e

KNOTS AND STABLE HOMOTOPY

M.S5.Farber
Institute of Cibernetics of the Acad.of Sci.of Az.SSR,
Baku, USSR

: nid o0

An # -dimensional k n o t ig a pair (S ;& ) , Where
QCC sz is 8 smooth oriented submanifold homeomorphic to the H-sphe-
re. A knot is called s t a bl e if its compiement has the homoto-
ry [(n+3)/3] —type of G' anda n 35

t opic if there exists an isotopy of the ambient sphere sending

Two knots are 1 8 0 -~

one knot onto another with preserved orientations.

The first section of this paper provides a classificéation of
stable knots in terms of the stable homotopy theory. Our main inve-
riant is & homotopy generalization of isometry structure introduced
by Kervaire [10] . Detailed analysis of all possible modifications
of Seifert manifold enables us to formulate an equivalence relation
on the set of stable isometry structures, factor set being exactly
the get ofwgliwﬁtgble knot types. This found equivalence relation
is new for the slgebraic situation of [10] as well; it gives there
an effective algebraic description of isotopy types (instead of co-
_ [10] ) of simple odd-dimensional knots.

As it was shown in [7] , the classical homology invariants
fail to form a complete system even for simple even—dimensional

bordism clagses as in

knots. The results of %1 allow us, however, to-expect that more or
less extensive algebraic clagsification of stable knots might have
been constructed by applying generalized homology theories. §2,
where we study extaordinary Alexander modules expressing them thro~
ugh modules of Seifertmenifolds, gives a few steps in thig direction.
Our techigue of covering functors makes it possible to manage diffi-
culties caused by non-compactness of the infinite cyclic covering
and by lack of suitable duality theorems for generalized homology.
This technique suggests a general construction of various forms on
extraordinary Alexender modules among which there are, on the one
hend, all known forms and, on the other hand, a number of new.

1. A STABLE-HOMOTOPY CLASSIFICATION OF KNOIS

1 72
1.1. THE CARVING MAP. Let V <«§ be a smooth compact

connected oriented submanifold with boundary béing a homology sphere.

\

141

Let i,Jr ,b_tV —6™%-V ve small trenslations along positive and
negative normal fields, respectively. It is easy to show that for
.h>0 the homomorphism H&V—'Hh(sm?‘V)’ sending (€ HkV to
1/+*(0,)-i/_* (@) , is an isomorphism. In f%i;;:, if a,={o(,} is i.n its
kernel, then there is a chain f in § -V with 6p= b, b=
—i,_*ob ; if we add to § the cylinder over o, we obtain a cycle ¥
which intersects \/ =0 , because ¥
is the boundary of some chain o lying in S‘MQ— oV (since
Hkﬂ (S“‘“—BV) =() for &>O ) and so d, is the boundary of the
intersection of O  with V The fact that byx— b-x
may be proved similarly.

along o . This implies

is onto

N2

Consider the map f :SY —SG(§ =V), where
L), 2] for 0<t<¥%
Wo,t1=1 7 > {
G, 2-2t] for  Yaco<t

S  denoting non-reduced suspension. By the statement in the previous
paragraph h, induces isomorphism in integer homology. Besides,both
spaces in question are simply connected and so is a homotopy equi~
valence. Therefore there exists map %:S5V —GV with hoy  ho-
motopic to S‘.v.;. and % is unique up to homotopy. This map 2 will
be called carving map.

The map % acts on homology of V and this action is easy&;o
describe: if O ={d}€ H&\/ end B is e (gu»o—-chain in Sn -V
with boundery 1,+*(o(,) then %0 € HkV is the homology class of
F’ ﬂ inb V . Tor classical knots the matrix representing the action
of % on the one-dimensional homology appeared in (17l
denoted by r . )

1.2. THE INTERSECTION FORM. Let V be the complement of an
open tubular neighbourhood of V in Sn+2
and in y and congider the canonical Spanier-Whitehead duality
U:VAY —~>Sw4 . Regarding i,+ Y/ —YVy as S -maps we may
form the G-map U:VA V =G by Uw=0o(AA(hb, - {_)) . This
map U will be called intersection form ofV.
It may be shown that U does not depend on the imbedding Vo g,
and is determined by the topology type of \/ . But we shall not use-
this fact and so omlit its proof.

