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Abstract

We give a general version of theorems due to Seifert–van Kampen and Brown about the

fundamental group of topological spaces. We consider here the fundamental group of a

general homotopy colimit of spaces. This includes unions, direct limits and quotient spaces as

special cases. The fundamental group of the homotopy colimit is determined by the induced

diagram of fundamental groupoids via a simple commutation formula. We use this framework

to discuss homotopy (co-)limits of groups and groupoids as well as the useful Classification

Lemma 6.4. Immediate consequences include the fundamental group of a quotient spaces by a

group action *p1ðK=GÞ and of more general colimits. The Bass–Serre and Haefliger’s

decompositions of groups acting on simplicial complexes is shown to follow effortlessly. An

algebraic notion of the homotopy colimit of a diagram of groups is treated in some detail.
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1. Introduction and main results

In the present note we reformulate the Seifert–van Kampen theorem, concerning
the fundamental group of a union of spaces, and extend it to a tautology about the
fundamental groupoid, *p1 hocolimI X; of the homotopy colimit of an arbitrary
diagram of (arbitrary) spaces. By a diagram of spaces X over a small category I ;
which serves as an indexing category, we mean a functor X : I-S from I to a
convenient category of topological spaces, simplicial complexes, or CW -complexes.
If the indexing category is a discrete group considered as a category with a single
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object, a diagram is just a space with a given action of that group. Brown and others
wrote extensively on this subject, using groupoids, see [4–8,23], the first work being
a survey. In a sense, some of present material is ‘‘folklore’’ implicit in the work
of Anderson [1] and later work of Thomason and coauthors about homotopy
(co-)limits and the homotopy theory of small categories. Here we relate their work to
that of Brown, Higgins and coauthors, which also contains, at least implicitly, wide
swathes of the present work.
Rather than dealing with the representation of a space Y as a union of subspaces

we consider direct limits of an arbitrary small diagram of spaces Y ¼
colimiAI YðiÞ ¼ colimI Y: This covers both group actions and unions as special
cases. In fact, as homotopy theory realized long ago, it is more efficient and correct
to work with homotopy (co)limits of spaces. This allows one, as explained below, to
modify diagrams, locally at every index iAI ; by ‘‘weak equivalences’’ without
changing the resulting homotopy colimit, greatly facilitating computations and
comprehension.
Notice that given an I-diagram of spaces X—e.g. a space with an action by a

group G; thinking of G as I ; a category with one object—we cannot, in general,
assume the existence of base points preserved by all the maps in the diagram which
would allow associating with X the corresponding diagram of the fundamental
groups p1ðX; �Þ: Nor can we assume that the fixed point spaces for group actions are
connected or even non-empty. Therefore, we are forced to work with fundamental
groupoids in order to get a closed formula for the fundamental group
p1ðhocolimI XÞ of a homotopy colimit or of a strict colimit, e.g. an orbit space.
Recall that a groupoid is simply a small category in which any arrow is (uniquely)
invertible. In fact, as a category any groupoid is equivalent to a (possibly empty)
disjoint union of groups—which are the most commonly known groupoids.
Once inside this framework neither local nor global connectivity assumptions are
needed on the spaces or the diagrams. As an illustration consider the very
special case of connected and pointed spaces, which already illuminates the problem
one faces:

Question. Is there a functor F : fI � diagrams of Groupsg-fGroupsg with the
property that, for a small (indexing) category, I ; and an I-diagram of connected and

pointed spaces, X�; its value on the induced diagram of fundamental groups, gives the
fundamental group of the homotopy colimit: Fðp1X�ÞDp1 hocolimI X�:

Such a functor would compute the fundamental group of any such homotopy
direct limit from the corresponding diagram of fundamental groups, which here we
assume for a moment to exist.
This kind of question arises naturally in, say, the presentation of groups acting on

trees and, more generally, simplicial complexes. A combinatorial viewpoint discussed
below of this case gives a quick and natural approach to well-known results of Bass–
Serre and Haefliger concerning decomposition of groups acting on trees and other
complexes and the fundamental group of an orbit space for non-free action. See
Sections 4.1–4.3 below.
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The above question is ‘‘nearly meaningful’’, and the answer is conditionally
affirmative, only if the diagram I is ‘‘connected’’. The question relates to the
unpointed homotopy colimit of pointed spaces; such a limit might be a disconnected
disjoint union. Further, the colimit is not naturally pointed—thus it has no well-
defined fundamental group. An appropriate functor F would give, for a connected I ;
a connected groupoid, and so only an ‘‘isomorphism type’’ of a group. It is not the
usual colimit functor for groups, but rather something that can be properly called the
homotopy colimit of a diagram of groups of which HNN-extensions and semi-direct
products are special cases (see 3.5 and 3.7 below). Given the resulting groupoid, one
can obtain a particular group by choosing a base point, i.e. an object in the
groupoid. Even under the strong assumptions in the question above, the associated
diagram of fundamental groups does not ‘‘determine’’ the fundamental group of the
homotopy colimit via a purely group theoretical construction, i.e. inside the category
of groups via some universal property such as the colimit. Rather it is necessary to
enlarge the category of groups to that of groupoids and consider (co-)limits and
homotopy (co-)limits there.
From the correct, abstract, point of view, the homotopy colimit of groups is

obtained by embedding the category of groups in the larger category of groupoids
where there is a natural notion of weak equivalence which is not an isomorphism; see
3.1 below or compare with [1] and the appendix in [3]. This notion of weak
equivalence leads to a corresponding notion of homotopy limit and colimit, see [1,
Section 2]. Then one notices that in the above situation a group can be extracted
from the homotopy colimit of such a diagram of groups. In anticipation, we can say
that in the above situation F can be written as p1ðhocolimKðG; 1Þ; �Þ; where KðG; 1Þ
is any construction of the corresponding pointed aspherical space which is functorial
in G and � is some base point. The general construction is combinatorial-categorical
and leads to groupoids, see 5.4.

1.1. The main theorem

In the following formulation, the Seifert–van Kampen theorem is given as an
equivalence of groupoids. There is no connectivity assumption, in fact some or all
spaces in the diagram may well be empty. The theorem uses the notion of a
homotopy colimit of groupoids as explained below. It is related to groups proper
since the equivalence 1.1 says that the two disjoint unions of groups encoded by the two

sides of the equation-equivalence are strictly isomorphic. A diagram of spaces X is
simply a functor X : I-S from a small category I ; the indexing category, to the
relevant category of spaces; in particular commutativity inside diagrams X is strict.
For convenience we work in the category of simplicial sets, simplicial complexes, or
CW-complexes, but this is not essential for the results or arguments.

