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Abstract. In a recent joint work with V. Turaev [6], we defined a new con-
cept of combinatorial torsion which we calledabsolute torsion. Compared
with the classical Reidemeister torsion, it has the advantage of having a well-
determined sign. Also, the absolute torsion is defined for arbitrary orientable
flat vector bundles, and not only for unimodular ones, as is classical Reide-
meister torsion. In this paper I show that the sign behavior of the absolute
torsion, under a continuous deformation of the flat bundle, is determined by
the eta-invariant and the Pontrjagin classes. This result has a twofold signifi-
cance. Firstly, it justifies the definition of the absolute torsion by establishing
a relation to the well-known geometric invariants of manifolds. Viewed dif-
ferently, the result of this paper allows to express (partially) the eta-invariant,
which is defined using analytic tools, in terms of the absolute torsion, having
a purely topological definition. The result may find applications in studying
the spectral flow by methods of combinatorial topology.

Mathematics Subject Classification (1991):Primary 57Q10; Secondary
53C99

1. A review of absolute torsion

In this section we briefly review the main properties ofabsolute torsion,
which was introduced in [6].

LetX be a closedorientedPL manifolds of odd dimensionm = dimX,
and letF → X be a flat complex vector bundle overX. Suppose that the
following conditions hold:

(i) The Stiefel-Whitney classwm−1(X) ∈ Hm−1(X, Z2) vanishes;
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(ii) The first Stiefel-Whitney classw1(F ), viewed as a homomorphism
H1(X; Z) → Z2, vanishes on the 2-torsion subgroup ofH1(X; Z).

Note that condition (i) is automatically satisfied in the case whenm ≡ 3
mod 4, as proven by W. Massey [8]. Condition (ii) holds for any orientable
bundleF . (ii) also holds for anyF , assuming thatH1(X) has no 2-torsion.

Under the above conditions we defined in [6] an element of the determi-
nant line of homology

T (F ) ∈ det H∗(X;F ),(1.1)

which we calledabsolute torsion.The term intends to emphasize that this
invariant is independent of additional choices, such as an Euler structure.

The construction of absolute torsion is based on the construction of tor-
sion of Euler structures, which was initiated by V. Turaev in [11], [12] and
studied further in [5] in the context of flat vector bundles and determinant
lines. In general, the construction of torsion of Euler structures allows to
control the indeterminacy contained in the classical construction of the Rei-
demeister torsion. However, the resulting invariant really depends on the
choice of Euler structure and also on the choice of homological orientation.
In [6] we showed that under condition(i) above there exist canonical choices
for the Euler structure, which are determined by the requirement that their
characteristic classes vanish. In fact, there exist only finitely manycanonical
Euler structures; they are parametrized by the 2-torsion subgroup ofH1(X).
Under condition(ii) the torsion corresponding to any of the canonical Euler
structures will be the same. There is also a canonical way of producing a
homological orientation using the orientation ofX.

We proved in [6] that the absolute torsion (1.1) is well-defined, is com-
binatorially invariant, has no sign indeterminacy, but may depend on the
orientation ofX. More precisely, reversing the orientation ofX multiplies
the absolute torsion (1.1) by the number(−1)rk(F )·sχ(X), wheresχ(X)
denotes thesemi-characteristicof X, i.e.

sχ(X) =
(m−1)/2∑

i=0

b2i(X).

Hence the absolute torsion is independent of the orientation ofX if one
of the numbersrk(F ) andsχ(X) is even.

Another important property of absolute torsion isreality, which was
established in [6], Theorem 3.8. It claims that ifF is a flat complex vector
bundle over a closed odd dimensional manifoldX, such that conditions(i)
and (ii) are satisfied, andF admits a flat Hermitian metric, then the absolute
torsionT (F ) ∈ det H∗(X;F ) is real. This means that

T (F ) = T (F ),



Absolute torsion and eta-invariant 341

where the bar denotes a canonical involution on the determinant line
det H∗(X; F ), cf. [6], Sect. 2.

Note that assuming that the flat bundleF is acyclic, the determinant line
det H∗(X; F ) identifies canonically with the field of complex numbers

det H∗(X;F ) ' C,

and the involution on the determinant line turns into the usual complex
conjugation, cf. [6], Lemma 2.2. Hence in the acyclic case the absolute
torsionT (F ) is a real valued function of a flat Hermitian vector bundleF ,
and our purpose in this paper is to describe its sign. We will see that this
description involves the eta-invariant [1] and also the Pontrjagin classes.
Note that the absolute value of the absolute torsion in this situation coincides
with the Ray-Singer analytic torsion, as follows from Theorem 10.2 of [5].