and was

. Fix base-points in V

To formulate properties of the S-maps 1 and % we shall
use the following notion: A stable isometry
structure of dimension N is a triplet (X y U ,%), where

n
X is a finite pointed (W-complex end Ui XAX —S5 H,/%:X;;"X
is a duality; ()Uu=0C1) 43

are *two S .maps satisfying: (a) 1



¢) Uo(FA%2) =uno(ZA4) . Here in (b) W denotes thoy’, where
¥: XAX — XAX is the interchanging map. In (c) Z denotes the
G -map {1-% : X-—~X. These notations will be also used below.

Two stable isometry structures (X,,u,,%y), V=1,2, of the
jame dimension will be called isomorphic if there exists
m  §-equivalence ¥:X1 —Xy such that :Eo %, = %20¥ and
Lz°()€’\£)=u’1'

1.3. THEOREM. (1) Let V
sed oriented submanifold with boundary being a homology sphere. Then
she triplet (V,u,,%) , where Y is the intersection from and % is
;he stable class of the carving map, is a stable isometry structure.
‘2) For >Y any stable isometry structure (X,w,%) of dimension
W with [(#+9)/3] -connected X is isomorphic to the stable iso-
retry structure of some smooth compact simply-connected oriented
submanifold VWr c sz with 0V being a homotopy sphere.

PROOF. (1). From the fact that P,—41_*V—=Y (see 1.1) is
n S—equivalence and from the definition it follows that the in-
sergection form is & duality. This proves (a) of 1.2. To prove (b)
1ge the following relations (see [4] , p.188).

e(Ini,) = oG AD, goUAi)=ED Tot,Al,

/here = means the equality of G-maps. We have

nH "+2
=S be a smooth compact connec-

o (GO = 7oA~ 7o Ui ) =)

Po prove (c) note that the definition of carving mep in 1.1 implies
she following equelity of G-maps (44 - f-)o% =4, . Thus
Uo(4A2) = UVo(UA(hy 100 % = o (AAy) - Similarly (4- i )% =
== and wo (BAN) = (D™ Wo@EAD = (D" (oA =
=Uo(4Ai,) , which proves (c). O

PROOF (2). Let (X, % ,%) be a stable isometry structure of di-
rension # >4 with [(n+2)/3] ~connected X . Since Ul is a duality
P =H ey X)) =0 for 4>W-% , where & = [(1+2)/3]
:nd so we may suppose X to be (#-1)-dimensional. Denote to(1A%)
v 5 XAX ——S”H . By virtue of Theorem 1.3 from [4] there is
1 compact oriented submanifold Vnﬂ c SHH
youndary 0V end a homotopy equivsalence q . V ~= X such that
g"((}/\ 9) is homotopic to the homotopy Seifert pairing of V
3ince [§+(—{)m4§']o (gA G) = Ue(GA q) is a duality and by
theorem 1.4 of [4] is a homology sphere. It remains only to
show that yields an isomorphism between the stable isomeiry siruc-
ture of V and (X 1w, 2) . But this follows from the fact that

with simplyconnected

homotopy Seifert pairing @ and stable isometry structure v, u’V’%V)
determine each other. In fact, if @ is given then uv=e+(.1)*”' 6’
and G-map %v is uniquely determined by the relation U,o(1A%y)=
=@ . The last relation allows to find 0 if u,v and %V are
given. O

These arguments and Theorem 1.2 of (4] imply.

1.4. THEOREM. Let n>5 ana V™, W"'c g™
compact [(M+3)/3] -connected oriented submenifolds with boundaries
being homotopy spheres. If the stable isometry structures of V and
W are isomorphic then there exists an isotopy of S‘MZ sending
V onto W with respect to the orientations. [

A knot bounds meny different Seifert manifolds. If there is
given one of them then any other may be obtained by surgery along
imbedded handles. It is a known fact. We shall use its following
more precise version. nH Y Y

1.5. THEOREM. Let V W &S
connected oriented submanifolds bounding homotopy spheres. If the
oriented knots (S"w yov), (Smg, OW) ere isotopic and %%,

t 24, then there exists a finite sequence U, ,U, e ey UN of
smooth compact ¢, -connected oriented submanifolds such that (a)
U=V ; (o for i=14,...N4int U NimU=¢,
0U;_,= 0U; and the orientations of Up4 end [J, esgree on 6U1, ;
(c) UN is embient isotopic to W with respect to the orientations

For the proof see [4] , pp. 201-107, although this Theorem
was not formulated there explicitly. .