The fundamental groupoid of a complex ðK ;K0Þ; where K0 is a choice of zeroth
skeleton for K ; denoted here by *p1K ¼ *p1ðK;K0Þ; is taken to be the small category
whose set of ‘‘objects’’ is K0—the 0-cells ð¼ verticesÞ of K and whose ‘‘morphisms’’
are the homotopy classes of paths, i.e. maps ½0; 1	 ¼ I-K between any two of these
0-cells, relative to their end-points. Thus *p1K contains the full information about the
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set of components p0K as well as the isomorphism type of the fundamental group
of each component, and this in a natural way. Clearly, the fundamental group
of a space does not change its isomorphism type when one changes the base point
within its own path component. It is similarly not hard to show that the, equivalence
type of *p1Y as a category does not change when we replace given vertex point
%AK0 by any other non-empty set of base points, all in the component of the given
point %:
The construction of *p1 is clearly functorial on maps of complexes. Given a

diagram X of simplicial sets (or of simplicial complexes and simplicial maps) it thus
induces a diagram of groupoids *p1X; since maps are assumed to preserve vertices.
The general Seifert–van Kampen–Brown Theorem is now given by a commutation
formula:

Theorem 1.1. For any I-diagram of spaces X there is a natural equivalence of

groupoids:

*p1 hocolimI X!D hocolimI *p1X:

If the homotopy colimit is a connected space, this gives a corresponding isomorphism of

groups. Further, if the given diagram of spaces has free 0-skeleton X0 (see Section 3.3
below), then we can replace the right-hand side by the strict colimit of groupoids:
colimI *p1X:

1.2. Remarks

The proof is straightforward and appears in the last section below. The theorem is
not surprising in view of the equivalence between the model categories of groupoids
and that of aspherical spaces. But note that the analogous formula for a homotopy
(inverse) limit of spaces fails completely without strong assumptions on the spaces
involved; compare 6.5 below. As it stands, it is impossible to replace homotopy
colimit by strict colimit ð¼ direct limitÞ in this theorem; see however the discussion
in Sections 2, 4.3 and 4.4 below. This equivalence is entirely analogous to other
‘‘folklore’’, tautological equivalences of sets of path components and of chain
complexes:

p0 hocolimX !D hocolimSets p0X;

C� hocolimX !D hocolimChains C�X;

where hocolim of sets is just the usual colimit (i.e. direct limit) of the diagram
of sets and hocolim in the second equivalence is inside the category of chain
complexes.
The above results refer to unpointed homotopy colimits. A corresponding result

for the pointed homotopy colimit of a diagram of pointed spaces follows easily.
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1.3. Organization of the paper

The rest of the paper is organized as follows: In Section 2 we illustrate with simple
examples the topological difference on the p1-level, between the colimit and
homotopy colimit. In Section 3 we give the necessary combinatorial material that
allows one to define in an elementary way the homotopy (co-)limit of a diagram of
groups and groupoids and state some basic properties thereof. We then turn to our
main examples and applications in Section 4. The special case of pointed diagrams
and pointed homotopy limits is treated in Section 5. Section 6 ends the paper with a
proof of the main result 1.1, using the tools introduce earlier.

2. Fundamental group of colimits and homotopy colimits

To motivate further the introduction of fundamental groupoid and homotopy
limits, consider the problem of giving a formula for the fundamental group of a
quotient space p1ðK=G; �Þ in terms of p1K ; the group G and some relation between
them. One problem is that to define p1K we need a base point in K and this base
point is not always fixed under the action of G; so that there is no induced action of

G on p1ðK ; �Þ: Another problem is that p1K might well be trivial as for K ¼ S2; the
2-sphere with the antipodal action by G ¼ Z=2Z; while p1ðK=G; �ÞDZ=2Z is not
trivial. Even when we consider an appropriate set of fundamental groups, say
fp1ðK ; gð�ÞÞggAG; in the sphere case it consists of a collection of trivial groups.

Similar problems arise for a general diagram of spaces over some small category I :
This problem has little to do with the assumption of connectivity which hinders the
direct use of the usual Seifert–van Kampen theorem for unions. But they share a
common resolution discovered and elaborated on in the case of unions by Brown,
namely, we replace the fundamental group by the fundamental groupoid *p1Y which
is associated with a simplicial or combinatorial complex Y : This comes at a price (or
with a bonus): We allow Y to possess an arbitrary (non-empty) set of base points.
Hence, the main extra structure we must assume on our spaces is a 0-skeleton Y0

that, in fact, might be quite an arbitrary collection of points in Y : However, here we
consider Y0 to be a discrete subset coming from an actual 0-skeleton of a simplicial
structure. For convenience of discussion we take spaces to be simplicial sets or
complexes, but CW spaces will do just as well. An implicite assumption used in the
main results is that every path component of Y contains at least one vertex of Y0:
Further, when considering an I-diagram of spaces, X; or a space with a group action,
we mean of course that X0 is invariant under the action of the group or diagram,
namely, that X0 has an induced action of the group or, more generally, of a small
category I :
For example, when considering the sphere with the antipodal action by G ¼ Z=2Z;

we need S2 to have either no base point (where we get the empty groupoid for both

S2 and S2=G) or at least two antipodal base points. In case of two points, we get as

*p1ðS2; fx; ygÞ the groupoid: J ¼ ½x$y	 denoted by J; with two objects and two
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mutually inverse arrows between them. This antipodal action on the 2-sphere is free
as an action of group on a spaces, hence, as is well known (see Sections 3.3 and 3.5),
the homotopy colimit is equivalent to the usual strict colimit, namely, the projective

plane RP2: Further, the induced action of our G on both objects and morphisms of J

is also free. The main result says in this case that *p1ðS2=GÞ is equivalent to the
quotient category J=G; which is a category with a single object and a single self-
inverse non-identity arrow. In other words, the groupoid J=G is just Z=2Z as

expected for *p1ðS2=GÞ ¼ *p1RP2; compare Corollary 4.2 below.

2.1. Counter-example

As it stands one cannot replace in Theorem 1.1 the homotopy colimits by strict
colimit. For example, consider the action of G ¼ Z=2Z on the unit interval I ¼ ½0; 1	
sending x to 1� x: The unit interval I; taken with f0; 1g as its vertices, clearly has the
groupoid J above as its fundamental groupoid. However, in I=G there is a single
base point and *p1ðI=GÞ ¼ f�g; the trivial groupoid. But as we said above ð *p1IÞ=G ¼
J=G ¼ Z=2Z: So there is no commutation with respect to strict colimit. On the other
hand, the homotopy colimit of the space I with respect to the G-action is in fact
equivalent to the infinite-dimensional projective RPN because the unit interval with
this G-action is weakly equivalent via I-� to a single point with the trivial action.
Therefore, the claim of Theorem 1.1 holds here since, J being free over G; the colimit
and homotopy colimit of J over G coincide by Section 3.3. Notice that the space I is
a legitimate example of simplicial space with group action, but its fixed point
subspace does not form a sub-complex; nor is the map to the orbit space simplicial.
A simple examination shows that the introduction of a middle base point to I; via a
subdivision, to render the fixed points simplicial sub-complex, corrects the problem
we had here with the strict colimit since the colimit or quotient groupoid of �$ �
$� is just the groupoid J above. The homotopy limit approach will allow us to
examine the same problem for a general group action and I-diagrams of simplicial
complexes or, indeed, spaces; see Section 4.3. The basic fact behind this counter
example is the lack of a good notion of strict colimits for geometrical simplicial
complexes.

3. Free resolutions and homotopy colimits of diagrams of groupoids

The Seifert–van Kampen Theorem 1.1 identifies the fundamental groupoid up to
equivalence. Recall that by a weak equivalence of categories one means a functor
F :A-B between small categories that induces a weak equivalence on their nerves.
This is a weaker demand than equivalence of categories which requires the existence
of two functors, mutually inverse up to natural equivalences ð¼ isomorphismsÞ of
functors. In the special case of groupoids the existence of a weak equivalence F

implies that the two categories are actually equivalent via F in the usual sense that F

has an inverse up to a natural equivalence:
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3.1. Nerves, weak equivalence of categories and groupoids

