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Introduction

This book originated from two courses given by the author at the Tata Institute of Fun-
damental Research during spring 1993. Lectures 1-14 are the first course which was origi-
nally meant to be an exposition of the recent topological rigidity result for non-positively
curved manifolds due to L.E. Jones and the author. Since the intent was to make the
proof of this result accessible to a wide audience, the author decided to include mate-
rial on surgery theory and controlled topology prerequisite to understanding this proof.
The first 14 lectures are consequently an introduction to rather than an exposition of the
published work on topological rigidity. The last 6 lectures are the second course which
concerns the question of smooth rigidity for non-positively curved manifolds. Lecture 15
gives a motivating example of an exotic expanding endomorphism constructed many years
earlier by L.E. Jones and the author. Then Lectures 16- 15 contains an exposition of some
of the counterexamples to smooth rigidity found by L.E. Jones and the author. Not all
of the technical details are given. But it is hoped that the references made to the liter-
ature will allow the curious reader to satisfy himself about them. The final lecture is a
brief discussion (inth references) to some more recent resulfs on topological and smooth
rigidity. |

The author wishes to thank the faculty of the Tata Institute for their kind invitation
to give these courses and for publishing the resulting léctu-res. He also thmks Shashidhar
Upadhyay for his generous help both during the course and. in preparing the lectures for
publication. Finally, he wishes to thank Marge Pratt for ;he splendid typing of these

lectures.

*The author was supported in part by the National Science Foundation.



Lecture 1. Borel’s Conjecture

We start these lectures by defining a concept central to this course.
1.1. Definition A topologital space is called aspherical if 7,(X) = 0 for n # 1. Here
mn(X) denotes the n-th homotopy group of X.

If we assume AX to be a CW-complex, then the above deMtiQn is equivalent to saying

that the universal cover of X is contractible.

Let us recall a well-known result due to Hurewicz and then sketch its proof.

1.2. Theorem. Let X and Y be aspherical CW-complezes and o : m1(X) — 71 (Y) be

an isomorphism. Then « is induced by a homotopy equivalence f: X - Y.

Proof. We may assume (after some fuss) that the 1-skeleton of X, denoted by X!, is a
wedge of circles. Hence we get a map f!: X! —+ Y by sending the i-th circle a; in X!
to a loop in Y representing «([a;]) where [a;] is the homotopy class of a;. This map
exténés over the 2—skeleton X? of X since the boundary of any 2-cell in X (thought of
as an element in m;(X?!)) maps to the trivial element of m(Y) via (f!).. We then easily
extend the map over all of X by using the fact that Y is aspherical. Thus f is constructed
satisfying f+« = a. This map is clearly a weak homotopy equiva,len?ce since both X and
Y are aspherical. And it is therefore a homotopy equi\‘/alence since both X and Y are

CW-complexes. ’ Q.E.D.

In view of the above theorem, one might ask whether any two aspherical CW-complexes
with isomorphic fundamental groups are homeomorphic. The following examples show that

this is not true.



O &
T oo

Figure 1
It is clear froin these examples that one should require X and Y to have a fixed local
homeomorphism type. But the answer to the above question is still no, even if we assume
that the aspherical CW-complexes with isomorphic fundamental groups are also manifolds

of the same dimension. A counterexample in this case is
X =5 xR and Y = Mobius band.

But the following conjecture made by Borel about 1955 is still open.

1.3. Conjecture. (Borel) If M and N are closed aspherical manifolds with isomorphic

fundamental groups, then they are homeomorphic; in fact, tﬁe‘homeomorphiam can be

chosen to induce the given isomorphism.

Remark. The following strengthenings of Borel’s conjecture a.re. both false as the next
examples show. '
(i) All closed aspherical manifolds support a smooth structure.
(ii) Any two closed smooth aspherical manifolds with isomorphic fundamental groups
are diffeomorphic.

