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Hermitian forms on periodic modules
and even-dimensional links

M. Farber*

In this paper we will study a class of Hermitian forms on Z-torsion modules over
the group ring of a free group F,,. These forms emerge geometrically as higher
Blanchfield forms on homology modules associated to even-dimensional links.

The first part of the paper (sections 1-3) is devoted to an algebraic study of
these forms, using the general treatment of link modules developed in [F]. It is
shown that the structure of the form is determined completely by a finite algebraic
object consisting of a minimal lattice plus a scalar form on that lattice. In the case
of knots (p = 1), but only in this case, the minimal lattice coincides with the
whole module and the scalar form constructed here reduces to the linking form
found by J. Levine [L1] and the author [F1]. This shows a sense in which the
properties of knots (¢t = 1) and of links (¢ > 1) are quite different.

In the second part of the paper these algebraic results are applied to study tor-
sion links. These are simple even-dimensional links with the middle-dimensional
Alexander module being odd-Z-torsion (the precise definition is given in §4).
Any torsion link determines a form (a “secondary” Blanchfield form) which is
precisely of the type studied in the first (algebraic) part of the paper. It is proved
here that this gives a one-{o-one correspondence between the isotopy classes of
torsion links and the isomorphism classes of Hermitian forms. This result is in
the spirit of the well-known Trotter-Kearton theorem [T],[K!] about simple odd-
dimensional knots; formally it is a generalization of [Kol; cf. also [F2].

The results of Browder-Levine [BL] and Browder [Br] show that any torsion
knot (= torsion link of one component) admits a unigue minimal Seifert manifold
which is the fiber of the fibering of the knot complement over the circle. We
will prove here that torsion links share this uniqueness property: the minimal
Seifert manifold is unique up to ambient isotopy. It seems to be an interesting
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open question to understand the structure of the link complement in terms of this
minimal Seifert manifold. '

We show also that the homology of the minimal Seifert manifold provides a
complete finite algebraic invariant of a torsion link.

I would like to thank J. Levine and J. Hillman for useful discussions. I am also
grateful to the Department of Mathematics of Sydney University, for the facilities
they provided for my visit there.

§1. Lattices in link modules

This section gives a brief review of some definitions and results of [F] that will
be used in the present paper.

Fix an integer 1 > 0 and a subring & C Q. Let F), denote the free group on
generators ¢, ...,t, and let A = k[F,] be the group ring.

1.1 A left A-module M has the Sato property if Torsf;(k:7 M) = 0 for all g, where
k is regarded as a right A-module with trivial action via the augmentation map.
As was shown by Sato [S], this condition is equivalent to the following: the map
MHF=Mx---xM-—M,
———
o times

given by (my,...,m,) — Y5 (t; — 1)m; is a bijection. In other words, each
m € M has unique representation in the form

I
m= Z(ti - 1)m; .
i=1

Let us define “derivations” O0; : M — M, 1=1,... ;/1,, by
d;(m) =m; ,

where m; € M is the element appearing in the above decomposition. Thus,

It

m = Z(t,- — 1)d;i(m) , me M.

i1
It A € A, then
d;(Am) = 9;(\ym + e(N)0i(m) ,
where 9;()\) € A is the Fox derivative with respect to t; [CF], and €(A) € k is
the augmentation. '

We can think of M as also having a left module structure over the ring D =
k[d,...,0,] of polynomials in the non-commuting variables 9y, ... , 0. Any A-

homomorphism f : M; — M, between modules having the Sato property is also
a D-homomorphism. The converse is also true. Thus

Homy (M, Mz) = Homp (M, M) .

1.2 The most important example of a module with the Sato property is the
following:

Let I' = k[[z1,. .., ,]] be the ring of formal power series of non-commuting
variables x, . . . , ¢,,. The ring A may be embedded in I" via the Magnus embedding
T L e R o x3 + -~ Then T'/A is a left A-module with
the Sato property. The derivation 9; : I’ /A — T'/A acts as cancellation of z; from
the left on monomials containing x; on the leftmost position, and sends all other
monomials to zero.

In fact, the above-mentioned rule defines an additive map 0; : T’ — T" with the

property
I
=)+ Y @0i(y)
i=1

where £(v) € k is the augmentation. 0; maps A into itself and the restriction ;| ,
coincides with the Fox derivative 0/0t; [CF].

These remarks allow us to introduce a left D-module structure on T’ and A,
which will be used later.

1.3 A module of type L is a left finitely generated A-module with the Sato
property.

['/A is not a module of type L.

Modules of type L appear as homology modules of free coverings of boundary
links [S], cf. also §4.

We shall now introduce some more operations in modules M having the Sato
property. If m € M then the equation

m = Z(ti - 1)d;(m)
i=1

is equivalent to

un

m = Z (t7' = 1) di(m) ,

i1
where 9; : M — M, i=1,...,u is defined by 0;(m) = —t;0;(m). Define

mi(m) = —0i(m) — 9;(m) = (t; — 1)0i(m) ,



which will be called the i-th component of m. Then
m=m(m)+---+m,(m), me M,
T Oy = Ty,
mom; =0 for i+ j,
0; = 0y om,
0;=0;0m; .

