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ABSTRACT

We shall show that the stable isometry structure determined by a suitable Seifert hy-
persurface of a doubly null concordant knot is hyperbolic and we prove a converse for
stable knots. This suggests a “universal” source for the known homological invariants
of DNC-equivalence. As an application of our main result we shall show that if the ho-
mology of the universal cover of the complement of a stable n-knot is torsion, involving
only primes > (n +10)/6, and is 0 in the middle dimensions then the knot is doubly null
concordant.

Keywords: antisimple, doubly null concordant, fibred knot, hyperbolic, Moore space,
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1. Introduction

An n-knot is a locally flat PL embedding K of S™ in S"t2. (We shall assume
that all spheres have fixed orientations). The set of ambient isotopy classes of
n-knots is a commutative semigroup with respect to connected sum; we obtain
a group on factoring out concordance. The construction which shows that the
reflected inverse ~K of an n-knot K represents the inverse of the class of K in the
knot concordance group actually shows more: Kf§ — K is not merely a slice knot,
but is a slice of the 1-twist spin of K, which is a trivial (n + 1)-knot, and so is
doubly null concordant [26]. Thus we may factor out the semigroup of n-knots by
a finer equivalence relation (DNC-equivalence) and obtain a group which measures
the obstructions to an n-knot being doubly null concordant. Most of the hitherto
known homological conditions for a knot to be doubly null concordant assert that
some pairing is hyperbolic (cf. [16, 18, 20, 25, 26]). We shall show that there is
a universal homomorphism from the group of DNC-equivalence classes of n-knots
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into a “Witt group” of n-isometries from which the homological conditions should
derive.

We begin in Sec. 2 by establishing our notation and reviewing the key definitions.
In Theorem 1 we show that the n-isometry determined by a Seifert hypersurface
of a null concordant n-knot is metabolic, and in Theorem 2 this result is used to
show that if the knot is doubly null concordant and the Seifert hypersurface is
the transverse intersection of an (n + 2)-disc with the equator in S"*3 then the
corresponding n-isometry is hyperbolic. When the knot is fibred the fibre is such
a Seifert hypersurface (Theorem 3). Theorems 4 and 5 lead up to Theorem 6, in
which we show that if the n-isometry associated to some highly connected Seifert
hypersurface of a stable knot is hyperbolic then the knot is doubly null concordant.
In Sec. 5 we consider the algebraic invariants, and in Sec. 6 we consider simple
knots. As an application of our main results we show in Theorem 8 that any fibred
stable n-knot whose fibre is Z/pZ-acyclic for all primes p < (n + 10)/6 and has
trivial integral homology in the middle dimensions must be doubly null concordant.

2. Knots and Stable Isometry Structures

The exterior X = X(K) of the knot is the complement of an open regular neigh-
bourhood, and is a compact oriented (n+2)-manifold with boundary homeomorphic
to S™ x S!. By Alexander duality X has the homology of S!, and the inclusion
of 8X into X induces an isomorphism on homology below degree n. The knot is
r-stmple if this inclusion is r-connected, and is stable if it is r-simple for some r
with 3r > n > 5. The infinite cyclic cover X is the pullback of the universal cover
of S by the map generating [X;S'] = H'(X;Z) = Z. The knot is fibred if there
is a fibre bundle projection p : X — S'; in this case X is homeomorphic to V x R
where V = p~1(1) is the fibre. A Seifert hypersurface for K is an oriented locally
flat codimension 1 submanifold of S"*2 with (oriented) boundary V = K. By a
standard transversality argument, these always exist. An r-simple n-knot K has
an r-connected Seifert hypersurface (cf. [10]). If 3r > n we shall say that such a
Seifert hypersurface is stably connecied.

An n-knot K in S"*? is doubly null concordant (or DNC) if it is the transverse
intersection of a trivial (n + 1)-knot in S™*3, bounding an (n + 2)-disc A say, with
the equator S™*2 in S™*+3, We shall say that the Seifert hypersurface A N S™t? is
a disc section. Two n-knots K and K’ are DNC-equivalent if there are doubly null
concordant knots L and L’ such that K§L and K'§L’ are ambient isotopic. This is
an equivalence relation. Since Kf — K is always doubly null concordant [26], the
set of DNC-equivalence classes of n-knots is an abelian group (with respect to knot
sum);- we shall let DNC,, denote this group. The knot concordance group C, is
a natural factor group of DNC,. (It is not known to the authors whether a knot
which is DNC-equivalent to the unknot must be doubly null concordant. This has
been proven for simple odd-dimensional knots by Bayer-Fliickiger and Stoltzfus {2]).
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Let S = Stab, be the stable category of finite complexes and their formal desus-
pensions considered in [4, 7] and let S denote suspension. If P and P* are fi-
nite subcomplexes of SV such that P* is a deformation retract of SV\P then vp
shall denote the Spanier-Whitehead duality pairing from P A P* to SN-1, Let
D(P) = S'=N(P*) be the normalised dual of P. These pairings determine natural
isomorphisms ¢p : {X, D(P)} — {P A X,5°} by ¥p(k) = S~N(vp(1p A SN~1k))
for any stable map k¥ : X — D(P). If f : Q — P is a stable map between finite
stable complexes then ¥p(k)(f A 1x) = ¥q(D(f)k), and so these pairings are also
natural with respect to the variable P.

A stable isomelry structure of dimension n (or n-isometry, for short) is by def-
inition a triple (V,u, z), where V is an object of S and u : VAV — S™+! and
z:V — V are S-maps such that:

(a) u is a duality;

(b) u' = (—1)**!u (where v’ = uy with v interchanging the factors of V A V); and
(c) uzAl)+u(lA2)=u.

