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Abstract. In this paper we de®ne a PoincareÂ-Reidemeister scalar product on the
determinant line of the cohomology of any ¯at vector bundle over a closed orientable odd-
dimensional manifold. It is a combinatorial ``torsion-type'' invariant which re®nes the PR-
metric introduced in [Fa] and contains an additional sign or phase information. We com-
pute the PR-scalar product in terms of the torsions of Euler structures, introduced in [T1],
[T2]. We show that the sign of our PR-scalar product is determined by the Stiefel-Whitney
classes and the semi-characteristic of the manifold. As an application, we compute the Ray-
Singer analytic torsion via the torsions of Euler structures. Another application: a compu-
tation of the twisted semi-characteristic in terms of the Stiefel-Whitney classes.

§1. Introduction

Let F be a ¯at real vector bundle over a closed odd-dimensional smooth manifold
X. Ray and Singer [RS] used the Laplace operators and their zeta-function regularized
determinants to de®ne a norm on the determinant line of the cohomology det H ��X ; F�.
Ray and Singer showed that their norm is topologically invariant. They conjectured that
for bundles with orthogonal structure group, this norm coincides with the Reidemeiter
norm on det H ��X ; F�, de®ned using a piecewise linear triangulation of X and the classical
Reidemeister-Franz torsion. This conjecture was proven by J. Cheeger and W. MuÈller in
their celebrated papers [C] and [Mu].

Although the topologically invariant Ray-Singer norm is de®ned for an arbitrary

¯at real vector bundle F over X, the combinatorial counterpart, the Reidemeister norm,
was known only for bundles with unimodular structure group. In 1994 W. MuÈller [Mu1]
extended the result of [C], [Mu] to all unimodular F.
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In [Fa], it was shown how to construct combinatorially a norm on det H ��X ; F� for
an arbitrary ¯at real vector bundle F without the unimodularity assumption. The con-
struction of [Fa] uses a combination of the Reidemeister torsion with the PoincareÂ duality;
the resulting norm on det H ��X ; F� is called the PoincareÂ-Reidemeister norm. It was proven
in [Fa], that this norm coincides with the Ray-Singer norm for any F. The proof of this
theorem uses fundamental results of J.-M. Bismut and W. Zhang [BZ].

A di¨erent approach to the Reidemeister torsions was introduced in [T1]±[T3]. It is
observed in these papers that the indeterminacy of the Reidemeister torsion is controlled by
additional structures on the manifold X, the homology orientations and the Euler structures.
A homology orientation is an orientation of the determinant line of real homologies
det H��X ; R�. An Euler structure on X can be described in terms of an Euler chain on a PL-
triangulation of X; it may also be described via vector ®elds or via Spinc-structures (for 3-
manifolds), see loc. cit. The constructions of [T1], [T2] yield torsions of Euler structures on
X which re®ne the usual Reidemeister torsions.

The initial goal of this research was to ®nd a relation between the approaches of [Fa]
and [T1], [T2].

In this paper we de®ne the PoincareÂ-Reidemeister scalar product on det H ��X ; F�,
which determines the PR-norm de®ned in [Fa] and contains an additional sign or phase
information. We show that the sign of the PR-scalar product is determined by the Stiefel-
Whitney classes of F and X and the semi-characteristic of X. The main result of this paper
computes the PoincareÂ-Reidemeister scalar product in terms of the torsions of Euler struc-
tures on X. More precisely, in the case of even-dimensional F, we give a formula expressing
the PR-scalar product applied to the torsion of an Euler structure x on X in terms of
a characteristic homology class c�x� A H1�X� associated to x. For odd-dimensional F, we
establish a similar formula with the only di¨erence that the torsion of x depends also on a
choice of a homology orientation of X. Using these formulas and the main result of [Fa] we
compute the analytic Ray-Singer torsion in terms of the Euler structures.

As an application, we compute the residue mod 2 of the twisted semi-characteristic
of X with coe½cients in a ¯at vector bundle with orthogonal structure group. We give a
formula for this residue in terms of the Stiefel-Whitney classes. (For related formulas, see
[LMP].)

In order to prove our results we develop general algebraic tools, allowing to treat
the sign anomalies, which appear in the formalism of the determinant lines. In [T1], the
canonical isomorphism between the determinant lines of a chain complex and its homology
was modi®ed by introducing an additional sign factor. In this paper we introduce more sign
factors in the natural maps between the determinant lines and we show that these sign
choices are compatible.

§2. Determinant lines of chain complexes

In this section we recall the canonical isomorphism relating the determinant line of a
chain complex and the determinant line of its homology. Our formula �cf. �2.2�� contains a
sign re®nement, suggested in [T1], of the standard formula [M2]. We will introduce also
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some sign involving factors in the natural commutativity and duality maps between the
determinant lines. We will establish a few technical results concerning the compatibility of
these sign involving choices.

2.1. Determinant lines. We shall denote by k a ®xed ground ®eld of characteristic
zero. The most important special cases are k � R and k � C.

If V is a ®nite dimensional vector space over k, the determinant line of V is denoted by
det V and is de®ned as the top exterior power of V, i.e., LnV , where n � dim V . The dual
line Homk�LnV ; k� is denoted by �det V�ÿ1. This notation is justi®ed by the obvious
equality det V n �det V�ÿ1 � k. If V � 0 then by de®nition �det V�ÿ1 � det V � k.

For a ®nite dimensional graded vector space V � V0 lV1 l � � �lVm, its determi-

nant line det V is de®ned as the tensor product

det V � det V0 n �det V1�ÿ1 n det V2 n � � �n �det Vm��ÿ1�m

:

2.2. Torsion of a chain complex. Let C be a ®nite dimensional chain complex

0! Cm !d Cmÿ1 !d � � � !d C1 !d C0 ! 0

over k. In the theory of torsions a crucial role is played by a canonical isomorphism

jC : det C ! det H��C�;�2:1�

where both C and H��C� are considered as graded vector spaces. The de®nition of the
mapping jC is as follows. Choose for each q � 0; . . . ;m non-zero elements cq A det Cq and

hq A det Hq�C�. Set c � c0 n cÿ1
1 n c2 n � � �n c

�ÿ1�m

m A det C and

h � h0 n hÿ1
1 n h2 n � � �n h�ÿ1�m

m A det H��C�;

where ÿ1 in the exponent denotes the dual functional; for example, cÿ1
1 is a k-linear map-

ping det C1 ! k such that cÿ1
1 �c1� � 1. We de®ne jC by

jC�c� � �ÿ1�N�C��c : h�h;�2:2�

where N�C� is a residue modulo 2 de®ned below and �c : h� is a nonzero element of k,
de®ned by

�c : h� � Qm
q�0

�d�bq�1�ĥqbq=ĉq��ÿ1�q�1

:�2:3�

Here bq is a sequence of vectors of Cq whose image d�bq� under the boundary homo-
morphism d : Cq ! Cqÿ1 is a basis of Im d; the symbol ĥq denotes a sequence of cycles in
Cq such that the wedge product of their homology classes equals hq; the symbol ĉq denotes

a basis of Cq whose wedge product equals cq; the number �d�bq�1�ĥqbq=ĉq� is the deter-
minant of the matrix transforming ĉq into the basis d�bq�1�ĥqbq of Cq. The residue N�C� is
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de®ned by

N�C� � Pm
q�0

aq�C�bq�C� �mod 2�;�2:4�

where

aq�C� �
Pq
j�0

dim Cj �mod 2�; bq�C� �
Pq
j�0

dim Hj�C� �mod 2�:�2:5�

We shall deal with chain complexes with zero Euler characteristic so that the residues (2.5)
vanish for big q.

It is clear that �c : h� is independent of the choice of bq's and also that the isomor-
phism jC is independent of the choice of hq's and cq's.

Formula (2.2) involves the sign re®nement of the standard formula suggested in
[T1]. In the next subsections we introduce similar signs in other natural maps arising in this
setting. We shall show that these signs are compatible with isomorphism (2.1) and with
each other. For more information on torsions, see [M2], [BGS], and [Fr].

2.3. The fusion homomorphism. For two ®nite-dimensional graded vector spaces
V � V0 lV1 l � � �lVm and W �W0 lW1 l � � �lWm, we de®ne a canonical isomor-
phism

mV ;W : det V n det W ! det�V lW �;�2:6�

by

mV ;W � �ÿ1�M�V ;W�N
q

m�ÿ1�q

q ;�2:7�

where

m�1
q � mq : det Vq n det Wq ! det�Vq lWq�

is the isomorphism de®ned by

�v15v25� � �5vk�n �w15w25� � �5wl� 7! v15v25� � �5vl5w15w25� � �5wk;

with k � dim Vq; l � dim Wq, the isomorphism

mÿ1
q : �det Vq�ÿ1 n �det Wq�ÿ1 ! det�Vq lWq�ÿ1

is the transpose of the inverse of mq,

M�V ;W� � Pm
q�1

aqÿ1�V�aq�W� A Z=2Z;�2:8�
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with

aq�V � �
Pq
j�0

dim Vj �mod 2� A Z=2Z; q � 0; 1; . . . ;m;

and aq�W� A Z=2Z de®ned similarly.

We will call (2.6) the fusion homomorphism.

