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CLASSIFICATION OF CERTAIN
HIGHER-DIMENSIONAL

KNOTS OF CODIMENSION TWO

M. Sh. Farber

An «-dimensional knot is a pair (Sn + 2, k") consisting of an oriented sphere
S" + 2 and a smooth closed oriented submanifold k that is homotopy -
equivalent to an «-dimensional sphere. Two «-dimensional knots (Sn + 2, kv)
(y = 1 or 2) are equivalent (or of the same isotopy type) if there is an
orientation-preserving isotopy of Sn + 2 taking kx to k2. In this lecture we
consider the problem of describing the set of isotopy types of «-dimensional
knots. We use terminology of differential topology.

1. Homotopy Seifert pairings. Let Vbe a connected compact oriented
(« + 1 )-dimensional submanifold of the sphere Sn + 2 with a non-empty
boundary 9 V. Let Υ be the closure of the complement of an open tubular
neighbourhood of V in Sn + 2 . We denote by u: V f\Y^-Sn + 1 the canonical
pairing of Spanier—Whitehead duality. Let i+ : V-*- Υ be the map given by a
small shift along the field of positive normals to V in Sn + 2 . A homotopy
Seifert pairing of the manifold V is the composition

Q: V /\V ^ i V AY-^ Sn+\

It is clear that θ defines a unique embedding V CSn + 2 up to homotopy.
If « is odd, then θ induces the classical Seifert pairing on the middle-

dimensional homology [ 1 ] .
A homotopy pairing θ: Κ /\ Κ ->• Sn+1, where Κ is a. finite complexes

spherical if Κ has the homotopy type of a complex of dimension < n, and the
pairing θ + (- 1)" + * θ': Κ /\ Κ - * Sn+1 is a Spanier-Whitehead duality. Here
Θ' is the composition of the map Κ f\ Κ -+ Κ /\ Κ interchanging the
factors and the map Θ, and the plus or minus sign is understood'as operating in
the cohomotopy group -π" + ι(Κ /\ Κ). Two homotopy pairings
θν: Κν Λ Kv ->- 5 n + 1 (v = 1 or 2) are stably congruent if there is an
5-equivalence/: Kl -*• K2 for which 0 2 ° (/ Λ /) is stably homotopic to θγ.

THEOREM \. A homotopy Seifert pairing of an (« + 1 ydimensional sub-
manifold V C Sn + 2 is spherical if and only ifdV is a homology sphere.
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THEOREM 2.1f3r>n + l> 6, then the association of a submanifold with
its homotopy Seifert pairing realizes a bijection of the set ofisotopy classes
of embeddings of r-connected (n + Yydimensional oriented submanifolds of
Sn + 2 that are bounded by homotopy spheres into the set of classes of stably
congruent spherical homotopy pairings θ: Κ /\ Κ ->-5 η + 1 given on finite
r-connected complexes.

2. The classification of knots. For each knot (S" + 2, k" ) there is a connected
orientable (n + 1 )-dimensional submanifold V C Sn + 2 with dV = k. It is called
a Seifert manifold of the knot. The orientation of a Seifert manifold can be
chosen canonically, using the orientation of k. The Seifert manifold defined by
the knot is not unique. Later we shall explain how the homotopy pairings
corresponding to the various Seifert manifolds of a knot are related.

We say that two homotopy pairings θν: Kv /\ Kv -*• Sn+1 (v =; 1 or 2) abut
if there exist connected complexes L and Μ and pairings a: Kx f\ K2 -»- Sn+1

and u: L f\ Μ -> Sn+1, the latter being a Spanier—Whitehead duality, and an
5-equivalence h: K^\J Kz-^-L\j Μ such that η ° (h /\ h) is stably
homo topic to %, where the homotopy pairings η: (L V M) /\ (L \f M) - * - £ " + 1

and £:(#! V #2) Λ (#ι V #2) -*-5' n + 1 are given, respectively, by the
matrices

ΙοοΓα1(-ΐ)»α' (-i)«e;l·

Here, as above, a dash denotes transposition, that is, the composition of the
map with the interchange of the factors.

A pairing that abuts a spherical pairing is itself spherical. The relation of
abutting is symmetric and reflexive on the set of spherical pairings. The
equivalence relation generated by abutting is called an R-equivalence. More
precisely, two homotopy pairings θν: Kv f\ Kv ->- 5 n + 1 (v = 1 or 2) are
R-equivalent if there is a sequence η,·: Nt Λ Nt ->• Sn+1 (1 = 1,. . ., s) of
homotopy pairings such that 171 = 0ι, τ?, = 0 2 >

 a n ( * for each 2 the pairings
τ?,- and Tji+ x abut.

