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STABLE-HOMOTOPY AND HOMOLOGY INVARIANTS
OF BOUNDARY LINKS

MICHAEL FARBER

ABSTRACT. An n-dimensional (n > 5) link in the (n + 2)-dimensional sphere
is stable if the ith homotopy group of its complement X vanishes for 2 <
i < (n+1)/3 and m(X) is freely generated by meridians. In this paper a
classification of stable links in terms of stable homotopy theory is given. For
simple links this classification gives a complete algebraic description.

We also study Poincaré duality in the space of the free covering of the com-
plement of a boundary link. The explicit computation of the corresponding
Ext-functors gives a construction of new homology pairings, generalizing the
Blanchfield and the torsion pairings for knots.

INTRODUCTION

The present paper studies new stable-homotopy and homology invariants of
boundary links of codimension two. The stable-homotopy invariant, which is
called stable isometry structure, is a generalization of the corresponding notion
for knots (i.e., links with one component) [F2, F3], which in its turn generalizes
the Seifert matrix [L1] and the isometry structure [K] of a knot. It is shown
here that one may use the Spanier-Whitehead duality theory and Wall’s thick-
ening technique [W] to obtain a complete stable-homotopy reduction of the
classification problem for stable links (cf. §1.4). This reduction gives a general
computational scheme which could serve as a basis of applying homotopy theory
for algebraic description of different classes of stable links (as was demonstrated
in [F3, F4] for stable knots).

The easiest case, where such computations can be conducted without diffi-
culties caused by homotopy theory, is the case of simple odd-dimensional links.
This class of links has been classified by Liang [L] (cf. also [Kol]) in terms of
their Seifert matrices. In §4 of this paper another algebraic description of this
same class of links is obtained, which is slightly better in some respects; for
instance, our equivalence relation is of a more algebraic-invariant nature. Of
course, the best possible form in which one could expect to get an algebraic clas-
sification of simple odd-dimensional links is the form of the Trotter-Kearton
theorem [Tr, K1], which is valid for knots. Presumably a similar theorem is true
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also for links ! and in this paper we make a step in this direction: we construct
invariantly-defined Hermitian pairings on the homology of the free covering
corresponding to the link, which in the case of knots represent the Blanchfield
form [B] and the torsion (or linking) form [L4, F1]. Another (different) version
of the Blanchfield form for boundary links was constructed by Duval [D].

1. PRELIMINARIES

1.1. An n-dimensional p-component link is an oriented smooth submanifold
3" of S"2 where X" = 2fU---UZ) is the ordered disjoint union of u
submanifolds of S"+2, each homeomorphic to S". X is a boundary link if
there is an oriented smooth submanifold V"+! of §"+2, where V"+! = y"*!uy
-y VJ‘* 1 is the disjoint union of connected submanifolds Vi"+1 , such that
oVi=Z%; (i =1,...,u). If each V; is r-connected, we say that ¥ is an
r-simple Seifert manifold for X.

1.2. Let " be a u-component link in S$"+2 and let X = $"*2 — X be its
complement. Fix a base point * € X ; for each i = 1, ... , 4 the meridian
m; € (X, %) is defined up to conjugation.

A splitting [CS] is a homomorphism (which is defined up to conjugation)
Fim(X, *) - F,, onto the free group with u generators ¢;, ... , t, that has
the following property: the image of the conjugacy class [m;] of ith meridian
coincides with the conjugacy class [t;] of #; € F,.

This notion does not depend on the choice of the base point.

Each Seifert manifold 7 of a boundary link ¥ defines an obvious splitting
S if o is a loop in X which is in general position with respect to V,
then A ([e]) isawordin ¢, ..., ¢,, obtained by writing down 1, e =+1,
for each intersection point p of o and ¥ (where i is the number such that
P € ViNa and ¢g; is the local intersection number of o and V; at p), and then
multiplying these words in the order of their appearance in «.

A theorem of Gutiérrez [G] states that any link admitting a splitting is a
boundary link (cf. also [Sm]).

1.3. An & -link [CS] (of dimension » and multiplicity u) is a pair (T, .%),
where X is a link (of dimension » and multiplicity x) and . is a splitting
for £. Two F-links (Z;, %) and (X,,.%5) are equivalent if there exists a
diffeomorphism 4 : S"*2 — §7+2 taking ¥, onto X,, preserving orientations
of $"*2 and X,, v =1, 2, and mapping % onto .% .

1.4, An &-link (X, %) will be called r-simple (where r is an integer, r > 1)
if (a) & is an isomorphism 7,(S"*2 — X, x) — F,; and (b) 7;(S"*> —X) =0
for all 1 < i <r. We will consider every % -link to be 0-simple.

Another theorem of Gutiérrez [G] states that any r-simple n-dimensional .7 -
link (X, &) admits an r-simple Seifert manifold V' with . = %, , provided
n>4.

An n-dimensional r-simple & -link will be called stable if 3r >n+1>6.

1.5. Let V and W be two Seifert manifolds of a boundary link X" in S"+2.

! Added in proof (September 1990). The goal of obtaining an algebraic classification of simple
odd-dimensional links in terms of the generalized Blanchfield pairing has been accomplished in
[F5].
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FIGURE 1

We will say that V is contiguous to W if
(@) VinWj=o for i#j, i,j=1,...,u;
) VinW;=Z%Z;,i=1,..., u;
(c) there exist N;, the arcwise connected component of SM2 — (V; U W)
with the property that the positive normal to W; goes inside N;, such
that Z;,NN; =@ for i, je{l,..., u}.
Here £ =X,U---UX,, V=NU---UV,,and W =W U---UW,. Of course,
we assume that V' and W are oriented and induce the same orientation on X.
Figure 1 shows a typical example of a pair of contiguous Seifert manifolds
V and W of a 2-component link.
It is clear that if V is contiguous to W then —W is contiguous to -V,
where the minus sign means that the orientation is reversed.
Contiguous Seifert manifolds ¥ and W define the same splitting: 3 =
v . The contrary is also partially true:

1.6. Theorem. Let V and W be two Seifert manifolds of an n-dimensional
link . If % = HAy then there exists a sequence Uy, ... , Uy of Seifert
manifolds of ¥ with
(a) U1=V’ UN=W,
(b) foreach i=1,... , N—1 one of the following three possibilities holds:
(1) U; is contiguous to Uiyy; (2) Uiy is contiguous to Ui ; (3) thereis
an orientation-preserving diffeomorphism f : S"t? — S"+2 with f(U;) =
Uit -

Proof. Choose a base point * € S"*2 —Z. As explained in §1.2 V' and W
define epimorphisms
v, fw: 751('5'"+2 -2 Fy

and the condition % = % means that
fr(x) =afw(x)a™

for some element a € F,. As the first step we will describe modifications of
W by a chain of contiguities, which give another Seifert manifold W’ with

fr=rfw .
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*

FIGURE 2

FIGURE 3

Let W =W;U---UW,. Join the base point * with W; by a simple arc a
approaching W; from the negative side and disjoint from W; for j # i (Figure
2). Then construct a new Seifert manifold W’ = W/ U-.-U W, according to
Figure 3.

In order to obtain W, we shift W; slightly in the direction of negative
normal, and for j = i we then add a boundary of the thickened arc a. It is
clear that W’ is contiguous to W and

Jwi(x) = 67! fw ()t

for all x € m;(S"? -X, %).

A similar modification with an approaching W; from the positive side and
with shifts in the positive normal direction is shown in Figure 4.

In this case we have

fwr(x) = tifw(x)t;7t,

where x € m(S"™2 X, %).

FIGURE 4
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By a number of such modifications we change W (by a chain of contiguities)
in such a way that a new Seifert manifold (which we also denote by W ) has
the property

Jr(x) = fw(x)

for all x € m;(S"*?—X, ). Using the arguments of [F3, 1.9-1.12], we may ad-
ditionally assume that W; coincides with ¥} in a small tubular neighbourhood
of Z,, i=1,...,u.

Now we can apply the Thom-Pontrjagin construction. Using arguments sim-
ilar to those in [L3, G, CS], we obtain a submanifold X c $"+? x [0, 1] such
that

(1) X is compact, (n + 2)-dimensional, and orientable;
(2) X isadisjoint union of u arcwise connected components X;U---UX,;
3) 0X;=V;x0UW; x1UZ; x[0,1], i=1,...,u;
(4) V; and W; define the same orientation on X;.
Using general position arguments we may arrange X to have the following
additional property:
(5) Let h:S8"2 x[0, 1] — [0, 1] be the projection; then h]X is a nonde-
generate Morse function, whose critical values are distinct.

We can also modify X in order to cancel critical points of h| x of index
Oand n+2. Let 0 =¢y <c¢; < --- <cy =1 be a small subdivision of the
interval [0, 1] such that [c,, ¢,+1] contains at most one critical value of h| X -
Denote

U =hYc)NnX,

v=0,1,...,N. Then U, is a Seifert manifold of £ with Uy =V, Uy =
W . If there is no critical point in [c¢;, ¢j+1] then U;,; may be obtained from
U; by an orientation-preserving diffeomorphism f; : $™2? — S"+2 (i.e., Uy, =
fi(Uy)). If [c;, ci+1] contains a critical point then U;,; is obtained from U;
by a surgery modification (see Figure 5).

It is clear that any such modification can be decomposed into a contiguity
and then diffeomorphism. The only possible trouble can occur when the one-
dimensional handles are glued; it is easy to see that a one-dimensional handle

(1) cannot join two different components of U; and
(2) should approach U; from one side;

otherwise we get a contradiction with conditions (1), (2).

FIGURE 5
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A similar proof in the PL case can be obtained by applying the critical level
imbedding technique of [KL].

2. SEIFERT FORMS AND ISOMETRY STRUCTURES

2.1. Let V be a Seifert manifold of a boundary link X" of multiplicity x.
Foreach i=1, ..., u fixabase point x; € X; =9V;, where V =V uU---UV,.
Denote by
0:ii - ViN Vi — 8™
the homotopy Seifert pairing of V; (cf. [F2, p. 186]). For i # j let 6;; be the
canonical map
0,-,~:V,-/\V,-—»S”+1 s
which is well defined since ¥; and V; are disjoint subsets of S"+2 (cf., for
example, [St, Chapter 3]).
We will use the stable homotopy category Stabgy, described in [F4, p. 509].
Denote by ¥ the sum (in Staby )

V=VieVe --oV,.
The pairings 6;; define a pairing
: Vol -s"™,  6=(6;.
We also have a collection of S-maps
ni:V—»V, i=1,...,u,

each 7z; being the (igmposite V =V, — V of the projection and the inclusion.
The collection (V, 6, ny, ... , m,) is the Seifert form of V.

2.2. Lemma. Any Seifert form (17', 0,n,...,n,) has the following proper-
ties:

(1) 6+ (=1)r+1g": V ®V — S" is a Spanier-Whitehead duality;

(2) Oo(m;®mj)=(-1)"0"o(n; ®7;) for i #j;

(3) 7t,'o7tj=5,'j7lj, (4] +752+---+7Z” = I/V\ .

Here 6’ denotes §oT , where T:V®V — V®V is the interchanging map,
and J;; is Kronecker’s delta.

Proof. Statements (2) and (3) are evident. Statement (1) may be deduced from
[F1, Theorem 1.4] in the following way. Consider a small (# + 1)-dimensional
disk D"+! imbedded in S"+2—¥ . Connect it by a smooth (n+ 1)-dimensional
band B; with V;, i =1,...,u. We assume that B; = D} xI, B;nV, =
B;NoV;=D!x {0}, B;,nD"*! = B;ndD""!' =D x{1},and B;NV; =@ =
B;NB; for i # j. The union W = VjU---UV,UB U---UB,UD"*! is a Seifert
manifold of a spherical knot in S”*2 and it is clear that there is a homotopy
equivalence ¢ : W — V such that 6o (p ® @) is the homotopy Seifert pairing
of the knot. Statement (1) now follows from [F2, Theorem 1.4].

