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Topological Rigidity and Geometric
Applications

F. T. Farrell *

Abstract

This is an informal article surveying geometric applications of the topological ri_gid—
ity theorem of Lowcll Jones and myself. These applications are due to v&Erlous
researchers including Lowell Jones, Pedro Ontaneda, M.S. Raghunathan, C.b.. Ar-
avinda, J.-F. Lafont and myself. The article is the direct outgrowth of my serics of
four lectures given at the Beijing International Conference and Instructional Work-
shop on Diserete Groups (2006); which in turn built on a series of three lecﬁturfes I
gave at the 22nd Annual Workshop in Geometric Topology held in Colorado Springs
(2005).

Lecture 1. The best of all possible maps is some-
times not good enough

Let me start by recalling

Borel’s Conjecture. Any homotopy equivalence between closed aspherical man-
ifolds is homotopic to a homeomorphism.

Definition. X is aspherical & 7, X = 0 for ¢ # 1 (& its universal cover X is
contractible).

Examples. Complete non-positively curved Riemannian n-manifolds are aspher-

3 1 - e n
ical. (Cartan showed there universal covers are diffeomorphic to R™.)

For “most k” and “most twists” Thurston showed M? is aspherical. In fact

has —1 curvature.

*SUNY,Binghamton,NY 139{]2,L'SA,E-mail:fa.rrell(fl}mat,h.binghamton.edu.'.l'his. research ded-
icated to Lowell Jones on the occasion of his 60th birthday.It is was supported in part by the

National Science Foundation.
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Some low dim. examples

(arientable) sphere torus 2-holed 3-holed ---
+ + torus torus
not aspherical 0-curvature _1-curvature
i3 @ Let K=kXD? bea
thickened knot in §°
3_gi__
Knot k and M=S Kwk;limK
Figure 1:

Theorem (F-Jones 1993). Let M™ and N™ be a pair of closed aspherical mani-
folds with mM = m N (and m # 3,4). If M is a non-positively curved Rieman-
nian manifold, then M and N are homeomorphic.

Our proof (to be sketched in Lecture 2) is motley: long, indirect and non-
constructive. So we wondered whether a more direct approach might work at least
when both M and N are non-positively curved Riemannian manifolds. And we
discovered that differential geometers were doing this in many important cases.
But some remained open. I'll talk about one today.

Harmonic maps

Let f : M — N be a smooth map between closed Riemannian manifolds. It’s
energy E(f) € [0, +00) is defined as follows:

Figure 2:

: 1
B =[S

A critical point of this functional

E: C*(M,N) — [0, +00)
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is called a harmonic map. In particular a function of minimum encrgy inside a
homotopy class is harmonic.

Tension vector field 7;

For each v € Ty, M let o, denote the (unique) geodesic with a,(0) = v.

f
Figure 3:
Let v, = foa,. Let er,ea, ..., ey be an orthonormal basis for T, M™. Then
m
Tf(.’?f) = Tf(ﬁ;)N' is Z ’FB{(O).
i=1

Important Fact. f is harmonic < 77 = (.

Consequently

1. Isometries are harmonic.
2. Closed geodesics are harmonic.

Also 7 determines a partial flow on (M, N) by the (Heat Equation) PDE
f e o= el (M),

Which “should flow” f to a harmonic map f as t — 0o. When M = S! this is a
standard technique for flowing a closed curve ag to a geodesic ti.

a..=limq,

{@oco

Figure 4:

Basic Theorem (Eells-Sampson (existence), Hartman-Al'ber (uniqueness)). If
M.N are closed Riemannian manifolds and N is negatively curved, then there
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erists a unique harmonic map f homotopic to f € C*(M,N). In fact
f= lim f;
t—oo

where f; solves the above PDE. (Uniqueness requires that fy(m M ) is not eyclic;
e.g. this is satisfied when f is a homotopy equivalence.)

Remark. Think of f as a kind of best of all possible maps in the homotopy class
of f.

Basic Problem. Let f : M™ — N™ be a homotopy equivalence between nega-
tively curved Riemannian manifolds. Is f a diffeomorphism, or at least a homeo-
morphism? O
Remarks.

1. This problem is due to Lawson-Yau and is a differential geometric variant of

Borel’s Conjecture.

2. When n = 2, Schoen-Yau and Sampson (1978) independently proved that f is
a dzﬁeomorphzsm.

3. When n > 3 and both M” and N™ are locally symmetric (i.e. sectional cur-
vatures are constant under parallel translation) Mostow’s Strong Rigidity The-
orem (1973) implies that f is a diffeomorphism (in fact an isometry up to
scaling).

Here is a specious argument suggesting that f is a diffeomorphism in general.
g

T

M N gof~1idy
—
f
gof=g °f —ldM idy, == f isa diffeomorphism

=7

since g of-g of smce idy, is
an isometry

Figure 5:

The flaw in this argument is § o f may not be harmonic since compositions
of harmonic maps may not be harmonic.

Example. R L r LR

fO) =0 gy =22-y* g(ft) =1t

In fact Jones and I were able to construct examples where f couldn’t be a
diffeomorphism because M and N were not diffeomorphic.
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In our examples M™ is a certain hyperbolic manifold (constant —1 curvature)
and

N™ = M™ %™

i.e. the connected sum of M™ and an exotic sphere (a manifold homeomorphic but
not diffeomorphic to S™) ™.

Let f: M™ — M™4%™ be the obvious homeomorphism. Then f is not a
diffeomorphism. But it is still possible that j is a homeomorphism.

At this point we were stumped. But eventually (1998) Jones, Ontaneda and
I proved the following result.

Theorem (F-Jones-Ontaneda). In every dim n > 6, there exists a pair of closed
negatively curved Riemannian manifolds M™ N™ such that

1. M™ and N7™ arc homeomorphic.
2. M™ and N™ are not PL homeomorphic.
3. M™ is a hyperholic manifold (i.e. has constant —1 curvature).

Definition. Smooth manifolds M and N are PL-homeomorphic if they can be
smoothly triangulated by the same simplicial complex.

Corollary (F-Jones-Ontaneda). Let f: M™ — N™ be the homeomorphism from
part 1 of the above theorem, then f is not a homeomorphism.

Proof. We start by recalling the statement of the Smooth Hauptvermutung proved
by Scharlemann and Siebenmann in 1973.

Smooth Hauptvermutung (Scharlemann-Siebenmann). Let f : M™ — N"
(n > 6) be a smooth homeomorphism. Then M™ and N™ are PL homeomorphic.

Example. f(z) = z® is a smooth homeomorphism R — R which is not a diffeo-
morphism since f~!(z) = z!/3.

