

THE EXPONENT OF UNII

F. T. FARRELLT

(Received December 1976)

INTRODUCTION

CAPPELL[3] HAS introduced obstruction groups for his splitting theorem— $UNil_k^h(R; M_1, M_2)$ and $UNil_{2k}^s(R; M_1, M_2)$. (Here R is a ring, M_1 and M_2 are R-bimodules, and k is an integer.) He showed they are 2-primary in the geometrically interesting cases. In these cases, we prove the exponent of $UNil_{2k}^h(;,)$ divides 4. (See Theorem 1.3.) Our techniques probably give the same result for $UNil_{2k+1}^h(;,)$ and $UNil_{2k}^h(;,)$; we don't attempt this to avoid obscuring our argument with technical details. It occurred to the author, after completing this paper, that a sufficiently general localization theorem in L-theory would probably yield reasoning as in [9] and [5], a direct proof that 8 annihilates $UNil_{2k}^h(;,)$ (for the same cases as above). Ranicki[10] has recently constructed such a localization theorem.

We obtain some additional information about $L_3(Z_2 * Z_2)$. (See Theorem 4.1.)

§1. MAIN RESULT

Let R be a ring with 1 and involution $r \to \overline{r}$, and M a R-bimodule with involution also denoted by $x \to \overline{x}$ (see e.g. [3]). Let $\mathscr{F} = (P, \lambda, \mu)$ be a $(-1)^k$ Hermitian form over M and $f \colon V \times V \to Z$ a symmetric (integral valued) bilinear form on a finitely generated, free, abelian group V. Define $f\mathscr{F} = (V \otimes P, \lambda', \mu')$ to be a new $(-1)^k$ Hermitian form over M. We explain the terms occurring in $f\mathscr{F}$. First, $V \otimes P$ is tensor product with respect to $Z \colon V \otimes P$ inherits a right R-module structure from $P \colon$ clearly, $V \otimes P$ is a free, finitely generated R-module. Next, the bilinear pairing λ' is determined by the equation

(1)
$$\lambda'(v \otimes x, w \otimes y) = f(v, w)\lambda(x, y)$$

for $v, w \in V$ and $x, y \in P$. Finally, the quadratic map μ' is determined by

(2)
$$\mu'(v \otimes x) = f(v, v)\mu(x)$$

for $v \in V$ and $x \in P$.

We collect together some notation. Let $P^* = \operatorname{Hom}_R(P, R)$ and $\lambda^* \colon P \to P^* \otimes_R M$ be the adjoint of λ ; i.e. the composite of the map $P \to \operatorname{Hom}_R(P, M)$ defined by $x \to \lambda(x,)$ with the inverse of the canonical isomorphism

$$P^* \otimes_R M \to \operatorname{Hom}_R(P, M)$$
.

Similarly, let $V^* = \text{Hom}(V, \mathbb{Z})$ and define $f^*: V \to V^*$ by $f^*(m) = f(m,)$. The following diagram commutes

$$(3) V \otimes P \xrightarrow{(\lambda')^*} (V \otimes P)^* \otimes_R M$$

$$V^* \otimes (P^* \otimes_R M)$$

†The author was partially supported by a grant from the National Science Foundation.

where the vertical map is the canonical isomorphism. Recall f is non-singular if f^* is an isomorphism. When f is non-singular, define

$$f^{-1}: V^* \times V^* \rightarrow \mathbb{Z}$$

by requiring $(f^{-1})^* = (f^*)^{-1}$. Let D_{2n} denote the dihedral group of order 2n. Fix generators α and γ for D_{2n} with $\alpha^2 = 1 = \gamma^n$ and $\alpha \gamma \alpha^{-1} = \gamma^{-1}$; define $\beta = \gamma \alpha$. (Note $\beta^2 = 1$.) Let $\mathcal{L} = (V, f)$ be a ZD_{2n} lattice; i.e. V is a finitely generated, Z-free, D_{2n} -module and $f: V \times V \rightarrow Z$ is a symmetric, D_{2n} -invariant, non-singular form. Define associated, symmetric, nonsingular forms $f_1, f_2: V \times V \rightarrow \mathbb{Z}$ by

(4)
$$f_1(v, w) = f(\alpha v, w), \quad f_2(v, w) = f(\beta v, w)$$

for $v, w \in V$. Notice that f_1^* is the composite of f^* and multiplication by α ; f_2^* the composite of f^* with multiplication by β . Set $\mathcal{L}^{-1} = (V^*, f^{-1})$, then \mathcal{L}^{-1} is also a ZD_{2n}-lattice.

