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2 INTRODUCTION
CappeLL[3] Has introduced obstruction groups for his splitting theorem—
UNiL"(R; M;, M) and UNil§(R; My, M;). (Here R is a ring, M, and M; are R-
4 bimodules, and k is an integer.) He showed they are 2-primary in the geometrically
interesting cases. In these cases, we prove the exponent of UNil%(;,) divides 4. (See
: Theorem 1.3.) Our techniques probably give the same result for UNil%a(;,) and
UNily(;,); we don’t attempt this to avoid obscuring our argument with technical
details. It occured to the author, after completing this paper, that a sufficiently general -
localization theorem in L-theory would probably yield reasoning as in [9] and [5], a
direct proof that 8 annihilates UNil3 %(:,) (for the same cases as above). Ranicki[10]
has recently constructed such a localization theorem. i B
We obtain some additional information about L3(Z, * Z,). (See Theorem 4.1. ) - BER I

§1. MAIN RESULT

Let R be a ring with 1 and involution r -, and M a R-bimodule with involution
also denoted by x — % (see e.g. [3]). Let F=(P,A, u) be a (—1)* Hermitian form over
M and f: VXV-Z a symmetric (integral valued) bilinear form on a finitely
generated, free, abelian group V. Define f# =(V @ P,A’,p’) to be a new (- 1)
Hermitian form over M. We explain the terms occurring in f&. First, V & P is tensor
product with respect to Z; V ® P inherits a right R-module structure from P; clearly,
V®P is a free, finitely generated R-module. Next, the bilinear pairing A’ is
determined by the equation -

¢)) Mo ®x, w®@y)=f(v, wAlx,y)

for v, w € V and x, y € P. Finally, the quadratic map u’ is determined by

) w'(v ® x) = f(v, V)p(x)

forve V and x € P.

We collect together some notation. Let P* = Homg(P,R) and A*: P—>P*@r M
be the adjoint of A; i.e. the composite of the map P ->Homg(P, M) defined by
x — A(x, ) with the inverse of the canonical isomorphism

P*®z M - Homg(P, M).

Similarly, let V* = Hom(V, Z) and define f*: V - V* by f*(m) = f(m, ). The following
diagram commutes

VP (VR PY* @ M
~

3 o
) FONN n @ (P @x M)

: $The author was partially supported by a grant from the National Science Foundation.
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306 . F. T. FARRELL

where the vertical map is the canonical isomorphism. Recall fis non-singular if f* is
an isomorphism. When fis non-singular, define

fLVEXVE-L

by requiring Yy ="

Let D;. denote the dihedral group of order 2n. Fix generators « and vy for Dz with
ol=1=7" and aya™' = y~'; define B = ya. (Note B*=1) Let £= (V,f) be a ZDx-
lattice; ie. V is a finitely generated, Z-free, Dy,-module and f: VXV -»Z is a
symmetric, D,,-invariant, non-singular form. Define associated, symmetric, non-

singular forms fi,f22 VX V-7 by
4) filv, w)=flav, W), fov, w)=f(Bv, W)

for v, w € V. Notice that f* is the composite of f* and multiplication by a; f% the
composite of f* with multiplication by B. Set Pt =(V*, [, then ¥'is also a

7.D,,-lattice.
Let M, and M, be R-bimodules with involution which are free as left R-modules,

€ =(F,;, F)al- 1) UNil form over (M, My), where & = (Py, A, i) are (— 1) Her-
mitian forms over M (i=12) with P,= P% (see e.g. [3]). Define a new (- ) UNil
form ¥€ = (F1, F) by Fi=f1iF and F3= ("% (To be precise, F3 is the pullback
of % to (V® P)* via the canonical isomorphism (V ® Py*- V*® P*%) Using
(3), we see P%€ satisfies the nilpotent condition in the definition of a (— 1)* UNil form.
(See [31)

Recall € is a kernel if there exist free summands S; of P, i=12 with
S, C P,=P% the annihilator of S C P, and with A;|S; X S; and wilS: zero; we call the
pair (S1, S)a subkerne! for €. ‘

Lemma 1.1. If either @ is akenelor Lisa split lattice, then %€ is a kernel.

Proof. First, assume @ = (P, A1, p1; P2s A2s p2) is a kernel with subkernel (Si, S2)

land & =(V,f), then (V® S, V* ®Sy)isa subkernel for £%6.
Next, assume & is split (see [6], p. 294) and let W be a Lagrangian in V;ie Wis

a D,,-submodule such that W = W+t where
&) wt={veVifr,w)=0 for all w € W},

then (W ® P, f*W @ Py is 2 subkernel for £%.