Proof of Corollary continued. But the harmonic map fis C>®(M,N); ie.
f is smooth. Hence if f were a homeomorphism, then M and N would be PL
homeomorphic by the Smooth Hauptvermutung contradicting property 2 of The
Theorem. OJ

However there is the following more refined version of the Basic Problem on
Yau's 1982 Problem List.

Problem 111. Let f: M™ — N™ be a diffeomorphism between closed negatively
curved Riemannian manifolds. Is f a homeomorphism?

Our first approach to this problem (1996), although inconclusive, is simple
and T think interesting. Let me briefly describe it.

Using results of Waldhausen and Igusa on the smooth pseudo-isotopy space
of §' x D" !, one can construct for any closed hyperbolic manifold N™ (n = 11)
a self-diffeomorphism f: N Q such that

L. f~idy.

e
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2. But f is not topologically isotopic to idn.

Now let go be the given hyperbolic metric on N and g; be the Riemannian metric
such that

f: (N, g1) = (N, 90)

is an isometry. And let g;, t € [0,1], be a path of Riemannian metrics connecting
go to g1. (This is easy to do.) Consider

f:(N,gt) — (N, go)

and let f! be the unique harmonic map homotopic to f given by the Basic Theorem
Sampson and Schoen-Yau showed that ft varies continuously with the metrics
g;. Therefore if each harmonic map ft were one-to-one, then ¢t — f* would be a
topological isotopy between f0and f'. But f =idy since idn : (N, g0) — (N, g0)
is an isometry and idy ~ f. Also f1 = f since f : (N, q1) — (N, go) is also an
isometry.

Conclusion. For some t € (0,1)
'+ (N.g) = (N, g0)

. . . o . z A'J_l . ,
is a harmonic map homotopic to the diffeomorphism f; but f* is not a homeomor-
phism.

But unfortunately (N, g;) may have some positive curvature. However there
is also the following well known problem.

Problem 7.1 [Burns-Katok list 1984]. Is the space of negatively curved Rieman-
nian metrics on a given closed manifold path connected?

Of course if you could answer this question positively for N, then this would
solve Problem 111 on Yau’s list. However Ontaneda and I have recently shown
(2006) that the answer is No for all manifolds of dimension > 10. I'll discuss this

result in a later lecture.
But after a few more false starts Ontaneda, Raghunathan and I solved Prob-

lem 111 in 2000.

Theorem (F—Ontaneda—Raghunanthan). For every n = 6 there is a diffeomor-
phism f: M™ — N™ between a pair of closed negatively curved Riemannian man-
ifolds such that f is not a one-to-one function (hence not a homeomaorphism).

Our proof depends on the following.

Construction. Given n = 6, there exists a n-dimensional closed hyperbolic
manifold T and a homeomorphism g : § — T such that

1. S is a negatively curved Riemannian manifold.
9. § and T are not PL homeomorphic.
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3. But there exists a connected 2-sheeted cover T — T such that g : S - Tis
homotopic to a diffeomorphism.

Here § — § is the corresponding 2-sheeted cover and g is the lift of g to 5. In

particular the following diagram commutes:

g
e

2t

N

=

|

g
(Note that g is a homeomorphism.)

Proof of Theorem. Let M = S, N =T and f: M — N be the diffeomorphism
with f ~ § given by property 3 of the Construction. We need to show that f is
not one-to-one. For this we first show that f is a lift of §. Since g ~ § we can lift
this homotopy to one between g and a lift G of §. Note that g~ f. But § is also
clearly harmonic; hence f = § by the uniqueness property in the Basic Theorem.

Therefore the following diagram commutes:

Lg'ﬁj:‘

|,

S——T.

Now because of property 2 of the Construction together with the Smooth Hauptver-
mutung, § is not a homeomorphism. But § is onto since it is a homotopy equiv-
alence. Therefore ¢ is not univalent. Hence f cannot be univalent by the pigeon
hole principle (4 pigeons — 2 holes). O
Remarks. Some crucial ingredients behind the proof of the Smooth Hauptver-
mutung are Moise’s Theorem that homeomorphic 3-manifolds are diffeomorphic
and Sard’s Theorem that regular values of a smooth map are dense in its range.

The key to the Construction is the following

Lemma. Given an integer n = 6 and a positive real number v, there exisls a
pair of closed connected orientable hyperbolic manifolds M™, NV and a pair of
cohomology classes & € H' (M, Z2), 8 € H*(M,Z>) satisfying:

1. N is a codim 1 totally geodesic submanifold of M whose normal tubular neigh-
borhood has width = r.

N does not depend on r (but M may).

al g #£0.

[N™1 is dual to o.

3 is co-spherical.

The proof of this result is via an extension of earlier work of Millson and
Raghunathan. M is arithmetically constructed. In fact m M is commensurable

- ————
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with O(q, Zv/2) where q(z0,21,...,%Tm) = —V2 73 + 2% + --- + z2,. The class 8
is also dual to a codim 2 totally geodesic submanifold K™ 2 of M™ with trivial
normal bundle so that K™~2 and N™ ! intersect transversally and [K N N] is dual
to o U F. Furthermore there exists a 3-dimensional totally geodesic submanifold
S of M™ such that

(KN N)NS=1pt

transverse
N intersection

"

M

Figure 6:

Finally I indicate how to make the Construction using the Lemma. T = M
and S is obtained from M by cutting apart along N™~! € M™ and then regulating
with a twist using a certain self-diffeomorphism f : NV O

NX[0,1] P
W

Figure 7:

Since the number of such f is equal to the cardinality of the set [N x
[0, 1], @; Top/O] which is finite, if r is large enough, then S supports a negatively
curved Riemannian metric.

We use o and 3 to determine an element

v € [N x [0,1],8; Top/O]
as follows:

R a3 L

l lid x Z2 J degree 2
Axa

Nx[0,1]C M—— 5% x 8! g3 Top/O
generator
l“-‘ on wy=Zg
N xa [0,1] base pt € §% A §? Top/PL = K(Zs,3)..
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Addendum. (Assuming the Theorem’s notation) There exists a number T > 0
such that f; is not univalent for all ¢ = T. Here f; denotes the solution to the

PDE ft=y, fo=f.

The proof of this result uses Scharlemann’s extension of the Smooth Hauptver-
mutung to cell like maps and the recent solution of the Poincaré Conjecture.

Final Remark. Besson, Courtois and Gallot have proposed an alternative candi-
date for “best of all possible maps” which they call the natural map f* associated
to a homotopy equiv. f : M — N. And they have used f* to give a new proof
of Mostow’s Rigidity Theorem for hyperbolic manifolds. But Marco Varisco has
observed that the natural map f* shares the same problems as the harmonic map
f . in particular f* is also not one-to-one in the context of the above theorem.