The nerve (or classifying space) of a category C is a simplicial set denote by jCj;
whose k-simplices are sequences of length k of composable arrows: c0-c1-?-ck:
For a recent and detailed exposition see [15, Sections 4.10, 5.11]. Another important
source which gives the general axiomatic approach and some basic definitions is [1,
Sections 2 and 5]. The boundary and degeneracy maps di; si : jCjk-jCjk71 are

obtained by composition and insertion of identities. Thus, the nerve can be thought
of as the simplicial set of singular simplices in C: While the nerve of a general
category might be a quite arbitrary simplicial set, a basic property of the classifying
space or nerve of a groupoid is that it is always a Kan complex and in addition
it is homotopy equivalent to a disjoint union of KðP; 1Þ’s. See [15, Section (5.10)],
[22, p. 91]. This gives, e.g. using Theorem 6.4, a version of a Whitehead theorem
namely, that a weak equivalence of groupoids is always an equivalence of them as
categories. This will also mean that the fundamental group of jGj for a groupoid G

can be more easily approached by combinatorial devices, cf. Section 6.2. Notice,
moreover, that the nerve j � j is right adjoint, up to homotopy, to *p1 defined above.
This, by itself, makes one expect the commutation equivalence in Theorem 1.1.
Clearly, Z :G-H is an equivalence of groupoids if and only if it induces an

isomorphism on p0ðZÞ : p0G !D p0H � p0jHj and for each object xAG an isomorph-

ism Gðx; xÞ � aut x!D aut ZðxÞ � Hðx; xÞ; where we denote as usual by Gðx; yÞ the
set of morphisms in the category G from x to y: In the following we consider the set
obj-G for a groupoid G as a discrete sub-groupoid of G: The above remarks imply the
straightforward and well known:

Lemma 3.1. Given an equivalence of groupoids Z :G !D H and a map of

groupoids f :G-H together with a lift f̃0 : obj-G-G on the objects of G; the map

f̃0 can be extended uniquely to a lift f̃ :G-G of f : Therefore, if, in addition,
the equivalence Z is an isomorphism on objects then it is an isomorphism of

groupoids.

We now need a concept of homotopy colimit for diagram of groupoids (and,

in particular, of groups) which is invariant under weak equivalence F :P-P0

between two I-diagrams of groupoids. An equivariant map of diagrams of
categories, F ; is a weak equivalence if, for each iAI ; the functor FðiÞ is a weak
equivalence of categories. Notice that even if FðiÞ is an equivalence for all iAI it
does not mean that there is an inverse, up to natural equivalence, to F : For example,
the weak equivalence Z : J-� of groupoids with Z=2Z-action as in Section 2.1
above has no equivariant inverse, in fact there is no equivariant map whatsoever
�-J:
As is well known, in general, the usual notion of limit and colimit of categories are

not (even weakly) invariant under weak equivalence of diagrams. Notice that the
colimit includes in particular the notion of a free product of groups. Therefore, in the
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colimit there are new morphisms ½g	3½f 	 coming as compositions from old ones f ; g

that in the colimit have range½f 	=domain½g	:
To define the homotopy colimit of a diagram of groupoids, we consider below free

diagrams of groupoids. (In fact, in what follows, we give a certain skewed
presentation of the basics in the model category of groupoids and diagrams thereof,
but no knowledge of that model category is needed for a formal understanding of the
definitions and proofs.)
By the groupoid associated with or generated by a (small) category, we mean the

groupoid associated in the evident way with a category via its nerve pC � *p1jCj;
where it is understood that objects do not change: objC ¼ obj pC: Equivalently, pC

is obtained from C by formally inverting all the morphisms in C: It is clear that p is
left adjoint to the forgetful (inclusion) functor Gpd-Cat from groupoids to (small)
categories. More formally:

Definition 3.2. Given a category C we say that the groupoid Gd is generated by or
associated with C if Gd comes with a functor (i.e. a map of categories) f :C-Gd

which is initial for functors C-H of C to any groupoid H:

3.2. Existence, example

Using p as defined above, there is a localization map C-pC: If C is a groupoid,
then by universality (or by construction) C-pC is an isomorphism. Therefore, p is
an idempotent functor Cat-Cat; in fact p is the localization Lj with respect to the

functor that inverts one arrow in Cat:

j : ½-	-½#	:

If C-C0 is a weak equivalence of categories, then it induces an equivalence of
groupoids pC-pC0:

Example. Consider the category with two objects and two morphisms:

The associated groupoid is denoted here by *Z and is equivalent to the group of
integers Z: It has infinitely many morphisms but can be pictured by two morphisms
and their inverses since compositions are implied.
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3.3. Diagrams and free diagram of sets and groupoids

Given a diagram of small categories C : I-Cat we associate with it the evident
diagram of groupoids pC: We say, as usual, that a map of two diagrams of (small)
categories C;C0; namely natural transformation between the two functors e : C-C0

is a weak equivalence if, when restricted to each place in the diagram CðiÞ-C0ðiÞ; it
is a weak equivalence of categories.

Note: While every groupoid is equivalent to a disjoint union of groups, in general
an I-diagram of groupoids is not weakly equivalent to any I-diagram of (disjoint

union of) groups. For example, it is not hard to check directly that the groupoid *Z

defined above together with the group action by I ¼ G ¼ Z=2Z; which switches the

two objects and sends the morphism a to b�1 is not weakly equivalent to any group

with a G-action. It cannot be related by an equivariant G-map e : *Z-Z or a map

e : Z- *Z to the group of integers with whatever action by the same group G; via a
map e which is a weak equivalence of groupoids.
To define free diagram of groupoids we start with discrete groupoids—i.e.

diagrams of sets—and use a generalization of the usual concepts of free G-orbit and
of a set with a free action of G; for a group G: To define a free I-diagram of sets we
start with special case. The elementary free I-diagram of sets generated by an object

iAI ; denoted here by Fi; is the functor Fi : I-Sets defined by FiðdÞ ¼ homði; dÞ
where the hom-set is the set of morphisms in I and where compositions induce

Fd-F d 0
for any d-d 0 in I : In other words, Fi is the functor represented by iAI ; cf.

Appendix of [10]. A free I-diagram of sets is just any disjoint union of elementary

free diagrams, i.e. of the form
‘

iAT F i: Thus, a free diagram of sets is always

associated with a diagram of sets T over the discrete version of I ; namely Id: There is
a pair of adjoint functors where a free diagram is one of the form FreeðTÞ; for some
discrete Id-diagram T :

The basic property of these free diagrams of sets that makes them useful is the
Yoneda lemma. A map F-S of a free diagram of sets F to any diagram of sets S is

uniquely determined by its values on the generators of F ¼
‘

Fd ; a generator of Fd

can be assigned an arbitrary value in the set SðdÞ: This allows good control over
maps from free diagrams and is, of course, implied by the above adjunction.

Example. Over the pushout category %’%-%; a free diagram of sets is a
diagram of sets S1’S2-S3 in which both arrows are injective. Over the opposite,
pullback, category %-%’%; a free diagram of sets is a corresponding diagram
of injections whose images intersect in the empty set. The usual infinite inverse limit
diagram ?-Sn-?-S2-S1 of sets is free if all maps in it are injective and that
any given sAS1 cannot be lifted beyond some SN-S1 ðN ¼ NðsÞÞ; namely, it is a
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tower of injections with empty inverse limit lim Si ¼ |: Lastly an important example
of free diagrams is associated with group actions on sets and is used below in 4.3. If
the discrete group acts on a set S one associates with it a diagram of sets over the

opposite orbit category of G namely, O ¼ fG=Hgop
HDG: This is the functor SO that

assigns to G=H the fixed points set in S of the subgroup H i.e. SOðG=HÞ ¼
MapGðG=H;SÞDS: The diagram SO breaks up as disjoint union of free diagram

indexed by S=G: If SD
‘

i G=Hi as a G-set than SO ¼
‘

i FG=Hi ; cf. [11]. Notice that

the passage to SO converts an arbitrary G-set S into a free O-diagram of sets from
which S can be recovered as a G-set.
Using the concept of free diagram of sets one defines and uses free diagrams of

other structures given by sets and maps between them. We say that a diagram of
simplicial sets X is free if in each dimension Xn it gives a free diagram of sets. A
diagram of categories is free if both objects and morphisms are free as diagrams of
sets, see Section 6.2. But in the definition of a free diagram of groupoids we mind
only the objects.