CoroLLarY 1.2. T he pairing (£, €)—> L% induces a unital GW (D2, Z)-module

structure on UNilh(R; My, M2).
(See [6] for the definition of GW(,).)

In certain cases, Cappell constructs a map from UNil to the Wall surgery group.
Namely, let RCA; (i=1,2) be inclusions of rings with identity and involution.
Assume that A; has an R-bimodule with involution decomposition Ai=R @ A A; a
free left R-module. Let A denote the amalgz}mation ring Ay *r Ag, then there is 2 map

(6) p: UNilh(R: Ay, A > LE(A)-

{See [3].) We now describe the situation of particular interest to us. Let H. G,, G:be
finitely presented groups with HCG: (i= 1,2) and o G —{x1} homomorphisms

P
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with o||H = w)|H ; these determine involutions on Z[H I Z[G\], Z{G,}, Z[G] where
G = G| *4G,. Let Z[G;)denote the Z[H] subbimodule with involution of Z[G;] additively
generated by g € G; — H. This fits into the above terminology with R = Z[H), A = Z[G]],

A =2[G],and A = Z[G]. But, in this specific situation, Cappell[3] shows the map p of (6)
is 2 monomorphism. We use this fact in proving our main resuit.

THEOREM 1.3. The exponent of UNIlB(Z[H; Z[G\], Z[G.]) divides 4 (for all k).

To prove this, we first show that p factors through UNil%(A; A, A) which we
abbreviate to UNilx(A). Let the (— 1)* UNil form € = (P1, Ay, py; Py, Ay, [2) represent
an element in UNil%(R; A,, A,); associate to it the (= 1)* UNil form over (A A)

) € =(Pi®r A, K1 s P @z A, K, i)

where X; and g (i = 1,2) are determined by

8 A(x® s,y ® 1) =3Ai(x, y)t, and
Ai(x @ s) = 5ui(x)s

forx,y € P and s, t € A. The correspondence €+ % induces a homomorphism
) p: UNili(R; Ay, A2) - UNily (A),
Cappell’s procedure for defining p also gives a map

p": UNily (A)— LE(A).

Namely, p’ is determined by associating to a (- 1) UNil form (P, Ay, 13 Py, A, ®2)
over (A, A) a (= 1)* Hermitian form (P, A, 1) over A with P = P, @ P, and

(10) Alx, y)=(x,y) forxeP,=pP* yep;
A, y)=2Xi(x,y) forx,yePp,;
p(x) = pi(x) forxeP.
Thus, we obtain the factorization.

LEMMA 1.4, The map p factors as the composite of p with p’.

Therefore, it suﬂ‘icés to show the exponent of image p’ divides 4; for this, we need
some more lemmas. Denote the identity of D., by ¢ and the cyclic subgroups
generated by «, B, v, and e, respectively, by (a), ( B, (v), and (e); their inclusion maps
into D», by i, j, k, and I, respectively.

LemMA 1.5, For each r e GW((y),Z) and x € UNilx (A), ko(r)x = 0.

Proof. Let & = (V,f) represent r and € = (P, AL,y Py, A, u2) represent x, then
kyr is represented by the ZD,,-lattice (W, g) where W=vy @V,

-6y
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and a, B act (relative to this decomposition) via the matrices

. € 2) we (2 )

respectively. Then, V| ® P, is a subkernel for £€ where V| is the first component of
w. '

PrOPOSITION 1.6. For each x € UNily (A), there exists an integer N, such that for all
n > N, and every r € GW((a), Z) and s € GW((B), Z),

p'(ix(r)x) =0=p'(jx(s)x).
ProposITION 1.7. When n is a power of 2,
i+(2) + jx(2) + k(2)—14(2) =4
is an equation in GW (D, Z).
We postpone the prooofs of these propositions to §2 and §3 and complete the
proof of Theorem 1.3. As already observed, it suffices to show 4p’(x) = p'(4x) = 0 for
all x € UNil,(A). Let n be a power of 2; n > N.. By Proposition 1.7,

- (13) i(2)x +j£(Dx + ke(@)x — 1, (2)x = 4x,

but Lemma 1.5 shows k(2)x = 0= 1,(2)x. (Note that | factors through k.) Applying p’
to (13), we obtain

p'(i(2)x) + p'((2)x) = p'(4x).
The result now follows from Proposition 1.6.

Remark 1.8. Proposition 1.6 was geometrically motivated by Browder’s paper[1]
xzmd Lemma 1.5 by the Browder-Levine paper[2].
i

§2. PROOF OF PROPOSITION 1.6.