Lecture 2. Topological rigidity

This lecture is devoted to sketching a proof of the following special case of Borel’s
Conjecture.
Topological Rigidity Theorem (F-Jones). Let f : N™ — | 1™ be a homo-

topy equivalent between closed m-dimensional manifolds (rm = 5) such that M™
supports a non-positively curved Riemannian metric. Then [ is homotopic lo a

homeomorphism.

Our sketch will concentrate on the important instance of this theorem where
M™ is a hyperbolic manifold; i.e. has constant —1 sectional curvatures.

We start by considering the special situation where there exists an h-cobordism
W™+ between M™ and N™; i.e. W™*! is a compact manifold with

8”7m+l =M™ H N
and W™+ is homotopy equivalent to M™x [0, 1] and f is induced by this homotopy
equivalence.

AN )

w S 2 MX[0,1]
rr(x}
M

Al
aO=r(ri®)

Figure 8:

If we could show that W is a cylinder over M (i.e. homeomorphic to M x [0, 1])
then we would be done in this important special case. To accomplish this, first
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note that there is a deformation retraction ry, t € [0,1], of W™t onto M
ro = idw, r1 : W — M is a retraction.
For each x € W
ag(t) = ri(re(z))

is a loop in M, and {a, | z € W} are called the tracks of ;.

Definition. W is said to be e-controlled if there exists a deformation retraction
whose tracks all have diameter < e.

The following result due to Steve Ferry gives a metric way of recognizing
when W is a cylinder.

Controlled h-cobordism Theorem (Ferry). Given a closed Riemannian man-
ifold M™ (m = 5), there exists € = ey > 0 such that every ep-controlled h-
cobordism with base M is a cylinder.

Now let {a, | = € W} be the tracks of a fixed smooth deformation retraction
ry of W onto M. (Smoothing theory shows that W has a smooth structure.) And
let

3 = maximum arc length of these tracks.

If 3 < enr, then W is a cylinder (by Ferry’s Theorem) and we are done. But
usually 3 >> ey (In fact if M had constant +1 curvature, say M was a Lens
space with mM = Z, (p 2 5), then there are h-cobordisms W which are not
cylinders. So we must use the negative curvature condition somehow.)

Method for shrinking tracks

Consider the following picture in H” (hyperbolic m-space) which is the universal
cover of M™. Here we use the Poincaré model for H™; i.e.

H™ = Int D™.

v(=)

_ letzbea
%' lift of a track
0 o to H™

]H[m
and vE S5,

Figure 9:

Equip & with a vector field in the asymptotic manner shown. This construc-
tion is equivariant so it produces a vector field v along « for cach v € Sy M™.
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In this examgle

@ is a geodesic
segment and v=(0)
Note that

lg' wa)=a

Figure 10:

And flowing va forward via the geodesic flow ¢* : SM apparently “shrinks”
vee. But in reality it only makes it “skinny” as the following example shows.

Now there exists an h-cobordism W?™+1 (namely W = 7} (SM — M)) with
base SM and a deformation retraction Ry : W whose tracks are {g° o (v}
for some big 5. (We call W the asymptotic transfer of W.) Although W may not
be esar-controlled, its tracks are arbitrarily skinny and none are longer than 3.
Hence W is a cylinder by the following result.

Foliated Control Theorem (F-Jones 1986). Given a closed Riemannian man-
ifold M™ (m = 3) and 3 > 0, there exzists an € = ey such that any (3,¢€)-
controlled h-cobordism W with base SM is a cylinder.

Definition. Here (3, ¢)-controlled means that each track is e-close to a path lying
in an orbit of the geodesic flow g* and having diameter < § in that orbit.

But we needed to show that W is a cylinder and we've only shown that W is
a cylinder. To compare W to W we need another more algebraic way of thinking
about the set Wh(B) of all h-cobordisms with a given base B. (This method
traces back to JHC Whitehead and Smale.)

It turns out that Wh(B) is an Abelian group with the cylinder B x [0,1] as
its zero element. (In fact Wh(B) depends only on 7 B.) Also a continuous map
p: B — B induces a group homomorphism

p. 1 Wh{B) — Wh(B)
and if p is a fiber bundle, there is a transfer homomorphism

p* 1 Wh(B) — Wh(B)
in the other direction which is topologically defined; while p, is algebraically de-
fined.

In fact in the case considered above

W = p*(W)

where B = SM and B = M. Furthermore Doug Anderson has determined the
composition p, o p*.
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Theorem (D. Anderson). pyop” is multiplication by x(F) — the Euler character-
istic of the fiber F of p: B — B (least when m B acts trivially on the homology
of F via the holonomy representation).

In the situation at hand p: SM — M, F'is g1, And hence
LS YW = pup* (W) = pu(W) = pa(0) = 0.

If x(8™~1) = 1, then we'd be done. Unfortunately y(S™~') =0 or 2. Hence. in
this way, we don't get W = M x 0, 1]. But we can make an alternate. construction
(more complicated) whose fibre is D™ (note x(D™) = 1)vz;md hay’mg the same
shrinking property for tracks. Iu this way we do get that W is a cylinder and that

Wh(M) = 0.
But in the general case, we only have a homotopy equivalence
f:N—->M

and no h-cobordism connecting N and M. Then we form a set S(M) whose
elements are equivalence classes of homotopy equivalences. Here

are equivalent < there exists a homeomorphism F : No — N

Ny 4% M

| A

Ny

such that fo ~ f1 o F. .

Using surgery theory and the fact that Wh(M) =0, one can put an A’t.)cha.n
group structure on S(M ) such that the equivalence class of a homconpyp%nsm is
the zero element, and having properties similar to those of Wh(B). (This is done
by Kirby-Siebenmann.) In particular given a fiber bundle

p:B8—DB
there are group homomorphisins
-
VS
S(B) S(B)
~7
D

where Ranicki’s algebraic surgery theory is used to define p,. And p* has t}..l(.‘
following simple topological deseription. If f: N — I represents an element in
S(B), then p*(f) € 8(B) is represented by

f:N'—MB
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where NV — N is the pullback of B — B along f and f fits naturally into the
diagram

N—s

t’d-(ica

[

N —5> B
In analogy with the situation for Wh(B), we would like to have a “nice formula” for
the composite p, © p*. And there is such a formula when B is aspherical provided
the integral form of Novikov’s Conjecture is true for B.