Definition 3.3. A diagram of groupoids G is called a free diagram of groupoids if the
corresponding diagram of objects obj-G is free as a diagram of sets.

Thus, free diagram of groupoids is not, in general, free as a diagram of categories
since only its underlying diagram of objects is assumed to be free. Nothing is
assumed about the diagram of morphisms. An important example of a free diagram
of groupoids is pX where X is a free diagram of spaces. The main property of free
diagrams of groupoids we need says that for them weak equivalence implies
equivalence:

Proposition 3.4. Let f : G-G0 be a weak equivalence between free I-diagrams of

groupoids. Then f is an equivalence i.e. f has an inverse up to natural equivalence.

Proof. We need to show the existence of homotopy inverse to f :More generally, we
show that given f ; u in a triangle of diagrams of groupoids

with F free and f a weak equivalence, the map u always admits a lift ũ up to natural
equivalence and any two lifts differ by a natural transformation. (In the language of

Section 6.2 below, the function complexes NatðF;GÞ and NatðF;G0Þ are equivalent
as groupoids.) The uniqueness up to homotopy follows from Lemma 3.1 since the
diagram J � F is free for a free F; where J is the unit interval groupoid from Section
2. To obtain the lift ũ; we proceed, as usual, by factoring the map f into a embedding

e : G- %G via an equivalence, in fact deformation retract; followed by a surjection
%f : %G-G0; f ¼ %f3e: The diagram %G is obtained by adding a free I-set Fi

x to obj-G for
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every element xAG0ðiÞ not in the image of GðiÞ; then connecting the generator with a
single copy of J � Fi

x; gluing the generator to any object in the component lying over

that of G0ðiÞ: We define %f on generator of Fi
x sending it to x while the new added

morphism is mapped to any morphism in G0 connecting x to an object in the right

path component (this can be done naturally by taking one copy of Fi
x for each path).

Again since Fi � J is free as a diagram of categories, this defines uniquely a map on
%G: We use the assumed isomorphism of the diagrams of sets of components
p0f : p0G!D p0G0: A contraction of this added J gives the deformation claimed.
Therefore we can assume, that f is surjective. Now one first constructs a lifting up to
natural transformation ũ0 : obj-F-G of the diagram of objects considered as a
diagram of discrete groupoids. This can done by the decomposition of the domain
obj-F as a disjoint union of elementary free I-sets. Then one proceeds to extend ũ0 by
observing that the weak equivalence implies that at each object xAGðiÞ the map f

induces an isomorphism aut x-aut f ðxÞ so using the proof Lemma 3.1 there is a
unique extension ũ of ũ0 to all of F: &

3.4. Example (cf. [1, Section 5], and further [2,20], appendix)

Consider the category I ¼ ½�-�	 with two object and one non-identity map. Any
map of groups f :H-H 0 (that is, of groupoids with one object each: o; o0) is a
diagram over I : Note that f gives a free diagram of singletons–objects o-o0: Thus f
is a free diagram of groupoids over I : In [1] f is regarded as a special case of
cofibrations of groupoids, the point being that cofibrations are maps injective on
objects. It is moreover of the form pF for F a free diagram of categories, where both
objects and morphisms give free diagrams of sets. However, a double arrow diagram
of groups G4H is never free since it is not free on objects. This is the root cause of
the special care taken in constructing HNN-extensions as in Section 4.2 below.

3.5. Hocolim of a diagram of groupoids G

One important advantage of groupoids over groups is the existence of free
resolutions: any I-diagram of groupoids G can be resolved by a free diagram of
groupoids via a weak equivalence which we take surjective on the objects for each

iAI : f : Gfree-G: Even when G is a diagram of groups its resolution will be
diagram of groupoids. This can be done by first resolving the diagram of spaces jGj
by a free diagram of spaces via a weak equivalences: e : W-jGj and then taking the
free resolution to be

Gfree ¼ *p1W;

with the map f coming from the adjunction *p1jGj-G: We have used the fact that
one can always resolve a diagram X of spaces by a free diagram FX-X via a weak
equivalence as is done for simplicial complexes and sets e.g. in [9]. Another, more
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canonical and intrinsic approach to resolution is to construct the co-localization map

CWFG-G with respect to the setF ¼ fFi: iAIg of free orbits as in [10,19]. In the
present case, this construction is comprised of three steps only where we built

the necessary objects, generators and relations in the free diagram of groupoids Gfree:
We remark that even if G is composed of discrete groupoids its resolution will not be
discrete, see below.
Given any I-diagram G of groupoids G : I-Gpd there is now an evident

construction of hocolimI G: we resolve it by a free diagram of groupoids r : Gfree-G

as above, (taking care for convenience that the map r is surjective on objects,) and
then define the homotopy colimit by taking the usual strict colimit:

hocolimI G � colimI G
free

which will be a groupoid. This can be done naturally by taking natural resolutions

starting with the map
‘

F d-G of a disjoint union in which now we regards each Fd

as a diagram of discrete groupoids and the union ranges over all objects in all the
groupoids in G: Another approach to hocolimI G which avoids the notion of free
diagram is to define the homotopy colimit as the fundamental groupoid pGrðGÞ of
the Thomason construction of the diagram of groupoids G; see [15,25, Section 5.15].
In abstract existential form this is considered in [1, Section 2] especially Theorem 2.9.
We shall see in the examples and in 4.2 below that the notion of free diagram of
groupoids helps in the recognition of certain strict colimits as homotopy colimits.

3.6. Uniqueness of resolutions and hocolim

We note that the homotopy colimit as defined above is independent of the chosen
resolution by a free diagram of groupoids up to equivalence of groupoids. This is

true since by the proof of Propositions 3.4 and 3.1 any two free resolutions Y;Y0 of a
diagram of groupoids G:

Y!f G’
f 0

Y0

are equivalent via a map of diagram invertible up to a natural equivalence. Such an
equivalence induces an equivalence on the strict colimits of these diagrams of
groupoids. The equivalence is easier to see if both f ; f 0 are surjective on the objects.
However, surjectivity is not essential, we assume it only for convenience.

3.7. Examples

* Consider the trivial groupoid � with a action of a group G: A resolution of � is
given by the map EG ¼ ½Objects;Morphisms	 ¼ ½G;G � G	-� from the free and
contractible groupoid EG with one arrow for each ordered pair of elements in G—
which simply the ‘‘one-skeleton’’ of the simplex spanned by the underlying set of
G: Thus to get the homotopy colimit of � ¼ ½�; �	 we simply divide EG by the
action of G : hocolimG f�g ¼ G: More generally, if � is the trivial groupoid over
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any small category I namely, it is the I-diagram of singletons then clearly
hocolimI f�gDpID *p1 hocolim j � jD *p1jI j—e.g. as a consequence of Theorem 1.1
above using � ¼ *p1j � j:

* Another simple example is obtained by considering a group G acting on any other

group L as a diagram consisting of a single groupoid denoted by L̃ ¼ ½�;L	 over
the small category G: The resolving groupoid is the free G-groupoid L̃ � EG ¼
½G;L � G � G	 with the diagonal action. It is weakly equivalent to L̃ since they
differ by a contractible factor. The resulting homotopy colimit is isomorphic to
the usual semi-direct product of groups L *�G as also follows from 5.4 below.

