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0 Preface

These lectures are about showing that homotopy equivalence implies home-
omorphism for a large class of manifolds. About 50 years ago Borel conjec-
tured that this class includes all closed manifolds with contractible universal
covers. A more precise statement of his conjecture is the following.

Borel Conjecture. Let f : M — N be a homotopy equivalence where
both M and N are closed aspherical manifolds. Then f is homotopic to a
homeomorphism.

We explain in lectures 2-5 why this conjecture is true in the following
special cases (due to Farrell and Jones);

1. M is a non-positively curved Riemannian manifold and dim(M) # 3, 4.
2. Both M and N are complete affine flat manifolds.

3. m1(M) is isomorphic to a discrete subgroup of GL,,(R) for some n, and
dim(M) # 3, 4.

The Borel Conjecture has the following (slightly weaker when n # 3)
group theoretic interpretation in which Top(R") denotes the group of all
self-homeomorphisms of R" equipped with the compact open topology.

(Topological) Strong Rigidity Conjecture. Let I'; and I's be any pair
of isomorphic subgroups of Top(R"). Suppose that the two naturally induced
actions on R” are free, properly discontinuous, and have compact fundamen-
tal domains. Then I'; and I'y are conjugate subgroups inside Top(R") (with
the isomorphism induced by the conjugation).

Special case 3 of the Borel Conjecture yields that the (Topological)
Strong Rigidity Conjecture is true under the extra assumption that there ex-
ists a linear (virtually connected) Lie group G containing I’y and contained
in Top(R"), and n # 3,4. This partial result is an analogue of Mostow’s
Strong Rigidity Theorem [57] in Lie group theory. In fact it was motivated
by Mostow’s result although the technique of proof, surgery theory, is very
different from Mostow’s.

Lecture 1 is an introduction to the general problem of classifying, up to
homeomorphism, all manifolds homotopically equivalent to a given manifold
M. This is the topic of surgery theory. After reading lecture 1, we rec-
ommend perusing W. Lueck’s lectures on surgery theory before looking at
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lectures 2-5 which also depend on L.E. Jones’ lectures and on the first two
of A. Ranicki.

1 Introduction to high dimensional manifold topol-
ogy

Throughout this talk M and N will denote (connected) closed n-manifolds
by which I mean (as usual) compact Hausdorff spaces which are locally
homeomorphic to R™.

Basic Problem. Find calculable invariants which imply that M and N are
homeomorphic.

This problem is easy to solve when dim M < 2. For example the circle
is the only such 1-manifold. And the following is a complete list of the
orientable 2-manifolds:

© & e e

Figure 1.1 genus = # of holes

To study this problem when dim M > 2, it is helpful to use the weaker
notion of homotopy equivalence which is easier to study than homeomorphism
because of the following result.

Theorem. (J.H.C. Whitehead) A continuous map f : M — N is a homo-
topy equivalence iff it induces an isomorphism on m, for all n.

Caveat. There are examples where 7, (M) ~ m,(N) for all n; but M is not
homotopically equivalent to N. Whitehead requires that the isomorphism is
induced by a continuous map! Here is an explicit example.

Let M = S% x §? and N = S(n? @ 6') where n? is the canonical C-line
bundle over CP! = S2, 9! is the trivial R-line bundle and S(n? @ #') denotes
the sphere bundle associated to the Whitney sum 72 @®#'. Since the fibration

§? 3 N = 82
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has a cross section
7Tn(N') = Wn(SQ) 5] 7711(52)

but the 2nd Stiefel-Whitney class wa(N) # 0. And recall that wy is an
invariant of homotopy equivalences but

wa(S? x §%) = 0.

Remark. Note that N = CP?# — CP? and hence its cup product pairing

ls (0 %)
()

And these are inequivalent bilinear forms over Z.

while the pairing for M is

However there is an important special case where this worry is unneces-
sary.

Definition. M is aspherical if 7, (M) = 0 for all n # 1. (This is equiva-
lent to requiring that the universal cover M of M is contractible; but not
necessarily that M = R™ as M. Davis will show in his lecture today.)

Corollary. (Hurewicz) If mi(M) ~ w1 (N) and both M and N are aspherical,
then M and N are homotopically equivalent.

Historical Remark. Hurewicz proved this result before Whitehead proved
his theorem.

Examples. Every orientable (connected) 2-manifold except the sphere is
aspherical (as is the circle).

More generally every non-positively curved closed Riemannian m-manifold
is aspherical because of Cartan’s theorem that the universal cover of such a
manifold is diffeomorphic to R™. On the other hand, the following homo-
geneous space G/T" is an example of a closed aspherical 3-manifold which
does not support a non-positively curved Riemannian metric. Here G is the
matrix group

1 =z y
G = 01 =z z,Y,z € R
0 0 1
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and T is the discrete subgroup where x, 4, z are all integers. Note that the
universal cover of G/T is G which is diffeomorphic to R?; hence G/T is
aspherical and is easily seen to be compact. Also

7T1(G/P) =T

which is nilpotent but not abelian. However Gromoll and Wolf [40] and
Yau [71] independently proved that if M is a (closed) non-positively curved
Riemannian manifold and 7 (M) is nilpotent, then m; (M) is abelian (and if
solvable, then virtually abelian).

Basic Question. Are homotopically equivalent closed manifolds M and N
homeomorphic? More precisely: Is every homotopy equivalence f : M — N
homotopic to a homeomorphism?

The answer is Yes for 1 and 2 dimensional manifolds. But Moise [55]
showed that in general the answer is No. In fact it is No for 3-manifolds.
Let me explain. Lens spaces were studied extensively in the 1930’s. These
are 3-manifolds whose universal covers are the 3-sphere and have cyclic 71’s
of order > 2 (and all deck transformations in SO(4)).

Reidemeister gave examples of pairs of Lens spaces which are homotopi-
cally equivalent but not diffeomorphic. (See W. Lueck’s lecture 2.4 for a
detailed discussion of Lens spaces which includes this result.) In particular
M = L(7;1,1) and N = L(7; 1,2) are such a pair. Here the subgroups (M)
and m(N) of SO(4) are described as follows. Note that SU(2) C SO(4).
Then 71 (M) and 71 (N) are the cyclic subgroups of order 7 in SU(2) gener-
ated by the two diagonal matrices

0 0 4 (00
0 6 an 0 62

respectively, where § = ¢2>™/7. Since Moise [55] showed (1952) that homeo-
morphic 3-manifolds are diffeomorphic, it follows that No is the answer to
the Basic Question.

In light of Moise’s result, the Basic Question was refined at this time into
2 disjoint conjectures.

1. Hurewicz Conjecture. Homotopically equivalent closed manifolds with
m = 0 are homeomorphic.

2. Borel Conjecture. Homotopically equivalent aspherical manifolds (i.e.
with 7, = 0 for n # 1) are homeomorphic.
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Remark. In Moise’s example both 7; and w3 # 0.

Remark. The Poincaré Conjecture is a special case of the Hurewicz Con-
jecture where M = S3. It is still open; but the Hurewicz Conjecture has
been proven when M = S™, m # 3, by Smale (m > 6), Stallings (m = 5)
and Freedman (m = 4).

Remark. Although S2 is not aspherical, the Borel Conjecture also (indi-
rectly) implies the Poincaré Conjecture. To see this we use the following two
results.

Generalized Schoenflies Theorem. (M. Brown [11]). Let f : S — S3
be a bicollared embedding, then f(S?) bounds closed (topological) balls on
both sides.

Alexander Trick. Let h : S™ — S™ be any homeomorphism. Then h ex-
tends to a homeomorphism h : D"t1 — D"l where D" denotes the closed
ball in R™+1 which bounds S™.

Now let 32 be a closed 3-manifold homotopically equivalent to S® and
consider the connected sum M = T3#33, where T3 denotes the 3-torus
St x 8§t x St. Since T2 and M? have isomorphic fundamental groups and
M is easily seen to be aspherical, T2 and M? are homotopically equivalent
because of the above mentioned Corollary due to Hurewicz. Hence Borel’s
Conjecture implies that 7343 is homeomorphic to 7. And consequently
M = the universal cover of T3#3? is homeomorphic to R3. Therefore the
Generalized Schoenflies theorem shows that $3 — Int(D?) is homeomorphic

to D3.

2_3— I»ff(lDQ) -

RSt

!

\\
]RS
Figure 1.2
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(This Int(D?) is the interior of the 3-ball removed from %2 in forming the
connected sum with 73.) Now applying the Alexander Trick we get that
%3 is homeomorphic to S2. In this way, the Borel Conjecture implies the
Poincaré Conjecture.

The Borel Conjecture is still open; but Novikov [58], [59] in 1966 showed
that the Hurewicz Conjecture is false, in fact “generically” false.

Theorem. (Novikov) Let M™ (m > 5 and # 2 mod /) be any smooth
(closed) manifold such that

1. 7T1(M) =0

3. M — pt is parallelizable

(e.g. M = S* x S§%). Then there erists a homotopically equivalent smooth
(closed) manifold N which is not homeomorphic to M.

To understand this result, I need to recall the notions of tangent bundle
and Pontryagin classes. Due to Whitney every smooth manifold M™ embeds
in R?7m+2,

M™ g R2m+2
Figure 1.3

To each point £ € M, let T, M be the tangent space to M at = parallel
translated to the origin 0 € R?™*2. This defines the Gauss map TM : M —
G, = the Grassman manifold of all m-planes (containing 0) in R*™*2. The
Gauss map is continuous and well defined up to homotopy since any pair
of embeddings are isotopic. Also if f : M — N is a diffeomorphism, then
TN o f is homotopic to T M.

The cohomology groups of G, can be computed. In particular there are
classes p; € H*(G,,,Q) and their pullbacks under

(TM)" : H (G, Q) — H* (M, Q)



The Borel Conjecture 235

are called the (rational) Pontryagin classes of M and denoted by p;(M).

Soif f: M — N is a diffeomorphism, then f*(p;(N)) = p;(M). But one
can construct a smooth manifold N° which is homotopically equivalent to
M?® = §* x 8% where p;(N) # 0. In fact N? is the total space of a fiber
bundle over S* whose fibre is S° constructed using 24 times the generator
of m3(0(6)) = Z. But p1(S* x S°) = 0 since S* x S5 C R and hence

T(S* x 8§%): 8% x 85 = Gy

factors through RP? and H*(RP?,Q) = 0. So M and N are not diffeomor-
phic.

But, on the other hand, Milnor [53] had shown in 1956 that (in high
dimensions) homeomorphism does not imply diffeomorphism as it does in
dimensions 1, 2 and 3. Still Novikov [59] proved the following.

Theorem. (Nowikov 1966) If f : M — N is a homeomorphism between
smooth manifolds, then f*(p;N) = p;M.

Corollary. S* x S° and N° are not homeomorphic thus disproving the
Hurewicz Conjecture.

Novikov had used the strong advances in Algebraic Topology made dur-
ing the 1950’s (e.g. Serre’s mod-C Hurewicz Theorem) to reduce the proof
of his Theorem to the following key lemma.

Lemma. (Novikov) Let E be the total space of a real vector bundle n whose
base space is S™. If E is homeomorphic to S™ x R™ and both m > 5 and
n > m+ 2, then n is the trivial bundle.

We sketch a proof of Novikov’s Key Lemma since it contains new ideas
which allow the tools of differential topology to be used under a topological
assumption. The strategy is to construct a smooth embedding o : S™ — E
homotopic to the 0-section embedding oy : S™ — FE and such that v, =
normal bundle of ¢ is trivial. This implies that 7 is trivial since n = v,, and
Vg = Vs because of the Whitney Embedding Theorem which shows that o
is isotopic to oy. To construct o, one first builds a sequence

MyCcM, C---CM, 1CM,=E
of smooth submanifolds satisfying:

1. dim(M;) = m + 1.
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2. M; is 2-sided in M;11 (i < n).
3. My is homeomorphic to S™.