The proof of Proposition 1.6 divides into a few slightly different cases; we prove
only one of these (Proposition 1.6') and leave the others to the reader.

ProposiTioN 1.6". For each x € UNily(A), there exists an integer N, such that for
all even integers n > N, and every r € GW((a), Z), p'(ix(r)x)=0.

Proof. Let £ =(V,f) represent r and € = (P, A1, 1y P*, Az, p2) represent x. For
any even integer n =2m, p'(ix(r)x) is represented by a (— 1)* Hermitian form (Q, A, )
with

(14) Q=P:@Pz®"'®Pn@PT®"'@P’ﬁ

where P, =V ® P. The forms p and A have certain nice properties; first, w|P¥=0
for all i and w|P; =0 for i# m and n. Next, we discuss the properties of A define

v s SRS -
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forms

(15)

¢:VOPXVEP—A\,and
P V*QP*x V* 2 prsy
by the equations

(16) o ®x,w®y)=ffar. w)Ai(x, y)

for v, wE V and X,y €EP, and

(7 VO ®xXw®y)=f"ar, Wi, y)

for v, w € V* and x, Yy € P* Then, A is describ=2 by the equations (where X; € P¥ and
Yi €EF)

N () fi=j
A, y')-{(xi, Yo ifi=j
0 Hi+j=n
18 : '={ i
(18) Ay, ¥p) ey ifitj=n,and

0 Fi-ji=n+1
A(xi,xj)—{!p(xi’xi) Hi~j=n+1.

In matrix terminology, A has the form

(A -_«-I\

(19 I B/

where I is the identity matrix; B a “n x n-matrix” with ¢ along the skew diagonal and
zero elsewhere; and A a “n x n-matrix” with - zlong the diagonal above the skew
diagonal, also in the bottom, right corner and ZerD elsewhere, )

Since € is a UNil form, ATA%: P* p* g nilzotent: i.e. there is an integer N’ such
that'(A’;‘A’;)" =0 for all p=N’, hence h* =0 for p= N’ where h = e*Y*. Now, if
m — 1= N’, we can construct a subkernel S for Q- a.pn); namely,

(20) S=P|@--@Pm_l@W@tP’ﬁ_}@...@pﬁ

where it remains to describe W. To each x (V' % P)*, associate x’ € Q where the'
i-th component x! of x’ is given by the formula

0 i_f eitheri<m ori>3m
@1 xi=1{ —*hi(x) ifm<isn,v-berej=i—(m+l)
Rix) ifn<i<3m: Ll

X'=(0,...,~y*x), ... » TYTRT M A" x), L x, 0,...);
let W be the submodule consisting of all x’. A strz:ghtforward calculation verifies thaf

S is a subkernel.

~ §3. PROOF OF PROPOSTTION 1.7,
Let Q denote the rational numbers, E, the eg-zzion posited in Proposition 1.7 for
n=2, and D"=D,, Since Dress (6], Theo-em 3 has shown that the map

e T ——————"

i
B



310 F. T. FARRELL

GW(D",2)->GW(D",Q) is a monomorphism, it suffices to verify E, in GW(D", Q).
We proceed by induction on r; the case D' (the Klein 4-group) can be checked
directly and is left to the reader. When r =1, Wall (see e.g. [12], p. 68) has observed

that
(22) QD' = QD" @ Mx(Q(cos 8))

where 8 = /n and Mx(Q(cos 8)) denotes the 2 X 2-matrix ring over the field Q(cos 6).
In this decomposition, the map QD' QD' is induced by the group homomorphism
D™*'-> D" which sends v, in D™*' to v, @, respectively, in D"; the map QD'
M,(Q(cos 8)) is determined by sending

a0 )

( cos 6 sina)
—sin@ cosé/

(23)

Frohlich and McEvert{8] have defined for a ring R with involution a group AM(R)
which reduces to the Wittring when R is a field with trivial involution, and for a finite
group G, #(QG)=GW(G, Q). Applying #() to (22), we obtain

(24) GW(D™', Q)= GW(D", Q) ® A (M(Q(cos 6)));

therefore, to verify E,., it suffices that it projects to a valid equation on each factor
of (24). One shows, without much difficulty, that E,,, projects to E, on the first factor
of (24).