We recall that Novikov’s Conjecture for an aspherical manifold I asserts that
for any element f: B — B in §(B)

f*(p:(B)) = pi(B)

where p; are the rational Pontryagin classes in H*'( , Q). Mischenko (1974) showed
this conjecture is true for every non-positively curved Riemannian manifold B.
The integral form of Novikov’s Conjecture is a bit stronger statement which
we proceed to formulate.
The composite map

Bn : 5 B’n g B'n. % Rn+l

is homotopic to an embedding with normal bundle v whose total space can be
identified with B™ x R*! (using the h-cobordism Theorem). Thus v is a R™*1-
bundle equipped with a fiber homotopy trivialization; i.e. it determines a homotopy
class of maps

Ny : B — G/Top

called the normal invariant of f € §(B). The integral form of Novikov's Conjecture
asserts that N} is homotopic to a constant map for every f € S(B). Hsiang and
I (1981) showed this conjecture is true when B is a closed non-positively curved
Riemannian manifold. There is consequently the following “nice formula” in this
case:

p. o p* = multiplication by index (F*")

where F¥ is a 4i-dimensional manifold which is the fiber of p : B"™ — B™.
(Again m B is required to act trivially on the homology of F' via the holonomy
representation.) In particular when F' = CP%

peop’ =id

since Index(CP?) = 1. (This result is essentially due to Wall.)

Using this formula and a foliated analogue of the Chapman-Ferry
“a-approximation Theorem” in place of the foliated form of Ferry’s “controlled
h-cobordism Theorem”, we could proceed as in the case of Wh(M) to show that
S(M) =0 except that

Index(S*) = 0.

-— e ———
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This is a major difficulty which took Jones and I a couple of years to get around.

The idea that works is to use unordercd pairs of unit length tangent ve(l:tors
instead of a single vector when doing the asymptotic transfer. The space P of
such pairs has

[ndex(F™) =1

when m = dim M is odd; in fact when dim m — 3. this space is CpP?. This
last fact can be scen by considering the map s5lo(C) — F? defined b}f A the
eigenspaces of A. And noting that F™ is the space of all unordered pairs lu, v] of
vectors u,v € 8™ L

Since the details now get quite involved, this is a good place to end my
gketch of the proof of the Top Rigidity Theorem. A fuller sketch can be foulnd
in my article in the ICTP lectures notes series (2002) volume “Topology of High
Dimensional Manifolds”.

But before leaving this topic let me make a few remarks‘fr(?m the skotc:h of
proof in our Proc. NAS announcement (1989). First the space £ is nota manifold
when m > 3. But it does have a natural stratification with two strata: the t_lop
stratum T = {[u,v] | u # v} and the bottom stratum B = {[ul, ul | u € .5"’”“’_ I
Now for convenience let us again restrict to the case where M is hyperbolic; i.c.
M — H™. And let o be a path in H™ and w = [u,v] € Fa (H™). We can
asymptotically equip « with two vector fields na and var (as a‘t?ove) and t.‘hen
define wa = [ua,va]. Focusing at oo in the two directions u, v gives two .pom_ts
U,V on the sphere at co. If u # v, then U # V and there is a geodesic line L%U
connecting U to V. We call L, the marking of H'™ dct.ernunedl by w. Thus if
w € T. we have a new way to shrink wa; namely flow wa perpendicularly towards
the marking L.

V

v

A
e

Figure 11:

Note that this is only a partial flow since it can’t go past the marking. But
this partial radial flow is an important new tool used in trying to homotope the
transferred homotopy equivalence to a homeomorphism. ~

Another remark is that by combining the above techniques with ideas from
Cheeger-Fukaya-Gromov collapsing theory Jones and I obtaine.q the following ex-
tension of topological rigidity valid even for non-compact manifolds.

Topological Rigidity Theorem (General Case) (F-Jones 19_98)' LCL: fe
N™ — M™ (m = 5) be a homotopy equivalence belween aspherical manifolds

such that
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1. There ezxists a compact subset K C M with f : N — f71(K) - M - K a
homeomorphism.

2. Either T = m (M) is a discrete subgroup of GLy(R) or there exists a complete
A-regular Riemannian manifold M of non-positive curvature with m (M) =
I'(e.g. M can be any complete pinched negatively curved manifold).

Then there exists a bigger compact set K O K such that f is homotopic to a
homeomorphism rel N — f=1(K).

(We recall that a Riemannian metric is A-regular if there is a sequence of
nonnegative numbers A; such that |V'R| < A; for all i = 0,1,2,...; where R is
the curvature tensor.)

Remark. The A-regularity property in condition 2 is the fundamental one; the
subgroup of GL,(R) condition is derived from it.

There are two interesting corollaries of this General Case giving more in-
formation about closed manifolds. One of these which I'll now discuss is about
(complete) affine flat manifolds; the other is discussed in a later lecture. A com-
plete affine flat manifold is a manifold whose universal cover is the vector space
R"™ and whose deck transformation group is a subgroup of

Aff(R") = all affine motions of R".
An affine motion is a composition of a translation and a linear transformation.

Theorem (F-Jones 1998). Closed (complete)affine flat manifolds are topologically
rigid; i.e. any isomorphism between their fundamental groups is induced by a
homeomorphism.

In dim 3 this is due to Fried and Goldman, and in dim 4 to Abels, Margulis
and Soifer. In dim = 5 the result does not follow directly from the Topological
Rigidity Theorem (closed form) since many of these affine flat manifolds M™
do not support non-positively curved Riemannian metrics because of Yau’s Ph.D.
thesis (1971). But M™ is clearly aspherical and it is easy to show that m, (M™) is a
discrete subgroup of G Ly, +1(R). Hence this theorem follows from the Topological
Rigidity Theorem (General Case) by letting K be the null set.

And the following is a very interesting open question.

Question 3. Are closed (complete) affine flat manifolds smoothly rigid (or at
least PL rigid) and perhaps even affinely rigid?

Remark. One of the motivations for Borel’s Conjecture was the classical result
of Bieberbach asserting that closed Riemannian flat manifolds are affinely rigid.

Example. Closed does not imply complete for affine flat manifolds. In fact S x
S7=1 g closed but not complete; its universal cover is R™ — 0 and has an infinite
cyclic group of deck transformations generated by the affine motion v — 2v.
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Lecture 3. The Ricci flow and other applications

We now continue with our program of finding geometric applications for topological
rigidity. Let’s start by recalling another problem from Yau’s 1982 list.

Problem 13. Let M; and M, be closed Einstein manifolds with negative cur-
rature. Suppose m1 My ~ w1 My and dim M; = 3. Is M, isometric to Mp (up to
scaling)?