Note, that the absolute torsion can be viewed as a high dimensional
generalization of the Conway polynomial. In fact, we proved in [6] that the
function F 7→ T (F ) determines the Conway polynomial of a knot in a
3-sphere, whereF is a flat line bundle over the closed 3-manifold obtained
as the result of 0-framed surgery along the knot.

2. Main Theorem in casedim X ≡ 3 mod 4

2.1. Assumptions

LetX be a closed oriented smooth manifold of odd dimensionm = dimX.
In this subsection we will assume thatm ≡ 3 mod 4. By a theorem of
W. Massey [8], the Stiefel - Whitney classwm−1(X) vanishes. LetF be
Hermitian vector bundleF over X, such that the Stiefel - Whitney class
w1(F ) is trivial on the 2-torsion subgroup ofH1(X).

Suppose that fort ∈ (a, b) we are given areal analytic curve of flat
Hermitian connections∇t on F . The analyticity of∇t with respect tot is
understood as follows. Fixt0 ∈ (a, b); then we have∇t = ∇t0 +Ωt, where
Ωt ∈ A1(X; End(F )) is a 1-form with values in the bundle of endomor-
phisms ofF . The curve of connections∇t is analytic if the curve

(a, b) → A1(X; End(F )), t 7→ Ωt

is analytic with respect to any Sobolev norm. We refer to [2], sections 2.3,
2.4 and [4], sections 3.3, 3.4 for detailed definitions of these notions.

Let Ft denote the flat Hermitian bundle(F,∇t), t ∈ (a, b). We will
assume that the homologyH∗(X;Ft) vanishes for a generict ∈ (a, b),
i.e. for all t ∈ (a, b) − S, whereS ⊂ (a, b) is a finite subset. Then the
absolute torsiont 7→ T (Ft) gives a real valued function oft ∈ (a, b), t /∈ S.
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The functionT (Ft) is real analytic and is nonzero on(a, b) − S as follows
directly from the definitions of [6].

Fix a Riemannian metric onX. The flat Hermitian connection∇t, where
t ∈ (a, b), determines its eta-invariantηt = η(Ft), cf. [1]. Recall that the
eta-invariant is defined as the value of the eta-functionη(s) at the origin
s = 0. The eta-functionη(s) is obtained by an analytic continuation of

η(s) =
∑

λ6=0

sign(λ)|λ|−s, <(s) large,

whereλ runs over the eigenvalues of the self-adjoint elliptic operator

B : Aev(X;F ) → Aev(X;F )

acting on smooth forms with values inF of even degree given by

Bφ = ir(−1)p+1(∗∇ − ∇∗)φ, φ ∈ A2p(X;F ).

Herem = dimX = 2r−1 and the star denotes the Hodge duality operator.
The following is the Main result of the paper in the casem ≡ 3 mod 4.

Theorem 2.1. LetX be a closed oriented Riemannian manifold of dimen-
sion m ≡ 3 mod 4 and let ∇t be an analytic family of flat Hermitian
connections,t ∈ (a, b), on an orientable vector bundleF overX. Assume
that the flat bundle(F,∇t) is acyclic for all t ∈ (a, b), t /∈ S, where
S ⊂ (a, b) is a finite subset. Then the complex number

sign(T (Ft)) exp(iπη(Ft)/2) ∈ C(2.1)

is independent oft ∈ (a, b), t /∈ S.

Heresign(T (Ft)) denotes the sign of the absolute torsionT (Ft).
Proof is given in Sect. 4 below.

3. Main Theorem in casedim X ≡ 1 mod 4

The difference between the casesm ≡ 3 mod 4 and m ≡ 1 mod 4
consists in the following. In the casem ≡ 3 mod 4 the eta-invariantη(Ft)
is locally constant and may have only integral jumps at the pointst ∈ (a, b),
where the acyclicity is violated. On the contrary, in the casem ≡ 1 mod 4
the eta-invariantη(Ft) as a function oft behaves “linearly” between the
jump points. This explains the difference with the casem ≡ 3 mod 4.