Let T™ denote the n-dimensional torus; i.e., T" = S x 5! x...x S! (n-factors) where

S' is the circle. Browder{13] constructed a smooth manifold which is homeomorphic but
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not diffeomorphic to T7. This shows that (ii) is false. In fact, it follows from later results
that 7" and the connected sum T"#X" are homeomorphic but not diffeomorphic if n > 5
and X" is any exotic n-sphere. That is, &" is a smooth manifold which is homeomorphic
but not diffeomorphic to the standard n-dimensional sphere S™, cf. [65]. On the other
hand, M. Davis and J.C. Hausmann [23] constructed an example of a closed aspherical
manifold which does not support any differentiable structure proving (i) to be false as
well. Moreover, M. Davis and T. Januszkiewcz [24] gave an example of a closed aspherical
manifold which can not be triangulated.

1.4. Examples of Aspherical Manifolds

(1) Any complefe non-positively curved Riemannian manifold is aspherical. This follows

from the Cartan-Hadamard Theorem. Special cases are:
(i) flat Riemannian manifolds,
(i1) hyperbolic manifolds,
| (111) locally symmetric space of non-compact type.

(2) If G is a virtually connected Lie group, K a maximal compact subgroup, and T’
a discrete torsion free subgroup of G, then the double coset space I'\G/K is aspheri-
cal. In this case, G/K is diffeomorphic to R™ for some integer n In the special case
where G is virtually nilpotent and 7;G = 1, the double coset sp;ace I'\G/K is called an
infranilmanifold.

But there are many other aspherical manifolds which are not of the types (1) or (2). For
example, the closed smooth aspherical manifolds constructed by Davis [21] are not of these
types since their universal covers are not even homeomorphic to R™. This is particularly
surprising since the fundamental groups of these manifolds are relatively “tame”. In fact,
they are finite index subgroups of certain Coxeter groups. We will discuss his construction
in Lecture 3.

Gromov [54] has more recently constructed many more examples of aspherical manifolds.

Given any closed manifold N™ which is a polyhedron, he constructed a closed aspherical
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manifold M™ and a degree 1 map f : M® — N™. The reason these manifolds M™ are
aspherical is they are nonpositively curved complexes in the sense of Alexandroff.

Remark. Borel’s conjecture implies Poincare’s conjecture which says that any simply
connected closed 3-manifold is homeomorphic to the unit sphere S° in R*. This is seen as
follows. Let £2 be a counterexample to Poincare’s conjecture, and consider the connected
sum M = T3#53, where T? again denotes S x S x Slm. Van Kampen’s theorem shows
that 7% and M3 have isomorphic fundamental groups. And M is seen to be aspherical
by applying the Hurewicz isomorphism theorem to the universal cover of T3#33. Borel’s
conjecture is contradicted by showing that T3#X? is not homeomorphic to T2. For this

we use the following two results.

1.5. Theorem. (Schoenflies Theorem) Let f : S* — S® be a bicollared embedding, then
f(S?) bounds ciosed (topological) balls on both sides.

1.6. Theorem. (Alezander’s Trick) Let h : S™ — S™ be any homeomorphism. Then h

eztends to a homeomorphism h : D*t1 — D"l where D™ denotes the closed ball of

radius 1 in R**! which bounds S™.

Now if T3#3¥3 were homeomorphic to T3, then the universal cover of T3#%3 is home-
omorphic to R?®. Consequently, the Schoenflies theorem‘ shows that Eé — Int D?® is home-
omorphic to D?®. (This Int D? is the interior of the 3-dimensional ball removed from %?
in forming the connected sum with 73.) Now applying Alexander’s trick, we get L° is

homeomorphic to S3. It follows that T3#X3 is not homeomorphic to T°.
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Lecture 2. Generalized Borel Conjecture

2.1. Structure Sets
Let M be a closed manifold. We define S(M) to be the set of equivalence classes of
pairs (N, f) where N is a closed manifold and f : N — M is a homotopy equivalence.