* Consider the usual presentation of the circle as a homotopy colimit of two
points Pi:

�1’fP1;P2g- �2 :

If we think of this as a diagram of discrete groupoids, it is not free; to turn it
into a free diagram we replace each object denoted by f�ig by the contractible
groupoid: J ¼ �#�; formed by two mutually inverse arrows, see Section 2.1.

Now the colimit of the new free diagram will give us the groupoid *Z from Section
3.2; up to equivalence, the group of integers Z: Diagrammatically, we get the
equivalence of groupoids:

* Consider the homotopy colimit of the following two parallel arrows between two
copies of the integers.

The colimit is the zero group (0), but the homotopy colimit is equivalent to the
integers. Additional parallel arrows of whatever value will increase the rank of the
hocolim—they do not change the value of the (strict) colimit. This can be seen
directly by adding objects to the range.

� Here is an evident corollary, which includes, of course, the usual formulation
of the van Kampen theorem for the category �’ �-�:

Corollary 3.5.

An I-diagram of groups is a free diagram of groupoids if and only if the

category I has an initial object.

Proof.

For such a small category the orbit generated at the initial object is free. &

In such a case we can replace the homotopy colimit of a diagram of groups
by the usual colimit as is done in the usual formulation of the Seifert–van
Kampen theorem.

ARTICLE IN PRESS
E. Dror Farjoun / Advances in Mathematics 182 (2004) 1–27 13



4. Applications to orbits spaces and unions

All the known cases of the van Kampen theorems from Seifert’s to Brown’s
formulation for certain unions of spaces follow easily from the present formulation,
see Theorem 4.3 below. Notice that if the given I-diagram of spaces X consists of
single points Xi ¼ pt; then the equivalence in Theorem 1.1 becomes a presentation of
the fundamental group of the nerve jI j as homotopy colimit of singletons groupoids.
For the category of low-dimensional simplices of a simplicial complex, with inclusions
as morphisms, it gives the canonical presentation of the fundamental group of a
simplicial complex with the 1-simplices as generators and 2-simplices as relations.

4.1. Bass–Serre presentation of groups acting on trees

Consideration of the Bass–Serre tree of groups is natural here as was noticed by
Higgins, as well as its extension to higher dimension cases as was done by Haefliger
using different, more geometric, methods [17,18,24]. It should be noticed that the
well known concept of HNN-extension is a special case of the notion of homotopy
limit of groups and groupoids explained here, cf. [24, Sections 1.4 and 5.1] Example 3
with examples in Section 3.7 and the discussion in Section 4.2.
Bass–Serre theory of group action on trees writes a ‘‘colimit presentation’’ of a

group G acting on a contractible 1-complex, i.e. a tree L; in terms of the stabilizers of
various simplices in the colimit ð¼ orbit space L=GÞ of the action. Here it is natural
to use homotopy colimit since this way we can use efficiently the information that the
tree is homotopy equivalent to a point via an G-equivariant map L-pt; this collapse
map induces a homotopy equivalence hocolimG LDhocolimG ðptÞ ¼ KðG; 1Þ and
thus the desired group G appears as the fundamental group of hocolimG L with any
base point. So we are looking for a decomposition of p1 hocolimG L: The version of
Seifert–van Kampen theorem above 1.1 gives just the Bass–Serre presentation when
we present L as a G-cell complex in the usual way. To proceed we need to take sub-
complexes of fixed points. Hence we assume that any element gAG that sends a
simplex sDL to itself does this by the identity map. This is always achieved after a
single subdivision, see [24, Section 3.1].
We now outline a decomposition of the (space level) Borel construction

EG �G L ¼ hocolimG L for a simplicial G-action as above on any complex L;
using sub-complexes of fixed points as further explained in Section 4.3 below:

hocolimG LD hocolimG hocoendG=HAO ðLH � G=HÞ

D hocoendG=HAO hocolimG ðLH � G=HÞ

D hocoendG=HAO fLH � BHgDhocolimsAL=G BHs:

Only the last step needs extra explanation, but by naturality it is sufficient to check it

for a single G-orbit L ¼ G=H ¼ LH where it is clear. Compare [9] and appendix of
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[10] where the notion of homotopy coend is discussed. For contractible L and in
particular for a tree L the homotopy colimit is just BG ¼ KðG; 1Þ: Taking the
fundamental groupoids, by Theorem 1.1 we get an equivalence of connected
groupoids:

GDhocolimsAL=G Hs:

It is straightforward then to check that the hocolim in the category of
groupoids, which in this case gives a group up to equivalence, is exactly the
usual group theoretical decomposition given by Bass–Serre [24, Section 5,
Theorem 13]. In the same way, we get an analogous presentation when the
action is on any 1-complex and not only on a tree. In higher dimensions one
gets a presentation of a group acting on any simplicial complex, in terms of the
stabilizers.
In general, one has a fibration

K-hocolimG K-BG:

When K is a connected space one gets an exact sequence:

1-p1K-hocolimsAK=G Hs-G-1:

4.2. HNN-extensions

Compare [24, Sections 1.4 and 5.1]. Consider the two group maps f ; h :A4G

associated to loop-diagram of groups. Regard now these two maps as a diagram F of
groupoids over the indexing category �4 � :

Claim. For the special case when the two maps are inclusions, the homotopy colimit of

F is equivalent to the well-known HNN-extension.

To see this we can use Theorem 1.1 and Proposition 6.6 as follows. The homotopy
colimit of the diagram of nerves, namely hocolim jFj; can be identified as the
double mapping torus ðjAj � ½0; 1	,jGjÞ=ff ðaÞBða; 0Þ; hðaÞBða; 1Þg for aAjAj; the
nerve or classifying space of A: This mapping torus is the strict colimit of a
free diagram of double cylinder which resolves jFj: explicitly, to present the
homotopy colimit as a usual colimit we have replaced here jGj by its equivalent
‘‘double hat’’ jAj � ½0; 0:5	,f jGj,hjAj � ½0:5; 1	 so that the given double map is

now a free diagram by the example in 3.3 above since the two maps f ; h become
two injections with disjoint images: A � 0 and A � 1: By standard consideration

(namely, taking the pull back of the universal cover R-S1) the homotopy fiber

of the map jhocolimFj-jZj ¼ S1; i.e. its Z-cover, is just (homeomorphic to)
the homotopy colimit (obtained by gluing cylinders as usual) of the classifying
spaces ð¼ nervesÞ of the infinite ‘‘zigzag’’ amalgam diagram of groups in [24].

ARTICLE IN PRESS
E. Dror Farjoun / Advances in Mathematics 182 (2004) 1–27 15



4.3. The fundamental group of space of orbits K=G and of colimI X

Given an action of a group G on a space K ; we ask for the fundamental group (or
groupoid) of space of orbits p1ðK=G; �Þ with respect to some base point: under what
condition taking the orbit space commutes with taking *p1; up to equivalence. The orbit
space is not directly a homotopy colimit so we do not apply the main theorem directly.
One way to get a general formula is to rewrite this space as a homotopy colimit of an

associated diagram. Let KO be the diagram of fixed points set fKHgHDG ¼
fhomGðG=H;KÞg; where H runs over all subgroups of G: This is a diagram over
O; the small (opposite) category of all G-orbits and G-maps between them. One can
restrict attention to the orbit types G=Hs actually appearing in K : From the definition

we get an isomorphism of the strict colimits K=GDcolimO KO: But KO is always a free
diagram, by the example in Section 3.3 and compare [9], so its colimit is equivalent to
its homotopy colimit, compare (4.C.4-5) in [11]. Therefore, we have

K=GDhocolimO KO:

In order to be in a position to use Theorem 1.1 to rewrite *p1 of the right-hand side,
we need to assume that the fixed point sets are sub-complexes so that KO is a diagram
of simplicial (sub-)complexes. Compare with examples in Section 2.1. We say that
the action of G on K is proper if every simplex which is sent to itself by a group
element is fixed point-wise by that element. This assumption appeared already in

Section 4.1 above. This means that the fixed point set KH of any subgroup inherit the
simplicial structure from K : In particular, one has the equality of zero skeletons:

KH-K0 ¼ ðKHÞ0 ¼ ðK0ÞH ; which is the only condition really needed. The induced

action on the first barycentric subdivision is always proper. Under these conditions
one gets the following two results, the first being immediate form Theorem 1.1.

