A Topological Interpretation of the Atiyah-Patodi-Singer Invariant

M. FARBER AND J. LEVINE

0. Let M be a closed, connected, oriented manifold of dimension n=2l-1and let $\pi = \pi_1(M)$. For any unitary representation $\alpha : \pi \to U_k$, Atiyah, Patodi and Singer in [APS, II] define a numerical invariant $\rho_{\alpha}(M) \in \mathbb{R}$ as follows. Choose a Riemannian structure for M and then consider the self-adjoint elliptic differential operator B_{α} on the space of all differential forms of even degree with values in the flat bundle defined by α by the formula $B_{\alpha} = i^{l}(-1)^{p+1}(*d_{\alpha} - d_{\alpha}*)$ on forms of degree 2p, where d_{α} is the covariant derivative of the flat bundle defined by α and * is the duality operator defined by the Riemannian structure. They then consider the eta-function $\eta_{\alpha}(s) = \sum_{\lambda \neq 0} (\operatorname{sign} \lambda) |\lambda|^{-s}$, where λ runs over all nonzero eigenvalues of B_{α} counting multiplicities. Atiyah, Patodi and Singer show, in [APS, I, II], that $\eta_{\alpha}(s)$ defines an analytic function for $\Re(s)$ large, which can be analytically continued to have a finite value at s=0. They then define $\rho_{\alpha}(M) = \eta_{\alpha}(0) - k\eta(0)$, where $\eta(s)$ is the eta-function of the trivial representation. It is an immediate consequence of their Index Theorem that $\rho_{\alpha}(M)$ is independent of the choice of metric and that the reduction of $\rho_{\alpha}(M)$ to \mathbb{R}/\mathbb{Z} depends only on the oriented bordism class of M.

INDEX THEOREM ([APS,II]). If M is the oriented boundary of an oriented compact Riemannian manifold V, such that the Riemannian structure on V is a product near M, and the representation α extends to a unitary representation β of $\pi_1(V)$, then

$$\operatorname{sign}_{\alpha}(V) = k \int_{V} L(p) - \eta_{\alpha}(0).$$

In this formula, L(p) is the Hirzebruch polynomial in the Pontriagin forms of V and $\operatorname{sign}_{\alpha}(V)$ is the signature of the intersection form on V over the twisted coefficient system defined by α .

¹⁹⁹¹ Mathematics Subject Classification. Primary 58G11; Secondary 57N65.

The research was partially supported by the USA - Israel Binational Science Foundation

The second author was supported in part by a NSF Grant

This paper is in final form and no version of it will be submitted for publication elsewhere.

COROLLARY. Given $M = \partial V$, with $\alpha = \beta|_M$, we have $\rho_{\alpha}(M) = k \operatorname{sign}(V) - \operatorname{sign}_{\alpha}(V)$, where $\operatorname{sign}(V)$ is the ordinary signature of V.

We address two problems in this work.

- (1) Give an intrinsic topological definition of $\rho_{\alpha}(M)$.
- (2) To what extent is $\rho_{\alpha}(M)$ an invariant of homotopy type?

Viewing $\rho_{\alpha}(M) = \rho(M) \cdot \alpha$ as a real-valued function on the variety of unitary representations of $\pi = \pi_1(M)$, our results consist of:

- (a) a formula for the jumps in $\rho(M)$ at discontinuities, and
- (b) a formula for the "differential" of $\rho(M)$, reduced mod \mathbb{Z} .

Both of these formulae depend only on the homotopy type of M and give an intrinsic homotopy invariant definition of $\rho(M)$, up to a locally constant function (which vanishes on the component of the trivial representation). It is known that homotopy invariance fails if π is finite [**W**] and in many cases when π has torsion [**We**].

Earlier work of Neumann [N] and Weinberger [We] showed that $\rho(M)$ is a homotopy invariant for a large class of $\pi_1(M)$.

