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The study of finite automata and their associated formal languages led Kleene
[KI1] and Schutzenberger [Sc] to the notion of a rational formal power series,
generalizing the usual notion of a rational function. Given a finite alphabet
X ={x;,...,x,}, a language L is a set of words w in X. L is called regular (or
recognizable) if there exists a finite automaton answering the following question:
given a word w in the alphabet X, does w belong to L? With each language L one
associates a formal power series

=72 aww,

the characteristic series of L; here w runs over all words in X and a(w) is 1 or
0 according to w belongs to L or not. Theorem of Kleene [ K1] and Schutzenberger
[Sc] states that L is regular if and only if y, is rational. There are several equivalent
characterizations of rational power series; one of them is taken in Sect. 1 as the
definition. A recent exposition of the theory of rational power series and its
applications to languages and automata can be found in [BR]. Here I would like to
mention some easy facts which are important for the understanding of the sequel.
Although it is an infinite formal power series, a rational function in non-commuting
variables is in fact a finite object: due to the number of linear recurrence relations
just a finite number of coefficients determine the other ones. Moreover, any
rational series can be represented by a finite analytic formula.

It turns out that there is a surprisingly tight relation between noncommutative
rational functions and algebraic objects appearing in topology of manifolds in the
study of boundary links. One aspect of this connection was established in [FV,
Sect. 3]: it was shown that any rational function generates a link module, i.e.
a module which can be realized as homology module of a boundary link, cf. Sato
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[S]. (Note that any semi-simple link module can be obtained in this way, cf. Sect. 4
of the present paper.) In [FV] it was also proved that the ring of rational
functions coincides with some universal ring (the Cohn localization of the free
group ring).

The present paper establishes a relation between link modules and rational
power series in the other directions:

{link} — {rational function} .

It is shown here that each link module M defines a rational formal power series ¥y,
containing all semi-simple information about M. In the case of knots y,; can be
expressed through the classical Alexander polynomial [L]. Examples show
that for links of 4 > 1 components the rational function y,, is richer than the link
Alexander polynomial derived by studying the homology of the free abelian
covering [B, H].

Note that there exists another path connecting logic, languages, automata (and
rational functions) with topology: it is the study of automatic and hyperbolic
groups, cf. [Gr, E].

More precisely, the aim of the present paper is to associate a sequence of
rational formal power series

Xis+ s Xn

with any n-dimensional boundary link, providing rather strong link invariants. To
compute x; one has to calculate a finite number of integers (the traces of certain
linear maps acting on the homology of a Seifert surface).

Among the other results of the paper let us mention the symmetry property (cf.
Theorem 8.2)

Xa+ 73=0

(similar to the well-known symmetry property of the Alexander polynomial) and
also

Xg=N—1

for a rational function # with integral coefficients if the link is null concordant (it is
a generalization of a theorem of Fox and Milnor [FM]).

The construction of y,, uses the fact (established in [ F3]) that any link module
M contains a unique minimal lattice A = M which is a finite dimensional vector
space supplied with a number of endomorphisms. The minimal lattice 4 deter-
mines M uniquely. Then we apply ideas of Procesi [P] who showed the role of
trace-type invariants in the semi-simple classification.

1 Noncommutative rational functions

Here we review basic definitions of the theory of noncommutative rational func-
tions, refering to [BR] for a complete systematic study.
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1.1. Let k be a field. A formal power series in noncommuting variables x,, . . ., x

n
with coefficients in k is an expression of the form

y =Y a@x*

where o runs over all multi-indices o = (iy, . . . , i5) with i;e {1,. . ., u} (the empty
sequence J is also allowed), the symbol x* stands for the monomial

Xiy Xip =+ + X

s

(with the convention x2 = 1); a is a function on the set of multi-indices with values
in k, the coefficient function of the power series 7.

A power series y is rational if there is a finite-dimensional linear “machine”
which produces the coefficient function of y. More precisely, v is called rational if
there exists a finite dimensional vector space V over k, linear operators

., Tp,..., T V>V
and two elements ve V, fe V'* such that for any multi-index a« = (iy,. . ., i)
a(@) = f(T,v)

o]';.s_lo...o];l:V__)V

where
T,=T,

(the composition).
The minimal possible dimension of ¥ in the above representation is called the
rank of y; it is denoted by rk(y).

1.2. The set of all formal power series in x,, . . . , x, with coefficients in k is denoted

by
IF'=k&xq,. 0%, .

It is a ring (with respect to usual addition and multiplication). Rational formal
power series form a subset Z — I'. It is a subring [FV]. The ring of rational
functions # was characterized in [ FV] as the Cohn localization of the free group
ring with respect to the augmentation.

Note that for u = 1 any rational formal power series can be represented as

_ o)
q(x)

where p(x) and g(x) are polynomials and ¢(0) # 0, cf, [BR, FV]. Thus, the notion of
a rational power series generalizes the classical notion of a rational function.

The following two statements show that a finite number of coefficients of
a rational power series determine the whole coefficient function.

1.3. Proposition (cf. [BR, p. 33]). Let

y =2 a()x*

be a rational function with rk(y) < n. Suppose that a(x) = 0 for all multi-indices « of
length < n— 1. Then y = 0.
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1.4. Corollary. Let y,,7, be two rational power series of rank <n and let
a(a), b(a) be their coefficient functions. If a(x) = b(x) for every multi-index « of
length < 2n — 1 then y, = y,.

2 P-modules and their rational functions

Our main goal in this paper is to study link modules which are modules over the
group ring of the free group satisfying certain additional properties, cf. Sect. 7. It
turns out that the structure of a link module is determined by a simpler finite-
dimensional object, the minimal lattice. It is a P-module, P being the ring defined
below. The present section gives a construction associating a rational function to
a P-module.