(There is an equivalent formulation based on the triple (V, z,¢ = $~1h) [15], where
h is defined in the next paragraph, and which we shall use in Secs. 5-7 below as it
has some advantages on the algebraic side).

A Seifert hypersurface V for an n-knot K determines an n-isometry (V, u, z) as
follows. If iy and i_ are small translations of V into its complement Y = S"+%\V
along positive and negative normal vector fields then the map h = Siy — Si_ is a
homotopy equivalence from SV to SY, and the carving map z defined by hSz = Si,
is a stable homotopy class of self maps of V. The pairing u is then determined by
the equation u = vy (1A S~1h). The relation of R-equivalence between n-isometries
associated to Seifert hypersurfaces of isotopic knots is described in [5]. The R-
equivalence class of the n-isometry is a complete invariant for stable knots, and any
such n-isometry with the connectivity of V greater than its homotopy length (=
dimension — connectivity) may be realized by such a knot [5-9]. A stable fibred
knot K is determined up to isotopy by the isomorphism class of the triple (V| u, z)
where V is the fibre. In this case z is also a stable homotopy equivalence.

A kernelfor an n-isometry (V, u, z) is a triple (U, zy, f) where U is a based finite
complex and 2y : U — U and f : U — V are S-maps such that (i) fzy = zf and
(ii) for every finite complex X the sequence

{X,U} = {X,V} - {UAX,S"*}

is exact, where the map on the left is given by composition with f and the map
on the right sends 8 : X — V to u(f A 8). The n-isometry is metabolic if it has a
kernel. We will say that a kernel (U, 2y, f) is strong if in the above exact sequence
one may add zeroes preserving the exactness:

0— {X,U} > {X,V} - {UAX,S"} 0.

The n-isometry (V,u,2) is hyperbolic if there are two kernels (Uy, 21, f1) and
(U, 22, f2) such that f1 V fo : Uy VUz; — V is a stable homotopy equivalence. In
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this case we shall say that the n-isometry has the hyperbolic decomposition
V=UyVvU,.

In this case both kernels (U, 21, fi) and (Us, 22, f2) are necessarily strong. With
respect to the hyperbolic decomposition V = U; V U, the S-maps u and z have the

following form
_ 0 vy - (2 0
EANGEDEY 0) 7T 0 )0

where v : Uy AUy — S™+! is a duality. (Here v' = vy where v interchanges the
factors of Uy A Uy).

The terminology has been chosen to underline the analogies between n-isometries
and hermitean pairings.

3. Double Null Concordance Implies Hyperbolicity

The following lemma extends an argument used in the proof of Theorem 1.4 of
[5)-
Lemma 1. Let M be a compact (n+2)-dimensional submanifold of D™*3 such that
OM =VUW, where V = MNOD™3, VNW = 8V = OW and W is homeomorphic
to D™, Let Z denote the complement of M in D"t3, Leti, i_ : M — Z be the

maps given by small normal shifts to either side. Then iy —i_ : M — Z is an
S-equivalence.

Proof. Consider the isomorphism v : Hx(Z) — Hx(M,W), for k > 0, given by the
following composition of isomorphisms:

Hi(2) %5 Higr (D3, Z) — Hiy1(N, 04 N) — Hy(M, W)

where N is a tubular neighbourhood of M in D"*3 and 6, N = 6N N intD"*3.
Since (N,04N) = (M, W) x (I,8I) we obtain the last isomorphism.

Observe that the composite ¥(iy —i_) : Hy(M) — Hy(Z) — Hp(M,W)
coincides with the homomorphism induced by the inclusion of M into (M, W).

Since W is a disc, this induced homomorphism is an isomorphism and hence so is
iy —i- : He(M) — Hy(Z), for all k > 0. O

Theorem 1. Let K be a null concordant n-knot. Then the n-isometry correspond-
tng to any connected Setfert hypersurface V for K is metabolic.

Proof. Let W C D™*3 be a slicing (n + 1)-disk for K. (Thus W N aD"+3 =
OW = K). By a relative transversality argument we may assume that there is
a “Seifert hypersurface” for W which extends V, i.e. that there is a compact
oriented (n + 2)-dimensional submanifold M of D"*3 such that 6M = V U W,
V=MnS"*? =38MnNS**? and K = 0V = 0W. Let U = S~Y(M/V) and
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f : U — V be the desuspension of the canonical map from M/V to SV. We
shall show that there is a self-map zy of U such that (U, zy, f) is a kernel for the
n-isometry corresponding to V.

Let N be a regular neighbourhood of M in D"*2 such that N, = NNS"t2isa
regular neighbourhood of V in §7+2, Let Z = D"+3\intN and Y = S"+2\intN,.
Let J : V — M and j : Y — Z be the inclusions and let I, I_ : M — Z
and iy, i~ : V — Y denote small translations along positive and negative normal
vectorfields. We may assume that I,.J = ji; and I_J = ji_. By Lemma 1
and the argument of Sec. 1.1 of [6] the homomorphisms Iy, — I_, and iy, —i_,
induce isomorphisms on homology. In particular the stable map I, — I_ is a stable
homotopy equivalence and so we may define a self-map zpy : M — M by the
equation (Iy — I_)zp = I. Let z be the carving map for V. Then we also have
(i —i)z =iy and so (L4 — I )zpJ = I4J = jig = j(iy —i)z = (I4 - 1)z
Hence zprJ = Jz and so zpr induces a self-map of SU = M/V. We define 2y as the
desuspension of the latter map. The maps z, zps and Szy determine a map from the
cofibration sequence of the map J to itself. In particular, (Sf)(Szv) = (Sz)(Sf)
and so fzy = zf. It remains for us to prove that for any finite complex X the
sequence {X,U} — {X,V} — {U A X,S"+!} is exact. We shall deduce this from
the following lemma.

