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Abstract. In a recent joint work with V. Turaev [6], we defined a new con-
cept of combinatorial torsion which we callatdsolute torsionCompared

with the classical Reidemeister torsion, it has the advantage of having a well-
determined sign. Also, the absolute torsion is defined for arbitrary orientable
flat vector bundles, and not only for unimodular ones, as is classical Reide-
meister torsion. In this paper | show that the sign behavior of the absolute
torsion, under a continuous deformation of the flat bundle, is determined by
the eta-invariant and the Pontrjagin classes. This result has a twofold signifi-
cance. Firstly, it justifies the definition of the absolute torsion by establishing
a relation to the well-known geometric invariants of manifolds. Viewed dif-
ferently, the result of this paper allows to express (partially) the eta-invariant,
which is defined using analytic tools, in terms of the absolute torsion, having
a purely topological definition. The result may find applications in studying
the spectral flow by methods of combinatorial topology.

Mathematics Subject Classification (199Brimary 57Q10; Secondary
53C99

1. A review of absolute torsion

In this section we briefly review the main propertiesatifsolute torsion
which was introduced in [6].

Let X be a closedrientedPL manifolds of odd dimensiom = dim X,
and letF" — X be a flat complex vector bundle ovar. Suppose that the
following conditions hold:

(i) The Stiefel-Whitney class,,_1(X) € H™ (X, Zy) vanishes;
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(i) The first Stiefel-Whitney clas&, (F'), viewed as a homomorphism
H\(X;Z) — Zs, vanishes on the 2-torsion subgroupf(X;Z).

Note that condition (i) is automatically satisfied in the case whest 3
mod 4, as proven by W. Massey [8]. Condition (ii) holds for any orientable
bundleF. (i) also holds for any¥’, assuming thak, (X') has no 2-torsion.
Under the above conditions we defined in [6] an element of the determi-
nant line of homology

(1.1) T(F) € det H,(X;F),

which we calledabsolute torsionThe term intends to emphasize that this
invariant is independent of additional choices, such as an Euler structure.

The construction of absolute torsion is based on the construction of tor-
sion of Euler structures, which was initiated by V. Turaev in [11], [12] and
studied further in [5] in the context of flat vector bundles and determinant
lines. In general, the construction of torsion of Euler structures allows to
control the indeterminacy contained in the classical construction of the Rei-
demeister torsion. However, the resulting invariant really depends on the
choice of Euler structure and also on the choice of homological orientation.
In [6] we showed that under conditigi) above there exist canonical choices
for the Euler structure, which are determined by the requirement that their
characteristic classes vanish. In fact, there exist only finitely mangnical
Euler structuresthey are parametrized by the 2-torsion subgroufi gfX).
Under conditior(ii) the torsion corresponding to any of the canonical Euler
structures will be the same. There is also a canonical way of producing a
homological orientation using the orientationf

We proved in [6] that the absolute torsion (1.1) is well-defined, is com-
binatorially invariant, has no sign indeterminacy, but may depend on the
orientation ofX. More precisely, reversing the orientation®fmultiplies
the absolute torsion (1.1) by the number1)™*(F)sx(X) where sy (X)
denotes theemi-characteristiof X, i.e.

(m—1)/2

sx(X) = Y bau(X).
=0

Hence the absolute torsion is independent of the orientation ibbne
of the numbersk(F') andsy(X) is even.

Another important property of absolute torsionrésality, which was
established in [6], Theorem 3.8. It claims thatifis a flat complex vector
bundle over a closed odd dimensional manifaldsuch that conditiong)
and (ii) are satisfied, anfl admits a flat Hermitian metric, then the absolute
torsion7 (F') € det H.(X; F) is real. This means that

T(F)=T(F),
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where the bar denotes a canonical involution on the determinant line
det H,(X; F), cf. [6], Sect. 2.