And the equivalence relation is defined as follows:
(N1, f1) ~ (N2, f2) if there is a homeomorphism A : Ny — N»
such that f; oh is homotopic to fj.

The above definition is motivated by the definition of Teichmiiller space T,. In this
classical situation, M = M, is a closed Riemann surface of genus g > 2. And T, is
the set of equivalence classes of pairs (IV, f) where N is a Riemann surface of constant
curvature —1 and f : N —+ M is a homotopy equivalence. The equivalence relation is the
same as in S(M) except that homeomorphism is-replaced by isometry.

Fora.n aspherical finite polyhedron X, Hurewicz identified Out(m; X) with mo(€(X)),
where Out (7, X) is the group of outer automorphisms of 7, X and £(X) is the space of self
homotopy equivalences of X given the compact open topology. Using this identification,
we get a natural action of Out(m; M) on T, in the following way.: If a € Out(m M,)
and [N, f] € T,, then [N, f] = [N,&o f] where & : M; & M, is any self homotopy
equivalence inducing a. Moreover, Out (7, M,) contains a subgroup I' of finite index such
that T,/T is an aspherical manifold. Recall that T, is diffeomorphic to R%~®. The
manifolds Ty /T' are not compact; but can be compactified, cf. [56], [55]. These manifolds
form another interesting class of aspherical manifolds apparently different from the other
classes of examples mentioned in Lecture 1, cf. [55].

Remark. When M is aspherical, Out(7; M) also acts on S(M). The statement that
|S(M)| =1 is equivalent to Borel’s conjecture. While the statement that Out(m; M) acts
transitively on S (M) is equivalent to the weaker statement that any closed aspherica.l

manifold N with miN ~ 7, M is homeomorphic to M.
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2.2. Variants of Structure Sets’

(1) The smooth structure set is denoted by S*(M). It consists of equivalence classes of
objects (N, f) where now N is a smooth manifold, f : N — M is a homotopy equivalence
and h: N; — N, is required to be a diffeomorphism. Note that we do not require‘ that M
is a smooth manifold, hence S*(M) could be empty. Likewise, the definitions of S(M) and
S°(M) make sense even if M is not a manifold. But for them to be possibly non-empty
M must have the algebraic properties of a ma.nifpld; e.g., it must satisfy Poincare duality
with arbitrary local coefficients. If this is so, then M is called a Poincare duality space
and an interesting question is whether S(M) or §°(M) is non-emptyj i.e., does there exist
a topological or smooth manifold N which is homotopically equivalent to M.

(2) It is also useful to define S(M,0M) where M is a compact manifold with boundary
OM . Here, an object is again a pair (N, f) where N is a compact manifold with boundary
ON and f:(N,ON) — (M,0M) is a homotopy equivalence such that the restricted map
f I on:ON — OM is a homeomorphism. And (Ny, f1) ~ (N2, f2) if there is a homeomor-
phism h : (N3,0N;) — (N3,0N;) such that f; o h is homotopic to f; rel ONy; i.e., the
homotopy between f; o h and f; is constant on ON;.

(3) The smooth structure set S*(M,0M) is defined similarly.

Borel’s conjecture can be generalized to the following statement.

'2.3. Generalized Borel Conjecture. ' If M is a compact aspherical manifold with
perhaps non-empty boundary, then |S(M,0M)| =>1.
2.4. Examples of compact aspherical manifolds with boundary.