The novelty of this Theorem is in the {,~-connectness of all

Uj/ . The condition (b) means that U;v_1UU{, is & closed (MH)-
dimensional manifold in S”+ , bounding a solid Ni . This Ni',
may be considered as a cobordism from U‘H to Ui ; any its handle
decompogition provides a sequence of modifications of U;-, resul-
ting in Ui . Because of the {, -connectness of all Ui we 'may
construct & decomposition including only handles of indices J with
W<jAM=1+2.

1.6. R-EQUIVALENCE RELATION. Let >0 be an integer and let
(XV y Uy, %V), y=1,2, be two stable igometry structures of the sa-
me dimension. They will be called m~contiguous if
there exist O-maps Y¥:X,—~X, eand ¥:X,—X, such that

Yo %= %09, Yoty = %0 | 1,[,40(4)(1/\&]1) =u,20(9/\1x2)’
m

- M —
Yo =(%,0%,) , Vo =(%e%) ,
- % Ez = 4X¢z_ 22 . The first two equalities

be smooth

be smooth compact 4-

where 24 = 1X4



mean that Y commute with the carving mep, the third equality
expredses the conjugateness of ¥ and ¢ (and so ¢ determines ¢
and vice versa).

Bvidently, ()~-contiguity coicides with the isomorphism. If
.k,.%,c are three stable isometry structures with .A' and % (ol
contiguous and .% end C E-contiguous, then .A, and C are

(m+{)-contiguous.
Two stable isometry structures ‘Af, and § of the same dimension

we shall call R,- equivalent if there is a finite sge-

quence of stable isometry structures Co ,C“...,C such that jp Co N
ﬂ(’) C and besides Ci, and C“‘ are 1~cont1guous for all {= 0,
1, -1. nH 7+ n+a

1-7- THEOREM. Suppose V , W <5 are smooth oriented

submanifolds bounded by homotopy spheres. (1) If int V N intW=¢,
0V =0W and the orientations of |/ and \§ agree on 0V then the
stable isometry structures of \/ and W are 1-contiguous. (2) Con-
versgsely, if the gstable isometry structures of V end W are 1-con-
tiguous, \/ and \\ are [(14,+3)/3J ~connected and # >5 then there
exists an isotopy of Sn gending V onto a submanifold UCS
with int UN intW=¢@ , 0U =0W and the orientations of [J
and W agree on gW .

We shall deduce this Theorem from Theorem 2.4, 2.5 of [4] using
the following lemma.

1.8. LEMMA. Let (X U, %) be a stable 1sometry structures of
dimenstion # end let 0 = Uo(4A%2); XAKX ——-S be the cor-
responding homotopy Seifert pairing, The condition ¥ =% ig equi-
valent to the existence of an S -equivalence 3? KvL-—X and of
a duality ¢ LAK -——-—SnH such that Qe (:? f) is given by the

matrix. 0 0
. v 0
PROOF. Suppose % =% . By the Freyd Theorem [9] the idem~
potent Z splits, i.e. there is a complex K and S-maps
K—X, m:X—K with Tl = K, by = . Similerly

there is a complex l, and S -maeps 1, 'L ——-—X 3[2 X — L with
m:a”'vz ‘=1L’ 5[:2— - Let y KVL“"Xa‘nd Q’ X——KvL be
given by 1',1 , 1,2 and .‘1154 ,3‘(2 respectively. Then ! and q, are
mutually inverse S—equlvalences The relations %o1,1=1,1, go{,2=0,
Yo (1,1 A 1,1) =0, Yo (1,2 A 1,2) =0 imply that @o (ﬁ A £) is given
by the matrix as required with U = Ue (1/2 A 1/4) - Now it only re-
meins to show that U is a duality. But this follows from the fact

that o (! A ,-F) , being a duaelity, is given by the matrix

(O ( 1)111*10 )
U 0 .