Note that assuming that the flat bundies acyclic, the determinant line
det H,(X; F') identifies canonically with the field of complex numbers

det H.(X; F) ~ C,

and the involution on the determinant line turns into the usual complex
conjugation, cf. [6], Lemma 2.2. Hence in the acyclic case the absolute
torsion7 (F') is a real valued function of a flat Hermitian vector bunélle
and our purpose in this paper is to describe its sign. We will see that this
description involves the eta-invariant [1] and also the Pontrjagin classes.
Note that the absolute value of the absolute torsion in this situation coincides
with the Ray-Singer analytic torsion, as follows from Theorem 10.2 of [5].
Note, that the absolute torsion can be viewed as a high dimensional
generalization of the Conway polynomial. In fact, we proved in [6] that the
function F' — T (F') determines the Conway polynomial of a knot in a
3-sphere, wheré' is a flat line bundle over the closed 3-manifold obtained
as the result of O-framed surgery along the knot.

2. Main Theorem in casedim X =3 mod 4
2.1. Assumptions

Let X be a closed oriented smooth manifold of odd dimensioa: dim X.

In this subsection we will assume that = 3 mod 4. By a theorem of
W. Massey [8], the Stiefel - Whitney class,,—1(X) vanishes. LetF" be
Hermitian vector bundlé” over X, such that the Stiefel - Whitney class
w1 (F') is trivial on the 2-torsion subgroup aéf; (X).

Suppose that fot € (a,b) we are given aeal analytic curve of flat
Hermitian connection¥; on F'. The analyticity ofV; with respect ta is
understood as follows. Fix € (a, b); then we havé/, = V,, + (2;, where
2, € AY(X;End(F)) is a 1-form with values in the bundle of endomor-
phisms ofF'. The curve of connectiong, is analytic if the curve

(a,b) — AY(X;End(F)), tw £

is analytic with respect to any Sobolev norm. We refer to [2], sections 2.3,
2.4 and [4], sections 3.3, 3.4 for detailed definitions of these notions.

Let F; denote the flat Hermitian bundlg, V;), t € (a,b). We will
assume that the homology..(X; F}) vanishes for a generit € (a,b),
i.e. forallt € (a,b) — S, whereS C (a,b) is a finite subset. Then the
absolute torsion — 7 (F;) gives areal valued function ofc (a,b),t ¢ S.
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The function7 (F}) is real analytic and is nonzero ¢a, b) — S as follows
directly from the definitions of [6].

Fix a Riemannian metric oX . The flat Hermitian connectioxi;, where
t € (a,b), determines its eta-invariant = n(F;), cf. [1]. Recall that the
eta-invariant is defined as the value of the eta-functjos) at the origin
s = 0. The eta-functiom(s) is obtained by an analytic continuation of

n(s) =Y sign(VIA, R(s) large
A#£0

where\ runs over the eigenvalues of the self-adjoint elliptic operator
B: A®(X;F) — A®(X; F)
acting on smooth forms with values in of even degree given by
B¢ =i"(~1)PTL(xV = Vx)p, ¢ c AP(X;F).

Herem = dim X = 2r — 1 and the star denotes the Hodge duality operator.
The following is the Main result of the paper in the case= 3 mod 4.

Theorem 2.1. Let X be a closed oriented Riemannian manifold of dimen-
sionm = 3 mod 4 and letV; be an analytic family of flat Hermitian
connectionst € (a,b), on an orientable vector bundlE over X. Assume
that the flat bundlg F, V) is acyclic for allt € (a,b), t ¢ S, where

S C (a,b) is afinite subset. Then the complex number

(2.1) sign(7 (F1)) exp(imn(F)/2) € C
is independent of € (a,b),t ¢ S.

Heresign(7 (F})) denotes the sign of the absolute torsib(F}).
Proof is given in Sect. 4 below.

3. Main Theorem in casedim X =1 mod 4

The difference between the cases= 3 mod 4 andm = 1 mod 4
consists in the following. In the case = 3 mod 4 the eta-invariang(F;)
is locally constant and may have only integral jumps at the poiat$a, b),
where the acyclicity is violated. On the contrary, in the case 1 mod 4
the eta-invariang)(F;) as a function of behaves “linearly” between the
jump points. This explains the difference with the case= 3 mod 4.