(1) Let G be a semi-simple Lie group and K a maximal compact. subgroup. Suppose
that I' is a torsion free arithmetic subgroup of G for some algebraic group structure on
G defined over Q. Then M.S. Raghunathan [85] showed that the double coset space
M = T\G/K is the interior of a compact manifold with boundary. Note that this shows
that I" is finitely generated and, in fact, of the type FL in the sense of Serre [88]. Later

Borel and Serre [10] gave a second compactification M of M. In their compactification
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the boundary of the universal cover of M is homotopically equivalent to a wedge of spheres
S™ where m equals Q rank(G) — 1. This has some useful consequences about the group
‘cohomology of I'. Namely, they deduce from thlis that the cohomological dimension of T' is
dim(G/K) — Q rank(G) and that I is a duality group in the sense of Bieri and Eckmann
[7). It is a consequence of the vanishing results on Whitehead torsion (to be discussed
later) that the two compactifications are diffeomorphic provided dim(G/K) # 3,4, 5.

(2) The compactification of T,/T' due to Harvey [56], mentioned earlier, is another
example. Again, the boundary of its universal cover was shown by Harer [55] to be homo-
topically equivalent to a wedge of spheres. Harer showed, in this way, that I' is a duality
group and he also calculated its cohomological dimension. ‘ .

A fundamental problem in topology is to calculate |S(M,8M)|; i.e., the cardinality of
the set S(M,0M). Surgery theory was developed to solve this problem. It essentially
rladﬁ(ié’d the problem to calculating certain algebraically defined obstruction groups which

are functors depending only on m; M (when M is orientable). In particular, showing that
[S(M x D™, 0(M xD"))| =1

for all sufficiently large integers n, yields a calculation of the obstruction groups for m M
when M is aspherical. Hence the verification of the generalized Borel conjecture would
make surgery theory an effective method for calculating |[S(N,dN)| for any compact
connected manifold (not necessary aspherical) with ;N isomorphic to m; M, provided
dim N > 5.

We will still refer to the generalized Borel conjecture as Borel’s conjecture because of a

corollary to the following result of M. Davis [22].

2.5. Theorem. (Davis) If K is a finite aspherical polyhedron, then there exists a closed

aspherical manifold M such that K is a retract of M.



2.6. Corollary. If |S(M)| =1 for every closed aspherical manifold M, then |S(N,0N)| = 1

for every compact aspherical manifold N with boundary ON .

Remark. This theorem is implicit in Davis’ paper [22] and is made explicit by Bizhong
Hu in [63]. Hu shows that if K is non-positively curved in the sense of Alexandroff, then
the manifold M of Davis’ theorem can be constructed to also be non-positively curved
in the sense of Alexandroff. If we consider a functor from topological spaces to groups,
for instance the Whitehead group funcfor X — Wh(m; X), then the following result is
an immediate consequence of Davis’ theorem. If such a functor vanishes on all closed
aspherical manifolds, then it mﬁst also vanish on all finite aspherical complexes. (Hu uses
this fact in his work on Whitehead groups.) An elaboration of this idea can be used to

verify the above Corollary 2.6. We will discuss this in a later lecture.



Lecture 3. Davis’ Construction

This lecture is devoted to sketching the proof of Theorem 2.5.
Step 1. We can assume that K is a compact smooth manifold with boundary. For
example, embed K in R™ for some n. Then replace K with a regular neighborhood of it.
Step 2. Let K be a smooth manifold with boundary and T be a piecewiée smooth
triangulation of 0K . Let V' and E denote the set of vértices and edggs of T, respectively.
Associa.te to T the group I' generated by the vertices v € V with the relations v? = 1 if
v E V and (uv)? =1 if {u,v} € E. For each subset S of V, I'(S) denotes the subgroup
of I generated by S. We identify a simplex o of T with the subset of T consisting of the
vertices of o; consequently, I'(¢) is defined. For v € V', let D(v) = Star(v) be th;: closed
dual cell of v in the first barycentric subdivision of T'. For each simplex o in T, its dual
cell
D(o) = ({D()}

where v varies over the vertices of . The dual cells give a regular cell complex structure
to OK. To each x € OK associate the subgroup I'y = I'(0') of T', where & is the unique
simpiex such that z € Interior D(c). If z € Interior K, then define I'; = {1}. Define
M =K xT'/ ~, where (z,a) ~ (y,0) if and only if z =y and a™!8 € T',. There is an
obvious action of T on M; ie., g[z,h] = [z,gh] for g € T and [z,h] € M. (Compare J.
Tits [95].) Note that the orbit space M/T' = K.