Lemma 2. There is a duality pairing w : U A M — S™*! such that w(ly AJ) =
vw(fA(: —i2))=u(fAly).

Let S"+3 = D, UDg be the decomposition of S"+3 into two hemispheres and let
p and p' be the centres of D, and Dy respectively. Identify D"*+3 with D,. Thus we
assume that W and M lie in Dy. The set MUC'(V) is a subcomplex of S*+3, where
C'(V) is the cone over V with vertex p’. This subcomplex is homotopy equivalent to
M/V and its complement in S™*3 has Z as a strong deformation retract. Therefore
there is a Spanier-Whitehead duality pairing vayy : (MU C'(V)) A Z — Sn+2,
Similarly, Y is a strong deformation retract of the complement of SV = C(V) U
C'(V) (here C(V) denotes the cone over V with vertex p) in S"+3 and the Spanier-
Whitehead duality pairing vsy : SVAY ~— $™t2 is the suspension of vy . It follows
easily from the definitions that vmyv(Imucrivy AJ) = vsv(Sf A ly). Identify
MUC'(V) with SU and set w; = S~1vpv. Then w; is also a duality pairing, and
vw(fAly)=wi(lu Aj). Hence w=w(ly A(I4 —1-)): UAM — S"*! s also a
duality pairing. Since w(ly AJ) = wi(lv A (I3 — I-)J) = wi(ly A j(iy —i-)) =
vy (f A(i4 —i_)) = u(f A ly) the lemma is proven.

We may now finish the proof of Theorem 1. The cofibration sequence U —
V — M gives an exact sequence {X,U} — {X,V} — {X, M}. The duality pairing
w defines an isomorphism from {X, M} to {U A X,S™*'}. Let F : {X,V} —
{UAX,S5"1} be the composition of the latter two homomorphisms. If § is a stable
map in {X,V'} then by the lemma F(6) = w(ly A J&) = u(f A 1y 6), and hence the
theorem is proven. O
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Theorem 2. Let K be a doubly null concordant n-knot. Then the n-isometry
corresponding to any Seifert hypersurface for K which is a disc section is hyperbolic.

Proof. Let A be an (n + 2)-disc in S”*2 which meets the equatorial zone S"+2 x I
transversely in V x I, where V is a disc section for K. Let D, and Dg be the
two hemispheres of S**3 and let My = AN Dy and Mg = AN Dg. Then My N
Mg =V, while My U Mg = A. By virtue of Theorem 1 we have two kernels for
(V,u,2), namely (Uq, 2q, fo) and (Ug, 25, f3), where Uy = S~} (Mo/V) and Up =
S~Y(Mp/V), and f4 and f5 are desuspensions of the canonical maps from M,/V
and Mg/V to SV. Now A/V is homeomorphic to (Ma/V)V(Mg/V) and there is a
homotopy equivalence from A/V to SV. Therefore the map (fa, fg) : Ua VUg — V
is a stable homotopy equivalence, which satisfies all necessary conditions. O

The above two theorems require the choice of a Seifert hypersurface, and in order
to obtain a more intrinsic result we must work with R-equivalence classes. On the
level of stable homotopy this may be achieved by localization. (See Sec. 5 below).
It would be of interest to have formulations and proofs that worked directly with
the Z-equivariant SW-duality of the infinite cyclic cover of the knot exterior (cf.
Sec. 3 of [22]). In the fibred case the situation is simpler as there is then a Seifert
hypersurface, unique up to h-cobordism, which is homotopy equivalent to X(K)
(namely, the fibre) and the appropriate equivalence relation is just isomorphism.

Theorem 3. Let K be a 1-simple fibred n-knot which is doubly null concordant.
Then the n-isometry determined by the fibre and ils associated maps u and z is
hyperbolic.

Proof. We may assume that n > 3, for otherwise the fibre is contractible. Let &
be an unknotted (n + 1)-sphere in S™*3 such that K is the transverse intersection
of £ with §7%? in §7*3  and let E, = D,\Z and Z3 = Dg\E. Then the universal
cover of S™+3\I restricts to infinite cyclic covers X, Z4 and ép of X, Z4 and Zp
respectively. By Van Kampen’s theorem and the Mayer-Vietoris sequence, we see
that £, and éﬂ are simply-connected and have finitely generated homology, and so
Za and Zg fibre over S? by maps extending the fibration of X [3]. Thus there is a
fibration ¢ of S"+3\X over S! extending the fibration of S"*2\ K. The fibre A of ¢
is a homotopy disc with boundary S”t!, and so is an (n + 2)-disc. Clearly the disc
section AN S"*? is a fibre for K. The theorem now follows from Theorem 2. O

4. Hyperbolic Implies Doubly Null Concordant for Stable Knots

In this section we shall provide a converse for Theorem 2 above, for stable knots.
Our argument uses the following relative version of Wall’s embedding theorem [27].

Theorem 4. Suppose that M is an m-manifold, P a codimension-0 submanifold of
OM with w1 (OP) = ny(P), (K, L) is a finite CW-pair of relative dimension k and

f:(K,L}y - (M,P)



J. Knot Theory Ramifications 1993.02:125-140. Downloaded from www.worldscientific.com
by THE UNIVERSITY OF EDINBURGH LIBRARY on 02/28/13. For personal use only.

