifert manifold V of a knot (Sm*2, k) determines a normal vector field v on
k. which is formed of unit vectors tangent to V" and pointing into V.

1.9. Lemma. The normal vector fields on k determined by any pair of
Seifert manifolds are homotopic (in the class of unit normal vector fields).

m For n # 1 all unit normal vector fields are homotopic (this follows from
obstruction theory). For n = 1 the obstruction to homotopy between two
such fields is the difference in their winding numbers [8] (the winding
number of a normal field is defined as the linking number of the knot
with a smali displacement of it along the field). It is clear that the winding
number of the normal field defined by any Seifert manifold is 0. ®

1.10. Lemma. Let X be a compact connected topological space and

f g:X = S' two homotopic continuous maps. Then there exists a finite
sequence of continuous maps h; ‘X > S'(i=0,1. .. N)such that hy =/,
hy = g and hy(x) 5= h,,(z) for each [ = 0, 1. ..., N—1 and each point
TEX

® We identify S! with the unit circle in the complex plane. We begin by
proving the lemma in the case when g(x) =1 forallx €X. Letp: R -~ S,
p(t) = exp(2nit), be the universal covering. Since f is homotopic to a
constant map, it has a lifting f:X = R. The space X is compact and
connected, therefore, f(X) = [a, b}. We may assume that 0 <a < 1 (if this

bbb
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condition is not satisfied, we can consider another lifting z — f(x) — kfora
suitable integer k). Let N be an arbitrary integer greater than b. We define
By X = S! by the formula

hi(2) = p(1 — UN)fiz)), z€X, i=0,1, ..., N

It is clear that hy(z) == f (z) and hy(z) = 1 = g (x). Moreover, if
hi(z) = R+ (x) for some x € X, then

(A — i) — (4 — (@ + D) = 1

is an integer. But then!/ = f(x)/Nand 0 < a/N <1< b/N <1, whichisa
contradiction.

In the general case, if g # 1, then we can apply the above argument to
f@)g(r)~tand | and multiply the resulting system of functions by g(x). ®

1.11. Lemma. Suppose that V. S"** is a Seifert manifold of a knot
(S7*2, k), that v is the normal field on k derermined by it, and w another
smooth wnit normal vector field on k such that v(x) F w(Xx) forall x € k.
Then in anyv neighbourhood of V there exists a Seifert manifold W of
(872 k) that adjoins V and has the normal field w.

m The vector field w on kA can be extended to a unit field W transverse to
I and defined on some neighbourhood of V. Let g’ be the local one-
parameter group of diffeomorphisms generated by . Taking a sufficiently
small & > 0, we can form

eMu( U g'k)

tE[0, &)
and by smoothing corners along gé(k) we obtain the required manifold . @

1.12. Corollary. If V and W are Seiferr manifolds of a knot (82, k). then
there exists a Seifert manifold U of this knot that is R-equivalent to V and
such that u(x) = w(x) for all x € k, where u and w are the normal fields on
k determined by U and W, respectively. In particular, the set int U 1 int W
is compact.

m Let v be the normal field on k determined by V. By 1.9 and 1.10
there is a finite sequence g, Uy, ..., Uy of unit normal vector fields on k
with ug = v, uy = w and u;(z) 7= u;n(@) forallx €k, i= 0.1, .., N-1.
By Lemma 1.11 we may assume that the u; are the normal fields of some
Seifert manifolds U;, where Uy = V and U; adjoins U, 4, for alli=0.1. ...
... N— 1. The manifold U x_, clearly satisfies the required conditions. ®

v
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Fig. 4
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The following drawing shows that closures of components of
Sn+2 (V) W) are not always manifolds. Figure 4 shows a zero-dimensional
knot in the plane and two of its Seifert manifolds. the components 2 and 3
are “bad”, while the closures of the other components are manifolds,
although with corners.

1.13. Lemma. Suppose that V and W are Seifert manifolds of a knot
(8™, k) in general position such that int 'V ()int Wis compact. Then the
closure of at least one component of §™* — (V. W)is a manifold (with
corners).

® Let K and L be two distinct components of int ¥ [ int 1. Let w be a
path in 17 connecting some point of K to some point of L. Let n be a path
in W with n(0) = w(1) and n(1) = w(0). Then wn is a loop disjoint from
the knot. We denotu its linkage cocfficient with K by J(K, L). This
number does not depend on the choices made. but only on the components
K and L.

Let i be an integer so large that [d(A. LYyl+ 1 < m for any components A
and L of the intersection int ¥ [)int W. We consider the m-sheeted cyclic
cover p: X —» 87+2 branched over k (definitions and constructions of a
branched cyclic covering are given. for example. in {21). Let ¢ X — X be
a generator of the group of covering transformations. We denote lifts of ¥
and W to X by V and W. respectively. 11 the intersection 7f v n ¥ were
non-empty for all i = 0, 1, ..., m— 1, then there would be components K
and L of the intersection int ¥V {1int Wwith (K. L} = m~ 1. which is
umpossible. Consequently. without loss of generahity we may assume that
int ¥V Nint W = @&.

We cut X along int 7 As a result we obtain a compact manifold ¥ (with
corners) and a map sz ¥ — X that maps int ¥ homeomorphically onto
X~ ¥ The boundury 3Y contains k. and 3Y ~k consists of two components.
each mapped by s homeomorphically onto int . We denote the closures
of these components by 9,Y and 9,1

The munitold a-1(t¥) divides ¥ into two components. One of them
contains all the sets a~}(# int V)for i = 2. 3. ... m—1. We denote the
closure of the other component by Z. (For /1 = 2 this condition does not
determine Z uniquely, and in this case we take Z to denote either component.)
The manifold Z contains precisely one of the sets 9o or 8,Y. Suppose to
be definite that .Y < Z.

The manifold n"(ﬁ}) also divides Y into two components. We denote by
N the closure of the component containing int 8,Y. Let j be the least
natural number for which T = int (¥ N a-}t/aZ))is non-empty. Then the
set M = p(n(T)) = §™*? is open. and its closure is p((N o~ (t'nZ))).
which is homeomorphic to N N} n~3(¢/nZ). that is, it is a manifold. On the
other hand, M is clearly the union of some components of "2 — (Vj W)=
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1.14. Proof of Theorem 1.7. Let ¥V and W be two Seifert manifolds of a
knot (8§72, k). We may assume that the normal vector fields on k determined
by V and W do not coincide at any point

Up

‘ /A A
/y\\ﬂ/1 - =

(sce Corollary 1.12) and that the interiors of 1/ and W intersect transversely.
Bv Lemma 1.13 there is a component of Sn+? — (V |} W) whose closure M

is a manifold. This M adjoins V only on one side. Taking the corresponding
vector field on ¥ which points outward from M on V (1 M. we can construct
4 sufficiently small displacement of 1 as a result of which we obtain a
Seifert manifold U, 8§™** with the following properties: (a) U, adjoins 17
(b) U, does not intersect M. Similurly. by taking the normal field on W [} M
pointing into M and by extending it accordingly to the whole of W. and
then to some neighbourhood of W, we obtain a local one-parameter group of
diffcomorphisms that displaces W to a new Scifert manifold % with the
following properties: (a) U; adjoins Wi (b) Uz and W detine the same
normal field on k: () ¥V oW and V | U, have the same number of
components: (YU, NV N M cint@M N V).

Finally. fet U be obtained from (VU (M 0 W) — int(8M N V) by
smoothing corners along 8M NV N W. Then U; adjoins U hence. U is
R-equivalent 10 V. while the intersection int U f}int U, has tewer components
than int ¥V 1 int W. The proot is now completed by induction. ®

a)

1.15. In the proof of Proposition 1.8 we need the following two remuarks.
The module structure of a Seifert manifold depends on the orientation of
the knot. If the orientation of the knot is switched. then so is the
orientation of the Seifert manifold, hence. the maps i and i change places.
Comparing (1) and (3) (see §1.1) we sce that this leads to changing
multiplication by z to multiplication by Z = 1 -z € P. Morcover. the
intersection index form changes sign.

The other remark is that a P-module structure can also be introduced on
the homology of closed submanifolds of the sphere of codimension 1. For
let Un*t = 8§72 be a closed connected oriented (n+ 1)-dimensional
submanifold. Taking an arbitrary disc D"*' < U, we can form U, = U~ int D,
where 97 is a sphere. Hence, as was shown in §1.1. the groups H U, arc
defined as P-modules. On the other hand. the embedding Uy -~ U induces
an isomorphism of all homology groups of dimension <. Consequently.
the groups H;U are defined as P-modules for i < n. Similarly. if n = 2¢—1
is odd. then H,U is an isometric structure. Clearly, a different choice of the
disc D yields isomorphic objects.
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The homology modules of closed manifolds have the following special
property.

1.16. Lemma. If U™ < S™*%is a closed connected oriented submanifold,
then for all a € H;U, where i < n, the product (Zz)a vanishes. (We recall
that Z denotes 1 —z € P)

® The submanifold U divides §**2 into two components. Let M and N be
their closures and r:U = M and 5:U —> N the embeddings. Then
NNM=U, Ny M= S and it follows from the Mayer-Vietoris
sequence that the map

HU 228 yM e HN

is an isomorphism for i < n. Thus, each element a € H;U can be written
uniquely in the form a = a;+a,. where a,, 2, € H,U.r.a, = 0, and s, = 0.
Suppose that U is oriented so that its positive normal points into M. Then
r.a, = 0 implies that za; = 0 (sce (1)). and 5,4, = 0 implices Ta, = 0 (see (3.
If U has the opposite orientation, then Za; = 0, za, = 0. In either case,

7%q = zZay;+ZZa, = 0. W

1.17. Proof of Proposition 1.8. Let V, W < §™*2 be adjoining Seifert
manitolds. iy, itV — §m*2 — V¥ themaps of §1.1.and j: int W— 8" Y
the embedding. We define ¢: H;W — H,;V by requiring that the composite
map
- A te-ti s
Hy(int W) > HW — HYV ——> H (S™2—V)

coincides with j,. Since the end-maps are isomorphisms. ¢ is a well-defined
Z-homomorphism. Geometrically, the action of ¢ can be described as
follows. Let a be a cycle in W. By moving if slightly we muy assume that
a lies in int W. This cycle bounds some chain in Sn+2 whose intersection
with V represents the class $({a}).

Similarly we define a homomorphism ¢: H,V - HW.

To prove that @ and y satisfy the condition defining 1-adjoining in §1.4.
we consider the closed manifold Vy W = U. In general, U is not smooth
because of the corner along 9V = 8W. But clearly we can construct an
isotopy h, of §7+% that is constant on & and outside some neighbourhood of
k and such that hy(V) U W is a smooth manifold. Since the modules and
isometric structures of V and (V) are isomorphic, we may assume from the
outset that U = V |J W is smooth.

The embeddings ¥ = U and W — U induce a group isomorphism
HYV & HW —~ H,U, hence, each x € H;U uniquely determines a pair (a. b).
with @ € H;V and b € H;W. To simplify the notation we write x = (a, b).
We orientate U/ consistently with V. Then it is clear from geometric
arguments that

z(a, 0) = (za, @(a)), a € H,V,
2(0, b) = (p(b), zb), b € HW.

i
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The second formula is quite analogous to the first: the difference is that
the orientation of W is opposite to that of ¥ (see the first remark in §1.15).
We have

22a, 0) = 2(za, —9(a)) = z(za, 0) — 2(0, 9(a)) =
= (g0, o(3a)) — (VO(a), 29(a) = (26 — Yo(a), P(za) — z9(a))-

But by the previous lemma, zzx = 0 for any x € H;U. Consequently, for
any a € H;V

vola) = 128, @(za) = z9la).

The second equation means that @ is a P-homomorphism. Similarly, by
putting zZ(0. b) = 0 we obtain

Qu(b) = zzb, P(zb) = 2y(b)

for any b € H;W. This means that the modules H;V and H;W are 1-adjoining
for i < n. But for i > n they vanish.

Let n = 2¢— | be odd. Then clearly, the intersection index form on U
acts as follows:

{ars By (a5 B De = (a1, v — (b3 bydwr
Using Proposition 1.2 we obtain fora € H,V and b € H,W
(@la), by = — (ala, 0), (0, by = — (@, 0). 2(0, By = <& Y(BP-
Hence the isometric structures H, ¥ and H W are 1-adjoining. ®

Notes to £1. The map of a homology group of a Seifert manifold into itself acting (in the notation
of §1.1) by the formulaa — za,4a € H;V. is not new. The matrix describing this map already
oceurs in the classical paper of Seifert {48}, where it is denoted by T'. (Incidently, in [48] this
matrix is used far more than the matrix that is now known as the Seifert matrix.) However, the
homology of Seifert manifolds as P-modules is considered for the first time in the present paper.

This seemingly small change of the point of view turns out to be very useful: not only does it allow
us to describe surgeries of Seifert manifolds in the language of 1-adjoining (see 1.4 and Theorem 1.5),
but it also makes it possible to compute Alexander modules in explicit transparent form (see §2) and
1o find a verifiable criterion for R-equivalence (see Theorem 5.1).

The notion of an isometric structure was introduced by Kervaire {34]. The only difference is that
here we do not require that T(4) = 0. The term “jsometric structure” is explained by the condition
(d) in 1.3. When multiplication by z € P is an isomorphism 4 —~ A, we can define a homomorphism
1:A — A by putting ta = a — z-1g,and (d) means that 7 is an isometry: (1a, tb) = (a, b) for all
a. b € A. Conversely, given an automorphism # of an Abelian group A that preserves some scalar
product ¢,):A x A~ 2Z and such that 1 —7:4 — A is an automorphism, A can be endowed with a
P.module structure by putting za = (1 — tj~la, and then (d) holds.

The relation of adjoining of modules and isometric structures is an algebraic analogue of the more
general homotopy-theoretical concepts, presented in §8. Theorem 1.5 is generalized by Corollary 8.10
(see below).

Theorem 1.7 can hardly be regarded as new, aithough it is nowhere stated in this form, It is well
known that all modifications of Seifert manifolds can be obtained by isotopies and surgery along
embedded handles. This fact follows from arguments of Levine {39], 186-187, and a theorem of
Kearton and Lickorish {29} on embeddings with critical levels. For classical knots a theorem of this
kind was proved by Rice [46), Theorem 2.2, but as is clear from his proof, he mistakenly believed
that all the components of the complement §7+2 — vuyw satisfy the conclusion of our Lemma 1.13.
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A stronger assertion than Theorem 1.7 was proved (but not stated explicitly) in the present
author’s paper [21], 201-207. There it is assumed that the initial Seifert manifolds }" and W are
r-connected, and it is proved that they can be connected by a chain of adjoining 7-connected Seifert
manifolds. However, the arguments of [21] are valid only forr > 2. n > 4.