Step 3. This step is devoted to proving the following result.

3.1. Lemma. Provided T 1is a first barycentric subdivision of a simplicial complez F,

then I'(S) is a finite (Cozeter) group if and only if S is a simplez of T.

Proof. If S is a simplex of T, then all the elements in I'(S) commute and hence are
of order two. Therefore, I'(S) = (Z/2)!5l. Conversely, if T'(S) is finite, then for each
pair v # w in S we must have {v,w} € E; otherwise, I'(S) would map onto an infinite

dihedral group. We will now use the assumption that T is a first barycentric subdivision
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of a simplicial complex F'; i.e., the vertices V of T are the simplices of F'. Note that
V is partially ordered by the face relation on the simplices of K. The simplices of T
are the totally ordered subsets of V; i.e., the subsets for which every pair of elements are
comparable. But we have just seen that if v 94 w € S, then {v,w} is a simplex of T;
hence v and w are comparable. This implies that S is a simplex of T'.

Example. Let K be a 2-simplex and T be the 1-skeleton of K, then I is the finite group
Z3 & Zy @ Z, . But this does not contrad@ct Lemma 3.1 since T is not the.first barycentric

subdivision of anything. Note in this example that M is the octahedron.

Figure 2
Step 4. We may assume during the femainder of the proof of Theorem 2.5 that T is
the first barycentric subdivision of some simpliciai complex K ; e.g., replace T by its first
barycentric subdivision. Hence, Lemma 3.1 is applicable to T. Since T is a Coxeter group,
it has a faithful representation into GLy|(R). Consequently, by a result of Selberg [87],
I' contains a normal subgroup II of finite index such thaf II is torsion free. In this case,
II can be taken to be the kernel of the obvious epimorphism I" — Z|2V| where Z‘2Vl is the
abelianization of I'. Using the fact (from Lemma 3.1) that I'; is a finite Coxeter group
for each ¢ € K, Davis shows that M = M/Il isa closed manifold. Let G = I'/II, then G
acts on M and M/G = M/T' = K. Now the maps K - M — M/G = K demonstrate
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that K is a retract of M.
Step 5. Using the fact (from Lemma 3.1) that I'(S) finite implies S is a simplex of T,
Davis shows that the group elements in I' can be enumerated as g;,g,,... so that the
following statement (%) holds:
(*) Mp N (K X gnt1) is contractible, where M, = U{K xgi|l1<i1<n}.
The intersection in (*) is, in fact, homeomorphic to D™~! where m = dim K. Coﬁse-
quently, if K is contractible, so is each M,,; and if K is aspherical, so is éa.ch M, It
follows that M is contractible when K is contractible. Likewise, K aspherical implies
M is aspherical which in turn implies M is aspherical. This completes our sketch of the
proof of Theorem 2.5.
Remark 1. We see by (*) that M, is a manifold with boundary. Also, OM,+; = OM, # 0K ;
therefore, '

T (OMy) = m1(8K) * ... * 1 (0K), n factors,
provideci dim K > 3. Here * denotes free product. This means that M is not simply
connected at infinity if 7;(0K) # {1}. In particular, M is not homeomorphic to R™.
Now it is well known that there exist K, for each m > 4, such that K is contractible but
OK is not simply connected. In this way, Davis [21] gets his example of a closed aspherical
manifold whose universal cover is not R™.
Remark 2. The example due to Davis and Hausmann [23] of a closed aspherical manifold ‘
which does not support a smooth structure is constructed by first finding a compact,
piecewise linear, aspherical manifold K with non-empty boundary such that the interior
of K does not support a smooth structure. (Davis’ construction does not need that K
is smooth; it only uses the triangulation T of 0K.) Well known results from smoothing
theory yields such a K. Consequently, M = M/II does not support a smooth structure.
If it did, then so would M and any open subset of M in particular, the interior of K.
Remark 3. The example of Davis and Januskiewicz [24] require new ideas employing