Let me recall the definitions of Ricci curvature Ric and of an Einstein mani-
fold.
Ric: T.M — R
is a quadratic function defined on each tangent space Tp M by
Ric(v) =average of the sectional curvatures of all the

2-planes in T, M containing v.

Here |v| = 1 and Ric(tv) = t?Ric(v). o
An Einstein manifold is a Riemannian manifold of constant Ricai curvature;
i.e.
RIC.HM, is constant.

Said a little bit differently. There exists a constant A € R such that
Ric(v) = Ajv]?

for all vectors v tangent to M.

Rugang Ye (1993) proposed a method for showing that No is the answer to
Problem 13. His method uses Hamilton’s Ricci Flow technique for improving a
Riemannian metric g on a manifold N. Hamilton’s technique is analogous to the
harmonic map procedure (discussed yesterday) for flowing a closed curve

a: St - M
to a geodesic thru the 1-parameter family of curves a satisfying the PDE
e 1 ‘
980 = g(t), o =0
as

Hamilton’s PDE is 5
ge = —rge — Ricg,
n
where r is the average scalar curvature (and n = dim N).

Ye's program was the following. Recall from my first lecture that, for any
¢ > 0, Jones and I had constructed a non-diffeomorphic pair M and N of homeo-
morphic Riemannian manifolds with A hyperbolic and the sectional curvatures of
(N, go) pinched within € of —1. Ye conjectured that there exists €, > 0 such that
if ¢ < €,, then the Ricci flow g; of go converges to a negatively curved Einstein
metric goo on N. If so then M and (N, o) would negatively answer Problem 13
since M and N are not even diffeomorphic. But Ontaneda and I have recently
shown that unfortunately Ye's conjecture is not true.
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Figure 12:

Theorem. Given n > 10, € > 0 there ezists a closed n-dimensional Rieman-
nian manifold (N, g) with all it sectional curvatures in [—1 — e, —1]; but the Ricci
flow g, (with go = g) does not converge (in C*-topology)to a negatively curved
(Einstein)metric on N.

Addendum. Such examples exist where N supports a hyperbolic metric. And
there are also such examples where N is not homotopically equivalent to a closed
hyperbolic manifold.

To prove this Theorem, we use the Construction (F-Ontaneda-Raghunathan)
also mentioned in my first lecture.

This Construction can be paraphrased as saying there exists a closed smooth
manifold N™ equipped with both a hyperbolic metric go and an e-pinched close to
—1 metric g, and a pair of order 2 cyclic subgroups

C; € Tsolgy)

cach acting freely on A™ and such that A/Cj is homeomorphic but not PL-
homeomorphic to A/C;. And we would like a 1-parameter family g; of e-pinched
close to —1 negatively curved Riemannian metric connecting go to g1. But we
don’t know how to do this. (It will be shown in Lecture 4 that this is impossible
in general.) However by passing to a sufficiently large regular finite sheeted cover

]VTLT*N”

(using our knowledge of P(A) coming from an addendum to the Top Rigidity
Theorem (1989) for the construction) we are able to do this for the pullback
metrics

ho = p"(go), M1 =p"(q).

Stated precisely, we construct a closed smooth manifold N™ equipped with
a l-parameter family hs, s € [0,1], of Riemannian metrics and a pair of finite
subgroups
G; Clso(h;) ¢=0,1

satisfying the following 5 properties:
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sectional curvatures hs C [—1 —¢,—1].

Go ~ G4: in fact they are conjugate subgroups of Top(N).
N — N/, is a covering space.

N/Gp and N/G arc not diffeomorphic.

ho has constant —1 sectional curvatures.

Ll

o

Now we are positioned to complete the proof of the Theorem.

Obviously if the Ricci flow does not converge to a negatively curved (Einstein)
metric for one of these Riemannian metrics h,, then we are done. So, let us
assume that the Riceci flow converges to a negatively curved metric for each hy.
We now show this leads to a contradiction. Write h,, for the Ricci flow starting
at heo = hs, 0 <1 < 00, and converging to the negatively curved Einstein metric
Js-

: We claim that all these j, are isometric up to scaling. This is a consequence
of the following result of Ye together with the fact that the function h; is jointly
continuous in s and t for (s,t) € [0,1] x [0, +00).

Stability Theorem [Rugang Ye|. Let j be a negatively curved Einstein metric,
then the Ricci flow starting al any metric sufficiently close to j converges to a
metric which is isometric to j up to scaling.

]. i

[0,1] X [0, + <}

Figure 13:

In particular j; is isometric to jo (up to scaling). But jo = ho since Einstein
metrics are left fixed under the Ricei flow and hg has constant —1 curvature.
Consequently j; has constant —1 curvature also.

Another basic property of the Ricci flow is that

Iso(hy) C Iso(hyi )
for all t = 0; i.e. the metric gets more beautiful as you flow it. Consequently

G, C Iso(hy) C Iso(j1)-

Therefore j; induces a Riemannian metric on N/G, and this metric has constant
1 sectional curvature as does N/Go (by property 5). And by property 2 above
N/Gy and N/G, are homeomorphic. Hence they are diffeomorphic by Mostow’s
Rigidity Theorem.

But this contradicts property 4 above proving the Theorem. |
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The next application illuminates the difference between the sign of the eigen-
values of the curvature operator and the sign of the sectional curvatures of a
perhaps different Riemannian metric on the same smooth manifold. We start with
some definitions.

Let V be a finite dimensional inner product space. Then the exterior product
A’V =V AV is also an inner product space where

|u A v| = area of the parallelogram spanned by u and v.

v
Figure 14:

The curvature operator on a Riemannian manifold M at € M is a self-
adjoint linear transformation

R: N\ T )

and the sectional curvatures of the plane spanned by u,v € T, M is given by

RuAv)-(uAwv)
|u A wvl?

Note that if R is negative definite, then all sectional curvatures are negative; but
not necessarily vice-versa. In fact in Peter Petersen’s text book “Riemannian
Geometry” there is the following question.

Question. Does every closed negatively curved manifold admit a Riemannian
metric whose curvature operator has no positive eigenvalues; i.e. R is a non-positive
operator.

C.S. Aravinda and I have recently answered this question.

Theorem (F-Aravinda 2005). The answer is No. In fact for every e > 0, there
ezists a 16-dimensional manifold (M, g) all of whose sectional curvatures lie in the
interval [—4,1 — ¢€]; but for every Riemannian metric h on M, R has a positive
ergenvalue.

Proof. The manifold M6 is the connected sum N'6#316 where $16 is the unique
16-dimensional exotic sphere and N0 is a Cayley hyperbolic manifold of suffi-
ciently large injectivity radius. Using a result of Boris Okun, we (2003) showed
that M6 is not diffeomorphic to N6 although M8 and N16 are of course home-
omorphic.