The problem of constructing knot invariants which, like the invariants of this section. can be
calculated from any Seifert manifold. is classical. In knot theory there are many other invariants of a
stmilar kind. This ares was opened up by Seifert. paper [48]. where it is shown how homology and
linkage coefficients in finite-sheeted cyclic branched covers can be computed using a Seifert manitfold.
The next important step was taken in 1970 by Levine {39]. {40]. where he showed that the
S-equivalence class of the Seifert matrix is a complete invariant of an odd-dimensional simple knot.
The relation of S-equivalence had been considered by Trotter [52] and Murasugi {45] even before
these papers of Levine; it describes the changes in a Seifert matric resuling from surgery. A
somewhat different approach to the construction of matrix invariants of knots was proposed by Rice
[46]: he also investigated the changes resulting from attaching an individual handle.

§2. Alexander modules

In this section we establish a connection between the knot invariants
constructed in §1 and Alexander modules. which have long been one of the
tools of knot theory. Namely. we derive a simple formula that expresses an
Alexander module in terms of a homology P-module of an arbitrary Seifert
manifold (see Theorem 2.6). There is also a reverse relationship:  the
Alexander module determines the R-equivalence class of the P-module of the
Seifert manifold (sec Theorem 2.7).

2.1. Let (§™2, k) be an n-dimensional knot and X = §™** — k its
complement. The wuniversal Abelian cover p :X = X is the cover defined by
the derived subgroup of & = a1,(X). According to the theory of covering
spaces. the group of covering transformations of this cover is the Abelianized
group n/ln, n} = H,X. By Alexander’s duality theorem, H;X = Z. hence.
the cover p - X = X has an infinite cyclic group of covering transformations.
The orientations of $™** and k determine one of the two generators of this
group corresponding to the class in H, X that has the linking number +1
with k. Let 7: X — X be this generator. The homeomorphism ¢ acts on the
homology H.X. making it into modules over the ring A = Z[¢t, t7']. The
A-modules Hij(Y are called the Alexander modules of the knot.

Let ¥+ «— §™*2 be a Scifert manifold for (8™*2, k). Since every cycle in
int V has zero linkage coefficient with k. the embedding int V' = X can be
lifted to X. Fixing some lifting f:int ¥ = X and identifying H(int 1) with
H;(V). we obtain an induced homomorphism f,: H;V — H,»Y.

2.2, Proposition. (1) The formula (1 — tf4(zv) = f4(v) holds for any

v € HVo (2ywhenv € HiV, then f,(v) =0 if and only if (zZ)"v = 0 for
some m = 0. (3) for cach cluss x € H;X there are integers [ 2 0 .and m2 0
such that z = (1 — )t~™f,(v) for some v € H; V.

We postpone the proof (see 2.8) and first derive some consequences.
First we obtain the following well known fuct [33]:

R A AR 00
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2.3. Corollary. The Alexander modules Hi)A(' of every knot have the
property that multiplication by (1 —1) € A is an automorphism H,f(’ g H,-f.

= |t follows from Proposition 2.2, (1) and (3). that multiplication by 1—1¢
is an epimorphism from H,f(' onto itself. On the other hand H.X is finitely
generated over A (since X retracts onto a finite complex and A is Noetherian),
and every surjective endomorphisms of a finitely generated module over a
Noetherian ring is known to be an automorphism. =

Owing to Corollary 2.3 H,-)’(V can be regarded as a module over the ring
L =21t t, (1 — 1)~ Let = denote (1 — t)~* € L. The subring of L
generated by z is isomorphic to P = Z[z].

2.4. Corollary. The map fs  HV — Hij? is a P-homomorphism.
This follows from Proposition 2.2 (1). ®

25. Lemma. Let A be a P-module. Then the kernel of the homomorphism
A—L ®p Atakinga €A to1 ® ais the set of a € A such that (ZZ)"a =0
for some integer m 2 0.

8 If (zZ2)"a = 0. then 1 @ a - (z2)"™ ® (zz)"a = 0. The reverse assertion
follows from the fact that L, regarded as a P-module. is isomorphic to the
direct limit of P = P = P - ..., where all the homomorphisms are
multiplication by zZ. hence, L ®p 4 is isomorphic (over P) to the direct
limit A = A4 — ... of multiplications by zz. ®

The following fact is a result of this lemma and Proposition 2.2.

2.6. Theorem. Let X be the infinite cvelic cover of the complement of a
knot, V some Seifert manifold of it, and fs: H;V = H,-Y the homomorphism
induced by some lifting int V - X Then the fornuda Fig @ v) = gfx(t).

g € L, v € HV, gives a well-defined L-homomorphism

Fi L QpHV—~HX, ~

O

m It is easy to see that for any finite set ¢, ..., g, € L there is an integer
m > 0 such that ¢; = (zz)™ p; for some polynomiais p; €P (j=1.2,...7).
If v € H;V, then

and this is an isomorphism.

Elq; Qu,=(3) ™ ® (E‘ piv;)

1=

hence, every element of L ®p H;V can be written in the form (zZ)"" ® v
for some m = 0 and v € H,V. As follows from Lemma 2.5,

()™ ® v=(22)" ®w
if and only if

(z2)*e = (@)™ w
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for some k > 0. Thus
F((zz)™ ® v) = (22) ™o () = (22) ™1y ((22) *Py) =

= ()™M (2™ w) = F((zz)™ © ),
so that F is well-defined.

If F((zz)™ ® v) = 0, then (22) "™ (v) = 0 and fy(v) = 0. But by
Proposition 2.2 (2) it follows that (zz)*v = 0 for some & > 0. Hence,
(z)™ ® v=(z2)""* ® (zz)*v = 0 and the fact that F is monomorphic is
proved.

That F is epimorphic is easy to deduce from Proposition 2.2 (3). =

As a supplement to Theorem 2.6 we state the following algebraic result.

2.7. Theorem. (1) Every finitely generated A-module A for which
multiplication by 1 —t is an isomorphism A — A is isomorphic to L ®p A
for some P-module A that is finitely generated over Z: (2) for any pair A
and B of P-modules that are finitely generated over Z the following are
equivalent:

(a) A and B are R-equivalent.

(b) A and B are m-adjoining for some m = 0:

(¢) the L-modules L ®p Aand L ®p B are isomorphic.

In the definition of R-equivalence there occurs a certain chain which
makes it not effectively verifiable. By way of contrast. (b) and (¢) have the
great advantage of being verifiable(at least to the extent that an isomorphism
is). This is the significance of the second statement of Theorem 2.7. We do
not give a proof here, since later we prove analogous statements for the
more complicated case of isometric structures.

2.8. Proof of Proposition 2.2. Let V" Sn+2 pe a Seifert manifold of the
knot k = gV < S™% p - X = X an infinite cyclic cover of the complement
X = §"*2 — k. t: X - X the generator of the translation group constructed
in2.1,andj:int ¥V =~ X a lifting of the embedding int ¥ < X. We denote
the image of j by W. The complement X — (W tW) consists of three
components, one of which is mapped homeomorphically by p onto §™% — V.
We denote this component by Y, and let v: ¥ — X be the embedding. The
maps iy, i V— S — V (see 1.1), composed with the homeomorphism
p:S™ — V> Y, give maps j4s jo: V=Y. From geometric arguments it
is clear that t o v o j4and ~ o j. are homotopic maps V — X fveEHV.
then vej4x(t) = fo(v), and it follows from what we have just said that

vej -a(V) = tfa(v). In accordance with the definition of the P-module
structure of H;V we have (i+e — i_4)(2) = i14(D). Consequently,

) (+e — j-2)(2v) = j{&(V)-
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Applying v, to each side of this equality we obtain

fo(@) — te(@) = fu(v)
which proves (1).
Now (1) clearly implies the analogous formula
@) (1 — t ) o(@) = ful0)s
where v € H;V. Therefore, if (zZ)"v = 0, then

o) = 4 — ™3 — (™) = 0,
which proves half of (2).
We consider the exact homology sequence
s H (B V) > HY > HX - H X, D) >,

where 7 is the union of the sets f*Y, k € Z. Since Y Ny = @ for

k # j. the space Y is the disjoint union of the sets *Y. and H,»? can be
regarded as A ®,11;Y . identifying H(f*Y) with t* @ #,Y. If ;\;is a small
regular neighbourhood of W in X of the form W x (1. 11 and .V = J t*N,
W - £, then ¥ = X~ W and H, (X, 7))~ Hio (NN — W) by the
excision axiom. As above, the latter module can be identified with
A®zH; (N, N — W) and

Hi (N, N - W)= Hi (W > (1—1, -1l [—1, 1] —{O)) = HW = I,V
Consequently, we obtain a A-isomorphism H; ‘1(3’, Y) ~ A ®,; H1.and
the exact sequence above gives
@) o A BTSN @Y S HX =~ A @ HiV
It is not hard to see that d and e act according to the formulae
At @ 1) = @ ju () — T @ k(). e(th & 1y = thv ).

where v € H;V. ¥ € H;Y.
Suppose now that v € H;V is such that j.(r) -~ 0. Then the element
1 ® 7i.i,(v)lies in the kernel of e, hence there is an element

w=Ntr QUi AQzHV
[

with d(ir) = 1 ® j-,(r). Here k ranges over the integers, and all but finitely
many of the v, are zero. For the classes v, we obtain the following system
of equations:
jawltn) — Jx(Urer) = 0. ke2, k+0,
Jowlty) — Jox(Uy) = Ja (V).
Applying (1) and the analogous formula (j;4 — jos)@v) = —j _g(v) (see (3)
in §1) and also the fact that jisx — j_x is an isomorphism. we obtain the
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equivalent system of equations:

w, + e =0, K€ Z, k=0, 2y + 2y = 2l

Let m be a positive number so large that v, = O for all 1kt = m. Then

-m -1

oy, = —am Ty = = (=™ 2 v = 0,
—-m -m-1
z Uy = —22 Vo = ... = (=" = 0.
Consequently,
-m —m l-m+l
Mz v=12"2 Uy + "2 0T 0.

This completes the proof of Proposition 2.2 (2).

To prove (3) we note that the homomorphism 4 in the exact sequence
(3) is a monomorphism. Forif > t* @ vy €A ®z H;V belongs to ker(d).
then by arguments analogous to ‘t(he above we see that zu, -+ Zip41 = 0 for
all & € Z. Hence. as above, it follows that -y, = 0 and zmr,=0fora
sufficiently large m. However, there exist integer polynomials p(z) and g(z)
such that zmp(z) + 2" g(z) = 1. hence.

-
vy = 2"p(2)x + 2 g(@Vr = 0.
That e is an epimorphism follows from the fact thatdisa monomorphism,
hence, every class x € H;X can be represented in the form

T= ; thvt (yh)v

where v, € H;Y and y, = 0 whenever Ik 1is greater than some m. Since
jre —J-ut HV — H,Y is an isomorphism, there exist classes vy € H;V such
that

Un = (4e — o))

Then vouys = (1 — 1) fa(va) and for |k | < m. using Proposition 2.2 (1) we
obtain

fo(on)= (A — ™2 A — ) s @4z o),
B )= ™ (= O f (P T ),
=3 Pva g = (-0 3 s G = A =HTLe @),

-m+k e
where v= 3 (—1)™** 2"z v, This completes the proof of Proposition
22.®

Notes to §2. Proposition 2.2 is a technical result we will need and is easy to derive from known
properties of Alexander modules. The exact sequence (3)in 2.8 is taken from Levine {38]. Thisis
the classical method of recovering the Alexander module from information about the Seifert manifold.
By comparison, the formula HJ ~ L ® pH;V of Theorem 2.6 is much more powerful. With its
help one can study a large class of functors of knot modules (see 116]. {17]), which leads to new
constructjons of forms on Alexander modules. Among the forms constructed by the methods of {16]
and [17] are all known forms, and also some new ones. Below in §8§6-7 the Milnor form and the
Bianchfield form are constructed by similar methods.

A proof of Theorem 2.7 is in {16], [17].
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CHAPTER Il
THE CLASSIFICATION OF ODD-DIMENSIONAL SIMPLE KNOTS
§3. Reduction to algebra

We call an isometric structure A special if T(A) = TorszA = 0. We call a
Seifert manifold special if it is (n+ 1-dimensional and [(n— 1)/2)-connected.
Simple knots and only they admit special Seifert manifolds (this follows
from Theorem 0.5, or for n = 3 from Theorem 0.4). Itis clear that the
isometric structure of every even-dimensional special Seifert manifold is special.

The main result of this section is the following assertion, which supplements
Theorem 1.5.

3.1. Theorem. Lern 25 bean odd munber. The map that associaies wirlt
a knot the R-equivalence class of the isometric structure of some special
Seifert manifold is a bijection from the set of types of n-dimensional simple
knots to the set of K-equivalence classes of special isometric SIUCHUres of
parity (—1)"2

The proof (see 3.5) uses Lemmas 3.2-3.4 below.

3.2, Lemma. Let n > 5 be odd and V. W = S be two special Seifert
manifolds whose isometric structures are V-adjoining. Then there is an
isotopy of the sphere S that takes V to an oriented submanifold Vy such
that int V', nint W~ 0V = oW and V, and W induce the same orientation
on 8V, = oW.

3.3. Lemma. Letn =35 be odd.  Every special isometric structure of parity
14 1 parit]

(—1)*Or is the isometric structure of some special Seifert manifold

yr o ST

3.4. Lemma. If two special isometric strctures of the same parity are
R-equivalent, then they can be connected by a finite chain of special
isometric structures of the same parity in which all consecutive structures
are \-adjoining.

3.5. The proof of Theorem 3.1 follows from Lemmas 3.2-3.4in the
obvious way. For if two simple -dimensional knots have Seifert manifolds
with R-equivalent isometric structures, then (by Theorem 1.5) the isometric
structures of any Seifert manifolds of these knots are R-equivalent. Let ¥
be a special Seifert manifold of onc of the knots and W of the other. By
Lemma 3.4. the isometric structures of ¥V and W can be connected by a
chain of special isometric structures in which all consecutive structures are
1-adjoining. By Lemma 3.3. each isometric structure in this chain can be
realized as that of a special Seifert manifold vV, < §™*2. By Lemma 3.2, the
knot (S™*%, aV,) is ambient-isotopic to (S™*% 8V i4) for all i. and this proves
that the original knots are equivalent. ®
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3.6. The purely algebraic Lemma 3.4 is proved in §5 (see 5.7). The
remainder of this section is devoted to proofs of Lemmas 3.2 and 3.3.