2.4. Lemma. Let

� �0! Cm ! Cmÿ1 ! � � � ! C0 ! 0�
and

C 0 � �0! C 0m ! C 0mÿ1 ! � � � ! C 00 ! 0�

be two ®nite dimensional chain complexes over k. Then the following diagram, involving the

canonical isomorphisms (2.1) and (2.6), is commutative:

det C n det C 0 �����!jC njC 0
det H��C�n det H��C 0�

mC;C 0

????y
????ymH��C�;H��C 0�

det�C lC 0� �����!jC lC 0
det H��C lC 0� � det

ÿ
H��C�lH��C 0�

�
:

�2:9�

Proof. Fix non-zero cq A det Cq, hq A det Hq and c 0q A det C 0q, h 0q A det H 0
q, where

Hq � Hq�C� and H 0
q � Hq�C 0�. We obtain non-zero elements

c � c0 n cÿ1
1 n � � �n c

�ÿ1�m

m A det C and h � h0 n hÿ1
1 n � � �n h

�ÿ1�m

m A det H�;

and similarly c 0 A det C 0 and h 0 A det H 0
�. Set

cc 0 � �c05c 00�n �c15c 01�ÿ1 n � � �n �cm5c 0m��ÿ1�m

A det�C lC 0�

and

hh 0 � �h05h 00�n �h15h 01�ÿ1 n � � �n �hm5h 0m��ÿ1�m

A det�H�lH 0
��:

According to de®nitions,

mH�;H 0�

ÿ�jC n jC 0 ��cn c 0�� � �ÿ1�N�C��N�C 0��c : h��c 0 : h 0�mH��C�;H��C 0��hn h 0�
� �ÿ1�N�C��N�C 0��M�H�;H 0

���c : h��c 0 : h 0�hh 0:

Similarly,

�jClC 0mC;C 0 ��cn c 0� � �ÿ1�M�C;C 0�jClC 0 �cc 0� � �ÿ1�N�C lC 0��M�C;C 0��cc 0 : hh 0 �hh 0:
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To prove the lemma we should show that

�ÿ1�N�C��N�C 0��M�H�;H 0
���c : h��c 0 : h 0� � �ÿ1�N�ClC 0��M�C;C 0��cc 0 : hh 0�:�2:10�

Let bq be a sequence of vectors of Cq whose image d�bq� under the boundary homo-
morphism d : Cq ! Cqÿ1 is a basis of Im d. Similarly choose a sequence b 0q HC 0q for each q.
By de®nition,

�cc 0 : hh 0�
�c : h��c 0 : h 0� �

Qm
q�0

��dbq�1db 0q�1ĥqĥ 0qbqb 0q�=cq�
��dbq�1ĥqbq�=cq���db 0q�1ĥ 0qb 0q�=cq�

 !�ÿ1�q�1

:

The q-th factor on the right-hand side is equal to

�ÿ1�card�b 0
q�1
�dim Hq�card�bq�dim H 0

q�card�bq�card�b 0
q�1
�:�2:11�

Since

card�bq�1�1 aq�C� � bq�C� �mod 2�; dim Hq 1 bq�C� � bqÿ1�C� �mod 2�

and similarly for C 0, we obtain that the product of the signs (2.11) equals �ÿ1�y, where

y � bm�C�bm�C 0� �
Pm
q�0

fbq�C�aq�C 0� � bqÿ1�C�bq�C 0�

� aqÿ1�C�aq�C 0� � aqÿ1�C�bqÿ1�C 0�g:

It is easy to check that

y1N�C� �N�C 0� �M�C;C 0� ÿN�C lC 0� ÿM
ÿ
H��C�;H��C 0�

� �mod 2�:

This implies (2.10) and the lemma. r

2.5. Duality operator D. Let V � V0 lV1 l � � �lVm be a ®nite dimensional
graded vector space over k with odd m. We de®ne the dual graded vector space over k
by V 0 � V 00 lV 01 l � � �lV 0m where V 0q � �Vmÿq�� � Homk�Vmÿq; k�. We de®ne a duality

operator

D � DV : det V ! det V 0

as follows. Let vq A det Vq be a volume element determined by a basis of Vq and let
v 0mÿq A det V 0mÿq be the volume element determined by the dual basis of V 0mÿq, for
q � 0; 1; . . . ;m. Then

D�v0 n vÿ1
1 n v2 n � � �n vÿ1

m � � �ÿ1�s�V�v 00 n �v 01�ÿ1 n v 02 n � � �n �v 0m�ÿ1;

where the residue s�V� A Z=2Z is given by
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s�V� � Pm
q�1

aqÿ1�V�aq�V� �
P�mÿ1�=2

q�0

a2q�V�:

Recall that aq�V� �
Pq
j�0

dim Vj �mod 2�. It is easy to check that D � DV does not depend on

the choice of vq A det Vq �q � 0; 1; . . . ;m�.

In the next lemma we shall use the notion of a dual chain complex. For a
chain complex C � �0! Cm ! Cmÿ1 ! � � � ! C0 ! 0� over k the dual chain complex
C 0 � �0! C 0m ! C 0mÿ1 ! � � � ! C 00 ! 0� is de®ned by C 0q � �Cmÿq��. The boundary
homomorphism C 0q�1 ! C 0q is de®ned to be �ÿ1�mÿqd �mÿqÿ1 where dmÿqÿ1 is the boundary

homomorphism Cmÿq ! Cmÿqÿ1. For odd m, the construction above yields a duality
operator DC : det C ! det C 0.

2.6. Lemma. Let C � �0! Cm ! Cmÿ1 ! � � � ! C0 ! 0� be a ®nite dimensional

chain complex with odd m and with w�C�1 0 mod 2, and let

C 0 � �0! C 0m ! C 0mÿ1 ! � � � ! C 00 ! 0�

be the dual chain complex. Then the following diagram, involving the canonical isomorphisms
(2.1), is commutative:

det C ���!DC
det C 0

jC

???y ???yjC 0

det H��C� ���!DH��C�
det H��C 0�:

�2:12�

Note that the duality between C and C 0 induces a duality between the graded vector
spaces H��C� and H��C 0� so that we can consider the duality operator DH��C�.

Proof. Lemma 2.6 is a sign-re®ned version of the standard duality for torsions of
chain complexes (see [M1]). For the computation of signs, see Lemma 7 in the Appendix to
[T1]. r

2.7. Lemma. (1) Let V � V0 l � � �lVm and W �W0 l � � �lWm be ®nite-
dimensional graded k-vector spaces such that am�V� � am�W� � 0 A Z=2Z. Then the

following diagram is commutative:

det V n det W ���!mV ;W
det�V lW�

S

???y ???ydet�s�

det W n det V ���!mW ;V
det�W lV�:

�2:13�

Here s denotes the natural map V lW !W lV interchanging the summands and S
interchanges the factors vnw 7! wn v.

(2) For V and W as in (1) with odd m, the following diagram involving the dual graded
vector spaces V 0 and W 0 and the canonical isomorphisms D and m is commutative:
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det V n det W �����!DV nDW
det V 0n det W 0

m

????y
????ym

det�V lW� �����!DVlW
det�V 0lW 0�:

�2:14�

(3) For any triple of ®nite-dimensional graded vector spaces U ;V ;W , the diagram

det U n det V n det W �����!mU ;V n 1
det�U lV�n det�W �

1nmV ;W

????y
????ymUlV ;W

det U n det�V lW� �����!mU ;VlW

det�U lV lW�

�2:15�

is commutative.

Proof. Statement (1) is equivalent to

M�V ;W� �M�W ;V� �P
q

�dim Vq��dim Wq�1 0 �mod 2�;

which follows easily.

Statement (2) follows from

M�V 0;W 0�1M�W ;V� �mod 2�

�using am�V� � am�W� � 0� and then

M�V ;W� �M�W ;V� � s�V lW� � s�V� � s�W� �mod 2�:

Statement (3) follows from the easy equality

M�U ;V� �M�U lV ;W� �M�V ;W � �M�U ;V lW�: r

§3. The Reidemeister torsion

In this section we discuss the classical construction of the Reidemeister torsion of a
¯at unimodular bundle. We view this torsion as an element of the determinant line of the
homology of the bundle. We show that the torsion has no indeterminacy in the case of an
even-dimensional bundle and has a sign indeterminacy in the case of an odd-dimensional
bundle.

3.1. Torsion of a unimodular ¯at vector bundle. Let F be a ¯at k-vector bundle over
a ®nite connected CW-space X. Recall a de®nition of the homology of X with coe½cients in
F. Orient all cells of X. For a cell a of X, denote by G�a;F� the vector space of ¯at sections
of F over a. �Clearly, dim G�a;F� � dim F :� The vector space of q-chains in X with values
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in F is de®ned by

Cq�X ; F� � L
dim a�q

G�a;F�:�3:1�

The boundary homomorphism Cq�X ; F� ! Cqÿ1�X ; F� is de®ned by restricting the ¯at
sections to the faces with the signs determined in the usual way by the orientations of the
cells. Denote the resulting chain complex by C � C��X ; F� and set H��X ; F� � H��C�. The
graded vector space H��X ; F� is a homotopy invariant of the pair �X ;F�.