2.1. Let k be a field and p > 0 be a fixed integer. Let P denote the k-algebra with
generators z, my, . . . , w, subject to the following relations

nr=mn, i=1,...,u,
men;=0 fori#j,
T4+ 4w, =1
P has an involution  : P — P defined by
Z>z=1—z, M, i=1,...,u.
We will consider also another k-algebra
D =k<{0y,...,0,),

the free k-algebra of polynomials in non-commuting 04, . . ., d,. There is a ring
homomorphism
D—-P, O —zmy, i=1,...,u.

This homomorphism converts any P-module into a D-module.
2.2. The ring I' (defined in 1.2) is a D-module where d;: I' — I is the map given by

0y =Y, a(in)x”

a

for
y =Y a(@)x*.

Let A = k[ F,] be the group ring of the free group F, with generators ¢, . .
The ring A is embedded in I' via the Magnus embedding

»

ikl 4+x, e l—xi+xP—xP 4+

It is easy to see that A is a D-submodule of I' and the restriction d;|,: A+ A
coincides with the Fox derivative with respect to t;.
The ring of rational functions # < I is also a D-submodule.
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An example of P-module is provided by I'/A. The P-module structure is given
by defining 7;y to be the sum of all monomials in y which start with x; on the left.
Thus

my =Y. a(io)x;x* mod(A)

for

y =13 a(@x* mod(A);

the multiplication by ze P is given by
ZV=(‘51—52—"“'5‘¢)7-

The factor-module #/4 is a P-submodule in I'/A. It has the following finiteness
property:

2.3. Lemma. Let y be an element of #/A and let A = /A be the P-submodule
generated by y. Then dim, A < 0.

Proof. 1t is well known that any rational function generates a D-submodule of
I" which is finite-dimensional over k, (cf. [BR]). Thus, the D-submodule B = R/A
generated by y has finite dimension over k. But A = 71, B+ 1,B + - - - + 7, B and
the lemma follows.

We will see later that #/4 is a “universal” P-module: it contains (almost) every
simple P-module 4 with dim, 4 < oo.

2.4. The relation between P-modules and rational functions is twofold. We have
seen that any rational function generates a finitely dimensional P-submodule of
#/A. Now we will show that one may invariantly assign a rational function to a
P-module.

Let 4 be a P-module with dim, 4 < oo.

Choose a k-basis ay, . . . ,a, of Aand let by, . . ., b, be the dual basis of A* the
dual vector space. Define

n |
X4 = Z Z Zxa<bi, T 0p @) X, .
i=1k=1 a

Here o runs over all multi-indices and for o« = (iy,...,i;) 0, denotes
0i,20iy—1° - - ©0;, (which agrees with the conventions of Sect. 1). The brackets
(b, a) denote the value of the functional be A* on ac A. x4 is a formal power series,
an element of I'.

2.5. Proposition. (a) The element y eI does not depend on the choice of the basis
a,...,a,€A;
(b) x4 is a rational power series, i.e. y € R.
© If
0-A"54-54"-50

is an exact sequence of P-modules then

Ya=Xa + Yar .




548 M. Farber

(d) Let 0=Ayc Ay =...< A, = A be a filtration of A by P-submodules.
Then

n
X4 = Z XAijAi-1 -

i=1
In particular, x4 depends only on the composition factors of A.

Proof. (a) Note that

dimm,A ifa= O

= Cbis MOt = {Tr[nkaa:A —A] ifjal=1.

13

Thus, one may write x4 in the form

I u
Xa = Z (dlm nkA)Xk + z Z (Tr[nkaaak:A - A])xkx“xk .
k=1

k=1 a

It is now clear y, does not depend on the choice of the basis.
(b) Itis enough to show that foreachi=1,...,nand k =1,.. ., uthe power
series

Z x*{ b, M 0ya; )

is rational. But this obviously follows from the definition of 1.1: one may take
V=A,T=0,v=a; and fe A* to be given by f(a) = {b;, ma).

(c) and (d) are now obvious.

This completes the proof.

2.6. Example. Suppose that p =1 and the field k is algebraically closed. Then
P = k[z] and any simple P-module is one dimensional. The isomorphism type of
a simple module is determined by an element Ack (the eigenvalue of z). If
A; denotes such a module then

X

1+ Ax’

X4 =

From 2.4(d) we get that in the general case

X
1+/{,'X

N
Xa = Z
i=1

where A is a P-module with 4 = 1 and 4,,. .., Ay are the eigenvalues of z, each
repeated as many times as its multiplicity.

2.7. Let us estimate the rank of rational function y,.
Since

tk(y; + y2) = rk(y1) + rk(y2)

tk(y:92) < (rk(yg) + Drk(y,)
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(cf. Proposition 1.6 of [FV]) and the rank of

Z xa<ﬁ’ Tckaaai>

is less or equal to dim, A, while rk(x,) = 2, we obtain
rk(x4) < 2p-dim, A - (dime A4 + 1) .

2.8. Given a P-module 4 with dim, 4 < co one may consider the P-submodule
B < #/A generated by y,. The following theorem establishes the relationship
between 4 and B.

2.9. Theorem. Suppose that the field k is algebraically closed. Let A be a simple
non-primitive P-module with dim, A < co. Then the P-submodule of #/A generated
by the image of y 4 is isomorphic (as a P-module) to the direct sum

Lﬂ__J

n times

where n = dim, A.

The notion “non-primitive” will be explained in the next section.
The proof of Theorem 2.9 is given in 4.3.

3 Primitive modules

Primitive modules provide an exceptional class of modules which need a separate
study.

3.1. Let C be a D-module. We will say that C is a D-module of type 0if 6,C = 0 for
allk = 1,..., u. We will say that C is a D-module of type i (where i€ {1,2,...,u})
if ,C=0fork+ike{l,...,u}and (1 +9,)C=0.

A D-module Y will be called primitive if it has a filtration

0=YycYc...cy, UY=Y

with the property that for each j=1,2,... there exists a number i = i(j)e
{0,. .. u} such that ¥;/Y;_, is a D-module of type i.

Any submodule and any factor-module of a primitive D-module is also primi-
tive. An important example of a primitive D-module is provided by Y = A with
D-module structure given by the Fox derivatives, cf. Sect. 2.