2.3. An abstract Seifert form of dimension » and multiplicity u is a collection
(X,0,mn,...,n,), where X is a stable (or virtual) complex (i.e., an object
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of Staby), 6 : X ® X — S"*! is an S-map with 6 + (—1)"*1¢’ a duality, and
Ty, M2, ...,y are S-maps X — X satisfying

7[i07[j=6ij7[j, 7l'1+"‘+7[;t=1X,

and
fo(m; ® 7L'j) = (—1)"0’ o(m; ® ﬂj)
for i # j. Two abstract Seifert forms are isomorphic if there exists a stable

homotopy equivalence between the corresponding spaces, commuting with the
7;’s and transforming one pairing 6 into the other.

2.4. Theorem. Suppose r and n are integers with 3r > n+1> 6. Then:

(1) Any abstract Seifert form (X, 0, mny,...,n,) of dimension n with
length(X) < n — 2r (cf. [F4, p. 510)) is isomorphic to the Seifert form of an
r-simple Seifert manifold V of a boundary p-component link X" .

(2) Assume that X" and X' are two r-simple p-component links and, V
and V' are the corresponding r-simple Seifert manifolds. If the Seifert forms of
V and V' are isomorphic then there exists an isotopy of S"t* taking each V;

onto V!, i=1, ..., u, and preserving the orientations.

The proof is given in §2.9 below.

2.5. Another stable homotopy object (which is in fact equivalent to the abstract
Seifert form but will be more convenient later) is the stable isometry structure.
A stable isometry structure of dimension » and multiplicity u is a collection

X,u,z,my,... ,m,),

where X is a virtual complex and # : X ® X —» S"!,z: X - X, and
ni:X—->X,i=1,...,n are S-maps, satisfying:

(1) u is a Spanier-Whitehead duality;

(2) W =(=1)"u;

(3) uo(z®ly)=uo(ly®z),where z=1x — z;

(4) uo(nm;®mj)=0 for i #j;

(5) miomj=0dym;

(6) T+ 4w, =1yx.

The notion of isomorphism of stable isometry structures can be introduced
in an obvious way.

Any stable isometry structure (X, u,z,m,...,n,) defines an abstract
Seifert form (X, 6, my, ... , m,), where § = uo(1® z). Conversely, given an
abstract Seifert form (X, 60, n;,...,n,) one can define u : X @ X — Sn+l
by u =60+ (—1)"*10’; this is a Spanier-Whitehead duality and so there exists a
unique S-map z: X — X such that § = uo (1 ® z). It is easy to see that the
collection (X, u, z, my, ... , m,) is a stable isometry structure.

The following statement is just another version of Theorem 2.4.

2.6. Theorem. Suppose r and n are integers with 3r > n+ 1 > 6. There
is a one-to-one correspondence between the set of isotopy types of embeddings
into S™2 of r-simple u-component Seifert manifolds and the set of isomorphism
classes of stable isometry structures (X, u, z,my, ... , n,) of dimension n with
length(X) < n-2r.
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2.7. A configuration (of dimension » and multiplicity x) is a collection
(Xisvij), i,j=1,...,u, where X; is a virtual complex (i.e., an object of
Stab), vij: X; ® X; — S"*1, defined for i # j, i, je€{l,..., u}, such that

Vij = (—l)n’Ul

Ji?
where v}, denotes vj; 0T, T :X;® X; — X; ® X; being the “interchanging”
map. Two configurations (X;, v;;) and (Y;, w;;) of the same dimension and
multiplicity are isomorphic if there exists a family of S-equivalences f; : X; —
Y;, i=1,..., u, with the property
wijo (fi ® fj) = vij.

forall i, j=1,...,u, i#j.

Let (X;, v;j) be a configuration of dimension » and multiplicity x. Its

geometric realization is a sequence of compact (n + 2)-dimensional smooth
submanifolds Ni, ..., N, of $"*2 supplied with a family of S-equivalences

ﬁ:Xl'ﬁM’ i=1a--'a,u:

such that

vij = wijo (fi ® fj)
forall i#j,i,j=1,...,u, where w;; : N;® N; — S™*! is the canonical
pairing (arising from the embedding of N; and N; as disjoint subsets of S”+2).
Two geometric realizations (N;, f;) and (N}, f/) will be called homeomorphic
if there exists a diffeomorphism 4 : $"*2 — $§"t2 (which is isotopic to the
identity) such that

h(N;) = N}, i=1,...,u,
and the diagram
X;
5y N
Ny — N
Al
commutes forall i =1, ..., u in stable homotopy.

2.8. Proposition. Let r and n be integers with 3r > n+ 1> 6. Any configu-
ration (X;, vij) of dimension n, with each X; being r-connected and (n — r)-
dimensional, admits a geometric realization which is unique up to homeomor-
phism.

Proof. For u =1 this statement follows immediately from Wall’s theory [W].
For u > 1 one may use the following arguments. Suppose we have a config-
uration (X;, v;;) and we have constructed Ny, ..., Ny_; and f; : X; — N;,
i=1,...,k—1, with the desired properties. Pick an (n + 2)-dimensional
ball BC S™?, BNN; =@, i=1,...,k—1, and join each N; with B
by nonintersecting 1-handles. Let N denote the union of Ny, ... , Ny_; with
these 1-handles and with B. If Y denotes S”t2 —int N, then according to the
Spanier-Whitehead duality theory, stable homotopy classes X; — Y correspond
bijectively to systems of pairings

Vi Xe @ X; = Sk i=1, ..., k—1}.

Thus if we are given {vy;} for i < k we can find a unique stable homotopy
class f: X — Y corresponding to it. Using our dimension and connectivity
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assumptions we may realize f by a map (which is unique due to the suspension
theorem). Now at the last stage we can apply the thickening theory of Wall [W],
similarly to the case of knots [F2, F4].

Uniqueness of realization follows similarly.

2.9. Proof of Theorem 2.4(1). If we are given an abstract Seifert form
(X,0,mn,...,mn,) then we can apply the Splitting of Homotopy Idempo-
tents Theorem of [Fr] to conclude that X can be identified with the direct sum
X1 X,®---® X, in such a way that n; = g; o p;, where p; : X — X; and
gi : X; — X are the projection and inclusion maps, respectively.