1. For any group π we can consider the set of k-dimensional unitary representations of π , denoted $R_k(\pi)$. If π is finitely generated this set is, in a natural way, a real algebraic variety – any representation of π (with m generators) leads to an obvious manifestation of $R_k(\pi)$ as a subvariety of $U(k) \times \cdots U(k)$ (m times). It is not hard to see that this algebraic structure is independent of the presentation of π . In [L], [L1] the Atiyah-Patodi-Singer invariant $\rho_{\alpha}(M)$ is considered as a function $\rho(M): R_k(\pi) \to \mathbb{R}$, where $\rho(M) \cdot \alpha = \rho_{\alpha}(M)$ and $\pi = \pi_1(M)$. It is shown in [L1] that there is a stratification of $R_k(\pi)$ by subvarieties $R_k(\pi) = \Sigma_0 \supseteq \Sigma_1 \supseteq \cdots \supseteq \Sigma_i \supseteq \cdots$ such that $\rho(M)|(\Sigma_i - \Sigma_{i+1})$ is continuous, for $i \ge 0$. Specifically, Σ_i is defined as follows. Define $d_{\alpha} = \sum_i \dim H_i(M; \alpha)$, where $H_i(M; \alpha)$ is homology with the twisted coefficient system defined by α . If $d = \min\{d_{\alpha}: \alpha \in R_k(\pi)\}$, then $\Sigma_i = \{\alpha: d_{\alpha} \ge d + i\}$. Note that this stratification depends only on the homotopy type of M.

We propose to study the discontinuities of $\rho(M)$. In [APS-III] it is shown that the reduction $\overline{\rho}_{\alpha}(M)$ of $\rho_{\alpha}(M)$ to \mathbb{R}/\mathbb{Z} depends continuously on α . (In fact they give a (K-theoretic) formula for this reduction). This shows that the "jump" in $\rho(M)$ at a discontinuity is integral.

Set γ be an analytic curve in $R_k(\pi)$. Analyticity means that γ lies in some Σ_i so that it intersects Σ_{i+1} in a discrete set of points. We may assume that, for some $\epsilon > 0$ and $|t| < \epsilon$, the inclusion $\gamma(t) \in \Sigma_{i+1}$ holds if and only if t = 0. Then $\rho(M) \circ \gamma$ is continuous except for some (integer) jump at t = 0. More precisely, $\rho(M) \circ \gamma$ is continuous at $t \neq 0$ and, since $\overline{\rho}(M) \circ \gamma$ ($\overline{\rho}(M)$ is the reduction of $\rho(M)$ to \mathbb{R}/\mathbb{Z}) is continuous at t = 0, there is a well-defined limit of $\rho(M) \circ \gamma(t)$ as $t \to +0$, which agrees with $\rho(M) \circ \gamma(0)$ mod \mathbb{Z} . We propose to find a formula for the difference.

We first interpret γ as a representation of π over P, the ring of power series with a positive radius of convergence, since the entries of the matrix $\gamma(t)$ are elements of P. We can then use γ to define, for example, a right action of π on the free P-module P^k of rank k, by regarding P^k as row vectors over P and using right multiplication by $\gamma(t)$. That each $\gamma(t)$ is unitary means that this action preserves the canonical P-valued Hermitian form on P^k . If P^k_{γ} denotes the right $\mathbb{C}\pi$ -module defined by γ , then the conjugate left $\mathbb{C}\pi$ -module \overline{P}^k_{γ} (recall $\overline{P}^k_{\gamma} = P^k_{\gamma}$ with π -action defined by $g \cdot \alpha = \alpha \cdot g^{-1}$, for any $g \in \pi$, $\alpha \in P^k_{\gamma}$) is isomorphic to the module defined by regarding P^k as column vectors and using left multiplication by $\gamma(t)$.

We may use P_{γ}^{k} as a local coefficient system over $M(\pi = \pi_{1}(M))$ and define $H_{*}(M;\gamma) = H_{*}(P_{\gamma}^{k} \otimes_{\pi} C(\tilde{M}))$ and $H^{*}(M;\gamma) = H_{*}(\operatorname{Hom}_{\pi}(C(\tilde{M}), \overline{P}_{\gamma}^{k}))$. Now Poincaré duality applied to M shows that the intersection pairing over $\mathbb{Z}\pi$ on \tilde{M} induces an isomorphism:

$$\overline{H_i(M;A)} \approx H^{n-i}(M;\bar{A}), \qquad 0 \le i \le n,$$

where A is any $(R, \mathbb{Z}\pi)$ -bimodule (R any ring with involution) and, generally, $A \to \bar{A}$ denotes the usual passage from $(R, \mathbb{Z}\pi)$ -bimodules to $(\mathbb{Z}\pi, R)$ -bimodules. The duality isomorphism is one of right R-modules. We apply duality with $A = \bar{P}_{\gamma}^k$, R = P with involution defined by complex conjugation.