Let us also introduce an operator z : Al — M by

z=-0)—-- =0, .
One can express d; and a in terms of z and 7;:

8L- = —ZT; ,

8L' - —Eﬂ‘i y
where
Z=1—2z:M — M.

Thus, the whole structure is given by a decomposition of unity {=;}

.:m"
which gives a splitting of A7 into a direct sum (over k) '

M~X® --®X,,
and an endomorphism
z: M — M.

1.4 Let Al be a A-module of type L. A lattice in M is a k-submodule A C A
which:
(a) is invariant under 9;, 0;, i =1,... 4,
{b) generates M over A;
(c) is finitely generated over k.
Condition (a) is equivalent to each of the following conditions (a’),(a”),(a""):
(@) Aisinvariant under z and m;, i=1,..., 4
(@”) A is invariant under 9; and 7;, i = 1,..., u;
(@) A is invariant under 9; and 7;, ¢ = 1,...p.

1.5 Lemma. (/) Each A-module M of type L contains a lattice; (2) If A, and
Az are two lattices in M then Ay + A> and A, N As are also lattices; (3) Let
A C M be a lattice and B be a A-module with the Sato property. Then any D-
homomorphism A — B can be uniquely extended to a A-homomorphism M — B.
Thus, Homy (M, B) = Homp(A; B). In particular, two modules of type L are
isomorphic if and only if they admit lattices which are isomorphic as D-modules.

For the proof cf. [F], Lemmas 1.5 and 2.6.
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1.6 Assume that £ = Z and M is a module of type L. We will say that M is
periodic if there is an integer N € Z, N # O with NM = 0. As follows, from
Lemma 1.5.(1), this is equivalent to M = Torsz M.

Any lattice of a periodic module of type L is finite and conversely, any module
of type L admitting a finite lattice is periodic.

1.7 Theorem. Let M be a module of type L. Assume that either (i) k = Q or (ii)
k = Z and M is periodic. Then M contains a minimal lattice A C M, which is
the intersection of all lattices in M. A lattice A C M is the minimal lattice if and

onlyifforanyk=1,...,p

mpzA =mpA and mZA = T A

(whereZ =1 — z).

Proof. Ct. [Fl, §1.

§2. The dual of a periodic module

2.1 Let S denote QI'/(I'+QA); it is A-A-bimodule. If M is a periodic A-module
of type L define the dual module M as the set of all left A-homomorphisms
M— S
M = Hom,(M;S) .
M has a natural right A-module structure. We shall transform it into a left A-
module structure by using the standard involution ; — tfl of A. In other words,
we consider M with the following left A-module structure

(tif)(m) = f(m)t;"

for
feM, meM, i=1,...,u.

2.2 Proposition. Misa periodic A-module of type L.

Proof. First of all, arguments similar to those of 2.3, 2.4, 2.5 of [F] show that A
has the Sato property.

Secondly, M is periodic. Indeed, let A be the minimzll\ lattice in AJ. There
exists an integer N # 0 with NA = 0. Thus, for any f € A, N f vanishes on A
and thus Vf = 0.
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We only have left to show that M is finitely generated over A. To do this we
consider the following map ‘

- Homp (A; QI'/T) — Homp(A4;5) .

We will establish the following facts:

(1) Homp(A;S) is naturally isomorphic to 7\/7

(2) the image of ¢ generates Homp(A4;.5) over A

(3) the module Homp(A; QI'/I") is isomorphic to A* = Homgz(A;Q/Z) and so
it is finite.

(1) follows directly from Lemma 1.5.
Let us prove (3). If F: A — QI'/I" is a D-homomorphism then

F(a) = Zl’“fa(a) for ac A,

where « runs over all tuples (iy,...,is) with @y,...,7s € {I,...,p} and z®
denotes the monomial

Ti Ty - Ty
with the convention
¥ =1.

For each multi-index «, f. : A — Q/Z is a Z-homomorphism. Since F' is a
D-homomorphism, we get

falia) = fiala) ,
and so

fola) = fp(0s, ... 05 a), a€ A,

for

a=(i],...,0s) -

Thus, the whole D-homomorphism F' is determined by fg : A — Q/Z. Con-
versely, given a Z-homomorphism fy : A — Q/Z one can define a map F:A—

Qr/T by

where

0% =0i,...94 ,
for

= (ll,,lé) .

It is clear that F' is a D-homomorphism. This proves (3).
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To prove (2), consider a D-homomorphism f : A — S. It is clear that f admits
a Z-lifting f : A — QI'/T

~ Qr/T
/

A v
\ S = Qr/(T + @A)

For i = 1,...,u consider the map ¢g; : A — QA/A,
gi(a) = 8;f(a) — f(Da), a€A.
They measure the obstructions for fto be a D-homomorophism. Let us write
=) w-gila),
TEF,

where gi : A — Q/Z is a Z-homomorphism and g is nonzero only for a finite
number of pairs (i,m),i=1,..., 1, ™ € F.
Let g* : A — QI'/T" be the D-homomorphism

Z z%gt (%) .