4. The composite embedding 7 : My — FE is a homotopy equivalence.

Let us assume for the moment that this has been done. Now v, is clearly
trivial. So if My were diffeomorphic to S™, we could set 0 = 7 and we’d
be done. However My may be an exotic sphere; i.e. a smooth manifold
homeomorphic but not diffeomorphic to S™. (See W. Lueck’s lecture 6 for a
detailed discussion of exotic spheres.) But Kervaire and Milnor [48], using a
deep result of Adams [3], showed (for any exotic sphere M) that My x R is
diffeomorphic to S x R". Identifying My x R" with a tubular neighborhood
of My in E, we can set o to be the composite

SM=8"x0CS"xR"=MyxR"CE.

Therefore it remains to indicate how the sequence of submanifolds M; is
constructed. Start by putting an “anchor ring” 77! x R into R® where
T?% denotes the s-torus; i.e. T® = §1 X St x - x Slj. This is easy to do;

~~

S—copies

the case n = 2 is pictured below. The general construction of anchor rings
proceeds by induction on n. In particular, cross

T 1 xRCR"

with R to obtain
"' x R* CR*!

and note that
T"xR=T"1x (' xR) CT" ! x R?

where S x R C R? is the case n = 2.
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Consider the following diagram * in which f : E — §™ x R" is the given
homeomorphism and V = f~1(8™ x T"~! x R) which is a smooth manifold
since it is an open subset of E.

E

S™ x R*

f
VLSmxTn_lx]R

U U
M,y 2= gm oy me1 = 8™ x 71
U U
My o e S™ x T2
U U
U U
M, n Sm x St
U U

My fo SMmx1=.8m
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The manifolds M; and homotopy equivalences f; : M; — S™ x T* are
constructed (downwards) inductively by applying a codimension-one split-
ting theorem to fi;1 : M;y1 — S™ x TF!, when i < n — 2, and to
flv:V—=8"xTr"! x Rwheni=mn—1.

The setup for such a theorem is the following:

Let ¢ : W — W be a (proper) homotopy equivalence between smooth
manifolds and T' C W be a closed 2-sided codimension-one smooth subman-
ifold.

x
d

o

&
e O

b

Figure 1.5

Question. Can T C W be modeled in W; i.e., can ¢ be (properly) homo-
toped to a map % which is transverse to 7" and such that

Yl T =T

is a homotopy equivalence where 7 = =1 (T).

In the situations occurring in Diagram *, the answer is Yes. Codimension-
one splitting theorems of this sort have been proved by Browder, Novikov,
Levine, Livesay, Siebenmann, Farrell, Hsiang, and Cappell. The two cases
occuring in diagram () are W = TxRand W = T'x S'. If W = T x R, this
splitting theorem is due to Browder [9] when 71(T") = 0, Novikov [59] when
71(T) is free abelian, and Siebenmann [67] in general. When W = T x S*
it is due to Browder and Levine [10] when 71 (7") = 0 and to Farrell [20] in
general.

Notice that Novikov’s Theorem also bears on the Borel Conjecture. In
particular if the Borel Conjecture is true, then any homotopy equivalence
f: M — N between smooth (closed) aspherical manifolds must preserve (ra-
tional) Pontryagin classes. Novikov formulated this explicitly as a conjecture
and proved some partial results on it. Further partial results were obtained
by Farrell, Hsiang, Kasparov, and Cappell using codimension-one splitting
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theorems. But perhaps the most interesting early result on this conjecture
is due to Mishchenko [56] extending work of Lusztig [52]. (Their work uses a
different technique; namely the extension of the Hirzebruck Index Theorem
due to Atiyah and Singer.)

Theorem. (Mischenko [56] 197}). Let f : M — N be a homotopy equiv-
alence where M is a closed non-positive curved Riemannian manifold (and
N is also closed), then f*(p;(N)) = p;(M).

Let me finish this talk by briefly describing the three steps needed to
replace a homotopy equivalence f : M — N by a homeomorphism. (This
process is called surgery theory and is discussed in detail in W. Lueck’s
lectures.) For this purpose I now make a dimension assumption; namely, I
assume that dim M > 5.

Step 1. Construct a normal cobordism W from M to N; i.e. a compact
manifold W with boundary OW = M U N together with a tangential map
F: (W, 0W)— (N x[0,1],0) such that F|y =idy and F|p = f.

M
-,
4 Nx (o, ']
e F
N
Figure 1.6

(A tangential map is a continuous function covered by a map of tangent
bundles.) Notice that Step 1 implies that f*(p;(N)) = pi(M). In particular
if the construction in Step 1 can be done whenever M is aspherical, then the
above conjecture of Novikov is true.

Step 2. Modify some normal cobordism W from M to N, by cutting out
(surgering) excess homology, to form a new normal cobordism F' : W —
N x [0,1] so that F' is a homotopy equivalence; i.e., W is a h-cobordism.
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o
W Cut ‘w—‘
£
N*% f_'o\l—x
Figure 1.7

Note that the map F from Step 1 has degree one; hence it induces a
split epimorphism on homology groups (even with twisted coefficients) be-
cause of Lefschetz duality. When there is one, there is usually many normal
cobordisms W between M and N. To each of these is associated an element

w(W) € Lm+1(7r1Mm)

— an abelian group defined by C.T.C. Wall, cf. [70]. And w(W) = 0 iff the
desired surgery can be done. Steps 1 and 2 involve calculating Ly, 1 (w1 M™).
Step 3. Show that the h-cobordism W is a cylinder; i.e. W = N x [0, 1].
Because of the (topological) s-cobordism Theorem, this step involves calcu-
lating J.H.C. Whitehead’s group Wh(m M). (See lecture 1 of W. Lueck for
a discussion of Whitehead groups and the s-cobordism Theorem.)

In particular if the Borel Conjecture is true, then Wh(m M) = 0 for
every compact aspherical manifold M. This is so even if 9M # () because
Mike Davis has shown how to reduce this more general case to the special
case where OM = (). (See M. Davis’ lectures.) The Borel Conjecture also
implies that Ly,y1(m1 M™) is finitely generated.
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2 Splitting the surgery map under a geometric as-
sumption

Throughout this lecture (unless otherwise stated) M (and N) will denote
complete (connected) Riemannian manifolds. Furthermore I' will denote
the group of all deck transformations of the universal cover M — M and we
identify T with 7 (M). If v is a vector tangent to M (i.e. v € TM = tangent
bundle of M) then

ay:R— M

denotes the unique geodesic such that &, (0) = v.

5
of (4D °(”.

n

Expl™)

&«rcf) = ét(‘.u-\

o ()

Figure 2.1
The function R x TM — T'M defined by

g'(v) = au(t)

fort € Rand v € TM, is a flow on T'M; i.e. it is smooth and satisfies the
equation

9°(g"(v)) = ¢°*(v)

for all s, € R and v € TM. This flow leaves invariant SM = unit sphere
bundle of M and its restriction to SM is called the geodesic flow. Closely
related to the geodesic flow is the exponential function Exp : TM — M
defined by

Exp(v) = ay(1).

It is also a smooth function. If we fix a base point zg € M, then the
restriction of Exp to T,,M = tangent space to M at z( is also called the
exponential function and denoted by

expy, : TuoM — M.
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(Or more simply by exp when no ambiguity is possible.) Note that the vector
space Ty, M considered as a smooth manifold N = T, ,M has a natural
complete Riemannian metric; namely, if v € TN, then |u| = VU - U where
U is the parallel translate of u to 0.

Figure 2.2

We say that M is non-positively curved (resp. negatively curved) if all its
sectional curvatures are < 0 (resp. < 0). And a negatively curved manifold
is pinched negatively curved if its sectional curvatures are bounded away
from 0 and —oo. Note that a closed negatively curved manifold is pinched
negatively curved.

Definition. A smooth map f: M — N is called (weakly) ezpanding if
|df (v)| > [v]
for all vectors v € T M.
There is the following important result relative to these definitions.

Theorem. (Cartan) Let M be non-positively curved and xo € M be a base
point. Then exp : Ty M — M 1is an expanding map. Furthermore it is a
covering projection and hence a diffeomorphism when m (M) = 0.

Because of Cartan’s theorem a non-positively curved (Riemannian) man-
ifold M™ is aspherical since its universal cover M is diffeomorphic to R™.
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(See [42, p. 172] and [54, p. 102] for a discussion of Cartan’s theorem.) Tt
also leads to the following useful alternate description of T'M as the bundle
with fiber M associated to the principal I'-bundle M — M; namely

MXFM—)M.

In fact this bundle is indentified with TM — M as Diff(R™)-bundles via the
I'-equivariant diffeomorphism

TM — M x M
which sends v € TM to (ay(0), @y (1)). The 0O-section of TM corresponds
(under this identification) with the image of the diagonal A of M x M in
M Xr M .
There is also a natural geodesic ray compactification M of M due to
Eberlein and O’Neill [17] such that (M, M) is homeomorphic to (D™, Int D™)

where
D™ ={veR™||v] <1}

Let M(c0) = M — M denote the points added; called ideal points. Each
ideal point is an asymptoty class of geodesic rays in M. A geodesic ray is a
subset of M of the form

{aw(t) [ 2 €0, +00)}

for some v € SM. Two rays R, and Ry are asymptotic if there exists a
positive number b such that each point of R; is within distance b of some
point of Re and vice-versa.
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Figure 2.3

The deck transformation action of I' on M extends to an action on M
since T acts via isometries on M and isometries preserve both geodesic rays
and the relation of being asymptotic.

W.C. Hsiang and I abstracted an additional key property possessed by
the geodesic ray compactification in the following definition [24], see also
lectures 6, 7, 8 in [21]. (For the rest of this lecture M denotes a closed
topological manifold and not necessarily a Riemannian manifold.)

Definition. A closed manifold M™ satisfies condition (%) provided there
exists an action of I' = 71 (M™) on D™ with the following two properties.

1. The restriction of this action to Int(ID™) is equivalent via a I'-equivariant
homeomorphism to the action of I' by deck transformations on the uni-
versal cover M of M™.

2. Given any compact subset K of Int(ID™) and any € > 0, there exists
a real number § > 0 such that the following is true for every v € I
If the distance between YK and S™ ! = O™ is less than §, then the
diameter of 7K is less than e.
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Figure 2.4

The above picture illustrates property 2 of condition (x).

Remark. Hsiang and I showed that every closed (connected) non-positively
curved Riemannian manifold M satisfies condition () by using its geodesic
ray compactification.

Remark. Any manifold satisfying condition () is obviously aspherical. It
was conceivable 20 years ago, when this condition was formulated, that every
closed aspherical manifold M™ satisfies condition (). But then Mike Davis
[14] constructed closed aspherical manifolds M™ where M # R™ contradict-
ing property 1 of condition (x).

On the other hand, M™ x S* satisfies property 1 of condition () whenever
M = R™. This is seen as follows. Let Z denote the additive group of integers.
Its natural action by translations on R extends to an action on [—o0, +00)
where each group element fixes —oo. We hence have a product action of
71 (M x S1) = m (M) x Z on

M x [—00,+00) = R™ x [0, +00)



246 F.T. Farrell

which extends to its one point compactification D™+, If we let this be
the action posited in the above Definition, then it satisfies property 1 of
condition (x) but not property 2.

mwx Eo,-rw\ I.Dm-t-l

Figure 2.5

We also note that the universal cover X of M™ x S' is R™*! for any
closed aspherical manifold M™ where m > 5 because X is contractible and
simply connected at co. This is a result of Newman (1966).