In order to state the Main result in the casem ≡ 1 mod 4 we need the
following construction.
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3.1. The argument class

LetF be a flat Hermitian bundle overX. For any closed curveγ in X, starting
at the base point, we have the operator of parallel transportMonF(γ) : F0 →
F0 alongγ, whereF0 denotes the fiber over the base point. The linear map
MonF(γ) is unitary, and hence its determinant lie on the unit circle. We will
denote byArgF a unique cohomology classArgF ∈ H1(X; R/Z) with
the following property: for any closed curveγ in X holds

det(MonF(γ)) = exp(2πi · 〈ArgF , [γ]〉).
Theorem 3.1. LetX be a closed oriented Riemannian manifold of dimen-
sionm ≡ 1 mod 4. Suppose thatH1(X) has no 2-torsion and the Stiefel-
Whitney classwm−1(X) ∈ Hm−1(X; Z2) vanishes. Let∇t be an analytic
family of flat Hermitian connections,t ∈ (a, b), on a vector bundleF over
X, such thatH∗(F,∇t) = 0 for all t ∈ (a, b) − S, whereS ⊂ (a, b) is a
finite subset. Then

(i) the quantity

exp(iπ〈ArgFt
∪ L(X), [X]〉) ∈ S1 ⊂ C(3.1)

is well defined (cf. Sect. 4.4 below) and represents a continuous function
of the parametert ∈ (a, b);

(ii) the complex number

sign(T (Ft)) exp(iπη(Ft)/2)
× exp(iπ〈ArgFt

∪ L(X), [X]〉) ∈ C(3.2)

is independent oft ∈ (a, b), t /∈ S.

In formula (3.2)L(X) denotes the Hirzebruch polynomial in the Pontr-
jagin classes.

The numerical value of the eta-invariantηt depends on the choice of the
Riemannian metric onX. Therefore the arguments of the complex numbers
appearing in (2.1) and (3.2) will depend on the choice of the metric onX.
Also, the orientation ofX is used in the definition ofη(Ft) and also in (3.1);
thus the numbers appearing in (2.1) and (3.2) will depend also on the choice
of the orientation ofX.

A proof of Theorem 3.1 will be given in the next section.
There exist a version of Theorem 3.1, which is similar to Theorem 2.1.

Here we do not assume absence of 2-torsion inH1(X); instead we require
that the family of flat connections∇t have trivial determinant of the mon-
odromydet MonF (in other words, each∇t is aSU -connection).
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Theorem 3.2. LetX be a closed oriented Riemannian manifold of dimen-
sionm ≡ 1 mod 4 such that the Stiefel-Whitney classwm−1(X) vanishes.
Let ∇t be an analytic family of flatSU -connections,t ∈ (a, b), on an ori-
entable vector bundleF over X. Assume that the flat bundle(F,∇t) is
acyclic for allt ∈ (a, b), t /∈ S, whereS ⊂ (a, b) is a finite subset. Then the
complex number

sign(T (Ft)) exp(iπη(Ft)/2)

is independent oft ∈ (a, b), t /∈ S.

4. Proofs of Theorems 2.1, 3.1 and 3.2

The proofs will be based on the results of [2], [3], [4], where the behavior
of the eta-invariant and the analytic torsion under the analytic perturbations
of flat connection was described.

4.1. Signature invariants of deformations

We will first give a brief summary of the results of [3], [4].
There are results of two types in [4]: the description of the variation of the

eta-invariantηt moduloZ (cf. Theorem 7.1 in [4], and also the description
of the integral jumps (cf. Theorem 1.5 in [4]).

In the casem ≡ 3 mod 4 the eta-invariantηt as a function oft is
constant modulo 1 (may have only integral jumps). The jumps occur only at
points where the homology changes; such points are isolated (not generic).
If t = t0 ∈ S is a jump point then the limitslimt→+t0 ηt = η+ and
limt→−t0 ηt = η− exist. The jump acrossη+ −η− is always even. Theorem
1.5 of [4] gives a precise formulae for the jump acrossη+ − η− in homo-
logical terms. To express these formulae one needs the signature invariants
σ1, σ2, . . . , which were constructed in [4], Sect. 2; they are determined in
pure homological (finite dimensional) terms as invariants of somelinking
form, naturally determined bythe deformation of the monodromy represen-
tation, cf. [4]. The jump formulae claim that

η+ − η− = 2
∑

i odd

σi = 2σodd,(4.1)

and also, the value of the eta-invariant at the jump point itselfηt0 is given
by

1
2
(η+ + η−) − ηt0 =

∑

i even

σi = σeven.(4.2)
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It follows that the values of the functiont 7→ exp(iπηt/2) for a generict
always lie on a fixed straight line through the origin and it changes the sign
(the half line), while passing across a jump pointt = t0, if and only if the
signatureσodd is odd.

Note that the absolute torsion is continuous, real and nonzero in the in-
tervals between the jump points (where there are no homology changes) and
so the sign ofT (Ft) is constant between the jump points. Hence, Theorem
2.1 is equivalent to the inequality

T (Ft0+δ)
T (Ft0−δ)

· exp(iπσodd) > 0(4.3)

for δ > 0 small enough.