We make use of Wall’s theory of thickenings [55). We recall that an
m-dimensional thickening of a k-dimensional cell complex K (it is assumed
that m = k+ 3) is the name for a simple homotopy equivalence @: (K, *)—
— (V. %), where V is a compact m-dimensional manifold equipped with a
base point and an orientation of the tangent space at the base point and
such that the embedding 3V >V induces an isomorphism of the fundamental
groups. Two m-dimensional thickenings @,: (K, *) — (Vy, #) and
¢y (K, #) = (Vo #) are called equivalent if there exists a diffeomorphism
h:V, > V, preserving the base points and the orientations on them and such
that

hog ~ @ (K, #) > (Vy %)

3.7. Theorem. Let U™ bea manifold, K* a cell complex withm>2k+3
and f- K= Ua Qk—-m+ 1)-connected map. Then there exists a compact
submanifold v < U™ with 71,(8V) = my(V) and a simple homotopy
equivalence g 1 K = V that is homotopic rels to fin U . ®

3.8. Theorem. Suppose that two compact m-dimensional manifolds Vy and
v, lie in some manifold U™ and that 5,(8Vy) = m(Vy) (v =1 or 2). Let K
be a finite k-dimensional cell complex and fy: K — vV, two homotopy
equivalences such that the compositions

1
E3v,SU

are homotopic and (2k—m+ 2)-connected (v =1 or 2. If m= 6and
k < m—3, then there exists a smooth isotopy h,:U—=U such that hy = id.
hix) = * h(V)) = V,, and the diagram

K
h[— _1!:
Vy—— V.
1 h'1 2

commutes up to homotopy. ®

Theorem 3.7 is the first part of Wall's embedding theorem ([551, 76).
Theorem 3.8 is a refinement of the second part of this theorem of Wall,
taking account of results of Hudson [25] and Rourke {471 that concordance
implies isotopy.

The simple homotopy equivalence g: K = ¥ whose existence is asserted
by Theorem 3.7 is called the thickening induced by the map f:K ~ U.
Theorem 3.8 essentially asserts the uniqueness of an induced thickening.

3.9. To prove Lemmas 3.2 and 3.3 we apply Theorems 3.7 and 3.8 in the
following situation. Let U% be a closed (¢ — 1)-connected manifold. where
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g=3.andV¥c Uan almost closed submanifold (that is, one bounded by
a homotopy sphere). Then ¥V has the homotopy type of a bouguet of
g-spheres, and the embedding i : V = U induces a monomorphism H,V —~ H,U.
Clearly. i, preserves intersection indices. Consequently, the restriction to
ig(HV) < HJU of the intersection index form {y is unimodular.

Conversely, suppose that 4 < H,U is a subgroup such that the restriction
of the form (,)py to A is unimodular. We take a bouquet of r g-spheres K,
where r is the rank of A. We can construct a continuous map f:K > U that
induces a monomorphism on the g-dimensional homology with image A. By
Theorem 3.7, f defines a thickening V < U. Obviously, V is almost closed
and the image of H,V =~ H,Uis A.

If y%, W% c U are two almost closed submanifolds with i (HgV) =
= j (HW), where i and j are the embeddings in U, then V and W are
ambient-isotopic in U. For let K be a bouquet of g-spheres and f:K->V
an arbitrary homotopy equivalence. Since i (H V) = je(HqW) we can
construct a homotopy equivalence g K= W with ie f ~ g, and our
assertion follows from Theorem 3.8.

Hence there is a bijection between the subgroups A < HgU for which () la
is unimodular and the ambient-isotopy classes of almost closed submanifolds
vua U

3.10. Lemma Letn = 2q-1,q 23, and let V,W < 8% be special
Seifert manifolds whose isometric structures are Q-adjoining. Then there
exists an isotopy of 8%+ taking V to W with orientations preserved.

w letg: HV—H,W bea P-isomorphism preserving the intersection index
forms. Let f:V — W be a map inducing @. We consider an embedding
Vv x 10, 1] — S**1that extends the embedding of V x 0 = ¥ and has the
property that the curve t — (v, t), where v € Vand r € [0, 11, leaves
v = (v, 0) in the direction of the negative normal to V. We denote the
image of ¥V x [0, 11 by N(V) and define N(W) similarly. Let a: V - N(V)
and §: W = N(W) be the canonical embeddings. The maps « and § o f are
thickenings of the complex V. By Theorem 3.8, there exists a homotopy 7,
of S+ taking N(V) to N(W) and such that by ea: V— N(W)is homotopic
to Bof.

Igence, we may assume from the very beginning that N(V) = N(W) = N.
We write M = S¥*1 —int N, U= oN,and i: V —~ Uuj:w=1U0, r:U-M,
s:U = N for the embeddings. By construction, seiet = Seisfav for all
v EH,V.

The homomorphism iy: HV — H,U isnot, in general, a P-homomorphism.
But it is easy to see that for any U € H,V the difference ig(zv) — zix(V)

belongs to the annihilator of i (HV)in HU. In other words,

(i (2), LaVDdy = (24 (V) isVs)U

for any v, vy € HyV. The homomorphism js has the analogous property.
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We claim that relev = ryjefev forallv € H V. 1f v € H, V. then
Lisgiely, Ta(lal? — jafab)) = Lisyials, rgigt) — L(Seiefalss Telufat) =
= (iyVys 2iaVy — (afalys 2afaldy =

= (v, W)y — a1y 2fueldy = 0,
where L denotes the linking number. Since each element of H,NV can be
expressed in the form sgi vy, it follows that rya = 0. where @ = iy — jofal-
We have already pointed out above that sea = 0. Consequently. g = 0 (see
proof of Lemma 1.16), that is, we have proved that i,v = j /v for all
v € H, V. But then it follows that i, (H;V) = i (H,W). and so V7 and W are
ambient-isotopic in U (see 3.9). By means of a tubular neighbourhood of U

in §7+2, this isotopy can be extended to an isotopy of the whole sphere
Sn+2. [}

3.11. Lemma. Let A be a special isomerric structure of parity (=1 wwith
the property that zZa = 0 for all a € A. Then there exists a closed oriented
2g-dimensional (¢ — )-connected submanifold U < §%* whose isometric
structure Is isomorphic to A.

®We write 4y ={a€4;2a=0)and A_={a€A; za = 0}. It is casy to
see that the module A is isomorphic to the direct sum A, & 4 _and that
the restrictions of the scalar product to A, and to 4 _ vanish. It then
follows that the isomorphism class of the isometric structure A is completely
determined by the parity (=1 and the rank r of the free Abelian group 4.,

We consider an arbitrary embedding of the disjoint union of r copies of
the sphere 8% in %+, Let U be the connected sum of the boundaries of
their tubular neighbourhoods. We orientate U so that the positive normal is
directed away from the tubular neighbourhoods. Then. as was established in
the proof of Lemma 1.16. there is a group isomorphism (HU)s & 4. and
the lemma follows from what was said above and from Lemma 1.16. =

312, Proofof Lenina 3.2, Let @t HeV — H,W and ¢: HgW — HgV be
P-homomorphisms satistying the definition of l-adjoining (sce 1.4). We
define a new isometric structure on the group A = HV @ H W by setting

3(a, b) = (za + $(b), 2b + @(a)),
((au bj_)! (av b)) = (alv a)V - (blv b)W

for (a, b). (a,, b)) € A. It is easy to check that 24 = 0. therefore, by
Lemma 3.11. 4 can be realized by a (¢ — 1)-connected oriented submanifold
U < §%*1 Let 4, < Abe the subgroup of elements of the form (a. 0).

a € HyV, and Ay < 4 the subgroup of elements of the form (0. b),

b € H,W. By what was said in 3.9, there exists an almost closed submanitold
Vf' < U corresponding to 4,. Let W, = U—int ¥,. Then W, corresponds
to the subgroup 4,. The isometric structure of V. oriented compatibly
with U, is isomorphic to the isometric structure of V, and by Lemma 3.10.
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¥, is ambient-isotopic to V with orientations preserved. Similarly W,,
oriented compatibly with U, is ambient-isotopic to W with orientations
preserved. ®

3.13. Proof of Lemma 3.3. Let A be a special isometric structure. Let

¢: A — A be multiplication by z and ¢: A — A multiplication by Z. As in
3.12 we define a new isometric structure on the group B = A4 & A. Then
7ZB = 0 and by Lemma 3.11, B can be realized by a (g — 1)-connected
closed oriented submanifold U% < 8§%*. let 4, — B be the subgroup of
elements of the form (a, 0). By what was said in 3.9, there exists an almost
closed submanifold ¥ — U corresponding to A,. It is clear that the
isometric structure of V is isomorphic to 4. ®

Notes to §3. This section is an alternative account of the results of Levine [39]. If we bear in mind
that the Seifert pairing and the isometric structure of a special Seifert manifold determine each other
uniquely, Lemma 3.10 can be identified with Lemma 3 of Levine’s paper {39}, and Lemma 3.2 with
an assertion proved by Kervaire [33] in the course of the proof of Theorem 11.3. The proofs
presented here are based on the theory of thickenings; they are modelled on arguments in [21].
where a much more general situation is studied.

As foliows from Theorem 3.1, for simple knots (§%*, k29-1) the isometric structure A determines
the embedding type completely, hence also the differentiable structure on k. Since a homotopy
sphere embedded in a sphere with codimension 2 bounds a parallelizable manifold, the type of an exotic
sphere & is determined for even g by the signature of the form (,>:4 x 4 — Z (see [32]). and for
odd g by the Arf-invariant of the quadratic function a +~» (a, 2za)(mod 2),a € 4 (see |38] . Proposition
3.3). Levine [38] also showed that this Arf-invariant c is given by the formulae

_{ 0 if A(—1)=+1 (mod8),
SVt if A(—1) =+ 3 (mod8)

where A(?) is the Alexander polynomial in g-dimensional homology.

§4. Minimal isometric structures

We say that a P-module A is minimal if multiplication by zZ € P is a
monomorphism. We recall that Z denotes 1 —z € P.) An isometric structure
A is said to be minimal if the module A is minimal. The significance of
minimal modules is explained by Lemma 2.5.

4.1. Theorem. Every isometric structure is R-equivalent to a minimal one.

This theorem is the main result of the section. To prove it we introduce
the notion of a discriminant structure; this allows us to survey all the
isometric structures adjoining a given one. The technique of discriminant
structures is used essentially in the next section.

4.2, Lemma. Every isometric structure A is R-equivalent to an isometric
structure B with minimal module T(B) = TorszB.

8 let K={a € T(A); 2a=0} and A, = A/K with the natural P-module
structure. We define a scalar product on A, by the formula (na, nib) = (a, b},
where @, b € 4 and n: A — A, is the projection. Then A; is an isometric
structure of the same parity as A. We define homomorphisms ¢: 4 — 4,
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and $: A; = 4 by the formulae

9(a) = n(z8), P(na) = 20, a € 4.

These homomorphisms satisfy all the conditions in the definition of
l-adjoining (see 1.4), hence, A, 1-adjoins A. Applying the construction just
described to 4; we obtain an isometric structure 4,. Similarly we obtain A,
from A, and so on. It is clear that for sufficiently large N the isometric
structure 4y has the property that multiplication by z determines a
monomorphism T(A4y) = T(Ay). Moreover, Ay is R-equivalent to 4.

Now we change the modification process somewhat. Let

={a € T(A); za = 0} and A y4; = 4 x/L y with the natural P-module

structure and the scalar product defined as above. Then 4 4, is an
isometric structure and 1-adjoins A 5. Similarly we obtain an isometric
structure A4 y+3 l-adjoining 4 x4y, and then A ;g and so on. It is clear that
for sufficiently large M the P-module T(4 x+a) is minimal, and we may put
B=A4dyiy-®

b o S Ve A S

4.3. A periodic isometric structure [50] is a P-module A equipped with a
Z-bilinear form {,}: 4 X A — Q/Z, where it is assumed that (a) the module
A is finite; (b) the form {,} is e-symmetric, where ¢ = +1; (¢) the form {,}
is non-degenerate, that is, both the associated homomorphisms

A - Hom(A4: Q/2) are isomorphisms. (d) {za, b} = {a, Zb} for alla, b € A.
The number & is called the parity of A.

4.4. We now show that every isometric structure 4 with minimal module
T(A) determines a series of periodic isometric structures.

Let mm > 0 be an integer and let [A],, denote the set of all elements
a € A for which there is an integer N # 0 such that Na € (zz)"A. We denote
by A,, the group [A},/(zz)"A with the natural P-module structure and the
form {,}: Apm X Am — Q/Z acting as follows. Ifa,B€ A, anda, bE[A],
are respective representatives with Na = (zz)"'al for some N€ Z, N+ 0,
a, € A, then we set by definition

{a, B} = (a1, BY/N (mod Z).

i i

PR SRR o o

Let us prove that this is _well—defined‘ If b' is another representative of the
class B, then b — &' = (zz)™z for some x € A and

{a;, bY/N — (a,, b')IN = {a;, (22)"z)/N = (a, z) = O (mod Z).
If Mb = (zz)™b,for b, €A, M EZ M+ 0, then
(a,, /N = (a;, MbYINM = (a,, (zz)"b,)/ NM =

1

((2z)™ay, b)Y NM = (a, b))/ M,

which shows that the definition of {a, B} is independent of the choice of N
and a,, and that it is independent of the choice of a in the class « follows
from arguments analogous to the above.
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4.5. Proposition. If A is an isometric structure of parity e with a minimal
module T(A). then the module A,, with the form {,} is a periodic isometric
structure of parity e.

m [t is trivial to verify the conditions of Definition 4.3. For example, if
{a, B} = Ofor all B € A,,. then {a,, b} is divisible by N for all b € {41,
(where b is a representative of 8, a is a representative of @, and Na = (z;)"'al).
The homomorphism b — (a,, bY/N € Z given on {A],, can be extended to
A. hence, there is an element a, € A such that {a;, ) = {(a;, b )/N for all
b € [Al,,. It now follows that for any b € A

{(z2)™ay, b) = (g, (22)™b) = (ay, (z2)"b)/N = (a, b},

Consequently, the element a — (zz)™a, = ag belongs to T(4). _Since T(A) is
minimal, there is an 2, € T(A) with (zz)™a, = ay, hence. ¢ = (22)™(ay 4+ a;) €
€(@™4anda=0.m

The periodic 1sometric structure A, is called the m-th discriminant
structure of A.

4.6. Let A be an isometric structure with a minimal module T(A4), A4,, its
m-th discriminant structure, and L < A, a metabolic submodule [50], that
is, a submodule that is its own annihilator L2 relative to the form {,}. We
now show that L determines a new isometric structure Ay that m-adjoins A.
Let n: [4),, = Apn be the natural projection and 4y = n~!(L) with the
induced P-module structure. We specify a scalar product {,}; on A; as
follows: if a, b € A; and Na = (z2)™a,, where a; € A, N € Z, N # 0. then

(a$ b)l = (all b)/N.
If Mb = (2z)™b,, then
(a5, BYN = (a5, MBYNM = ((z2)ay, b)/NM = (a, b))/M,
which shows that (a, ), is independent of the choice of N and a,. To check
that (a, b), is an integer we note that (a, b), = {n(a), n(b)} = 0 (mod 2).
since n(a), 7(b) € Land L < LL.