Theorem. (Farrell-Hsiang [24] 1981) Let M™ be a closed manifold satisfy-
ing condition (x). Then the map in the (simple) surgery sequence

S*(M™ x D", 9) —» [M™ x D", 9; G/ Top]
1s identically zero whenn > 1 and n+m > 6.

So as not to obscure the argument, we sketch the proof of this Theorem
under the extra assumptions that M is triangulable and n = 1. (See also
lectures 6, 7, 8 in [21].) Set

EQm:MXrM

and let p : E?™ — M denote the bundle projection. Then the following
square commutes:

S*(D! x M,8) —— [D' x M, 9;G/Top]

al l(idxp)*

S(D' x E,8) —— [D! x E, 8; G/ Top]

where « is the transfer map defined as follows. Let the simple homotopy
equivalence

h: (W,0W) — (D' x M, 0)
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represent an element b € S*(D' x M, §). Then the proper homotopy equiv-
alence

h:(W,0W) — (D! x E, )
represents a(b) € S(D' x E, ) where

W ={(z,y) €W x (D! x E) | h(z) = id x p(y)}

and h(z,y) = y. Since p is a homotopy equivalence, (id x p)* is an isomor-
phism. Hence the Theorem is a consequence of the following:

Assertion. The map « is identically zero.

We proceed to verify this. Note first that W is an s-cobordism and hence
a cylinder because of the s-cobordism theorem. We may therefore assume
that W = [0,1] x M and that h is a homotopy between idj; and a self-
homeomorphism f : M — M. Furthermore, if f is pseudo-isotopic to ids
via a pseudo-isotopy homotopic to A rel 3, then b = 0.

Let A be the unique lift of & to [0,1] x M such that A is a proper homotopy
between id ;; and a self-homeomorphism f: M — M, which is a lift of f.
Then h X idy; determines a proper homotopy

k:[0,1] x E—[0,1] x E

between idp and a self-homeomorphism g : E' — E (which is also determined
by f xidy;). Since
h:(W,0W) — (D' x E, )

can be identified with
K ([0,1] x B, ) - ([0,1] x E, ),
the Assertion is an immediate consequence of the following.

Lemma. g is pseudo-isotopic to idg via a pseudo-isotopy which is properly
homotopic to k rel 0.

We now use our assumption that M™ satisfies condition (*) to prove this
lemma. Identify M with D™ and define a manifold E by

E=D" xpr M.
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Then E = Int(E) and property 2 of condition (%) implies that f extends to
a I'-equivariant homeomorphism

f:D™ D"
by setting f|lgm-1 = idgm-1. Consequently f x id;; determines a self-
homeomorphism
qg: E—-E

which extends g : E — E and satisfies |55 = idy5. We proceed to construct
a pseudo-isotopy

¢:Ex[0,1] = Ex[0,1]

satisfying
L ¢lpxo =95
2. Py =idgy;
3. dlam)x[0,1] = idam)x[0,1]-

Properties (1-3) define ¢ on O(E x [0,1]). To construct ¢ over Int(E x [0, 1])
consider the natural fiber bundle

Ex[0,1]—>M

with fiber D™ x [0,1]. And note the following. If A is an n-simplex in M,
then ¢~!(A) can be identified with D?+™m+1!,

The construction of ¢ proceeds by induction over the skeleta of M via
a standard obstruction theory argument. And the obstructions encountered
in extending ¢ from over the (n — 1)-skeleton to over the n-skeleton are
the problem of extending a self-homeomorphism of S"*™ to one of DPT™+!,
But these obstructions all vanish because of the Alexander Trick. Recall
that this Trick asserts that any self-homeomorphism 7 of S™ extends to a
self-homeomorphism 7 of D"*!. In fact

n(tz) = tn(z)

where z € S" and t € [0,1] is an explicit extension.
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V()

x=tn q(/?>=t"l(or\

Figure 2.6

Now ¢ = ¢| Ex[o,1] is the pseudo-isotopy from g to idg posited in the
Lemma. And a similar argument, which we omit, shows that 1 is properly
homotopic to k rel 0. Q.E.D.

Remark. It follows from results of Davis and Januszkiewicz [15] that PL
non-positively curved closed manifolds also satisfy condition (*). And Bizhong
Hu showed that every non-positive curved finite complex K is a retract of
such a manifold. Hu [45] (1995) deduced from this, using Ranicki’s algebraic
formulation of surgery theory, that the assembly map is split monic for such
a K. Ferry-Weinberger [36], [12] and Carlsson-Pedersen [13] also obtained
this in addition to many further results on the split injectivity of o.

Corollary. Let f : N — M be a homotopy equivalence between closed
smooth manifolds such that M supports a non-positively curved Riemannian
metric. Then N and M are stably homeomorphic; i.e.

fxid: N x R™ 5 M x R™H

is homotopic to a homeomorphism where m = dim(M).
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Proof. Let ¢ : N x 8! = M x S' x R™*3 be an embedding homotopic to
the composition

Fxid
NxSlJ;MxSlengSlmeJr?’.

Note that ¢ exists because of the Whitney Embedding Theorem. And let v
denote the normal bundle to ¢. We proceed to show that v is topologically
trivial. Now Kwan and Szczarba [50] showed that f x idg1 is a simple
homotopy equivalence and hence represents an element in S*(M x S'). This
element maps to 0 in [M x S';G/Top] because of the Theorem and the
4-fold (semi) periodicity of the topological surgery exact sequence. But v
(equipped with a specific homotopy trivialization) is this image element; in
particular, v is topologically trivial.

Since the region outside an open tubular neighborhood of image(¢) is a
(half open) h-cobordism, we can use the h-cobordism theorem to show that
the total space E of v is diffeomorphic to M x S x R™*+3. But E can also be
topologically identified with N x S' x R™*3 gince v is topologically trivial.
Hence there is a homeomorphism

N xSt x RS 5 M x St x R™3

such that 4 (mN) = m(M). The homeomorphism posited to exist in
the Corollary is obtained by lifting v to the infinite cyclic covering spaces
corresponding to 71 (N) and 71 (M), respectively. O
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3 The vanishing of Wh(m; M) for non-positively curved
manifolds M

In my last lecture, I showed that step 1 in the program to replace a homotopy
equivalence f : N — M between closed manifolds with a homeomorphism
can be accomplished when M satisfies a certain geometric condition (). In
particular, this can be done when M is a non-positively curved Riemannian
manifold.

This lecture is about step 3 of the program; i.e., analyzing h-cobordisms
with base M. Because of the s-cobordism theorem, this is equivalent to
calculating Wh(m M) when dim(M) > 5. The discussion will focus on the
following vanishing result.

Vanishing Theorem. (Farrell and Jones [31]) Let M be a closed non-
positively curved Riemannian manifold. Then

Wh(?TlM) = 0.

Remark. The special cases of this theorem where M is the m-torus 7™
was proven by Bass-Heller-Swan [6] (1964) and for arbitrary flat Riemannian
manifolds M by Farrell-Hsiang [22] (1978).

We need to develop a few more geometric ideas before discussing the
proof of the Vanishing Theorem. See [26] and [30, §3, §4] for more details.
Throughout this lecture M will denote a closed (connected) non-positively
curved Riemannian manifold and M is its universal cover. And we keep the
geometric notation from our last lecture; in particular

= T (M)
is the geodesic ray compactification of M.
M(c0) = M — M.

=

Qy is the geodesic with &, (0) = v.
We call a pair of vectors u,v € SM asymptotic if the two rays
{au(t) [t >0} and {a,(?) |t >0}

are asymptotic.
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F
Figure 3.1

For each pair v € SM and z € M, there is a unique asymptotic vector
v(z) € SyM. (Sz M = unit sphere in T, M.)

Figure 3.2
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Furthermore the function SM x M — SM defined by (v,z) — v(z) is
continuous, C! in z, and its differential (in z) depends continuously on v.
The (weakly) stable foliation of SM has for its leaves the asymptoty classes
of vectors. Note that under the bundle projection SM — M each leaf of
this foliation maps diffeomorphically onto M. Since an isometry of M sends
asymptotic vectors to asymptotic vectors, this foliation induces a foliation of
SM called its (weakly) stable foliation. Restriction of the bundle projection
SM — M to any leaf L of this foliation is a covering space projection

L — M.

And the geodesic flow g* : SM — SM preserves the leaves of the (weakly)
stable foliation.

Figure 3.3

The total space SN of the unit sphere bundle of a Riemannian manifold
N has a natural Riemannian metric defined as follows. Let v(t) be a smooth
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curve in SN representing a tangent vector n to SN at v(0); i.e., v(t) is a
unit length vector field along a smooth curve y(¢) in N. Then
nl =V Iy (O)F + [u]?

where u is the covariant derivative of v(t) at ¢ = 0.

We next describe the asymptotic transfer of a path «y : [0,1] — M to a
path vy in SM where v € S, () M. The asymptotic transfer sits on top of y
in the sense that the composite path p o (v7y) is y; where

p:SM - M

denotes the bundle projection. Let L be the leaf of the (weakly) stable
foliation of SM containing v. Recall that

plr:L—-M

is a covering space. Then v is defined to be the unique lift of v starting at
v,
The following are some of the properties of the asymptotic transfer.

1. If v is a null homotopic loop, then so is v7y.
2. If 7 is a constant loop, so is v7.
3. If v is a C'-curve, so is v7.
Furthermore, if —a? is any lower bound for the sectional curvatures of M,

then
[vy(#)] < V1+a? [3(2)]

for each ¢ € [0,1].

Let W be a smooth h-cobordism with base M equipped with a smooth
deformation retraction h; of W™*! onto M™. In particular hy = idy, and
r = hy is a retraction of W onto M. Let W?™ be the total space of the
pullback of p: SM — M via r; i.e.,

W={(y,v) e WxSM |r(y) =p)}.

Then W is an h-cobordism with base SM and the asymptotic transfer can
be used to equip W with a useful C' deformation retraction k; of W onto
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SM defined as follows. First associate to h; a family of paths {y, |y € W}
in M called the tracks of hy. These are given by the equation

Yy (t) = r(he(y))-

Note that each track -y, is a smooth null homotopic loop in M based at r(z).
Hence, for each vector v € S,.(,)M, the asymptotic transfer vy, of v, to SM
is a C! null homotopic loop based at v. Now k; is defined by the formula

ki(y,v) = (he(y), vy (1))

where ¢ € [0,1], y € W and v € S,(;)M. And notice that the retraction

(y

k1:W—>SM

is given by the formula
ki(y,v) = v;

this follows from properties 1 and 2 of the asymptotic transfer together with
the fact that each -y, is a null homotopic loop. Consequently the tracks of
k; are

{vyy | (y,v) € W}

namely, they are all the asymptotic transfers of the tracks of h;. Furthermore
given a self-diffeomorphism f : SM — SM homotopic to idsas, we can
change k; to a new C'! deformation retraction of W onto SM whose tracks
are

{fo(vyy) | (y,v) e W}

This comment applies in particular when f = g where g’ is the geodesic
flow on SM and i is a fixed (large) positive real number. Which is useful
because of the following consequence of Anosov’s analysis of the geodesic
flow.

Key Property of vy. The following is true when M is negatively curved.
Given numbers § and € in (0,+00), there exists a number ¢y € (0,+00)
satisfying the following. Let v be any smooth path in M whose arc length
is < 3, and v be any vector in S,(g)M. Then, for any ¢ > g, the composite
path g* o (vy) is (83, €)-controlled in SM with respect to the 1-dimensional
foliation by the orbits of the geodesic flow.
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Figure 1.4 indicates why this property is true. In it 4 is a lift of ~
to M; u € Sﬁ(O)M is the vector lying over v; u¥ is the lift of vy to SM
starting at u, and u(oo) € M(oo) is the ideal point corresponding to the
ray {oy(t) | t > 0}. Also M is identified with the (weakly) stable leaf
L of SM containing u. And the lines converging to u(co) are the flow
lines of the geodesic low which are inside of L; while the | codimension-
one submanifolds abuting to u(oo) are the horospheres inside of Lj; i.e. the

strongly stable leaves.

