A Topological Interpretation of the
Atiyah-Patodi-Singer Invariant

M. FARBER AND J. LEVINE

0. Let M be a closed, connected, oriented manifold of dimension n = 2/ —1
and let # = 1 (M). For any unitary representation o : m — Uy, Atiyah, Patodi
and Singer in [APS, II] define a numerical invariant po(M) € R as follows.
Choose a Riemannian structure for M and then consider the self-adjoint elliptic
differential operator B, on the space of all differential forms of even degree with
values in the flat bundle defined by « by the formula B, = it(—=1)P*!(xdy — do*)
on forms of degree 2p, where d, is the covariant derivative of the flat bundle
defined by a and * is the duality operator defined by the Riemannian structure.
They then consider the eta-function 7a(s) = }_,_o(sign A)|A|~°, where A runs
over all nonzero eigenvalues of B, counting multiplicities. Atiyah, Patodi and
Singer show, in [APS, I, II], that 7,(s) defines an analytic function for R(s)
large, which can be analytically continued to have a finite value at s = 0. They
then define po (M) = 14(0) — kn(0), where 7(s) is the eta-function of the trivial
representation. It is an immediate consequence of their Index Theorem that
po(M) is independent of the choice of metric and that the reduction of p, (M)
to R/Z depends only on the oriented bordism class of M.

INDEX THEOREM ([APS,II]). If M is the oriented boundary of an oriented
compact Riemannian manifold V, such that the Riemannian structure on V is
a product near M, and the representation o extends to a unitary representation

B of m(V), then
sign (V) = k/v L(p) — 1(0).

In this formula, L(p) is the Hirzebruch polynomial in the Pontriagin forms of
V and sign o (V) is the signature of the intersection form on V over the twisted
coefficient system defined by a.
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COROLLARY. Given M = 9V, with a = |y, we have po(M) = ksign (V') —
sign o (V'), where sign (V') is the ordinary signature of V.

We address two problems in this work.

(1) Give an intrinsic topological definition of p,(M).
(2) To what extent is po (M) an invariant of homotopy type?

Viewing po (M) = p(M) - a as a real-valued function on the variety of unitary
representations of m = 71 (M), our results consist of:

(a) a formula for the jumps in p(M) at discontinuities, and
(b) a formula for the “differential” of p(M), reduced mod Z.

Both of these formulae depend only on the homotopy type of M and give an
intrinsic homotopy invariant definition of p(M), up to a locally constant function
(which vanishes on the component of the trivial representation). It is known that
homotopy invariance fails if 7 is finite [W] and in many cases when 7 has torsion
[We].

Earlier work of Neumann [N] and Weinberger [We] showed that p(M) is a
homotopy invariant for a large class of m (M).

1. For any group 7 we can consider the set of k-dimensional unitary repre-
sentations of m, denoted Ry(w). If 7 is finitely generated this set is, in a natural
way, a real algebraic variety — any representation of 7 (with m generators) leads
to an obvious manifestation of Ri(7) as a subvariety of U(k) x ---U(k) (m
times). It is not hard to see that this algebraic structure is independent of the
presentation of 7. In [L], [L1] the Atiyah-Patodi-Singer invariant p,(M) is con-
sidered as a function p(M) : Rg(w) — R, where p(M) - a = po(M) and m =
m(M). It is shown in [L1] that there is a stratification of Ry () by subvarieties
Ri(m) =%p 2 %1 2 - 2 %; D ... such that p(M)|(X; — £;41) is continuous,
for i > 0. Specifically, ¥; is defined as follows. Define d, = ), dim H;(M; a),
where H;(M; ) is homology with the twisted coefficient system defined by c.
If d = min{d, : a € Ri(m)}, then ¥; = {@ : do > d +i}. Note that this
stratification depends only on the homotopy type of M.

We propose to study the discontinuities of p(M). In [APS-III] it is shown
that the reduction p, (M) of po(M) to R/Z depends continuously on a. (In
fact they give a (K-theoretic) formula for this reduction). This shows that the
“jump” in p(M) at a discontinuity is integral.