Since P is a discrete valuation ring with fundamental ideal generated by t, we see that $H_i(M;\gamma)$ is determined by its rank r_i over P and its torsion submodule $T_i(M;\gamma)$. The universal coefficient theorem shows that $H^j(M;\gamma)$ has rank r_j and its torsion-module is the "dual module" of $T_{j-1}(M;\gamma)$ – if T is a (left) torsion P-module then the dual module is $T^* = \operatorname{Hom}_P(T;\hat{P}/P)$, where \hat{P} is the quotient field of P, a (right) P-module. Now Poincaré duality tells us that $r_i = r_{n-i}$, $\bar{T}_i(M;\gamma) \approx T_{n-i-1}(M;\gamma)^*$ and, furthermore, there is a non-singular, sesquilinear, $\pm \operatorname{Hermitian pairing} \langle \; , \; \rangle$:

$$T_q(M;\gamma) \times T_q(M;\gamma) \to \hat{P}/P \quad (n=2q+1) \quad \text{with}$$

 $\langle \lambda \alpha, \beta \rangle = \lambda \langle \alpha, \beta \rangle, \ \langle \alpha, \beta \rangle = \pm \overline{\langle \beta, \alpha \rangle}.$

Now, non-singular, sesquilinear, \pm Hermitian pairings of a torsion P-module T can be classified by a collection of signatures. Specifically, let $\langle \ , \ \rangle : T \times T \to \hat{P}/P$ be such a pairing and define $\Delta_i(T)$ to be quotient $\ker t^i/(t \ker t^{i+1} + \ker t^{i-1})$. It is easy to check that $\langle \ , \ \rangle$ induces a non-singular, bilinear, \pm -Hermitian pairing (over \mathbb{C}) $\langle \ , \ \rangle_i$: $\Delta_i(T) \times \Delta_i(T) \to \mathbb{C}$ by the formula:

$$t^i\langle\alpha,\beta\rangle_i\equiv\langle[\alpha],[\beta]\rangle \mod tP.$$

Note $\langle \alpha, \beta \rangle \in t^{-i}P/P$. Now we can define $\sigma_i(\langle , \rangle) = \text{sign}(\langle , \rangle_i)$ and it is not hard to prove:

PROPOSITION 1. Suppose that $\langle \ , \ \rangle$ and $\langle \ , \ \rangle'$ are two non-singular, sesquilinear, ϵ -Hermitian pairings ($\epsilon = \pm 1$) defined on the same torsion P-module T as above. Then $\langle \ , \ \rangle$ and $\langle \ , \ \rangle'$ are congruent if and only if $\sigma_i(\langle \ , \ \rangle) = \sigma_i(\langle \ , \ \rangle')$ for all i.

Now, we go back to our analytic curve γ in $R_k(\pi)$ and define $\sigma_i(M;\gamma) = \sigma_i(\langle \ , \ \rangle)$, where $\langle \ , \ \rangle$ is the pairing defined above on $T_q(M;\gamma)$.

Our main result is:

THEOREM 1.

$$\lim_{t \to +0} \rho(M) \cdot \gamma(t) - \rho(M) \cdot \gamma(0) = \sum_{i=1}^{\infty} \sigma_i(M; \gamma).$$

The first order part of the linking pairing described above was considered in [KK]; cf. also [KK1], where the first order part of Theorem 1 is proven in the case of manifolds with boundary. In [KK1] there is a discussion of an alternative version of the higher order part of Theorem 1 which would use cup products and higher Massey products.