Remark. Examples of closed complex and quarternionic hyperbolic manifolds
and exotic spheres ¥ such that N#Y supports a Riemannian metric of negative
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sectional curvature and where N and N#Y are not diffeomorphic were constructed
by Farrell-Jones (1994) and Aravinda-Farrell (2004) respectively. The F"eu‘rell-
Jones examples are almost 1 /4-pinched; but unlike in the Cayley hyperbolic case
the exotic Aravinda-Farrell quaternionic hyperbolic examples are not.

Now Theorem follows immediately from Kevin Corlette’s Superrigidity Re-
sult.

Superrigidity Theorem (Corlette). Let M 16 pe q closed Cayley hyperbolic man-
ifold and (N'6. h) be a closed Riemannian manifold whose curwtif';{'g OPET'.(LtOT‘ R
has no positive eigenvalue. If m (M€) ~ 7 (N'®), then M and N'C are isomet-
ric up to scaling. In particular they are diffeomorphic.

Remark. An analogous statement for a real hyperbolic manifold M (i.c. one of
constant —1 curvature) is obviously false. Since its curvature operator is negative
definite, if we perturb it slightly it stays negative definite; but probably gets non-
constant sectional curvatures.

I will next discuss what I think is a quite interesting and virtually open
problem.

Problem. Find interesting geometric conditions (beyond aspherical with i:%omor—
phic fundamental groups) that will imply smooth (or PL) rigidity but don’t fmtce
isometry (up to scaling). For example: Let f: N™ — M" b(.) a homot.opy.equw—
alence between closed negatively curved manifolds. When is f homotopic to a
diffeomorphism or at least a PL homeomorphism?

Towards addressing this Problem let me recall how Eberlein and O'Neill
associate a sphere at infinity M (o) to the universal cover M — M ofa complete‘
negatively curved manifold M. A point in M(oco) is an asymptopy class [r] of
geodesic rays in M.

Definition. Two unit speed rays ro(t), r1(t) t € [0, o0) are asymptotic if they stay
2 hounded distance apart at t — oo; Le. {d(ro(t), 71 (t)) | t € [0,00)} is bounded
from above.

[rol=ln]
M(=°)
Figure 15:
They show that M™(oc) is homeomorphic to §7-1 and in fact M UJ‘CI (00) is
110n1e0111<51‘p1'1ic to ™. Also the deck transformation action of 7 (M) on M extends

to ";I(C)O) And Mostow associated to the homotopy equivalence f : M — N a
711 M -equivariant homeomorphism

Fe M(o0) — N (o)
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which depends (essentially) only on

faimM — m N
To do this he uses a lift f : M Q of f and shows that f(r), although rarely a
geodesic ray itself, is always within a finite distance of a geodesic ray s in N. And
defines

fIr]) = [s].

[

[sI=F D

Figure 16:

And when the sectional curvatures are strictly 1/4-pinched; i.e. lie in the
interval (—4, —1], Hirsch and Pugh showed that M (oo) has a nafural C'-structure;
in particular the 7, M action on M (o) is also C.

Remark. It is “rare” that M(oc) has a natural C* structure. In fact if the
sectional curvatures are all in (— %, —l} this forces those curvatures to be constant;
i.e. M to be hyperbolic and (M U M{(oc), M(20)) to be the Poincaré model.

This is due to Kanai and Hamenstadt.

Theorem (F-Jones). If the sectional curvatures of both M™ and N™ (n = 5) are
strictly 1/4-pinched and

f: j'f[(oc) — Nr(oo)

is a C'-diffeomorphism, then f is homotopic to a PL-homeomorphism and to a
diffeornorphism when n is odd.

Addendum. When n is even, N" is diffeomorphic to the connected sum M"#s-
copies of ¥, where s = x(M), and

Unfortunately the condition “f is a C'-diffeomorphism” is very far from
necessary; e.g. Mostow showed that when n =2 if M 2 and N? both have constant

—1 curvature and f is a C''-diffeomorphism, then f is homotopic to an isometry.

Question 1. Does f being a C* diffeomorphism always imply that f is homotopy
to an isometry? Or at the other extreme can " in Addendum ever be an exotic
sphere?
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Dﬂ

Figure 17:

Definition. When M is negatively curved, there is a function [ : m M — [0, 20)
defined hy

I(«) = length of the unique closed geodesic representing .

And M, N have isomorphic marked length spectra if there exists an isomorphism
M, ]
¢:m M — m N such that .
Inog =ln.

Corollary. If two odd dimensional and strictly 1/4-pinched negatively c-u'r"ved mqn—
ifolds of dim = 5 have isomorphic marked length spectra, then they are diffeormor-
phic. ”

This is a consequence of the Theorem bgcausg of a 1:@8111_t (_1ue to. Hamenl.stfdz
showing under the above assumptions that f is C L, In.fac.t 1t-7 is COS_]E(,UHB( :11
isomorphic marked length spectra imply M is isometric to ,‘N' An : Hamenstadt
showed this is true if one of the manifolds has constant —1 curvature.

Question 2. Let M be a closed negatively curved Riemannian manifold an.(l i\
he a smooth manifold homeomorphic to M. Does N also support a negatively

curved Riemannian metric?
Remark. For complete finite volume open manifolds wit.h pinched negative tur-
vature, the answer is in general No (F-Jones, Proc. AMS 1993).
Recall that the inner automorphisms of a group I' form a normal subgroup
Inn(T) of the group of all automorphisms Aut(I') and that the factor group
Out(I") = Aut(T")/Inn(I")

i isms of I'.
is called the group of all outer automorphisms o ' _ N
Let £(M) be the function space consisting of all self-homotopy equwaln,n.ces
of M. It is an H-space. And an element f € £(M) detcrmm-es an aut.omm_ph.lsm
fo:miM well defined only up to composition with an inner automorphism.
< A ] . -

Hence we get an H-space map
E(M) — Out(m M)
which descends to a group homomorphism
& (M) — Out(m M)

since f ~ g = fg = gg in Out(mM). And Hurewicz showed that this is an
isomoi‘phisfu when M is aspherical.
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Remark. Hurewicz’s result was another motivation for Borel’s Conjecture.

Now consider the group homomorphism ¢ which is the composition
Top(M) — E(M) — Out(m M).

And note that whenever M is topologically rigid, then this map is onto. However
one can ask another interesting question about c.

Question 3. Assuming M is aspherical, does every finite subgroup ' C Out(m M)
split back to Top(M)?