Recall the Reidemeister-Franz construction of the torsion of �X ;F�. We consider
here only the case of unimodular F, for the general case, see Remark 3.4 and Section 6. The
bundle F is called unimodular, if its top exterior power Ldim F F is a trivial ¯at vector bundle.
The bundle F is unimodular i¨ it has a ¯at volume form, i.e., a linear volume form on each
®ber Fx; x A X invariant under the parallel transport along any path in X. Fix such a form
o. For every cell a of X choose a basis of G�a;F� of o-volume 1. The concatenation of
these bases over all q-dimensional cells gives a basis in Cq�X ; F� via (3.1). The wedge
product of the elements of this basis yields a non-zero element cq A det Cq�X ; F�. Set

t�X ; F� � jC�c0 n cÿ1
1 n c2 n � � �n c

�ÿ1�m

m � A det H��X ; F�

where m � dim X and jC is the isomorphism det C ! det H��X ; F� constructed in
Section 2.2. In particular, if H��X ; F� � 0, then det H��X ; F� � k and t�X ; F� A k is the
Reidemeister-Franz torsion of the pair �X ;F�.

The de®nition of t�X ; F� involves certain choices. Note ®rst that t�X ; F� does not
depend on the choice of o-volume 1 bases in fG�a;F�ga. If we replace o with ko for a non-
zero k A k, then the torsion t�X ; F� is multiplied by kÿw�X� where w is the Euler character-
istic. Another indeterminacy comes from orders and orientations of the cells. To apply
(3.1), we need to order the q-cells of X; a permutation in this order leads to multiplication
of t�X ; F� by �ÿ1�dim F . Finally, when we invert the orientation of a cell of X (used in the
de®nition of the boundary homomorphisms), the torsion t�X ; F� is also multiplied by
�ÿ1�dim F . We sum up this discussion in the following lemma.

3.2. Lemma. Let F be a unimodular ¯at vector bundle over a ®nite connected CW-
space X with w�X � � 0. The element t�X ; F� A det H��X ; F� is well de®ned up to multi-

plication by �ÿ1�dim F . In particular, if F is even-dimensional, then t�X ; F� is a well de®ned

element of det H��X ; F�.

A fundamental property of the torsion is its combinatorial invariance which allows
to consider the torsions of ¯at vector bundles over PL-manifolds. We have the following
version of the combinatorial invariance.

3.3. Lemma. Under the conditions of Lemma 3.2, the torsion t�X ; F� with indeter-

minacy given in Lemma 3.2 is invariant under cell subdivisions of X.

Proof. The standard arguments imply the combinatorial invariance of t�X ; F�
modulo G1. This yields the lemma in the case of odd-dimensional F. Let us prove the
lemma for even-dimensional F. (We follow the argument given in [T1], Section 3.2.1.) Since
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a cellular subdivision is a simple homotopy equivalence, it is enough to prove that t�X ; F�
is invariant under simple homotopy equivalences. It is well known that any simple homo-
topy equivalence may be presented as a composition of elementary cellular expansions
and contractions. Therefore it su½ces to consider one such transformation. Assume that a
CW-space X 0 is obtained from X by attaching a closed j-dimensional ball D along a cellular
mapping of a closed � j ÿ 1�-dimensional ball D 0H qD into X. The cellular structure in
X 0 is obtained from the one in X by adding two open cells a � Int D and b � qDnD 0.
The ¯at vector bundle F over X extends to a ¯at vector bundle F 0 over X 0. Clearly,
H��X ; F� � H��X 0; F 0� and we should prove that t�X ; F� � t�X 0; F 0�.

We orient and numerate the cells of X 0 (in each dimension) so that the newly
attached cells a; b appear at the very end. Denote the chain complex C��X 0; F 0� and its
subcomplex C��X ; F� by C 0 and C, respectively. It is clear that C 0q � Cq for q3 j; j ÿ 1
and C 0j � Cj lG�a;F 0�, C 0jÿ1 � Cjÿ1 lG�b;F 0�. We choose a ¯at volume form on F 0 and
volume 1 bases in G�a;F 0�, G�b;F 0�, and Cq, as in Section 3.1. Denote these bases by A, B,
and ĉq, respectively. Note that card A � card B � dim F . Choose for each q a non-zero
element hq A det Hq�C� � det Hq�C 0�. Choose a sequence of vectors bq in Cq whose image
under the boundary homomorphism dqÿ1 : Cq ! Cqÿ1 is a basis of Im dqÿ1. It is easy to
see that the image of the boundary homomorphism d 0qÿ1 : C 0q ! C 0qÿ1 equals to Im dqÿ1 for

q3 j and that djÿ1�bj�; d 0jÿ1�A� is a basis of Im d 0jÿ1. Note that the residues N�C�, N�C 0�
introduced in Section 2.2 are both equal to 0. Now, it follows from de®nitions that

t�X 0; F 0�
t�X ; F� �

�d j�bj�1�ĥjbjA=ĉjA�
�d j�bj�1�ĥjbj=ĉj�

 !�ÿ1� j

� �djÿ1�b j�d 0jÿ1�A�ĥjÿ1bjÿ1=ĉjÿ1B�
�djÿ1�b j�ĥjÿ1bjÿ1=ĉjÿ1�

 !�ÿ1� jÿ1

:

It is obvious that the ®rst factor on the right-hand side equals 1. The second factor on
the right-hand side equals �ÿ1�rser where r � card A � dim F , s � card ĥjÿ1 � card bjÿ1,
and e is the incidence sign of the oriented cells a; b. Since r is even, we obtain
t�X 0; F 0� � t�X ; F�. r

3.4. Remark. It is easy to generalize the de®nition of t�X ; F� to the case of a non-
unimodular ¯at vector bundle F over a ®nite connected CW-space X with w�X � � 0.

This gives an element t�X ; F� A det H��X ; F� de®ned up to multiplication by �ÿ1�dim F and
detF

ÿ
H1�X�

�
H k� where detF : H1�X� ! k� is the determinant of the monodromy of

F. We shall consider a more subtle torsion in Section 6.

§4. The PoincareÂ-Reidemeister scalar product

In this section we introduce the PoincareÂ-Reidemeister scalar product on the
determinant line of the homology of a ¯at vector bundle over a closed orientable odd-
dimensional PL-manifold. It determines the PoincareÂ-Reidemeister metric, introduced in
[Fa], and carries an additional information in the form of a phase (if k � C) or in the form
of a sign (if k � R).

4.1. The dual ¯at vector bundle. Let F be a ¯at k-vector bundle over a ®nite con-
nected CW-space X with w�X� � 0. Recall the dual ¯at vector bundle F �. The ®ber of F �

over a point x A X is the dual vector space F �x � Homk�Fx; k�. For a path g : �0; 1� ! X ,
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the parallel transport F �x ! F �y along g is the transpose of the parallel transport Fy ! Fx

along the inverse path gÿ1.

It is clear that for any loop g in X we have detF �g� � detF ��g� � 1 and
therefore F lF � is a unimodular ¯at vector bundle. Since it is also even-dimensional, we
can apply the construction of Section 3 to obtain a well de®ned non-zero element
t�X ; F lF �� A det H��X ; F lF ��.

4.2. The duality operator. Let X be a closed connected oriented piecewise linear

manifold of odd dimension m. Let F be a ¯at k-vector bundle over X. The standard homo-
logical intersection pairing

Hq�X ; F ��nHmÿq�X ; F� ! k�4:1�

allows us to identify the dual of Hmÿq�X ; F� with Hq�X ; F ��. Applying the construction of

Section 2.5 to the graded vector space
Lm
q�0

Hq�X ; F� we obtain a canonical isomorphism

D : det H��X ; F� ! det H��X ; F ��:�4:2�

By de®nition, D � �ÿ1�s�F�Nm
q�0

cq where the residue s�F� A Z=2Z is given by

s�F� � Pm
q�0

bqÿ1bq �
P�mÿ1�=2

q�0

b2q �mod 2�; bq �
Pq
q�0

dim Hq�X ; F�

and cq with even q denotes the isomorphism

det Hq�X ; F� ! ÿ
det Hmÿq�X ; F ���ÿ1�4:3�

induced by the intersection form, while cq with odd q denotes the isomorphism

cq :
ÿ
det Hq�X ; F��ÿ1! det Hmÿq�X ; F ��

inverse to the transpose of (4.3).

It is easy to check that D does not depend on the choice of the orientation of X and
therefore can be considered for orientable manifolds. �Hint: bm 1 w�X � � 0 �mod 2�:� As
an exercise, the reader may check that s�F� � s�F �� (we shall not use it).

4.3. The PoincareÂ-Reidemeister pairing. Let F be a ¯at k-vector bundle over a
closed connected orientable odd-dimensional PL-manifold X. Denote by m the canonical
fusion isomorphism

det H��X ; F�n det H��X ; F �� ! det
ÿ
H��X ; F�lH��X ; F ��� � det H��X ; F lF ��

de®ned in Section 2.3. Consider the bilinear pairing

h ; iPR : det H��X ; F� � det H��X ;F� ! k;�4:4�
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given by

ha; biPR � m
ÿ
anD�b��=t�X ; F lF �� A k;

where a; b A det H��X ; F� and D is the isomorphism (4.2). In other words, ha; biPR is an
element of k such that

m
ÿ
anD�b�� � ha; biPRt�X ; F lF ��:

The pairing (4.4) is called the PoincareÂ-Reidemeister scalar product.

The PoincareÂ-Reidemeister scalar product determines the PoincareÂ-Reidemeister

metric (or norm) on the determinant line det H��X ; F�, which was introduced in [Fa]. It is
given by

a 7! ��������������������jha; aiPRj
p

; a A det H��X ; F�

(the positive square root of the absolute value of ha; aiPR). The PR-scalar product contains
an additional phase or sign information.