Define
g:A—Qr/r

= Z /g\;tr(a)gjz'fr )
1,7

by

the sum being in fact finite.
Let us show that h = qg-— f A — QI'/T is a D-homomorphism:

9;9(a) — g(0;a) = Zx 8"‘8am7r+Zg,r W—Zl’ (0%0ja)x

’l ™, ’L T,
=Y gi(a)r = g;(a)
= 0;f(a) — f(0ja) .
Denote, h = v o 71 h: A — S.1Itis a D-homomorphism. Obviously,
h € im(y) .



Denote, g = vog, g: A — S. This is also a D-homomorphism. The formula
above for g shows that

g € A(im(y)) .
Thus
F=g-heA(ker(y)) .
This proves Proposition 2.2.

2.3 Theorem. Let M be a periodic A-module of type L and let A C M be its
minimal lattice. Consider the following homomorphism

@ A* = Homz(A;Q/Z) — Homp(A4;S) = J/\T,

o(f)a) = ZZT()‘f(?Tiaaa)ﬂfi €9,

[43
where f € A%, a € A and « runs over all multi-indices o = (41, .. ,1s) with
iyooyts € {1, ., i} and 2 denotes Ti, Tiy - - . Ty, while 3% denotes 0:,0;, ...

0. Then ¢ is a monomorphism and its image coincides with the minimal lattice

of M.

The proof makes use of Lemma 2.5 below and will therefore be postponed until
after that lemma has been presented..

2.4 Let C' be a D-module. We will say that C is a D-module of type 0 if
0.C =0forall k =1,..., . We will say that C is a D-module of type i (where
i€{L2,...,uP)if8,C=0fork#i, k€ {l,...,u} and (14+9,)C =0.

A D-module Y will be called primitive if it has a filtration

Uri=v

with a property that for each j = 1,2,... there exists a number i = i(j) €
{0,1,..., 1} such that Y;/Y;_ is a D-module of type .

Any submodule and any factor-module of a primitive D-module is also prim-
itive. The direct sum of two primitive modules is also primitive.

A basic example of a primitive D-module is provided by Y = QA with the
D-module structure given by Fox derivatives. To show this, one can proceed as
follows. Let

0O=YyCcy,cY,C...,

€0, €1,€2,. ..

be all elements of the free group F,, in a linear ordering such that each e,, is a
reduced word and can be written as

— €
en = T5ey
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where k < n,i € {1,...,pu} ande = 1. Let Y,, be the linear hull of eg, ey, . . . , e,,.
Then Y,, /Y.,y is a D-module of type O (if ¢ = 1) or of type i, i € {1,... u} (if
e=—1).

2.5 Lemma. Let M be a A-module of type L and let X C M be a D-submodule
which is finitely generated over 7 and generates M over A. Let Y be a primitive
D-module. Then the kernel of any D-homomorphism

g: X Y

generates M over A.
Proof. See the proof of Lemma 4.4 in [F].

2.6 Proof of Theorem 2.3. Let us show that ¢ is a monomorphism. Assume that
f € A* and ¢(f) = 0. This means that for each a € A the power series

H
Z Z % f(m0%a)x;
i=l «
represents an element of QA/A. For each i = 1,..., u define
Fi: A— QA/A
by
Fi(a) = szo‘f(maaa) :

F; is a D-homomorphism and, on the other hand, QA /A is a primitive D-module.

From Lemma 2.5 it follows that K; = ker F}; generates A over A. If a € K then

Oxa € K; and m.a € K; for each k € {l,...,u}. Thus K; is a lattice and

K; ¢ A, which implies K; = A. Because this is true for any 7 it follows that
= 0.

! Our next step will be to show that im(y) is invariant under Z and m,,..., m,.

To do this we will introduce operations

8

Ty, Tyt AT — AT
by

ZN)a) = f(za)
(mif)(a) = f(mia)
for

feAd*, aeA, i=1...,u.



To show that ¢ commutes with zZ,7,..., 7, we compute:
I
oEHla) = Z Z x fzm0%)x;
= - Z Z f(0:0%)x
— Z (yf du
[ >1

= (Ze(f)(a)  (modQA)

and

o(m; f){a) ZZCL‘ flmjm0%a)x;

= Zmaf(ﬂ'jaaa)mj
(WP( Ma) .

To prove that im(yp) is a lattice there remains to show that im(y) generates
Homp(A4;5) = M over A.
Consider the homomorphism

. A* = Homgz(A; Q/Z) — Homp(A,S) = M ,

PN =32 f(0%)

for f € A* and a € A, where « runs over all multi-indices. Note that 1 is
essentially the homomorphism which appeared in the proof of Proposition 2.2; it
was proved there that im(y) generates M. Now, it is easy to check that

W(f) = »l9),

where g € A*, g(a) = — f(za) for a € A. Thus, im(yp) D im(¢)) and so im(y)
generates M over A.

In order to show that im(y) is the minimal lattice we can check the condition
of Theorem 1.7 for A*. Since

(muzf)(a) = f(Zmsa)
for f € A*, a € A, the identity
w2 AY =, A"

is equivalent to the following statement: for each Z-homomorphism g : 7,4 —
Q/Z there exists a Z-homomorphism /1 A — Q/Z such that the diagram
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z

7 A

A

Q/1

commutes. The last statement is equivalent to the fact that Z|, _, is a monomor-
phism, which is in fact true: if @ € wcA and Za = 0 then 0;a = 0 for all
B
i=1,...,puand a = ) T;0;(a) = 0. The identity
i=1
T.ZA" =, A"
follows similarly. '
This proves the theorem.