Gromov’s hyperbolization construction [54].
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Lecture 4. Surgical method for analyzing S(M)

The problem of showing |S(M)| = 1 breaks into\thfee geometric steps which we now
describe. V
Step 1. To show that [N, f] € S(M) is ‘normally'coborda'nt to [M,id]. This mea'.ns that
there exists a compact cobordism W and a map F : (W,0W) — (M x [0,1],8) with the
following properties.

(a) The boundary OW = N[[M. (Set N =8"W, M = 0~W.)
(b) The restriction map F|3+W : YW —M x 1 is equal to f and
FIa—W :0”W — M x 0 is equal to the identity map.
(c) The map F is covered by an isomorphism F : N(W) — £ where N(W) is the
stable normal bundle of W and £ is a bundle over M x [0, 1].
From now onwards we will denote a normal cobordism by the triple (W, F,~) where ~

denotes the isomorphism covering F'.

Step 2. To show that the cobordism W in Step 1 can be chosen to be an h-cobordism;

i.e., F' is actually a homotopy equivalence.

Step 3. To show that the h-cobordism W of Step 2 has trivial Whitehead torsion and

hence W is a product. (Here dim M >5.)

We now put an equivalence relation “~” on the set of all normal cobordisms. We say

(W1, Fi,~1) ~ (W,, Fy,~,) if and only if there exists a triple (W, F, E) where W is a
cobordism between W; and W, and F : W — M x I x I satisfying the following properties
where I = [0,1]. The restriction |, : Wy — Mx0xI is Fy,and F|,, : Wp - Mx1xI
is Fy. Also, f'lw_ = idpxrxo and f|w+ is a homotopy equivalence, where W~ and
WT are described in Figure 3.

13
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Figure 3

Also, = is an isomorphism of /(W) (the stable normal bundle) to some bundle £ over
M x I xI which covers F and which restricts to ~; and ~,; over W; and W;, respcctivcly.
-When m = dim M > 4, the equivalence classes of normal cobordisms form a group which
depends only on 71 (M) and the first Stiefel-Whitney class w; (M) € H'(M,Z?). When M
Vi-s\br'i.enta,ble, then w; (M) = 0. (We will usually suppress mentioning w;(M).) The group
of nor;ha.l cobordisms modulo equivalence is denoted Ly41(m M) where m = dim M.
(See [96] for a purely algebraic definition of the groups L,(w).) The results described
above are proven in [96] and [67]. | |
Remark. Although the groups L,(m M) are always countable, they are sometimes not
finitely generated. Cappell [16] for example showed that Lsn42(Doo) is not finitely gen-
erated (for all va.!ues of n) where Do, denotes the infinite dihedral group. On the other
hand, Wall [97] has shown that L,(I") is finitely generated when I' is a finite group. He
also here calcuiated L,(T) for |I'| odd. And Wall [96] showed that L,(I") = Ly q(T) for
every I' (not necessarily finite).
4.1. Deflnition. A normal cobordism (W, F,~) is called a spectal normal cobordism if
F| w+ 18 a homeomorphism.