Set 7 be an analytic curve in Ry(n). Analyticity means that v lies in some
¥, so that it intersects ;4 in a discrete set of points. We may assume that, for
some € > 0 and |¢| < ¢, the inclusion «(¢) € ¥;41 holds if and only if t = 0. Then
p(M) o v is continuous except for some (integer) jump at ¢ = 0. More precisely,
p(M) o v is continuous at t # 0 and, since p(M) oy (p(M) is the reduction of
o(M) to R/Z) is continuous at t = 0, there is a well-defined limit of p(M) o ()
as t — +0, which agrees with p(M) o y(0) mod Z. We propose to find a formula
for the difference.
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We first interpret -y as a representation of 7w over P, the ring of power series
with a positive radius of convergence, since the entries of the matrix ~(t) are
elements of P. We can then use v to define, for example, a right action of 7
on the free P-module P* of rank k, by regarding P* as row vectors over P and
using right multiplication by +(¢). That each v(t) is unitary means that this
action preserves the canonical P-valued Hermitian form on P*. If P4° denotes

the right Cr-module defined by <, then the conjugate left Cr-module 7: (recall
F: = PF with 7-action defined by g-a = a-g7!, for any g € m, @ € PJ) is
isomorphic to the module defined by regarding P* as column vectors and using
left multiplication by ~(t).

We may use P,'f as a local coefficient system over M(m = 71(M)) and define
H.(M;y) = H,(P* ®, C(M)) and H*(M;7) = H.(Hom »(C(M),P,)). Now
Poincaré duality applied to M shows that the intersection pairing over Zz on M
induces an isomorphism:

H;(M;A)~ H" ' (M;4), 0<i<n,

where A is any (R, Zn)-bimodule (R any ring with involution) and, generally,
A — A denotes the usual passage from (R, Zn)-bimodules to (Zr, R)-bimodules.
The duality isomorphism is one of right R-modules. We apply duality with
A= 13,;“ , R = P with involution defined by complex conjugation.

Since P is a discrete valuation ring with fundamental ideal generated by ¢, we
see that H;(M;~) is determined by its rank r; over P and its torsion submodule
T;(M;~). The universal coefficient theorem shows that H7(M;~) has rank r;
and its torsion-module is the “dual module” of T;_1(M;vy) — if T is a (left)
torsion P-module then the dual module is T* = Hom p(T; P/P), where P is
the quotient field of P, a (right) P-module. Now Poincaré duality tells us that
7 = Tn—i, Ti(M;7) ~ Tp—i—1(M;~v)* and, furthermore, there is a non-singular,
sesquilinear, +Hermitian pairing ( , ):

T,(M;y)xTy(M;y) — P/P (n=2¢+1) with

(Aa, B) = Me, B), (@, B) = £(B, ).

Now, non-singular, sesquilinear, +Hermitian pairings of a torsion P-module T’
can be classified by a collection of signatures. Specifically, let {, ) : TxT — P/P
be such a pairing and define A;(T’) to be quotient ker t!/(tker t**! + kert'~1). It
is easy to check that (, ) induces a non-singular, bilinear, +-Hermitian pairing
(over C) (, )it A(T) x Ay(T) — C by the formula:

t'{a, B)i = ([al, [8]) mod tP.

Note (o, 3) € t*P/P. Now we can define o;({ , )) = sign({, );) and it is not
hard to prove:
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PROPOSITION 1. Suppose that (, ) and (, )’ are two non-singular, sesquilin-
ear, e-Hermitian pairings (¢ = £1) defined on the same torsion P-module T as
above. Then (, ) and (, )’ are congruent if and only if o;({ , )) = as({, ))
for all i.

Now, we go back to our analytic curve v in Ry(7) and define o;(M;v) =
ai({, )), where (, ) is the pairing defined above on T,(M;~).
Our main result is:

THEOREM 1.
Jim p(M) -(t) = p(M) - 7(0) = ; oi(M; ).

The first order part of the linking pairing described above was considered in
[KK]; cf. also [KK1], where the first order part of Theorem 1 is proven in the
case of manifolds with boundary. In [KK1] there is a discussion of an alternative
version of the higher order part of Theorem 1 which would use cup products and
higher Massey products.

We remark that it is a consequence of the curve selection lemma that the
discontinuities of p(M) along analytic curves determine p(M) up to a continuous
function on Ry (m). More explicitly, suppose we define:

o(M;v) = lim p(M)-~(t) - p(M)-~(0)

where v is an analytic curve in Ri(7) defined on a neighborhood of 0. In fact,
if p is any real-valued function on Ry(7) whose reduction mod Z is continuous
and which is “piecewise-continuous” in the sense that, for some stratification
of Ri(p) by subvarieties Rg(n) = X9 2 ¥; 2 --- 2 ¥; 2 ..., the function
p(M)|(Z; — Li41) is continuous for all 2 > 0, then we can define o(p,~) by the
above formula. Then we have:

PROPOSITION 2. If p1, p2 are two piecewise-continuous real-valued functions
on Ry () which are continuous mod Z, then p; — p2 is continuous if and only if
o(p1.~) = o(pa.7y) for every analytic curve v in Ry(mw).