Consider the configuration {X;, v;;}, where

'U,]=9(q,®q]), l,]E{l,,[u},l#].
By Proposition 2.8 there exists a geometric realization N,..., N, of {X;, v;;}.
Foreach i =1, ..., u we have an (n+2)-dimensional submanifold N; C S"*2

and a stable homotopy equivalence f; : N; — X;. Our initial data also give us
a pairing
0, = eo(qi®‘Ii)ZXi®Xi — g+l

Using the arguments of the proof of Theorem 1.3 of [F2] (cf. 1.10 of [F2]),
one gets an r-connected (n + 1)-dimensional manifold V; C ON; with dV; a
homotopy sphere and with the property that the inclusion b; : V; — N; is an
equivalence and ;o (f; o b; ® f; o b;) is the homotopy Seifert pairing of V;. It
is now clear that the union

V=I/1U..UI/;‘

is the desired Seifert manifold of a boundary link £ =49V .
Statement (2) can be proved similarly (using the arguments of the proof of
Theorem 1.2 in [F2]).

3. ALMOST CLOSED SEIFERT SURFACES

The aim of this and the next sections is to describe in terms of the stable
homotopy theory the precise relation between stable homotopy structures of
different Seifert manifolds of a link. On the level of homology this has been
done by J. Levine [L3] in terms of S-equivalence of Seifert matrices. A more
invariant approach was suggested in [F2, F3] under the name of R-equivalence.
The present exposition will be a generalization of [F2, F3, F4] to the case of
links.

Almost closed Seifert manifolds, which will be studied in the present section,
are used in the next section to measure the difference between different Seifert
manifolds of a link.

3.1. Proposition. There is a canonical construction which assigns to any config-
uration (X;, vij) a stable isometry structure S(X;, vij) (of the same dimension
and multiplicity) with the following properties:

(1) Let (N;, f;) be a geometric realization of (X;, vij), let V; be obtained
from ON; by removing a small (n+ 1)-dimensional disk in d N;, and orient V;
by directing the positive normal outside N;. Then V = Vi U---UV, is a Seifert
manifold (of the trivial link) and its stable isometry structure is isomorphic to
S (X i, Ui j) .
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(2) Stable isometry structures S(X;, vij) and S(Y;, w;;) are isomorphic if
and only if the configurations (X;, v;j) and (Y;, w;j) are isomorphic.

(3) A stable isometry structure (X, u,z,mn,...,n,) can be obtained as
S(X;, vij) for some configuration (X;,vi;) if and only if zmnz = 0 for all
k=1,...,u.

Any Seifert manifold V' = V; U---U ¥, which can be obtained by the con-
struction described in Proposition 3.1(1) will be called almost closed.

Proof. The construction of S(X;, v;j) proceeds as follows. For each i =
1,...,ulet u;: X; ® Z; — S™! be a Spanier-Whitehead duality. For i # j
there is a unique S-map ¢;; : X; — Z; with the property that
uio(lx,® 9ji) = vij .
Denote by X the direct sum
X=X 0X,0Z1®d - 0Z,
and define u: X ® X — S"*! by

”IX,—@X, =0, ulx,®zj = 0ijUi,

_ n+15..,,/ _
uIZi@X/ - (_1) 6”14[ ? uIZl®Zj - O’

where J;; is the Kronecker symbol. The next object z : X — X will be defined
by
ZIX,-=0’ lezidZ,:Zi_’Zi,

where idz, is the identity map, i =1, ..., u. We define the S-map = : X —
X by the formulae
B { idx, + 34 0k fori=k,

—Qik for i # ka

0 fori#k,
Z; =

| Zi { idz, fori=k.
A trivial check (which is omitted) shows that the collection

",

X, u,z,m,... ,my)
is a stable isometry structure, and satisfies zn,z =0 forall k=1,... , u.
To prove the last statement of the proposition, assume that the collection

(X,u,z,m,...,mn,) is an arbitrary stable isometry structure with zZm;z =0
forall k=1, ..., u. Consider S-maps

P:X—-X, i=1,...,2u,
defined by

P_{Zni fori=1,...,u,
' mi—yz fori=p+1,...,2u.

It is clear that

2p
PP;=6;P;, ) Pi=1lx.
i=1
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By the Freyd theorem [Fr] there is a direct sum decomposition

2
X=X
q
with
giopi =P piogq; =1idy,, i=1,2,...,2u.
Define v;; : X; ® X; — S"t! by

Vij=uo (miq; ® anqj)

for i#j,i,j=1,...,u.
We thus obtain a configuration (X;, v;;) and we want to prove that the origi-
nal stable isometry structure (X, #,z,7m;, ... , @) isisomorphicto S(X;, v;j).

The identity
u(q; ® qj) = u(q; ® gj o pjo4q;) = u(g; ® Pj o qj)
= u(P;oq;i ® qj) = 05u(4i ® ;) >
where . .
—_ { J+u forj<up,
B .] — U for J >u,
shows that u(g; ® g;) = 0 unless |i — j| = u. It follows that
u,-=u0(q,-®q,~+”):X,-®X,-+#—>S"+l, i=13"'3#3
is a duality map, and thus we can use it in the construction of S(X;, v;;) instead
of u;: X;®Z; — S"'. It is easy to show that the maps
¢jiIXj—>X,'+”, l#], i,j=1,...,,u,
which appear in the construction of S(X;, v;;), are given by the formula
@ji=Piyyomjogq; ,

andthemap Q: X;®---® Xy = X, Q= 212'51 q; , gives an isomorphism
between S(X;, v;j) and (X, u, z, m, ... , 7).

This completes the proof of statement (3).

Statement (2) follows from the arguments used in the proof of (3): we have
shown that all objects in (X, u, z, @y, ... , m,) could be uniquely determined
in terms of X;, v;; and vice versa.

Now we have to prove statement (1).