Doubly Null Concordant Knots ... 131

is a map. Assume that

(1) flL : L — P is a simple homotopy equivalence;

(2) f: K — M is (2k ~ m + 1)-connected; and

3) k<m-3.

Then there is a compact codimension-0 submanifold N of M and a simple homotopy
equivalence g : K — N such that

(a) NNOM = P;

(b) m1(ON\P) = m1(N);

(c) glc = flz; and

(d) f and g are homotopic relative to L as maps from K to M.

Proof. The proof is similar to that given by Wall on pages 84-86 of [27]. The only
difference is that we start from a collar of P in M and then add handles inside M to
the part of the boundary of N lying in the interior of M by embedding subsequently
cells of K\L. O

Theorem 5. Let V™1 C §™*2 be a stably connected Seifert hypersurface of a knot

K = 8V C S™*?%, and suppose that the corresponding n-isometry (V,u,z) has a

hyperbolic decomposition V. = X, V X;3. Realize S*t? as the equatorial sphere of

S"+3 which separates S™3 into two discs DPY3, D5*3? € §7+3. Then fori=1,2

there is a submanifold M?+? C D3 with

(a) M;nADM3 = M;nS"*2 =V,

(b) M; has a corner along 8V C OM;; and

(c) M; and OM; are simply connected and there is a stable homotopy equivalence
8; 1 X; — M; such that the composite

(ss)o(pri) : V=X3VXs = X; > M;

s homotopic to the inclusion.

Proof. Recall that to say V = X; V X, is a hyperbolic decomposition for the
n-isometry (V, u, z) means that u and z are given by matrices of the form

u = 0 v 7= 21 0
TAEDEH)Y 0 )T R0 2 )

where v: X; A Xy — S* 2 : X — X; and 25 : Xo — X,.

It is sufficient to treat the case i = 1, as the case { = 2 is similar.

We may assume that V = X; V X; is r-connected, where 3r > n+1 > 6,
and hence that X; and X, are r-connected true complexes, by Corollary 1.6 of [8].
Consider an embedding of V x I in S"*2 extending V = V x {1}; denote its image
by N,. We are going to apply Theorem 4 with L=V = X; VX;, K=V UCX,
(homotopy equivalent to X1), P = N,, M = D*3, f: (K, L) — (D?*3, N,) a map
with f|r : L — P the inclusion of V as V x {1}, and f : K — D?*? being an
extension of it.



J. Knot Theory Ramifications 1993.02:125-140. Downloaded from www.worldscientific.com
by THE UNIVERSITY OF EDINBURGH LIBRARY on 02/28/13. For personal use only.

132 M. S. Farber & J. A. Hillman

By Theorem 4 we obtain a submanifold N**+3 C D?*3 and a homotopy equiva-
lence g : X1 — N such that gopr; : V = X; VX3 — X; — N is homotopic to the
inclusion V. C N, C N. Let 9, N = ON\intN, be the side surface of N. Let also
Y = D}*3\N and let i : 04N — Y, j : 9, N — N be the inclusions.

Claim. There exists a map f : X; — 04N such that fopr, : V =X,V X, —
X1 — 04N represents the inclusion of V into §; N in S.

As Lemma 1 implies that the map iV(—j) : 84 N — N VY is a stable homotopy
equivalence, to prove the claim it is enough to show the existence of two maps
fi: X1 — N and fo : X — Y such that the composites fyopr; : V — N and
faopry 1V =Y are each homotopic to the corresponding inclusion.

It is clear that we may take f; = g, where g is as defined above. It remains for us
to construct fa. Since V = X;VXa, the existence of f5 is equivalent to the statement
that the map k£ : Xy — Y given by the composite of the inclusions X, -V - Y
is null-homotopic. To do this consider the canonical Spanier-Whitehead duality
w: (N/V)AY — S"*2 Let Y, = Y NS"*? and w, : VAY, — S"*! be the
canonical duality pairing, and let § : N/V — SV be the map from the Puppe
sequence. Then (Sw,)(6 A 1y,) = w(lnyv Aincl) as S-maps (here incl : Yy — Y).

By definition, the composite wo(ly Ainel) : VAV — V AY, — S™*! is the
homotopy Seifert pairing 8 of V. Thus we obtain w(1y/v Ak) = (S8)(6Aiz), where
i2 : X3 —» V = X7 V X, is the inclusion. Since & = u(ly A z) the last formula
might be written as w(In/v A k) = (Su)(6 A zi3). The next stage is to understand
6. From the equation g o pry = incl : V — N we obtain a commutative diagram of
maps between the Puppe sequences for pry and for incl:

v ' Xy SX; —— SX;V SX;
[ | -|
v N NV 2 sy

As g is an equivalence it follows that h is an equivalence. Hence 6§ o h = Si; and
we obtain w(h A k) = (Su)(6h A ziy) = (Su)(Siy A ziz), which is 0 (since zi; = i52,
and u(i; Ai3) = 0, by assumption). Since h is an equivalence and w is a duality
we conclude that & ~ 0 and this proves the claim. We may now finish the proof of
Theorem 4. We have constructed a map f : X; — 94N such that fopr, : V =
X1V X3 — X1 — 04N is homotopic to the inclusion V — 8, N. Let us apply
Theorem 4 again. We obtain a submanifold MJ'*? C 8, N with M; N S"*+2 = V
and a homotopy equivalence « : X1 — M; such that a o pr; is homotopic to the
inclusion V' — M,;. This completes the construction of M; C D;'+3. The other
manifold M> C D33 may be constructed similarly. O