The inverse statement is evident. O

1.9. PROOF OF THEOREM 1.7. Let (V,Uy,%y) (W, Uy % )
be the stable isometry structures and let 9 = u (4 A % ) ,
QW Yy’ (4 A% ) be the homotopy Seifert palrlngs correspondlng to
V and W respectlvely By the Theorem 2.4 of [4]Junder  the assump—
tions of the statement (1) there exists a palrlng diIVAW -—»—5

such that the pairing t (VW)Y AV vW)——-S , given by the mat-
rix

Oy o

' ./

DL E) By
is congruent to the pairing of the form considered in the Lemma 1.8.
Let (VvW,U Z) be the stable isometry structure corresponding to

) ]

. Then U and are given by
%, 0 %, g )
0 Uy and U] Zy

regpectively, where § -maps Y :V—-W and ¢ 1W—\ have to be -
determined by d = u,vo(d AY) = uwo (9A 1) - By Lemma 1.8, Z y4
and so we obtain the following four equalities for the corresponding

entries

Yo, =% oY, V¥, ~%sY, Yoy =%0F , Yo¥=% o %

This means that (V, Uy %y )and (W, Uy s % ) are 1-contiguous.

To prove (2) one should bring the same arguments in the inverse
order and use the Theorem 2.5 of [4] . If (V, Uy % )and (W, Uy % )
are 1-contiguous and Y:V—W, ¥:W—\are the correspondlng S-
maps, then we may construct the stable isometry structure (VvW U, Z)
defining [J and Z by the matrices as above. Then Z =7 and the Lem-
ma 1.8 is applicable. Finally the Theorem 2.5 of [4] gives us the
necessary isotopy. O

Theorems 1.5 and 1.7 imply:

1.10. COROLLARY. The R,—equivalenoe class of the stable iso-
metry structure of a Seifert manifold is e knot invariant. [ ,

1.11. COROLLARY. Stable knots are isotopic if and only if the
stable isometry structures of some their Seifert menifolds are R -
equivalent.

PROOF. This follows from the Theorems 1.3, 1.7 and from the
Levine Theorem [11] , Wwhich states that any stable ¢ -dimensional

A8



knot has an [(#+3)/3] -connected Seifert manifold.[]
‘The results of this secti_on may also be interpreted as & clas-
gification of all knots up to the stable equivalence (see L8] ).

2. ALGEBRAIC INVARIANTS

2.1. EXTRAORDINARY ALEXAWDER MODULES. Let h* be a homology theo-
ry on the category of finite cell complexes with base points. Let
(S‘Mz, kw) be a knot and let P ")\(’——-X be the infinite cyclic co-
vering of the comp}ement oan tubular nfighbg’urhood of‘ & in S"’m .
Denote the space X/ by X , where M = D (M) ,mc0X being a
meridian., Define ht(f() as the dir%ct limit of M(K) where K runs
over 8ll finite subcomplexes of X containing the bage-point X has
the natural action of the infinite cyclic group with generator
{(defined by the orientation of the k/r\xot ), the base-point being
invariant under this action. So h‘; (X) is & module over the ring
AN=ZTV V" g e

Let V < S be a Seifert manifold of the knot. The car-
ving map defines on Y’LAV) a module_{structure over the ring D= Z[%l.
Denote the localized ring Z[%,(%%Z) ] by L , where % =4-%2 . Ve
shall consider A as a subring in supposing that t = -4 ’
V‘ =1-%7". Thus L. ®p h’i ) is & A\ -module.

2.2. THEOREM. A-module ?‘Lt(X) and L‘%%(V) are isomorphic.

PROOF (sketch). Denote W=VNX We may suppose | -int W
to be a collar of &=3V and so there is a retraction U :V-—=W . The
inclusion W-—-—;X may be lifted to the covering P and thus we obtain
a map j: W ——X . Consider the homomorphism 3?: P% (V)_»ht (s\() ,
¥(0)=j*’(/*(0) for V€ h’i, (V). The Theorem follows easily from the esser-
tions: (1) for any UEY'L;,(V)"; (4‘T/)¥(2U)=¥(U); (2) for (€ hi/ V)
2(0)=OA if and only if (% %) U=(0 for some WM>( ; (3) for any
x1re hb(X) there are integers {20 eana M>( such that m=(4—’[,)tm¥(0)
for some U € ?’%(V) . We omit further details.