Figure 3.4

Each diffeomorphism g%, t > 0, of the geodesic flow preserves the fam-
ily of horospheres as well as the flow lines. It is (strongly) contracting on
horospheres and is an isometry on flow lines.

Remark. This Key Property of the asymptotic transfer is not true (in gen-
eral) when M is only non-positively curved. For example it doesn’t hold
when M is flat since asymptotic rays are parallel in Euclidean space.

Using the above construction of a deformation retraction of W onto SM
relative to ¢, we see that W is a (f3,€)-controlled h-cobordism over SM
for a fixed positive real number 8 but arbitrarily small positive numbers e
when M is negatively curved because of the Key Property of the asymptotic
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transfer. Hence the Foliated Control Theorem, Theorem 1.8 of L.E. Jones’
lectures, shows that the Whitehead torsion 7(W) = 0.

Codicil. We must make the following minor addition to our setup in order
to apply the Foliated Control Theorem. Let M ™ denote the “top” of the

h-cobordism W; i.e., OW = M+ ][ M. And fix a second smooth deformation

retraction h;” of W onto M. Associate to b a second family of tracks v,
y € W, defined by the equation

7y () =7k ().

Use these new tracks to define a second C! deformation retraction kf of the
transferred h-cobordism W onto its “top” M™ where

M* =W — SM.
Define k;” by the formula

ki (y,0) = (B (y), 0y (1)

where ¢ € [0,1], y € W and v € S,(,)M. And note that the tracks of k;" are

{vyy | (y,v) € W}

namely, all the asymptotic transfers of the tracks of h;". (Notice that the
tracks 'y;' are not loops; but this is irrelevant since the retraction ki rather
than k" is used in defining the tracks of k;".) Furthermore we can change
k; to a new C! deformation retraction of W onto M™* whose tracks are

{g" o (vyy) | (y,v) € W}

Clearly these tracks are also (3, €)-controlled provided ¢y is sufficiently large,
and hence the Foliated Control Theorem is applicable.

Since every element x € Wh(m; M) is the torsion 7(W) of some smooth h-
cobordism with base M, the fact that 7(W) = 0 would show that Wh(m M)
vanishes, when M is negatively curved, provided

Unfortunately this equation is not true in general. In fact the following
formula calculates 7(W) in terms of 7(W).
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Theorem. (D.R. Anderson [4] 1972). Let W and W be h-cobordisms with
bases M and M, respectively. And let p: W — W be a smooth fiber bundle
with p~ Y (M) = M and dim M > 4. Assume that m (W) acts trivially on
the integral homology groups of the fiber F' of p, then

where x(F) denotes the Euler characteristic of F and
Dx - Wh(ﬂlM) — Wh(ﬂlM)
1s the homomorphism induced by p.

Applying Anderson’s theorem to the h-cobordism W constructed above,
we see that
(W) = 27(W) ?fm ?s odd
07(W) =0 ifm iseven

(provided M™ is orientable) since the fiber of W — W is S™ L.
To get around this difficulty we need a sub-bundle £ of SM with fiber
F satisfying

L x(F)=1;
2. E is invariant under g;

3. for each path v in M and each vector v € FE lying over 7(0), vy is a
path in F.

It unfortunately is impossible to find such a sub-bundle when M is closed
because every orbit of the action of I' on M (o0) is then dense. We are thus
forced to comsider a certain non-compact but complete and pinched nega-
tively curved Riemannian manifold N™*t! called the enlargement of M™.
It is diffeomorphic to R x M™ and contains M™ as a totally geodesic
codimension-one subspace. In fact N is the warped product (defined by
Bishop and O’Neill in [7])

N=R X cosh(t) M

and 0 x M is the totally geodesic subspace identified with M.
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s [1¢ x M

cosh(+)

- o~

M=0xHM

Figure 3.5

The Riemannian metric || || on N is determined from the Riemannian
metrics | | on M and | | on R by the properties

1. Rxz LtxM forallz e M,teR
2. ||v|| = cosh(t)|v] ifv € T(t x M).
3. vl =v| ifveTRxuz).

Let ¢ : N = R x M — R denote projection onto the first factor. Inside of
SN is an upper hemisphere sub-bundle defined by v € STN iff the following
set of real numbers is bounded below

{g(aw(?)) [ £ € [0, +00)}.

(This lower bound depends on v.) That is v ¢ STN iff the geodesic a,(t) —
“—00” as t — +4o0o. This sub-bundle satisfies the three conditions listed
above; in particular its fiber is D/,

Now an arbitrary element z € Wh(I') can be realized as the Whitehead
torsion 7(W) of a compactly supported h-cobordism with base N. And the
associated h-cobordism W with base STN is (§3, €)-controlled for a fixed pos-
itive number 8 but arbitrarily small positive e. Hence the Foliated Control
Theorem (in one of its more sophisticated forms) together with Anderson’s
Theorem shows that

z=7W)=17W) =0

proving that Wh(m M) = 0 when M is negatively curved.

To prove the general case of the Vanishing Theorem, where M is allowed
to have some zero sectional curvature, we must replace the asymptotic trans-
fer with a new focal transfer. It associates to each path 7 : [0,1] — M, each
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vector v € ()M, and every (large) positive number d € R (called the focal
length of the transfer) a path

v(vy,d) : [0,1] — M.
The focal transfer satisfies properties 1-3 of the asymptotic transfer. And it

satisfies the following analogue of the Key Property of vy.

Key Property of v(v,d). Given M as well as numbers S,e € (0,+00),
there exists a positive number ¢y (tg > () satisfying the following statement
for every smooth path v in M whose arc length is <  and every vector
v € Sy(0)M. The composite path

g*ov(y,d)

is (B, €)-controlled in SM with respect to the foliation given by the orbits of
the geodesic flow provided d > .

Remark. The focal transfer v(-y, d) focuses when flowed a distance equal to
its focal length d. When flowed farther, it gets out of focus.

To construct v(7y,d) pick a lift 4 of v to M and let u € Sﬁ(O)M be the
unique vector which maps to v via dp where

p:M—)M

denotes the covering projection. Figure 6 illustrates the construction of the
path u(¥,d) in SM.

arz wCy . d) (¢




The Borel Conjecture 261

If w denotes the vector u(%,d)(t) € S;,(t)M , then w is the unique vector
such that the geodesic ray

{aw(s) [ s 2 0}
contains the point o, (d). Note we must have that
d > diam{~(#) | * € [0, 1]}

for w to be necessarily defined. Since this construction is equivariant with
respect to I', we can (and do) define the focal transfer v(vy, d) by the equation

v(7y,d) = dpou(y,d).

The only problem with the focal transfer is that the bundle STN — N
does not satisfy property 3 (see nine lines above Figure 1.5) with respect
to it. But it does except near O(STN) and so the construction is slightly
modified near 3(STN). When this is done, then the argument given above
proving the Vanishing Theorem in the special case where M is negatively
curved works in general after the asymptotic transfer is replaced with the
focal transfer. In fact a simplification can be made in the earlier argument
by using N equal to the Riemannian product

Rx M
instead of the warped product
R X cosh(t) M.

We can even set N equal to the Riemannian product S' x M and proceed
as outlined in L.E. Jones’ lecture 1. The advantage to this is that the basic
Foliated Control Theorem (Theorem 1.8 of L.E. Jones’ lectures) can then
be used since ST(S! x M) is compact. (See lecture 1 of L.E. Jones for the
precise definition of ST(S* x M).)

We end this lecture by discussing a generalization of the Vanishing The-
orem to the case where M is complete but not necessarily compact. Needed
for this purpose is an extra geometric condition on M; namely, that M is
A-regular.

Definition. A Riemannian manifold N is A-regular if there exists a se-
quence of positive real numbers Ay, A1, Ag,--- with |[D"(K)| < A,. Here K
is the curvature tensor and D is covariant differentiation.
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Remark. Every closed Riemannian manifold N is A-regular. This is a
consequence of an elementary continuity argument.

Remark. Every locally symmetric space is A-regular since DK = 0 is one
of the definitions of a locally symmetric space.

Addendum. (Farrell and Jones [35] 1998) Let N be any complete Rie-
mannian manifold which is both non-positively curved and A-regular. Then
Wh(mN) = 0.

Corollary 1. Wh(T') = 0 for every discrete torsion-free subgroup ' of GL,,(R).

Reason. Note that I' = 71 (N) where N is the double coset space
T\GLn(R)/Op

which is a complete non-positively curved locally symmetric space and hence
A-regular by Remark 2.

Corollary 2. Let N be any complete and pinched negatively curved Rie-
mannian manifold, then
Wh(mN) = 0.

Reason. Shi [66] and Abresch [2] show that the given Riemannian metric
can be deformed to an A-regular one while keeping it negatively curved and
complete.

The proof of the Addendum follows the same pattern as the proof of the
Vanishing Theorem except that it uses the more difficult Foliated Control
Theorem which Lowell Jones will discuss in his last lecture.

Let me also mention that Jones’ former Ph.D. student B. Hu showed how
to adapt the proof of the Vanishing Theorem to the language of Alexandroff
PL-geometry thus obtaining the following result.

Theorem. (Hu [}4] 1993) Let K be a non-positively curved finite complex,
then Wh(m K) = 0.

Remark. Hu’s result does not obviously include the Vanishing Theorem
since Davis, Okun and Zheng [16] have shown that no rank > 2, irreducible,
closed, non-positively curved locally symmetric space is also a non-positively
curved PL-manifold.
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4 The Borel Conjecture for non-positively curved
manifolds

The focus of this lecture is Borel’s Conjecture for closed non-positively
curved Riemannian manifolds of dimension # 3,4. It is an immediate con-
sequence of the following result “TRT”.

Topological Rigidity Theorem. (Farrell and Jones [32]) Let M™ be a
closed non-positively curved Riemannian manifold. Then the homotopy-
topological structure set S(M™ x I*,0) contains only one element when
m+n > 5.

Remark. TRT was proven for 7 (m > 5) by Hsiang-Wall [43] (1969).
And it was proven for all closed flat Riemannian manifolds M™ (m > 5) by
Farrell-Hsiang [25] (1983).

Corollary. Let f : N™ — M™ be a homotopy equivalence between closed
manifolds where m # 3,4. If M™ is a non-positively curved Riemannian
manifold, then f is homotopic to a homeomorphism.

Proof. This result is classical when m = 1 or 2. When m > 5 set n = 0 in
TRT to conclude that N and M are h-cobordant and hence homeomorphic
by the s-cobordism since Wh(m M) = 0 because of the Vanishing Theorem.

O

Remark. Gabai [39] has a program for showing that the Borel Conjecture
for closed hyperbolic 3-manifolds is equivalent to the Poincaré Conjecture.

Remark. The Borel Conjecture for closed non-positively curved 4-manifolds
M?* is an interesting open problem which is perhaps more accessible than the
3-dimensional case. The 5-dimensional s-cobordism Theorem of Freedman
and Quinn [37] combined with TRT shows it is true when M* is a closed
flat Riemannian manifold.

We now discuss the proof of the TRT. Throughout this lecture M™ de-
notes a closed (connected) non-positively curved m-dimensional Riemannian
manifold. We also keep the notation from our last lecture; in particular

M is the universal cover of M;
r = m(M);

o, is the geodesic with &, (0) = v.
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And we make the simplifying assumption that M™ is orientable so that our
discussion is as transparent as possible. Note there are the following two
identifications since Wh(T") = 0:

L;(T') = Lg(T) and
S*(M™xD",0) = SM™xD",0)

where §*( ) denotes the simple homotopy-topological structure set.