THEOREM 3. The homotopy pairings of any two Seifert manifolds of a
knot are R-equivalent.

THEOREM 4. Let Vv be an r-connected Seifert manifold of a knot
(Sn + 2,kv)(y= Ior2), and let θν: Vv f\ Vv -+• S11*1 be the corresponding
homotopy Seifert pairing. Ifdx and θ2 are R-equivalent and 3r>n + \> 6,
then the knots (Sn + 2, kv)(y= 1,2) are equivalent.

Levine [2] has proved that the knot (Sn + 2, k" ) has an r-connected Seifert
manifold if and only if ^ ( 5 " + 2 - k) « n^S1) for ι < r. Let us denote by Kr n

the set of isotopy types of such knots. This is a semigroup under the operation
of forming the connected sum. Moreover, Ko „ is the semigroup ofisotopy
types of all n-dimensional knots. The semigroups Kr n determine a decreasing
filtration Ko „ D Kt „ D K2n D...lf2r>n>5, then Kr „ consists of a single
element, the type of the trivial knot.
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Let ΣΓ η denote the set of R-equivalence classes of spherical homotopy
pairings Θ: Κ /\ Κ ->- Sn + 1 on finite r-connected complexes K. The theorems
stated above imply the following classification theorem.

CLASSIFICATION THEOREM. The map that associates with a knot the
R-equivalence class of homotopy Seifert pairings of a certain Seifert manifold
spanned by this knot defines a bijection Kr n -*• ΣΓη if3r>n + l>6.

Note also the following useful fact: if two spherical homotopy pairings
θν: Kv Λ -̂ v -*- Sn+1 (v = 1 or 2) are R-equivalent and the complexes K1 and
K2 are r-connected, then the sequence η{: Nt f\ Nt ->Sn+1 in the definition
of the R-equivalence can be selected so that the complexes N{ are also
r-connected.

3. Periodic knots. In [3] Bredon suggested a suspension construction for
embeddings of codimension 2: if (Sn + 2,1") is a pair consisting of an oriented
sphere Sn + 2 and a smooth closed oriented submanifold /", then the suspension
of this pair is ( 5 " + 4 , ω(5" + 2, /)), where ω(5" + 2 , /) is the double covering of
Sn + 2 branching over / and canonically embedded in £ " + 4 . The manifold
ω(5η + 2, /) need not be a homotopy sphere, even if / is one. However, the twice
iterated suspension ω 2 sends knots into knots and defines a homomorphism of
the semigroup of isotopy types of «-dimensional knots into the same semigroup
of (n + 4)-dimensional knots [3]. In addition, if (Sn + 2, k") bounds an
r-connected manifold, then ω2 (Sn + 2, k") bounds an (r + 2)-connected
manifold. Consequently, ω 2 can be regarded as a homomorphism

THEOREM 5. The homomorphism ω2 : Kr n -*Kr+ 2 n + 4isan isomorphism
if3r>n + l>6.

The knots of Kr „ are naturally called stable when 3r > η + 1 > 6. The
homomorphism ω 2 sends stable knots to stable knots and for each
«-dimensional knot Κ the knot ω2ΝΚ is stable if 2/V> « + 1.

Theorem 5 asserts that the set Kr „ of stable knots depends only on the
residue of « modulo 4 and on « - 2r.

This theorem is fairly easily deduced from the classification theorem of §2.
If θ: Κ Λ Κ ->- 5™+1 is a certain homotopy pairing, then we define σ(θ) to
be the composition

-»- S* Λ Si Λ (κ Λ κ) ^ ^ si Λ ^ Λ s n + i =
where 5" is the suspension as above and the unnamed map is the interchange of
the second and third factors. If θ is a spherical pairing, then σ2 (θ) = σ(σ(0)) is
also spherical. If 0X and θ2 areR-equivalent, then so are σ2{βι) and σ2(02).
Hence, a2 defines a map Σ,. „ -*• Z r + 2 „ + 4 . Further the diagram
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Γ+2, η+4

1
'r+2, η+4

in which the vertical arrows denote maps analogous to those in the classifi-
cation theorem, is commutative.

If 3r > η + 1 > 6, then these maps are bijective. The map σ2 is also bijective
in this case; this is a consequence of a theorem on suspensions [4] . So we
deduce that ω 2 is bijective.