Let M_1 and M_2 be R-bimodules with involution which are free as left R-modules, $\mathscr{C} = (\mathscr{F}_1; \mathscr{F}_2)$ a $(-1)^k$ UNil form over (M_1, M_2) , where $\mathscr{F}_i = (P_i, \lambda_i, \mu_i)$ are $(-1)^k$ Hermitian forms over M_i (i = 1, 2) with $P_2 = P_1^*$ (see e.g. [3]). Define a new $(-1)^k$ UNil form $\mathcal{LC} = (\mathcal{F}_1', \mathcal{F}_2')$ by $\mathcal{F}_1' = f_1 \mathcal{F}_1$ and $\mathcal{F}_2' = (f^{-1})_2 \mathcal{F}_2$. (To be precise, \mathcal{F}_2' is the pullback of $(f^{-1})_2 \mathcal{F}_2$ to $(V \otimes P_1)^*$ via the canonical isomorphism $(V \otimes P_1)^* \to V^* \otimes P_1^*$.) Using (3), we see \mathcal{L} satisfies the nilpotent condition in the definition of a $(-1)^k$ UNil form.

Recall $\mathscr C$ is a kernel if there exist free summands S_i of P_i (i=1,2) with (See [3].) $S_2 \subset P_2 = P_1^*$ the annihilator of $S_1 \subset P_1$, and with $\lambda_i | S_i \times S_i$ and $\mu_i | S_i$ zero; we call the pair (S_1, S_2) a subkernel for \mathscr{C} .

LEMMA 1.1. If either $\mathscr C$ is a kernel or $\mathscr L$ is a split lattice, then $\mathscr L\mathscr C$ is a kernel.

Proof. First, assume $\mathscr{C} = (P_1, \lambda_1, \mu_1; P_2, \lambda_2, \mu_2)$ is a kernel with subkernel (S_1, S_2) and $\mathcal{L} = (V, f)$, then $(V \otimes S_1, V^* \otimes S_2)$ is a subkernel for $\mathcal{L}\mathscr{C}$.

Next, assume $\mathcal L$ is split (see [6], p. 294) and let W be a Lagrangian in V; i.e. W is a D_{2n} -submodule such that $W = W^{\perp}$ where

(5)
$$W^{\perp} = \{ v \in V | f(v, w) = 0 \text{ for all } w \in W \},$$

then $(W \otimes P_1, f^*W \otimes P_2)$ is a subkernel for \mathscr{L} .

Corollary 1.2. The pairing $(\mathcal{L}, \mathcal{C}) \mapsto \mathcal{L}\mathcal{C}$ induces a unital $GW(D_{2n}, \mathbb{Z})$ -module structure on $UNil_{2k}^h(R; M_1, M_2)$.

(See [6] for the definition of GW(,).)

In certain cases, Cappell constructs a map from UNil to the Wall surgery group. Namely, let $R \subset \Lambda_i$ (i = 1, 2) be inclusions of rings with identity and involution. Assume that Λ_i has an R-bimodule with involution decomposition $\Lambda_i = R \oplus \hat{\Lambda}_i$, $\hat{\Lambda}_i$ a free left R-module. Let Λ denote the amalgamation ring $\Lambda_1 *_R \Lambda_2$, then there is a map

(6)
$$\rho: \operatorname{UNil}_{2k}^{h}(R; \hat{\Lambda}_{1}, \hat{\Lambda}_{2}) \to L_{2k}^{h}(\Lambda).$$