The following result, used to reduce TRT to a special case, is a con-
sequence of the codimension-one splitting theorems mentioned in my first
lecture.

Lemma 0. S(M™ x D",0) can be identified with a subset of S(M™ x T™)
provided m +n > 5; and S(M™) with a subset of S(M™ x S') provided
m > 5.

Remark. Note that S*(N x [0,1],0) maps to S*(N x S!) by sending the
structure

fr(W,00WHHW)— (N x[0,1], N xOIIN x 1)

to the structure
W — N x §*

where W results from W by glueing dgW to 61 W via the composite homeo-
morphism (f|s,w) Lo(f|a,w)- The first identification in Lemma 0 is a n-fold
elaboration of this map using that D" = D" ! x [0,1]. The second identifi-
cation sends the structure f : N — M to the structure f x id: N x S —
M x S%; which is shown in Lemma, 3 (below) to be monic.

Lemma 0 together with the fact that M™ x T™ is also non-positively
curved reduces the TRT to the special case where n = 0 and m is an odd
integer.

Note that the main result of our second lecture, together with the (semi)-
periodicity of the surgery exact sequence, yields the following short exact
sequence of pointed sets

0— [M™ x [0,1],0;G/Top] = Lys1(T) = S(M™) — 0.

Remark. The techniques developed in this lecture (and the last) give an
independent proof (via the focal transfer and the geodesic flow) that the
surgery sequence is short exact for non-positively curved closed manifolds
M™. This alternate proof does not use the (semi)-periodicity of the surgery
sequence.
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Hence it remains to show that o is an epimorphism; which is Step 2 in the
program from Lecture 1 for replacing a homotopy equivalence f : N - M
with a homeomorphism. This is the most complicated step in the program
and was the last to be solved. The argument accomplishing it is modeled
on the one used to solve Step 3 given in the last lecture. The s-cobordism
theorem was used in that argument. It’s surgery analogue is the algebraic
classification of normal cobordisms over M due to Wall. Given a group
7, Wall [70] algebraically defined a sequence of abelian groups L, (w) with
Ly4(r) = Ly(w) for all n € Z. He then showed that there is a natural
bijection between the equivalence classes of normal cobordisms W over M™ x
D"~ ! and Ly, ,(T) with the trivial normal cobordism corresponding to 0.
Denote this correspondence by

W= w(W) € Lpin(T).

Wall also proved the following product formula.

Let N* be a simply connected closed oriented manifold and W be a
normal cobordism over M™ x D”~!. Form a new normal cobordism W x N
over M™ x D"~! x N4 by producting W with N, then

w(W x N) = Index(N)w(W).

Remark. Anderson’s Theorem is an analogue of this result where x(N)
replaces Index(N).

This product formula has the following geometric consequence.

Proposition. Let K* be a closed oriented simply connected manifold with
Index(K) = 1. Let f : N — M be a homotopy equivalence where N is also
a closed manifold. If

fxid:NxK—>MxK

is homotopic to a homeomorphism, then f is also homotopic to a homeo-
morphism.

Sketch of Proof. Arguing as in the proof of the main result of Lecture 2, we
compare the surgery exact sequence for S(M) with that for S(M x K). If
z € S(M) denotes the homotopy-topological structure f : N — M, it goes
to 0 in S(M x K). And since the map [M,G/Top] — [M x K,G/Top] is
monic, z is the image of an element Z € Ly, 1(I") which maps to an element
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# € Lyy144x(T) by producting the normal cobordism with K**. But the
image of & in S(M x K) is represented by

fxid:NxK—>MxK

and is hence zero. Therefore £ is in the image of the Quinn assembly map in
the surgery sequence for M x K. But this map factors through the assembly
map

[M™ x D**1, 9; G/ Top] = Limyax11(T)

which is periodic of period 4k with = going to Z. This factoring can be seen
using Quinn’s A-set description of the surgery sequence [60], [61] (cf. [70,
§17A]) or Ranicki’s algebraic formulation of it. (See Ranicki’s 2nd lecture.)
Hence 7 is in the image of o, and therefore z = 0. O

The complex projective plane CP? is the natural candidate for K when
applying this Proposition. It is important for this purpose to have the fol-
lowing alternate description of CP?. Let C denote the cyclic group of
order 2. It has a natural action on S™ x S™ determined by the involution
(z,y) — (y,z) where z,y € S™. Denote the orbit space of this action by F;
ie.

F,=8"x8"/Cs.
Lemma 1. CP? = F,.

Proof. Let slo(C) be the set of all 2 x 2 matrices with complex number
entries and trace zero. Since sl3(C) is a 3-dimensional C-vector space, CP?
can be identified as the set of all equivalence classes [A] of non-zero matrices
A € sl3(C) where A is equivalent to B iff A = zB for some z € C. The
characteristic polynomial of A € sl3(C) is A% 4 det(A). Consequently, A
has two distinct 1-dimensional eigenspaces if det(A4) # 0, and a single 1-
dimensional eigenspace if det(A) = 0 and A # 0. Also, A and zA have the
same eigenspaces provided z # 0. These eigenspaces correspond to points in
S? under the identification S? = CP!. The assignment

[A] — the eigenspaces of A

determines a homeomorphism of CP? to Fb. ]

Remark. The TRT was first proved in the case where M™ is a hyperbolic
3-dimensional manifold by making use of Lemma 1. It was then realized
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that the general result for m odd could be proven using F,,_ 1 once one
could handle the technical complications arising from the fact that Fj is not
a manifold when & > 2. The following result is used in overcoming these
complications. It shows that Fj, is “very close” to being a manifold of index
equal to 1 when k is even.

Lemma 2. Let n be an even positive integer. Then F, has the following
properties.

1. F, is orientable 2n-dimensional Z[%]—homology manifold.
2. F, is simply connected

Z  ifi=0,n,2n
3. Hi(Fp) =< Zy ifn<i<2n andi is even

0 otherwise

Z ifi=0,n,2n
4. H(F,) = Zy ifn+2<i<2n andi is odd

0 otherwise

5. The cup product pairing
H™(F,) ® H"(F,) — H*"(F,)
is unimodular and its signature is either 1 or —1.

Proof. There is a natural stratification of F}, consisting of two strata B and
T. The bottom stratum B consists of all (agreeing) unordered pairs (u,v)
where u = v; while the top stratum 7T consists of all (disagreeing) pairs (u, v)
where u # v.

Note that B can be identified with S™. Also real projective n-space RP"
can be identified with the set of all unordered pairs (u, —u) in F),. It is seen
that F}; is the union of “tubular neighborhoods” of S™ and RP" intersecting
in their boundaries. The first tubular neighborhood is a bundle over S™ with
fiber the cone on RP™!. The second tubular neighborhood is a bundle over
RP™ with fiber D". Furthermore, they intersect in the total space of the
RP"~!-bundle associated to the tangent bundle of S™. This description of
F,, can be used to verify Lemma 2. See [29, p. 299] for more details. O
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Caveat. The fundamental class of B represents twice a generator of Hy,(Fy,).
On the other hand, if we fix a point yg € S™, then the map = — (z,yo) is an
embedding of S™ in F,, which represents a generator of Hy,(F},).

Let f : N — M represent an element in S(M). Then f xid : N X
St — M x S! represents an element in S(M x S'). This defines a map
S(M) — S(M x S1).

Lemma 3. The map S(M) — S(M x S') is monic.
Proof. Suppose f X id is homotopic to a homeomorphism g via a homotopy
h:NxS8'x[0,1] - M x 8" x[0,1]

where h|yyg1yo = f X id and h|yyg1x1 = g- By one of the codimension-one
splitting theorems mentioned in my first lecture [20], we can split h along
M x 1 x[0,1].

NMxS'x =0 Mrs'x Caii)
o e
“QQ > —Mxrlx [e ‘1
w= K (Me2xiil) — J,
~
Figure 4.1

That is h is homotopic rel 8 to a map k such that
Elw :W — M x1x[0,1]
is a homotopy equivalence where
W=k Y(M x1x]/0,1]).

We use that Wh(I') = 0 to get this. Now note that W is an h-cobordism
between M and N. But W is a cylinder; again since Wh(T") = 0. O

Remark. In order to prove the TRT, it suffices to show that f x id is
homotopic to a homeomorphism because of Lemma, 3.
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We now formulate a variant of the Proposition. This variant is used in
showing that
fxid: Nx 8" — M x 8

is homotopic to a homeomorphism. There is a bundle
p:FM — M x St

whose fiber over a point (z,0) € M x S' consists of all unordered pairs
of unit length vectors (u,v) tangent to M x S! at (z,0) and satisfying the
following two constraints.

1. If uw # v, then both » and v are tangent to the level surface M x 6.

2. If u = v, then the projection % of u onto 73S! points in the counter-
clockwise direction (or is 0).

The total space FM is stratified with three strata:

B = {(u,u)|u=0}
A = {(wu)|a£0)
T = {{u,v)|u#0v}.

Note that B is the bottom stratum and that FM — B is the union of the two
open sets A (auxiliary stratum) and T (top stratum). The restriction of p
to each stratum is a sub-bundle. Let F,, B;, A, and T, denote the fibers of
these bundles over z € M x S1; i.e.,

Fe=p (z), Bp=F:NB, Ay =F,NA, T, =F,NT.

Note that B, = S™ !, A, =D™, T, UB, = F,,,_1 and the bundle p : B —
M x S' is the pullback of the tangent unit sphere bundle of M under the
projection M x S — M.

The space F,—1 will play the role of the index one manifold K in our
variant of the Proposition. Since it is unfortunately not a manifold when
m > 3, we need to introduce the auxiliary fibers A,. Hence the total fiber
is homeomorphic to F,,,_; UD™ where the subspace B in F,,_ 1 is identified
with S™~! = oD™. Let

Fr—-NxS !

denote the pullback of
FM — M x St



270 F.T. Farrell

along f x id: N x S' — M x S! and let
f:Fr—>FM

be the induced bundle map. Note that the stratification of M induces one
on F; and that f preserves strata.

We say that f is admissibly homotopic to a split map provided there
exists a homotopy hy, t € [0,1], with hy = f and satisfying the following
four conditions.

1. Each h; is strata preserving.

2. Over some closed “tubular neighborhood” Ny of B in B U T, each h;
is a bundle map; in particular, h; maps fibers homeomorphically to
fibers.

3. There is a larger closed “tubular neighborhood” N7 of B in BU T such
that hy is a homeomorphism over BU T — Int(N7) and over B U A.

4. Let p : N1 = M x S! denote the composition of the two bundle
projections N7 — B and B — M x S'. Then there is a triangulation
K for M x S such that h; is transverse to p~!(o) for each simplex o
of K. Furthermore

b B (07 (0)) 5 7 (0)
is a homotopy equivalence.

Remark. Conditions 3 and 4 should be heuristically replaced by the simpler
and stronger condition that “h; is a homeomorphism”. But for technical
reasons we need to work instead with conditions 3 and 4.

The variant of the Proposition needed to prove the TRT is the following.

Proposition (x). The map f : N — M is homotopic to a homeomorphism
provided f : Fy — FM is admissibly homotopic to a split map.

The proof of Proposition () is basically an elaboration of the one sketched
above for Proposition. (See [29, §4 and §9].) It in particular uses again
Quinn’s A-set approach to the surgery exact sequence and generalizes Wall’s
product formula to the stratified setting above by using Lemma 2.

Proposition (*) is the surgery theory part of the proof of the TRT. The
geometry of M (in particular, its non-positive curvature) is used to show
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that the hypothesis of Proposition (x) is satisfied; i.e, that f is admissibly
homotopic to a split map. We now proceed to discuss how this is done.

It is a consequence of several applications of both ordinary and foliated
topological control theory as discussed in Lowell Jones’ lectures. Let g :
M — N be a (strong) homotopy inverse to f and let h; and k; be (strong)
homotopies of the composite fog to idas and gof to idy, respectively. Strong
means base point preserving. It implies the following useful property.