We remark that it is a consequence of the *curve selection lemma* that the discontinuities of $\rho(M)$ along analytic curves determine $\rho(M)$ up to a continuous function on $R_k(\pi)$. More explicitly, suppose we define:

$$\sigma(M; \gamma) = \lim_{t \to +0} \rho(M) \cdot \gamma(t) - \rho(M) \cdot \gamma(0)$$

where γ is an analytic curve in $R_k(\pi)$ defined on a neighborhood of 0. In fact, if ρ is any real-valued function on $R_k(\pi)$ whose reduction mod $\mathbb Z$ is continuous and which is "piecewise-continuous" in the sense that, for some stratification of $R_k(\rho)$ by subvarieties $R_k(\pi) = \Sigma_0 \supseteq \Sigma_1 \supseteq \cdots \supseteq \Sigma_i \supseteq \ldots$, the function $\rho(M)|(\Sigma_i - \Sigma_{i+1})$ is continuous for all $i \geq 0$, then we can define $\sigma(\rho, \gamma)$ by the above formula. Then we have:

PROPOSITION 2. If ρ_1 , ρ_2 are two piecewise-continuous real-valued functions on $R_k(\pi)$ which are continuous mod \mathbb{Z} , then $\rho_1 - \rho_2$ is continuous if and only if $\sigma(\rho_1, \gamma) = \sigma(\rho_2, \gamma)$ for every analytic curve γ in $R_k(\pi)$.

The proof of Theorem 1 begins with a general formula for the spectral jump at t=0 of a path A_t of elliptic differential operators in terms of the associated signatures of a "linking" pairing on a torsion P-module, with values in \hat{P}/P , defined directly from A_t . Using a parametrized Hodge decomposition [K: Ch. VII, Th. 3.9] it is then shown that these signatures, for $A_t = B_{\gamma(t)}$, coincide with the signatures of the "topological" linking pairing $\langle \ , \ \rangle$. The details will appear in a future paper \mathbf{FL} .

Originally we proved the formula of Theorem 1 under the rather stringent hypothesis that $\gamma(t)$ extends to an analytic path in $R_k(\pi_1(V))$ for some compact oriented manifold V bounded by M. We then use the Index Theorem to give a purely topological proof as follows. We put ourselves in a more general context.

Let (V,M) be an algebraic Poincaré (AP) pair of finite type over the ring P, in the sense of Misčenko [M], with dimension V=2q+2. Then $H_q(M)$ supports a non-singular torsion pairing, on its torsion submodule, with value in \hat{P}/P , and we can define $\sigma_i(M)$ to be the signatures of the associated $\pm \text{Hermitian forms}$, as above. For any $\epsilon \geq 0$, let P_ϵ be the subring of P consisting of all power series with radius of convergence $> \epsilon$. We may assume that (V,M) comes from an AP-pair over P_ϵ , for some $\epsilon > 0$. Then we can define $(V_c,M_c)=(V,M)\otimes_c\mathbb{C}$, for $0\leq c\leq \epsilon$, where \mathbb{C} is regarded as a P_ϵ -module via the ring homomorphism $P_\epsilon \to \mathbb{C}$ defined by $f\mapsto f(c)$, and let $\sigma_c(V)$ be the signature of the intersection pairing on V_c . In fact, it is not hard to see that $\sigma_c(V)$ is constant for c in the interval $(0,\delta)$, for some $0<\delta\leq \epsilon$ - let us denote this constant value by $\sigma_+(V)$. Then, our general result is $\sigma_+(V)-\sigma_0(V)=\sum_{i\geq 1}\sigma_i(M)$.

To prove this, first consider the special case in which $H_i(V) = 0$ for $i \leq q$. Then $H_{q+1}(V)$ is a free module and the intersection pairing is represented by a matrix B which can be decomposed into a block sum of matrices of the form $t^i B_i(t)$, where $B_i(0)$ is non-singular over \mathbb{C} , plus a 0 matrix. Thus for $0 < c \leq \epsilon$, $\sigma_c(V) = \sum_{i \geq 1} \operatorname{sign} B_i(c)$ and $\sigma_0(V) = \operatorname{sign} B_0(0)$. If $B_i(c)$ is non-singular in an interval $0 \leq c < \delta$, then, in this interval, $\sigma_c(V) = \sum_{i \geq 1} \operatorname{sign} B_i(0)$.