In the sequel we shall compute the PoincareÂ-Reidemeister scalar product in terms of
Euler structures and their torsions. As an application, we describe when this scalar product
is positive de®nite in terms of the Stiefel-Whitney classes w1�F� A H 1�X ;Z=2Z� and
wmÿ1�X� A H mÿ1�X ;Z=2Z�. Namely, we shall prove the following theorem.

4.4. Theorem. Let F be a ¯at R-vector bundle over a closed connected orientable

PL-manifold X of odd dimension m. If m1 3 �mod 4� then the PoincareÂ-Reidemeister
scalar product on det H��X ; F� is positive de®nite. If m1 1 �mod 4�, then the PoincareÂ-

Reidemeister scalar product on det H��X ; F� is positive de®nite if and only if

hw1�F�Wwmÿ1�X �; �X �i � sw�X� � dim F �mod 2�;�4:5�

where sw�X� is the semi-characteristic of X, de®ned by

sw�X� � P�mÿ1�=2

i�0

dim H2i�X ; R�:

Theorem 4.4 implies that the PoincareÂ-Reidemeister scalar product is negative de®nite
if and only if m1 1�mod 4� and

hw1�F�Wwmÿ1�X �; �X �i � sw�X� � dim F � 1 �mod 2�:

Theorem 4.4 will be proven in Section 6.

§5. Combinatorial Euler structures

In this section we recall combinatorial Euler structures on CW-spaces and PL-
manifolds following [T2].
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5.1. Euler structures on CW-spaces. Let X be a ®nite connected CW-space with
w�X� � 0. An Euler chain in X is a singular 1-chain x in X such that

dx �P
a

�ÿ1�jajpa�5:1�

where a runs over all cells of X and pa is a point in a; the symbol jaj denotes the dimension
of a. The vanishing of the Euler characteristic guarantees the existence of Euler chains. An
Euler structure on X is an equivalence class of Euler chains with respect to an equivalence
relation which we now describe.

Suppose that x and h are two Euler chains in X. Additionally to (5.1) we have

dh �P
a

�ÿ1�jajqa; where qa A a:

For each cell a choose a path ga in a joining pa to qa. Then the chain

xÿ h�P
a

�ÿ1�jajga

is a 1-cycle; we denote by d�x; h� its homology class in H1�X� � H1�X ; Z�. The class d�x; h�
is clearly independent of the choice of the paths fgaga. We say that the Euler chains x and h
are equivalent if d�x; h� � 0. The set of equivalence classes (i.e., the set of Euler structures
on X ) is denoted by Eul�X�. Sometimes we shall denote an Euler structure and a repre-
senting it Euler chain by the same letter.

It is clear that H1�X� acts on the set Eul�X�: a 1-cycle h acts on a Euler chain x giving
another Euler chain h� x. This action of H1�X � on Eul�X � is free and transitive. We shall
use multiplicative notation both for this action and for the group operation in H1�X�.

Suppose now that X 0 is a cellular subdivision of X. Then there is a canonical bijection

sX ;X 0 : Eul�X� ! Eul�X 0�:

It is de®ned as follows. Let x be an Euler chain in X so that (5.1) holds. Every cell b of X 0 is
contained in a unique cell a of X. Choose a path gb in a leading from the point pa to a

Figure 1. Path ga
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certain point in b. Set

x 0 � x�P
b

�ÿ1�jbjgb

where b runs over all cells of X 0. It is easy to check that x 0 is an Euler chain in X 0.
The correspondence x 7! x 0 determines a map sX ;X 0 : Eul�X � ! Eul�X 0�. It is H1�X�-
equivariant and therefore bijective.

5.2. Euler structures on PL-manifolds. Let X be a closed connected PL-manifold
with w�X� � 0. Each piecewise linear triangulation r of X makes X a CW-space and allows
us to consider the H1�X�-set Eul�X ; r�. For a smaller triangulation r 0 we have the equi-
variant bijection

sr;r 0 : Eul�X ; r� ! Eul�X ; r 0�:�5:2�

These sets and bijections form an inductive system whose inductive limit

Eul�X � � lim
r

Eul�X ; r�

is the set of Euler structures on X. The group H1�X� acts on Eul�X � freely and transitively.

For each Euler structure x on X we de®ne its characteristic class c�x� A H1�X �
following [T2], Section 5.3 and Appendix B. Choose a PL-triangulation r of X. Let W be
the 1-chain in X de®ned by

W � P
a0<a1 A r

�ÿ1�ja0j�ja1jha0; a1i;

where a1 runs over all simplices of r, a0 runs over all proper faces of a1, and ha0; a1i is a
path in a1 going from the barycenter a0 of a0 to the barycenter a1 of a1. It is easy to check
(see [HT]) that

qW � ÿ1ÿ �ÿ1�m� P
a A r

�ÿ1�jaja

Figure 2. a; b and gb
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where m � dim X . Now, any Euler structure on X can be presented by an Euler chain x in
�X ; r� such that qx �P

a

�ÿ1�jaja. It is clear that
ÿ
1ÿ �ÿ1�m�xÿW is a 1-cycle. Denote its

homology class in H1�X� by c�x�. It follows from [T2], Lemma B.2.1, that the mapping
c : Eul�X ; r� ! H1�X � commutes with the subdivision isomorphisms (5.2), i.e., c � sr;r 0 � c.
In this way, we obtain a mapping c : Eul�X � ! H1�X �.

Note a few easy properties of the characteristic class c. If m � dim X is even, then
c�x� does not depend on x. If m is odd, then (in multiplicative notation)

c�hx� � h2c�x��5:3�

for any x A Eul�X �; h A H1�X�. For odd m, the mod 2 reduction of c�x� is independent of x
and equals to the dual of the Stiefel-Whitney class wmÿ1�X � A H mÿ1�X ;Z=2Z�. This follows
from the fact that W�mod 2� represents the dual of wmÿ1�X�, see [HT].

Using the characteristic class c we de®ne a mapping x 7! x� : Eul�X� ! Eul�X� by

x� � ÿc�x��ÿ1
x:�5:4�

This mapping is an involution. It is easy to see this for odd m. Indeed, set h � c�x� and
observe that

x� � � ÿc�x���ÿ1
x� � ÿc�hÿ1x��ÿ1

hÿ1x � �hÿ2h�ÿ1hÿ1x � x:

For even m, the involutivity of � follows from the fact that the 1-cycle 2W is a boundary,
see [HT].

The involution � admits a simple geometric interpretation. Let r be a PL-
triangulation of X and let r� be the dual cellular decomposition of X. Let us represent
x A Eul�X� by an Euler chain in �X ; r� denoted by the same letter x. We can choose this
chain so that qx � P

a A r

�ÿ1�jaja. Since the barycenter a of a belongs to the dual �mÿ jaj�-
dimensional cell a�, the 1-chain �ÿ1�mx is an Euler chain in �X ; r��. It represents the Euler
structure x� A Eul�X� � Eul�X ; r�� (for a proof, see [T2], Lemma B.2.3).

a�

a

Figure 3. Simplex a and the dual cell a�
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§6. Re®ned torsions. Main theorem

In this section we recall the torsions of Euler structures essentially following [T1],
[T2]. The novelty here (compared to [T1], [T2]) is that we view the torsion as an element of
the determinant line of homology and also in a systematic treatment of the torsions of
¯at vector bundles. In this section we state our main theorem relating the torsion to the
PoincareÂ-Reidemeister scalar product.

We shall ®rst de®ne the torsions of Euler structures modulo �ÿ1�dim F ; in particular
this gives well-de®ned torsions, for even-dimensional F. For odd-dimensional F, we need to
involve additional data (a homology orientation of the base) to make the torsions of Euler
structures well-de®ned.

6.1. Torsion of Euler structures. Let F be a ¯at vector bundle over a ®nite connected
CW-space X with w�X � � 0. For each Euler structure x on X we de®ne a torsion t�X ; x; F�
which is an element of the determinant line det H��X ; F� de®ned up to multiplication by
�ÿ1�dim F .

As in Section 3 we consider the chain complex C � C��X ; F� and the associated
torsion isomorphism jC : det C ! det H��X ; F�. Set

t�X ; x; F� � jC�c0 n cÿ1
1 n c2 n � � �n c�ÿ1�m

m � A det H��X ; F��6:1�

where m � dim X and cq A det Cq�X ; F��q � 0; 1; . . . ;m� are non-zero elements de®ned
as follows. Fix a point x A X and a basis ex in the ®ber Fx. Let ba : �0; 1� ! X be a path
connecting x � ba�0� to a point ba�1� A a. The assumption w�X� � 0 implies that the 1-
chain

P
a

�ÿ1�jajba (where a runs over all cells of X ) is an Euler chain with boundaryP
a

�ÿ1�jajba�1�. We choose the paths fbaga so that this chain represents x. We apply the

parallel transport to ex along ba to obtain a basis in the ®ber Fba�1� and we extend it to a
basis of ¯at sections over a. The concatenation of these bases over all q-dimensional cells
gives a basis in Cq�X ; F� via (3.1). The wedge product of the elements of this basis yields
cq A det Cq�X ; F�.