Property (x). For each point z € N, the two paths
t = hy(f(z)) and t— f(ki(z))

are homotopic rel end points.

S (g (¢

h -Q-Zae\
Sf&f«\) -l:( :

SCaN

Figure 4.2

We may assume that N is a smooth manifold by using Kirby-Siebenmann
smoothing theory [49]. For this we need only observe that the stable topo-
logical tangent bundle of N has a real vector bundle structure since it is
the pull back of T'M stabilized via f because f : M — N maps to 0 in
[M,G/Top|. Therefore we may also assume that f and g are smooth maps
and that both h; and k; are smooth homotopies.
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The crucial point is to construct “good” transfers of the map g and the
homotoples hi, k¢ to a map g : FM — F; and homotopies ht, kt from
f o g toidgpy, and go f to idz;, respectively, so that control theory can be
applied to admissibly homotope f to a split map. We proceed to describe
what a good transfer is and then indicate how to construct one. The first
requirement is that g, ht and k; be bundle maps covering g X id, h; X id,
K x id, respectlvely (Here id is the identity map on S'.) Second, each map
g, h and k; should preserve strata. Finally, it is necessary that a certain
family 7 of paths determined by the lift is sufficiently “shrinkable”. A path
a:[0,1] = FM is in T if either

()ziz() for some w € FM, or
a(t) = fky(w)) for some w € Fy.

(The family T is called the tracks of the transfer.) Note that each track is
contained in a single stratum of FM.

We construct good transfers by constructing their tracks 7. Since this
is easier to explain when M is negatively curved, we now make this assump-
tion. The construction of 7 uses (mainly) the asymptotic transfer of paths
discussed in lecture 3. (The general case uses the focal transfer which, al-
though more elementary, requires greater technical details.) Let 77 be the
tracks determined by f, g, hy and k; i.e. a curve o : [0,1] — M is in Ty if
for all ¢ € [0, 1] either

a(t) = hy(x) for some z € M; or
aft) = f(k(y)) for some y € N.
Given v € 71 and w = (u,v) € FM with foot (y(0),0) € M x S!, we

associate a lift wy of v to a path in FM covering vy which is the path in
M x S' defined by

Y0(t) = (7(2),0).
When w € BUT, wy is defined by
wy(t) = (uys(t), vya(t))

where uyy and vyy are the asymptotic transfers defined in Lecture 3. When
w € A (and hence u = v) wy is defined by

wy(t) = (u(79,d) (%), u(e, d)(t))
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where u(vy,d) is the focal transfer with focal length d and chosen so that
d — oo as the angle between u and the level surface M x 6 approaches 0.
Using that the asymptotic and focal transfers both satisfy properties 1-3 of
lecture 3 and that property (*) is satisfied by g, f, h¢, ki; there is a natural
construction of a good transfer g, hy, ki whose tracks

T ={wy|v€T,weFM}.

We now address the problem of “shrinking” the paths wy € 7. Since
the geodesic flow ¢ is defined on A U B, applying it to wy gives a method
for making w~y skinny when w € AUB; i.e. g* o (w7) is (8, €)-controlled with
respect to the 1-dimensional foliation of the manifold AUB by the flow lines
of the geodesic flow.

But the situation is different when w = (u,v) € T. We are tempted
then to “flow w” in the direction of its arithmetic average ”T“’ But this
does nothing when v = —wv. Fortunately a different method can be used
on the top stratum T. But to describe it we need some more geometric

preliminaries. We start by defining the core P of T by
P = {(u,—u) € T}.

The core is naturally identified with the total space of the projective line
bundle associated to (TM) x S'. In particular there is a natural 2-sheeted
covering space

B=(SM)xS' - (RP™"™ I M)xS' =P

and the image of the geodesic line foliation of B gives P a canonical 1-
dimensional foliation denoted by G. The top strata T also has an asymptotic
foliation A by m-dimensional leaves where each leaf of A is an asymptoty
class of elements in T. We say that elements w1 = (u1,v1), we = (ug,v2) € T
lying over M x @ (for some 6 € S') are asymptotic provided (up to in-
terchanging u; and v;) there exist points z,y € M together with vectors
U1,01 € S(m’a)(M x S') and g, 77 € S(y,g)(M x S1) lying over uy, v1, ua, va,
respectively, and satisfying:

11 is asymptotic to o, and

91 is asymptotic to Us.
Note that the restriction of the bundle map

T—>MxS'——=M
proj
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to any leaf L of A is a covering space. This puts a flat structure on this
bundle. And each leaf L of A inherits a negatively curved Riemannian
metric from M via this covering projection. We call it the natural metric
and note that it is compatible with the leaf topology on L.

The foliation A intersects the core P in its G foliation; i.e., there is a
bijective correspondence between the leaves of A and G given by

L— LNP, LecA.

Also L NP is a closed subset of L in its leaf topology and is a (simple)
geodesic of its natural metric. This geodesic PN L is called the marking of L.
Furthermore, the inclusion map of PN L into L is a homotopy equivalence
when L is given the leaf topology and P N L is given the subspace of L
topology.

Now there is a bundle with fiber R™~!

p:T—>P

defined as follows.
For each w € T let L € A be the leaf containing w and g be its marking.
Then p(w) denotes the (unique) closest point to w on g measured inside L.

9(«03

Figure 4.3
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When w € P, there is a unique geodesic segment gj; in L connecting w to
p(w). The unit length vector tangent to g at w which points towards p(w)
is denoted by w(w). This defines a continuous vector field on T — P.

We denote the length of g by d(w). This extends to a continuous func-
tion d: TUB — [0, +00] when we set

0 if P
d(w) = v€
+oo ifweB.

There is also a bundle with fiber the open cone in RP™~1

n:(T-P)UB - B=SM x S!

() = w ifweb
= dp(w(w)) fweT-P.

defined by

Remark. We think of n(w) as the asymptotic average of the two vectors u
and v where w = (u,v) as opposed to their arithmetic average 3(u + v).

The vector field w( ) integrates to give an incomplete radial flow r* on
T. In particular r'(w) is only defined for ¢ € [0,d(w)]. And there is the
following important relation between r’ and g'.

Intertwining Equation. n(rt(w)) = ¢'(n(w)) for all w € T —P and ¢ €
[0, d(w)]-

We associate to each closed interval J C [0, +0o0] a compact subspace W
of TUB defined by
Wy =d 1(J).

If 400 € J, then W is a codimension-0 submanifold of T with
da-1(aJ) ifogJ
oW, = 1( ) i 4
d="(b) if J =10,0].
Furthermore, we have the following:

1. If 0 € J and 400 € J, then p : Wy — P is a fiber bundle with fiber
Dm.

2. If +oo € J and 0 & J, then nn : W; — B is a fiber bundle with fiber
the (closed) cone on RP™!.
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3. If neither 0 nor +o00 is in J, then n x d : W; — B x J is a fiber bundle
with fiber RP™1.

Now fix a closed interval I C (0,4o00) containing 1 in its interior, and a
very large positive real number o together with a second closed interval R
which contains +oo and is disjoint from oI. Then [0, +o00)— (Int(R)UInt(c 1))
is the disjoint union of 2 closed intervals A and B denoted so that 0 € A.

R .

(o) 5,

Figure 4.4

Fix another closed interval I' C (0,+o00) which contains I in its interior
but is slightly larger and define a homeomorphism

¢ : WO'I’ — WI’7
using the radial flow, by the formula

$(w) =r'(w)

where ¢ = d(w) — 1d(w).
Note that ¢ becomes arbitrarily strongly contracting as we let ¢ — +oc.
In particular if wy € T with w € W, then ¢ o w7y is uniformly pointwise

es-controlled in W; with lim ¢, = 0.
aT—00

Therefore we can use the ordinary control theorem to homotope f over
W, (i.e. homotope f]| f (W,,))’ in a controlled way, to a homeomorphism
provided o is large enough. This begins our construction of the admissible
homotopy of f to a split map. And it gives a slightly different collection of
tracks 71. These new tracks differ only for some of those v € 7; which start
in Wyr. And for them ¢ o 7y is pointwise close to ¢ oy where ¥ € T is the
corresponding track.

We next extend this homotopy to a homotopy of f over W to a home-
omorphism. This is done by using the fibered and foliated version of the
control theorem with respect to the fiber bundle

p:Wy—P
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and the foliation G of P. Tt is applicable since the fiber of p is I and the
structure set S(D™ x D¥, 9) contains only one element for each k > 0. We
need only check the control condition. For this, note that there exists a
positive number 3 such that

powy

is (B, 0)-controlled for each wy € T such that w € A. And hence the tracks
of 71 which start in A are (8 + ¢, €)-controlled where € — 0 as o — occ.
Independent of these two steps, we use the foliated control theorem with
respect to the foliation of B U A by the orbits of the geodesic flow and the
control map
¢ :BUA—-BUA

to homotope f over BU A to a homeomorphism. And then use the covering
homotopy theorem to extend this to a homotopy of bundle maps over Wg
relative to the fiber bundle

n:Wrp—DB

to a homeomorphism over Wrg.
Let 7 : B — [0, 1] denote the (unique) increasing linear homeomorphism,
and fix a continuous function ¢ : B — [0, +00) such that

o for all z close to BN R
-

(1-1)z forzeol'NB.
Consider the fiber bundle

&:Wp — B x[0,1]
where ¢ is the composite

Pod
Ws "L B x BL B x [0,1]

€., £(z) = (¢%4@) (5(z)), 7(d(2))).

Finally, we use a foliated and fibered version of the control theorem with
respect to the fiber bundle £ : Wp — B x [0,1] and the foliation of B X
[0,1] by the flow lines of the geodesic flow in order to extend over Wp the
homotopy defined in steps 1, 2 and 3 given above. And thus complete the
construction of an admissible homotopy of f to a split map. The control
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condition is met provided o is sufficiently large and R is contained in a
sufficiently small neighborhood of +00. The intertwining equation is used
to see this. But there is one extra point to observe. The fiber of ¢ is
RP™ ! and S(RP™~! x D¥, §) usually contains more than a single element.
Consequently, the control theorem only yields the weaker conclusion that
the result of the homotopy is a split map rather than a homeomorphism.
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5 Some calculations of m,(Top M), m,(Diff M) and
other applications

Recall (Lecture 3) that the Vanishing Theorem showing Wh(m M) = 0
extends to complete, A-regular, non-positively curved Riemannian manifolds
M. Likewise there is a version of the Topological Rigidity Theorem (TRT)
valid for such manifolds which we proceed to formulate.

Let M be an arbitrary manifold; i.e. it can be non-compact and can
have non-empty boundary. We say that M is topologically rigid if it has the
following property. Let

h: (N,ON) = (M, M)

be any proper homotopy equivalence where N is another manifold. Suppose
there exists a compact subset C C N such that the restriction of h to
ON U (N — C) is a homeomorphism. Then there exists a proper homotopy

he : (N,ON) — (M, M)

from h to a homeomorphism and a perhaps larger compact subset K of N
such that the restrictions of h; and h to ON U (N — K) agree for all ¢ € [0, 1].
(When M and N are closed, this just says that a homotopy equivalence
h : N — M is homotopic to a homeomorphism.)

Addendum to TRT. (Farrell and Jones [35] 1998). Let M™ be an arbi-
trary aspherical manifold with m > 5. Suppose m (M) is isomorphic to the
fundamental group of an A-regular complete non-positively curved Rieman-
nian manifold. (This happens for example when w (M) is isomorphic to a
torsion-free discrete subgroup of GL,(R).) Then M is topologically rigid.
In particular, every A-reqular complete non-positively curved Riemannian
manifold of dim > 5 is topologically rigid.