(See [3].) We now describe the situation of particular interest to us. Let H, G_1, G_2 be finitely presented groups with $H \subset G_i$ (i = 1, 2) and $\omega_i : G_i \to \{\pm 1\}$ homomorphisms with $\omega_1|H=\omega_2|H$; these determine involutions on $\mathbb{Z}[H]$, $\mathbb{Z}[G_1]$, $\mathbb{Z}[G_2]$, $\mathbb{Z}[G]$ where $G=G_1*_HG_2$. Let $\mathbb{Z}[\hat{G}_i]$ denote the $\mathbb{Z}[H]$ subbimodule with involution of $\mathbb{Z}[G_i]$ additively generated by $g\in G_i-H$. This fits into the above terminology with $R=\mathbb{Z}[H]$, $\Lambda_i=\mathbb{Z}[G_i]$, $\hat{\Lambda}_i=\mathbb{Z}[\hat{G}_i]$, and $\Lambda=\mathbb{Z}[G]$. But, in this specific situation, Cappell [3] shows the map ρ of (6) is a monomorphism. We use this fact in proving our main result.

THEOREM 1.3. The exponent of $UNil_{2k}^h(\mathbf{Z}[H]; \mathbf{Z}[\hat{G}_1], \mathbf{Z}[\hat{G}_2])$ divides 4 (for all k).

To prove this, we first show that ρ factors through $\mathrm{UNil}_{2k}^h(\Lambda;\Lambda,\Lambda)$ which we abbreviate to $\mathrm{UNil}_{2k}(\Lambda)$. Let the $(-1)^k$ UNil form $\mathscr{C}=(P_1,\lambda_1,\mu_1;P_2,\lambda_2,\mu_2)$ represent an element in $\mathrm{UNil}_{2k}^h(R;\hat{\Lambda}_1,\hat{\Lambda}_2)$; associate to it the $(-1)^k$ UNil form over (Λ,Λ)

(7)
$$\hat{\mathscr{C}} = (P_1 \otimes_R \Lambda, \hat{\lambda}_1, \hat{\mu}_1; P_2 \otimes_R \Lambda, \hat{\lambda}_2, \hat{\mu}_2)$$

where $\hat{\lambda_i}$ and $\hat{\mu_i}$ (i = 1, 2) are determined by

(8)
$$\hat{\lambda_i}(x \otimes s, y \otimes t) = \bar{s}\lambda_i(x, y)t, \text{ and}$$

$$\hat{\mu_i}(x \otimes s) = \bar{s}\mu_i(x)s$$

for $x, y \in P_i$ and $s, t \in \Lambda$. The correspondence $\mathscr{C} \mapsto \hat{\mathscr{C}}$ induces a homomorphism

(9)
$$\hat{\rho} : \mathrm{UNil}_{2k}^{h}(R; \hat{\Lambda}_{1}, \hat{\Lambda}_{2}) \to \mathrm{UNil}_{2k}(\Lambda).$$

Cappell's procedure for defining ρ also gives a map

$$\rho': \operatorname{UNil}_{2k}(\Lambda) \to L_{2k}^h(\Lambda).$$

Namely, ρ' is determined by associating to a $(-1)^k$ UNil form $(P_1, \lambda_1, \mu_1; P_2, \lambda_2, \mu_2)$ over (Λ, Λ) a $(-1)^k$ Hermitian form (P, λ, μ) over Λ with $P = P_1 \oplus P_2$ and

(10)
$$\lambda(x, y) = \langle x, y \rangle \quad \text{for } x \in P_2 = P_1^*, \quad y \in P_1;$$
$$\lambda(x, y) = \lambda_i(x, y) \quad \text{for } x, y \in P_i;$$
$$\mu(x) = \mu_i(x) \quad \text{for } x \in P_i.$$

Thus, we obtain the factorization.

LEMMA 1.4. The map ρ factors as the composite of $\hat{\rho}$ with ρ' .

Therefore, it suffices to show the exponent of image ρ' divides 4; for this, we need some more lemmas. Denote the identity of D_{2n} by e and the cyclic subgroups generated by α , β , γ , and e, respectively, by (α) , (β) , (γ) , and (e); their inclusion maps into D_{2n} by i, j, k, and l, respectively.

LEMMA 1.5. For each $r \in GW((\gamma), \mathbb{Z})$ and $x \in UNil_{2k}(\Lambda)$, $k_*(r)x = 0$.