Let us check the indeterminacy in the de®nition of t�X ; x; F�. A di¨erent choice of ex

transforms the bases in fG�a;F�ga via one and the same invertible matrix, A. The torsion

t�X ; x; F� is multiplied by �det A�w�X� � 1 and therefore does not depend on the choice of
ex. We can replace the path ba by its composition with a path in a beginning in the point
ba�1�. This does not change the basis of G�a;F� constructed above and therefore does not
change t�X ; x; F�. We can also multiply each ba by a loop ga : ��0; 1�; 0; 1� ! �X ; x; x� such
that the product

Q
a

�ÿ1�jajga is homologically trivial. When we replace ba by baga, the

element cjaj A det Cjaj�X ; F� is multiplied by detF ��ga�� where �ga� A H1�X � is the homo-
logical class of ga and detF : H1�X� ! k� is the determinant of the monodromy of F.

The torsion t�X ; x; F� is multiplied by
Q
a

detF �ga��ÿ1�jaj � 1 and therefore is not changed.

We can also simultaneously replace the paths fbag by their compositions fbagg where g is a
path in X leading from a point y A X to x. Choosing as ey the basis in Fy obtained from ex

by the parallel transport along gÿ1 we observe that the data y; ey; fbagg give rise to the
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same cq A det Cq�X ; F� �q � 0; 1; . . . ;m�. Therefore t�X ; x; F� does not depend on the
choice of the point x. Finally, as in Section 3.1, there is a sign indeterminacy �ÿ1�dim F

coming from orders and orientations of the cells. We conclude that t�X ; x; F� is de®ned up
to multiplication by �ÿ1�dim F . In particular, for even-dimensional F, the torsion t�X ; x; F�
is a well de®ned element of det H��X ; F�.

It follows directly from de®nitions that

t�X ; hx; F� � detF �h� � t�X ; x; F�;

for any h A H1�X� and x A Eul�X�. For unimodular F, we have t�X ; x; F� � t�X ; F� where
t�X ; F� is the torsion de®ned in Section 3.1.

It follows from [T2], Lemma 3.2.3 that the torsion t�X ; x; F� is invariant under
cellular subdivisions of X. More precisely, if X 0 is a cellular subdivision of X then

t�X ; x; F� � t
ÿ
X 0; sX ;X 0 �x�; F

��6:2�

where sX ;X 0 : Eul�X � ! Eul�X 0� is the canonical bijection constructed in Section 5.1.
�Note that both parts of �6.2� are de®ned up to multiplication by �ÿ1�dim F :� This fact
allows us to consider torsions of Euler structures on PL-manifolds.

6.2. Main Theorem (even-dimensional case). Let F be an even-dimensional ¯at k-
vector bundle over a closed connected orientable PL-manifold X of odd dimension. Then for
any Euler structure x A Eul�X �, we have

ht�X ; x; F�; t�X ; x; F�iPR � detF

ÿ
c�x��:�6:3�

Since the mod 2 reduction of the characteristic class c�x� is dual to the Stiefel-
Whitney class wmÿ1�X�, Theorem 6.2 implies Theorem 4.4 in the case of even-dimensional
F.

Using the equality x � c�x�x� we can reformulate formula (6.3) as follows:

ht�X ; x; F�; t�X ; x�; F�iPR � 1:

To give similar formulas for odd-dimensional bundles, we need a sign-determined
version of t�X ; x; F� discussed in the next subsection.

6.3. Sign-re®ned torsion. Let F be an odd-dimensional ¯at vector bundle over a
®nite connected CW-space X with w�X � � 0. Assume that X is endowed with an orienta-
tion h of the determinant line of real homologies det H��X ; R�. (Such X is said to
be homology oriented.) Following [T1], we introduce for each x A Eul�X � a torsion
t�X ; h; x; F� A det H��X ; F� which has no indeterminacy.

Let us orient and order the cells of X. Set

t0 � jC�c0 n cÿ1
1 n c2 n � � �n c

�ÿ1�m

m � A det H��X ; F�
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where m � dim X and cq A det Cq�X ; F� �q � 0; 1; . . . ;m� are non-zero elements determined
by x as in Section 6.1. Consider the cellular chain complex CR � C��X ; R� determined
by the trivial line bundle over X. Clearly, H��C� � H��X ; R�. The orientation and order of
the cells of X yield a basis of CR which determines an element c A det CR. Recall the
torsion isomorphism jCR

: det CR ! det H��X ; R�. Set t�X ; h; x; F� � t0 A det H��X ; F� if
the element jCR

�c� A det H��X ; R� de®nes the orientation h. In the opposite case set
t�X ; h; x; F� � ÿt0 A det H��X ; F�. It is easy to check that t�X ; h; x; F� has no indeter-
minacy. In particular, when we change the orientation or order of the cells of X the signs
�ÿ1�dim F � ÿ1 appear simultaneously in jCR

�c� and t0 and cancel each other (cf. Section
3.1).

Clearly, t�X ; x; F� �Gt�X ; h; x; F� is the torsion discussed in Section 6.1. Note that
t�X ;ÿh; x; F� � ÿt�X ; h; x; F� and t�X ; h; hx; F� � detF �h�t�X ; h; x; F� for any x A Eul�X �
and h A H1�X�.

The torsion t�X ; h; x; F� is invariant under cell subdivisions of X, see [T1], Theorem

3.2.1. (It is to ensure this that we need the signs �ÿ1�N�C� and �ÿ1�N�CR� in the de®nition of
the torsion isomorphisms jC ; jCR

.) The invariance of t�X ; h; x; F� under cell subdivisions
allows us to apply this torsion to PL-manifolds.

6.4. Main Theorem (odd-dimensional case). Let F be an odd-dimensional ¯at k-
vector bundle over a closed connected orientable PL-manifold X of odd dimension m. Then for
any Euler structure x A Eul�X � and any homology orientation h of X, we have

ht�X ; h; x; F�; t�X ; h; x; F�iPR � �ÿ1�z detF

ÿ
c�x���6:4�

where z is the residue given by

z � 0; if dim F is even or m1 3 �mod 4�,
sw�X ��mod 2�; if dim F is odd and m1 1 �mod 4�.

�
�6:5�

Theorem 6.4 implies the identity

ht�X ; h; x; F�; t�X ; h; x�; F �iPR � �ÿ1�z:

Theorems 6.2 and 6.4 are the main results of this paper. They compute the PoincareÂ-
Reidemeister scalar product in terms of Euler structures and their characteristic classes and
torsions. A proof of Theorems 6.2 and 6.4 is given in Section 8 using the results of Section 7.

6.5. Proof of Theorem 4.4. It follows from Theorems 6.2 and 6.4, that the PoincareÂ-
Reidemeister scalar product on det H��X ; F� is positive de®nite if and only if the real
number �ÿ1�zdetF �h� is positive, where h A H1�X � is a class whose mod 2 reduction is dual
to wmÿ1�X� and z A Z=2Z is the residue given by (6.5). The sign of the non-zero real number
detF �h� is equal to �ÿ1�w1�F��h� where

w1�F��h� � hw1�F�;wmÿ1�X�X �X �i � hw1�F�Wwmÿ1�X �; �X �i:

This proves Theorem 4.4 for m1 1 �mod 4�.
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It is a theorem of W. Massey [Ma], Theorem III, that wmÿ1�X� � 0 for any closed
orientable smooth manifold X of dimension m1 3 �mod 4�. This together with the previ-
ous argument gives the claim of Theorem 4.4 for m1 3 �mod 4� assuming that M is
smoothable. Vanishing of the class wmÿ1�X � for any closed orientable PL-manifold X of
dimension m1 3 �mod 4� can be obtained similarly to [Ma]. It also follows from our ar-
guments used in the proof of Theorem 11.2 (cf. formula (11.2) and Remark 11.4). This
gives our statement for m1 3 �mod 4� in the PL case. r

6.6. Remarks. 1. Any closed oriented manifold X of odd dimension m has a
canonical homology orientation determined by any basis in

L
i<m=2

Hi�X ; R� followed by the
PoincareÂ dual basis in

L
i>m=2

Hi�X ; R�.

2. We could formulate a version of Theorem 6.4 without involving the sign-re®ned
torsions. Namely, for odd-dimensional F, we have

ht�X ; x; F�; t�X ; x; F�iPR � �ÿ1�z detF

ÿ
c�x���6:6�

where z is the number de®ned by (6.5). This formula makes sense: although the torsion
t�X ; x; F� is de®ned up to sign, the scalar product on the left hand side of (6.6) is well
de®ned. Formula (6.6) directly follows from (6.4).

§7. Properties of the torsion: multiplicativity and duality

In this section we establish two important properties of the torsion of Euler structures:
multiplicativity with respect to direct sums and compatibility with the duality operator.
These properties will be used in the proof of Theorems 6.2 and 6.4 in Section 8.