§$3. Hermitian forms on periodic modules

3.1 Let M;, M, be two periodic A-modules of type L. Consider a Z-bilinear
pairing
[,]:M; x M, — S =QI/(T +QA)
with the properties: '
(@) [Aa,b] = Aa,b] for A € A, a € M, b € Ay
(b) [a, \b] = [a, BN ;
(¢) [, ] is non-degenerate in the following sense: for b € M, let @, : M| — S
be the A-homomorphism defined by ¢,(a) = [a, b], then the map

A/fzﬂﬁ] :HomA(]\I];S) y bl—égpb R

is an isomorphism.
In the case M = M, = Al we will consider an additional property:
(d) [a,b] = e[b,a] for a,b € M, e = +1.

3.2 Theorem. Let M,, M, be two periodic modules of type L supplied with a
pairing

[, ]: My xM;— S
satisfying (a),(b),(c) of subsection 3.1. Then there exists a unique Z-bilinear form

<,>IA1XA2—>Q/Z
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(the scalar form) defined on the minimal lattices Ay C M, Ay C M, such that
(1) forae A, be A

m
[a, b] = Z Z:I:"‘ (0%, m;b) z; (modQA) ,
i=! «

where o runs over all multi-indices o = (iy,...,1s) with i; € {1,...,pu},
¥ =2y x4, . Ty, and 0% = 03,0, .. L0i);
(2) (ma,b)y = {a,mb) foralla € Ay, b€ Ay, i =1,..., 4
(3) (za,b) = (a,zb), where z = 1 — z;
(4) () is non-degenerate, i.e. the associated map Ay — A} = Homgz(A;Q/Z)
is an isomorphism.
Conversely, given a scalar form { | ) with the above properties, the formula in
(1) defines a pairing A; x Ay — S which can be uniquely extended to a pairing
M, x M> — S satisfying (a),(b),(c) of 3.1.

Proof. Defining a pairing M, x A, — S satisfying (a),(b),(c) of 3.1 is equivalent
to specifying a A-isomorphism

]\12 — HomA(M'];S) = ﬁl 5
and by Lemma 2.6 of [F] and Theorem 2.3 this is equivalent to specifying a
D-isomorphism
A2 — AT

which is the restriction of the above homomorphism to the minimal lattices and
which represents the scalar form.

3.3 Theorem. Let M be a periodic module of type L and |, | : M X M — S be a
pairing satisfying (a),(b),(c) of 3.1. The pairing | , | satisfies (d) of 3.3 if and only
if the scalar form ( . ) is (—¢)-symmetric: {a,b) = —¢ (b,a) for a,b € A; here A
is the minimal lattice of M.

The proof is similar to that of Theorem 3.3 of [F].

§4. Blanchfield forms

4.1 F-links and Seifert surfaces. An n-dimensional p-component link is an
oriented smooth submanifold 3" of S"*2, where X" = YruU.. U Z;j is the
ordered disjoint union of ¢« submanifolds of S+, each homeomorphic to S™. Let
X = §"+1 —T(%) be the complement of a tubular neighbourhood T'(X) of X in
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$7+2 Fix a base point * € X; for each ¢ = 1,..., u the meridian m; € m (X, *)
is defined up to conjugation.

A splitting [CS] for ¥™ is a homomorphism (which is defined up to conjuga-
tion) s : m (X, *) — F), onto the free group with p generators ty,...,t, having
the following property: the image of the ith meridian m; is conjugate to t; € F},,
i=1,...,

An F-link [CS] is a pair (X", s), where " is a link and s is a splitting for
. Two F-links (1, s1) and (X, s2) of the same dimension and multiplicity are
equivalent if there exists a diffeomorphism h : Sn2 ., gt taking E7 onto

n_ preserving the orientations of 7*2 and ¥,, v = 1,2 and mapping s; onto
81,

A link £ is a boundary link if there is an oriented smooth submanifold V!
of §7+2 such that V! = V**'u...UV*! s the disjoint union of submanifolds
Vl-"Jrl satisfying OV; = Z; (i = 1,..., ). If each V; is connected, we say that V'
is a Seifert manifold for .

Any Seifert manifold V' of a boundary link ¥ defines an obvious splitting sy':
if o is a loop in X, then sy ([a]) is the word in ¢y,...,1, obtained by writing
down tf" (e; = 1) for each intersection point p of o and V; (where g; is the local
intersection number) and then multiplying these words in order of the appearance
of the corresponding intersection points in c.

Conversely, any link admitting a splitting is a boundary link, cf. [G]. Choosing a
splitting is equivalent to a choice of a Seifert surface up to embedded concordance,
c.f. [CS],[F5]. All possible transformations of the Seifert surface which preserve
the F-structure were described in [F5].

4.2 Torsion links. In this paper we will consider a particular class of even-
dimensional F-links. An F-link (229, s) is called torsion if

(a) the splitting s : 7 (S?4T? — £2¢) — F), is an isomorphism;

(b) (S22 — ) =0for I <i<g;

{c) the group 7rq(52q+2 — %) is Z-torsion and has no elements of order 2.