Theorem 6. Let K be a stable n-knot with a stably connected Seifert hypersurface
V such that the n-isometry (V,u, 2) is hyperbolic. Then V is a disc section, and so
K is doubly null concordant.
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Proof. Let V = X; VX, be a hyperbolic decomposition of (V,u, z). Let M; C D?+3
be corresponding submanifolds, given by Theorem 5, and let A = M; U M,. Using
condition (c) of Theorem 5 and the Mayer-Vietoris sequence we find that A is
contractible and so it is a disc of dimension (n + 2). Since V = A N S™*3, the
theorem is proven. O

To what extent is this theorem independent of the choice of Seifert hypersurface?
In particular, if the n-isometry determined by some Seifert hypersurface of a stable
knot is hyperbolic, is there a stably connected Seifert hypersurface with hyperbolic
n-isometry?

Combining Theorems 3 and 6 with the arguments used in the proof of Theorem
3 we obtain:

Corollary. A stable fibred knot K is doubly null concordant if and only if the stable
isometry structure determined by the fibre is hyperbolic. O

5. Algebraic Invariants

In this section we shall use localization as an algebraic substitute for dealing
directly with equivariant SW-duality. The category S is additive, i.e., the Hom-
sets in § are Z-modules and composition of morphisms is bilinear. Similarly, the
category A of endomorphisms of objects of S is P-linear, where P = Z[2], for the
Hom-sets in A are P-modules and composition of morphisms is P-bilinear. We
may localize these modules to obtain a category of fractions LA which has the
same objects as A and in which Hompa(M,N) = L ®p Homa(M, N), where
L=7Z[zz2"1,(1-2)"1].

Spanier-Whitehead duality in S gives rise to a family of duality functors Dy
on A. The stable map ¢ = S—'h € {V,Y} associated to an n-knot with Seifert
hypersurface V may be viewed as giving a (—1)"**-hermitian isomorphism of the
object (V, z) of A with its dual D,(V,z) [15]. The duality functor D, on A induces
a duality on LA, giving another additive category with involution.

An additive functor F' from the stable category S to (a subcategory of) the
category Mod(Z) of Z-modules gives rise to a P-linear functor PF from A to
Mod(P) in an obvious way (i.e., by letting PF(V,z) = F(V) with z € P acting
via the endomorphism F(z)). This in turn extends to an L-linear functor L @ F
from LA to Mod(L) (by L® F(V,2) = L®p PF(V,z)). Asin [9], if F is defined
on a larger category including all stable finite dimensional complexes, is covariant
and commutes with direct limits then we have L ® F(V,z) = F(X(K)). (This is
not true for all additive functors.)

For instance, we may take the ¢** singular homology functor, given by H JW) =
Hy(W;Z), for the space W. Let t,(W) be the Z-torsion subgroup of H, (W) and
By(W) = Hy(W)/ty(W), the ¢** Betti group of W. The subgroup t,(V) is preserved
by any self-map z of V, and so the exact sequence 0 — t,(V) — H (V) — By(V) —
0 is then a sequence of P-modules. Since localization is exact we then have an exact
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sequence of L-modules 0 — L ®1,(V,2) = L@ Hy(V,z) = L ® By(V,z) — 0. Now
L ®1,(V, 2) is finite while L ® B,(V, 2) is torsion free. Therefore L ® ¢,(V, z) is the
maximal finite sub-L-module of L ® H,(V,2). (In the knot theoretic case this is
just t(X(K)), and hence L ® B,(V,2) = B,(X(K)).)

Let WQ§(LA; Dy) be the Witt group of the additive category LA with respect
to the duality D,, and sign ¢ = (—1)"*!, as defined in [21].

Theorem 7. The function which sends the ambient isotopy class of an n-knot K to
the isomorphism class of the localization of the n-isometry determined by (any) one
of its Seifert hypersurfaces is well-defined, and carries knot sums to orthogonal sums
of n-isometries. The Will class of the n-isometry determines a homomorphism from
DNC, to WQ§(LA;D,,), where e = (—1)*+1,

Proof. It is clear from the definition of contiguity that the localizations of con-
tiguous n-isometries are isomorphic. Since R-equivalence is the equivalence relation
generated by contiguity it follows that the isomorphism class of the localization of
an n-isometry of an n-knot is a well defined invariant of the knot. If V; and V,
are Seifert hypersurfaces for K; and K3, respectively, then the boundary connected
sum VihV; is a Seifert hypersurface for K §K,, and hence the invariant is addi-
tive. Theorem 2 implies that the image of such an n-isometry in the Witt group
WQ§(LA; Dy) is an invariant of DNC-equivalence. O

Stoltzfus has defined Witt groups CH¢(Z) and CH¢(Q/Z) of e-hermitean forms,
corresponding to the Seifert forms and Farber-Levine torsion linking pairings of knot
theory [25]. Let M be the category of torsion L-modules of projective dimension
1 which are finitely generated as modules over A = Z[t,t™!], where t = 1 — 271,
and define a duality * on M by M* = Homy(M,Q(z)/L), with the L-module
structure determined by zf(m) = f((1 — 2)m) for all f in M* and m in M. Then
the correspondance between Seifert forms and Blanchfield pairings determines an
isomorphism of CH¢(Z) with the Witt group WQ§(M, #), cf. [16]. Similarly, the
group CH¢(Q/Z) may also be interpreted as the Witt group of the category of
finite L-modules, with respect to the duality given by N* = Homgz(N, Q/Z), where
zg(n) = g((1 — z)n) for all g in N* and n in N.