7.1. Theorem. Let F ;F 0 be ¯at vector bundles over a ®nite connected CW-space X
with w�X � � 0. Let

m � mH��X ;F�;H��X ;F 0�

be the canonical fusion isomorphism

det H��X ; F�n det H��X ; F 0� ! det
ÿ
H��X ; F�lH��X ; F 0�� � det H��X ; F lF 0�

de®ned in Section 2.3. If both F and F 0 are even-dimensional then for any x A Eul�X�

t�X ; x; F lF 0� � m
ÿ
t�X ; x; F�n t�X ; x; F 0��:�7:1�

If both F and F 0 are odd-dimensional then for any x A Eul�X� and any homology orientation
h of X,

t�X ; x; F lF 0� � m
ÿ
t�X ; h; x; F�n t�X ; h; x; F 0��:�7:2�

Proof. Denote by aq the number of cells of X of dimensionY q and by rq�aqÿaqÿ1

the number of q-dimensional cells of X. Consider the chain complexes C � C��X ; F�,
C 0 � C��X ; F 0�, and ~C � C��X ; F lF 0�. It is clear that ~C � C lC 0.
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Let us orient and order the cells of X and ®x a spider-like Euler chain representing x
as in Section 6.1. The constructions of Section 6.1 provide bases in Cq, C 0q, and ~Cq. The
basis in Cq is formed by a sequence D1; . . . ;Drq

where Ds is a ¯at basis of F over the s-th
q-dimensional cell of X. The basis in C 0q is formed by a sequence D 01; . . . ;D 0rq

where D 0s is a
¯at basis of F 0 over the s-th q-dimensional cell of X. The basis in ~Cq is formed by a sequence
D1;D

0
1;D2;D

0
2; . . . ;Drq

;D 0rq
. Consider the corresponding wedge products cq A det Cq,

c 0q A det C 0q, and ~cq A det ~Cq. Using the canonical identi®cation det ~Cq � det Cq n det C 0q we

obtain

~cq � �ÿ1�
�aqÿaqÿ1ÿ1��aqÿaqÿ1�

2 dd 0 �cq n c 0q�

where d � dim F � card Ds and d 0 � dim F 0 � card Ds for all s.

Consider the case where both d and d 0 are even. In this case ~cq � cq n c 0q for all q. By
de®nition,

t�X ; x; F� � jC�c0 n cÿ1
1 n � � �n c

�ÿ1�m

m �;

and

t�X ; x; F 0� � jC 0
ÿ
c 00 n �c 01�ÿ1 n � � �n �c 0m��ÿ1�m�

:

Lemma 3.3 implies that

m
ÿ
t�X ; x; F�n t�X ; x; F 0��
� �j ~CmC;C 0 �

ÿ
c0 n cÿ1

1 n � � �n c�ÿ1�m

m n c 00 n �c 01�ÿ1 n � � �n �c 0m��ÿ1�m�
:

By de®nition of mC;C 0 and by ~cq � cq n c 0q, the right-hand side equals

�ÿ1�M�C;C 0�j ~C

ÿ
~c0 n �~c1�ÿ1 n � � �n �~cm��ÿ1�m� � t�X ; x; F lF 0�:

Here we use the fact that aq�C� � d � aq is even so that M�C;C 0� � 0.

Assume that both d and d 0 are odd. By de®nition, t�X ; h; x; F� � et0, and
t�X ; h; x; F 0� � et 00, where

t0 � ejC�c0 n cÿ1
1 n � � �n c

�ÿ1�m

m �; t 00 � ejC 0
ÿ
c 00 n �c 01�ÿ1 n � � �n �c 0m��ÿ1�m�

;

and e �G1 is a sign determined by h and the chosen orientations and order of the cells of
X. It is important that one and the same sign e appears in the expressions for t�X ; h; x; F�
and t�X ; h; x; F 0�. The same argument as above shows that

m
ÿ
t�X ; h; x; F�n t�X ; h; x; F 0�� � m�t0 n t 00� � �ÿ1�M�C;C 0��Rt�X ; x; F lF 0�

where

R � Pm
q�0

�aq ÿ aqÿ1 ÿ 1��aq ÿ aqÿ1�
2

:
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It remains to show that M�C;C 0� � R is even. By de®nition,

M�C;C 0� � Pm
q�0

dd 0aqÿ1aq 1
Pm
q�0

aqÿ1aq �mod 2�:

A direct computation yields

R1
Pm
q�0

aq ÿ
Pm
q�0

aqÿ1aq ÿ �am � a2
m�=2 �mod 2�:

If P (resp. Q) is the number of even-dimensional (resp. odd-dimensional) cells of X

then PÿQ � w�X � � 0, am � P�Q � 2P, and
Pm
q�0

aq 1P1Q �mod 2�. This implies that

M�C;C 0� � R is even and completes the proof of the lemma. r

7.2. Theorem. Let F be a ¯at vector bundle over a closed connected orientable PL-
manifold X of odd dimension m. Let x A Eul�X� and let D : det H��X ; F� ! det H��X ; F ��
be the isomorphism (4.2). If dim F is even then

D
ÿ
t�X ; x; F�� � t�X ; x�; F ��:�7:3�

If dim F is odd then for any homology orientation h of X

D
ÿ
t�X ; h; x; F�� � �ÿ1�zt�X ; h; x�; F ��;�7:4�

where z is the number given by (6.5).

Theorem 7.2 is a re®ned version of the classical duality for torsions due to Franz and
Milnor, see also [T1], [T2].

Proof. Fix an orientation of X. Consider ®rst the case of even-dimensional F. Fix a
piecewise linear triangulation r of X. We orient and order the simplices of r in an arbitrary
way. Fix a point x A X . For each simplex a of r, choose a path ba : �0; 1� ! X connecting
x � ba�0� to the barycenter of a so that the 1-chain

P
a

�ÿ1�jajba represents x in Eul�X ; r�.
As in Section 6.1, this chain and a basis ex of the ®ber Fx determine an ordered basis of
the simplicial chain complex C � C�

ÿ�X ; r�; F
�

and a distinguished element, c A det C. By
de®nition, t�X ; x; F� � jC�c�.

To compute the torsion t�X ; x�; F �� we shall use the dual cellular subdivision r� of X.
It is well known that the simplicial chain complex C � C�

ÿ�X ; r�; F
�

and the cellular chain
complex C 0 � C�

ÿ�X ; r��; F �
�

are dual to each other. Let us provide the cells of r� with the
order and orientation induced by the order and orientation of the simplices of r. (To de®ne
the induced orientation in the dual cells we use the orientation of X.) According to the last
remark of Section 5.2, the chain ÿP

a

�ÿ1�jajba represents x� in Eul�X ; r��. As in Section

6.1, this chain and a basis of the ®ber F �x determine an ordered basis of C 0 �C�
ÿ�X ; r��; F �

�
and a distinguished element, c 0 A det C 0. By de®nition, t�X ; x�; F �� � jC 0 �c 0�. Observe, that
if in the role of the basis in F �x we take the dual basis e�x , then the basis in C 0 constructed
in this way is dual to the basis in C constructed above. Note that all vector spaces C 0q are
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even-dimensional so that aq�C 0� � 0 for all q. Therefore, in this case c 0 � DC�c�. It remains
to apply Lemma 2.6 to the complex C (cf. 2.5 and 4.2). This gives

D
ÿ
t�X ; x; F�� � DH��C�

ÿ
jC�c�

� � jC 0
ÿ
DC�c�

� � jC 0 �c 0� � t�X ; x�; F ��:

Assume now that F is odd-dimensional. As above, we construct distinguished elements
c A det C; c 0 A det C 0 and observe that c 0 � �ÿ1�sDC�c� where s A Z=2Z is given by

s � s�C� � Pm
q�1

aqÿ1aq �
P�mÿ1�=2

q�0

a2q �mod 2��7:5�

where aq is the number of simplices of r of dimension Yq. Consider the simplicial chain
complex CR�C�

ÿ�X ; r�; R
�

and the volume element cR A det CR determined by the orien-
tation and order of the simplices of r. Similarly, consider the cellular chain complex
C 0R � C�

ÿ�X ; r��; R
�

and the volume element c 0R A det C 0R determined by the orientation
and order of the cells of r�. Recall the torsion isomorphisms jCR

: det CR ! det H��X ; R�
and jC 0

R
: det C 0R ! det H��X ; R�. By de®nition, t�X ; h; x; F� � ejC�c� where e � �1 if

the volume element jCR
�cR� A det H��X ; R� de®nes the given homology orientation h

and e � ÿ1 otherwise. Similarly, t�X ; h; x�; F �� � e 0jC 0 �c 0� where e 0 � �1 if

jC 0
R
�c 0R� A det H��X ; R�

de®nes h and e 0 � ÿ1 otherwise. As above, c 0R � �ÿ1�sDCR
�cR� where

s � s�CR� � s�C� A Z=2Z

is the residue (7.5). By Lemma 2.6,

jC 0
R
�c 0R� � jC 0

R

ÿ�ÿ1�sDCR
�cR�

� � �ÿ1�sDH��X ;R�
ÿ
jCR
�cR�

�
:

We can conclude that ee 0 � �ÿ1�sn where n � �1 if the linear mapping

DH��X ;R� : det H��X ; R� ! det H��X ; R�

preserves the orientation of the line det H��X ; R� and n � ÿ1 otherwise. A computation in
[T1], pp. 178±179 (see also Section 11) shows that n � �ÿ1�z where z is the number given
by (6.5). As in the even dimensional case, we apply Lemma 2.6 to the complex C and to the
duality operator DH��C� � D : det H��C� ! det H��C 0� (cf. 2.5 and 4.2). This gives