Let Ni,... ,N, C S"+2 be a set of compact smooth (n + 2)-dimensional
pairwise disjoint submanifolds and let
v;j: N;® Nj —» S™! | L#J,
be the corresponding pairing, i, j =1, ... , . We construct ¥; by removing

from &N; asmall (n+ 1)-dimensional disk and we have to show that the stable
isometry structure
(17, Uy Z, Ty een , Ty)
corresponding to ¥V = VUV, U---U V), is isomorphic to S(N;, vi;).
Let B™2 be a small (n+ 2)-dimensional ball in S"*? disjoint from N;, i =
1,...,n.Joineach N; to B bya l-handle H;;in other words, H; = D+l x
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[0, 1], H;NN; = H;NON; =D”+1X0, H;NB = HUOB =Dn+1X1, HNH; =92
for i # j. Denote by N the union Ny U---UN,UH,U---UH,UB. Denote

by Y the complement S™+2 —int N. The space ¥ can be naturally identified
with the result of removing from &N a small (n + 1)-dimensional disk.
By Proposition 2.1 of [F2] there exists a direct sum decomposition

YSTSN
« B

(where i: V — N and B V — Y are the inclusions) with the property
z=aoj, z=foi

(cf. also Corollary 2.2 in [F2] and Lemma 2.9 in [F4]). Identifying N with the
wedge of N;V---V N,, we have another direct sum decomposition

P
N<_—’Nk, k=1,...,ﬂ.
dk
It is clear from the geometry that
lom =qroproli, k=1,...,u,

and thus

Bogropyoi=Bin =2zZmy .
This shows that the projector P : /8 7 corresponding to the summand

~ Dii
V & Ny
Bax

is given by the formula P, = Zm; which agrees with the construction of
S(N;, vij) . We also have

Zngz = Pz = Bqrpricj =0
since ia = 0. To complete the proof of statement (1) we only have to show
that

Vg = uo (M fgr ® zmBqp)
for k #1, k,l=1,...,u. According to the definition uo (1® z) = 0,
where 6:V ® V — S™*! is the Seifert form (cf. §2.5) and

Oo(m®m)=vg0(Proi®poi)

(obvious). Thus

uo (e Bai ® zmBqp) = 6 o (mx ® 1) o (Ba ® Bay)
= Uy © (Drl @ pri) o (Bax ® Ba1)
= Uy o (DriBax @ PiiBar) = v
since
pkifqr =idy,,  piifq =idy, .
This completes the proof.
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3.2. Corollary. () If (V,u,z, 7, ..., m, ) is the stable isometry structure

of an almost closed Seifert manifold, then zmz=0 forall k=1,2,... ,u.
(2) Let V' be an r-simple Siefert manifold of an n-dimensional link, where

3r>n+1>6.1If znz=0 forall ke {l,...,u}, then V is almost closed.

Proof. (1) follows from statements (1) and (3) of Proposition 3.1. (2) follows
from Propositions 2.8 and 3.1 and Theorem 2.6.

4. THE CLASSIFICATION OF . -LINKS

In this section we will describe the relation between stable isometry struc-
tures of contiguous Seifert manifolds. Under stability assumptions it will be a
complete description. Thus, combining this result with Theorem 1.6 we obtain
a stable-homotopy classification of stable .# -links. In the case of (g — 1)-simple
(2g — 1)-dimensional links it gives an algebraic classification.

4.1. Let qy = (X1, U1, 21,1y en. ﬂ”) and q; = (X3, Uz, 22, Tlyeen s ﬁ#)
be two stable isometry structures of dimension »n. We will say that q; is
contiguous to q, if there exist .S-maps
9 X1 — Xy, X, — Xy
with
(a) uzo(ly,®9p)=uro(¥®ly,);
(b) gomiozy=2z30m00;
() Womozy=Zomoy,;
(d) pomiow =2zy0m;02y;
() womjop=2y0omozy, foralli=1,2,...,u.
This definition generalizes the corresponding notion for knots (cf. [F2, F4]).

Each stable isometry structure is contiguous to itself (one may take ¢ =

zZ,y=2).

If q=(X,u, z, m,... , m,) is an isometry structure, we may define —q as
(X,-u,z,m,...,mn,). If q is contiguous to q, then —q, is contiguous to
—q1 -

The following theorem is the main result of this section.

4.2. Theorem. (1) Let V and W be two Seifert manifolds of a boundary
link X" in AS"““2 with V contiguous to W . Then the stable isometry struc-

ture qy = (V,uy, zy, 7:{’, e, n}f), corresponding to 'V, is contiguous to the
stable isometry structure qw = (W, uw, zw, ], ..., nZV ) corresponding to
w

(2) Let r, n be integers with 3r >n+1>6. Let V and W be r-simple
Seifert manifolds of boundary links Xy = 8V and Xy = OW , and let qy and
aw be the corresponding stable isometry structures. If qy is contiguous to qw ,
then there exists an isotopy of S™*? taking W onto another Siefert manifold
W' such that V is contiguous to W' in particular, the links Ty and Ty are
equivalent.

Proof. (1) Assume that V' is contiguous to W . Denote by N; the closure of the
arcwise connected component of S"+2—(V;UW;) with the positive normal to W;
pointing inside N;. We have compact connected disjoint (n + 2)-dimensional
submanifolds Ni, ..., N, in $"*? and we can form an almost closed Seifert
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manifold U = Uy U---U U,, where U; is obtained from 8N; by removing a
small (n + 1)-dimensional disk (cf. the previous section). Orient U according
to V.

Let qu = (U, uy, zv, ..., nJ) be the stable isometry structure of U .

It is clear that there is natural identification of U with V@ W , and the Seifert
form 6y of U has the matrix presentation

Oy o
(=D"a" (=1)"6y ]’
where a: V @ W — S"*! is the canonical pairing and the prime denotes trans-
position (cf. [F2, F4]). Therefore, we have

wy =00+ (1o = ' D

0 —Uw
R 2U = ny 0
Uy ozw | L VR 1 B

where ¢ : V — W and v W =V are S-maps with
a=uyo(ly@y)=uwo(p®lw).
From Corollary 2.6 we know that

= U .
zymn;yzy =0, i=1,...,u.