The special case of this Addendum where M is an A-regular complete
non-positively curved Riemannian manifold is proved by an argument very
close to that made in Lecture 4 for TRT. But stronger control theorems are
needed when M is not closed; in particular when the injectivity radius at a
point x € M goes to 0 as £ — oo. These control theorems were discussed by
Lowell Jones in his last lecture. The general case of the Addendum follows
from this special case and the version of the surgery sequence for arbitrary



280 F.T. Farrell

spaces developed by Andrew Ranicki in his lectures; in particular that the
assembly map in homology

Ay H(M; L) = L.(mM,w)

is uniquely determined by the homotopy type of M and the orientation data
w:m (M) — Zs.

This Addendum even has (perhaps unexpectedly) consequences beyond,
what follows from TRT, for closed manifolds. We now discuss some of these.

Corollary 1. Let N and M be a pair of closed complete affine flat mani-
folds. If m(N) ~ w1(M), then N and M are homeomorphic (via a homeo-
morphism inducing this isomorphism,).

Corollary 1 is an affine analogue of the classical Bieberbach Theorem
valid for Riemannian flat manifolds. We note that Corollary 1 (when dim
(M) > 5) does not follow from the TRT proved in Lecture 4 since there are
closed complete affine flat manifolds M which cannot support a Riemannian
metric of non-positive curvature. For example M3 = R3/T" does not where
T is the group generated by the three affine motions «, 8 and v of R® with

a(r,y,2) = (z+1,9,2)
B(z,v,2) = (z,y+1,2)
v(z,y,2) = (z+y,2z+3y,z+1).

Since I is solvable but not virtually abelian, the result of Gromoll-Wolf [40]
and Yau [71], quoted in lecture 1, shows that M cannot support a non-
positively curved Riemannian metric. But Corollary 1 (when dim (M) > 5)
does follow from the Addendum to TRT since M is aspherical and 7 (M)
is a discrete subgroup of Aff(R™) which is a closed subgroup of GL,11(R);

namely
0 :<m
Am1i = {1 i:m—l—l}

Corollary 1 is a classical result when dim (M) < 2. And, when dim
(M) = 3, Corollary 1 was proven by D. Fried and W.M. Goldman in [38].
Hence it remains to discuss the case when dim (M) = 4. In this case (in fact
more generally when dim (M) < 6) H. Abels, G.A. Margulis and G.A. Soifer
[1] proved that 71 (M) is virtually polycyclic. And hence Corollary 1 follows

AfE(R™) = {A € GLpns1(R)




The Borel Conjecture 281

from Farrell and Jones [28] when dim (M) = 4. A key ingredient in [28] is
that M. Freedman and F. Quinn [37] have shown that topological surgery
works in dimension 4 for manifolds with virtually poly-cyclic fundamental
groups.

Corollary 1 suggests the following question.

Question. Are compact complete affine flat manifolds with isomorphic fun-
damental groups diffeomorphic?

Compare [34] where the analogous question for infrasolvmanifolds was
affirmatively answered except in dimension 4.

We next use this Addendum to verify a special case of a well known
conjecture of C.T.C. Wall; cf. [69].

Conjecture. (Wall) Let I' be a torsion-free group which contains a sub-
group of finite index isomorphic to the fundamental group of a closed as-
pherical manifold. Then I' is the fundamental group of a closed aspherical
manifold.

Corollary 2. Let M™ be a closed (connected) non-positively curved Rie-
mannian manifold and T be a torsion-free group which contains w1 (M) as
a subgroup with finite index. Assume that m # 3,4, then the deck transfor-
mation action of w1 (M) on the universal cover M extends to a topological
action of ' on M. Consequently Wall’s Congecture is true in this case since
M/T is a closed apsherical manifold with = (M /T) =T.

Remark. When M is a symmetric space without 1 or 2 dimensional factors,
I' embeds in its isometry group Iso(M) extending m (M) C Iso(M); this is
a consequence of Mostow’s Strong Rigidity Theorem [57]. When m = 2,
Corollary 2 is a consequence of a result due to Eckmann, Linnell and Muller

[18], [19]; our proof only applies to the situation m > 5.

In proving Corollary 2 we can clearly make the simplifying assumptions
that M is orientable and 71 (M) is normal in I". We now use an important
trick due to Serre [65] where he constructs a natural, properly discontinuous
action of T via isometries on the Riemannian product M*™ of s-copies of M

M=MxMx---xM

where s = [r1 M : T'|. (Serre’s construction is a kind of geometric co-induced
representation.) Note that M*™ is A-regular and non-positively curved since
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M™ is. Hence N*™ = M/T is a complete (but not closed) A-regular non-
positively curved manifold with 71(N) = I'. Thus the Addendum to TRT
applies to N*™ x D¥ for all ¥ > 0. From this we conclude that Ranicki’s
periodic assembly map

Ay H (BT, L) = L,.(T)
is an isomorphism. Also the Vanishing Theorem applies showing that
Wh(T) =0 = Ko(ZT).

And Ranicki, by reworking the existence part of surgery theory, has shown
that when this happens BT is homotopically equivalent to a closed manifold
K™ provided B is for some subgroup 7 of finite index in I'; cf. [63, §13].
In this case, we can take 7 = 1 (M).

Let K be the cover of K corresponding to m (M). And note that K
is homotopically equivalent to M since both are aspherical and have the
same fundamental group. Therefore K is homeomorphic to M by the TRT.
Consequently K = M and the deck transformation action of I' = 71 (K) on
M is the desired extension of the action by m (M). Q.E.D.

Corollary 2 can be applied to obtain positive information about the fol-
lowing generalization of the classical Nielsen Problem. Let Top(M) denote
the group of all homeomorphisms of a manifold M and denote the group of
all outer automorphisms of 71 (M) by Out(m M).

Generalized Nielsen Problem. (GNP) Let M be a closed aspherical man-
ifold and F be a finite subgroup of Out(m1 M ). Does F split back to Top(M);
i.e., does there exist a finite subgroup F of Top(M) which maps isomorphi-
cally onto F' under the natural homomorphism

Top(M) — Out(m M)?

Remark. There are cases where this is impossible. One necessary extra
condition is that there exist an extension

l1->m(M)—-T—-F—1

inducing the embedding F' C Out(m; M). F. Raymond and L. Scott [64] gave
an example where this condition is not satisfied. In their example M is a
nilmanifold. There is a natural exact sequence

1 — Center(I') = T' 7 Aut(T) 7 Out(l') —» 1



The Borel Conjecture 283

where ¢(7) is conjugation by 7. Let T'r = 9~ }(F). When Center(T') = 1
1T —>I'r—>F—1

is the necessary extension mentioned in this Remark.

Corollary 3. The finite group F of the GNP splits back to Top(M) under
the following extra assumptions:

1. Center(m M) = 1.
2. M is a non-positively curved Riemannian manifold.
3. dim(M) # 3,4.
4. Tr is torsion-free.
Remark. Conditions 1 and 2 are satisfied when M is negatively curved.

Remark. When dim(M) = 2, this result is due to Eckmann, Linnell and
Muller (1981).

Remark. When M is a symmetric space without 1 or 2 dimensional metric
factors, this result, due to Mostow [57], is true even with conditions 1, 3 and
4 dropped.

Remark. Corollary 3 remains true when condition 2 is replaced by the
weaker condition that (M) is isomorphic to the fundamental group of a
complete, A-regular non-positively curved Riemannian manifold. This is
because Corollary 2 is also true under the same weakening of its hypotheses.

To prove Corollary 3, note that I'r satisfies the hypotheses for the group
T in Corollary 2. Hence I'p acts on M extending the action of w1 (M) by
deck transformations. The image of this action in Top(M) is the subgroup
F asked for in GNP. Q.E.D.

There is also the related question of whether the natural homomorphism
Top(M) — Out(m M)
is onto?

Corollary 4. Let M™ be a closed aspherical manifold. Assume that m #
3,4 and that m (M) is isomorphic to the fundamental group of a complete,
A-regular, non-positively curved Riemannian manifold. Then the natural
homomorphism Top(M) — Out(m1 M) is a surjection.
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Corollary 4 is classical for m = 2 or 1. And for m > 5, it follows
immediately from the Addendum to TRT since every outer automorphism
of m1(M) is induced by a self homotopy equivalence of M; cf. Hurewicz’s
result mentioned in Lecture 1. Q.E.D.

Remark. When M is a symmetric space without 1 or 2 dimensional metric
factors, Corollary 4 is due to Mostow [57].

Give the group Top(M) the compact open topology and let its closed
subgroup Topg(M) be the kernel of the natural continuous homomorphism
(analyzed in Corollary 4) to the discrete group Out(miM). Topo(M) is
not in general the connected component of the identity element in Top(M).
However the following was proved in [32].

Corollary 5. Let M™ be a closed (connected) non-positively curved Rie-
mannian manifold with m > 10. Then

7T0(T0p0 M) = c2>o’
71 (Top M) @ Q = Center(mM)Q®Q, and
(m—=7)

m(Top M) @Q = 0 if 1<n<
Remark. There is in particular the following exact sequence
1 — 723 — m(Top M) — Out(m M) — 1.

And Z35° denotes the direct sum of a countably infinite number of copies of
Zs.

The proof of Corollary 5 depends not only on the Addendum to TRT but
also on the following result “PI'T” concerning the stable topological pseudo-
isotopy functor P( ). Recall that this functor was defined and discussed
earlier in lectures by Tom Goodwillie, Lowell Jones and Frank Quinn.

Pseudo Isotopy Theorem. (Farrell and Jones [31]) Let M be a closed
(connected) non-positively curved Riemannian manifold. Then, for all n,

T(P(M)®Q = 0 and
m(P(M)) = Z.
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We will discuss the ideas behind the proof of PIT after first using it in
proving Corollary 5.

For this we need to introduce the auxiliary spaces G(M) and Top(M).
Let G(M) denote the H-space of all self-homotopy equivalences of M; note
that Top(M) is a subspace of G(M). The semisimplicial group Top(M) of
blocked homeomorphisms of M can be interpolated between Top(M) and
G(M). A typical k-simplex of Top(M) consists of a homeomorphism

h:AFx M — AF x M

such that h(A x M) = A x M for each face A of A*, where A* is the
standard k-simplex.

Let G(M)/Top(M) and Top(M)/Top(M) denote the homotopy fiber of
the map

B Top(M) — BG(M) and B Top(M) — B Top(M),

respectively. Because of Frank Quinn’s function space interpretation of the
surgery exact sequence [60], [61], cf. [70, §17A]; the relative homotopy groups
of the map

Top(M) — G(M)

can be identified with the groups
S(M x D", 9).
And these all vanish because of the TRT; consequently the following is true.

Fact 1. G(M)/Top(M) and Top(M)/Top(M) have the same weak homo-
topy type.

Now the homotopy groups of G(M) are easy to calculate. They are

Fact 2.
Out(m M) ifn=0
m(G(M)) = ¢ Center(m M) ifn=1
0 ifn > 2.
Since the calculation for n > 2 is particularly easy to do, we sketch it.

Let
f:8"xM-—>M
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represent an element in 7,(G(M)). To show this element is zero, we need
to extend f to a map
f:D x M — M.

The construction of f is by an elementary obstruction theory argument. Fix
a triangulation of M and assume f has already been defined over D" t! x ¢ for
all simplices o with dim(c) < k. Let o be a k-simplex and identify D"+ x
o with D"5+1 Then f|spnir+1 has already been defined and represents
an element of m, (M) which vanishes since M is aspherical. Therefore f
extends over D"*! x o. It is shown in this way that m,(G(M)) = 0 when
n > 2.

It therefore remains to analyze Top(M)/Top(M). Which can be done in
terms of P(M) by using the following result of Hatcher [41].