Proposition 4.1. Let G be a discrete group acting on a simplicial complex K by a

proper action. Then there is an equivalence of groupoids

*p1ðK=GÞDhocolim *p1ðKOÞ � hocolimHDG *p1ðKHÞ:

Notice that the proposition implies, not surprisingly, that if all the spaces KH are
simply connected then so is the quotient space K=G: This is so because the diagram

of groupoids is equivalent to a free O-diagram of trivial groups, say p1ðX H ; ptÞ;
where pt is any point in X G which is assumed to be 1-connected and in particular
non-empty. Now use Corollary 3.5. From this one can deduce a commutation
formula which, in a different context, appears in [5, Theorem 1.11].

Corollary 4.2. Let G be a discrete group acting on a simplicial complex K by a proper

action. Then there is a natural commutation equivalence:

*p1ðK=GÞDð *p1KÞ=G:
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Proof. We use the definition of a free diagram of groupoids in order to compute the

right-hand side of Proposition 4.1 as a strict colimit. To evaluate hocolimO *p1KO ð¼
hocolimHDG *p1KHÞ we refer to Definition 3.3. The sub-diagram of objects in the

diagram of groupoids f *p1ðKHÞgH is ðKHÞ0 which is equal by our assumption of
proper action to fixed points of the zero skeleton of K namely, ðK0ÞH : We saw
above—example in Section 3.3—that this last diagram is always free as O-diagram of

sets. From this we get that the O-diagram of groupoids *p1ðKOÞ is free. Thus we can
use the last part of Theorem 1.1 or Definition 3.3 above and take colimit, rather than
homotopy colimit of this diagram of groupoids.

This gives that the right-hand side of 4.1 is equivalent to colimO *p1ðKOÞ but
all the fixed point subspaces KO map to the simplicial complex K itself. All

groupoids in the diagram *p1ðKOÞ are mapped to *p1K : In fact, the colimit of any
diagram Y over O is isomorphic to quotient of the value of Y on the free orbit
G=feg ¼ G; with respect to the action of G which is implicit in the very diagram Y:

So we can compute the colimit colimO *p1ðKOÞ by taking the colimit of the diagram
restricted to *p1K ¼ *p1Ke itself. That colimit is just the quotient ð *p1KÞ=G as
claimed. &

4.4. Remark: strict colimits

We expect that similar considerations using [9,13] will show that the same
holds for the strict colimit of the barycentric subdivision of an arbitrary diagram
X of simplicial complexes and simplicial maps over any indexing category I :

Thus, the fundamental groupoid *p1 colimI X
0 of the colimit of the barycentric

subdivision X0 is expected to be equivalent to colimI *p1X0; the colimit of the induced
diagram of groupoids. The formula above for quotient space K=G is a special
case. Similarly, the commutation with colimit will hold for any diagram of
simplicial sets. The main point being that after subdivision the diagram has good
strict colimit.

4.5. Fundamental group of a union

Here we show how to recover quickly some of the results concerning the
fundamental group and groupoid of a union of spaces. Union of spaces is not on the
face of it a homotopy colimit of the subspaces involved, thus some adjustment is
needed before applying the main result about the fundamental groupoid of a
homotopy colimit. The main point here is the conversion of a union X ¼

S
Xi ¼

colimI X into a homotopy colimit. A good recent reference is [14]. The following is
the direct analog of the evident formula: p0

S
Xið Þ ¼ colimfi;jg p0ðXi-XjÞ:

Theorem 4.3. Let X ¼
S

Xi ¼ colimI X be a union of open subspaces or simplicial

sub-complexes Xi: Let Xð3Þ be the diagram of the spaces Xi-Xj-Xk for all

i; j; kAI and their inclusions. Then the general formula for the fundamental

ARTICLE IN PRESS
E. Dror Farjoun / Advances in Mathematics 182 (2004) 1–27 17



groupoid reduces to

*p1XDhocolim *p1Xð3Þ:

For the special case of pointed spaces one gets:

Corollary 4.4. In particular, if the diagram Xð3Þ consists of connected and pointed

spaces then p1XDcolim p1Xð3Þ; where the colimit is over the diagram of the triple

intersections as above. In that case one can write the group as a quotient of the free

product: p1XDð%Ip1XiÞ=ðrijÞ were rij are the obvious relations coming from the

(pointed) inclusions Xi-XjDXi:

Proof. Since here X is given as a colimit of Xi’s, in order to apply the main result one
needs to rewrite it as a homotopy colimit as in [14]. To do that, a priori we need to
take all intersections Xi1-Xi2-?-Xin or in fact

T
jAJDI Xj for all JDI ; so as to

form a free diagram of spaces with the same limit, cf. [9]. For a free diagram the
homotopy limit coincides with the strict colimit which is here the union. However,
the main point of the theorem is that here we need take only triple intersections,
which include, of course, the double intersections, etc. Thus, we use the following
result for n ¼ 1; which is proven in [14]: For any nX0; the Postnikov approximation
Pn

S
Xi is n-equivalent to the homotopy colimit over the diagram Xðn þ 2Þ of all

ðn þ 2Þ-intersections of the spaces Xi: This is just a dimension argument: the higher
intersections do not come into the computation of the second skeleton of the colimit
of diagram of small categories or groupoids, on which the fundamental groupoid
depends. Since we are interested in *p1

S
XiD *p1P1

S
Xi taking the homotopy colimit

over Xð3Þ gives the desired result. The last claim of the corollary follows directly
from the definition of colimits of groups. &

4.6. Covering

Here is an alternative view of the basic commutation result, Theorem 1.1, via
covering spaces. Given a space X let CovðX ;DÞ ¼ CovðX Þ be the category of all the
covering spaces of X with equivalences, i.e. isomorphisms of covers as morphisms.
Clearly, Covð�;DÞ is a contra-variant functor from spaces to (large!) groupoids.
This is another canonical non-pointed way to look at the fundamental group. The
following statement uses the notion of homotopy (co-)limits of a (small) diagram of
(possibly large) categories; compare Definition 6.2 below and [12].

Theorem 4.5. For any I-diagram of spaces X we have an equivalence of groupoids:

CovðhocolimI XÞDholimI CovðXÞ:

Proof. This is just a dual formulation to the former one. It is the basic result of
covering space theory that CovðX Þ as a category is equivalent to the category of
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functors to the category Sets of sets:

CovðX ÞDNatð *p1X ;SetsÞ: &

4.7. The second homotopy group

A parallel formulation for the second homotopy groups of homotopy colimits is
called for. It should not be hard to see that this is possible using the notion of crossed
modules and its variations, see for example [21], thus extending two-dimensional
versions of van Kampen theorems of Brown, Higgins and Loday concerning
the second homotopy group as a crossed module. Of course, the second homotopy,
in the form of a crossed module, of a homotopy colimit will depend on
the corresponding first and second homotopy groupoids of the spaces in the
diagram together with the additional ‘‘gluing information’’ encoded in the crossed
modules.