It is the goal of this paper to classify torsion links in purely algebraic terms
for the case g > 4.

Let V be a Seifert manifold for ¥ with sy = s. We will say that V' is minimal if
each component V; of V' is (¢—1)-connected and the maps i,V — Sty
(defined as small shifts in directions of the positive and negative normal to V;,
respectively) induce monomorphisms in g-dimensional homology. Gutierrez [G]
has shown that such minimal Seifert manifolds always exist.

4.3 Poincaré duality. Let (X",s) be an F-link in Sn+2 and let X = S+ —
T(E") be the complement of a tubular neighbourhood T(L) of ¥ in S™*2. Fix a
particular epimorphism so : (X, ) — F), onto the free group £y, inty,...,t,.
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Consider the covering
X =X

corresponding to the kernel of sy; the group F), acts on X as the group of covering
transformations. The homology groups

HJ (X;Z), r=12,...

are modules over A = Z[F,]. Sato [S] has shown that these modules are of type
L.

Fix a triangulation of X and consider the corresponding equivariant triangu-
lation of X and the simplicial chain complex C,(X). Let X! denote the dual

triangulation of X and let C. (X') denote the similar chain complex. C, (X)

and C, (X ') are complexes of free finitely generated left A-modules. There is an
intersection pairing (cf. Milnor [M1])

CAX"Y x C5(X,0X) > A, (B —a B

for ¢ + j = n + 2 with the properties:

(1) it is bilinear over Z;

(ii) (ga) - 3 = gla - 8), a-(g8) =
3 € Cj(X,0X).

This pairing defines a chain map

(a-B)g" for g € F,, a € Ci(X"),

C;(X,0X) — Homy (C4(X1); A)
inducing the Poincaré duality isomorphism
Hy(X,0X) — H(C(X");A) ,

where the bar means that the module under it, which is naturally a right A-module,
should be converted into a left A-module using the standard involution ¢; t;'
of A.

4.4 Ext-functors. The cohomology module H(C(X'); A) could be computed
using the universal coefficient spectral sequence [EC]. As shown in §5 of [F5],
there is an exact sequence

0 — (H; 5(X") = H(C(X');A) — ' (H; (X)) -0

and the image of ¢*(H, »(X')) coincides with the Z-torsion part of HYC; A).
Here e (M) denotes

Ext{ (M A) .

49
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It was also shown in [F5] that for any module M of type L there are natural
isomorphisms

e' (M) ~ Homy (M;T/A) ,
e*(M) ~ Hom, (7M;QT'/(I' + QA))

where [' denotes the ring of formal power series in non-commuting variables
Ty,...,x, with integral coefficients, QI is a similar ring with rational coefficients,
A is embedded in I" and QA is embedded in QI via the Magnus embedding.

4.5 The Poincaré duality isomorphism together with the above mentioned formulas
for ¢! and e? produce two families of non-degenerate Hermitian forms:

B;_ ](X)XB( )—>F/A

Toa(X) x T5(X) - QU/(T + Q)
where i +j = n+ 2, and Tj()~() = Torsz HJ()~() Bj(f() = HJ()?)/T]()Z') We
refer to [F5] for a more detailed description of these forms.

Note that from the existence of these forms it follows that all Alexander mod-
ules H.(X), 1 < k < 2q of a torsion link are zero, except for the module H,(X X).

4.6 Consider also the completed chain complex
CLX") =T @, C.(X)
(the completion of C, ()Z' 'Y with respect to.powers of the augmentation ideal of
A). There is obviously an intersection pairing
CUX") x C;(X,0X) =T
with properties similar to those of 4.3. The completed compiex is acyclic [F5]. Us-

ing this fact one can find an explicit description of the Hermitian forms constructed
in subsection 4.5. We will do this now for the case of the pairing

[, ]: Ty(X) x T(X) — QU/(T +Q4)

under the assumption that n = 2gq. _
Let the cycles & € Cp(X') and 8 € C’,I(X) represent classes [«], [8] € T,(X).

Then there is an “infinite” chain ¢ in C (X'} with d¢ = . On the other hand

there is an integer V # 0 and a chain d € C’qﬂ()w() with N3 = 0d. Then,

la,b] = %c-dEQF/(F—i—QA) ,

where a = [a], b =[] € Tq()z). The last formula is essentially contained in the
arguments of [F5}], §5.



§5. Seifert manifold and Alexander modules

5.1 Let us first introduce an algebraic notion which describes the homology
structure of a Seifert manifold of an even-dimensional link.
An g-symmetric torsion isometry structure of multiplicity ju is a tuple

(A7< ’ >3277T17~'~77T;t)

where A is a finite abelian group, (,): A® A — Q/Z is an e-symmetric non-
degenerate bilinear form and z, 7, .. ., m, t A — A are endomorphisms satisfying
(i) (za,b) = (a,zb), where a,b € A and Z denotes 1 — 2 : A — A’
(i) (ma,b) = (a,m;b);
(iil) 7y + M +...—|—7T/L =14;
(lV) Ty = 51‘_.]'71'_/'.