Theorem. (Hatcher) When m > 10 (m = dim M) there is a spectral se-
quence converging to

Tp+q+1(Top(M) / Top(M)

with
Eyy = Hy(Z3;mq(P(M))
in the stable range q < w.

Remark. This result depends on Igusa’s Stability Theorem [47] for pseudo-
isotopy spaces which Tom Goodwillie discussed in an earlier lecture.

Combining Hatcher’s Theorem and PIT together with Facts 1 and 2
yields that

Fact 3.

0 if 1 <n<met

7 (Top(M)) ® Q = {Center(mM) ®Q ifm=1

and the following exact sequence:
Center(m M) — Hy(Zg; Z5°) — mo(Top(M)) — Out(m M).

Since the kernel of my(Top(M)) — Out(mi M) is mo(Topy(M)), this exact
sequence can be rewritten as
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Fact 4.
Center(mi M) — Ho(Zo; Z5°) — mo(Topy(M)) — 0.
Define a homomorphism d : Z3° — 7Z$° by
diz)=z+z

where z — T denotes the action of the generator of Zg on Z3°. Then the

formula
Ho(Zo, Z5°) = 7 fimage(d)

is the definition of Hy(Z9,Z3°). We claim that Z$°/image(d) cannot be a
finite group. If it were, then Z$°/ker(d) would also be finite since

ker(d) D image(d).

(Note that d? = 0 since Z$° has exponent 2.) But image(d) is isomorphic
to Z$°/ker(d). And the finiteness of both image(d) and Z$°/image(d) would
imply that Z$° is also finite, which is a contradiction. Since Hy(Zg;Z3°) is
thus a countable infinite group of exponent 2, it must be isomorphic to Z5°.
We therefore rewrite the sequence in Fact 4 as

Fact 5.
Center(m M) — Z5° — mo(Topy(M)) — 0.

Now Lawson and Yau [51] showed that Center(m; M™) is finitely gener-
ated. (In fact it is isomorphic to Z™ where n < m.) Hence Fact 5 implies
that mo(Topy(M)) is a countably infinite group of exponent 2, and therefore
it is isomorphic to Z$°. This result together with Fact 3 proves Corollary 5.

We now return to a discussion of PIT. Its proof follows the pattern
established in proving the Vanishing Theorem (cf. Lecture 3). The main
difference is that the corresponding foliated control theorem is obstructed
since P(S!) is not contractible. So we get a calculation instead of a vanishing
theorem. Key ingredients for this calculation are ideas developed by Frank
Quinn which were discussed in his and Lowell Jones’ lectures.

We formulate a more precise result than PIT; namely a weak version
of the Isomorphism Conjectures which Wolfgang Lueck talked about in one
of his lectures. For the rest of this lecture M denotes a closed (connected)
non-positively curved Riemannian manifold, M its universal cover, and T =
m1(M) its group of deck transformations. Fix a universal space £ for T
relative to the class C of all virtually cyclic subgroups of I'.
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Theorem. (Farrell and Jones [31], also [33]) There exists a spectral se-
quence converging to mp1q(P(M)) with E3, = Hy(E/T;me(P(M/Ty))).

Remark. In this theorem I'; denotes the subgroup of I' fixing a cell o of £.
And

H,(E/T;my(P(M/T,))) is the p-th homology group of a chain complex whose
p-th chain group is the direct sum of the groups m,(P(M /T, )) where o varies
over a set S, of p-cells of £. The set S, contains exactly one p-cell from each
I-orbit of p-cells. Here P(X) denotes the stable topological pseudo-isotopy
Q-spectrum of a space X; cf. [33, §1.1] for more details.

To deduce PIT from this result, we must analyze the spectral sequence.
Note first that I'; is either infinite cyclic or trivial since I' is torsion-free.
Therefore M /T, is homotopically equivalent to either the circle S! or a point
% since M /T, is aspherical. And there is the following important calculation:

Calculation 1. (a) m,(P(x)) =0 for all n,
(b) m,(P(S)®Q =0 for all n,
(c) mo(P(SY)) = Z5°.

Calculation (a) is a consequence of Alexander’s Trick discussed in Lecture
1. Calculation (b) is due to Waldhausen [68], and (c) is due to Waldhausen
and Igusa [46]. Calculations (b) and (c) are deep results related to Tom
Goodwillie’s Lectures 1 and 2. Because of (a) and (b), E5, ® Q = 0. Hence
the Theorem yields that 7,(P(M)) ® Q = 0; which is the first assertion of
PIT.

Our Theorem also yields that

mo(P(M)) = Hy(€/T; mo(P(M/T5))).

Since we can pick &£ to be a countable CW-complex (because I is countable)
this equation together with Calculations (a) and (c) imply that mo(P(M))
is a quotient group of Z$°; i.e. is a countable abelian group of exponent
2. To complete the proof of PIT, it remains to show that mo(P(M)) is an
infinite group. We will only show this when M is negatively curved, since the
general case depends on constructing a universal space £ for I' with better
properties than the abstract construction. This geometric construction of
& uses strongly the assumption that M is closed and non-positively curved.
But, when M is negatively curved, the fact that mo(P(M)) is infinite is an
immediate consequence of the following Assertion.
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Assertion. Assume M is negatively curved and let vy : S' — M represent a
non-trivial element [y] € m(M). Then

P(7)g 2 mo(P(S1)) — mo(P(M))
is monic where P(7y) : P(S') — P(M) is the functorially induced map.

We indicate the proof of this Assertion under the simplifying assumption
that M is orientable. To do this we construct a transfer map

T:P(M) — P(Sh)

such that 7o P(y) is homotopic to idp(g1). The Assertion is clearly a conse-
quence of this. Our construction uses ideas from Lecture 2. We first define
a map

P(M) — P(M).

(Recall that M = M U M(co) is homeomorphic to ™.) This is done by
sending the pseudo-isotopy f to the pseudo-isotopy f where

x if x € M(o0) x [0,1]
fz) ifze M x[0,1]

and f is the unique lift of f such that f li7x0 = idj7yo- This pseudo-isotopy
f is “well-defined” because Cartan’s Theorem shows that property 2 of Con-
dition (*) holds (cf. Lecture 2). To be precise, f is only well defined after
we collapse z x [0,1], z € M(o0), to the single point z. But this quotient
space can be identified with M x [0,1]. Note that f is T-equivariant. Let
S be the infinite cyclic subgroup of I' generated by [y]. There are exactly
two points ST and S~ on M (co) fixed by S since [y] can be represented by
a closed geodesic (because M is compact). Furthermore S acts freely and
properly discontinuously on M — {S*,S~} = Mg and hence f induces a
pseudo-isotopy R
f e P(Mg/S).
But Mg/S is homeomorphic to S! x I~! since M is orientable. The func-
tion f — f mapping
P(M) — P(S' x 1)
stabilizes to give the desired transfer 7. (See [27, §2] for more details.)

Q.E.D.
We end our lectures by giving an analogue of Corollary 5 true for Diff(M).
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Corollary 6. Suppose that M™ is orientable, m > 10 and 1 < n < (m=7)

Then

0 if m is even
mn(Diff(M)) @ Q = @H(n+1)*4j(M’ Q) if m is odd.
7j=1

Furthermore, m(Diff(M)) ® Q = Center(m M) ® Q.

Corollary 6 is an immediate consequence of the following result combined
with TRT, PIT and the Vanishing Theorem.

Theorem. (Farrell and Hsiang [23]) Let N™ be a closed aspherical manifold
such that

S(N™"xDF,8) =0  forall k>0,
m(P(N))®@Q =0  forall k>0,
Wh(m(N) xZF) =0  for all k> 0.

Then for 1 <n < (mTJ)

0 ifn>1,n even
mn(DIf(N)) ® Q = { P Hn11)-4;(N,Q) ifn>1, n odd
j=1

Center(mN) ® Q ifn=1.
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6 Conclusion

Recall from lecture 1 that a basic problem in topology since the time of
Poincaré has been to classify manifolds. Surgery theory gives an approach
to doing this for all manifolds homotopy equivalent to a given manifold M.
And this theory is effective provided the Wall L-groups L, (w1 M) and the
Whitehead group Wh(mi1 M) can be calculated. Furthermore the calculation
of 7, (Top(M)) and m,(Diff(M)), through a stable range of dimensions 7,
can also be reduced to classical algebraic topology problems if additionally
7n(P(M)) can be calculated.

In the above lectures, we’ve examined these problems for the case where
M is aspherical. Let us now discuss the modifications needed to handle
the general case; i.e., we no longer assume that M is aspherical. For this
purpose, L.E. Jones and myself have formulated in [33] the “Isomorphism
Conjectures” which can be thought of as a generalization of the Borel Con-
jecture (when dim M # 3,4). There are separate conjectures for K-theory,
L-theory and the stable topology pseudo-isotopy spectrum P(X). For con-
creteness we focus attention here on the conjecture for P(X).

F. Quinn in [62, appendix] constructed a covariant functor which asso-
ciates to a continuous surjection p : X — B (of topological spaces) an Q-
spectrum P(X, p)-called the stable topological pseudo-isotopy spectrum of
X with control relative to p. When p is the constant map to a point, P(X, p)
is the ordinary stable topological pseudo-isotopy spectrum P(X). And there
is a functorially induced forget control map from P(X,p) to P(X), defined
for arbitrary p, called the Quinn assembly map. The isomorphism conjec-
ture for P (and more generally the fibered isomorphism conjecture for P) is
formulated in terms of the Quinn assembly map.

Let T’ be an arbitrary (discrete) group and € be a universal I-space for
the class consisting of all virtually cyclic subgroups of I". (See [33, appendix]
and W. Lueck’s lectures for a detailed description of £.) And let X — X
be any regular covering space of a CW complex X with I for its group of
deck transformations. Note that X — X is a principal I-bundle and form
the associated bundle with fiber £

XXFg — X.
q

Note that ¢ is a homotopy equivalence, since £ is contractible, and hence
functorially induces an equivalence of the spectrum P(X xp &) with the

spectrum P(X). Recall that X xp & is the quotient space of X x & under
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the natural diagonal action of T. Let p : X xp & — £/T be the continuous
map induced by projection of X x £ onto its second factor. The fibered
isomorphism conjecture (FIC) for T' states that the Quinn assembly map

P(X xr €,p) = P(X xr €) = P(X)

is an equivalence of (2-spectra for every X — X. And the isomorphism
conjecture (IC) for T is the same statement made under the extra assumption
that X — X is an arbitrary universal covering space, with 7 (X) = T'. Two
reasons why the FIC (and its special case the IC) is interesting are:

1. Quinn constructed in [62, appendix] a spectral sequence E}, converging
to mpq(P (X)) with

By = Hy(E/T;my(P(X/T4)))
where I';, denotes the virtually cyclic subgroup of I' fixing = € £.

2. Anderson and Hsiang [5] showed that

Wh(m1(X)) ifg=—1
7 (P(X)) = { Ko(Zmi (X))  ifqg=—2
Kq+2(Z7T1(X)) if q g -3.

Evidence for the FIC is the following result proved by L.E. Jones and
myself (1993) in [33, Th. 2.1 and Th. A.8].

Theorem. The FIC is true for every discrete cocompact subgroup T of any
(virtually connected) Lie group G, and (more generally) for every subgroup
of such a group T'.

Final Remark. In order to study P(M), let I' = 71 (M) and consider the
universal covering space M — M. If the IC is true for T, then the Q-
spectrum P(M) is equivalent to P(M xr &, p) which can be analyzed using
Quinn’s spectral sequence. This analysis requires being able to calculate
7a(P(M/T,)). For this note that M/T, is a manifold whose fundamental
group is virtually cyclic. Now the Anderson-Hsiang result [5], mentioned
above, is useful for ¢ < 0 and [8] is useful for ¢ > 0, at least when I'y, = 1.
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