4.2. Singularity of the torsion

Here we will use the theorem of [2], which describes the singularity of the
torsion.

Let t0 ∈ S ⊂ (a, b) be a fixed point, where the homology of flat bundle
H∗(X;Ft) is nontrivial. It is clear that as a function oft the absolute torsion
T (Ft) has the form

T (Ft) = (t − t0)ν · f(t), ν ∈ Z,(4.4)

wheref(t) is real analytic and nonzero in a neighborhood oft0; one obtains
(4.4) directly from the definition of torsion in [5], [6]. The exponentν
describes the singularity of the torsion att = t0 (the order of zero or pole).
For our purposes in this paper it is enough to know the exponentν only
modulo 2, sincethe absolute torsionT (Ft) changes sign whilet passes
acrosst = t0 if and only ifν is odd.

It follows that in order to prove (4.3) we need to show that

ν ≡ σodd mod 2(4.5)

We will prove (4.5) using Theorem 10.2 of [5] and Theorem 5.3 of [2].
Since Theorem 10.2 of [5] operates with the cohomological torsion and real
vector bundles, we need to adjust our notations. Let

τ•
R(Ft) = τ•(X, ξ;F R

t ) ∈ det H∗(X;F R
t ) ' R, t 6= t0,

be the cohomological torsion (cf. [5], Sect. 9) of flat vector bundleFt con-
sidered as a real vector bundle. Hereξ ∈ Eul(X) denotes acanonical
Euler structure, cf. [6], Sect. 3; we also assume thatX is supplied withthe
canonical homological orientation, cf. [6], §3.
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Let

τ•
C(Ft) = τ•(X, ξ;F C

t ) ∈ det H∗(X;Ft) ' C, t 6= t0,

be the (complex) cohomological torsion ofFt (cf. [5], Sect. 9). By formula
(9-3) in [5] we have

|τ•
C(Ft)| = |T (Ft)|−1 = |t − t0|−ν · |f(t)|−1.

By Theorem 10.2 of [5] (cf. also the equation (10-3) in [5]), we obtain
that fort 6= t0, the analytic torsionρ(F R

t ) of the flat bundleF R
t equals

ρ(F R
t ) = |τ•

R(Ft)|.(4.6)

Since clearly

τ•
R(Ft) = |τ•

C(Ft)|2, ρ(F R
t ) = ρ(Ft)2,

we obtain that

ρ(Ft) = |τ•
C(Ft)| = |t − t0|−ν · |f(t)|−1, f(t0) 6= 0.

Now we may apply Theorem 5.3 of [2] in order to compute the exponent
ν. According to this Theorem,ν equals the Euler number of the deformation

χ =
m∑

i=0

(−1)i dimC Ti,(4.7)

cf. [2].
Recall the notation used in the last formula. LetO = Ot0 denote the

ring of germs att = t0 of real analytic curvesf : (t0 − ε, t0 + ε) →
C. Addition and multiplication are given by pointwise operations.O is a
discrete valuation ring; its maximal idealm ⊂ O coincides with the set of
all functions vanishing att = t0. The generator of the maximal ideal is the
germ of the functionf(t) = t − t0.

Given an analytic family of flat connections∇t (wheret ∈ (a, b)) on a
Hermitian vector bundleF , one constructs (following [2], [4]) a single local
systemOF of freeO-modules of rankdimF over X. To describe it, we
denote byΠt(γ) : Fp → Fp the parallel transport inF with respect to the
flat connection∇t along the loopγ : [0, 1] → X, wherep = γ(0) = γ(1)
andFp denotes the fiber abovep. The bundleOF as a set consists of germs
of analytic curvesg : (t0−ε′, t0+ε′) → F, which are vertical (i.e. belong to
a single fiber). The parallel transport of the bundleOF along a closed loop
γ : [0, 1] → X, wherep = γ(0) = γ(1) is defined asΠ(γ) : OFp → OFp,
where forg ∈ OFp

Π(γ)(g)(t) = Πt(γ)(g(t)),
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wheret ∈ (t0 − ε′, t0 + ε′).
Consider the cohomologyH∗(X;OF ) with coefficients in the local

systemOF . Since the ringO is a discrete valuation ring, any cohomology
moduleH i(X;OF ) is a direct sum of its torsion submodule and a free
module. Our assumptions (acyclicity of the flat bundleFt for generict) imply
that the free part of the homology ofH i(X;OF ) is trivial (cf. Theorem 2.8
in [2]). We will denote byTi theO-torsion submodule ofH i(X;OF ). Note
that eachTi is finite dimensional as aC-vector space.