Two torsion isometry structures are isomorphic iff there exists an isomorphism
between the corresponding groups, commuting with z, 7, . .. , T, and bringing
one form ( , ) onto the other.

5.2 Non-degenerate Hermitian forms
[.]:Mx A —QI'/(T + QA)

on periodic modules, which were studied in §3, provide an algebraic source of
examples of torsion isometry structures: if A C M is the minimal lattice of M
and {,): Ax A— Q/Z is the scalar form, then the tuple

(Aa< ) >,Z,7F|,...,7F“)

is a torsion isometry structure (here z, 7, ... , 7, denote the restrictions to A of
the corresponding operators on ATl). If the original form [, | is e-Hermitian, then
(,)is (—&)-symmetric, cf. 3.3.

We will say that an abstract torsion isometry structure A admits an embedding
in a periodic module A of type L supplied with a non-degenerate Hermitian form
[, ]: M x A — QU/(P+QA) if A is isomorphic (as a torsion isometry structure)
to the minimal lattice of A[f.

If a torsion isometry structure admits embeddings in two periodic A-modules
(M, [, ].), v = 1,2, then there exists an isomorphism f : M, — AL, preserving
the forms; this follows from Lemma 1.5 and Theorem 3.2.

A torsion isometry structure A will be called minimal if for every a € A,
k=1,..., p, either of the conditions zm,.a« = 0 or Zr,a = 0 implies T,a = 0

Every torsion isometry structure, admitting an embedding in the periodic A-
module, is minimal.

5.3 Geometrically, torsion isometry structures appear as the middle dimensional
homology of Seifert manifolds of even-dimensional links. Namely, let (324, 5) be

Ak siatiaaens S AEIIU Tl PSVAAVSGOY AOIUMLIOLD MM TSR G aeaIvHIUIUIIMG fiiiaty —o

a p-component F-link and V24! < S$*9+2 be any Seifert surface for (X9, s).
Denote A = To(V') = Torsz Hy(1") and let

(,):AxA—-Q/Z

be the classical linking form (note, that orientation of V' is specified by the orienta-
tionof ¥). Letm; : A — A, i =1,..., 4, be the restriction on the torsion subgroup
of the composition H,(V) — Hy(V;) — Hy(V). An operation z : A — A is de-
fined as follows. Let Y denote the result of cutting the sphere $2¢+2 along V. Let
iy,i_ : V — Y be small shifts of V' in the directions of the positive and negative
normals to V/, respectively. Then the map iy, —i_. : H.(V) — H.(Y) is an
isomorphism (cf. [F4], §1.1) and we define z(v) € H, (V) for v € H (V) by

(ts = 1) (2(v)) = i1 (V)

. . 1 .
It is easy to see that the tuple (A, (,),z,m,...,m,) is a (—1)9" -symmetric
torsion isometry structure.

5.4 From now on we will be dealing with torsion links, cf. 4.2. A Seifert manifold
V24+1 of a torsion link is minimal iff each component is (¢ — 1)-connected and
the corresponding torsion isometry structure (described in 5.3) is minimal. In this
and the subsequent sections we will show that the torsion isometry structure of the
minimal Seifert manifold admits an embedding in the Alexander module supplied
with the Blanchfield form. This result combined with the algebraic considerations
of §3 will give a proof of the fact that the isomorphism type of the torsion isometry
structure of a minimal Seifert manifold is uniquely determined by the link.

5.5 Let (%9, s) be a torsion link and Vz.qle be its minimal Seifert manifold.
Consider the (2¢ + 2)-dimensional manifold Y obtained by cutting S?9+2 — %
along V. The boundary of Y is the disjoint union of

Y UOITYNI YU YU...UJYUITY
where each 07Y, € = £, is homeomorphic to V;. There is an identification map
Y Y — Sty

which is a homeomorphism on int Y and maps 8] Y and 9, Y onto V;. The internal
normal on &Y corresponds under ¢ to the positive normal on Vi. N

The map ¢ : Y — S2t2 _ v = X Canl)e lifted illtO X, where X — X is the
universal covering. One can find a lifting ¢ : Y — X such that

oY forg=t;,
GY)Ngh(Y) =L 7Y forg=1t;",

] for other g € F),, g # 1.
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Identify Y with its image in X under IZ It is clear that

U ng)?.

QGF;L

5.6 Let f: Hy(V) — H(I()?) be the composition of i, —i_, : Hg(V) — Hy(Y)
and i, : Hy(Y) — HyX), where i : Y — X is the inclusion.
We claim that the map

frHy(V) — Hy(X)

has the following properties:
(i) it is a monomorphism;
(i) f(ma) =mf(a) forac Hy(V),i=1,..., 1
(i) f(za) = zf(a);
(iv) the image of f generates Hq()N() over A.
The proof is almost identical to those of [F], 6.18-6.25, where odd-dimensional
links where considered, and will therefore, be omitted.
Note that from (i) it follows that the group H,(V') is in fact finite.