Proof. Let $\mathcal{L} = (V, f)$ represent r and $\mathcal{L} = (P_1, \lambda_1, \mu_1; P_2, \lambda_2, \mu_2)$ represent x, then k_*r is represented by the $\mathbb{Z}D_{2n}$ -lattice (W, g) where $W = V \oplus V$,

$$g = \begin{pmatrix} f & 0 \\ 0 & f \end{pmatrix}$$

and α , β act (relative to this decomposition) via the matrices

(12)
$$\begin{pmatrix} 0 & e \\ e & 0 \end{pmatrix} \text{ and } \begin{pmatrix} 0 & \gamma \\ \gamma^{-1} & 0 \end{pmatrix},$$

respectively. Then, $V_1 \otimes P_1$ is a subkernel for \mathscr{LC} where V_1 is the first component of W

PROPOSITION 1.6. For each $x \in \text{UNil}_{2k}(\Lambda)$, there exists an integer N_x such that for all $n > N_x$ and every $r \in GW((\alpha), \mathbb{Z})$ and $s \in GW((\beta), \mathbb{Z})$,

$$\rho'(i_*(r)x) = 0 = \rho'(j_*(s)x).$$

Proposition 1.7. When n is a power of 2,

$$i_*(2) + j_*(2) + k_*(2) - l_*(2) = 4$$

is an equation in $GW(D_{2n}, \mathbb{Z})$.

We postpone the prooofs of these propositions to §2 and §3 and complete the proof of Theorem 1.3. As already observed, it suffices to show $4\rho'(x) = \rho'(4x) = 0$ for all $x \in \text{UNil}_{2k}(\Lambda)$. Let n be a power of 2; $n > N_x$. By Proposition 1.7,

(13)
$$i_*(2)x + j_*(2)x + k_*(2)x - l_*(2)x = 4x,$$

but Lemma 1.5 shows $k_*(2)x = 0 = l_*(2)x$. (Note that l factors through k.) Applying ρ' to (13), we obtain

$$\rho'(i_*(2)x) + \rho'(j_*(2)x) = \rho'(4x).$$

The result now follows from Proposition 1.6.

Remark 1.8. Proposition 1.6 was geometrically motivated by Browder's paper[1] and Lemma 1.5 by the Browder-Levine paper[2].

§2. PROOF OF PROPOSITION 1.6.

The proof of Proposition 1.6 divides into a few slightly different cases; we prove only one of these (Proposition 1.6') and leave the others to the reader.

PROPOSITION 1.6'. For each $x \in \text{UNil}_{2k}(\Lambda)$, there exists an integer N_x such that for all even integers $n > N_x$ and every $r \in GW((\alpha), \mathbb{Z})$, $\rho'(i_*(r)x) = 0$.

Proof. Let $\mathcal{L} = (V, f)$ represent r and $\mathcal{L} = (P, \lambda_1, \mu_1; P^*, \lambda_2, \mu_2)$ represent x. For any even integer n = 2m, $\rho'(i_*(r)x)$ is represented by a $(-1)^k$ Hermitian form (Q, λ, μ) with

$$(14) Q = P_1 \oplus P_2 \oplus \cdots \oplus P_n \oplus P_1^* \oplus \cdots \oplus P_n^*$$

where $P_i = V \otimes P$. The forms μ and λ have certain nice properties; first, $\mu | P_i^* = 0$ for all i and $\mu | P_i = 0$ for $i \neq m$ and n. Next, we discuss the properties of λ ; define

forms

(15)
$$\varphi \colon V \otimes P \times V \otimes P \to \Lambda, \text{ and}$$
$$\psi \colon V^* \otimes P^* \times V^* \otimes P^* \to \Lambda$$

by the equations

(16)
$$\varphi(v \otimes x, w \otimes y) = f(\alpha r, w) \lambda_1(x, y)$$

for $v, w \in V$ and $x, y \in P$, and

(17)
$$\psi(v \otimes x, w \otimes y) = f^{-1}(\alpha r, w) \lambda_2(x, y)$$

for $v, w \in V^*$ and $x, y \in P^*$. Then, λ is described by the equations (where $x_i \in P^*$ and $y_i \in P_i$)