The module A;, with the scalar product (,),, obviously satisfies the
conditions (a), (b), and (d) in the definition of an isometric structure in 1.3.
To check condition (c), suppose that (a. b), = 0 for alla € A;. But then
0 = (a, b) = ((zz)™a, b), for all a € A4, hence, b € T(4) = T(4;). Given a
Z-homomorphism f: A, — Z. we consider g : A = Z, where g(a) = H((z2)"a).
a € A. Thereis an elément b € 4 S_m.h that gla) = {a, b) for all a € A.
Since g vanishes on K, = {a € 4; (zz‘)"'a € T(A4)}, we see that b belongs to
the annihilator KX with respect to (,). On the other hand. K = [4];.
consequently, Kz = [4]:*. But [A4],, is a pure subgroup hence,

[41:% = {A),,, and b € K = [Al,. Ifa € A, and Na = (zz)"a;, then

f(a) = ((z2)*a,)/N = g(a,)/N = {ay, B)/N = {n(a), n(b)} (mod Z).
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Since fla) € Z for a € A, it follows that n(b) € Lt = L. hence, b € A;.
Moreover, {a, b, = f(a) for allq € Ag. This proves (d), hence, (Ay, (.)) is
an isometric structure of the same parity as A.

Suppose that ¢: Ap — A is the embedding, and that $: 4 — A4; acts as
follows: ¥(a) = (zz)"a,a € A. Then all the conditions of the definition of
m-adjoining are satisfied (see 1.4), hence A and Ap are m-adjoining.

4.7. Proof of Theorem 4.1. Let A be an isometric structure with minimal
module T(A4) (see Lemma 4.2). Then the first discriminant structure A, (see
4.4) is defined. We choose some metabolic submodule L < A4,, for example,
L ={a € A;: za = 0}. Then the isometric structure A4; is also defined (see
4.6) and 1-adjoins A. It is clear from the construction of 4.6 that if the
module A4 is not minimal, then the rank of Ay is less than that of 4. while
T(Ap) is still minimal. If 4, is also not minimal. then similarly we can
construct an isometric structure of smaller rank that l-adjoins 4;. Clearly,
by iterating this process we obtain after finitely many steps a minimal
isometric structure that is R-equivalent to the original one. m

Notes to §4. As already remarked, an isometric structure determines a Seifert form. If the isometric
structure is minimal, then the corresponding Seifert matrix is non-degenerate. Therefore, Theorem 4.1
has the same significance as Trotter’s theorem [52] that every Seifert matrix is S-equivalent to a non-
degenerate one.

The notion of periodic isometric structures was introduced by Stoltzfus [S0]. He used this

concept to describe the obstruction to a rational isometric structure being cobordant to an integral
one.

The construction of the discriminant structure is obtained by applying the standard construction
of a discriminant bilinear form (see, for example, [6]) to the form (a, b) ~+{zsMg, gMb) defined by
the isometric structure. The quadratic discriminant form (see [6]) vanishes in our case, owing to the
fact that {a, a)=(1 + &) (a, za) w O (mod 2) foralla € 4, where ¢ is the parity of the isometric
structure.

§5. A criterion for R-equivalence of isometric structures

In this section the study of the technique of discriminant structures is

continued, and it is later applied in the proof of the following criterion for
R-equivalence.

$.1. Theorem. Two isometric structures are R-equivalent if and only if
they are m-adjoining for some m.

The significance of this theorem is that it allows us to replace the relation
of R-equivalence, which is difficult to verify, by the relation of m-adjoining,
which is expressed in terms of homomorphisms between the original
isometric structures.

Lemma 3.4 is also proved in the course of this section.

We begin with the following assertion.

5.2. Proposition. Let A and B be minimal m-adjoining isometric structures,
Then B is isomorphic to A, for some metabolic submodule L < A,
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® let 9:4—B and ¢: B— A4 be two P-homomorphisms such that @o
and e ¢ are multiplication by (z2)™ and (a, $(bPa = (@(a), b)s for any
a €A, b&B It follows from these conditions and the minimality of 4
and B that ¢ and ¢ are monomorphisms. Moreover, [A],, = 4, also by
minimality. let a: A — Ay, be the natural projection with kernel (2z2)™4
and let L = s(y(B)) < Am. We claim that L is a metabolic submodule.
If x, v € B and Ny(z) = (zz)"a, for somea, €A and NEZ N +# 0, then
Nz = g(a,) and

{9(@), At (y)) = (@, $WH/N = (@(a), y)/N = (z, y) = 0 (mod2).

This proves that L < L. Suppose now that @ € 4 is such that {na, b}
=0 forall b € B. If Na = (zz)™a,, where a; € A, N'# 0, then

(a1, YO)/N = (p(a,), bY/N

is an integer for all b € B, hence. there isa y € B such that {y, b) =
= {@(a,), b)/N for all b € B. But then t = ¢(a,) — Ny belongs to T(B), so
that Na = (z2)"a, = ¥v@(a,) = N(y) + P(t), and consequently, a — P(y) €
€ T(4). But T(A)cim¥ by the minimality of 4 and B, hence a € im .
Thus. n(a) € L and LL < L.

Since imy D (zz)™4 . we see that 4; = n-}(L) coincides with $(B).
If x, ¥ € B. then arguments similar to the above show that (%(z), $(y)); =
=(z, Y, so that the map ¢: B— 4 is an isomorphism preserving the
scalar product. ®

5.3. Here we examine the formation of discriminant structures in more
detail. A

Let A be a periodic isometric structure and m > 0 an integer such that
zz)"a = 0 for any a € A (this holds if 4 is an m-th discriminant structure.
see 4.4 and 4.5). We introduce the notation

A* ={a€A;ma =0}, A~ ={a€A; T"a = 0)
and consider the homomorphisms 14, 1-.: 4 = 4, where
T4a) = (1 —z""a, t(a) = (1 —2")"a, a€A

It is easy to verify that imt4 = A*, im . = A~ and that 7, and t. are
mutually complementary projections: T2 =14, 1 =1, 74 + 7_ = 1.
From this it follows that the map @ — (t4(a), T1_(a)) is a P-isomorphism
A—>A"D A4

If a, b € A, then {1+(a), b} ={a, T(b)}. Hence, (4*) = A%, (4°)L = 4~

Suppose that L < 4 is a submodule and L* = L N A*, L-=L 4"
Then L = L+ & L- and L+ = (L*)* N (L7)*. Since (L*)L = A4* and
(L7)+ > A-, the submodule L is metabolic if and only if

L~ = (L") n4-, L*=(L)* N4
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It follows from these equalities that a metabolic submodule L — 4 is
determined by either of its submodules L* < A* or L-— A-. Conversely.
if X < A* is an arbitrary submodule, then the submodule

K=X4+ (Xt nd)c 4
s metabolic and K* = X.

5.4. Proposition. Let A be a minimal isometric structure and I < Am a
metabolic submodule of the m-th discriminant structure. Let L* = L N Ams
X =z2L* and K =X + (XL 0 Arn). Then K < A, is a metabolic
submodule, and the isometric structures Ay and AL corresponding to K
and L, respectively, are 1-adjoining.

® We remark first that g+=X and
K-=XiMNA; ={a € 4n {X.a})=0} ={a€ 45, {eL*, a} = 0} =
={a € An; {L*, za}) = 0} ={a € An: za € L"),

where L- =L 1 An. Let n: 4 — A, be the natural projection. Then
according to Definition 4.6, A; = a-!(L)and A, = a(K). We define
two homomorphisms ¢: 4; — Axz and ¢y: Ag— A, by

P@) =z2a, a€A;, Yb) =1zb bEAg

Ifa €A then na=a,+ a, herea; €L* and ay € L. Then n{za) =
= zoy + 20y, and zay € K* = zL* and z&, € L K~ (see the remark at the
beginning of the proof). Thus. ¢(a) € Ag for a € A;. Similarly, if b € A,
and a(d) = B, + B,, where B, € K* and B, € K™ then n(zb) = 2B, + zB,.
where 28, € K* < L*and 78, € L™ (by the same remark). Hence, y(b) € Ay
forb € AK'

It is clear that @ o and Y o @ are multiplication by zZ. The relation
(@, ()4, = (g(a), bla, fora € Ay, b € A;, is trivial to verify. m

5.5. Proposition. Let A,, be the discriminant structure of a minimnal
isometric structure A and let L = A,,. Then the isometric structure Ay s
isomorphic to A.

8 By definition (see 4.6), Ay consists of those 2 € 4 for which
za = (zz)™b for some b € A. It then follows from the minimality that
a=12"b,and so A, = z™A. Let ¢: A — A, act by the formula @(b) = z™b,
b € A. Then ¢ is an isomorphism. If b. ¢ € 4 and Nb = Z"b, for some
by €A, NEZ N+#0, then No(b) = (z2)™b, and

(@(8)y @(ENay=(by, 2™c)/N=(2"b,, c)/N = (b, c).
This completes the proof of the proposition. ®

5.6. Proof of Theorem 5.1. If A, B, and C are isometric structures such
that A m-adjoins B and B l-adjoins C, then A (m+ D-adjoins C. It follows
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that if there is a chain of (sn+ 1) isometric structures in which consecutive
structures are 1-adjoining, then the end-structures are m-adjoining. Hence,
R-equivalence implies m-adjoining for some m = 0.

Conversely, suppose that two isometric structures 4 and B are m-adjoining
for some m = 0. By Theorem 4.1, we may assume without loss of
generality that 4 and B are minimal. Then by Proposition 5.2, the isometric
structure B is isomorphic to 4; for some metabolic submodule L < 4.
Fori=0, 1, ..., m we define a metabolic submodule L; < 4,, by the
formula (see 5.3)

Li=X,+(X{ 4m), X,=z'L*
Then the isometric structure A;, = 4. is isomorphic to B, also A, to A
(by Proposition 5.5). and foreachi =0, 1, ..., m—1 Ap, and Ay, are
1-adjoining (by Proposition 5.4). m

5.7. Proof of Lemuma 3.5. To every special isometric structure we can
attach by a finite chain of 1-adjoining special isometric structures one that

is minimal (this is clear from the proof of Theorem 4.1, see 4.7). Therefore,
to prove the lemma it is enough to show that any two special minimal
m-adjoining isometric structures can be linked by a finite chain of 1-adjoining
special minimal isometric structures. But this follows from the proof of
Theorem 5.1 (see 5.6), since each Ay, is minimal and special. ®

Notes to §5. Theorem 5.1 would follow immediately from a conjecture about R-equivalence (see
[15]). but the latter has not yet been either proved or disproved.

The proof given here for Theorem 5.1 has a conceptual connection with the work of Trotter [S3];
it arose from an attempt to simplify the proof of the main theorem of [53].

§6. The Milnor form

By Theorem 2.7, two P-modules 4 and B are R-equivalent if and only if
the L-modules A = L ®, 4 and B = L ®p B are isomorphic. If 4 and B
are isometric structures, then R-equivalence of A and B, of course, implies
an isomorphism A= 5, but the converse is false. In this section a form
Axd-q (the Milnor form) is constructed for every isometric structure 4,
and it is shown that isometric structures A and B are R-equivalent if and
only if there is an L-isomorphism 4 - B preserving the Milnor form.

6.1. Let A be a P-module. We say that a submodule B — 4 is basic if
(a) B contains (zz)*4 for some k > 0;
(b) if a € A and Na € B for some N # 0, then a € B;
(c) the kernel of the homomorphism B - B given by multiplication by
2z € P is contained in T(B) = Torsz B.

6.2. Lemma. Every P-module that is finitely generated over Z has a unique
basic submodule,




92 M.Sh. Farber

m If a P-module A is finitely generated over Z, then in the descending
series of subgroups

A > ()4 S ()P4 Do. ..

the ranks of the groups (z;)'A are independent of s for all s from some &
onwards. Let B be the set of those 2 € A for which some integer multiple
belongs to (zz)"A Then (a) and (b) are satisfied. If B contains an element x
of infinite order with zzz = 0, then Nz € (zz)*4 for some N # 0, now Nz
has infinite order and zz(N:) = 0. Hence, the rank of the image of the
homomorphism (zz)*4 — (2z)*A given by multiplication by 2z € P is less than
that of (zz)*4. But this contradicts the fact that the rank of (zz)*+!4 is
equal to that of (zz)*4.

If B, < A is another basic submodule, then it follows from (a) and (b)
that B; > B. On the other hand, as follows from (c). the rank of (z_z)’Bl is
equal to that of B, for all s 2 0. so that

rank B; = rank (z2)*B, < rank (zz)*4 = rank B.
Hence, applying (b) a second time, we obtain B = B,. =
Note that if A is minimal, then B = A,

6.3. Lemma. Let A be a P-module that is finitely generated over £, B < A
its basic submodule, and v: A — A the map that takes a € A 10

v(@) =1 ® a. Then (1) the kernel of ~ ]B is contained in T(B). (2) every

z € A can be w ritten in the form z = (z2)~"v(b) for some b € B and n = 0;
(3) for each = € A there exists an N € Z, N # 0. such that Nz € im (v |g).

m (1) follows from Lemma 2.5 and Definition 6.1. (¢). As was shown
in the proof of Theorem 2.6, each z € A can be written in the form
T =(z2)™ ® a, where a € A, m = 0. Then z = (z2)™* & (22)*a, and
(2z)*a € B for sufficiently large &, which proves (2). Now (3) follows from
(2) and Definition 6.1, (c). ®

6.4. We can now construct the Milnor form. Let 4 be an isometric
structure, B — A4 its basic submodule, A=L®pdand v: A > A the map
of Lemma 6.3. We assume that x, vy € A By Lemma 6.3 (3) there exist
non-zero integers N and M and a, b € B with Nz = v{a), My = ~(b). Then
we put

[z, yl= 377 (e DIEQ.

A tri\ial gvheck shows that this gives a well-defined bilinear map
[,1:4 x A = Q, which is called the Milnor form of the isometric structure A.
Of the properties of the Milnor form we need only the following.

6.5. Lemma. If x, v€ Adand f €L = Zlz, 27, 2-1]. then
ez, yl = [z, f@y).
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® Let Nz = v(a)and My = v(b), wherea, b€ B, N\ M EZ N#0# M.
and B < A is the basic submodule. We write f in the form f = (z2)"p(2).
where p € P is a polynomial and n 2 0. Then Ka = (zz)"a, and Lb = (22)"b,
for some a;, b, € B and K # 0% L. Consequently. NK{f(z)z) = v(p(z)a;).
and by definition.