We now turn to the torsion pairing on $H_q(M)$. It is a standard fact, in this situation, that a matrix representative B of the intersection pairing on $H_{q+1}(V)$ is also a presentation matrix for $H_q(M)$ and the inverse of the non-degenerate part of B represents the torsion-pairing. Thus we see that $t^iB(t)$ presents the free P/t^i summand of $H_q(M)$ and, in addition, the associated Hermitian pairing on $\Delta_i(TH_q(M))$ is represented by the matrix $B_i(0)^{-1}$, for $i \geq 1$. Putting all these observations together gives the desired result.

For the general case we reduce to the special case by doing algebraic surgery on V as in $[\mathbf{M}]$. It is not hard to see that we may kill all the homology of V of dimension < q without changing M, but it is necessary to check that $\sigma_+(V)$ and $\sigma_0(V)$ are not changed by these surgeries. In fact, the only surgeries which change $H_{q+1}(V)$ are those to kill $H_q(V)$. When a class $\alpha \in H_q(V)$ is killed by a surgery then the effect on $H_{q+1}(V)$ and the intersection pairing are as follows:

- Case 1. α is a torsion class of $H_q(V)$ say $t^r\alpha=0$; then a rank 2 orthogonal summand is added to $H_q(V)$ with the intersection pairing on this new summand represented by the matrix $\begin{bmatrix} 0 & t^r \\ \pm t^r & 0 \end{bmatrix}$.
- Case 2. α has "infinite order" in $H_q(V)$, but its image in $H_q(V,M)$ is torsion: then the rank of $H_{q+1}(V)$ is increased by one but the new element is totally isotropic, i.e. its intersection with all elements of $H_{q+1}(V)$ is zero.
- Case 3. The image of α in $H_q(V, M)$ has infinite order: then $H_{q+1}(V)$ is unchanged.

But in all three cases neither $\sigma_+(V)$ nor $\sigma_0(V)$ is changed and so the theorem follows.

2. We now study the reduction to \mathbb{R}/\mathbb{Z} of $\rho(M)$. Denote by $\bar{\rho}(M): R_k(\pi) \to \mathbb{R}/\mathbb{Z}$ the function $\bar{\rho}(M) \cdot \alpha = \bar{\rho}_{\alpha}(M)$. As remarked above, it is proved in [APS, III] that $\bar{\rho}(M)$ is continuous. Moreover, they obtain a formula for $\bar{\rho}(M)$ as follows. For any unitary representation α of a discrete group Γ , there is associated an element $\beta(\alpha) \in K^{-1}(B_{\Gamma}; \mathbb{R}/\mathbb{Z})$, where B_{Γ} is the classifying space of Γ . Then, if $\alpha \in R_k(\pi)$ and $\phi: M \to B_{\pi}$ is the classifying map for $\pi \approx \pi_1(M)$, we have $\phi^*\beta(\alpha) \in K^{-1}(M; \mathbb{R}/\mathbb{Z})$. Now let $\sigma \in K^1(\tau M)$ be the "self-adjoint symbol" of the signature operator on M (τM is the Thom space of the cotangent bundle). The "index theorem for flat bundles" of [APS, III] then asserts that $\bar{\rho}_{\alpha}(M) = \phi^*\beta(\alpha) \cdot \sigma$, using the product

$$K^{-1}(M; \mathbb{R}/\mathbb{Z}) \times K^{1}(\tau M) \to K^{0}(\tau M; \mathbb{R}/\mathbb{Z}) \xrightarrow{\mathrm{ind}} \mathbb{R}/\mathbb{Z}.$$

Using the ideas of this general result we can obtain a more explicit, though less definitive, determination of $\bar{\rho}(M)$. If $\alpha \in R_k(\pi)$ then let $\det \alpha \in R_1(\pi)$ be the obvious representation $(\det \alpha)(g) = \det \alpha(g)$. We can then define arg $\det \alpha \in H^1(M; \mathbb{R}/\mathbb{Z})$ by the formula $\det \alpha(g) = \exp(2\pi i (\arg \det \alpha)(g))$, for any $g \in \pi$. We now define $\tilde{\rho}(M): R_k(\pi) \to \mathbb{R}/\mathbb{Z}$ by the cohomological formula:

$$\tilde{\rho}(M) \cdot \alpha = -(2(\arg \det \alpha) \cup L(M))[M]$$

where L(M) is the Hirzebruch L-polynomial in the Pontriagin classes of M, defined by the generating series $x/\mathrm{tanh}(x)$. This makes sense, since the component of L(M) in H^{2l-2} lifts to an integral class [No], but depends on the particular lift (here we assume that $\dim M = 2l-1$). However, we note that changing the lift will only change $\tilde{\rho}(M)$ by a locally constant \mathbb{Q}/\mathbb{Z} -valued function on $R_k(\pi)$. An alternative definition of $\tilde{\rho}(M)$ goes as follows. Chooose a basis z_1', \ldots, z_m' of $H^1(M; \mathbb{Z})$ and $z_1, \ldots, z_m \in H_1(M; \mathbb{Z})$ such that $z_i' \cdot z_j = \delta_{ij}$. Let τ_i be the signature of an oriented closed submanifold of M representing the Poincaré dual of z_i' in $H_{2l-2}(M; \mathbb{Z})$. Then, up to a locally constant function on $R_k(\pi)$:

$$ilde{
ho}(M) \cdot lpha = -2 \sum_{i=1}^m au_i rg \det lpha(z_i)$$

See [L1] for a special case.

THEOREM 2. $\bar{\rho}(M) - \tilde{\rho}(M)$ is constant on connected components of $R_k(\pi)$. For example, we have $\bar{\rho}(M) = \tilde{\rho}(M)$ on the component of the trivial representation.

Sketch of the proof. Suppose α_t $(0 \le t \le 1)$ is a path in $R_k(\pi)$. Then we can associate to α_t a "Hermitian" bundle ξ (i.e. unitary bundle with a connexion) over $I \times M$, such that on $t \times M$ the induced connexion is flat and has monodromy α_t . The curvature form ξ has the form $\Omega = dt \wedge \omega$, where ω is a 1-form on $I \times M$ with coefficients in Hom (ξ, ξ) . Now the Index Theorem of [APS, I] applied to

the generalized signature operator D_{ξ} on $I \times M$ with coefficient in ξ gives the formula:

$$\operatorname{Index} D_{\xi} = \int\limits_{I imes M} 2^l \operatorname{ch} \xi \cdot \mathcal{L}(I imes M) - (\eta_{lpha_1}(M) - \eta_{lpha_0}(M))$$

where \mathcal{L} is the Hirzebruch form with generating series: $\frac{x/2}{\tanh(x/2)}$, $\dim(I \times M) = 2l$ and $\det \xi$ is the Chern character form of ξ . But this form reduces to $k + \frac{1}{2\pi i}\operatorname{Trace}(\Omega)$, since $\Omega = dt \wedge \omega$, and so we can derive from the Index Theorem the equation:

$$ho_{lpha_1}(M) -
ho_{lpha_0}(M) \equiv rac{2^{l-1}}{\pi i} \int\limits_{I imes M} dt \wedge \operatorname{Trace}\left(\omega
ight) \wedge \mathcal{L}(M) \qquad \mod \mathbb{Z}$$

Now the 1-form $\operatorname{Trace}(\omega)$ on $I \times M$ defines a 1-parameter family of cohomology classes $(\operatorname{Tr} \omega)_t \in H^1(M;\mathbb{R})$ and so we have

$$\rho_{\alpha_1}(M) - \rho_{\alpha_0}(M) \equiv \frac{-2^{l-1}}{\pi i} \left[\left[\int_0^1 (\operatorname{Tr} \omega)_t dt \right] \cup \mathcal{L}(M) \right] \cdot [M] \mod \mathbb{Z}$$

where we use $\mathcal{L}(M)$ as above to denote the Hirzebruch polynomial in the Pontriagin classes of M. We now use the fact that

$$(\operatorname{Tr}\omega)_t(g) = \operatorname{Trace}\left(\frac{d\alpha_t}{dt}(g) \circ \alpha_t^{-1}(g)\right) = \frac{d}{dt}\left(\log \det \alpha_t(g)\right)$$

to obtain our final formula:

$$\rho_{\alpha_1}(M) - \rho_{\alpha_0}(M) \equiv -2((\arg\det\alpha_1(g) - \arg\det\alpha_0(g)) \cup L(M)) \cdot [M]$$

which implies the Theorem.