Corollary. (i) [16, 25, 26] The Blanchfield pairing determines a homomorphism
from DNCyg41 to CHY(Z) = WQ§(M, %), where ¢ = (—1)9%!, and which is onto if
q>2.

(ii) [25] The Farber-Levine pairing determines a homomorphism from DNCyy to
CH(Q/Z), where ¢ = (—1)?+1, and which is onto if ¢ > 2.

Proof. The Betti functor B is an additive functor from S to Mod(Z);,y, the
category of finitely generated free abelian groups, which is compatible with the
dualities Dog41 of S and Homg(—, Z) of Mod(Z);,y, by Alexander duality in 52943,
On applying B, to a (2¢ + 1)-isometry (V,2,¢) of a (2¢ + 1)-knot we obtain the
corresponding Seifert form for the knot. This gives rise to the Blanchfield pairing
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of the knot as in Sec. 14 of [19]. Theorem 2 implies that the Witt class of the
Blanchfield pairing of a doubly null concordant (2¢ — 1)-knot must be trivial. If
g > 2 every (—1)?*!-hermitean symmetric Blanchfield pairing may be realised by
some simple (2g + 1)-knot and so the homomorphism is onto.

The torsion functor ¢, is an additive functor from S to Mod(Z)inite, the cat-
egory of finite abelian groups which is compatible with the dualities Dyg of A and
Homg(—,Q/Z) of Mod(Z)yinite, by Alexander duality in S$24+2 and which gives
rise to the Farber-Levine pairing on ¢,(X(K)). Theorem 2 implies that the Witt
class of the Farber-Levine pairing of a doubly null concordant 2¢-knot must be triv-
ial. If ¢ > 2 every (—1)?*1-symmetric Farber-Levine pairing may be realized by
some simple 2¢-knot and so the homomorphism is onto. O

6. Simple Knots

If a duality preserving additive functor from a subcategory of LA to an additive
category with duality is fully faithful then it determines a complete invariant for
stable knots with Seifert manifolds in the given subcategory, and Theorem 2 implies
that the invariant of a doubly null concordant knot must be hyperbolic.

For instance, simple (2¢ — 1)-knots have Seifert manifolds which are homotopy
equivalent to wedges of g-spheres; the ¢'* Betti functor B, is a complete invari-
ant for such spaces and maps between them. A simple odd-dimensional knot
is doubly null concordant if and only if its Blanchfield pairing is hyperbolic [16,
26). Moreover a Blanchfield pairing is hyperbolic if and only if its Witt class in
CH(Z) = WQ§(M, #) is trivial [2].

Simple 2¢-knots have Seifert manifolds which are (¢ — 1)-connected and have
homological dimension ¢ + 1, i.e., which are so-called A; spaces. Such spaces are
determined by their homology [1: p. 287], but to detect maps between them other
invariants are needed. These are described and used in [7] to construct a complete
invariant for simple 2¢-knots; the invariant is reformulated as an “L-quintuple” in
[8]. (For both odd and even-dimensional simple knots there are realization theorems
characterizing the possible values of the invariants.)

In the~remainder of this sgction we shall assume that K is a simple 2q—k130t‘ Let
A = Hy(X(K)), B = Hy41(X(K)), C = Hyyr (X (K); Q/Z), Wy = 733, (X (K))®
Z(2Z and I = 73} ,(X(K)). (Note that if ¢ > 4 the latter two groups agree with the
corresponding unstable homotopy groups, i.e., I 41 = 7g41(X(K))®Z/2Zif ¢ > 3
and I = wy49(X(K)) if ¢ > 4.) The maps 5 : A/2A - g4y and o : AJ2A — 11
given by composition with the stable Hopf map and with its square, respectively, are
monomorphisms. These groups have natural L-module stiuctures, determined by
the action of the covering group Aut(X(K)/X(K)) = Z, and the homomorphisms 7
and « are L-linear. Let £ be the Farber-Levine pairing on the Z-torsion submodule
tA and let ¥ : I x I — #§* be the nondegenerate (—1)?*!-symmetric pairing
determined by SW-duality, as in [6, 7). The pairing v determines a homomorphism
B : 1 — Homg(A,Z/2Z) by B(b)(a) = ¢(b,a(a)) for all @ in A and b in II. This
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homomorphism is onto, its kernel is the image of « and if 8(b)(z)) = £(a, z) for all
z in tA then 2b = a(a). (This property is established in [6].) If N is an L-module,
let !N = E_xt-'L(N ,L), where the overbar denotes conjugation with respect to the
involution of L determined by z=1— 2.

The L-quintuple is th%e quintuple (4,11, a,¢,4). It is a complete invariant for
simple 2¢-knots with ¢ > 4 [8], and subsumes both the Farber-Levine pairing ¢,
which is a complete invariant for simple 2¢-knots with ¢ > 4 and H,(X(K)) finite
of odd order, and the F-form, which is a complete invariant for simple 2¢-knots
with ¢ > 3 and ¢,(X(K)) = 0 (14, 17]. (When there is no 2-torsion the L-quintuple
is determined by the module A together with the Farber-Levine pairing on tA and
an F-form based on A/tA = B,(X(K)).) Since the interrelations between the
two pairings £ and 1 are somewhat involved, we may attempt to reformulate the
L-quintuple as a self dual object of an additive category with duality (cf. [21}).

We shall give such reformulations in two important special cases: when the knot
is fibred (i.e., A = Hy(X(K)) is finitely generated as an abelian group) and when
it is torsion free (i.e., tA = tq(f((K)) =0).