[f(&)z, ¥] = (p()ay, BYNEM = (p(2)ay, (z2)"b,)/ NKML =
= ((@)"ay, p@bYNKML = (a, p)b))/NML = lz, J(z)],

since ML{#(2)y) = v(p(5)b,). ®
The principal result of this section is the following.

6.6. Theorem. Two isometric structures Ayand Ay are R-equivalent if and
onlyv if there is an L-isomorphismn A, L®p A~ A2 =L @pA,
preserring the Milnor form.

® We use Theorem 5.1. Suppose that 4; and A, are m-adjoining and that
@: A;— A, and 1 4, A, are P-homomorphisms such that @ey and Yo @
are multiplication by (zZ)"' € P and(a, ¢ (b)) =@ (a), b) tora € 4,.
b € A,. Suppose that the L- homomorphism @: f‘f] - Z,is the tensor
product of @ with the homomorphism L = L given by multiplication by z~
Similarly. let ¥ be 277 @ . Then @ and ¥ are mutually inverse isomorphisms.
We claim that @ preserves the Milnor form. Let v;1 4, -»A (i=1or 2)be
the P-homomorphism that takesa € A; to 1 @ a and let B; A4; be the
basic submodule. Let x, v € Zl and N:c = v, (a) and My = v, (b). where
a. bEB,N. MEZ N#0=+M It follows from Definition 6.1 that the
numbers N md M can be chosen so that, in addition.a. b €4 (By). It
a = P{e), b = y(d), then

NO(z) = 27™,(9(a)) = z7™vo(¢y(c)) = v4(z"¢)
and similarly M®(y) = v4(z"d). Then

{®(z), D) —(z e, 2 d)a )/ NM = (99 (c), a,/NM =
=(Pple), Y (d)ia,/ NM={(a, bla,/NM =]z, ¥l
As follows from Theorem 4.1 and what has just been proved. to prove the
converse assertion we may assume without loss of generality that 4, dnd A,
are minimal. so that ¥, and v, are injective (see Lemma 2.5). Let @: A, A,
be an L-isomorphism preserving the Milnor form. 1t follows from Lemma
6.3 (2) that

(z2) ®(im ¥,) < im v, and (zz}* @-1(im v,) C im v,

for large enough 5. We can define P-homomorphisms @: 4, — A, and
P 4, A, _

P@)=vy"l(zz)' v, (a)),  ac 4,

Y{b) =7 [{zz)! D7tv, (b)], bEA,.
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Then, clearly, goy and o @ are multiplication by (z2)* € Pand if a € 4,,
b € 4,, then

(@, $(d)) = lvi(a), V:\P(b_)l = ld)V;(a)’_d)Vx\P(b)] =
= [(z2)*v;9(a), (22) "2 @p(B)] = [v;0(a), v4(b)] = (@(a), B)-

Thus, A, and A, are 2s-adjoining, and our assertion follows from Theorem
S5.1. =

Notes to §6. We recall Milnor’s original geometric construction [43]. Let X be the complement of
an open tubular neighbourhood of a knot (§7+8, k) and p : ¥ - X the infinite cyclic covering. As
Milnor has shown {43], the vector space An# (¥, 2X; Q) is one-dimensional, and for any 7 and j
with i+j = n+ 1 the cup-product defines a non-degenerate pairing
-~ ~ -~ ~ ~
Hi (X,8X; Q) @ Hi (X; Q) A" *1 (X, 8X; Q).

This pairing allows us to identify H'(X, 2% @) with H{X: O Homq(H'(X; @): Q). Similarly,
H/(X: Q) can be identified with H,-(j?; Q), and the original pairing takes the form

H;(X;Q)® H; (X; Q) Q.
Composing with the canonical embedding of the integral in the rational homology, we obtain for
i=j=gq n=2g-1, the form

HX ® HiX +a,

1t can be shown that to within the isomgphism Hqi ~L ® ,A given by Theorem 2.6 the latter
form coincides with the form [,}: A ® 4 — Q constructed algebraically in the text.

In the case of fibred knots the Milnor form is particularly simple to construct: it is the same as
the intersection index pairing on the fibre and takes values in Z < Q. In this form it is often used in
papers on the theory of singularities (see, for example, {1}, [S]).

Trotter [S3] has given another algebraic construction of the Milnor form (which he called the

rational scalar form). As definition he used the connection with the Blanchfield form, which is
presented in §7 below.

§7. The Blanchfield form

In this section we give an algebraic construction of the Blanchfield form,
using the isometric structure of a knot. The trace function of Trotter {53]
establishes a connection between the Milnor form and the Blanchfield form,
and it turns out that these forms mutually determine each other. Combined
with the results of the preceding section, this gives the theorem of Trotter -
Kearton {53}, [26], [27] that simple knots are equivalent if and only if
their Blanchfield forms are isometric. This theorem completes our study of
odd-dimensional simple knots,

7.1. Let A be an isometric structure of parity e and let A=1L ®pd. Let
Q(L) be the field of fractions of L. In L and Q(L) there is an involution
f> 7, where f(z) = f&). The L-module Q(L)/L inherits the anti-
homomorphism ~: Q(L)/L - Q(L)/L.

There is an exact sequence of L-modules

0>L® A>L® 4> A0,
where dg@®a) =qg® 2a — 2@ a, e(g® a)=gQ@ aforqgE€ L, a€A4.
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For example, to check that d is a monomorphism, we note that each
w € L ®2 A4 can be uniquely expressed in the form

w=>, 217 ® ay,

where a;; € A, i ranges over Z, j ranges over the negative integers, and
ay; # 0 for only finitely many pairs (7, /). If d(w) = O, then za;; = a,4,,,
hence, ayy = z*a;y 4 for any k. But @, y = 0 for sufficiently large k. and
sogy = 0andw = 0.

We define a pairing |, |: (L ®z 4) X (L ® z 4)— L by the formula

10 @a), (1 ®b)|=(a b ab€A,
and by requiring additivity in each variable separately, L-linearity in the first
argument:
lgr, yl=gqlz ¥

and L-skew-linearity in the second argument:

| z, qy|=q_'$’ yh
z, y€EL ®z A4, g€ L. ltiseasy to check that then

Inyl=clyzl lz,d@)=—lda), yl
We can now define the Blanchfield form
4 X A= QYL
Let o, § € A and let o = e(x) and‘5 = ¢(y), where z, y €L ®  A. Let u(z)
be a non-zero element of L such that p(z)a = 0. (Such an element always

exists.) Then the product u(z)x, evaluated in L ® z 4 using the L-module
structure of the factor L, lies in the image of d, and we put

a-B = [dpu(z)z), y /p(z) (mod L).
It is easy to see that this is well-defined.
The Blanchfield form obviously is:
L-linear: (ga)-B = g(z-B), g € L,
(—e)-Hermitian: o-p = — ef-a, a, P € 4.

7.2. The Blanchfield form and the Milnor form determine each other.
To prove this we need the trace function

v QILYL—Q,
which acts as follows. Acc¢ording to the theory of partial fractions, every
rational function f € Q(L) = Q(z) can be expressed uniquely in the form
f = fi+f,, where f, € Qlz, z71, z-1], and f, is a proper fraction whose
numerator and denominator are rational polynomials, and whose denominator
is divisible neither by z nor by Z. By definition, x(f) is the negative of the
coefficient of z-1in the Laurent series of f, at infinity. For example, if
f=(ng2® 4 ... Fu)/@ + vt + ... + 1) and the
denominator is prime to z and to Z, then y(f) = — un 1
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Example. 1f f= 1/(z— 2)z. then x(f) = —1 2.

7.3. Proposition. Let A be anlsonwtrir structure and i=1 ®p A. Then
[, B] = xta-B) for any o, B € A.

® By Lemma 6.3, it is sufficient to prove the formula for a, f € v(B).
where v: 4 — 4 is the mapv(@) =1 ® a,a € A. and B< 4 is the basic
submodule. Let & = v(a), p=v(b), where a. b € B. Then a=e(l @ a) and
p = e(1 ® b)(here we use the notation of 7.1). Let A(z) € P be an integer
polynomial with leading coefficient 1 such that A(0) # 0 # A(1) and there
exist integers k, / 2 0 with A(z)z"?a = 0 foralla € A. (For A(2) we can
take the characteristic polynomial of the endomorphism 4 — 4. a@ > za,
divided by 2¢7' for suitable k and 7.) We define polynomials pe(2), py(2), - - -

-y Pny(2) as follows:

Pol2) = (A(2) — A(0))z,
pl(z) = <p1°1(z) —pi-!(o))/z (" = 1! 27 ey N — 1)1

where # = deg A. Then, as is easy to verify.
n-{
d(‘zoz‘®p,(z)a)=1 ®A(za — A(Z)®a

and e(1 @ A(z)a) = e(z”‘i” ® A(z)z";la) = 0. Consequently. by Definition
7.1

>

n-1i n-{
ap=—| 3 # @ p()a 1@61AG) = —(F (mi@a H) 2@  (modL).

Hence y(a-B) = (Pn(2)a, b) = (a, &) = la, B, since p, ;(z)=1.®

Let g < Q(L) be the set of those rational functions f € QL) that can be
represented in the form f = p/q, where p and ¢ are integer polynomials in z.
and ¢ has the leading coefficient 1. Clearly. L 2. The proof of
Proposition 7.3 has the tollowing corollary.

7.4. Corollary. The Blanchfield form of any isometric structure takes
values in & /L< Q(L)/L.

7.5. Lemma. An element f €8¢ belongs to L if and onlv if x(Af) = 0 for
all N € L

# Suppose that f €64 and j=p(z)/q(z)z"§l. where ¢(z) is prime to z and to
7 and has the leading coefficient 1. Let p(z) = a(z)q(z)+r(z). where
deg r < deg ¢, and let s = deg ¢ —deg r—1. Then

i
zh«uz

= 2a() 4 () 27g(2)

and X(z"“?f) is the negative of the leading coefficient of r(z). It follows that
if x(A\f) =0 for all A€ L. then r(z} = 0 and f = a(z)/z*z € L. The
converse is obvious. ®
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_ It follows from Corollary 7.4 and Lemma 7.5 that an L-isomorphism

A, = A, preserves the Milnor form if and only if it preserves the Blanchfield
form. This fact together with Theorems 3.1, 5.1, and 6.6 gives the following
result.

7.6. Theorem. Ler K, = {5*", k291 be two simple knots, where q = 3,
v=1or 2, and let HX, be their respective Alexander modules (see 20D,
The following conditions are equivalent:

(a) the knots K, and K, are equivalent;

(b) the isometric structure of some Seifert manifold of K, m-adjoins that
of some Seifert manifold of K, for some m %0:

(¢) there is an L-isomorphism Hq)z, - H, {2 preserving the Milnor form:

(d) there is an L-isomorphism Hy X, > H, X, preserving the Blanchfield
form. m

Aotes to §7. As already mentioned, the trace function was introduced by Trotter {53}, [54], using
an idea of Milnor {44].

The equivalence of Theorem 7.6 (a) and (c) is the content of the Trotter-Kearton theorem, which
is rightly regarded as an apex of knot theory. The first proof of this theorem was published by
Trotter [53]; it was purely algebraic and was based on topological results of Levine [39]. Kearton
[27], see also [26], gave a direct geometric proof.

A geometric construction of the Blanchfield form is in {20], [27], {351, [23].

A realization theorem for the Blanchfield pairing was proved by Trotter {54] and Levine [42}.

It is not hard to obtain a similar theorem for the Milror pairing {.] A x 11— Q. To do this we have to
remark that this pairing satisfies the following non-degeneracy condition: there is a finitely generated
subgroup A— A that is a P-submodule and generates A over L: it has the property that the form
| .] takes integer values and is unimodular on A.

The paper of Trotter [53] also investigates in detail the relationship between S-equivalence and
congruence of Seifert matrices, which in the language of the present paper corresponds to
R-equivalence and isomorphism of isometric structures. These matters are also studied in (40]. [18].

CHaPTER 1l
THE CLASSIFICATION OF EVEN-DIMENSIONAL SIMPLE KNOTS

The algebraic classification of odd-dimensional simple knots presented in
the preceding chapter is essentially achieved in two steps. The first step is a
reduction to algebra (§3), and the second is the solution of the algebraic
problem (that is, the classification of isometric structures relative to
R-equivalence; three different solutions are given in §5, 6, and 7).

By comparison, the reduction to algebra of the classification problem for
even-dimensional simple knots is not so elementary, and cannot be achieved
at the first step. To find a complete system of algebraic invariants of a
simple even-dimensional knot, we start out from a general reduction to
stable homotopy of the knot classification problem, which was obtained by
the present author in [12], {21}, and restated in [15]1. Then, using the
computational apparatus of homotopy theory, we single out the necessary
invariants. Thus, the investigation of even-dimensional simple knots proceeds
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in four steps: (1) reduction to stable homotopy: (2) homotopy-theoretical

calculations; (3) reduction to algebra: (4) solution of the algebraic problem.

A complete exposition of all this material would at least double the length
of the paper.(") Therefore, we confine ourselves to a sketch of the reduction
to stable homotopy, revealing the essence of the problem under study, and
to an exposition of the algebraic technique (steps (3) and (4)), which has
not been published before. Details of the homotopy-theoretic calculations
and some of the proofs existing in the literature are not given here, but are
replaced by references, mainly to the papers [13] and [21].

§8. Reduction to stable homotopy

8.1. Let (S"*2, k™) be a knot and V™1 S™*? some Seifert manifold of it.
Let iy, i_: ¥V — 8™ — V be the maps considered in 1.1. We define a map
h: SV — S§(S™* — V) by

kv, ”=[ i), 2—21 if 12<t<t,

where v € V, ¢t € [0, 11, and S denotes unreduced suspension. By what was
said in 1.1, the map % induces isomorphisms of all homology groups.
Moreover. both spaces involved are simply-connected. so that / is a
homotopy equivalence. Hence, there exists a map =z : SV = SV. unique up
to homotopy, such that hez is homotopic to Si... It is called the excision map.
The excision map acts on the homology of V, and this action coincides
with multiplication by the generator of the ring P, which was denoted in §1
by z. Using the same letter to denote the excision map and the generator
z € P is convenient and does not cause any confusion.

8.2. Let Y be the complement of an open tubular neighbourhood of V in
S™+%. We fix base points in ¥ and Y and consider the canonical Spanier-
Whitehead duality »: VAY — S**%. Regarding iy, i.: V— Y as S-maps,
we can form an S-map u: VAV — §™+1 by putting u = ve(1 A (i, — i_)). It
is called the intersection form on V.,

To state properties of the S-maps u and z we use the following concept.
A stable isometric structure of dimension n is a triple (X, u, z) consisting of
a finite cell-complex X with a distinguished point, and two S-maps
u: XAX — S* and z: X - X such that (a) u is a quality map:

(M u = (=1 (¢) uo(1Az) = ue(zA1). In (b) 1’ denotes the composite
with u of the map X A X — X A X interchanging the factors. In (¢) Z
denotes the S-map 1 —z: X = X. This notation is used in what follows.