3.2. Now we will define primitive P-modules. For any integer je{l,...,u} let
Aj denote the following P-module: 4 ;is one dimensional over k, m; acts as zero on
Ajfor j #iand n; = 1. The multiplication by ze P is zero.

Let also B; for je{l,. .., u} denote the P-module with dim B; = 1, m; = 0 for
i j,n;=1and z: B;— B acts as the identity.

A P-module 4 with dim,A4 < oo will be said to be primitive if each of its
composition factors is isomorphic to one of 4,,. . ., Ay, By, ..., B,.

A will be called to be primitive-free if it has no composition factors among
Ay,...,A,, By,...,B,.
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Because of the homomorphism D — P (cf. 2.1) any P-module has an associated
D-module structure. A primitive P-module is also primitive as D-module. A partial
converse to this statement is given in the following Lemma.

3.3. Lemma. A primitive-free P-module A with dim, A < oo cannot be primitive as
a D-module.

Proof. Assume the contrary. Then A contains a D-submodule B < 4 of type
ie{0,1,...,pu}. If i=0 there exists an element aeA, a0 with da =0,
k=1,2,..., u Since a=mya+ "+ m,a, one of m;(a) is non-zero and the
subspace X — A generated by this m;(a) is a P-submodule isomorphic to A;,
a contradiction.

Assume now that ie{1,... u}. Then we obtain an element a€ 4, a # 0 with
da=0fork +ike{l,...,utand (1 + d;)a =0. Writea = n,(a) + - - - + m,a. If
one of m;a with j = i is non-zero then we can proceed as in the previous paragraph
to get a contradiction. Assuming now that all 7;a = 0 for j + i. We obtain a = m;a
and the linear subspace X generated by a is a P-submodule isomorphic to B; —
a contradiction.

4 Proof of Theorem 2.9

4.1. Let A be a P-module with dim;4 < oo. For any fe A* = Hom,/(4, k) define
a map
wriAd > R/A
by
n
wr@ = Y Y x*x{f, ;d,a) modA .

k=1 a

Arguments similar to those used in the proof of the statement (b) of Proposition 2.5
show that w(a) belongs to #/A. It is easy to see that w, is a P-homomorphism.

4.2. Proposition. Assume that the field k is algebraically closed. Let A be a simple
P-module which is not primitive. Then for any linearly independent fi,. .., f;e A*
the map

FoA® - @A-R/A,  Fo=w;, +wp,+ - +wy,
L—__Y_—J

is a monomorphism.

Proof. We proceed by induction on s. Consider first the case s = 1. We have to
show that w, is a monomorphism for f+ 0. Because A is assumed to be simple,
kerw, =+ 0 implies w, = 0. This means that for any k = 1,2,. . ., u the function

(pk:A ->TI
given by

oula) = Y x*f, mkdaa)

takes its values in A < I'. Consider ker ¢, which coincides with the set of all ae A
such that < f, m,0,a> = 0 for any multi-index a. It is clear that aeker ¢, implies
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njacker g, and also d;(a)eker g, for any je{l,..., p}. Thus kerg, is a
P-submodule of 4. Because 4 is simple and f + 0 we get that ker ¢, = 0 at least for
onek=1,...,u

Note that ¢, is a D-homomorphism. Because A is primitive as D-module and
¢x:A—> A is a D-embedding we obtain that A4 is also D-primitive. But this
contradicts Lemma 3.3. Thus w, is an embedding and we have proved our
statement for s = 1.

Asssume that Proposition 4.2 has been proved for some s. Consider the case
of s + 1 linearly independent functionals f,. . ., f,+,. If the map

FEiitA® - @ A— 2%/4, Fs+1:W1+"'+Wfs+Wfs+1
%K—J

s+1 times
is not a monomorphism then there is a P-homomorphism g: 4> A@® --- @ A4
such that the diagram ——
s times
F
S times ,\g /,,wf:”

A

commutes (to show the existence of g note that F, and w f++, are monomorphisms
whose images have non-trivial intersection and 4 is simple; thus the image of
Wy, ., is contained in the image of F,).
Since A is simple and k is algebraically closed, there exist AtsAa,. .., A€k such
that
gla) = (Liaq,...,Aq)

for any ae A. Then we get

N

Wi @= 3 wr(la)=Y w0
ji=1 Jj=1

and thus
where

S=for = ¥ bt

From the case s=1 of the proposition it follows now that f=0 and so
fi>f2s -, f5, fi+1 are linearly dependent.
This completes the proof.

4.3. Poof of Theorem 2.9. Leta,,. .., a,c A be a basis for 4 and let fis-o s fuE
A* be the dual basis. Then

n

Xa = Z wy . (a;)

i=1
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according to the definition of Subsect. 2.4. By Proposition 4.2 the P-submodule of
/A generated by y, is isomorphic | via > ow ,i) to the submodule of
i=1

13

A® @®A=A4A", n=dim A4
%(_J
n times

generated by a = (a;,...,a,)e A"

Since ay, . . . , a, is a basis of 4, for any ordered set (by, . . . , b,) € A" there exists
a k-linear map B: A — A4 such that Ba; = b; for any i = 1,. .., n. By a Theorem of
Bernside (cf. [Bu, Chap. VIII, Sect. 4.3]) there exists p € P such that pa; = b; for any
i=1,...,n Thus a = (ay,...,a,)€ A" generates the whole 4" over P.

This completes the proof.

5 Semi-simple P-modules
We prove here that y-function gives a semi-simple classification of P-modules.
5.1. Consider first y-functions of primitive P-modules. If 4; and B; are primitive

simple modules described in 3.2 then

x.
=X, = ¥ (k= =k,
XA, J XB, k;o( ) J 1+xj J

Thus the y-function of any primitive P-module has the form
u -
1= 2 (x;— fix;)eA
j=1

with a;, B;€Z, a; 2 0, B; 2 0. Here a; and f; are the multiplicities of 4; and B,
respectively, appearing as simple composition factors. If the characteristic of k is
0 one may determine o; and §; by means of x (note that — f; is the coefficient of
x?). Thus we have proved the following

5.2. Proposition. Suppose char(k) = 0. Two semi-simple primitive P-modules A and
B are isomorphic if and only if y4 = s

53. Let A be a P-module with dim; P < oo . Consider the P-submodule B < %/4
generated by the image of x4 in #/A. By Lemma 2.3 dim; B < o0 and we may
consider the y-function yp of B. We will denote

X4 =1XB>

x4 will be called the secondary y-function of A.
Note that the secondary y-function of a primitive module is zero.