In the fibred case we may obtain such a formulation on applying Pontrjagin dual-
ity to the invariants of [7]. We take as our invariants the sextuple (4, C, 11, &, 8, v),
where 6§ : C — A is the homology Bockstein and v : I — C is the map aa4 of
[7]. There is a natural isomorphism from B ® Q/Z to ker(6) and so the standard
topology on Q/Z (as the torsion subgroup of S') determines a topology on C. The
composite fady is multiplication by 2 on II and 2y = 0. Morphisms between such
sextuples are systems of homomorphisms of the underlying modules such that all
relevant diagrams commute. If M is an abelian topological group which is also an
L-module, let M* be the group of continuous homomorphisms from M to S!, with
the L-module structure determined by zf(m) = f(zZm) for all fin M* and m in M.
We define the dual sextuple by (A, C, 11, &, 6,7)* = (C*, Homg(A,Q/Z),11*, 4, 5, @).
(The maps are given by 4(f 4+ 2C*) = fy for f in C*, §(g) = g6 for g : A — Q/Z
and a(h) = hap for h in II*, where p is the projection of A onto A/2A4.)

When B, (X(K)) = 0 then A = tA and is finite, B = 0 and v is an isomorphism,
and this invariant simplifies to a triple (A,II, E) where E is an exact sequence
0> A/2A — 11 -3 A =ker(2: A — A) — 0 such that the composition II —
A — A/2A — 1 is multiplication by 2, together with an isomorphism ¢ to the
dual triple. (The dual is given by (A,1I, E)* = (e24,€?ll, e2E), for if M is finite
then M* = Homgz(M,Q/Z) and is naturally isomorphic to e?M.) In this case,
stably hyperbolic implies hyperbolic and the corresponding Witt group is infinitely
generated and of exponent 4 [13]. If moreover the finite group A has odd order then
the invariant simplifies further to be just the Farber-Levine pairing.

If t,(X(K)) = 0 we may take as our invariant the F-form, which can be formu-
lated as the quintuple (A, B,I¢41,7n,w) where w : ;41 — B/2B is the Hurewicz
homomorphism, together with an isomorphism ¢ to the dual quintuple. (The dual
is given by (A, B,Ij41,7,w)* = (e} B,e' A, €241, e%w, e?n). Note that if M has
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no 2-torsion multiplication by 2 gives a short exact sequence 0 - M — M —
MQZ[2Z — 0, and so e2(M ® Z/2Z) = (¢! M) ® Z/2Z). Here we need not assume
that K is fibred, i.e., that A is finitely generated as an abelian group. To relate the
invariants in the fibred case, note that if tA = 0 then § = 0 and C = B® Q/Z, and
the following lemma implies that composition with the stable Hopf map from I 4,
to IT is onto if ¢ > 4 and A has no 2-torsion. Since these two groups have the same
order this map must be an isomorphism.

Lemma 3. Let X be a (¢ — 1)-connected complez such that A = Hy(X;Z) has no
2-torsion and Hy42(X;Z) = 0. Then composition with the stable Hopf map n maps

To41(X) onto w8l o(X).

Proof. After suspending if necessary, we may assume that ¢ > 4, i.e., that we are
in the stable range. Let X9+ be the (g + 1)-skeleton of X. The pair (X, X[s+1])
is (¢ + 1)-connected, so the Hurewicz homomorphism from m,42(X, X[9%1]) to
Hg42(X, X441 Z) is an isomorphism. Since H,1+2(X;Z) = 0 the connecting homo-
morphism from Hgyo(X, X14+1;Z) to Hyy1(X9+1; Z) is a monomorphism. There-
fore the connecting homomorphism from 7,45(X, X[9+1) to Te+1(X1HY) is also
a monomorphism, and so the natural map from 7g45(XU*+1) to m,45(X) is onto.
Since X9+ ~ M(A,q) v \/ S9+! [1: p. 287], the Hilton-Milnor theorem implies
that mg45(X19+) is generated by the images of 7,42(M(A, ¢)) and Tg42S9+1, for
as 2¢ — 1 > ¢+ 2 there are no nontrivial Whitehead products. As A * Z/2Z =0
the composition 7% : 4 — mg+2(M (A, q)) is onto, by 3a.7 of [1: p. 269]. Thus
7N : Te41(X) = mgp2(X) is onto. O

This lemma can also be proven by means of the Atiyah-Hirzebruch spectral sequence
for stable homotopy.

In all these cases, Theorem 2 implies that if such a knot is doubly null concordant
its invariant is hyperbolic. Kearton has shown that a torsion free simple 2¢-knot is
doubly null concordant if and only if its F-form is hyperbolic ([18] - see also [23]).

7. Q-Acyclic Stable Knots

We~shall say that a 1-simple knot K is Q-acyclic if H, (X ; Q) = 0 or equivalently
if Hi(X;Z) is finite for 2 < i < [(n + 1)/2]. If K is any Q-acyclic stable knot then
2K = K{K is —ampbhicheiral [15]; it follows that 4K is doubly null concordant, and
hence the subgroup of DN Cy, represented by Q-acyclic stable n-knots is a countable
group of exponent 4. On the other hand there are countably many (¢ — 1)-simple
2¢-knots with H,(X;Z) finite of odd order (which are thus Q-acyclic) whose Farber-
Levine pairings are independent elements of order 4 in the appropriate Witt group
[13].