5. Pointed diagrams, diagrams of groups

The above discussion can be adjusted to diagrams of pointed spaces where the
maps in the diagram preserve the base points of the spaces involved. These give rise
to diagrams of groups obtained by taking fundamental groups of the pointed spaces.
We deduce the following from Corollary 3.5 in Section 3.7.

Corollary 5.1. Let I be a category with initial object and let X : I-S� be a diagram of

pointed and connected spaces. Then the fundamental group of the homotopy colimit is

given as a colimit of groups:

p1 hocolimI XDcolimI p1X:

Proof. For pointed connected spaces the fundamental groupoid can be taken to be a
group. The fact that I has an initial object implies that the diagram of singletons f�g
over I is the elementary free diagram generated at that initial object. We obtain by
Corollary 3.5 a free diagram of groups p1X; hence its homotopy colimit is equivalent
to its usual colimit. &

For a pointed diagram of pointed spaces one might well be interested in a pointed
homotopy colimit of the pointed diagram X: This, by definition, is the cofiber in the
sequence: nerveðIÞ ¼ jI j ¼ hocolimI f�g:

nerveðIÞ-hocolimX-hocolim� X:

One defines the homotopy colimit for a pointed diagram of groupoids G to be the
quotient groupoid ðhocolimI GÞ=pI via the natural map that is induced by
the coherent base points map �-G as in the first example in Sections 3.7 and 3.1.
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The quotient in the above cofiber sequence is equivalent to the homotopy quotient
(i.e. homotopy colimit or mapping cone), and the same goes for the quotient in the
definition of the pointed hocolim� G: So we can apply Theorem 1.1 to get its pointed
version:

Theorem 5.2. For any pointed diagram of pointed spaces X ¼ X� there is a natural

equivalence of groupoids: *p1 hocolim� XDhocolim� *p1X: If the homotopy colimit is a

connected space, this gives a corresponding isomorphism of groups.

If the diagram X consists of pointed and connected spaces, then our diagram is
equivalent to a diagram of groups. In turns out, however, that for the special case of
groups the corresponding notion of pointed homotopy colimit of a diagram of
groups collapses to the usual notion of colimit.

Proposition 5.3. The pointed homotopy colimit of a diagram of groups taken as

pointed groupoids is equivalent to the strict colimit of the said diagram inside the

category of groups.

Proof. We have a map of pointed groupoids: hocolim� G-colimG: To prove the
equivalence we demonstrate that the pointed function categories to any pointed
groupoid are equivalent. Consider the functor category

Nat�ðhocolim� G;HÞ ¼ holimi Nat�ðGi;HÞ

for the pointed groupoid H: Since G is a diagram of groups the pointed homotopy
colimit is a connected groupoid. Since we consider pointed functors we can replace
H by the component of the base point and therefore, up to equivalence by the
automorphisms of the base point H�; namely, the group at the base point, without
changing the type of the left-hand side. So Nat�ðGi;HÞDNat�ðGi;H�Þ: But the
groupoid of pointed functors between two groups is a discrete groupoid, that is, a set
with identity maps, since the base point preserving natural transformation must
assign the identity to the single object in the domain group which is our base point.
So we can replace the right-hand side by the homotopy limit of a diagram of hom-
sets holimi HomgpsðGi;H�Þ ¼ limI HomgpsðG;H�Þ: For a diagram of sets the

homotopy limit is the same as the limit.
We can conclude with the required equivalence, since H� is an arbitrary group:

Nat�ðhocolim� G;H�Þ ¼ lim
i
HomgpsðGi;H�Þ

¼ HomgpsðcolimI G;H�Þ ¼ Nat�ðcolim� G;H�Þ: &

From the definition of pointed homotopy colimit and the last result follows:
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Corollary 5.4. For a diagram G : I-fGroupsg of groups, there is a pushout diagram

of groupoids:

where pI is the groupoid associated to the category I : If I is connected, then, up to

equivalence, this is a pushout of groups.

6. Proof of the Main Theorem 1.1

6.1. Discussion

First, note that by Definition 3.3 and Section 3.6 above the last assertion of the
theorem follows from the main assertion. To prove the main assertion, we start with a
basic formula, which holds generally for spaces, connected or not. For any space Y

let P1Y denote the first, aspherical, Postnikov approximation to Y ; this is a canonical
space whose higher homotopy groups vanish but whose set of components p0 agrees
with that of Y and p1 of each component again agrees with that of the corresponding
component in Y : Now take a diagram of spaces X; then we have an equivalence:

P1 hocolimXDP1 hocolim P1X:

This is a special case of [10, Theorem 1.D.3 and 1.A.1.1]. It can be verified directly
using the universal property of the map Y-P1Y as initial, to homotopy, among all
maps of a space Y to aspherical spaces. To do so we only need to prove that the
function complexes of both sides of the above equivalence, before the application of

P1; into any aspherical space are equivalent, which is evident from universality. Now
we will see soon that the first Postnikov approximation to any space Y depends
directly and simply on the fundamental groupoid *p1Y ; in fact they contain nearly the
same information on Y : Thus in some precise sense these properties of P1 with
respect to hocolim already give the main result, taking into account that in the
proper context *p1 is left adjoint to the nerve j � j up to homotopy. Notice that a
similar commutation for P1 fails for homotopy inverse limit. Let us spell out the
details since they pass by some useful constructions and lemmas. We use the
following evident result where we need crucially that p0Y0-p0Y is surjective, in
other words there is at least one vertex in each path component of Y ; this is of course
given by the simplicial or even CW structure.

Lemma 6.1. For any simplicial space or complex Y one has a weak equivalence:

P1Y !D j *p1Y j

which is natural up to homotopy.
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Proof. For a simplicial space there is an obvious map Y-j *p1Y j: Using the fact that
the range is a Kan complex 3.1 we send each vertex to itself and each higher simplex
to the appropriate composable chain of paths coming from its 1-dimensional faces.
This map factors uniquely up to homotopy through P1Y : To conclude that it is a
weak equivalence we recall that both sides are aspherical and the map above clearly
induces an isomorphism on path components and on the fundamental group for
each component. &

The above equivalence shows that the ‘‘fundamental groupoid’’ of a homotopy
colimit depends only on the diagram of the ‘‘fundamental groupoids’’ of the spaces
in the given diagram. This formula is true for the non-connected version of
Postnikov P1—applied to non-connected spaces. Without assuming connected and
pointed spaces we cannot work with groups and must employ groupoids—since if
one has no consistent base point then we cannot go from P1X to a diagram of
groups.

Outline of the proof of Theorem 1.1: We will show using adjunction and homotopy
(inverse) limits as considered below that the nerves of the two sides of the desired
equivalence are equivalent as simplicial sets. To prove the desired equivalence of
groupoids it is sufficient (3.1) that after applying the nerve functor to both sides we
get an equivalence of spaces. But the nerve functor reduces the desired equivalence to
the equivalence of Postnikov approximations given above. One must be careful
since:

Warning. The homotopy colimit, inside the category of groupoids, may not
commute with the nerve functor j � j; this is in contrast to the beautiful property
of the Thomason construction [15]. This is because the internal hocolim in the
category of groupoids loses information about higher homotopy groups. To see this,
take a pushout diagram of non-injection of groups. Then, on the level of the nerve
spaces, we do not get a KðP; 1Þ as a pushout. However, if we first take a pushout on
the level of groups—before taking nerves—we get a group whose nerve is a KðP; 1Þ:
So there is no commutation in general. Of course, if we apply to the diagram of
groups the Thomason construction, we do not, in general, get a group as the
homotopy pushout—in the sense of Thomason—and so its nerve is not aspherical,
so there is no contradiction.
This concludes our outline. We now continue by recalling:

6.2. Internal mapping categories, homotopy (inverse) limit of a diagram of groupoids

We consider the homotopy (inverse) limit of a diagram of categories—in fact
groupoids—holimP: We will also use the pointed case for groupoids with a base
object. The classification Lemma 6.4 assures the commutation of taking nerves with
taking homotopy limits. The homotopy limit is in fact a slightly extended version of
the internal hom construction that for any two categories C;D; with C small, gives
the category of all functors and natural transformations NatðC;DÞ whose objects are
functors C-D and whose morphisms are natural transformation of functors. This is
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carefully explained in [16, pp. 91–100]. This is the exact analog of the Bousfield–Kan
construction of homotopy limits of diagram of spaces.