5.7 Corollary. im(f) is the minimal lattice in Hy(X).

Proof. Conditions (ii),(iii),(iv) mean that A = im(f) is a lattice. Let us show that
it is minimal. Assuming the contrary, one may conclude that by Theorem 1.7 there
exists an integer x € {1,...,u} with

mezA g A
or
m.ZA ; meA .
If 7.zA g 7. A then there is x € 7, A with  # 0 and
(mrzA,z) =0 .
From this it follows that
(A, Zx) =0

and Zz = 0. Now x = 0 follows from the minimality of A; this gives a contra-
diction. The assumption

T ZA G meA

might be considered similarly.
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§6. Computation of the Blanchfield form

6.1 Let (£2¢,5) be a torsion link, X = 242 _ T(Z) be the complement of a
tubular neighbourhood of %, and X — X be the free covering. Further, let V' be
a minimal Seifert manifold for (2, s), and let f : Hy(V) — Hy(X) be the map
constructed in 5.6. From §4 we know that there is a Blanchfield form

[, ]: Hy(X) x Hy(X) — QU(T +QA)

and our aim is to compute this form on the image of f. We want to express the
result in terms of the torsion isometry structure of the Seifert surface. The answer
is as follows.

6.2 Theorem. For a,b € Hy(V)

o
[Fla), FO)] = > > a™ (0%, mb)x; € QU/(T+QA),
i=1

o
where o runs over all multi-indices o = (iy, . .., is), with 1,12, ..., 1s € {1,....u}
z& denotes the monomial

TiTiy - - Tiy
and 0% denotes

0;,0i, | - O
with 8; = —zm; « Hy(V)) — Hq(V'). The brackets ( , ) denote the linking form on
V.

Comparing the formula of Theorem 6.2 with Theorem 3.2 and Corollary 5.7 we
obtain

6.3 Corollary. The torsion isometry structure of any minimal Seifert manifold of
a torsion link admits an embedding (cf. 5.2) in the Alexander module of the link
supplied with the Blanchfield form.

In fact the map f: Hy(V) — Hq()z ) provides such an embedding.

6.4 Corollary. The isomorphism type of torsion isometry structire of any minimal
Seifert manifold of the torsion link is uniquely determined by the link.

This follows from results of §3: a minimal lattice with its scalar form is uniquely
determined by the Hermitian form.

6.5 Proof of Theorem 6.2. According to 4.6, in order to compute the value of the
Blanchfield form [f(a), f(b)] we have, to find an “infinite” chain ¢ € C{;+1(Xl)
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in the completed complex such that Jc is finite and represents f(a), and also a

chain d € C,y(X) with dd = Nz, where z is a cycle representing f(b) and N
is a nonzero integer. Then

[/ (a), f(0)] =

Thus, our first aim is to construct this infinite chain c.
But before doing this we must discuss some general constructions of (¢ + 1)-

%(:- d € Qr/(T+QA) .

dimensional chains in X.

6.6 Let Y be the manifold obtained from S?** — ¥ by cutting along V. We will
identify Y with its embedding in X constructed in 5.5, and will identify V' with
oty cY c X.

Let v be a g-dimensional cycle in V' and let m;zv be a cycle representing
miz[v] € Hy(V), i = 1,..., . By the definition of z (cf. 5.3), there exists a
(¢ — 1)-dimensional chain ¢, in Y with dc, € 9Y such that

ey =iy (v) — (ip —i-)(zv) .
Identifying 7, (v) with v and i (zv) with zv, we should identify i_(zv) with

/1
Z ti(mizv)
i=1
and we have

~fu+g 7rlzv ,

where z; = t; — 1 € A.
6.7 Lemma. Let [c,] be the homology class in Hyy1(Y,0Y') represented by the
cycle ¢, constructed above. Let
0¥ D H, 1 (Y,07) x Hy(Y) — Q/Z
denote the linking pairing in'Y and
(, ) Hy(V) x Hy(V) — Q/Z

denote the linking pairing in Y. Then for any class x € Hy (V) the following
formula holds

(e, (e — i) (@) = = ([vh2)

where [v] € H, (V') denotes the homology class of v.

Note first that Hy,,(Y,0Y) as well as Hy(V') are in fact Z-torsion and thus the
linking pairings are correctly defined.

Hermitian forms on periodic modules and even-dimensional links 87

The proof of Lemma 6.7 is identical to the proof of Lemma 6.22 in [F] and is
therefore omitted.

6.8 We now proceed with the construction of the “infinite” chain ¢ such that

de = f(a).
We are given a homology class a € Hy (V). For each multi-index a =
(i1,...,1s) and each number ¢ € {1,...,u} define

T
al, = mi 2w, z...m2mia € Hy(V) .

Let a cycle v, realize a',. By 6.6, there is a (¢ + 1)-dimensional chain ¢!, in ¥’
with ¢!, C 9Y and

‘u = Uy + E ’TJ’UuJ ’

where aj = (i1,...,1s,7) for a = (z’,,...,z‘s). Put
I3
S
a i=1
where « runs over all multi-indices and |a| denotes s for «« = (41,...,4,). This

is a convergent power series in C(’l 41 (X 1) and a short computation identical with
that given in 6.25 of [F] shows that dc is finite and represents f(a).