2.3. FURCTORS OF KNOT MODULES. Recall that module of type K
is a finitely generated /\—module for which the multiplication by
|-t € A is en isomorphism. Since L=/\[(4-—t)-1] , each module of
type K is an l,-module. Denote by JC the full subcategory of

L -mod generated by modules of type K

As it was shown in [5] , an |,-module is of type K if and
only if it is isomorphic to L®.X for some finitely generated over
VA p—module X . Denote by pemodg the full subcategory of P—mod
consisting of finitely generated over Z p—modules. Let M : P-

modg—>[]{, be the functor L.®, .

Let F :Z — mod—Z-mod be an additive functor (covariant
or coniravariant) and let R ve a commutative ring. If X is an

R-module then for any A€ R the homomorphism X—X of multip-

lication by A is defined. Applying F we obtain homomorphism
F(X) — F(X) . It may be considered as the multiplication by A
in F(X) and so F(X) has the pnatural R -module structure. Thus
the functor R —mod—w=R-mod is defined and we shall denote it by
RF . Further we shall take P or L for R

2.4. THEOREM. ( [6] ). For any additive functor F ¢ Z-mod —=
— mod there exists wunique functor FiJ{ ——|-mod such that the functors
MoDF and FoM are naturally equivalent on P-mod, , O

In other words this Theorem states that L® PF(X) depends only
on L®PX and this dependence is functorial. The functor F will be
called covering fumnctor for F.

A functor F a&s above will be called .finite ir  F(X)
is a finite group for any finitely generatedAabelian group X

2.5. PROPOSITION. The covering functor F is naturally isomorp-
hic to the restriction of LF: L-mod— | -mod 1if ome of the follo-
wing conditions holds: (1) F is covariant and commutes with direct
1imits; (2) F is finite end F =GoH , where H is an additive
covariant finite functor, commuting with direct limits, 7 being
additive and contravariant.

PROOF., The ring | a8 a P-module is isomorphic to the limit
of the system p—»p—-p —e , where all maps are the multiplica-
tions by £ZeP - So L®,PFX) is neturally isomorphic to the limit
PFOX)—PF() —=PF(X) ——==--.Under the aasumptions (1) this limit
equals to PF(lim (X—X— ) ~ LF(L@PX). In the case (2) argu-
ments are similar. '

Functors X® G , X% G satisfy the condition (1); functor
Eob (X;G) ena, if G is finite also Hom (X;G), satisfy (2). In ge-
neral ﬁ is not isomorphic to the restriction ofALF :

EXAMPLE. Suppose F(X) = Hom (X3Z) - Then F(A)=Hom (A;
Q(L)/ L) ’ where Q(L) is the quotient field of L . For the
proof see [6]

2.6. PORMS ON THE ALEXANDER MODULES. Adopt the following con-~
vention. If R is a commutative ring with involution and A is an

R -module, then ,Z-\ will denote the R -module on the same _group
A where for ael, teR  the product 14 is equal to TQ
computed in A . We shall take below L (with involution given by
4+>»% = |-4% ) or its subring P for R



Lst h* be & multiplicative homology theory on the category of
f.inite based CVV —complexes. We shall suppose that hi(X) ig fini-
tely generated over Z for all ifeZ . Let (S“*Q , &fv) be a knot
and let \/ be gome its Seifert manifold. The intersection form u
(see 1.2) defines & P-homomorphism

by (V) —= P Homy(h (V)1 B ™) »

by the rule O +=(h—1U,(anrb) € hﬁj (snﬂ)) , where 4 € hi'(\/) ,
be hj (V). Apply the functor M to it. If (j = hh.(g’“‘) is fini-
te then using Theorems 2.2, 2.4, 2.5.(2) we obtainJ |L-homomorphism

b, (X)—= L Hom, (hK); 6)
or 7 ~homomorphism
b, (O ® h(X)—G,

A
where X is defined in 2.1. The forms of this kind appear in the

algebraic classification of simple even—-demensional knots (see [7] )
where Fb* is the theory of stable homotopy groups, ( =Zy 1,=J =
=q+2, h=2q).