If A is an abelian group and j > 2 then M(A, j) shall denote the Moore space
with homology A in degree j, which is well defined up to homotopy equivalence. In
particular, if A = Z/qZ then M(A,j) is the cofibre SJ Uy e/*1 of the degree g self-
map of S/. (Cf. Chapter V.3a of [1] or Chapter 2.1 of [4].) Since M(A; ® A, j) ~
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M(A1,5) V M(Az,j) the general Moore space is a wedge of such cofibres. (Note
also that the suspension SM(A, j) is an M(A, j + 1)-space.)

Lemma 4. Let A and B be finite abelian groups. Then if j > 2

(a) [M(A,i);M(B,j)]=0ifl1<i<j—1;

(b) [M(A)] - 1); M(B’])] = EZt(A’B);

(c) [M(A,j); M(B,j)] = Hom(A, B);

(d) [M(Ak); M(B,j)) =01if j <k < 2j—3 and the p-primary summand of B is
0 for primes p < j/2.

Proof. We may assume that A is cyclic. Since in all cases M (A, k) has dimension
at most 2(j — 1) (i.e., £ < 2j — 3) the homotopy classes are stable and so we may
also assume that B is cyclic, of prime power order. We shall prove only (d). (The
other cases may be proven in a similar fashion. See also p. 268 of [1].)

Associated to the cofibration §¥ — S9 — M (Z/qZ, j) there is a homotopy
sequence m(S') — m(S?) — m(M(Z/qZ,§)) — mi-1(S?) — ... which is exact
for i < 2j — 3 (Theorem 1.6 of [4]), and where the maps between the homotopy
groups of S7 are given by multiplication by ¢. Since multiplication by a prime p
is invertible on 7;(S7) for j < i < j + 2p — 3 by Corollary 9.7.13 of [24], it follows
that m(M(Z/p°Z,j)) = 0 for j < i < min{2j — 2,7 + 2p — 3}. We can now use
the Barratt-Puppe sequence for the cofibration S* — S* — M(Z/tZ,k) to show
that [M(Z/tZ, k); M(Z/p*Z,j)] = 0if j < k < min{2j —3,j + 2p—4}. This proves
(d). O

Theorem 8. Let K be a Q-acyclic n-knot which is r-simple for some r > n/3 and
such that the p-primary component of H.(X;Z) is trivial for p < (n—2r+3)/2 and
Hi(X;Z)=0 fori=[n/2] or [(n+1)/2). Then K is doubly null concordant.

Proof. By the remarks above K is a stable fibred knot. The fibre V is an r-
connected (n + 1)-manifold with boundary S™ and so has the homotopy type of a
finite complex of dimension n — r. Since it is Q-acyclic and has homotopy length
(n—r)—r = n—2r which is less than its connectivity it decomposes up to homotopy
as a wedge of its p-primary components for primes p, and this decomposition is
respected by the maps z and ¢. (Cf. Theorem 4.40 and Corollary 4.29 of [4].) As
this decomposition corresponds to knot sum we may henceforth assume that V is p-
primary for some prime p > (n—2r+3)/2. As the homotopy length of V is less than
2p — 3, V is homotopy equivalent to a wedge of Moore spaces (cf. Proposition 1.1
of [12]). In particular, we may write V ~ V(—) vV V(4), where V(—) has dimension
< [n/2]) and V() is [(n + 1)/2]-connected.

Lemma 4 implies that [V (=); V(4)] = [V(+); V(-)] = 0. Therefore the carving
map z has matrix (* (6' ) z&_)) with respect to the decomposition V = V(=) VV(+).
Similarly S®*! D(V') is homotopy equivalent to S**! D(V(=))vS"+! D(V (+)) where
the summands are again wedges of p-primary Moore spaces, the first summand is
[(n + 1)/2}-connected and the second summand has dimension at most [n/2], and
D(z) has matrix (P¢{~) D(z% +))) with respect to this decomposition. The lemma
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also implies that [V(=); S*™*!1D(V(<))] = [V(+); S**'D(V(+))] = 0. Therefore
the duality map ¢ must have matrix (2 'g) with respect to these decompositions,
and since ¢ is (—1)"*!-hermitean ¢ = (—1)"*!D(¢). It now follows easily that the
map from V(=) V V(+) to V(=) V S*+1D(V(-)) with matrix ( 3}) determines an
isometry from the stable isometry structure (V, z,¢) of K to the hyperbolic stable
isometry structure (V(=) v S*+1D(V(-)), (*¢) D(z%_))), ((_1()’,.+, t))- The result
now follows from the Corollary to Theorem 6 above. O

The lowest dimension in which there are nontrivial examples satisfying the hy-
potheses of the theorem is n = 14. The class of knots to which the theorem applies
includes all antisimple Q-acyclic stable n-knots with trivial p-primary torsion for
all primes p < (n+10)/6. (An n-knot is antisimple if its exterior has a handlebody
decomposition with no handles in dimensions ¢+ 1 (if n = 2¢) or ¢+ 1 and ¢ + 2
(if n = 2¢ +1). A l-simple n-knot is antisimple if and only if H;(X;Z) = 0 for
[»/2) < i < [(n+ 3)/2] [11]. The lowest dimension in which there are nontrivial
antisimple examples is n = 20.) In all cases the homology of X has odd order. Can
the condition on the middle dimensional homology be relaxed to “the Farber-Levine
pairing on H,,/z()? ;Z) is hyperbolic” if n is even, and dropped completely if n is
0dd? In particular, are Q-acyclic (g — 1)-simple (2¢ + 1)-knots with H,(X;Z) of
odd order always doubly null concordant? (Such knots are stable if ¢ > 4.)
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