Zy —¢@ 14 0 Zy @ | _
voalels alelv 4]

and this matrix equation gives the following four equalities:

Thus we have

on)zy = zwnl g, yrlzw = zynl g,
P v, _ W
Ynm; ¢ = zym; Zy, O Y =Zwh; Zw,
which proves (1).
Let us now prove the second statement of the theorem Assume that qp

is contiguous to qu and let ¢ : V — W v W — ¥V be the maps satis-
fying conditions (a)-(e) of 4.1. Define a new stable isometry structure qy =

U,uy, zy,nl, ..., nJ), where

and
U = ”zV 0
L ) n,.W )
Conditions (a)-(e) of 4.1 are equivalent to the statement that the collection
qu is a stable isometry structure with the property 2U7in zy =0 forall i =

l,...,u.
Let us define S-maps P,: U - U, i=1,...,2u,by

P:U—-V,— U, i=1,...,u,
P:U—->W,—U, i=p+1,...,2u,
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where all maps are the natural projections and inclusions. The collection
q= (ﬁ’ Uy, zZy, Pls e 9P2ﬂ)

is a stable isometry structure of multiplicity 2u. By Theorem 1.7 there exists
a 2u-component r-connected Seifert manifold U = U, U---U U, realizing q
(i.e., having q as its stable isometry structure). Now, the union UjU---UU, is
a u-component Seifert manifold whose stable isometry structure is isomorphic
to qy and Uy U---U Uy, has stable isometry structure isomorphic to qmw .
Therefore, by Theorem 1.6, there exists an isotopy of S"+? taking ¥ onto
U, U---U U, with respect to the orientations; similarly, there exists an isotopy
of S"*2 taking W onto U,y U---U Uy, with orientation reversed.

Joineach U; with Uy, (i=1, ..., u) bya l-handle H; = D"x[0, 1] with
HnU; = HiNndU; = D"x0, HiNU;;, = HiNdUy, =D"x 1, HNH; = @ for
i#j,and H;NV; = for j+#1i,i+u. We also assume that the orientations
on H; induced by that of U; and U, , agree. Denote U; UH; U Uiy, by S;.

The set S; US,U---US, =S isa u-component Seifert manifold with the
corresponding stable isometry structure

as=U,uy, zu, L+ Pyy1, o+ P2, ... , Py+ Pyy) .
It follows from our construction and from Corollary 2.6 that S is almost closed.
This means that by a small isotopy we can translate U,y1, Uyt2, ... , Us, into
new positions U,,,, ... , U;, such that

U n Ui,+/t =90U; = an/ﬂz

and

Uin UJI =g
for j#i+upu. Thus U;U---UU, and U,,,U---UU;, are contiguous. This
proves the theorem.

4.3. Two stable isometry structures qo and q; will be called R-equivalent
if there exists a sequence pg, p1,... , py Of stable isometry structures with
po = qo and py = q;, and for each i € {0,1,... ,N — 1} either p; is
contiguous to p;;; Or p,,; is contiguous to p; . R-equivalence is an equivalence
relation.

From Theorems 1.6 and 4.2 we obtain

4.4. Corollary. The map

types of F -links
of dimension n — {

R-equivalence classes of stable isometry }
and multiplicity u

structures of dimension n and multiplicity u

which sends a link type into the R-equivalence class of the stable isometry struc-
ture of an arbitrary Seifert manifold of the link, is correctly defined. This map is
a bijection from the subset of stable F -links onto the set of R-equivalence classes
of stable isometry structures on [ﬂ;]-connected complexes.

4.5. Now we consider simple odd-dimensional links. A simple link is an & -
link of dimension (2g—1), which is (¢—1)-simple. We will assume that g > 3;
in this case the link will be stable.
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Any simple link of dimension 2¢g — 1 admits a (¢ — 1)-connected Seifert
manifold V' = VyU--- UV, (cf. [G]). From Poincaré duality it follows that

V has the homotopy type of a wedge of spheres of dimension ¢, and so the

homotopy type of Vis completely determined by the free abelian group H, (V)
Moreover, the S-maps u, z, ny, ... , m, from the stable isometry structure of

V are completely determined by the induced maps on Hq(I7) ; thus we come to
the following known algebraic notion of isometry structure (cf. [K, Mio, Ko]):

4.6. An e-symmetric (&€ = £1) isometry structure of multiplicity u is a tuple

(M, (,),z, 1, ..., ),
where M is a finitely generated free abelian group, ( , ): M ® M — Z is an
g-symmetric bilinear form, and z, n;, ... ,m, : M — M are endomorphisms

of M , such that
(i) (, ) is unimodular;
(i) (zx,y)=(x,(1-z)y) Vx,yeM;

(iil) (m;x, m;jy) =0 for i #j,

(iV) mijom; = Jijﬂj 5

(v) m +r+ Ty = 1a.

We will denote an isometry structure simply by M , and consider the other
objects (the bilinear form and endomorphisms) to define additional structures
on M.

Let M; and M, be two e-symmetric isometry structures of multiplicity u .
We will say that M; is contiguous to M, iff there are homomorphisms

¢IM1—>M2, l//:Mz—>M1
such that for each x e {1, ... , u}, a€ M,, and b € M, the following hold:
(@) (a,y(b)=(p(a),d);
(b) ¢niz(a) = zarp(a);
(¢) wmz(b)=zmy(b);
(d) pmy(d) = zmz(b);
(e) ymo(a)=zmiz(a).

The equivalence relation generated by contiguity will be called R-equivalence.

Every Seifert manifold V' of a (2g — 1)-dimensional link determines an
isometry structure (on the Betti group Hq(I7)/ Tors) and contiguous Seifert
manifolds determine contiguous isometry structures.

4.7. Theorem. For q > 3 the correspondence described above gives a bijection

types of simple R-equivalence classes of

F -links of dimension — ¢ (=1)4-symmetric isometry

2q — 1 and multiplicity u structures of multiplicity u
Proof. The proof follows from Theorems 1.6, 2.6, and 4.2.

5. HOMOLOGY PAIRINGS

In this section we use Poincare duality to study the quadratic structure of the
homology of the free covering of a boundary link. We construct two quadratic
forms, which generalize well-known forms on the homology of infinite cyclic
covering of knots: the Blanchfield form [B] and the torsion form [L4, F1].

Another generalization of the Blanchfield form was suggested by Duval [D].