Two stable isometric structures (X, iy, zy) (v=1 or 2) of the same
dimension are said to be isomorphic if there is an S-equivalence f: X, = X,
such that foz; = z4of and ugp(fAf) = u,.

MFor a full account of the topics of this chapter, see [62].
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8.3. Theorem. (1) If V™= 8™ is a Seifert manifold of a knot (S™*2, k»),
then the collection (V, u, z), where u is the intersection form on V and z is
the stable class of the excision map, is a stable isometric structure. (2) For
n 2 4 every stable isometric structure (X, u, z) of dimension n with an

{(n+ 2)/3}-connected space X is isomorphic to the stable isometric structure
of some smooth compact simply-connected oriented submanifold V™1 — Sn+?
whose boundary is a homotopy sphere.

® That the intersection form is a duality map follows immediately from
its definition and the fact that i,—i_ is an S-equivalence (see 1.1). This
proves 8.2, (a). For the proof of (b) we use the following relationships (see
[21], 188):

vo( Aiy) = (—1)0'e(i-A1), VoI Ail) = (—1)w's(is A1),
where the sign = denotes equality of S-maps. We have
W o= ve(is — i)A1) = (= A — (=) Aiy) = (—1)* .

For the proof of (¢) we note that, as follows from the definition of the
excision map in 8.1, there is an equality between S-maps (i, — i )oz = i,.
Hence, uo(1A\z) = vo(f A(iy — i_)ez) = vo(L Aiy). Similarly, (i4 — i_)ez =
= —i_, and we@EAL) = (—)"We@EAL) = (—1) °(i-A1) = vo(1 ALL),
which proves (¢), and with it also (1).

Let (X, u, z) be a stable isometric structure of dimension n 2 4 with an
[(n+2)/3]-connected X. Since u is a duality map, H* (X) =~ H,4,;_; (X) =0
for i > n—r, where r = [(n+2)/3], hence, we may assume that X is
(n—r)-dimensional. We denote uo(1 A2) by & XA X — S**1. By Theorem
1.3 of [21], there exists a compact oriented submanifold V** < §7*2 with
simply-connected boundary 9V and a homotopy equivalence g: V' = X such
that Ee(g A g) is homotopic to the homotopy Seifert pairing (see [211]) of V.
Since [§ 4 (— )"t Jo(g Ag) = uc(g A\ g) is a duality map, 8V is a homology
sphere, by Theorem 1.4 of [21]. It remains to prove that g induces an
isomorphism between the stable isometric structure of V and (X, u, z). But
this follows from the fact that the homotopy Seifert pairing 6,- and the
stable isometric structure (V, uy, zy) uniquely determine each other. For if
8y is given, then uy = 0y + (— 1)"*10¢ and the S-class zy: V = V of the
excision map is determined by the relation uye(1 Azy) = 6. This also
permits us to define 8y in terms of uy and z,. ®

The arguments just given and Theorem 1.2 of [21] lead to the following
result.

8.4. Theorem. Let n 2 5 and let V**! and W™l S™*2 be two smooth
compact [(n+ 3)/3]-connected oriented submanifolds whose boundaries are
homotopy spheres. If the stable isometric structures of these manifolds are
isomorphic, then there exists an isotopy of the sphere S™** that takes V to
W with orientations preserved. W
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We need the following analogue of Theorem 1.7.

8.5. Theorem. Let V™' and Wrtc S™*2 be two smooth compact
r-connected oriented submanifolds whose boundaries are homotopy spheres.
If the oriented knots (S™*, 3V) and (S™**, 3W) are equivalent and r 2 2.

n > 4, then there is a finite chain of smooth compact r-connected

(n + Ddimensional oriented submanifolds U, U, ..., Uy such that
@Uy=V, ®int U, Nint Uy = B fori=0.1. ...
and the orientations of U; and U, agree on 3U;: (c) Uy is ambient-
isotopic to W with orientations preserved.

8 A proof is given in [21], 201-207, although this theorem is not stated
there explicitly. ®

8.6. Let m = 0 be an integer and let (X,. uy, 2,) (v = 1 or 2) be two stable
isometric structures of dimension n. We say they are m-adjoining (compare
with Definition 1.4) if there exist S-maps ¢: X; - X, and ¢: X, — X, such
that
Qozy=1z,09, Yozy=2zio%: Ue(lr, AP)=uz°(®Alxs)
Pov=(202)" Pop=(z02)"
The first two equalities mean that ¢ and ¢ commute with the excision map.
the third expresses the fact that ¢ and ¥ adjoin, (in particular. ¢ determines
¢ and vice versa). Clearly, O-adjoining is equivalent to isomorphism. If A4,
#, and € are three stable isometric structures with 4 m-adjoining % and K
l-adjoining ¢, then # (m+ D-adjoins €.
Two stable isometric structures »# and % are said to be R-equivalent if

there is a finite sequence of stable isometric structures €,. ¢y, . . ., € 5 such
that oA =%y, £ = € ., and €, 1-adjoint €4, foralli=0.1, ..., N-L

8.7. Theorem. Suppose that V**'and W™1lc 8™ are two smooth
compact oriented submanifolds whose boundaries are homotopy spheres.

(W) If int V yint W = ¢,V = W, and the orientations of V and W agree
on 8V, then the stable isometric structures of V and W are l-adjoining.

(2) Conversely, if the stable isometric structures of V and W are l1-adjoining,
V and W are [(n+ 3)/31-connected, and n 2 5, then there exists an isotopy
of 8*** taking V onto a submanifold U< S™**such that int U (] int W=g
QU = dW, and the orientations of U and W agree on oW.

The first statement of this theorem is a generalization of Proposition 1.8
and the second of Lemma 3.2. Theorem 8.7 can be derived from Theorems
2.4 and 2.5 of [21] and the following Lemma.

8.8. Lemma. Let (X, u, z) be a stable isometric structure of dimension n
and let © = us(1 \z): X AX — S™*! be the corresponding homotopy Seifert
pairing. The condition z* = z is equivalent to the existence of an S-equivalence
f: K\VL — X and a duality map v: LA\ K — 8™ such that 8(f \J) is defined

i

N=1,8U; = U, ,,
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by the matrix

00

v 0]

® Let z2 = z. By a theorem of Freyd {58], the idempotent z splits, that

is, there exist a complex K and S-maps i,: K— X, 1y: X— K with mi, =1y,
i,n, = z. Similarly, 7> = Z, and there exists a complex L and S-maps
iyt L— X, 7yt X — Lwith styiy = 1z, ip7y = 2. Let fKVL X and
g: X — K\/ L be induced by i,, i, and m,, w,, respectively. Then f and g are
mutually inverse S-equivalences. The relations zi; = iy, zi, = 0, us(i Ad;) = 0
and uo(iz\f,) = 0 imply that Be(fAf) is given by the matrix [g g
v = uo(is A i), and it remains only to show that v is a duality map. But this
follows from the fact that the pairing ue(fAf), which is obviously a duality
map. is given by the matrix

, where

L]

The converse is obvious. ®

8.9. Proof of Theorem 8.7. Let (V, uy, zy) and (W, uy, zy) be the

stable isometric structures, and 8y = uye(ly Azv), O = uwo(tw Azw) the
homotopy Seifert pairings, corresponding to V and W, respectively. By
Theorem 2.4 of [21], in the situation of (1) there exists a pairing

a: VAW — S™*such that the pairing &: (VV WIN(VV 1) > S™*given by
the matrix

[ (—%"‘ e (— 8"9{;'] !

is congruent to a pairing of the form considered in Lemma 8.8. Let
(VV W, U, Z)be the stable isometric structure corresponding to . Then,
clearly, U and Z are given by the matrices

u 0 z
[OV —uw] and [\pv —:'JW:I
respectively, where the S-maps ¢ and  are determined by the relations
@ = upo{ly AY) = uwo(pAlw). By Lemma 8.8, Z* = Z, and when we
equate the corresponding entries, we obtain the following four relations
@ozy = Zwo@s VYoIw = ZyoY, GoP = Zwodw, Yo@=1zyozy, Which mean that
(V, uy, zy) and (W, uy, zy) are l-adjoining.

To prove (2) we have to carry out the arguments in the opposite direction
and apply Theorem 2.5 of [21]. If (V, uy, zy) and (W, uw, zy) are
1-adjoining and @: V — W, ¢: W — V are the corresponding S-maps, then
we can construct a stable isometric structure (VY W, U, Z), by defining U
and Z by matrices as above. Then Z? = Z and we can use Lemma 8.8;
then Theorem 2.5 of [21] gives the required isotopy. ®

Theorems 1.7 and 8.7 (1) lead to the following corollary.
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8.10. Corollary. The R-equivalence class of the stable isometric structure
of any Seifert manifold is a knot invariant. ®

8.11. An n-dimensional knot (§7+2, k") is said to be r-simple, where r is
some integer, if @, (S™*? — k) & n,(8?) for i <r. A stable isometric
structure (X, u, z) is said to be r-connected if X is r-connected. To
r-connected stable isometric structures there correspond r-simple knots, by
Theorem 0.5. An n-dimensional knot is said to be stable if it is {(n+ 3)/3]-
simple and n 2 5.

8.12. Lemma. Let I° = (X, uy, zy) (v = 1 or 2) be rwo R-equivalent
r-connected stable isometric structures of dimension n. Ifr 2 [(n+2)/3]1 > 1,
then they can be linked by a finite chain of l-adjoining r-connected stable
isometric structures of dimension n.

® Given an s-connected stable isometric structure / = (X, u, 2) of
dimension n and an integer N. we can form a new stable isometric
structure o?N] = (S¥X, v, §¥;), where v is defined as the composite

SzNX/\SZNX - Sw/\SZN/\(X/\X) 1ATAu SZN/\SZN/\S“*‘ — QNN+

Clearly. 02¥] is (s+ 2N)-connected and of dimension n+4XN. It follows that
for sufficiently large N the stable isometric structure ¢2~7 satisfies the
conditions of Theorem 8.3 (2).

Since I' and I* are R-equivalent, we can find a finite sequence of stable
isometric structures Iy, ..., I, such that I, = I, I, = I%. and /; 1-adjoins I;4,
forallj =1, .., m—1. For any N the sequence o2/, .. ., a2/, also has
the latter property, and if N is large enough. then by Theorem 8.3 (2), 62V I;
can be realized by a Seifert manifold V,— §™"*¥*. By Theorem 8.7 (2),
the knots (S™**¥*2 gV ,) and ($"**V*2, oV, are equivalent. Applying
Theorem 8.5 we see that there exists a finite chain of (r+ 2N)-connected
stable isometric structures Jy, ..., Ji of dimension n+ 4N such that
J, = 62N]%, J, = o?NI? and J; l-adjoins J;4, foralli=1, ., k—1. By
the suspension theorem (see [59], 458, and also exercise D1 on 461; this is
where the condition » 2 [(n+ 2)/3] > 1 is used). the isometric structure J;
is isomorphic to ¢2NJI; for some r-connected stable isometric structure f; of
dimension #n, and all consecutive structures in the chain I, Iy, . . ., Iy, I*
are l-adjoining. =

8.13. Theorem. Forr = [(n+3)/3] and n 2 5 the map that associates with
a knot the R-equivalence class of some r-connected Seifert manifold is a
bijection from the set of r-simple n-dimensional knot types onto the set of
R-equivalence classes of r-connected stable isometric structures of dimension n.

® By Theorem 0.5 and Corollary 8.10, the map of Theorem 8.13 is well-
defined. That it is surjective follows from Theorem 8.3, and that it is
injective from Lemma 8.12 and Theorems 8.3 (2) and 8.7 (2). »

B

:
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Notes to §8, The results of this section were announced in the author’s paper {15], where the
reduction to stable homotopy of {21] is restated in a form more convenient for the later
computations, It is clear that Theorems 1.5 and 3.1 can be deduced from Corollary 8.10 and
Theorem 8.13 (Theorem 3.1 is proved in §3 by the methods of [21], but without using the results
of {211).

§9. Reduction to algebra

As will become clear later, the homological invariants constructed in §1
are not sufficient to obtain an algebraic classification of even-dimensional
simple knots. For this purpose we use additional invariants, whose
construction differs from that in §1 only in that in place of the ordinary
homology one of the generalized homology theories is used: the theory of
stable homotopy groups. As a result, we can associate with each even-
dimensional simple knot an algebraic object called a P-quintet. which
consists of two P-modules equipped with bilinear forms and a given
homomorphism between them. A relation of R-equivalence is then
introduced on the collection of P-quintets. which resembles the relation of the
same name between isometric structures (see § 1) and plays an analogous role.

9.1, We begin by describing the necessary algebraic concepts. A 2Z-quintet
of parity € (== 1) is a collection (4, B, a, 1, ) consisting of a pair of
Abelian groups A and B, a homomorphism «: 4 ® Z,—~ B and a pair of
forms I: 7(4) ® T(4)~ Q/Z (where T(A) denotes TorszA) and
Y: B ® B — Z, satisfying the following conditions:

(a) [ and ¢ are non-degenerate and e-symmetric;

(b) there is an exact sequence

0—>A4®2,~> B> Hom(4; Z,) >0,

where() B(b) (a) = (b @ a(n(a)))forb € B, a €A, and m: A>A® 2,1
the projection;

(c¢) the composite BHal4 ®2Z, 5 B is multiplication by 2, where
v(b) for b € B belongs to T(A4) and is defined so that (b ® a(n(a))
= l(y(b) ® a) for all a € T(A).

A Z-quintet with a finitely generated group A is called finitely generated.

Note that (¢) completely describes the extension type in (b) in the
finitely generated case. It means, in particular, that the group B must
contain a summand Z, for every summand Z, of 4, and a summand Z, ®Z,
for every summand Z or Z,x with & > 1 in 4.

A morphism from a Z-quintet (4, B, o, 1, ) to a Zquintet (4,, By, o, L, ¢y)
is a collection of homomorphisms (1, §, 7, £), where n:4 > A,, £:B ~ B,.
#:A, —~ A, and §:B, > B, such that

I(n(a) ® b) = La ® n(d))
W(E(@) ® b) = fi(a ® E(B))

for a € T(4,), b€ T(A4),
for a € By, b € B,

Mwe assume fixed embeddings Z, € Z, C Q/Z.
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and that the diagrams

St v
402,25 4,02, 402, ARZ;
e} Lo =) Jo
B — B, B «— B,
t

commute.

A P-guintet is a finitely generated Z-qunitet (4.B,a,l,v), where A and B
are endowed with the structure of left P-modules and it is assumed that « is
a P-homomorphism and in addition,

(d) Iz ® zy) = lzzx ® y) for =z, y € T(4),
(e) Pz @ zy) = ¢z ®y) for z. y€B.