F. Raymond and L. Scott (1977) gave a counterexample where M is a nil-
manifold. Their example uses the fact that Center(m M) # 1.

However Question 3 is quite viable when M is a closed negatively curved
manifold. It has Yes for the answer when M™ has constant —1 curvature (due to
Mostow for n > 3 and to Kerckhoff when n — 2). Now I come to the second ap-
plication to closed manifolds of the Topological Rigidity Theorem (General Case)
to which I alluded in my last lecture,

Theorem (Farrell-Jones 1998). Let M™ be a closed negatively curved manifold
(n 2 5) and F C Out(m M). If p Y (F) is torsion-free (where p : Aut(m; M) —
Out(m; M) is the canonical epimorphism) then F splits back to Top(M™).

Remark. Rips showed that Out(m; M ) is a finite group when M is negatively
curved and dim(M) > 3.

Proof. Since Center (m M) = 1, ker p = mM. And the condition that T =
p~'(F) is torsion-free allows us to construct a finite aspherical complex K with
7T1_K =1

The hard work is involved in showing that this complex can actually be taken
to be a closed manifold N*. This is a consequence of the Topological Rigidity
Theorem (General Case) via Ranicki’s algebraic formulation of surgery theory,

Now let N be the finite sheeted cover corresponding to m N C T, then N is
homotopically equivalent to M and hence homeomorphic to M by the Topological
Rigidity Theorem.

Now F acts on M = N via the deck transformations of the regular covering
space N — N. In this way F' splits back to Top(M). In trying to remove the
torsion-free condition from I' = p~!(F) in the above theorem, one is led to the
following Test question.

Question 4. Let o € Aut(m; M) be an element of order 2 and & - M(o0) be
the natural involution given by Mostow’s Construction. (Here M is assumed to
be a closed negatively curved manifold.) Is the fixed point set M (co)®
(i) an ANR
(ii) a sphere
(iii) a locally flatly embedded sphere
)

(iv) an unknotted sphere?

—
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Remarks.
1. When M has constant curvature, Most
these are true.
2. Lafont and [ have constructed examples in the more rarefied setting of CAT(—1)
(smooth) manifolds where M (oc) is a sphere but
a) M(oo)® is not an ANR.
b) M (00)® is a knotted codimensiona
flatly embedded).
¢) We also show the positive result:
codimensional 2 sphere, then it is unknotted.

ow’s Rigidity Theorem shows that all

1 2 sphere (in fact everywhere not locally

If M(o0)® is a locally flatly embedded

1 now wish to formulate a final question apropos this topic.
Although Jones and 1 (1990) have constructed examples of closed negatively

curved manifolds M where

Diff(M) — Out(m M)
is not onto, one can ask the following.

Question 5. Does the union of the images

Diff(M, 6) — Out(mi M)
as 0 varies over all smooth structures on M fill up Out(m M)? Stronger yet, does
the union of the images

Iso(M,0,g) — Out(m M)
fill up Qut(w M) where g also varies over all negatively curved Riemannian metrics
on (M,8)7
Remark. We note that if the answer to this stronger Question 5 is Yes, then Yes
is also the answer to Question 4.

Lecture 4. The space of negatively curved metrics
on M"

Most of the questions we've formulated above relate to the
T(M™) of all (marked) negatively curved Riemannian metrics on a given closed
smooth manifold M™ (which is assumed to admit at least one such metric). To
be precise, a point in T(M™) is an equivalence class of maps

Teichmiiller space

fiN— M

where N is a closed negatively Riemannian manifold (with vol(N) =1) and [ is

a diffeomorphism. Two such maps

.fi : ."\"'1‘_ aid l‘v[ I, = 0,]
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are equivalent i . £ :
T fqll A 6 llfT there exists an isometry F : Ny — N; such that -
ollowing diagram is homotopy commutative: - at fioF' ~ fo; ie.

Ny

N

Also the maps are

: ps are “close to equivalent” if i
ey il  equ nt” if there exists such a diffeomorphism F
which s clos _enas.;z) Ilf;rf;in ..Alfld T (M) topologized in this way is a I—Fau‘-;g;rjﬁ
m space; in fact a Fréc TS - ey
pue e 1 Fréchet manifold; cf. Besse and Ebin for

When M, is a sur

e Conimnt Q&Ifa(,e O.f genus g = 2 and we restrict our construction by
B o "'1] 3s g) curvature manifolds N2, this construction 1 8 t}}
leichmiiller space T, which is homeomorphic to R6(9—1), And fhvu"lt 10
. amilton

has OW h I 1 [+ £ [() ] 1
Sh W1l l at t C I{l(;(‘] ﬂ(_) W gl ves a (18f0 II
e ( f ) o . b 1ation r >traction Of T( MG‘} OI1L g

Also notice that the image 7T of
Diff(M) — Out(m M)

acts naturally on 7(M). And und i i
3 M). inder this action i ix
the isometry F' € Iso(N) maps to a € Out(m}{j;l) e S5 S S e
N

E M
a

In this way Niels
‘ v Nielsen solved Question 6 for 2- i i
o ORut(Mrg) e manifolds in the case of elements
ecall that ith s

call hat P.A. Smith showed that any action of Z R™ I i i
This is one motivation for tryin T pt on " has a fixed point.
L, dnciierstortin [ tU-I rying to discover facts about the topology of

he ' nstein metrics are precisely iti boi -
total scalar curvature functional 5 DSt e icubisal painta ot i

N

S:T(M)—R.

Here

S(f:N->M)= / sec. curvature (P)

Jp
W ey 1o {3
here P varies over all 2-planes tangent to NV
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By a parametrized version of the techniques used to construct negatively
curved manifolds which are homeomorphic but not diffeomorphic to constant —1
curvature manifolds, Ontaneda and I [37] obtained the following information about

wo(T(M™)).

Theorem. (F—Ontaneda) For every integer ko 2 1, there exists an integer ng =
no(ko) such that the following holds for any closed hyperbolic manifold M ™ where
n = mng: M™ has a finite sheeted cover N™ such that

TR(T(N™) # 0

for every 1 < k < ko satisfying n + k =2 mod 4 (i.e. k=3n+2 mod 4) (i.e. for
roughly every 4th integer k between 1 and ko).

Corollary. For each integer k = 1, there erists a smooth fibre bundle
E — Sk

each of whose fibres ts equipped with a negatively curved Riemannian metric (vary-
ing continuously from fibre to fibre). But, although the fibres are diffeomorphic to

a closed hyperbolic manifold, it is impossible to equip them with hyperbolic metrics
varying continuously from fibre to fibre.