Theorem 5 was proved by Bredon [3] when n — 2r= \,r>2.
4. Knot complements. The question as to what extent the complement of a

knot defines its type has been much studied. It was proved in papers by Gluck
[5], Browder [6] , Lashoff and Shaneson [7] that for η > 2 there are at most
two distinct knots having diffeomorphic complements. It is known that the comple-
ment of a knot defines its type uniquely in Levine's class of simple odd-
dimensional knots [8] and in the class of knots obtained by superspinning [5],
[9] . Examples of non-equivalent knots with diffeomorphic complements were
constructed.recently in [10] and [11].

THEOREM 6. Stable knots are equivalent if and only if their complements
are diffeomorphic.

5. The classification of fibred knots. The results of §2 simplify considerably
for fibred knots; here one can avoid using R-equivalence and obtain an
immediate classification in terms of the invariants of an infinite cyclic covering.
These results can be used to study isolated singularities of polynomial maps
Rm -*- R 2 .

A k n o t u : = OS"1"1"2, k") is said to be fibred if there is a map b: Sn + 2 -+D2

such that 0 Ε D2 is a regular value, ΖΓ1 (0) = k, and the map b: Sn+1 - k -+ S1,
b(x) = b(x)l || b(x) || is a smooth fibration. Let a G S 1 and [0, a] be a radial
segment joining 0 G D2 and a in D2. Then V = b~l ([0, a]) is a Seifert manifold
of K, which we call the fibre of the knot.

THEOREM 7. A homotopy Seifert pairing of the fibre of any fibred knot is
a duality. Conversely, if a homotopy pairing of a certain r-connected Seifert
manifold of an η-dimensional knot is a duality and r > 1, η > 4, then the knot
is fibred.

THEOREM 8. If two spherical homotopy pairings θ v: Κ ν Λ Kv -+Sn+1

(ν = 1 or 2) are Spanier—Whitehead dualities, then they are R-equivalent if and
only if they are stably congruent.

This generalizes a theorem due to Trotter [12] about .S-equivalent uni-
modular Seifert matrices.

Let OS"1*2, k") be a certain fibred knot and Vits fibre. We denote by X the
complement Sn + 2 ~ k and let ρ: Χ -*• X be an infinite cyclic covering. We
choose a generator t: X -*• X of the group of covering transformations of ρ by
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the following condition: if xt EX and ω is a path beginning at x 0 and ending

at t(xQ) in X, then the intersection index of the loop ρ ° ω with V in Sn + 2

is 1.
The embedding i: int V -*• X can be lifted to a covering T: int V -+ X, where

ι is a homotopy equivalence. Let φ: Χ -*• Vbe a homotopy equivalence that is
the composition of a homotopy equivalence inverse to / and the embedding
int V -*• V. We consider the pairing

u: Χ Λ Χ -*• Sn+i,

given by

u = [θ + ( _ ΐ ) » + ΐ θ ' ] · ( ψ Λ Ψ).

where 0: F Λ V -*- ^ n + 1 i s a homotopy Seifert pairing. Theorem 8 implies
that the pairing u is, up to stable congruence, an invariant of the fibred knot
(Sn + 2, &"). Furthermore, a) u is a duality; b) M ' ~ (- 1)" + 1 « ;
c ) « » ( / Λ ί) ~ w; d) ί is an 5-equivalence; e) t — 1 is an ^-equivalence, where 1
denotes the identity map.

An n-isometry is a triple (L, u, t), where L is a finite polyhedron, u:Lf\L-*-Sn+l

is a continuous map, and t: L -*• L is an 5-map satisfying a)—e). An
n-isometry is said to be r-connected if L is r-connected. Two «-isometries
(Lv, uv, tv)(v= 1 or 2) are equivalent if there is an 5-equivalence f:Lx -*• L2

such that «i ~ «2 ° (/ Λ /) a n d t2 ° /is stably homotopic t o / ° / x . The set of
equivalence classes of r-connected «-isometries is denoted by Ir „.

We saw above that each «-dimensional fibred knot defines an «-isometry
(X, u, t). This is /--connected if the original knot belongs to Kr n. Thus,
denoting by the symbol FKr „ the set of equivalence classes of fibred knots in
Kr n, we obtain a map FKr n -*• Ir n .