6.9 Going back to the proof of Theorem 6.2, assume that we have two homology
classes a,b € H,(V). In the previous subsection we have found an infinite chain
¢ with Jc representing f(a). Let d be a chain in V' with 9d = N3, where 3 is a
cycle representing b. Then

1

[f(a), fB)] = e (i —i-)(d)

#ZZ Dl 290 (6], (i — i )(b)

=YYl (el )
a  i=1
(by virtue of Lemma 6.7), and then computations identical with those of 6.25 in
[F] complete the proof of Theorem 6.2.
Combining Theorem 6.2 with 5.7 we obtain:

6.10 Theorem. Let V24! be a minimal Seifert manifold of a torsion link (%9, s).
Then the torsion isometry structure determined by V (cf. 5.3) is isomorphic to
the torsion isometry structure of the minimal lattice in H, X supplied with the
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Blanchfield form
Hy(X) x Hy(X) — QU/(I' + QA)

(¢f. 5.2). Thus, the isomorphism type of the torsion isometry structure of a minimal
Seifert manifold is determined uniquely by the link.

6.11 Corollary. The Blanchfield form
H,(X) x Hy(X) — QU/(I'+ QA)

of a torsion link of dimension 2q is (—1)%-Hermitian.

Proof. The scalar form on the minimal lattice is isomorphic to the torsion isometry
structure of any minimal Seifert manifold, which is obviously (—1)9*!-symmetric.
The result now foliows from Theorem 3.3.

§7. The main results

7.1 Theorem. Let (£29,5), ¢ > 4, be a torsion link. Then any two minimal Seifert
manifolds V and W of ¥ (with syy = s = sw ) are ambient isotopic (i.e. there exists
a smooth isotopy hy : S92 — S22t ¢ [0, 1], ho = id, with hy(V;) = W} for
each component V; of V and the corresponding component Wi of W, 7 =1,... 1.
Moreover, hi|;, V — W; preserves the orientations).

Proof. We will use the stable-homotopy reduction of the classification problem

established in [FS]. Let (V,uy, 2y, 7),...,7Y) and (W, uw, zw, 7}, .. )

be stable isometry structureq of the Seifert manifolds V' and W, respectively (17
denotes the bouquet \/ V; and similarly for ). By Theorem 2.6 of [F5] in

order to show that V and 1V are ambient isotopic it is enough to construct an
S-equivalence

I Vo1V
with
Jozy =zwolf,
fOWV =" of , oi=1,....
o(fAf)=
(the sign “=" means “stably homotopic” here). Now, both V and W are (g—1)-
connected CW-complexes. By Poincaré duality, we may assume that dimV =
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dimW = g + 1. We also know that Hq+|(17) = HQHU/@\’) = 0 and that Hq(f/)
and Hq(ﬁ\/) are finite groups with no element of order two. We can apply (an
easy part of) the classification Theorems 6.2 and 7.2 of [F3] to show that such an
S-equivalence f exists if and only if the torsion isometry structures of V' and W
are isomorphic. But this last fact follows from Theorem 6.10.

This completes the proof.

7.2 Theorem. Two torsion links (£29,s,), v = 1,2, with ¢ > 4, are equivalent

if and only if the corresponding Alexander modules Hy X, v = s, together with
their Blanchfield forms

Hy(%,) x Hy(X,) - QU/(T +QA)

are isomorphic.

Proof. Assume that there is a A-isomorphism
f 1 Hy(X)) = Hy(Xa)

preserving the Blanchfield forms. Let V,,v=12,bea mi~nima1 Seifert manifold
of ¥,. The restriction of f to a minimal lattice of H,(X;) is an isomorphism
between minimal lattices of Hq()z 1) and Hq()zz). This restriction preserves the
scalar forms (this follows from Theorem 3.2). By Theorem 6.10 we obtain that the
torsion isometry structures of V; and V; are isomorphic. Then, using the results of
[F5] we obtain by arguments similar to those of the proof of Theorem 7.1 that V;
and V, are ambient isotopic; in particular ¥; and %, are equivalent (as F-links).

7.3 Theorem. Two torsion links (3%9,5,), v = 1,2, with ¢ > 4, are equivalent if
and only if the torsion isometry structures of any pair of their respective minimal
Seifert manifolds are isomorphic. :

Proof. This follows from Theorem 7.2 plus the remark in 5.2.

7.4 Theorem. Given a minimal e-symmetric torsion isometry structure A of mul-
tiplicity p with no 2-torsion and an integer q > 4 with (—1)9%! = ¢, there exists a
torsion link (X%, s) of . components and its minimal Seifert mamfold V2a+! such
that the torsion isometry structure of V' is isomorphic to A.

Proof. This follows from Theorem 2.6 of [F5] plus the homotopy classification of
maps between A}I—spaces given in [F3].

7.5 Theorem. Given a periodic A-module M of type L with no elements of order
2 and an e-Hermitian non-degenerate form

[,]: M x M — QU/(T+QA)
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for each q > 4, with (—1)9 = &, there exists a torsion link (3?1, s) in S22

such that the Alexander module H,(X) of (3%, 5), considered together with its
Blanchfield form

H,(X) x H, (%) — QT/(I + QA)

is isomorphic to (M, ], ]).

Proof. Consider the minimal lattice of A/ together with its scalar form (cf. §3).
By Theorem 7.4, one may realize the corresponding torsion isometry structure by
a minimal Seifert manifold. The result now follows from 5.2.
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