Here 7 denotes 1 —z € P, as before. A morphism of P-quintefs is a
morphism of Z-quintets consisting of P-homomorphisms. Two P-quintets of
the same parity are said to be m-adjoining (m = 0) if there exists a

P-morphism (%, g,ﬁ. §A) from one of the P-quintets to the other such that all

four composites ne;], Tnen. g»i, and ‘gog are multiplication by (zZ)™ € P. Two
P-quintets are said to be R-equivalent if they can be linked by a chain of
P-quintets in which every two consecutive P-quintets are I-adjoining. In
other words, R-equivalence is the equivalence relation generated by
1-adjoining.

9.2. Let g,(X) denote the stable homotopy group of the space X, that is,
o,(X) =Nliri1 T4 N (SNX). Let (S%+2, k%) be a simple knot and V< S22

some special (that is, (g — 1)-connected) Seifert manifold of it. We consider
the intersection form u: VAV — §2* and the Sclass z: V > V of the
excision map (see 8.1 and 8.2). The S-map z induces endomorphisms of the
groups A = 0,V =H,Vand B = 0g+4(V). making them into P-modules.

We construct a collection (4, B, &, I, ¥}, specifying o to be composition with
a non-trivial element of 0g4,(S% and defining / and ¢ by means of the
S-map u, as indicated in [12]. 109-110.

9.3. Theorem. (1) The collection (4,B,a,l,¥) thus constructed is a
P-quintet of parity (—1)3*1; (2) its R-equivalence class does not depend on
the choice of the Seivert manifold V. but is determined by the type of the
knot (8%2*2, k™). (3) the resulting map from the set of types of simple
2g-dimensional knots in §%+* to the set of R-equivalence classes of
P-quintets of parity (—1)¥** is a bijection for g > 3.

9.4. In the proof (see 9.6) we need the following auxiliary notion. Let

q > 0 be a fixed number. A dualized space is a pair (X, u) consisting of a
(g — 1)-connected cell complex X with a distinguished base point and an
S-duality u: X AX — S%*1 such that u’ = uey is stably homotopic to —u,
where y: X AX -» X AX is the map that interchanges the factors.
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With each dualized space we associate a collection (4, B, a, 1, ) where 4 =

HX = 0, X and B = 0g4,(X) are groups, and a: A®Z,—~ B, I T(4) ®

® T(A)—~>Q/Z,and §: B ® B — Z, are homomorphisms defined as in 9.2.
If (X, u) and (Y, v) are two dualized spaces, then every S-map fX-Y

determines a dual S-map f: Y = X such that ue(ix A f) ~ vo{f Aly). We

denote the induced homomorphisms by H(f):HqX = H,Y and

o(f): Ggae(X)— Og+2(Y)- Asa result we can associate with the S-map f the

collection of four homomorphisms (H({f), ao(f) H(f), 00)).

9.5. Theorem. (1) For every dualized space (X, u) the collection (4,B,a,L,¢)
constructed in 9.4 is a Z-quintet of parity (—1)2*: (2) every Z-quintet of
parity (—1)¥** can be realied in this way; (3) for any two dualized spaces
and any S-map f: X > Y the collection (H{f), o(f), H(f), o(f)) is a morphism
between the corresponding Z-quintets: (4) an S-map f is stably homotopic
to zero if and only if it induces the zero morphism of Z-quintets; (5) every
morphism from a Z-quintet of (X, u) to a Z-quintet of (Y, v) can be realized
by some S-map.

w For ¢ = 3 the proof can be obtained from the results of [13], §§6.7. by
means of arguments analogous to those given in [13]. 82-8.6. When g =1
or 2 we must use the same arguments, after first suspending the space in
question a suitable number of times. 8

9.6. The proof of Theorem 9.3 is easily obtained from the results of §8
and from Theorem 9.5. For if yu+1 = §U+2 is a special Seifert manifold.
and us VAV —> S%*tand - : V - V are the intersection form and the S-class
of the excision map (see 8.1 and 8.2). then the pair (V, u) is a dualized
space and the S-map Z defines an endomorphism of the Z-quintet
corresponding to it. Now 9.3 (1) follows. 9.3 (2) can be deduced from
Corollary 8.10. Lemma 8.12. and Theorem 9.5.

Every P-quintet (4,B,a,l,¢) can be regarded as a Z-quintet equipped with

a morphism ('q,E,;],é) into itself, where n and £ are multiplication by z € P
and f and § multiplication by Z € P. By Theorem 9.5 (2) and (5) this
Z-quintet and its morphism can be realized by a dualized space (X, u) and
an Smap z: X = X, respectively, where it follows from 9.5 (4) that

3= 1—z, hence, (X, u, z) isa g- 1)-connected stable jsometric structure
of dimension 2¢g. Thus, to every P-quintet of parity (—1)7*! there corresponds
some (g — 1)-connected stable isometric structure of dimension 2¢, and vice
versa. P-quintets are R-equivalent if and only if the corresponding stable
isometric structures are R-equivalent. Now 9.3 (3) follows from Theorem
8.13 and Lemma 8.12. ®

Notes to §9. Kearton [28] proposed an algebraic classification of even-dimensional simple knots
based on quite different ideas; he found a way of connecting this problem with an analogous problem
for odd-dimensional knots, which had previously been solved by Levine [39]. However, in {28} a

classification is obtained only for even-dimensional simple knots that admit Seifert manifolds without
2-orsion in homology. Moreover, our relation of R-equivalence is more algebraic than Kearton’s
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T-equivalence. Owing to this fact, our Theorem 9.3 allows us to obtain an answer in terms of
invariants (see § 10), which is a completely new result.

Individual classes of fibred knots were classified by Kojima [30] and [31]. The general case was
studied by the author [13] and {14].

§10. Criteria for R-equivalence of P-quintets

In this section we indicate two criteria for R-equivalence of P-quintets.
The first is analogous to Theorem 5.1:

10.1. Theorem. Two P-quintets are R-equivalent if and only if they are
madjoining for some m 2 0.

The second criterion (see Theorem 10.11) plays a role analogous to the
results of §6-7 on the Milnor and Blanchfield forms.

To prove Theorem 10.1 we begin by simplifying the P-quintets in
question, replacing them by R-equivalent ones. The first step is minimization.

We will say that a P-quintet (4, B,a,l,%) is minimal if the P-module A is
minimal (see §4).

10.2. Proposition. Every P-quintet is R-equivalent to some minimal one.

® The proof is analogous to that of Theorem 4.1. But.we can also
proceed differently: using arguments of Levine {37], it is easy to show that
every simple knot of dimension n > 4 has a special Seifert manifold ¥ with
the property that the maps i, and i_ both induce monomorphisms
HyV — Hg(S"** — V), where ¢ = [(n+ 1)/2]: to this manifold there
corresponds a minimal P-quintet, by Theorem 9.3. ="

10.3. Let A be a finite P-module. For sufficiently large n the subgroup
(zZ)'A, which we denote by (4),. does not depend on n. We consider the
subgroups

(A)y = {a€4; In>0,"a=0), (4)-= {a€4; In>0,3"a = 0).

Clearly (A)o, (A)4, and (A)_ are submodules, and every P-homomorphism
f:A — B of finite P-modules maps (4), into (B),. (4), into (B),, and so on.
We denote the corresponding restrictions by fo, f+. and f_. Thus we obtain
three functors on the category of finite P-modules. It is easy to see that
they are all exact. (Note that the functor ( ), is not defined on the category
of all P-modules, whereas the functors ( ), and ( )_ are defined. but are
only left exact.)

The proofs of the following Lemmas are not complicated, and are,
therefore, omitted.

10.4. Lemma. Every finite P-module A is isomorphic to the direct sum
(A)o ® (A)+ @ (A)_, where (A)y is isomorphic to L @ pA. ®

MPproposition 10.2 also follows from a general theorem in {63} on the existence of
minimal Seifert manifolds.
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10.5. Lemma. Let A be a P-mogz:ule that is finitely generated over Z, and
let A=L®pA. Letv: A— A be the homomorphism acting by

v(g) = 1 ® a,a € A. Then the kernel of the restriction of vto T(A) is the
same as (T(A)) .+ (T(A ))_,~and the restriction of vto (T(A))eis an
isomorphism (T(A)), > T(A) =

10.6. We call a P-quintet (4, B, a, I, ¥) splitting if the exact sequence of
P-modules® 0— (4 ®Z,)+ =3 (B)s > (Hom (4; Z,))s— 0 obtained by
applying the functor ( ), to the exact sequence of 9.1 (b) splits. Then the

analogous “minus-sequence’ also splits. As a supplement to Proposition
10.2 we establish the following result.

10.7. Proposition. Every P-quintet is R-equivalent to some minimal splitting
P-quintet.
m et 8= (4, B, l,¥y) be a P-quintet. By Proposition 10.2 we may
assume that it is minimal. We construct a sequence of P-quintets
8, = @, 8,, . .. in which all the &, are minimal and @&, is splitting for
large enough i.
We define the first quintet &, = (4, By, g, L) as f_ollows. We put
A, = A and for a. b € T(4,) we define L(a ® b) = l{(zz)"a ® b). Since the
module A is minimal, so is T(A,), hence, I, is well-defined. We define the
following P-modules:
B ={(b, f)€(B)x X (Hom (4; Z)))+; P (b)=zzf}:
Ny={(a(a), —zza); a€(4®2,).} = (B)- ® (A @Zy)-
B'=((B). ®(4®Z,).)/N;, B,=(B), ® B, ® BL
We specify the homomorphism a,: 4; ® Z, > B, as the direct sum of the
following three homomorphisms
(ay)o! (A; ®Zy)g— (B)yr a a(a),
()s: (A1®Z,)+— (By)+=B% avr—>(a(a) 0)
(aq)-: (A:1®Zz)— - (Bl)—=Biv a— (0, a)+N1'
We define the pairing $;: By ® By — Z, by the matrix

® 0 0
[0 0 O:i ,
0 e’ 0
where w: (B), ® (B), = Z4 acts according to the formula x(a ® b) =
= P((zz) e ® b),a, b € (B)y, and o: By ® BL — Z, according to the
formula
o((b, Y @ (W'y e) + N)) =4 @ b) + flo),

where (b, f) € BL, ((b', ¢)+N,) € BL, and ¢ is the parity of the original
quintet.

(DThe P-module structure on Hom(A4; Z,) is given by (zf) (a) = Aza) for f € Hom(4: Z,),
a € A; then 8 is a P-homomorphism.
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We have obtained a collection &, = (4;, By, &, &, ¥1). and a simple
verification shows that it is a P-quintet of parity &. To show that it
l-adjoins @, we define the following homomorphisms:

"]: A - Ah a v z-z.a,
"'I:A A;—~ A, a > a,
8 (B)o— (Byo b — zzb,

Ei: (B)y — (B4
o (B)-—~ (By)-,

Eo: (Bo— (B)o»
+5 (B} > (B) 4,

- (B~ (B)-,

b — (zzb, (b)),
b — (b, 0) + Ny,
b~ b,

(bs f) — b,
(5, @) + Ny) > a(a) + zzb,

and take E: B — Bl to be the directsum ¢, ® E, @ E_, and g B, — Bto
be the direct sum go et [e>) t.. Then the collection (n, ‘§,n t) is easily seen
to be a morphism from & to @, and to satisfy the definition of 1-adjoining
(see 9.1).

Let @, be the P-quintet obtained by applying to &, the same construction
used to get &, from &. In general, let ; be .obtained by applying this
construction to 8;_,. Then the P-quintets ®; are all minimal and R-equivalent
to the original one. We claim that from some point onwards these P-quintets
are all splitting. For, if 8; = (4;, B;, a;, l;» ¥;), then B; can be identified
with the direct sum (B), & Bi ® Bi, where

Bi={(b, /)€(B)s X (Hom(4; Z,))s; B(6)=(z2)'f},
={(a (@), —(zz)'a); a€(4®2Z,).),
Bi=((B)- ® (A®Z,).)/N,.

It follows that if 7 is large enough so that (zz)' (4 ® Z,). = 0, then &,; is
splitting, m

10.8. Proof of Theorem 10.1. It is clear that R-equivalence implies
m-adjoining, and we have to prove the converse. Let G, = (A;, By, oy, 1 $;)
(i = 1 or 2) be two P-quintets of parity € and let (n. §-q £} be a P-morphism
from @, to &, such that the composites o1, 1oy, &£, Eot all are
multiplication by (zz)™. By Proposition 10.7 we may assume that @, and
&, are minimal and splitting. The theorem will be proved if we can
construct a minimal splitting P-quintet @, that l-adjoins &, and (m—1)-
adjoins @,.

We begin the construction of the quintet @,=(43, By, &3, Iy, ¥5). Let A,
be the set of those a € A, for which zza € im . It follows from the
minimality of 4, that T(43) = T(4,), consequently, we can define a form

Sipsyiiniing

i e A B o i
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1y T(4y) ® T(4s) > Q/Z by putting I(z ® y) = Iz @ (zz)'~™y) for
x, ¥ € T(A,). We specify the module B; in the form of the direct sum:
By =(By)o ® (4,0 2,)+ © (4, @ Z,).(® (Hom (45 2,))+ ®
® (Hom(4y; Z,))-.
and the momomorphism oz: 4 ® Z, = By as the direct sum of the
homomorphisms:
(o) (43 ®2Z,)y —
(@) (43 ®Z,)+ — By,
(2s)-: (4, ® Z,). = B,
Here i: A3 > 4, and (ag)4, (a3)_ are the embeddings. We define the form
Pyt By ® By—» Z, by the matrix

(‘@’ Yo {as)o

(4: ®2,) — (By)y

*x 0 0 0 0
00 0 0 &b
00 0 e O
00 o 0 O
06 0 0 O

where x(z @ y) = P,z ® (zz)'™y), x, ¥ € (By)o. and o and & are the
restrictions of the canonical evaluation pairing (4; ® 2,) @ Hom (4;; Z,) —
— Z,=2,. We omit the verification that ; = (43, B;, a3, I5,3) is a
P-quintet.