The proof of Theorem 1 begins with a general formula for the spectral jump
at t = 0 of a path A; of elliptic differential operators in terms of the associated
signatures of a “linking” pairing on a torsion P-module, with values in P/P,
defined directly from A4;. Using a parametrized Hodge decomposition [K: Ch.
VII, Th. 3.9; it is then shown that these signatures, for A; = B,(y), coincide with
the signatures of the “topological” linking pairing ( , ). The details will appear
in a future paper FL .

Originally we proved the formula of Theorem 1 under the rather stringent
hypothesis that ~(¢1 extends to an analytic path in Ri(71(V)) for some compact
oriented manifold 1" bounded by M. We then use the Index Theorem to give a
purely topological proof as follows. We put ourselves in a more general context.



ON ATIYAH-PATODI-SINGER INVARIANT 13

Let (V, M) be an algebraic Poincaré (AP) pair of finite type over the ring P, in
the sense of Mis¢enko [M], with dimension V = 2¢+2. Then Hy (M) supports a
non-singular torsion pairing, on its torsion submodule, with value in P/P, and
we can define o;(M) to be the signatures of the associated +Hermitian forms,
as above. For any e > 0, let P, be the subring of P consisting of all power series
with radius of convergence > ¢. We may assume that (V, M) comes from an
AP-pair over P, for some ¢ > 0. Then we can define (V,, M;) = (V,M) ®. C,
for 0 < ¢ < ¢, where C is regarded as a P.-module via the ring homomorphism
P, — C defined by f — f(c), and let o.(V) be the signature of the intersection
pairing on V,. In fact, it is not hard to see that o.(V) is constant for ¢ in the
interval (0, 6), for some 0 < § < € — let us denote this constant value by o, (V).
Then, our general result is 6 (V) — 0o(V) = 3,5, 0:(M).

To prove this, first consider the special case in which H;(V)=0fori<gq.
Then Hy1(V) is a free module and the intersection pairing is represented by
a matrix B which can be decomposed into a block sum of matrices of the form
t'B;(t), where B;(0) is non-singular over C, plus a 0 matrix. Thus for 0 < ¢ < ¢,
a.(V) = >,5,sign Bi(c) and oo(V') = sign By(0). If B;(c) is non-singular in an
interval 0 < ¢ < §, then, in this interval, o.(V) = 3", sign B;(0).

We now turn to the torsion pairing on H,(M). It is a standard fact, in this
situation, that a matrix representative B of the intersection pairing on Hyy1(V)
is also a presentation matrix for H,(M) and the inverse of the non-degenerate
part of B represents the torsion-pairing. Thus we see that ¢B(t) presents the
free P/t* summand of Hy(M) and, in addition, the associated Hermitian pairing
on A;(TH,(M)) is represented by the matrix B;(0)~!, for i > 1. Putting all
these observations together gives the desired result.

For the general case we reduce to the special case by doing algebraic surgery
on V as in [M]. It is not hard to see that we may kill all the homology of V
of dimension < ¢ without changing M, but it is necessary to check that o (V)
and oo(V) are not changed by these surgeries. In fact, the only surgeries which
change Hg, (V') are those to kill Hy,(V). When a class a € H,(V) is killed by a
surgery then the effect on Hy1(V') and the intersection pairing are as follows:

Case 1. o is a torsion class of Hy(V) - sayt"a = 0; then a rank 2 orthogonal
summand is added to Hy(V') with the intersection pairing on this new summand

) 0 ¢
represented by the matriz [ 0 J
Case 2. a has “infinite order” in Hy(V), but its image in Hy(V, M) is tor-
sion: then the rank of Hq41(V') is increased by one but the new element is totally
isotropic, i.e. its intersection with all elements of Hqy1(V') is zero.

Case 3. The image of o in Hy(V, M) has infinite order: then Hgi1(V) is
unchanged.

But in all three cases neither o (V') nor g5(V) is changed and so the theorem
follows.
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2. We now study the reduction to R/Z of p(M). Denote by p(M) : Ry(w) —
R/Z the function p(M) - a = po(M). As remarked above, it is proved in [APS,
III] that p(M) is continuous. Moreover, they obtain a formula for p(M) as
follows. For any unitary representation « of a discrete group I', there is associated
an element 3(a) € K~(Br;R/Z), where Br is the classifying space of I". Then,
if « € Rx(m) and ¢ : M — By is the classifying map for © =~ 71(M), we have
¢*B(a) € K~Y(M;R/Z). Now let 0 € K'(rM) be the “self-adjoint symbol” of
the signature operator on M (7M is the Thom space of the cotangent bundle).
The “index theorem for flat bundles” of [APS, III] then asserts that g, (M) =
¢*B(a) - o, using the product

KY(M;R/Z) x K*(M) — K°(rM;R/Z) ™S R/Z.