(18)
$$\lambda(x_i, y_j) = \begin{cases} 0 & \text{if } i \neq j \\ \langle x_i, y_i \rangle & \text{if } i = j \end{cases}$$

$$\lambda(y_i, y_j) = \begin{cases} 0 & \text{if } i + j \neq n \\ \varphi(y_i, y_j) & \text{if } i + j = n, \text{ and} \end{cases}$$

$$\lambda(x_i, x_j) = \begin{cases} 0 & \text{if } i - j \neq n + 1 \\ \psi(x_i, x_j) & \text{if } i + j = n + 1. \end{cases}$$

In matrix terminology, λ has the form

$$\begin{pmatrix} A & \pm I \\ I & B \end{pmatrix}$$

where I is the identity matrix; B a " $n \times n$ -matrix" with ψ along the skew diagonal and zero elsewhere; and A a " $n \times n$ -matrix" with ε along the diagonal above the skew diagonal, also in the bottom, right corner and zero elsewhere.

Since $\mathscr C$ is a UNil form, $\lambda^*\lambda^*$: $P^*\to P^*$ is nilpotent; i.e. there is an integer N' such that $(\lambda^*_1\lambda^*_2)^p=0$ for all $p\geq N'$, hence $h^p=0$ for $p\geq N'$ where $h=\varphi^*\psi^*$. Now, if $m-1\geq N'$, we can construct a subkernel S for (Q,λ,μ) ; namely,

(20)
$$S = P_1 \oplus \cdots \oplus P_{m-1} \oplus W \oplus P_{m-1}^* \oplus \cdots \oplus P_m^*$$

where it remains to describe W. To each $x \in (V \otimes P)^*$, associate $x' \in Q$ where the i-th component x'_i of x' is given by the formula

(21)
$$x'_{i} = \begin{cases} 0 & \text{if either } i \leq m \text{ or } i > 3m \\ -\psi^{*}h^{j}(x) & \text{if } m < i \leq n, \text{ where } j = i - (m+1) \\ h^{3m-i}(x) & \text{if } n < i \leq 3m; \text{ i.e.}. \end{cases}$$

$$x' = (0, \ldots, -\psi^{*}(x), \ldots, -\psi^{*}h^{m-1}(x), n^{m-1}(x), \ldots, x, 0, \ldots);$$

let W be the submodule consisting of all x'. A straightforward calculation verifies that S is a subkernel.

§3. PROOF OF PROPOSITION 1.7.

Let Q denote the rational numbers, E_r , the equation posited in Proposition 1.7 for $n=2^r$, and $D^r=D_{2n}$. Since Dress ([6], Theorem 5) has shown that the map

 $GW(D', \mathbf{Z}) \rightarrow GW(D', \mathbf{Q})$ is a monomorphism, it suffices to verify E_r in $GW(D', \mathbf{Q})$. We proceed by induction on r; the case D^1 (the Klein 4-group) can be checked directly and is left to the reader. When $r \ge 1$, Wall (see e.g. [12], p. 68) has observed that

rec

fο

(22)
$$\mathbf{Q}D^{r+1} \simeq \mathbf{Q}D^r \oplus M_2(\mathbf{Q}(\cos\theta))$$

where $\theta = \pi/n$ and $M_2(\mathbf{Q}(\cos \theta))$ denotes the 2×2 -matrix ring over the field $\mathbf{Q}(\cos \theta)$. In this decomposition, the map $\mathbf{Q}D^{r+1} \to \mathbf{Q}D^r$ is induced by the group homomorphism $D^{r+1} \to D^r$ which sends γ , α in D^{r+1} to γ , α , respectively, in D^r ; the map $\mathbf{Q}D^{r+1} \to M_2(\mathbf{Q}(\cos \theta))$ is determined by sending

(23)
$$\alpha \to \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \text{ and}$$
$$\gamma \to \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

Fröhlich and McEvert[8] have defined for a ring R with involution a group $\mathcal{M}(R)$ which reduces to the Wittring when R is a field with trivial involution, and for a finite group G, $\mathcal{M}(QG) = GW(G, Q)$. Applying $\mathcal{M}()$ to (22), we obtain

(24)
$$GW(D^{r+1}, \mathbf{Q}) \simeq GW(D^r, \mathbf{Q}) \oplus \mathcal{M}(M_2(\mathbf{Q}(\cos \theta)));$$

therefore, to verify E_{r+1} , it suffices that it projects to a valid equation on each factor of (24). One shows, without much difficulty, that E_{r+1} projects to E_r on the first factor of (24).