5.4. Let A be a primitive-free P-module with dim,4 < oo andlet Cy, . . ., C, beits
distinct composition factors appearing with multiplicities my,...,m, = 1.
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Then by 2.5 .
X4 = Z m;Xc;

Jj—1

and by Theorem 2.9 above and by Proposition 9 in Chap. VIII, sect. 3, n 4 of [Bu]

M=

Xa= ), (dimCj)-xc, .

J

[}

1

Thus the secondary y-function does not depend on the multiplicities m;.

5.5. Theorem. Suppose that k is an algebraically closed field with Char(k) = 0. Two
semi-simple P-modules with dimy A < oo, dim; B < oo are isomorphic if and only if

Xa=XB-
Proof. We have to prove that y, = yp implies that A and B are isomorphic.
Consider the P-submodule X of #/4 generated by the image of y, = x5 in #/4. By

Theorem 2.9 .
X=CimCGg . . . @ClmCn

where C,,...,C, are distinct primitive-free composition factors of A4 (or B),
appearing with positive multiplicities. Thus, 4 and B have the same primitive-free
composition factors and we may write

A=CTM"®...C™® A,
B=Cli®...®@C™»®B,

where A, and B, are primitive, m;, m;eZ,m; =2 1,m; 2 1, je{l,. .., n}. Assume
that my > m}. Then m, = m| +r, reZ, r = 0. Consider the P-modules

A=Ci®Cr®...oC™+ 4,
B=Cr®...9C™®B, .
We have
X4 = Xa— MiXc, = Yp’

and A’, B’ are semi-simple. As we have seen before the condition y, = yp implies
that 4" and B’ have the same primitive-free composition factors. But C, is a com-
position factor of 4’ but not of B'.

This proves that m;=m; for j=1,...,n.

Now we obtain y,, = xs, and applying Proposition 5.2 completes the proof.

6 The dual module

6.1. Since the ring P has an involution (cf. 2.1), the dual vector space A* of any
P-module (with dim, 4 < o0) has a natural P-module structure:

zfay =<{fza), (mif,a)={fima)

for any fe A* ae A.
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We want to compute y 4. in terms of y 4.
Consider the involution ~:I' — I" given by

X Xi=—xi+xf— o =—

The restriction of ~ to £ is an involution ~ : % — A.

6.2. Proposition. x4 =— y4.

Proof. Let a,...,a,€A,fi,...,f,€A" be a pair of dual bases. The arguments
used in proof of Theorem 3.3 of [F3] show that for anyi=1,...,n.
u
Z Zxaxk<ﬁ, nkaaai> = - z )E,-l)fiz PR )Eis <TCilai2 e aiisﬁ, ai> .
k=1 «a (il,izs,gu-vis)
Summing up these expressions for i = 1,. .., n we obtain
XA =— Yas -

This completes the proof.

7 Link modules and their lattices

The aim of this section is to describe the relation between link modules and
P-modules.

7.1. Let F, denote the free group on u generators t;,...,t, and let 4 = k[ F,] be
the group ring (k is a field).
A finitely generated left A-module M is called link module (or module of
type L) if
Torf(k, M) =0

for all g, where k is regarded as a right A-module with trivial action via the
augmentation map.

7.2. Lemma. Let f: M' > M be a A-homomorphism between link modules. Then
im(f) and ker(f) are also link modules.

The proof of the lemma will be given later at the end of 7.5.

7.3. A link module M will be said to be simple if it has no non-trivial submodules
which are link modules.

A link module is semi-simple if it is a finite direct sum of simple link modules.

7.4. Theorem. Any link module is of finite length; that is, any link module M has
a filtration
0=MycM,c...cM,=M

such that Mo, My,...,M,_ are link modules and M;/M;_, is simple for
i=1,...,n
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The proof will be given later in 7.8; it will be based on the study of lattices in link
modules.

Note that finitely generated A-modules are of infinite length in general (look at
A itself as an example).

7.5. It was shown by Sato [S] that the condition Tory (k, M) = 0 for all q is
equivalent to the following: each me M has a unique representation in the form

m=Y (t;— Om, meM .

Thus, one may define “derivations” 9;: M, i=1,...,pu, by 0i(m) = m;, where
m;€ M is the element appearing in the above decomposition, cf. [F3].
Let us also define the operations

Ty, ., MM —>M by
ny(m) = (t; — 1)0y(m) .

Each r; is a projection n} = n; and n, + - -+ + m, = id. Moreover, n;on; = 0 for
i

Define a map z: M —» M by

z(m) = — dy(m) — d,(m) — - - - — d,(m) .
Then one can express 0, . . ., 0, by means of z, m,,. .., m,:
5i=—Z°7ti, i=1,...,,u.

More information can be found in [F3, Sect. 1].

The operations z, ny,. . . , m, define on a link module a P-module structure.
The operations d4,. . ., 0, define a D-module structure.

Any A-homomorphism between link modules f: M’ — M is also a P- and
D-homomorphism. Thus, im(f) is a D-submodule with each melm(f) having
a unique representation of the form

m= (ti = Dm;, myeim(f).

N

i=1

Since im(f) is finitely generated over A it follows that im(f) is a link module.
Similar arguments show that ker(f) is a link module; the fact that ker(f) is
finitely generated over A follows from the coherence of A, cf. [W].
This proves Lemma 7.2.