D
ÿ
t�X ; h; x; F�� � DH��C�

ÿ
ejC�c�

� � ejC 0
ÿ
DC�c�

�
� ejC 0

ÿ�ÿ1�sc 0� � �ÿ1�see 0t�X ; h; x�; F �� � �ÿ1�zt�X ; h; x�; F ��: r

§8. Proof of Theorems 6.2 and 6.4

8.1. Proof of Theorem 6.2. Set T � t�X ; x; F�. We should prove that
hT ;TiPR � detF

ÿ
c�x��.
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Since the bundle F lF � is even-dimensional and unimodular, the torsion
t�X ; F lF �� is well de®ned and equals t�X ; x; F lF ��, for any x A Eul�X �. By Theorem
7.1,

t�X ; F lF �� � m
ÿ
t�X ; x; F�n t�X ; x; F ��� � m

ÿ
T n t�X ; x; F ���

where m is the canonical fusion isomorphism

det H��X ; F�n det H��X ; F �� ! det
ÿ
H��X ; F�lH��X ; F ��� � det H��X ; F lF ��

de®ned in Section 2.3. By Theorem 7.2,

D�T� � t�X ; x�; F �� � t
ÿ
X ;
ÿ
c�x��ÿ1

x; F �
�

� detF �
ÿÿ

c�x��ÿ1�
t�X ; x; F �� � detF

ÿ
c�x��t�X ; x; F ��:

By de®nition,

hT ;TiPR � m
ÿ
T nD�T��=t�X ; F lF ��

� m
ÿ
T n detF

ÿ
c�x��t�X ; x; F ���=m

ÿ
T n t�X ; x; F ��� � detF

ÿ
c�x��: r

8.2. Proof of Theorem 6.4. Set T � t�X ; h; x; F�. By Theorem 7.1,

t�X ; F lF �� � t�X ; x; F lF �� � m
ÿ
T n t�X ; h; x; F ���:

By Theorem 7.2,

D�T� � �ÿ1�zt�X ; h; x�; F �� � �ÿ1�z detF

ÿ
c�x��t�X ; x; F ��:

Thus,

hT ;TiPR � m
ÿ
T nD�T��=t�X ; F lF ��

� m
ÿ
T n �ÿ1�z detF

ÿ
c�x��t�X ; h; x; F ���=m

ÿ
T n t�X ; h; x; F ���

� �ÿ1�z detF

ÿ
c�x��: r

§9. Cohomological torsions and the PR-pairing

In this section we give cohomological versions of both the PoincareÂ-Reidemeister
scalar products and the torsions of Euler structures. This cohomological formulation is
better suited for a comparison with the analytical approach, see Section 10.

9.1. Cohomology of a ¯at vector bundle. Let F be a ¯at k-vector bundle over a ®nite
connected CW-space X. Recall a de®nition of the cohomology of X with coe½cients in F.
Orient all cells of X. As in Section 3.1, for a cell a of X, denote by G�a;F� the vector space
of ¯at sections of F over a. The vector space of q-cochains in X with values in F coincides
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with the vector space of q-chains and is de®ned by

C q�X ; F� � L
dim a�q

G�a;F�:�9:1�

The boundary homomorphism dq : C q�X ; F� ! C q�1�X ; F� is de®ned as follows. Let sa be
a ¯at section of F over a q-cell a. We set

dq�sa� �
P

b

e�a; b�sb
a

where the sum runs over all �q� 1�-cells b incident to a, the sign e�a; b� �G1 is determined
in the usual way by the orientations of a and b, and sb

a denotes the unique ¯at section over b

extending sa. (It is understood that each b enters this sum with multiplicity equal to the
number of appearances of a in qb.) Denote the resulting cochain complex by C ��X ; F� and
set H ��X ; F� � H �ÿC ��X ; F��. The graded vector space H ��X ; F� is a homotopy invariant
of the pair �X ;F�.

It is clear that the vector space C q�X ; F� is dual to Cq�X ; F ��, i.e.,

C q�X ; F� � Homk

ÿ
Cq�X ; F ��; k�

and the boundary homomorphism dq introduced above is dual to the boundary homo-
morphism Cq�1�X ; F �� ! Cq�X ; F ��. Therefore for each q, we have a non-singular evalu-
ation pairing

H q�X ; F�nHq�X ; F �� ! k:

These pairings for q � 0; . . . ; dim X induce a non-singular pairing

� ; � : det H ��X ; F�n det H��X ; F �� ! k:�9:2�

9.2. Cohomological torsion. Let F be a ¯at k-vector bundle over a ®nite connected
CW-space X with w�X� � 0. If dim F is odd, then we additionally assume that X is provided
with a homology orientation (which we suppress in the notation). For every x A Eul�X�, we
de®ne the cohomological torsion t.�X ; x; F� as the unique element of det H ��X ; F� such
that

�t.�X ; x;F�; t�X ; x;F ��� � 1�9:3�

where t�X ; x; F �� A det H��X ; F �� is the torsion de®ned in Section 6. The cohomological
torsion t.�X ; x; F� A det H ��X ; F� satis®es properties similar to those of the homological
torsion. In particular, it is invariant under cell subdivisions and has no indeterminacy. For
any h A H1�X�, we have

t.�X ; hx; F� � detF �h� � t.�X ; x; F�:�9:4�

9.3. Cohomological PoincareÂ-Reidemeister scalar product. We de®ne a cohomo-
logical version of the PoincareÂ-Reidemeister scalar product. The norm determined by this
scalar product was originally de®ned in [Fa].
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Let F be a ¯at k-vector bundle over a closed connected orientable PL manifold X of
odd dimension m. Given a; b A det H ��X ; F�, we de®ne a number ha; biPR A k by

ha; biPR �
�a; a� � �b; b�
ha; biPR

�9:5�

for any nonzero a; b A det H��X ; F ��. Here ha; biPR denotes the homological PoincareÂ-
Reidemeister scalar product (de®ned in Section 4) and the square brackets denote the
pairing (9.2). Formula (9.5) yields a well-de®ned bilinear form on det H ��X ; F� called the
cohomological PoincareÂ-Reidemeister scalar product.

Let us show that the norm,

a 7! jha; aiPRj1=2; a A det H ��X ; F�;

determined by scalar product (9.5), coincides with the PoincareÂ-Reidemeister norm on
det H ��X ; F�, introduced in [Fa], section 4.7. This fact will be used in Section 10.

Denote by

m. : det H ��X ; F�n det H ��X ; F �� ! det H ��X ; F lF ��

the canonical isomorphism, de®ned similarly to (2.6) (ignoring the signs). Let

D
.

: det H ��X ; F� ! det H ��X ; F ��;

be the PoincareÂ duality isomorphism
ÿ
a cohomological version of �4.2��. In our present

notation, the PoincareÂ-Reidemeister metric on det H ��X ; F�, which de®ned in Section 4.7
of [Fa], is given by

a 7! jm.�anD
.
a�=t.�X ; F lF ��j1=2;

where a A det H ��X ; F�. In order to prove compatibility with (9.5) it is enough to show that
for any a; b A det H��X ; F ��, and a; b A det H ��X ; F� holdsÿ

m.�anD
.
b�=t.�X ; F lF ��� � ÿm�anDb�=t�X ; F �lF�� �G�a; a� � �b; b�:

The left hand side may be rewritten as

�m.�anD
.
b�; m�anDb��

�t.�X ; F lF ��; t�X ; F �lF��

where the brackets � ; � denote the pairing (9.2) for the ¯at vector bundle F lF �. By (9.3),
the denominator of the last expression is equal to G1. It remains to check that

�m.�anD
.
b�; m�anDb�� �G�a; a� � �b; b�

where the brackets � ; � denote the pairings (9.2) for F ;F �, and F lF �. The last equality
follows from
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�m.�anD
.
b�; m�anDb�� �G�a; a� � �D.

b;Db� �G�a; a� � �b; b�

(cf. [Fa], Section 3.4).

9.4. Main Theorem (cohomological version). Let F be a ¯at k-vector bundle over a
closed connected orientable PL-manifold X of odd dimension m. If dim F is odd, then we

additionally assume that X is provided with a homology orientation. Then for any x A Eul�X �,

ht.�X ; x; F�; t.�X ; x; F�iPR � �ÿ1�z detF

ÿ
c�x��;�9:6�

where h ; iPR is the cohomological PoincareÂ-Reidemeister scalar product and z is the num-
ber given by (6.5).

Proof. Applying (9.5) to

a � b � t.�X ; x; F� A det H ��X ; F�

and

a � b � t�X ; x; F �� A det H��X ; F ��

we obtain

ht.�X ; x; F�; t.�X ; x; F�iPR

� ht�X ; x; F ��; t�X ; x; F ��iÿ1
PR � �t.�X ; x;F�; t�X ; x;F ���2:

By (9.3), �t.�X ; x;F�; t�X ; x;F ��� � 1. By Theorems 6.2 and 6.4,

ht�X ; x; F ��; t�X ; x; F ��iÿ1
PR � �ÿ1�z detF �

ÿ
c�x��ÿ1� �ÿ1�z detF

ÿ
c�x��:

This implies the claim of the theorem. r

§10. Analytic torsion via Euler structures

In this section we describe a relationship between the analytic torsion of Ray and
Singer [RS] and the combinatorial torsion of Euler structures. The analytic torsion of a ¯at
vector bundle F over a closed odd-dimensional manifold X can be viewed as a norm (the

Ray-Singer norm) on the determinant line det H ��X ; F�. The main result of this section
expresses the Ray-Singer norm of the cohomological torsion t.�X ; x; F� of any Euler
structure x A Eul�X� in terms of the monodromy of F along the characteristic class c�x�.