Next, observe that both 4 and $k_*(2)$ project to 0 in the second factor of (24). Now, $M_2(Q(\cos\theta))$ is Morita equivalent (in the standard way) to $Q(\cos\theta)$; via which, we identify $\mathcal{M}(M_2(Q(\cos\theta)))$ to $\mathcal{M}(Q(\cos\theta))$ —the ordinary Wittring of the field $Q(\cos\theta)$. After this identification, $l_*(2)$ clearly projects to $4 \in \mathcal{M}(Q(\cos\theta))$; also, $i_*(2)$ goes to 2, while $j_*(2)$ projects to the element represented by the form $(1+\sin\theta) \perp (1+\sin\theta)$. Since 2 is the sum of two squares $(2=1^2+1^2)$, $(1+\sin\theta) \perp (1+\sin\theta)$ and $(2+2\sin\theta) \perp (2+2\sin\theta)$ represent the same element. But, $2+2\cos\theta$ is also the sum of two squares in $Q(\cos\theta)$; namely,

(25)
$$2 + 2\sin\theta = (\cos\theta)^2 + (1 + \sin\theta)^2.$$

(Note that $\sin \theta \in Q(\cos \theta)$ since $\theta = \pi/2'$.) Hence, $(2 + 2\sin \theta) \perp (2 + 2\sin \theta)$ and $1 \perp 1$ represent the same element in $\mathcal{M}(Q(\cos \theta))$; namely, 2.

§4. EXAMPLE

Let D be the infinite dihedral group generated by α , γ subject to relations $\alpha^2 = 1$ and $\alpha \gamma \alpha^{-1} = \gamma^{-1}$, D(n) the subgroup of index n generated by α and γ^n , and T_n the normal subgroup generated by γ^n . Note D(n) is isomorphic to D and T_n is infinite cyclic; $T_n \subset D(n) \subset D$; denote these inclusions by i and j_n , respectively. Equip D with the trivial homomorphism $\omega \colon D \to \{\pm 1\}$ and let \mathbb{Z}_2 denote the cyclic group of order 2. Let $\beta_n = \gamma^n \alpha$ and (α) , (β_n) denote the subgroups of D(n) generated by these elements. (These subgroups are cyclic of order 2.) Wall ([11], p. 162) shows $L_3(\mathbb{Z}(\alpha)) = \mathbb{Z}_2 = L_3(\mathbb{Z}(\beta_n))$; identify the sum of their images in $L_3(\mathbb{Z}D(n))$ with $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.

THEOREM 4.1. Either $L_3(ZD)$ is $Z_2 \oplus Z_2$ or it is not finitely generated

We deduce this from two lemmas whose proofs are postponed to the end of this section. When $j: G \to H$ is an inclusion where G is a subgroup with finite index in H, recall there is a transfer map $j^*: L_*(ZH) \to L_*(ZG)$.

LEMMA 4.2. To each $x \in L_3(\mathbb{Z}D)$ corresponds an integer N_x such that

$$j_p^*(x) \in \mathbb{Z}_2 \oplus \mathbb{Z}_2$$

for all primes $p \ge N_x$.

LEMMA 4.3. When p is an odd prime,

$$j_p^* j_{p*}(x) = x + \frac{p-1}{2} i_* i^*(x)$$

for all $x \in L_3(\mathbb{Z}D(p))$.