7.6. A lattice in a link module M is a k-submodule 4 = M which
(a) is invariant under d; and n;,i=1,...,
(b) generates M over A;
(c) is finitely generated over k
It was shown in [F3] that:
(1) any link module contains a lattice;
(2) any lattice A = M, considered as a finite dimensional vector space with self

maps z, my,...,n,: A — A(ie. as a P-module) determines the whole module M (cf.
[F3, Lemma 2.6]);
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(3) There is a minimal lattice A = M which is the intersection of all lattices in
M (cf. [F3, Lemma 2.6]);

7.7. Lemma. Any A-homomorphism f: M| — M, between link modules maps the
miminal lattice A; = M, into the minimal lattice A, = M,.

Proof. Consider the composition

S
/11—>M1—> Mz'—)Mz/Az .

All these maps are P-homomorphisms and so the kernel K of the composition is
a P-submodule of 4,. On the other hand M, /4, is a primitive P-module (cf. [F3,
Sect. 1]) and from Lemma 4.4 of [F3] it follows that K generates M, over A; thus
K is a lattice. The minimality of A; gives K > 4; and so f(4,) < 4,.

7.8. Proof of Theorem 7.4. Let 0 = My = M, =...< M, = M be a filtration of
a link module M by link submodules. Let 4,, A,,..., A, = A be the minimal
lattices of M;, M,, . .., M, respectively. Then by Lemma 2.3 we have

OcAdicA,c... cA4,=4.

Each inclusion here is proper (because of 7.6(2)).
Thus n < dim; A. This completes the proof.

7.9. The minimal lattice in a link module 4 = M can be considered as a P-module.
Such P-modules have an additional property: they have no primitive submodules
and factor-modules.

In fact, if A has a primitive simple submodule (of type A; say, cf. 3.2) then there is
an element ae A with a = m;a, a £ 0, ;a = 0. Then

a=(—1b

for some be M and 0;a = b = 0 implies a = 0.

Similar arguments show that A4 has no primitive submodules of type B;.

The fact that the minimal lattices have no nontrivial primitive factor-modules
follows from Theorem 1.11 of [F3]; in fact this property characterizes minimal
lattices.

The converse to the previous statement is also true: any P-module 4 with
dim, A < co having no primitive submodules and factor-modules is the minimal
lattice in a unique link module. This is the content of the following Lemma.

7.10. Lemma. Let A be a P-module, dim, A < 00, having no primitive submodules
and factor-modules. Let

u:A ®kA—*A®kA

be a A-homomorphism given by

ul®a) =I®a— fj At — 1) ® 0i(a)
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where A€ A, ae A. Denote M(A) = coker(u) and e: A ®, A — M(A) the projection.
Then:

(a) u is a monomorphism;

(b) M(A) is a link module;

(c) the map A — M(A) given by ar>e(1 ® a) is a monomorphism;

(d) the image of the map A — M(A) in (c) coincides with the minimal lattice in
M(A).

(e) let A’, A" be two P-modules satisfying conditions of the Lemma and let
f:A"— A" be a P-homomorphism; then there is a unique A-homomorphism

fiM(A4) - M(4")
whose restriction on minimal lattices coincides with f.

S
(f) let A/ > A % A" be an exact sequence of P-modules with no primitive sub-
modules and factor-modules then the corresponding seqence of link modules

M4 —f> M(A) —6> M(4")
is exact.
Proof. (a) Consider the map
W T QA—>T ®,A

given by the same formula as u. Let e:I' — k be the augmentation e(x;)) =0,
i=1,...,u It is easy to see that the (dim A x dim 4)-matrix (4i), Aijed T
defining u’ has the property that

det E(Aij) =1

and so v’ is an isomorphism. Thus ker(u) = ker(u’) = 0.
(b) The sequence

0> A®A> AR A M(4) -0

is a free resolution of M(A). Using it to compute Tory(k, M) one easily gets
Torg(k, M) = 0.
(c) Consider the graph T of the free group F, with respect to the free
generators f,,...,t,. Vertices of T are in 1 — 1 correspondence with elements
€F,, edges of T are enumerated by pairs (g, i) geF,, ie{l,...,u} with
(g, i) joining g and gt;. The neighborhood of a vertex g looks as shown in the
picture

gtl gtz

ot oty
Fig. 1.
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It is known that T is a tree. It follows that for any geF, there is a unique
path o, joining g to 1€F,. A finite subset X = F, will be called star-convex if
for any ge X all vertices of the path a, also belong to X. The minimal star-
convex set containing a given set X will be called the closure of X and
denoted cl(X).

Let xe A ®; A. Then x admits a unique representation of the form

x=) g®a, aeA
gsFu

with only finite number of a, non-zero. The support of x will be defined as

supp(x) = cl{g; a, + 0} .
The following statement is the key point in the proof of 7.10(c): if A has no primitive
submodules then for any xe A ®, A the support of u(x) contains the support of x,
supp(x) < supp(u(x)).
Let us prove this statement. Consider an extremal vertex g of supp(x). The path
o, can arrive at g in two different ways:

gt, aty g'p.

9
1

9

Fig. 2. Fig. 3.

The formula

u

u(g®a,) =g®za, — Yy gt:® 0;(a,)

i=1
where z =1 —z,za, = a, + 0,(a,;) + . . . + 0,(a,), shows that if in the first case
(Fig. 2) none of the vertices gt,, . . ., gt, belongs to supp(u(x)) then
0i(a,) =0, i=1,...,pu

which implies (since 4 has no primitive submodules) that a;, = 0, a contradiction.

Consider now the second case corresponding to Fig. 3. If the vertices g,
gti,. .., 9tj—1,8ti+1,. .., gt, do not belong to supp(u(x)) then from the formula
for u above we obtain

dila) =0, i+jie{l,2. .., u
and also
za; = 0.
Write a, = m;(a,) + . . . + m,(a,). If one of ;(a,) with i % j is non-zero then we get
a non-trivial primitive submodule of 4 (of type A;, cf. 3.2). If all m;(a,) =0, i % j,

then a, = n;a, and za, = 0 imply that A has a primitive submodule (of type B;,
cf. 3.2).
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Thus in both cases the vertex g will belong to supp(u(x)) and we obtain
supp(x) < supp u(x).