10.1. Ray-Singer norm. We recall the construction of the Ray-Singer norm. Let X

be a closed smooth manifold, and let F be a ¯at real vector bundle over X. (Here the
ground ®eld k is R.) Choose an arbitrary Riemannian metric on X and a smooth metric on
F. Then the space W��X ; F� of di¨erential forms on X with values in F has a scalar product.
The ¯at structure on F determines a ¯at connection ` : Wq�X ; F� ! Wq�1�X ; F�, so that
`2 � 0. We have
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H ��X ; F� � ker�`�=im�`�

(the cohomology of the twisted de Rham complex). Using the Hodge decomposition, the
cohomology can be embedded into W��X ; F� as the space of harmonic forms; this embed-
ding induces a norm j � jRS on the determinant line det H ��X ; F�. The Ray-Singer norm
k � kRS on det H ��X ; F� is de®ned by

k � kRS � j � jRS Qdim X

q�0

�Det D 0q��ÿ1�qq=2;�10:1�

where Det D 0q denotes the zeta-function regularized determinant of the Laplacian D0q
acting on the space of q-forms orthogonal to the harmonic forms. Recall the de®-
nition of Det D 0q following [RS]. Consider the positive eigenvalues of the Laplacian
Dq : Wq�X ; F� ! Wq�X ; F�

0 < l1 Y l2 Y � � � Y lk Y � � � ; lk !y

and form the z-function

zq�s� �
Py
k�1

lÿs
k ; Re�s� is large:

It is a meromorphic function holomorphic at s � 0. Now,

Det D 0q � exp ÿ d

ds
zq�s�js�0

� �
:

The fundamental property of the Ray-Singer norm (10.1) for odd-dimensional X is its
topological invariance: it does not depend on the choice of metrics on X and F, used in the
construction. For even-dimensional X this is not the case, see [BZ] for a detailed description
of the dependence of the Ray-Singer norm on the metrics.

10.2. Theorem (analytic torsion and Euler structures). Let X be a closed connected
orientable smooth manifold of odd dimension and let F be a ¯at R-vector bundle over X. If

dim F is odd, then we additionally assume that X is provided with a homology orientation.
For any Euler structure x A Eul�X�, the Ray-Singer norm of its cohomological torsion (cf.
9.2) t.�X ; x; F� A det H ��X ; F� is equal to the positive square root of the absolute value of the

monodromy of F along the characteristic class c�x� A H1�X �:

kt.�X ; x; F�kRS � jdetF c�x�j1=2:�10:2�

In the special case, where the ¯at bundle F is acyclic, i.e., H ��X ; F� � 0, the torsion
t.�X ; x; F� is a real number and Theorem 10.2 yields

Qdim X

q�0

�Det D 0q��ÿ1�q�1q �
ÿ
t.�X ; x; F��2

jdetF c�x�j :�10:3�
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Note that the RHS of this formula does not depend on the choice of x, this follows directly
from (6.3) and the properties of the torsion.

Theorem 10.2 generalizes the classical Cheeger-MuÈller theorem [C], [Mu1] concerning
the orthogonal ¯at real bundles F and the (more general) theorem of MuÈller [Mu2] con-
cerning the unimodular ¯at real bundles F. Note that if F is unimodular then jdetF c�x�j � 1
and the torsion t.�X ; x; F� does not depend on the choice of x.

Proof of Theorem 10.2. The main theorem of [Fa], Theorem 3.2, states that the
norm on det H ��X ; F� associated with the PoincareÂ-Reidemeister scalar product coincides
with the Ray-Singer norm. More precisely, for any a A det H ��X ; F�,

ha; aiPR �G�jjajjRS�2:�10:4�

Substituting here a � t.�X ; x;F� and using (9.6) we obtain (10.2). r

Note that the sign in (10.4) is completely described in Theorem 4.4.

10.3. Questions. Formula (10.2) computes Gt.�X ; x; F� in analytical terms. Is there
a way to compute t.�X ; x; F� (without the sign indeterminacy) using the analytic tools?
One may expect that the h-invariant of Atiyah, Patodi and Singer will be relevant for this
purpose.

There is a similar question. Suppose that F is a ¯at complex bundle. Then we
have the complex torsion t.�X ; x; F� lying in the complex determinant line det H ��X ; F�.
Now, one may also consider F as the real ¯at bundle FR and consider the real torsion
t.�X ; x; FR� A det H ��X ; FR�. It can be shown that the real torsion t.�X ; x; FR� may be
considered as an ``absolute value'' of the complex torsion t.�X ; x; F�; it can be expressed in
terms of the analytic torsion of Ray and Singer and the information contained in the
characteristic class c�x�, using our Theorem 10.2. One may ask how to recover the ``phase

information'' of the complex torsion t.�X ; x; F� using the analytic tools?

§11. Semi-characteristics of manifolds

In this section we will apply the results obtained above to compute the residue mod 2
of the twisted semi-characterictic of a closed orientable smooth manifold of dimension
11 �mod 4�.

11.1. Twisted semi-characteristics. Let F be a ¯at vector bundle over a manifold X

of odd dimension m. By the twisted semi-characteristic of X (with coe½cients in F ) we
mean the integer

swF �X� �
P�mÿ1�=2

i�0

dim H2i�X ; F�:

In the case of the trivial real line bundle we recover the semi-characteristic sw�X � A Z which
appeared in Section 4.4. The next theorem computes swF �X� �mod 2� as a function of an
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orthogonal real vector bundle F in the case m1 1 �mod 4�. We refer to [LMP], [K], for
other properties of the twisted semi-characteristics.

11.2. Theorem. Let X be a closed connected orientable smooth manifold of dimension

m1 1 �mod 4�. Let F be a ¯at R-vector bundle over X with orthogonal structure group. Then

swF �X�1hw1�F�Wwmÿ1�X�; �X �i� sw�X � � dim F �mod 2�:

Proof. When we add to F the trivial line bundle, both sides of the formula increase
by sw�X �. Therefore it is enough to prove the theorem for even-dimensional F. Set
x � hw1�F�Wwmÿ1�X�; �X �i A Z=2Z. We should prove that swF �X�1 x �mod 2�.

Fix an Euler structure x A Eul�X� and consider the torsion t�X ; x; F�, which is an
element of det H��X ; F� (see Section 6.1). By Theorem 7.2 and remarks in Section 4.4,

D
ÿ
t�X ; x; F�� � t�X ; x�; F �� � ÿdetF �c�x�

�ÿ1
t�X ; x; F ���11:1�

� detF

ÿ
c�x��t�X ; x; F �� � �ÿ1�xt�X ; x; F ��

where D : det H��X ; F� ! det H��X ; F �� is the duality operator (4.2).

The ¯at scalar product on F gives an isomorphism of ¯at vector bundles f : F � ! F
which induces an isomorphism f� : det H��X ; F �� ! det H��X ; F�. By formula (11.1),

f�
ÿ
D
ÿ
t�X ; x; F��� � �ÿ1�xf�

ÿ
t�X ; x; F ��� � �ÿ1�xt�X ; x; F�:

Therefore the number �ÿ1�x equals the degree of the linear endomorphism f� �D of the
real line det H��X ; F�. We shall show below that the degree of f� �D equals �ÿ1�swF �X �.
This would imply swF �X� � x �mod 2� and complete the proof of the theorem.

We have H��X ; F� �L
p

Vp, where Vp � Hp�X ; F�lHmÿp�X ; F� and

p � 0; 1; . . . ; �mÿ 1�=2:

We consider each Vp as a graded vector space with zero entries in degrees 3p, mÿ p.
Using the isomorphism f : F � ! F , we can identify Vp with its dual. In this way we obtain
duality operators

Dp : det Vp ! det Vp; p � 0; 1; . . . ; �mÿ 1�=2:

Using the fusion isomorphism constructed in Section 2.3 and Lemma 2.7.3 we obtain a
natural isomorphism m : det H��X ; F� !N

p

det Vp. Lemma 2.7.2 implies that the conju-

gation by m transforms f� �D into the tensor product
N

p

Dp. Therefore

deg�f�D� �
Q�mÿ1�=2

p�0

deg Dp:

We shall show that deg Dp � �ÿ1�dim Hp�X ;F�. This will imply that deg�f�D� � �ÿ1�swF �X�.
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It is clear (from the de®nitions introduced in Section 2.5) that deg Dp � �ÿ1�s�Vp�.
Obviously, we have

aq�Vp� � dim Hp�X ; F�; if pY q < mÿ p,

0; otherwise.

�

Thus, one easily veri®es that
Pm
q�1

aqÿ1�Vp�aq�Vp� � 0 A Z=2Z and

s�Vp� �
P�mÿ1�=2

q�0

a2q�Vp��11:2�

� ÿ�m� 1�=2
� � dim Hp�X ; F� �mod 2�:

Therefore we obtain s�Vp�1 dim Hp�X ; F� �mod 2� assuming that m1 1 �mod 4�. r

11.3. Example. Let X � S1. Then Theorem 11.2 reduces to the following simple
statement: For A A O�n�, the codimension of the linear space of ®xed points of A is even if

A A SO�n�, and is odd otherwise.

11.4. Remark. One may use formula (11.2) in the case m1 3 �mod 4� to conclude
that s�Vp�1 0 mod 2. Together with the arguments used in the proof of Theorem 11.2, this
gives an independent proof (which works also for PL manifolds) of the theorem of Massey
[Ma] about vanishing of the Stiefel-Whitney class wmÿ1�X � for any closed orientable
smooth manifold X of dimension m1 3 �mod 4�.
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