Example. Here is a standard example of the internal hom construction for
groupoids, [1, Section 5]. Let G;H are two groups taken as categories with one
object each. Then NatðG;HÞ is a category, in fact a groupoid, whose objects are
group maps, considered as functors, f :G-H; and whose morphisms T : f-f0 are
given by natural transformations. Each of these assigns to the single object in G a
map Tð�Þ in H namely a group element hAH with the right commutation property

for each morphism in G: This amounts to the equation hfðgÞ ¼ f0ðgÞh for all gAG:

In other words, two group maps f;f0 are in the same component of NatðG;HÞ if
and only if the differ by an inner automorphism in determined by hAH: Thus the set
of components is HomðG;HÞ=innerðHÞ: To specify the groupoid up to equivalence
we can easily check that the isomorphism type of each component ½f	 is CfðHÞ; the
centralizer in H of the image of f: This gives via Theorem 6.4 below (recalling that
for constant diagrams the homotopy limit is just the internal function object
Natð�;�Þ) the usual computation of the homotopy type of the topological function
complex mapðKðG; 1Þ;KðH; 1ÞÞDmapðjGj; jHjÞDjNatðG;HÞj:

Given two I-diagrams of small categories P;Q : I-Cat we may consider the
category of all ‘‘equivariant functors’’ P-Q as objects and natural transformation
between them as morphisms. We get the category NatI ðP;QÞ: For example, if P ¼ �
then the resulting category is just the inverse limit category of the given diagram of
categories Q: The problem with the NatI ð�;�Þ-construction is a familiar one in
homotopy and category theory: if one changes locally the categories in the diagram
to equivalent ones, the resulting new equivariant mapping category will not
necessarily be equivalent to the old one. But one is often interested in exactly such an
invariance. Technically speaking, for this the range and domain must be cofibrant
and fibrant correspondingly. Recall that a diagram of categories is free if the
corresponding diagram of objects and morphisms are free as diagrams of set. The
main example we use of free diagram of categories is the diagram of over-categories
EI ¼ �=I defined and used by Bousfield and Kan [3]. We note, without explicitly
using it, that a free diagram of categories is cofibrant while a diagram of groupoids is
fibrant. This motivates the definition the homotopy limit holimI P of an I-diagram
of groupoids P: A more general definition of homotopy limit of diagram of
categories is implicit here:

Definition 6.2. An I-diagram of categories E is locally contractible if the nerve jEðiÞj
is weakly equivalent to a point for all iAI : TheðEI-Þ homotopy limit of a diagram of
groupoids P for a fixed EI ; is defined to be the category of functors holimI P :¼
NatIðEI ;PÞ; where EI is a (chosen and fixed once and for all) free and locally
contractible diagram of categories.

A basic result here is:
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Proposition 6.3. If G is a I-diagram of groupoids and E;E0 are two free contractible I-

diagrams of categories then the two categories NatðE;GÞ;NatðE0;GÞ are equivalent as

categories.

Proof. It is enough to prove weak equivalence, see 3.1. For a functorA-B to be a
weak equivalence of categories it means that the functor induces a weak equivalence
on their nerves jAj-jBj: Since jGðiÞj is a Kan complex, for weakly equivalent
spaces X ;Y the function complexes mapðX ;GðiÞÞ and mapðY ;GðiÞÞ are equiva-
lent. &

Now the proposition follows immediately from Section 3.1 and the following basic
commutation formula 6.4, which in turn is a slight generalization of the
commutation discussed in [16, pp. 91–100].

Theorem 6.4. Let P : I-Cat be a diagram of categories and functors between them.

There is a natural weak equivalence of simplicial sets:

jholimI Pj!E holimI jPj:

This classification formula gives immediately and effortlessly many known
classification results e.g. the classification of various fibrations, Mislin’s genus,
Wilkerson’s Postnikov conjugates. The set of components of the left-hand side is the
desired unknown set of types while on the right-hand side we have the topological
homotopy limit over spaces which form the ‘‘building blocks’’ of the final structure.
See [11].
Note the following analog of 1.1 for homotopy limits of spaces, which is implicit in

the work of Brown and coauthors: it follows directly from the commutation
above using the fact that aspherical spaces are weakly equivalent to jGj for some
groupoid G:

Theorem 6.5. For any diagram of aspherical spaces X there is a natural equivalence of

groupoids:

*p1 holimX!D holim *p1X:

If the homotopy limit is a connected space, this gives a corresponding isomorphism of

groups.

Proof of Theorem 1.1. We are now ready to put the various pieces together. The
proof proceeds by showing that there is a homotopy equivalence between the two
sides after taking their nerves. This establishes a weak equivalence of groupoids
which we saw in 3.1 is always an equivalence. We start with a lemma which is in fact
the heart of the Seifert commutation formula: &
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Lemma 6.6. For any diagram of groupoids G there is a natural equivalence of

groupoids:

hocolimG- *p1 hocolim jGj:

Proof. We proceed by considering the ‘‘dual’’ of the claimed equivalence: it is
enough to show that for any groupoid H; the categories of functors from both sides
into the groupoid H are equivalent. So we are going to show that the nerves of the
mapping categories to H; of both sides of the desired equivalence, are equivalent.
Consider the left-hand side. By the basic property of homotopy colimit we have

NatðhocolimG;HÞDholimNatðG;HÞ:

(The internal mapping construction in Cat is denoted by Nat, see 6.2 above, we have
suppressed the indexing category I from the notation.) Using the classification
formula 6.4 we get

jNatðhocolimG;HÞjDmapðhocolim jGj; jHjÞ:

Now we check the right-hand side of 6.6 using 6.1: Using classification 6.4 and the
equivalence: j *p1Y jDP1Y ; we take the nerve of the right-hand side in the lemma and
we have:

mapðj *p1 hocolimjGjj; jHjÞDmapðP1ðhocolim jGjÞ; jHjÞ:

But since the range is aspherical the right-hand side is equivalent, using
mapðP1Y ; jHjÞDmapðY ; jHjÞ; to the function complex mapðhocolim jGj; jHjÞ: But
this again, by the basic property of homotopy colimits and by commutation 6.4, is
equivalent to the nerve jholimNatðG;HÞj of the homotopy inverse limit above, as
needed. &

To continue with the proof we circumvent the non-commutation of hocolim and
the nerve functor: The proof of 1.1 is completed by proving the following lemma,
which by Lemma 6.1 is the desired equivalence of the groupoids after taking nerves
of both sides.

Lemma 6.7. For any diagram of spaces X there is a natural equivalence of aspherical

spaces:

P1ðhocolimXÞ!D jhocolim *p1 Xj:

Proof. We first notice that by the equation above

P1 hocolimXDP1 hocolim P1X:
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We also have by Lemma 6.1: j *p1X jDP1X ; and: *p1jGjDG: Therefore we have the
following chain of equivalences using 6.6 in the last equivalence:

P1 hocolimXDP1 hocolim P1XDP1 hocolim j *p1Xj

D jð *p1 hocolim j *p1XjÞjDjhocolim *p1Xj: &
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