In order to state the Main result in the cagse= 1 mod 4 we need the
following construction.
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3.1. The argument class

Let F'be aflatHermitian bundle ovéf. For any closed curvein X, starting
atthe base point, we have the operator of parallel tran3paitt (v) : Fy —

Fy alongry, whereF, denotes the fiber over the base point. The linear map
Monp(v) is unitary, and hence its determinant lie on the unit circle. We will
denote byArg ;- a unique cohomology classrg, € H'(X;R/Z) with

the following property: for any closed curgein X holds

det(Mong () = exp(2ri - (Argp, [1])).

Theorem 3.1. Let X be a closed oriented Riemannian manifold of dimen-
sionm =1 mod 4. Suppose that{; (X') has no 2-torsion and the Stiefel-
Whitney classv,,—1(X) € H™1(X;Z,) vanishes. Le¥; be an analytic
family of flat Hermitian connections,c (a, b), on a vector bundlé" over

X, such thatd*(F,V,) = 0forall t € (a,b) — S, whereS C (a,b) is a
finite subset. Then

(i) the quantity
(3.1) exp(im(Argp, UL(X),[X])) €S'ccC

is well defined (cf. Sect. 4.4 below) and represents a continuous function
of the parametet € (a,b);
(i) the complex number

sign(T (Fy)) exp(imn(Fy)/2)
(3.2) x exp(im(Argy, U L(X),[X])) € C

is independent of € (a,b),t ¢ S.

In formula (3.2)L(X) denotes the Hirzebruch polynomial in the Pontr-
jagin classes.

The numerical value of the eta-invariaptdepends on the choice of the
Riemannian metric oX . Therefore the arguments of the complex numbers
appearing in (2.1) and (3.2) will depend on the choice of the metri& on
Also, the orientation o is used in the definition of(F}) and also in (3.1);
thus the numbers appearing in (2.1) and (3.2) will depend also on the choice
of the orientation ofX .

A proof of Theorem 3.1 will be given in the next section.

There exist a version of Theorem 3.1, which is similar to Theorem 2.1.
Here we do not assume absence of 2-torsioH X ); instead we require
that the family of flat connection¥, have trivial determinant of the mon-
odromydet Mony (in other words, eacW; is aSU-connection).
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Theorem 3.2. Let X be a closed oriented Riemannian manifold of dimen-
sionm =1 mod 4 such that the Stiefel-Whitney class,_; (X)) vanishes.
Let V, be an analytic family of flabU-connectionst € (a,b), on an ori-
entable vector bundlé” over X. Assume that the flat bund(é’, V;) is
acyclicforallt € (a,b),t ¢ S, whereS C (a,b) is afinite subset. Then the
complex number

sign(7 (Fy)) exp(imn(Fy)/2)
is independent of € (a,b),t ¢ S.

4. Proofs of Theorems 2.1, 3.1 and 3.2

The proofs will be based on the results of [2], [3], [4], where the behavior
of the eta-invariant and the analytic torsion under the analytic perturbations
of flat connection was described.

4.1. Signature invariants of deformations

We will first give a brief summary of the results of [3], [4].

There are results of two types in [4]: the description of the variation of the
eta-invariant), moduloZ (cf. Theorem 7.1 in [4], and also the description
of the integral jumps (cf. Theorem 1.5 in [4]).

In the casen = 3 mod 4 the eta-invariant); as a function oft is
constant modulo 1 (may have only integral jumps). The jumps occur only at
points where the homology changes; such points are isolated (not generic).
If t = tp € S is ajump point then the limit$im; 1+, 7. = n4+ and
lim;—,_4, n; = n— exist. The jump acrosg, — n_ is always even. Theorem
1.5 of [4] gives a precise formulae for the jump acrgss— n— in homo-
logical terms. To express these formulae one needs the signature invariants
01,09, ..., which were constructed in [4], Sect. 2; they are determined in
pure homological (finite dimensional) terms as invariants of stinkéng
form, naturally determined bthe deformation of the monodromy represen-
tation, cf. [4]. The jump formulae claim that

(4.1) Ny —n- =2 0i = 200dd
iodd

and also, the value of the eta-invariant at the jump point itgglfs given
by

1
(4.2) 5(77+ +777) — Mty = Z 0; = Oeven

ieven
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It follows thatthe values of the functioh— exp(imn,/2) for a generict
always lie on a fixed straight line through the origin and it changes the sign
(the half line), while passing across a jump paint tg, if and only if the
signatureoyqq is odd.