THEOREM 9. If 3r>η'+ I > 6, this map is bijective.
The proof uses the classification theorem, Theorems 7 and 8, and the follow-

ing commutative diagram

i
τ y

1 r, η ~~~~~ * "r, η

in which the lower horizontal map sends the class of the «-isometry (L, u, t)
to the R -equivalence class of the spherical pairing Θ: L f\ L ->• Sn+1,
where θ = u ο (1 /\ (1 — t)-1). Here (1 - 1 ) ' 1 is a certain .S-map inverse to
l-t:L^L.

6. The algebraic classification of knots. The results set out above reduce the
differential-topological problem of describing the isotopy types of stable knots
to homotopy problems such as the problems of classifying spherical homotopy
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pairings with respect to R-equivalence and the classification of «-isometries.
The difficulty of these homotopy problems increases sharply with η — 2r.

The simplest case is when n — 2r= 1. This corresponds to the knots studied
by Levine [8] . Applying the classification theorem to this class of knots leads
automatically to an algebraic classification in terms of Seifert matrices, which
coincides essentially with Levine's classification [8] . The only difference is
that we arrive at a slightly different (but equivalent) form of the equivalence
relation between Seifert matrices. For fibred knots results are obtained similar
to [ 13] (in the latter the concept of a "knot" is taken in a broader sense than
here).

Let us explain the algebraic classification of fibred knots in FKr „ when
η — 2r = 2. The stability condition is satisfied if r > 3. By Theorem 9, the
isotopy types of such knots are in one-to-one correspondence with the
equivalence classes of n-isometries (L, u, t), where L is an /--connected complex.
Since u is a Spanier—Whitehead duality and η = 2r + 2, L can have only two
non-zero homology groups, Hr+1L and Hr+2L, and the latter must be free
Abelian. Hence it follows that the complex L has the homotopy type of a one-
point union of Moore spacesM(H r + 1L, r +1) V M(Hr+2L, r + 2). In particular,
these two groups determine completely the homotopy type of L. The pairing u
and the 5-map t give a well-defined algebraic structure on these groups.
Omitting the intermediate calculations we arrive at the resulting invariants.

The S-equivalence t: L-+L defines the structure of a Z[t, t~l] -module on
the group A = irr+1L. Since t — 1 is an 5-equivalence (this is part of the
definition of an n-isometry), A can be regarded as a module over the ring

The homotopy pairing u defines a bilinear form /: T(A) ® z T{A) -*• Q/Z,
where T(A) = Tor ZA, in the following way. Let x,y € T(A). Since L is
/•-connected, we can treat* andy as elements of Hr+1L. Letz SHr+2 (L; Q/Z)
be a certain class that goes into χ under the Bockstein homomorphism corres-
ponding to the extension 0 -»• Ζ -* Q -* Q/Z -> 0. We put l(x, y) =
= (u*s,z /\y)G Q/Z, where s eH2r+3(S2r+3; Z) is a fundamental class. This
gives a well-defined form /.

Let us consider the group B = nr+3L. The 5-map t determines the structure
of a Λ-module on it, and the homotopy pairing u gives a bilinear form
ψ: Β ® 2 Β -*• σ 3 , where am denotes the m-th stable homotopy group of the
spheres. The form φ is defined as follows: if bv: 5""+3 -*• L (v = 1 or 2) are
maps, then i//([&x ] , [b2 ]) is the homotopy class of the composition

SV+6 = £r+3 /\ Sr+3 -̂ —%• L /\L Λ · 52Γ+3.

There are Λ-homomorphisms

a: A <g> ζ σ 2 -»- Β, β: Β -+• Hom z (A, a t) = A,
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of which the first is given by composition with a non-trivial element of
a2 =nr+3S

r+1 and the second as follows. Let b: Sr+3 -+L and a: Sr+1 -»·/, be
continuous maps. Then β([ΰ]) ([a]) is the homotopy class of the composition

Then β is a Λ-homomoφhism if we_introduce the following Λ-module structure
in A: (tf) (x) = f(t~1x), where/e^, χ SA.

It is not difficult to show that the sequence

0 ^. Α®σ2-%. Β -^> Α-+0

is exact. Hence, in particular, the exponent of Β divides 4 and φ takes values in
Z 4 C σ2.