We note that a positive solution to Step 2 is equivalent to showing that the normal

cobordism of Step 1 is ~ to a special normal cobordism.
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We can define a stronger equivalence relat?on ~, on the set of special normal cobor-
disms by requiring the restriction F IW + of the earlier equivalence relation ~ to be a
homeomorphism. This set of special normal cobordisms modulo the equivalence relation
~ is also an abelian group and it is naturally identified with [M x [0, 1], 8; G/Top]. Here,
G/Top is an H-space and [X, A; G/Top) dénotes the set of homotopy classes of maps
f : X — G/Top such that the restriction f | 4 = 1; ie., has constant value the homotopy

identity element in G/Top.
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Lecture 5. Surgery Exact Sequence

In the last lecture, we mentioned an H -space G/Top. We now note down some infor-

mations about G/Top without actually defining it:

(0, ifnisodd

ma(G/Top) =4 Z, ifn=0 mod 4

\ Z;, ifn=2mod4

G/Top® Q= [[ K(Q,4n)

n=0

G/TQp@Z(g) = H K(Z(g),4n) X H K(Z;,4n + 2)

n=0 n=0
G/Top ® Zodd = BO ® Zogd-
(In these formulas, Z) = Z[3, %, ...] and Zogq = Z[%] .) Tt is a consequence of the second
\féx\"mula above that

[X, 4; G/Top] ® Q= P H*"(X, 4;Q)

n=0
for any pé.ir of topological spaces (X, A).
Historical Remarks. D. Sullivan [93] determined the properties of G/PL in his works
on the Hauptvermutung. His results combined with those of Kirby-Siebenmann [67] yield
the results on G/Top mentioned above. The formulation of the surgery exact sequence

given below is also ‘due to work of Sullivan and Wall refining the earlier work of Browder

;

[12] and Novikov [77]. The Kervaire-Milnor paper [65] on §°(S™) was the prototype for
this method of studying S(M).

5.1. Definition. We next déefine a variant of S(M) denoted S(M). The underlying set
of S(M) is same as that of S(M). But now [Ny, fi] is said to be equivalent tc; [Nz,ifg]
if there exist an h-cobordism W between N; and‘ No and amap FF: W — M x I such

that F|,_,, = f1 and F|,,, = fo, where "W = N; and 8*W = N,.
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Note that S(M) = §(M) when Wh(m;(M)) = 0 and dim M > 5. A set S(M,0M)
can be defined similarly when M is a compact manifold with boﬁnda.ry. (The nota-
tion S(M,8M) is sometimes abbreviated to $(M,d) and likewise [M,dM;G/Top] to
[M, 3; G/ Top].) |
Surgery Exact Sequence. Let M™ be a compact connected manifold with non-empty
boundary. For any non-negative integer n, we can form a new manifold M™ x D", where

D" is the closed n-ball. Then there is long exact sequence of pointed sets:
Ty S(M xD",8) —*— [M x D", 8;G/Top] —— Lnpn(mM) ——s -,
s §(m xD,8) —“— [M x D',8;G/Top] —%— Lumsi(mM) ——s S(M, )
—~ [M,8;G/Top] —— Lmp(m M).
The maps o (when n > 1) and 7 can be defined using the identifications mentioned

earlier. Recall that L, yn(m1 M) = Lyia(m (M x D*71)) is the set of equivalence classes

of normal cobordisms on M x D*~! and that
| [M x D*,8; G/Top] = [M x D" x [0,1],8; G/ Top]

consists of the equivalence classes of special normal cobordisms on M x D*~!. Then, ¢ is
the map which forgets the special structure; while, 7 sends a normal cobordism W to its
top‘ atwW.

The maps w, when n > 1, similarly have a natural geometric description. We il-
lustrate this when n = 1. Let (W, F) represént an element z in S(M x [0,1],8).
Then, W is an h-cobordism between 0~W and 3+IiV. Furthermore, the restrictions
Fla—W :0"W — M x 0 and F|a+W : 0tW — M x 1 are both homeomorphisms. If the
first of these two homeomorphisms is idps, then (W, F,~) is also a special normal cobor-
dism and, considered as such, is w(z). A bundle isomorphism =~ with domain N (W) is
determined since F' is a homotopy equivalence. But it is easy to see that (W, F) is equiv-
alent in S(M x [0, 1], 8) to an object (W', F') such that W' = M and F'| o = idy.