A formula for $\rho(M) \mod \mathbb{Q}$, in terms of Cheeger-Chern-Simons classes is given in $[\mathbf{CS}]$, Corollary 9.3.

3. We now discuss the implication of these Theorems for the question of the homotopy invariance of the ρ -invariant. Suppose M, M' are homotopy equivalent manifolds (odd-dimensional closed, oriented) and $\pi_1(M) \approx \pi_1(M')$ identified by the homotopy equivalence. Let $\Delta(M,M') = \rho(M) - \rho(M')$: $R_k(\pi) \to \mathbb{R}$. Now $\tilde{\rho}(M) = \tilde{\rho}(M')$ (by Novikov [No]) and so, by Theorem 2, $\Delta(M,M')$ reduced mod \mathbb{Z} is constant on each component of $R_k(\pi)$. Furthermore, it is clear that $\sigma_i(M,\gamma) = \sigma_i(M',\gamma)$, for any analytic curve γ in $R_k(\pi)$, and so it follows from Theorem 1 and Proposition 2 that $\Delta(M,M')$ is continuous. Now putting these together we conclude that $\Delta(M,M')$ is constant on each component of $R_k(G)$ (0 at the trivial representation). (Weinberger [We]) preves this under the assumption that M and M' are rationally cobordant over G or, alternatively, whenever G satisfies the Novikov conjecture).

The analysis of homotopy lens spaces in Wall [W] gives many examples where $\Delta(M, M')$ takes non-zero rational values when π is finite cyclic. Weinberger shows in [We] that $\Delta(M, M')$ is rational if π satisfies the Novikov conjecture,

and has now announced a proof that $\Delta(M, M')$ is always rational, using the results of this paper.

References

- [APS, I,II,III] M. Atiyah, V. Patodi, I. Singer, Spectral asymmetry and Riemannian geometry,
 Math. Proc. Camb. Phil. Soc. (I) 77 (1975a), pp. 43-69; (II) 78 (1975b), pp. 405-432; (III) 79 (1976), pp. 71-99.
- [CS] J. Cheeger, J. Simons, Differential characters and geometric invariants, Geometry and Topology, Proceedings of the Special year, 1983-84, University of Maryland, Lecture Notes in Mathematics, vol. 1167, Springer-Verlag, 1985, pp. 50-80.
- [FL] M. Farber, J. Levine, Deformations of the Atiyah-Patodi- Singer eta-invariant, Preprint.
- [K] T. Kato, Perturbation Theory for Linear Operators, Grund. der Math. Wissenschaften, Bd. 132, Springer-Verlag, Heidelberg, 1966.
- [KK] P. Kirk, E. Klassen, Computing spectral flow via cap products, J. of Differential Geometry, to appear.
- [KK1] P. Kirk, E. Klassen, The spectral flow of the odd signature operator on a manifold with boundary, Preprint.
- [L] J. Levine, Signature invariants of homology bordism with applications to links, Knots 90: Proceedings of the Osaka knot theory conference.
- [L1] J. Levine, Link invariants via the eta invariant, Commentarii Math. Helv., to appear.
- [M] A. Misčenko, Homotopy invariants of simply-connected manifolds I. Rational invariants, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 501-514; English transl. in Math. USSR, Izv. 4 (1970), 506-519.
- [N] W. Neumann, Signature-related invariants of manifolds I. Monodromy and γ-invariants, Topology 18 (1979), 147–172.
- [No] S. Novikov, Manifolds with free abelian fundamental groups and their applications, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 207-246; English transl. in Amer. Math. Soc. Transl. (2) 71 (1968), 1-42.
- [W] C.T.C. Wall, Surgery on Compact Manifolds, Academic Press, New York, 1971.
- [We] S. Weinberger, Homotopy invariance of η -invariants, Proc. Nat. Acad. Sci. USA 85 (1988), 5362–5363.

DEPARTMENT OF MATHEMATICS, TEL AVIV UNIVERSITY, TEL AVIV, RAMAT AVIV, ISRAEL 69978

DEPARTMENT OF MATHEMATICS, BRANDEIS UNIVERSITY, WALTHAM, 02254, MA, USA *E-mail address*: farber@math.tau.ac.il, levine@binah.cc.brandeis.edu