Proof of Theorem 4.1. By [3],

(26)
$$L_3(\mathbf{Z}D(n)) = \mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{UNil}_3(\mathbf{Z})$$

where Z has the trivial involution. Our proof is by contradiction, hence assume UNil₃(Z) is non-zero but finitely generated. Since UNil₃(Z) is a quotient group (by definition) of UNil₄(Z[H]; Z[\hat{G}_1], Z[\hat{G}_2]) for appropriate choices of H, G_1 , and G_2 , its exponent divides 4 (Theorem 1.3); in particular, $L_3(ZD(n))$ is a finite group annihilated by 4. It is well known there are arbitrarily large primes of the form 8m + 1, hence there is a prime p such that

(27)
$$j_p^*: L_3(\mathbb{Z}D) \to \mathbb{Z}_2 \oplus \mathbb{Z}_2 \subset L_3(\mathbb{Z}D(p)), \text{ and}$$

$$(j_p)^*(j_p)_* = \text{identity: } L_3(\mathbb{Z}D(p)) \to L_3(\mathbb{Z}D(p)).$$

(Use Lemmas 4.2 and 4.3.) But, (27) is self-contradictory.

It remains to discuss Lemmas 4.2 and 4.3. The first can be proven geometrically. Let N be a 10-dimensional, connected, orientable manifold containing a simply connected (connected), codimension-1 sub-manifold M which separates N into two components A and B with cyclic fundamental groups of order 2 and universal covers diffeomorphic to $M \times [0, 1]$. (Such spaces are easily constructed.) Note that $\pi_1 N \approx D$ and its universal cover is diffeomorphic to $M \times R$. By Wall ([11], p. 66), each $x \in L_3(ZD)$ determines a surgery problem

(28)
$$f: W \to N \times [0, 1], \text{ with}$$

$$f_{-}: \partial_{-}W \to N \times 0 \quad \text{the identity map}$$

and having obstruction x. Associated to $D(p) \subset D$, we have p-sheeted covers \hat{N} , \hat{W} and an induced surgery problem

(29)
$$\hat{f} \colon \hat{W} \to \hat{N} \times [0, 1]$$

with obstruction $j_p^*(x)$. Now, M lifts to \hat{N} and

$$\hat{f}_{+}: \partial_{+}\hat{W} \to \hat{N} \times 1$$

splits along M for all p sufficiently large by Browder's result[1]. Making f transverse to the rest of $M \times [0, 1]$ and completing surgery on this membrane, we see that $j_p^*(x)$ is the sum of elements coming from $L_3(\mathbf{Z}(\alpha))$ and $L_3(\mathbf{Z}(\beta_p))$.

Finally, Lemma 4.3 would be an immediate consequence of the Mackey subgroup property. Dress ([6], p. 302) shows that L-theory satisfies such a property for finite groups and subgroups. It's probably true for arbitrary groups and subgroups of finite index. In any event, a simple direct argument, similar to that used to prove ([7], Lemma 2.7), can be given for Lemma 4.3; the details are left to the reader.

Remark 4.4. Our proof of Theorem 4.1 was motivated by Cappell's paper[4] where he showed that $L_2(ZD)$ is not finitely generated.

REFERENCES

- 1. W. Browder: Structures on M×R, Proc. Camb. Phil. Soc. 61 (1965), 337-345.
- 2. W. Browder and J. Levine: Fibering manifolds over a circle, Comm. Math. Helv. 40 (1966), 153-160.
- 3. S. E. CAPPELL: Unitary nilpotent groups and Hermitan K-theory. I, Bull. Amer. Math. Soc. 80 (1974), 1117-1122.
- 4. S. E. Cappell: On connected sums of manifolds, Topology 13 (1974), 395-400.
- 5. F. X. CONNOLLY: Linking numbers and surgery, Topology 12 (1973), 389-410.
- 6. A. DRESS: Induction and structure theorems for orthogonal representations of finite groups, Ann. of Math. 102 (1975), 291-325.
- 7. F. T. FARRELL and W. C. HSIANG: Rational L-groups of Bierberbach groups, Comm. Math. Helv. 52 (1977),
- 8. A. FRÖHLICH and A. M. McEvett: Forms over rings with involution, J. Alg. 12 (1969), 79-104.
- 9. D. S. PASSMANN and T. PETRIE: Surgery with coefficients in a field, Ann. of Math. 95 (1972), 385-405.
- 10. A. RANICKI: The algebraic theory of surgery, preprint.
- 11. C. T. C. WALL: Surgery on Compact Manifolds. Academic Press, New York (1970).
- 12. C. T. C. WALL: Classification of Hermitian forms. VI Group rings, Ann. of Math. 103 (1976), 1-80.

The University of Michigan