If G igs infinite then by the same way we obtain another form.
For instance, if G =27 then the exsmple in the subsection 2.5 le~-
ads us to the Hermitian form

F%(x) ® hj (X)—QaLyL

generalizing the Blanchfield foxm.

The forms just constructed have been obtained by applying the
functor M o (%) with subsequent interpretation of the resulted
homomorphism in terms of the Alexander modules. However, the inter-
gsection form U determines side by side with (#) a number of
other homomorphisms and any of them may meke an origin for the simi-
lar construction. For examgple, U determines the well-known P-ho-
momorphism

PTor, (H,(V); 0/2)—PEal, (H (V) Z)

corresponding to the form of linking coefficients in \/ . Since the

covering functors for TO’LZ( 3 G) and Emtz( y G) are LTot (G)
. 2 Z ,
and L,Eaﬂz(, G) respectively (by virtue of Proposition 2.5), apply-

ing Theorems 2.2.and 2.4 we get [,—homomorphism‘

Lot (H,(05 0/2)—=LEat,(H, ; (R)3 Z)

with the associated form being just the linking form

T e T, (0—0/Z

(where TT(&) denotes the Z -torsion subgroup of Hj(&) ). This

form Was ‘originally constructed by Levine [14] , [15] end by the
author [2] , [3] independently, using two different lines of argu-
ments. The construction presented here differs from both of them.

The forms of Milnor [16] and of Erle [1] mey be also cons-

tructed by a slight modification of the degceribed technique.

10.

11.

12.

. Farbexr M,
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ON THE HOMOTOPICAL STRUCTURE AND APPLICATIONS OF MORAVA'S
EXTRAORDINARY K -THEORIES

A.V.Hohlov, A.V.Pazhitnov, Ju.B.Rudjak
MIST im.V.V.Kuibysheva,
Mosgcow, USSR

INTRODUCTION

Let P be a prime and BP be the corresponding Brown-Peterson
gpectrum. Let {ac4,..., a}m,,..}be a set of polynomial generators of
T (BP)= Zipy [Tyyeeey Tpyyenr] 5 deg Tu=2(P"™1). An extreorai-
nary Morava's k~theory (connected version) may be obtained from

B P-theory & la Bass-Sullivan by the killing of the elements P,
Lyyooes Ly s Typg 9 --+ °F T (BP) (see [8] ). (In general this
theory depends on the choice of the generators Q"q', ). It is well
known that ) is multiplicative, and commutative for pP>92
"

of, [11] . Purtner, (k@)= Rlt) , degl =2(p"-1) and
H*(&(n)) = A/AQ , see [4] (Here and elsewhere . H*() de-
notes cohomology moc{tp , and H denotes the corresponding Eilen-
berg-Maclane spectrum, A denotes the Steenrod algebra ‘m/OdP '
and Qn denotes Milnor's operation, d@%@n=9p”—‘| .

Now we consider the theory &b(n) , obtained from &(n)
by killing of the t’c . One can show that &'o(n) is multipli-
cative, and its coefficient ring is ﬁ; tz’” . There is an ob-
vious (Q‘O(P”—U -1) - equivalence &"'(n) —_— &L-’(H), So we

get a tower ;
’ vH (A [

b —kmy—hk m—. .

THEOREM 1.%1. (see [2] ). The tower constructed above is the
Postnikov tower for the spectrum () . The Postnikov's &—in—-
variantgs of &(n) sre higher cohomology operations Q:’) ’

O,(:) = Qb(Pn—U*"’I , Where @:1)=>\Qn A<t 0(mod p) en
Q‘J’”’ corresponds to the relation Q"Q(,?=O . All operations
Q" are non-triviar, sna KK = (Mho,)@ (Mg, ) (€%).

Let E be a commutative ring spectrum with :]II*(E) ;Fp[t] p>2
(for example, any &(n)—theory). Obviously, E is an M U -mo-
dule spectrum, and hence it defines a formal group over W, (F) =
-l FP {t] . The following theorem gives a multiplicative classifica-
tion of such theories. (In particular, we get multiplicative classi-