STABLE-HOMOTOPY AND HOMOLOGY INVARIANTS OF BOUNDARY LINKS 471

5.1. Let (X,&%) be an n-dimensional pu-component % -link. Denote by
X the complement of an open tubular neighbourhood of X in S$"*2. The
splitting .’ determines a homomorphism of 7;(X, *) onto F, (the free group
in #,...,1,), which is defined up to conjugation. The covering X - X
corresponding to the kernel of the homomorphism 7 (X , *) — F, is called the
free covering; and has the free group F, as the group of covering translations.
Homology groups H*()? ; Z) , considered as left modules over A = Z[F,], are
invariants of (Z,.%).
The modules H,(X ;Z) possess finite presentations (since A is coherent)
and are of type L (cf. [S]): a module M over A is of type L if the map
I u
Pm-m, (m,... m)ed G- Dm
i=1 i=1
where m; e M,i=1,..., u,is a Z-isomorphism.

5.2. Fix some notation: Let ~: A — A denote the anti-isomorphism defined
by
=", i=1,...,u.
If M isaleft A-module, M denotes the right A-module structure on M given
by
mi=2im , meM, LeA.

Let €'(M) denote Extf\(M ; A) —the right A-module. Let tM denote the
Z-torsion part of M, T = Torsz M, and let fM = M/tM denote the Z-
torsion-free part of M .

5.3. Lemma [D]. Let M be a finitely presented module of type L. Then
1) €%(M)=0;

2) e'(M) has no Z-torsion,

3) el(M)~e'(fM);

4) e*(M) is Z-torsion;

5) e2(M) ~eX(tM).

In the next two lemmas we shall compute e! and e?. Let I denote the
augmentation ideal of A.

5.4. Lemma. Let M be a finitely presented A-module of type L and let N be
an arbitrary left A-module.

(1) If N2 I"N =0, then Homp(M, N) = 0.
(2) If NyeoI"N =0 and N is complete in the I-adic topology, then

Ext)\(M,N)=0.

Proof. The first statement is evident since /"M = M for any n.
To prove the second statement we have to show that any extension

0o-N3x2 Mmoo
splits. We will do this by constructing a sequence of A-homomorphisms
fi:X > N/I'"N, n=0,1,...,
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with the following properties:
(a) the diagram
N = X
Tn \ / Ja
N/I"N
commutes (where 7, is the projection);
(b) fus1 is a refinement of f,:

X
Ja / \fm—l

N/I'N «— N/I**'N

By property (b) the sequence {f,} converges to a homomorphism f: X — N
and by (a) this f will be a splitting of the extension. Thus, the existence of
such {f,} will prove (2).

We will construct fy, fi, ... inductively.

Put fo = 0 and suppose we have constructed fy, f;, ... , f, with the desired
properties. To define f,,;, consider arbitrary x € X ; then B(x) € M can be
uniquely represented in the form

u

Bx) =S (ti— Dm;
=1
where m;e M, i=1,... ,u. Novlv, m; = B(x;) for some x; € X and
X=u(n—Dm+aWL
=1
where y € N. Let us define f,,:l(x) b
u

Jast(X) =D (ti = ) fu(x:) + 7 (mod I"™*!N) .

i=1
If we choose other elements x; € X with B(x]) = m;, then
x}=x,-+a(5,-), Ji €N, i=1,...,u,

and we will have another representation
u

x = (ti = D)x} +a(y')

i=1
with ¢ =y — Eﬁ.‘zl(ti — 1)d; . Hence, the result of computation of f,,(x)
according to the second formula will be

u
Y+ 3= D)

i=1

®

='y—

M‘:

Z = ) U(x0) + fa(a(8)]

-
]
—

(ti = Dfu(xi) (mod I"*!N) ,

Mt

v+

i=1
and, thus, f,,; is correctly defined.
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It can be easily checked that f,,; is a A-homomorphism and

Jar1(x) = fu(x) (mod I"N),  fun(a(y)) =y (mod I"*'N),

where x € X, y € N. This proves the lemma.

Let T" be the ring of formal power series Z[[x), ... , x,]] of noncommuting
variables x;, ..., x,. Weimbed A in I' by the Magnus imbedding:
ti—1+x;, tlol-x+x?-x}+---.

1

Let QI' be Q[[x1, ..., xx]l, QA = Q[F,], and QA — QI be the similar
imbedding.

5.5. Proposition. If M is a finitely presented module of type L, then

(1) e!(M) ~ Homy(M; T/A);

(2) e*(M)~Homy(tM; Qr'/(T + QA)),
where the sign ~ means “naturally isomorphic as right A-modules.”
Proof. (1) Lemma 5.4 says that

Hom,(M;T)=0=Exti(M,TI) ,
so the exact sequence
0 =Homy (M ;T) —» Homy(M; T/A) - e' (M) — Exty\(M;T) =0,

derived from 0 - A —-TI' - I'/A — 0, gives the isomorphism (1).

(2) By Lemma 5.3 we can assume that M is Z-torsion, M = tM . The exact
sequence

Extj(M; QA) — Exty(M; QA/A) — e*(M) — Ext3 (M ; QA) ,
derived from 0 - A — QA —» QA/A — 0 , gives an isomorphism
e?(M) ~ Extj (M ; QA/A) ,

since Exty(M; QA) =0 (M is Z-torsion).
From Lemma 5.4 it follows that Hom, (M ; QI'/T") = 0 = Exti (M ; QI'/T).
The exact sequence

Homy (M ; QI'/T)) — Homy (M ; QT'/(T" + QA))
— Extp(M; QA/A) — Exty(M; QU/T) ,
derived from 0 - QA/A — QI'/T - QI'/(T'+ Q/A) — 0 , gives
ExtA(M; QA/A) ~ Homy(M; QU/(T +QA))
which proves the lemma.

5.6. Let (£,%) be an n-dimensional u-component % -link and let X -
X be the corresponding free covering. Consider the chain complex C of X
constructed by a cell-decomposition of X . The universal coefficient spectral
sequence [EC] gives an exact sequence

(1) 0= e*(Hi—2(C)) — H'(C; A) — €' (H;i-1(C)) — 0.
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According to Lemma 5.3, e2(H;_,(C)) coincides with the Z-torsion subgroup
of HY(C; A).
The Poincaré duality isomorphism [M1]

Hn+2—i(/?’ 6/?) - Hi(C’ A)

gives two families of isomorphisms

(2) tHyi2-i(X, X) — e2(H;_5(C)),
3) Buir-i(X,0X) — e'(H—1(C)) ,

where B;(Y)=fH;(Y;Z) denotes the Betti groups. It is clear that 7H j(X' , 0X)
=tH;(X) forall j and B;(X, 8X) = B;(X) for 1 < j < n. These identifica-
tions and Proposition 5.5 allow us to rewrite as

(4) T;(X) — Homy(T,—;(X); QT/(T + QA)),

(5) Bj(X) — Homp(B,i1_;(X);T/A), 1<j<n,
where 7; denotes tH;. From this we obtain the following theorem.
5.7. Theorem. In the notation of §5.6, there exist two families of forms:
[+ 1: Ti(X) x T,—i(X) - QT/(T+ QA),
(' ):Bi(X) x Byy1—i(X) = T/A, 1<i<n.
These forms are conjugate-linear and nonsingular.