Remark. Note that the above arguments show additionally that supp x is a proper
subset of suppu(x) if supp x has at least one extremal vertex of the type shown in
Fig. 2.

Let us now prove 7.10(c). If e(1 ® a) = 0 for ae 4 then 1 ® a = u(x) for some
x€ A ®y A. By the statement above supp(x) = supp(1 ®a) = {1}. Thus x is of the
form 1 ® b, be 4. But then we may apply the remark above, obtaining a contradic-
tion.

(d) This follows from Theorem 1.11 of [F3] since 4 has no primitive factor-
modules.

(e) This is a consequence of Lemma 2.6 of [F3].

(f) Considering the commutative diagram

0 » AQA —> A®A — M(A) - 0

"

0 » A®A4 — A®A — M(A) - 0

Jl®g l1®g L@
0 » A®A" —5 AQA" —» M(A") — 0

one easily finds that ker(g)/im(f) is isomorphic to a submodule of
coker[1 ®g:A1®@A4->A® A"] = A® (A"/g(A)). But according to Lemma 7.2,
ker(g)/im(f) is a link module. On the other hand any submodule of a free
A-module is free [C]; Since a link module cannot be free as a A-module, it follows
that ker(g)/im(f) = 0.

This finishes the proof of Lemma 7.10.

7.11. Lemma 7.10 shows that correspondence { P-module} — {link module} is an
exact functor on the sub-category of P-modules with no primitive submodules and
factor-modules. In particular there is a 1 — 1 correspondence between iso-
morphism types of such P-modules and isomorphism types of link modules.
There is a functor in the opposite direction {link modules} — { P-modules}
which assigns to a link module its minimal lattice and to a homomorphism of link
module its restriction on the minimal lattices, cf. 7.7. But this factor is not exact.

Example. Consider a P-module C with dim,4 =5, u=2, with the k-basis
ay,ay, by, ¢y, c; of A. The action of z, ny, 7, is given by

za, =a; +a, m;a; = q;
za, = a, n;b; = b;
zby = a, me=c¢, i=12

ZCI =b1 +C2

2Cy =C1 + CH .
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This nodule has the composition series
AcBcC

where 4 = {a;,a,}, B={a;,a,,b,}, C={ay,a,,by,cy,c,}. The composition
factors 4, B/A, C/B are simple and the “middle” factor B/A is primitive. On the
other hand C has no primitive submodules and factor modules. We therefore have
a sequence of link modules

0->M(A)->M(C)-»M(C/B)—0

whose exactness might be established by arguments similar to that used in the
proof of Lemma 7.10(f). The corresponding sequence of minimal lattices

0-A-C->C/B-0

is not exact.

s
7.12. Proposition. Let 0 > M' > M 4 C — 0 be an exact sequence of link modules

and A-homomorphisms. Let A’ =« M', A = M, A” = M" be the minimal lattices. Then
in the sequence

S’ g
0-A4">A->A4">0, ['=fla,gd =9la

f' is a monomorphism, g’ is an epimorphism and the homology in the middle
ker(g')/im(f’) is a primitive P-module. Thus the induced sequence 0 — A’ —
A - A” - 0 is exact in each of the following cases:

(a) the original sequence 0 > M' - M — M" — 0 splits;

(b) A is a primitive-free P-module.

Proof. The assertion about f” is trivial. If g’ is not onto consider g(4) = A”; it is
a P-submodule which generates M” over A and so it is a lattice; now g(A4) = A”
since A” is the minimal lattice.

Considering the diagram

0 0 0
T T, T
M!/A/ N M/A N MI’/AH
T, T, 7
0O - M - M - M - 0
T, T, 7
A - A - A
i 7 i
0 0 0

one finds
ker(g')/im(f’) ~ ker(f")

and ker(f") is primitive since it is a submodule of a primitive P-module M'/A4’,
cf. [F3, 1.8].
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8 Rational functions associated with a link module

8.1. Let M be a link module. Consider its minimal lattice 4 = M. It is a P-module
with dim, 4 < o0; according to 2.4 we have defined x4 € R. Now define

XM= X4 -
We will define also the rank of a link module M as
rk(M) = dim, 4 .

8.2. Theorem. (a) The rational formal power series yp € R is correctly determined
by the link module M;

(®) xm, @0, = Xney + Ants
© If 0> M > M- M"—0is an exact sequence of link modules then

IM=Im + I + ¢

where ¢ is a “linear” rational function of the form
" -
£=Y (%~ B;%;),
j=1

X
1 + Xj.

@ If 0=MocM,...cM,= M is a composition series of M with simple
factors M;/M;_ then

where a;, B;eZ, a; 2 0, Biz 0, xj=—

M=) Amme, + ¢
i=1

3

where ¢ is of the form
n
£ =) (0% — BiX;), 05, By Z,a; 2 0, 8,2 0;
j=1

here «; is the number of primitive modules of type A; (cf. 3.2) appearing as simple
composition factors of the minimal lattice A = M; B ; is the similar number of simple
composition factors of type B;.

(¢) If the field k is algebraically closed and Char(k) = 0 then any two semi-simple
link modulus M, and M, are isomorphic if and only if xum, = Ymy;

(f) Let M* = Hom,(M; I'/A) be the dual link module, cf. [F3, 2.2]. Then
AMs = — X—M'

(8) If M admits a non-singular Hermitian form

MxM-T/A
(cf. [F3, Sect. 3]) then
xm+ Im=0
where "R — R is the involution given by x;— X; = — I -T-ix ;

(h) The rank of the rational function yu can be estimated as Jollows:

rank yu < 2u(rk (M)? + rk(M))
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and thus the whole rational function y is determined by a finite set of numbers: the
rank of M and coefficients of all monomials in y; of length < 4u(rk(M)? +rk(M))—1.