4.3. End of the proof of Theorem 2.1

Let M denote the field of fractions ofO. Elementsf ∈ M could be viewed
as germs att = t0 of meromorphic curves(t − t0)ν · f(t), whereν ∈ Z,
f ∈ O, f(t0) 6= 0.

In [4], Sect. 1,a linking formon the middle dimensional torsion submod-
ule

Tr ⊗ Tr → M/O, m = 2r − 1(4.8)

was constructed. The signaturesσ1, σ2, . . . (which appear in (4.1) and (4.2))
are derived from the linking form (4.8). From the construction of the signa-
turesσi in Sect. 2 of [4] we easily observe

dimC Tr ≡ σodd mod 2.(4.9)

By the Poincaŕe duality we havedimC Ti = dimC T2r−i (cf. [2], Prop.
7.6). Hence we obtain combining (4.7) and (4.9)

ν = χ ≡ dimTr ≡ σodd mod 2,

which finishes the proof. ut

4.4. Proof of Theorem 3.1

Let us prove the first statement. We claim that the quantity

〈ArgFt
∪ L(X), [X]〉(4.10)

defines a real number modulo2Z. To show this we observe that the part of
the Hirzebruch formL(X) of degreem−1 represents anevencohomology
class (i.e. a class in2 · Hm−1(X; Z)). This follows from our assumptions
that the Stiefel - Whitney classwm−1(X) vanishes and also thatH1(X) has
no 2-torsion. Indeed, any cyclez ∈ Hm−1(X) can be represented by an
oriented codimension one submanifoldMz ⊂ X and the value〈L(X), z〉
equals the signature ofMz. To show that the signature ofMz is always
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even, it is enough to show that the Euler characteristic ofMz is even. But
χ(Mz) ≡ 〈wm−1(X), z〉 ≡ 0 mod 2, which is a part of our data.

This shows that the class1/2 · Lm−1(X) ∈ Hm−1(X; Z) exists and is
unique, since we assume thatHm−1(X; Z) ' H1(X) has no 2-torsion.

Therefore, we obtain that the quantity

exp(πi〈ArgF ∪ L(X), [X]〉) = exp(2πi〈ArgF ∪ (1/2 · L(X)), [X]〉)
is well defined, since the cup-productArgF ∪(1/2 ·L(X)) is a well defined
cohomology class inHm(X; R/Z). The fact that (3.1) depends continuously
on t is now obvious. This proves the first statement of Theorem 3.1.

Consider the quantity

η̂t = ηt + 2〈ArgFt
∪ L(X), [X]〉 ∈ R/4Z.(4.11)

Theorem 7.1 of [4] claims that̂ηt, as a function oft ∈ (a, b), is locally
constant. Hencêηt may have only jumps when parametert passes over the
finite subsetS ⊂ (a, b).

Let t0 ∈ S be one of the jump points. Definêη+ as the value of̂ηt0+δ

and definêη− as η̂t0−δ, whereδ > 0 is small enough. Then we have the
following jump formular:

η̂+ − η̂− = 2σodd mod 4.(4.12)

Indeed, as we showed above the quantity (4.10) is determined inR/2Z, and
hence the second summand in (4.12) has indeterminacy in4Z. Now (4.12)
follows from (4.1).

In order to show thatsign(T (Ft)) · exp(πiη̂t/2) is independent oft, it
is enough (because of (4.12)) to check the inequality (4.3).

However the proof of (4.3), given in the casem ≡ 3 mod 4, works as
well (with no changes) in the casem ≡ 1 mod 4. ut

4.5. Proof of Theorem 3.2

It is identical to the proof of Theorem 2.1 if one observes that the eta-invariant
ηt, considered moduloZ, is constant along paths ofSU -connections (as
follows from Theorem 7.1 of [4]); henceηt is constant between the jump
points.



Absolute torsion and eta-invariant 349

References

1. M. F. Atiyah, V.K. Patodi, I.M. Singer: Spectral asymmetry and Riemannian geometry,
Math. Proc. Cambridge Phil. Soc.77, 43–69 (1975);78, 405–432 (1975);79, 71–99
(1976).

2. M. Farber, Singularities of the analytic torsion, Journal of Diff. Geometry,41, 528–572
(1995).

3. M. Farber, J. Levine: A Topological Interpretation of the Atiyah-Patodi-Singer Invari-
ant, Contemporary Mathematics,164, 9–16 (1994).

4. M. Farber, J. Levine: Jumps of the eta-invariant, Math. Zeischrift,223, 197–246 (1996).
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