Note that the absolute torsion is continuous, real and nonzero in the in-
tervals between the jump points (where there are no homology changes) and
so the sign off (F}) is constant between the jump points. Hence, Theorem
2.1 is equivalent to the inequality

T (Fiyv5)
T(Fto—5)

for 6 > 0 small enough.

(4.3) - exp(imoodg) > 0

4.2. Singularity of the torsion

Here we will use the theorem of [2], which describes the singularity of the
torsion.

Letto € S C (a,b) be a fixed point, where the homology of flat bundle
H*(X; Fy)is nontrivial. Itis clear that as a function tfhe absolute torsion
T (F};) has the form

(4.4) T(F) = (t—t0)" - f(), veEL,

wheref(t) is real analytic and nonzero in a neighborhootyobne obtains
(4.4) directly from the definition of torsion in [5], [6]. The exponent
describes the singularity of the torsiontat ¢, (the order of zero or pole).
For our purposes in this paper it is enough to know the exponently
modulo 2, sincehe absolute torsiory (F;) changes sign whilé passes
acrosst = ty if and only ifv is odd.

It follows that in order to prove (4.3) we need to show that

(4.5) V= 0pqd mod 2

We will prove (4.5) using Theorem 10.2 of [5] and Theorem 5.3 of [2].
Since Theorem 10.2 of [5] operates with the cohomological torsion and real
vector bundles, we need to adjust our notations. Let

m(Fy) = 7%(X, & FR) € det HY(X; FR) ~ R, t#to,

be the cohomological torsion (cf. [5], Sect. 9) of flat vector buridleon-
sidered as a real vector bundle. Hére= Eul(X) denotes ecanonical
Euler structure cf. [6], Sect. 3; we also assume thdtis supplied withthe
canonical homological orientatigref. [6], §3.
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Let
T8(Fy) = (X, & FL) e det H*(X; Fy) ~C, t+# 1o,

be the (complex) cohomological torsion Bf (cf. [5], Sect. 9). By formula
(9-3) in [5] we have

[rE(F)] = [TE) " =t —to| ™ - [f(O7.

By Theorem 10.2 of [5] (cf. also the equation (10-3) in [5]), we obtain
that fort # t,, the analytic torsiom(FR) of the flat bundleF* equals

(4.6) p(E) = T8 (F)].
Since clearly
m(F) = [1(E)? p(FY) = p(F)?,

we obtain that

p(F) = |12 (F)| = [t —to| ™ - [F(O)[7F, f(to) # 0.

Now we may apply Theorem 5.3 of [2] in order to compute the exponent
v. According to this Theorem, equals the Euler number of the deformation

4.7) X =Y (-1)"dimc T,
=0

cf. [2].

Recall the notation used in the last formula. i2t= O;, denote the
ring of germs at = ¢, of real analytic curves : (to — €,t9 + €) —

C. Addition and multiplication are given by pointwise operatiofisis a
discrete valuation ring; its maximal ideal C O coincides with the set of
all functions vanishing at = to. The generator of the maximal ideal is the
germ of the functiory (¢) =t — to.

Given an analytic family of flat connectiong; (wheret € (a, b)) on a
Hermitian vector bundIé’, one constructs (following [2], [4]) a single local
systemOF of free O-modules of ranklim F' over X. To describe it, we
denote byll;(v) : F, — F, the parallel transport i’ with respect to the
flat connectioriv; along the loopy : [0,1] — X, wherep = v(0) = (1)
andF, denotes the fiber aboye The bundleD F" as a set consists of germs
of analytic curveg : (to—¢€’, to+¢€¢') — F,which are vertical (i.e. belong to
a single fiber). The parallel transport of the bun@é&’ along a closed loop
v:[0,1] = X, wherep = ~v(0) = v(1) is defined adI(y) : OF, — OF,,
where forg € OF,

I (7)(g)(t) = Hi(v)(9(t)),
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wheret € (to — €,tg + €).