To prove that @, l-adjoins &;, we construct a morphism (’fh» £ M B
= 1(a), a €A4,,
and Th(b): 1~azb), b € A,. and taking as §,: B, - B, and §1. B, — By any
suitable extensions of the homomorphisms (£),: (B1) — (Bs)y = (B,), and

(Bs)o — (B1)o» 2+ E~Y(z2z), respectively (these can be constructed using the
fact that quintets can be splitting.

defining m,: 4, — Azand 'q1 Ay — A, by the formulae 1,(a

We now define a morphism (nz,g,,ﬁz,ég) from B; to 8,. Letn,: 4, — 4,

be the embedding, and let m,: A, — A act as follows: 1j,(a) = (zz)"‘ “1q

a €A, Let (£,)y: (Bs) — (B,), be the identity map, and let (£,),:
(By)y — (Bs), be mulnphcatlon by (zz)»-1. As above, using the splitting
property of the quintets, we can construct extensions £, and £ , such that

the collection (q,,g,,n,.g,) is a P-homomorphism from &; to @32, and all four

homomorphisms 1,0 7,, NgoNg Ego Ey, and E,oF, are multiplication by (zzy™-L
The proof of the theorem is now completed by induction. ®

10.9. Let A = Zlz, t-!lbe the group ring of the infinite cyclic group. A
A-quintet is a Z-quintet (4. B, «, {,¢) in which the groups A and B are
additionally equipped with A-module structures such that (a) 4 and B are
finitely generated over A and the multiplications by 1 —t € A are auto-
morphisms of the modules A and B; (b) « is a A-homomorphism: (c) the
automorphisms of 4 and B defined by multiplication by t € A are isometries
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of the forms ! and ¥. Two A-quintets (4y, By, @y, Iy, ) (v=1 or 2) are
called isomorphic if there are A-isomorphisms n:4, > A, and £:B, - B,
such that the collection (1, &, n~,£7%) is a morphism of Z-quintets (see 9.1).

10 10. With each P-quintet 8 = (4, B,a,l, q)we now associate a A-quintet
(A B.a,l, 1,L) We putA L®pdand B = L ®p B (we recall that

L = 2Z[t, -}, (1 — t)"'land that P is embedded in L by identifying z with

1= Als naturally embedded in L, and so A and B are A-modules).

We define o as the composite

102, —(L®rA)®22, ~L®p(ABZ,) —> L ®pB=5.

By Lemma 10.5, there are natural isomorphisms (T(4))e = T(4) and
(B)o B, Wthh we denote by % and A, respectnely By means of them we
can define T 1) ® T(4) -~ Q/Z and q, B ® B — 2, as follows:
Az ® y) ) =1l(x"(z) ® x(y)x, ¥ € T(A) and Y(a @ b) = P Ya) @ ATYb)),
a, b € B. An easy verification shows that the collection (A B, a,l \p) is
indeed a A-quintet. We denote by & = L ®p ® the fact that the A-quintet
& is obtained by this construction from the P-quintet &

Now we can state the second criterion for R-equivalence of P-quintets.

10.11. Theorem Two P-quintets @, and @, are R-equivalent if and only if
the A-quintets 61 = L®p@8, and G, =1L ®P &, are isomorphic.

® Let (q, , 7, &) be a morphism from a P-quintet &, = (4,, By, ay, L, §1)
to a P-quintet @, = (4, By, oy, I.JPz)ssatlsfymg the condition for 1-adjoining

(see 9.1), that is, all four composites non, ~r|o~r|, §o§, gog are multiplication by
77 € P. We define A-homomorphisms @: A, —~ ;f, and E: §1 — ﬁ, by the
formulae

O @ a) =z & yn(a),

where a € 4, b € B,.
the formulae

DI ®a) =7 @00 E1®H =1 ®ib).

wherea €A, b € B,. Then ® and & are mutually inverse A-homomorphisms,
and similarly for E and & &. It is easy to see that @ and B determine an
isomorphism between the A-quintets G, and G Consequently, the
A-quintets corresponding to R-equivalent P-qumtets are isomorphic.

We now prove the converse. Suppose that (51 and 6, are isomorphic and

O: A, - A, and 8: B, - B, are the respective isomorphisms. By Proposition
10.2 and what has just been proved, we may assume that 4, and A4, are
minimal. In this case, by Lemma 2.5, the homomorphisms py: Ay = fT\, =
=L ®pA, taking a € A, to 1 ® g are monomorphisms (v= 1 or 2).

As in the proof of Theorem 6.6, there is an integer n 2 0 such that

21 ®b) =zt Eb),

Similarly, we define b: Z,—-» Xl and E: §, — §1 by

O((z2)" im p,) < im py  (22)"im py < Oim py)-
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We may assume, in addition. that n is large enough so that

(By)+ =0 =2"(B,),

M4y ®2,)+ =0=2(4,02Z,).,
where v = 1 or 2. We define P-homomorphisms nn: 4, = A, and 1: 4, > A4,
by the formulae

n(@)=p;'e Pop,((z2)"a), a€4,
ﬁ (@) =uto @ top, {(z2)"a).

Similarly. let Ay: (Bv)0 — B, be the isomorphism given by Lemma 10.5. We
denote by k B, — B the homomorphism that is equal to Ay on (By)gand
to 0 on (B,); and on (B,).. We define £:B, = B, and &:B, ~ B, by putting

E(B)=(22)" Ao EoX,(B),  bEB,
E(b)=(zz)" A1 o B 1o R, (b), bEB,.

Then the collection (q,g,‘n,‘g) makes &; and 8, 2n-adjoining. By Theorem
10.1, 8, and @, are R-equivalent. ®

i acA,.

As a supplement to Theorem 10.11 we prove the following theorem.

10.12. Theorem. Every A-quinter is isomorphic to L ® p & for some
P-quinter @.

| et (Z,E,:z,'i, @) be a A-quintet. By Theorem 2.7 (1), there exists a
P-module A that is finitely generated over Z and such that L ®p 4 = ~ A.
Without loss of generality we may suppose also that A is minimal. Then
T(A) is naturally identified with T(A) and this allows us to define in the
obvious way a form I: T(4) @ T(4) - Q/Z, using 7. Let B be the direct
sum

BO®(A®Z): ®(40Z,).® (Hom(4; Z,))y © (Hom(4; Z,))-
and let ¢: B ® B — Z, be given by the matrix

$0 0 0 0
00 0 0 b
00 0 e 0|,
00 o 0 O
68 0 0 O

where the dash denotes the transpose, € the parity, and 6: (4 ® 2,)+ @
® (Hom(4: Z,))-—~2Z,=Z,ando: (4 ® Z,)_ ® (Hom(4: Z,))+ >~ Z,<
< Z, are the restrictions of the canonical form

(A ®2Z,) @ Hom(4; Z,) > Z,, z® [ — [(2)
It remains for us to construct a homomorphism a: 4 ® Z, — B, which we
dsfine as the direct sum of the homomorphism a,: (4 ® Z,), = A® Z,>

% Bc B and the natural embeddings a4: (4 ® Z,)4 - B and
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a_: (A ®2Z,)_— B. ltiseasy to see that 8 = (4. B, a, 1.4) is a P-quintet
and that the A-quintet L ®p & is isomorphic to the original one. ®

Theorems 9.3. 10.11, and 10.12 have the following corollary.

10.13. Corollary. For q > 3 the map that assigns to a kitor the A-quintet
L ®p®, where 8 is the P-quintet of some Seifert manifold, is a bijection
from the set of simple 2q-dimensional knots in §*** onto the set of
isomorphism classes of A-quintets of parity (—1)*}. =

10.14. Suppose that(S2*2, k%) is a simple knot. How can one describe in
terms of invariants the A-quintet (4, B. « [ ) corresponding to it by
Corollary 10.13? From Theorem 2.6 and the definitionsin 9.2 and 10.10 it
follows that the A-module A4 is isomorphic to H, (X). where X is the infinite
cyclic covering of the complement of the knot in question. Similarly. the
A-module B is isomorphic to oq,g()s ) (this follows from Definitions 9.2 and
10.10 and the remark that the statement and proof of Theorem 2.6 remain
valid for any generalized homology theory. in particular. for the theory o, of
stable homotopy groups).

We claim that the homomorphism a: Hq(f) ®2Z,— UH,(X) in the
A-quintet under consideration acts according to the formula

a(x @ 1) = hY{(z)ey,

where x € H, X h: oq(X) - H, X Is the Hurewicz homomorphism (which in
our case is an isomorphism, since Xis (g — 1)-connected). and 1 € 644+4(8%) is
the unique non-zero element. For let V#*c $%** be an arbitrary

(g — 1)-connected Seifert manifold of the knot in question and let int ¢
be an arbitrary lifting. By Definitions 9.2 and 10.10 and the construction
of the isomorphisms given by Theorem 2.6, there is a commutative diagram

Hq(f) 82> °q+z(2)
T TeBt T fes
H(V)®2Z, :’; Og+2 (V)

where fq and fee denote the homomorphisms induced by the lifting, and ay
is the homomorphism in the P-quintet of V whose action is defined in 9.2.
By Lemma 10.5, the vertlcal maps in this diagram are epimorphisms.
Therefore, if x € H, X, then there isa y EHVwith{fy ® 1) (y @ 1) =

=z ® 1 and we have

Az ® 1) = faa(@y(y ® 1) = fouth (@) o n) = k' (fa@) e m =272 o My

which is what was to be proved.
The forms ! and ¥ with the above interpretation of A and B, become

I TyX) ® To(X)— Q/Z and i 044o(X) ® 0g45(X) 24,
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where T, (X) denotes Torsz H, (X). It follows from Theorems 9.3 (2) and
10.11 that these forms are invariants of the knot in question.

In the next theorem we summarize the computations of §8§9 and 10,
restating Corollary 10.13 in the light of the remarks in 10.14.

10.15. Theorem. (1) The collection (H.,(ff), aq+,(i), a, 1, ¢) associated
with any simple knot (S%*%, k%), where X is the infinite cyclic covering of
the complement, and a: Hq(f) ® Z,—»'oq+,(f), l: Tq(f) @ Tq(}?) - /2,
P: oq+,(§) ® o,.,,,(f) — 2, are the homomorphisms defined above, is a
A-quintet of parity (—1)*1; (2) the A-quintets corresponding to equivalent
knots are isomorphic; (3) for g > 3 simple 2g-dimensional knots with
isomorphic A-quintets are equivalent; (4) for any A-quintet of parity

e(= x1).and any q > 3 with(—1)™? = ¢ there exists a simple 2g-dimensional
knot whose A-quintet is isomorphic to the given one.

We recall the meaning of Theorem 10.15, (1). The phrase “‘the collection
(4, B, a, L, ¥) is a A-quintet of parity £ means (see 9.1 and 10.9) that (a) 4
and B are finitely generated A-modules and multiplication by (1-1) € A
defines automorphisms of them: (b) @: A ® Z, — Bis a A-homomorphism:
(¢) the forms &: T(4) ® T(A)— Q/Z and $: B ® B— Z,are non-
dJegenerate and e-symmetric: (d) the automorphisms of T(A4) and B defined
by multiplication by t € A are isometries of the forms / and ¥, respectively:
(e) there is an exact sequence

. [
0 A ®2,~ B— Homy(4; Z,) =0,

in which the homomorphism § adjoins « relative to . that is, () (a) =
= (b ® a(n(a))) for b EB and a € A, where 1 A—~ 4 @ Z,is the
projection; (f) the compasite

B>a5h 402,58
is multiplication by 2, where ¥(b) for b € B is defined as an element of
T(4) such that (b ® a(n(a))) = Uyp(b) ® a) for alla € T(4).

In certain cases some of the objects in the A-quintet (4, B,a, I,}) vanish,
or can be expressed in terms of the others. Suppose. for example. that A is
2-divisible. Then 4 ® Z, = 0, Hom(4: Z,) = 0, and as follows from (e)
above, B = 0, so that « = 0 and ¥ = 0. Thus, by Theorem 10.15. forq > 3
the type of a simple 2q-dimensional knot with 2-divisible Alexander module
H (X) is completely determined by the A-module Hg (X) and the form

T(X) ® To(X)— Q/Z.

Now we consider a A-quintet (4, B, a, I, ¢) in which the module 4 is
finite of exponent 2. Each element x € 4 determines a homomorphism
v:A > Z,, where v(a) = l(x ® a) fora € A. By (e) there exists a bEB
with B(b) = v. Then y(b) = x, and so the homomorphism 7y :B = A defined
in (f) is an epimorphism. Hence, by (e) and (f), « maps A onto the
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subgroup 2B of B, and B as an Abelian group is isomorphic to a direct sum
of copies of Z, whose number is equal to the rank of A4 over the field Z,.
If b, b' € B, then it follows from (f) that

29(b ® b') = 9(b ® 2') = (b ® a(n(3(6") = Uy(b) ® ¥(¥)).

Thus, v determines / and a complete system of invariants is the pair (B, )
consisting of the A-module B and the pairing y: B ® B — Z,. It now
follows from Theorem 10.15 that the type of a simple 2q-dimensional knot
with finite Alexander module of exponent 2 is determined for ¢ > 3 by the
A-module o4.,(X) and the form : cqﬂ()?) ® oqﬂ()z') - Z,.

Notes to §10. Theorem 10.15 is the central result of this section. It was announced in the author’s
paper [13], 8.13, where there is a detailed proof of a similar theorem for fibred knots see also [12],
Theorem 10.

If (A4, B, a, 1, ¢) is an arbitrary A-quintet, then the modules 7(4) and B are finite, and it follows
from Theorem 10.15 that the Alexander module Hq(,Y) determines for ¢ > 3 the type of a simple
2g-dimensional knot up to finitely many possibilities. A more general assertion of this kind is
contained in the author’s lecture (60): the middle-dimensional Alexander module and the Blanchfield
pairing (the latter in the odd-dimensional case) determine the type of a stable knot up to finitely
many possibilities. There is a proof of an analogous theorem for fibred knots in [13].

The form I T4 (X) ® T4 (X) — Q/Z in Theorem 10.15 was discovered independently by
Levine [41], [42] and the author [10], [11] (the fuli text of my paper had been deposited at
VINITI in 1974, see Ref. Zh. Matematika, 1974, 9A640). Later Kobel'skii [61] constructed an
analogous form for links. The new construction of / presented in this paper foilows the ideas of
the author’s paper “Knots and stable homotopy” (Proc. Leningrad Internat. Topology Confl), in
which a general construction is proposed for forms on extraordinary homology groups of the infinite
cyclic covering of the complement of a knot. More precisely, it is shown there that for any
n-dimensional knot there is an invariantly defined form

61 (X) @ 05 (X) = 0y 4 5 (SP*),
provided that i+ > n+ 1. Forn = 2q, i =j = g+ 2 there arises in this way the form

Og+ 2 (X) @ Ogua (X) — Zyy = Oaq 4+ ((SP9 *2),
which for simple knots takes values in 2 4 Z4q and coincides with the form ¥ in Theorem 10.15.

The fact that the form / constructed in the present paper coincides with the form of the same
name in [10] and [11] is easily deduced from the results of [11], §7.

The simple knots of a fixed dimension form an Abelian semigroup under the connected sum. The
elements of this semigroup do not always split uniquely into a sum of primes, that is, not further
decomposable, elements. Various results on the uniqueness and non-uniqueness of such decompositions
are presented in [19] and in earlier papers cited in {19].

For other questions not touched upon in the present paper we refer the reader to the surveys
(23], [35], {51].
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