Of course this corollary begs me to ask the following.
Question 6. Let E — B be a fibre bundle whose fibres are diffeomorphic to a
closed negatively curved manifold. Ts it always possible to equip its fibres with
negatively curved Riemannian metrics (varying continuously from fibre to fibre)?

But Question 6 is closely related to Problem 7.1 on the list compiled by
Burns-Katok which I mentioned in my first lecture. Hence the negative solution
to Problem 7.1 recently given by Ontaneda and myself in [38] clearly gives examples
(with B = circle) which also answers Question 6 negatively. And let me end this
series of lectures by discussing in some detail the solution to Problem 7.1

Let M™ be a closed smooth manifold (n = dim M™) and (C,)* denote the
infinite Abelian group which is the countable direct sum of eyclic groups Cp of
prime order p. The space of negatively curved Riemannian metrics on M™ is
denoted by Metsec=<C(M™"), and give this space the C*°-topology.

Theorem (Farrell-Ontaneda [38]). Assumen 2 10 and Metsec<C(M™) # (. Then

1. Met®¢<O(M™) has infinitely many path components K.
9. For each component K and each prime p # 2, (Cp)™ C map—a(K). (Here we

, — 10
2 . For example, if p = 3, then (C3)™ C ma(K)

must assume that 2p—4 <

provided n > 14.)
3. (C2)>® € m(K) provided n = 14.

T'll now sketch the proof of this result by specializing to the main case of
showing that Metsee<V(M™) is disconnected. For simplicity sake, I'll assume that
M™(n = 10)is orientable and consequently contains a non-trivial embedded closed
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eodesic o with trivi:
iﬂg htlilc {1 w;lth ft.l ivial normal bundle. Then we identify S x 2" ~! with a tut
1ehborhood of radius e 2 with a ar
o ioectloe ;iilzziucl)lfea;hb} (ntho,g.;;onally trivializing its normal bund]lz )121;;
> 0 ass > the normal injectivity radius of « is -
. A s of o is at least 2. This
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> 1S5 1pt1() ;oany re di wi 1

; ) : u : : jus t
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Now using Waldhausen’s
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ForBt 56572 19
which is id on S x S"~2 x {1,2}

-

Figure 18:

but w;{lli(‘h llb not topologically isotopic to id rel S x §7~2 x 1
Jlearly f extends to a self-diffeomorphism ¢ of M™ by SC-ttiIl ¢ = id outsid
‘ 3 g ¢ = id outside

11 97— 5
S' x S"2 % [1,2] € §* x 2Dt € M7

Let g be a given Ri '
f 8 emannian metric on M"™ wi i
We proceed to s , with negative sectional curvs
thus proving 01?11'1{;;:131?1; _f{{and ¢-(g) are in different components of I\Ietizgt(ﬁis)
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. .. M™, ¢.(g)) is an isometry.) If o
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Figure 19:

. 1 »
fi ch i > 0. Identify ko with S* x oD"~1 via p and hence a with S x 0 € K.
or eachh 7 . Y R . e e - o
Now compactify M to M by adding at co ideal points corresponding to the g (_ io
Now ¢ act 0 | el : ! 9
y s emanating perpendicularly from a. (Note We‘get the ?lIIile (jon‘llpe:_
- sic rays since they are quasi-geodesic rays relative
as indicated in the picture

geodesic ray
ification if we use the g¢-geode ; .
to gg.) Now define self-diffeomorphisms fr : M

g,-geodesic

i \f}(x)
g-geodesic
KO
Figure 20:

These diffeormorphisms extend to self-homeomorphisms f : M Q ;

Clearly fo = id and each f; |1 xpe—1=id. - -

Hence they restrict to a topological isotopy fo: M- ,5 L wDn» O
(Where D71 denotes Interior (D”’l)) But wecan idenr;if}" M —
St x §772 x [1,+oc| and then f; is a topological isotopy re

to f 2 i ll- And one easily verifies the following:

=id

=/

L. fi|J-‘L_-I7(UK1)
2. f

410
Kl)‘-EKU

3. K;=D"ifi #£0
4. flaf{'i =idifi#0.

St x Ho)“’l with
1S'x 5" 2 x1ofid
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Now using the Alexander isotopy on each f I R t # 0, one gets a topological

isotopy from f to f, rel $* x $7~2 x 1. Therefore id is topologically isotopic to f,

rel 5! x §"72 x 1 which is our desired contradiction, 0
Let me now briefly discuss how the “Extra Assumption” is removed. Using

a result due to Sampson that the unique geodesic a; in (M, g;) homotopic to o

varies smoothly with ¢, we can arrange the following,

Fact. There exists a smooth path g of complete pinched negatively curved metrics

on M such that

L. go =go, 1 = g1;

2. oy = o for all ¢

3. the lifts of §; to the universal cover M are all quasi-isometric.

Hence we can find a small number § > 0 such that, for each ¢ and each point
(0,v,8) € 8'x 872§, thereis a unique (unit speed) g;-geodesic ray emauating
perpendicularly to « and passing through (8,v,6); in fact hitting this tube exactly
once.

s)
gp-Tay
(6.v,6)

/
!
L
T
| |
\ \
AN N

Figure 21;

———
=%

_ 5 _
Now change the definition of f.(6, v, 5) to be v (65) where ¥(6) = (6,v, ).

Final comments

One is also concerned with the quotient space M(M™) of the Teichmiiller space
T(M™) obtained by forgetting the (homotopy) markings. We call M(M™) the
“moduli space” of negatively curved Riemannian metrics on the given closed
smooth manifold M™. This is the classical moduli space when n = 2. And when
n > 2 it is the orbit space of 7(M™) under the natural action of a finjte group; this
finite group is the subgroup 7 of Out(m1 M) which is the image of the natural homo-
morphism Diff(M") — Out(m; M™) mentioned above: ie. M(M™) = T(M™)/T.
By combining the ideas used to solve Problem 7.1 with the tapering of metrics
techniques used to solve Problem 111, Ontaneda and I produced examples in [39)]
of closed smooth manifolds M" where M(M™) is disconnected. There are exam-
ples in all dimensions n > 10 and in these examples M™ supports a real hyperbolic
metric,

Let me end these lectures with a final question that I think is quite interesting
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AT
Question 7. Does there exist a closed manifold M™ such that Hx(M(M™), Q)#0

for some k > 07

AT g e M” 0
Remark. Ontaneda and I construct in [39] examples M™ w }rlere lht hf(,/:;[é "»elezr)l :its
for arbitrarily large k. (M™ depends on k.) But so far we have only fou leme
of finite order in Hy(M(M™)) when k > 0.
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