Next, observe that both 4 and k4(2) project to 0 in the second factor of (24). Now,
M(Q{cos 8)) is Morita equivalent (in the standard way) to Q(cos 8); via which, we
identify M (Mx(Q(cos 8))) to AM(Q(cos 6))—the ordinary Wittring of the field Q(cos 8).
After this identification, 14(2) clearly projects to 4 &€ M(Q(cos 8)); also, i(2) goes to 2,
while j«(2) projects to the element represented by the form (1+sin ) L(1 + sin 8).
Since 2 is the sum of two squares (2=1°+ 13), (1+sin9) L (1+sin @) and 2+
2 sin 8) L (2 +2 sin ) represent the same element. But, 2+2cos 0 is also the sum of
two squares in Q(cos 6); namely,

(25) ' 2+2sin 0 = (cos 8)*+ (1 +sin 6)%.

(Note that sin 8 € Q(cos ) since 6 = w/2".) Hence, (2+2sin8) L(2+2sin#)and 1 1L 1
represent the same element in A{(Q(cos 8)); namely, 2.

§4. EXAMPLE

Let D be the infinite dihedral group generated by a,y subject to relations =1
and aya~' ="', D(n) the subgroup of index n generated by o and ", and T, the
normal subgroup generated by y". Note D(n) is isomorphic to D and T, is infinite
cyclic; T, € D(n) C D;denote these inclusions by i and j,, respectively. Equip D with
the trivial homomorphism w: D —{* 1} and let Z; denote the cyclic group of order 2.
Let B, = y"a and (), (B,) denote the subgroups of D(n) generated by these elements.
(These subgroups are cyclic of order 2.) Wall ([11], p. 162) shows Li(Z(a))=Z:=
L(Z(B,)); identify the sum of their images in Ly(ZD(n)) with Z,; @ Z,.
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THEOREM 4.1. Either Ly(ZD) is Z:® Z; or it is not finitely generated

We deduce this from two lemmas whose proofs are postponed to the end of this
section. When j: G - H is an inclusion where G is a subgroup with finite index in H,
recall there is a transfer map j*: L(ZH )= L(ZG). .

LeEmMMA 4.2. To each x Ly(ZD) corresponds an integer N, such that

iTixez.®z,

for all primes p = N..

LEMMA 4.3, When p is an odd prime,

- 1. .
P3ipnx) = x + B2 pr(x)

forallx Ly(ZD(p)).
Proof of Theorem 4.1. By (3],
(26) L{ZD(n)=2,® 7.0 UNily(z)

where Z has the trivial involution. Qur proof is by contradiction, hence assume
UNily(Z) is non-zero but finitely generated. Since UNili(Z) is a quotient group (by
definition) of UNIl(Z[H]; Z[Gy, Z[G)) for appropriate choices of H, Gy, and G,, its
exponent divides 4 (Theorem 1.3); in particular, Ly(ZD(n)) is a finite group annihilated
by 4. It is well known there are arbitrarily large primes of the form 8m + 1, hence

there is a prime p such that

@7 75 L{ZD)> 2@ 2, C LyZD(p)), and

(p)*Gp)w = identity: Ly(ZD(p))— Ly(ZD(p)).

(Use Lemmas 4.2 and 4.3.) But, (27) is self-contradictory.

It remains to discuss Lemmas 4.2 and 4.3. The first can be proven geometrically.
Let N be a 10-dimensional, connected, orientable manifold containing a simply
connected (connected), codimension-1 sub-manifold M which separates N into two
components A and B with cyclic fundamental groups of order 2 and universal covers
diffeomorphic to M x [0, 1]. (Such spaces are easily constructed.) Note that miN =D
and its universal cover is diffeomorphic to M xR. By Wall ({11}, p. 66), each
X € Ly(ZD) determines a surgery problem

23 f: W-Nx]Jo, 1], with
J-0.W SN X0 the identity map

and having obstruction x. Associated to D(p)C D, we have p-sheeted covers N, W
and an induced surgery problem :

(29) ﬁweﬁxmu

T
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i1z F. T. FARRELL
with obstruction j¥(x). Now, M lifts to N and
30) fra,W->Nx1

splits along M for all p sufficiently large by Browder’s result[1]. Making f transverse
to the rest of M X [0, 1] and completing surgery on this membrane, we see that j3(x) is
the sum of elements coming from Li(Z(a)) and Ly(Z(B,)).

Finally, Lemma 4.3 would be an immediate consequence of the Mackey subgroup
property. Dress ([6], p. 302) shows that L-theory satisfies such a property for finite
groups and subgroups. It’s probably true for arbitrary groups and subgroups of finite
index. In any event, a simple direct argument, similar to that used to prove ({7},
Lemma 2.7), can be given for Lemma 4.3; the details are left to the reader.

Remark 4.4. Our proof of Theorem 4.1 was motivated by Cappell’s paper[4]
where he showed that L(ZD) is not finitely generated.
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