Using the ideas of this general result we can obtain a more explicit, though
less definitive, determination of p(M). If a € Ry(m) then let deta € Ri(w) be
the obvious representation (det «)(g) = det @(g). We can then define arg det o €
HY(M;R/Z) by the formula det a(g) = exp(2mi(argdet a)(g)), for any ¢ € =.
We now define p(M) : Ry(m) — R/Z by the cohomological formula:

(M) a=—(2(argdet @) U L(M))[M]

where L(M) is the Hirzebruch L-polynomial in the Pontriagin classes of M, de-
fined by the generating series z/tanh(z). This makes sense, since the component
of L(M) in H#-2 lifts to an integral class [No], but depends on the particular
lift (here we assume that dim M = 2! — 1). However, we note that changing the
lift will only change p(M) by a locally constant Q/Z-valued function on Ry (7).
An alternative definition of (M) goes as follows. Chooose a basis 2],..., 2},
of H'(M;Z) and 21,...,2y, € Hi(M;Z) such that 2 - z; = 6;;. Let 7; be the
signature of an oriented closed submanifold of M representing the Poincaré dual
of zj in Hyy_o(M;Z). Then, up to a locally constant function on Ry(m):

m
pM)-a= —2Zn arg det a(z;)

=1
See [L1] for a special case.

THEOREM 2. p(M) — p(M) is constant on connected components of Ry(r).
For example. we have p(M) = p(M) on the component of the trivial representa-
tion.

SKETCH OF THE PROOF. Suppose oy (0 <t < 1)is a path in Rg(7). Then we
can associate to a; a "Hermitian” bundle £ (i.e. unitary bundle with a connexion)
over I x M, such that on ¢ x M the induced connexion is flat and has monodromy
a;. The curvature form £ has the form Q = dt Aw, where w is a 1-form on I x M
with coefficients in Hom (£.£). Now the Index Theorem of [APS, I] applied to
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the generalized signature operator D; on I x M with coefficient in £ gives the
formula:

IndeXD§ = / 2lCh§ : ['(I X M) - (nal (M) - nao(M))
IxM

where £ is the Hirzebruch form with generating series: %, dim(I x M) =
2l and ch¢ is the Chern character form of £&. But this form reduces to k +
3= Trace (), since Q = dt A w, and so we can derive from the Index Theorem
the equation:
-1
pal(M)—pao(M)'=‘7 / dt A Trace (w) A L(M) mod Z
IxM

Now the 1-form Trace(w) on I x M defines a 1-parameter family of cohomology
classes (Trw); € H*(M;R) and so we have

P (00) = pos00) = 21| lmau)tdt]uc(M)]-[M] mod Z

¥

where we use £(M) as above to denote the Hirzebruch polynomial in the Pon-
triagin classes of M. We now use the fact that

(Trw)i(g) = Trace (%o (g) 0 a7 () = & (logdetx(s))
to obtain our final formula:
Pay (M) — pao (M) = —2((arg det o1 (g) — arg det ag(g)) U L(M)) - [M]

which implies the Theorem.
A formula for p(M) mod Q@Q, in terms of Cheeger-Chern-Simons classes is
given in [CS], Corollary 9.3.

3. We now discuss the implication of these Theorems for the question of the
homotopy invariance of the p-invariant. Suppose M, M’ are homotopy equivalent
manifolds (odd-dimensional closed, oriented) and (M) =~ m(M') identified
by the homotopy equivalence. Let A(M,M’) = p(M) — p(M') : Ry(m) —
R. Now p(M) = p(M’) (by Novikov [No]) and so, by Theorem 2, A(M, M’)
reduced mod Z is constant on each component of Ri(w). Furthermore, it is clear
that o;(M,v) = g;(M’,~), for any analytic curve v in Rg(w), and so it follows
from Theorem 1 and Proposition 2 that A(M, M’) is continuous. Now putting
these together we conclude that A(M, M’) is constant on each component of
Ri(G) (0 at the trivial representation). (Weinberger [We]) prcves this under the
assumption that M and M’ are rationally cobordant over G or, alternatively,
whenever G satisfies the Novikov conjecture).

The analysis of homotopy lens spaces in Wall [W] gives many examples where
A(M, M’) takes non-zero rational values when 7 is finite cyclic. Weinberger
shows in [We] that A(M, M’) is rational if 7 satisfies the Novikov conjecture,
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and has now announced a proof that A(M, M’) is always rational, using the
results of this paper.
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