Consider the cohomology?*(X; OF') with coefficients in the local
systemOF'. Since the ring? is a discrete valuation ring, any cohomology
module H*(X; OF) is a direct sum of its torsion submodule and a free
module. Our assumptions (acyclicity of the flat bunglléor generiat) imply
that the free part of the homology &f (X ; OF) is trivial (cf. Theorem 2.8
in [2]). We will denote byZ* the O-torsion submodule ol (X ; OF). Note
that eacht’ is finite dimensional as @-vector space.

4.3. End of the proof of Theorem 2.1

Let M denote the field of fractions @. Elementsf € M could be viewed
as germs at = ty of meromorphic curve$t — ty)" - f(t), wherev € Z,

feo0,fty) #£0.
In[4], Sect. 1alinking formon the middle dimensional torsion submod-
ule

(4.8) TR = M/O, m=2—1

was constructed. The sighaturasos,, . .. (which appearin (4.1) and (4.2))
are derived from the linking form (4.8). From the construction of the signa-
tureso; in Sect. 2 of [4] we easily observe

(4.9) dimc %" = 0pq¢  mod 2.

By the Poincak duality we havelimc ¥ = dime T2~ (cf. [2], Prop.
7.6). Hence we obtain combining (4.7) and (4.9)

v=x=dim%T" = o0gqqy mod 2,

which finishes the proof. O

4.4. Proof of Theorem 3.1

Let us prove the first statement. We claim that the quantity
(4.10) (Argp, U L(X), [X])

defines a real number modw@. To show this we observe that the part of
the Hirzebruch forni(X') of degreen — 1 represents aavencohomology
class (i.e. a class in- H™ 1(X;Z)). This follows from our assumptions
that the Stiefel - Whitney class,, 1 (X) vanishes and also that, (X)) has
no 2-torsion. Indeed, any cycle € H,,_1(X) can be represented by an
oriented codimension one submanifdld, C X and the valug L(X), z)
equals the signature df/,. To show that the signature d@fl, is always
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even, it is enough to show that the Euler characteristit/gfis even. But
X(M,) = (wn-1(X),z) =0 mod 2, which is a part of our data.
This shows that the cladg2 - L™ }(X) € H™ 1(X;Z) exists and is
unique, since we assume thi&t" ! (X;Z) ~ H;(X) has no 2-torsion.
Therefore, we obtain that the quantity

exp(mi(Argp U L(X), [X])) = exp(2mi(Argp U (1/2 - L(X)), [X]))

is well defined, since the cup-produttig U (1/2- L(X))is awell defined

cohomology classifi™(X;R/Z). The factthat (3.1) depends continuously

ont is now obvious. This proves the first statement of Theorem 3.1.
Consider the quantity

(4.11) N = Nt + 2(Argp, U L(X),[X]) € R/4Z.

Theorem 7.1 of [4] claims thaj;, as a function of € (a,b), is locally
constant. Hencg; may have only jumps when parametgrasses over the
finite subsetS C (a,b).

Letty € S be one of the jump points. Defirig. as the value ofj;, s
and definej_ asy,_s, whered > 0 is small enough. Then we have the
following jump formular:

(4.12) Ay — - = 2004 mod 4.

Indeed, as we showed above the quantity (4.10) is determiri@giri, and
hence the second summand in (4.12) has indeterminat®.iNow (4.12)
follows from (4.1).

In order to show thatign(7 (F})) - exp(min;/2) is independent of, it
is enough (because of (4.12)) to check the inequality (4.3).

However the proof of (4.3), given in the case= 3 mod 4, works as
well (with no changes) inthe case =1 mod 4. O

4.5. Proof of Theorem 3.2

Itisidentical to the proof of Theorem 2.1 if one observes that the eta-invariant
n:, considered modul@, is constant along paths &fU-connections (as
follows from Theorem 7.1 of [4]); hencg is constant between the jump
points.
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