Proof. (a) follows from existence of the minimal lattice (cf. [F3, Theorem 1.11])
and Proposition 2.5;

(b) and (c) follow from Proposition 7.12 and Proposition 2.5;

(d) is a consequence of (c);

(e) follows from Theorem 5.5

(f) follows from Proposition 6.2 and Theorem 2.9 of [F3].

(g) follows from (a) and (f)

(h) follows from Corollary 1.4 and Remark 2.7.

9 Rational functions of boundary links

9.1. An n-dimensional p-component link is an oriented smooth submanifold X" of
S"*2 where Z"=3"1u...u% » 1s the ordered disjoint union of u submanifolds of
§"*2, each homeomorphic to S”. X is a boundary link if there is an oriented smooth
submanifold V"** of §"*2, y"*! = putl . U V1*! the disjoint union of the
submanifolds V7", such that 0V, = Z,(i = 1,. .., p). If each V; is connected, we
say that V' is a Seifert manifold for X.

9.2. Let S" be a p-component link in $"*2, and let X = $"*2 — T(X) be the
complement of a tubular neighbourhood 7(2) of £ in $"*2. Fix a base point xe X;
foreachi=1,..., uthe meridan m;en,(X, *) (an element represented by a small
loop around Z; joined by a path to the base point) is defined up to conjugation.

A splitting [CS] is a homomorphism (which is defined up to conjugation)
o:7y(X, *) > F, onto the free group with u generators f,,. .., t, having the
following property: the image of the conjugacy class of the i-th meridian
m; coincides with the conjugacy class [t;] of t.eF,.

This notion does not depend on the choice of the base point.

If 2 is a boundary link then each Seifert manifold ¥ defines an obvious splitting
oy:if ais aloop in X which is in general position with respect to V, then o ([a]) is
aword in ty,...,t,, obtained by writing down ¢ (e; = + 1) for each intersection
point p of « and V (where i is the number with pe ¥,n« and & is the local
intersection number of « and V at p) and then multiplying these words in order of
their appearance in a.

A theorem of Gutiérrez [G] states that any link admitting a splitting is
a boundary link; cf. also [Sm].

9.3. An #-link [CS] (of dimension n multiplicity p) is a pair (2, o), where X is a link
(of dimension n multiplicity u) and ¢ is a splitting for Z. Two Z-links (2y,0,)and
(22, 02) are equivalent if there exists a diffeomorphism h: S"*2 — §"+2, taking,
2, onto X, preserving orientations of S"*2? and X,,v =1, 2 and mapping o,
onto o,.

9.4. Let (2, g) be an #-link. Fix a particular epimorphism ao: 7 (X, *) > F,
conjugate to ¢. Consider the covering

~

X-oX
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corresponding to the kernel of 7. The group F, acts on X as the group of covering
transformations. The homology H;(X;k) with_coefficients in a field k is a
A = k[ F,]-module. Sato [S] has shown that H;(X, k) is a link module (cf. 7.1) for
1<i<n .

Applying the construction of Sect. 8 to H;(X, k), 1 < i < n, we obtain a rational
function y;. Thus we have a sequence of rational functions

X1s X255 Xn

associated to a boundary link (2", g).

9.5. Proposition. (1) y; + yu+1-:=0 for 1 <i<n; in particular, if n=2q — 1
then y, + ¥, = O (the bar ~stands for the involution defined in 6.1);

(2) if the field k is of characteristic zero then all coefficients of y; are integral,
1<i<n

Proof of (1). From the duality Theorem 5.7 of [F2] it is known that there is
a non-singular Hermitian form

H(X; k)@ Hyyy—(X; k) > T/A

and now (1) follows from Theorem 8.2(f).
The proof of (2) will be given in 9.7.

9.6. Now we will discuss the computation of y; in terms of the Seifert manifold; this
will also give a proof of statement (2) of Proposition 9.5.

Let V=V,uV,u... UV, be a Seifert manifold of (X, o). Denote by Y the
complement $"*? — V and let i,,i_: V' — Y be maps given by small shifts in the
direction of positive and negative normals to V, respectively. The map

v —i—x Hy(V)—> H(Y)
is an isomorphism (cf. [F, Sect. 1.1]) and we will define a map

ZH,(V)'—?H,(V)
by
(isx —i-x)(2(v)) = i+ x(v), veH(V).

This definition works for any coefficient system including Z.

We will also define projections n,,. .., n,; H;(V) with n; be the projection
corresponding to V; < V.

Thus, H;(V; k) is a P-module.

Seifert manifold V' will be called minimal if H;(V, k) has no primitive
P-submodules (cf. Sect. 3); this is equivalent to the definition of 6.12 in [ F3].

General theorems on the existence of minimal Seifert surfaces for knots were
obtained in [F1]; most of them can be generalized to boundary links.

There is a canonical lifting i: Y —» X (cf. [F3, 6.16]); composing it with the
isomorphism i, x — i_«:H;(V; k) > H,(Y; k) we get a homomorphism

fTH(V k) - H(X; k) .

The arguments of 6.16, 6.17, 6.18 of [F3] prove that
(1) f is a monomorphism if V is a minimal Seifert surface:
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(2) f establishes a P-isomorphism between the minimal lattice in H i()? ;t) and
H(V; k).

Thus, in order to compute y; one should compute the y-function of the
P-module H,(V; k) (cf. Sect. 2). An example of such computation is given in Sect. 10.

The results of Sect. 7 prove that the y-function of H;(V; k) does not depend on
the choice of V if ¥ is minimal.

In general, if W is an abitrary Seifert manifold (which is not supposed to be
minimal) then the image of % : H,(W; k) — H;(X; k) is a lattice (may be not the
minimal one) and the kernel of % is a primitive P-module in H;( W; k). Thus from
the general results of Sect. 2 we obtain

m
x o=+ Y (x; — Bix))
j=1

with a;, B;€Z, «;, f; = 0. Suppose now that n =2g — 1 and i = q is the middle
dimension. Then we have .

Xe + 14 =0
and o

x +x =0.