In the special case u = 1 (knots) the pairing ( , ) was constructed by
Blanchfield [B], and the pairing [ , ] by Levine [L4] and the author [F1]. Another
version of ( , ) was constructed by Duval [D].

5.8. In order to obtain explicit computational formulas for ( , )y and [, ], we
have to find the homomorphisms

K :H'(C; A) - Homy (H;_(C); T/A) ,
x : Torsz H'(C; A) — Homy (T;—»(C); QT'/(T + QA))

forming the exact sequence (1) in §5.6.

Let f:C; — A be a cocycle. Since f(Z;) =0, f defines a homomorphism
Si i Bi.y > A with fijo0 = f. By Lemma 5.4 f; can be extended to a
homomorphism f, : Z,_; — I and this extension is unique. Now f; and f;
give a homomorphism

9:Zi_/Bi-y=H;_{(C) —T/A
and hence we have a homomorphism
x:H'(C; A) » Hom(H;_(C); T/A), k(fN=9.

In order to see that x is an epimorphism, we have to show that every ho-
momorphism Z;_; — I'/A can be lifted to a homomorphism Z;_, — I'. The
obstruction to this is an element of e!(Z;_|) ~ e?(B;_;) =0.
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Let us assume now that [f] € H'(C; A) is of finite order. Then f, assumes
its values in A. We want to construct the following commutative diagram

Ziiy, — Cioi % B, — Zi, — H;_»(C)

le lfs L‘l st L’s
A — QA — QA/A — QIT — QI/(T+QA),

where all horizontal maps are “natural.” The obstruction to constructing f3
lies in Ext}\(Bi_z, QA) = ExtéA(Q ®z Bi_>; QA) and the last group is trivial
since Q®z B;_, is a submodule of a free QA-module Q ®z C;_» ; so the result
now follows from the fact that QA is a free-ideal ring [C]. f3 obviously defines
fa. The existence of f5 is guaranteed by Lemma 5.4, and fs is determined
obviously. We have an ambiguity in the construction of f; and f5. It is
clear that f; is correctly defined modulo . Hom(H;_»(C); QI'/QA), where
B :QI'/QA — QI'/(T + QA) is the projection. We will show later that

o : Hom(H;_5(C); QT/(T + QA))/B. Hom(H;_»(C); QT/QA)

— Hom(tH;-»(C); QU'/(T + QA)) ,
which is given by taking the restriction to tH;_»(C), is an isomorphism; and
(7) any homomorphism Z;_, — QI'/(I" + QA) can be lifted to Z;_, — Qr/r.
Assuming that (6), (7) are true, we see that the above arguments give the map
k :TH(C; A) — Hom(tH;_»(C); QI'/(T + QA)) ,

XU = ol e -

The fact that x is an epimorphism follows immediately from (6) and (7).
If x[f] = 0, then we can construct a diagram as above with f¢ = 0; hence
f3 assumes its values in A and is a cochain with 6f; = f. Thus x is an
isomorphism.

Let us now prove (7). By virtue of the exact sequence

0 — QA/A - QT'/T — QI'/(T+ QA) — 0
the obstruction to lifting Z;_, — QI'/(T" + QA) lies in Ext)(Zi—2, QA/A)

which is trivial.
Statement (6) follows from the following lemma.

(6)

5.9. Lemma. Let M be a finitely generated A-module of type L. Then
(a) any homomorphism t™™ — QI'/(T + QA) can be extended to M —

Qr/(C'+QA);
(b) if T™ =0 then any homomorphism M — QI'/(I' + QA) can be lifted

to QI'/QA.
Proof. (a) Let fM = M /tM . The obstruction to constructing the extension
lies in Extj(fM; QI'/(T + QA)). The exact sequence

0—- QA/A— Q)T — Qr/T+QA)—0
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gives an exact sequence
Exty(fM; QT/T) — Exty(fM; QT/(T + QA)) — Exta(fM; QA/A),

where both side groups are zero (by virtue of Lemma 5.4 and Proposition 4.1
of [D]).

Let us now prove (b). The obstruction to constructing the lifting lies in
Ext,l\(M ; T/A). The exact sequence 0 - A —» I' - I'’/A — 0 gives an exact
sequence

Exty(M; T) — Ext)(M; T/A) — e} (M),
where both side groups are zero (by Lemmas 5.3 and 5.4).

The above arguments give the following recipes for calculation of ¥ and yx
in §5.8:

5.10. Proposition. Let f : C; — A be a cocycle. Then the homomorphism
k[f] : Hi-1(C) —» T'/A acts as follows: For any cycle ¢ € Z;_, there is a
sequence of i-dimensional chains o, with 0a,, converging to c in the I-adic

topology, and
k(L/D(le]) = lim f(am) modA.

Here f(ay,) € A and the limit is an element of T". Its class modulo A does not
depend on the sequence {a,,} .

5.11. Proposition. Assume that f : C; — A is a cocyle representing a Z-torsion
cohomology class. It defines a homomorphism

x[f1: tH;_»(C) = QI /(T + QA)

acting as follows. Let ¢ € Z;_, represent a Z-torsion homology class. There
exist sequences o,, € Ci_y and B, € C;, and elements y € Ci_; and N € Z,
N # 0, such that

(@) Nc=0y;

(b) dam —cinCi_y;and

(C) Nam —8,8,,, -y — 0 in Ci—l .
Then . 1

x(LD(Ael) = % im f(Bm)

where the limit is taken in QU and should be considered modulo T + QA . The
result does not depend on the choice.
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