It can be proved that the invariants we have constructed form a complete
system. Thus, an r-connected (2r + 2)-isometry (L, u, t) is determined by the
following algebraic objects:

(1) the Α-module A;
(2) the Z-humomorphism I: T{A) ® z T(A) -+ Q/Z;
(3) the Α-ex tension

where A = Hom z (A; Z 2 ) ;
(4) the Z-homomorphism ψ: Β <8>z Β -*• Z 4 .
Here the following conditions are satisfied:
(a) A is a finitely generated Abelian group;
(b) the form I is non-degenerate;
(c) the forms I and φ are (— 1J-symmetric;
(d) multiplication by t €Ξ Λ defines an isometry between I and φ;

) = 0,e 1 , f l 2 <ΞΛ ® Ζ 2 ;

(g) /e/ b &B;by (b), there is a unique element a E T(A)such that2

βφ) (χ) = l(a, χ) for any χ G T{A).
Then 2b - a(a).
Every collection A, l, Ε, ψ satisfying (a)—(g) can be realized by a certain

r-connected (2r + 2)-isometry. By Theorem 9, this implies the following result:
THEOREM 10. The association of the fibred knot (S2r+*, k2r+2) with the

Α-module A = nr+l(S2r+4 - k2r+l), the form I: T(A) ® T{A) -»• Q/Z, the
A-extension 0 -+A <8> Z2^B^-A^-Q, where B = irr+3(S2r+4 - k), and the
form φ: Β ® Β -*• Z 4 defines for r > 3 a bijection between the set ofisotopy
types of the knots FKr 2r+2 and the set of isomorphism classes of objects (1)
to (4) satisfying (a)-(g).

A construction of the form / suitable for knots that are not fibred can be
found in [14].

It is understood that Z, is embedded in Z4 .
It is understood that Z, is embedded in Q/Z.
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Knots of Kr 2r+2 n a v i n g a module A without 2-torsion were studied by
Kearton [ 15]. See also [ 18], where it is assumed that T(A) = 0.

The results of § § 1 and 2 are given in greater detail in [ 16].

References

[ 1 ] J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84
(1966), 537-554. MR 34 #803.

[2] , Unknotting spheres in codimension two, Topology 4 (1965), 9-16.
MR 31 #4045.

[3] G. E. Bredon, Regular 0(n)-manifolds, suspension of knots, and knot periodicity, Bull.
Amer. Math. Soc, 79 (1973), 87-91. MR 46 #9999.

[4] Ε. Η. Spanier, Algebraic topology, McGraw-Hill, New York—London, 1966.
MR 35 #1007.
Translation: Algebraicheskaya topologiya, Mir, Moscow 1971.

[5] H. Gluck, The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc.
104 (1962), 308-333. MR 26 #4327.

[6] W. Browder, Diffeomorphisms of 1-connected manifolds, Trans. Amer. Math. Soc.
128 (1967), 155-163. MR 35 #3681.

[7] R. K. Lashoff and J. L. Shaneson, Classification of knots of codimension two, Bull.
Amer. Math. Soc. 75 (1969), 171-175. MR 39 #3508.

[8] J. Levine, An algebraic classification of some knots of codimension two, Comment.
Math. Helv. 45 (1970), 185-198. MR 42 # 1133.

[9] S. E. Cappell, Superspinning and knot complements, in: "Topology of Manifolds",
Markham, Chicago, ΠΙ., (1970), 358-383. MR43 #2711.

[10] S. E. Cappell and J. L. Shaneson, There exist inequivalent knots with the same comple-
ment, Ann. of Math. (2) 103 (1976), 349-353. MR 54 # 1238.

[11] McA. Gordon, Knots in the 4-sphere, Comment. Math. Helv. 51 (1976), 585-596.
MR 55 #13435.

[12] H. F. Trotter, Homology of group systems with applications to knot theory, Ann. of
Math. (2) 76 (1962), 464-498. MR 26 # 761.

[13] A. Durfee, Fibred knots and algebraic singularities, Topology 13 (1974), 47-59.
MR49#1523.

[14] M. Sh. Farber, Duality in an infinite cyclic covering and even-dimensional knots, Izv.
Akad. Nauk SSSR Ser. Mat. 41 (1977), 794-829. MR 58 #24279.
= Math. USSR-Izv. 11 (1977), 749-781.

[15] C. Kearton, An algebraic classification of some even-dimensional knots, Topology

15 (1976), 363-373. MR 56 # 1323.
[16] M. Sh. Farber, Classification of certain knots of codimension two, Dokl. Akad. Nauk

SSSR 240 (1978), 32-35. MR 58 # 24280.
= Soviet Math. Dokl. 19 (1978), 555-558.

[17] J. Levine, Knot modules. I, Trans. Amer. Math. Soc. 229 (1977), 1-50.
MR 57 #1503.

[18] S. Kojima, A classification of some even dimensional fibred knots, J. Fac. Sci. Univ.
Tokyo 24 (1977), 671-683.

Translated by A. West