It follows now that in this case ff; = «; and thus
T 14 < v +
=+ Y ax;—x;), oeZ’ .
i=1

9.7. Proof of Proposition 9.5(2). It is enough to show that the y-function of
H,(V; k) is integral. But this is obvious since H;(V; k) is H;(V ; Z) ® k and the maps
Ty, ..., M,z are defined on H;(V; Z) as well.

9.8. An Z-link (2" o) is called null-concordant if there exists oriented disjoint
submanifolds W%*2, W5*2,.. ., Wi*? of D"*> such that

(i) oW, = V,u M;, where M;nV; = 2;;

(il) WinoD"*3 = V;

(iii) M; is homeomorphic to an (n + 1)-dimensional disk.

(iv) the union VUV, u. ..UV, is a Seifert manifold of (Z, o) realizing the
given splitting o.

9.9. Proposition. Let (22971, ¢) be an F-link. If (Z, o) is null-concordant then the
corresponding middle-dimensional rational function y, has the form

Xg=M1— n
where 1 is a rational function with integral coefficients.

Proof. Let W= W, u W, u. ..U W, < D""3 be a submanifold as in 9.8. Consider
the isometry structure of Seifert manifold V' =V,u... 0V, Vi= W,n oD"*3:

(Hq(V;k)szsn19' . ,TC#,<,>).

Here {, ) :H,(V)x H,(V) — kis the intersection pairing. It was shown in [M] that
in this case there exists a P-submodule 4 = H,(V;k) which coincides with its
annihilator with respect to {,». Thus we obtain an exact sequence of P-modules

0->A->H/(V;k)-> H,(V;k)/A—->0
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and an isomorphism
H,(Vik)/A ~ A*.

Thus, from 2.5(c) and 6.2 we obtain

X = A4t A =4~ X

where " is the y-function of H,(V; k). Now, let y, be the y-function of H, ()? ; k).
Then as in 9.6 we have

un
X =g+ Y alx— %) .
j=1
It follows that
Xg=Mn—1
where

u
11=XA‘— Z (ijj'.
j=1

This completes the proof.

10 Examples

10.1. Let L = k[Z"] be the group ring of the free abelian group Z* and let
a:A =k[F,] - L be the natural homomorphism.

As the first example we will construct a link module M which is not trivial (and
so has a non-trivial y-function) with the property that L ® 4 M = 0.

Let y be the following rational function

y=(1 4 x1%x; —x3%x;)" 1.
Let M be the link submodule of #/4 generated by y. More precisely, let
a=Xx;X,y by =—x;x,y
a = Xy b, = x2y

and let M be the left A-submodule of #/A4 generated by a,, a,, b;, b,. M contains
a lattice A, the vector space over k generated by a,, a,, b,, b,. Here the P-structure
on A is given by

w;a; = a;, ﬂ:ibi = bia i= 1, 2

and the map z: A — A given by the matrix in the base a,, a,, by, b,

000 -1
1 01 O
010 O
1 01 0

The conditions of Proposition 7.10 (ie. A has no primitive submodules and
factor-modules) can be easily checked. Thus A is the minimal lattice in M.
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To compute L ® 4 M note that this module appears in exact sequence (cf. 7.10)

LOADL® AL M—0
where
wA®a)=A®a+ (t; — )A® zry(a) + (1, — 1)A ® zm,(a)

for Ae L, ae A. Here 1, 1, € Z* are the generators, cf. 7.10. Thus, the presentation
matrix for L&® 4 M is

1 0 0 —(t1 =1
T, — 1 1 T, — 1 0

0 (ty — 1) 1 0
T, — 1 0 T, — 1 1

It has determinant 1. Thus, L& ,M = 0.

10.2._By the realization of Sato [S] one can realize the link module M from 10.1 as
H;(X; k) for some boundary link with 1 < i. Consider now the free abelian covering

of the complement
NN AD)
b

Va
-
q |
J

i

Xab—’X~

-l
-

P Full twists
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Since
Tork(L,M)=0

for ¢ = 1 and for any link module M, we get (assuming i > 1)
Hi(Xp; k) =L Hi(X;k)=L®,M =0.

Thus all abelian Alexander invariants of this link (in dimension i) are trivial, but the
x-function y; is not trivial.

10.3. The next example gives an instance of computing y-function of a link.
Consider the followng 2-component boundary link L, , in S* shown on Fig. 4.

It has the Seifert surface V' = V; u ¥, shown in the picture defining the % -
structure.

The isometry structure A = H{(V; Q)= H,(V;; Q) ® H(V3; Q) of the Seifert mani-
fold ¥ has dimension 4. In a natural basis (given by the handles of V') A has 4 gener-
ators oy, B, € H,(V;; Q) and a5, € H,(V3; Q). The operator z: 4 — A acts as follows:

Z0y = pdz, zBy = By + 4P
20y = — qoy, 2B, = B2 — pP1
with
T = &, niﬁi = ﬁi’ i= 17 2 )
o, B> = 035 -
If pg + 0 this isometry structure satisfies the conditions of 7.10 and so it is

embedded in the corresponding link module H,(X, Q) and is isomorphic to the
minimal lattice.

It is clear that (as P-module) 4 is a direct sum of two P-submodules, one
generated by ay, a, and the second generated by f;, . Thus, the y-function (in
dimension one) ., , of the link L, , is the sum

X1+ X2

where y, (respectively y;) is the y-function of the submodule generated by «;,
o, (respectively S, f2). An easy computation shows that

21 = (1 4 pgx1x2) " xg + (1 4 pgxax1) ™' x;
and
2=—11-
10.4. As the last remark we show the relation between the y-function and the
Alexander polynomial for knots (u = 1).

Let 4;(¢) be the Alexander polynomial of H ,-(X~ ; Q) where X is infinite cyclic cover
of the complement of the knot. One can write

40 =Tl ¢ —w) wueC, w+0.
j=1

J

Then
" X
xi(x) =
where
1
A= i=1,... . .
4] 1_“j, J 13 > /1]4:091

This follows from 2.6: it is clear now that 4.(¢t) and y;(x) determine each other.
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