In this way, w(z) is defined.
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With this above description of the maps o, T and w, it is not difficult to show that
the surgefy sequence (above the last few terms; i.e., above those near Ly, (7, M)) is exact;
The last few terms pose extra difficulty. But the following important periodicity result,
due to Kirby-Siebenmann [67], allow us to avoid worrying about these difficulties when

considering Borel’s Conjecture.

5.2 Theorem. (Kirby-Siebenmann) Let M be a compact, connected manifold with
dim M >5. If OM £, then

|S(M,0)| = [S(M x D*,9)|.
If OM =0, then
|S(M)| < |S(M x D*,9)|.

5.3. Definition. The map o in the surgery sequence is called either the surgery map or
the assembly map.
Remark 1. When n > 1, o is a group homomorphism.

Remark 2. If OM = (), then the surgery sequence still exists and remains exact, provided

we omit its last term.
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Lecture 6. Condition (x)

Recall Alexander’s Trick; namely, Theorem 1.6 from Lecture 1. This fundafnental result

is quite elementary. It has in fact the following one line proof.
Proof. Set h(tz) = th(z) where z € S™ and t € [0, 1].

6.1. Addendum. Even when h: S™ = S™ is not a homeomorphism, but only a contin-

uous map, the above map h: D"t = D™t is a continuous eztension of h.

Remark. Note that k is rarely differentiable at 0 even if h is. Precisely stated, A is
differentiable if and only if h € O(n + 1); i.e., h is the restriction of an orthogonal linear
transformation. There can, in fact, be no smooth analogue of Alexander’s Trick as Milnor
[72] proved by constructing examples of exotic 7-dimensional spheres.

Let us now use Alexander’s Trick together with the topological version of Smale’s h-

cobordism theorem [90], due to Kirby-Siebenmann [67], to calculate S(D",0) when n > 5.
6.2. Theorem. When n>5, |S(D"*,9)|=1.

Proof. Let f:(N,ON) — (D", S"—i) represent an element in S(D",8). Then, by defini-
tion, fl an - ON — S™71 is a homeomorphism. We must show that f is homotopic rel 8
to a homeomorphism. Let B™ be a (locally flatly) embedded closed n-ball in the interior of
N. Then, N —Int B" is an h-cobordism between OB™ and 0N, and hence N —Int B" is
homeomorphic to S™~! x [0,1] by the h-cobordism theorem. Using Alexander’s Trick, we
see that N = (N —Int B") UB" is homeomorphic to D";ie., (N,0N) = (D", S™1). Let
o=f | gn—1 and ¢ : D® — D" be the homeomorphism e:stending ¢ given by Alexander’s .
Trick. Let ¥ = fU @ : S™ — S™ denote the continuous map which is f on the northern
hemisphere and & on the southern hemisphere. Then its continuous extension ¥, given

by Addendum 6.1, can be used to construct the desired homotopy rel 0 between f and

¢.
Remark 1. We will use Theorem 6.2, the surgery .exact sequence and the Cartan-

Hadamard theorem to show, in our next lecture, that the assembly map o in the surgery

- 19



exact sequence is a split monomorphism when M is a closed non-positively curved Rie-
mannian manifold and n > 1.

Remark 2. Set M = D® in the surgery exact sequence and observe that M x D" = D**3.
Since Wh(m M) = Wh(1) = 0, S(M x D", 0) = S(M x D*,0). These observations

cémbined with Theorem 6.2 yield that the surgery map
g 7!',,+5(G/TOP) — Ln+5(1)

is an isomorphism for all n > 0. Now Kervaire-Milnor [65] calculated L,,(1); namely,

(Z ifm=0mod4

Lo.(1)=4 Z, ifm=2mod4

L 0 if m is odd.
This yields the following calculation of 7y, (G/Top) valid for m > 5:

( Z ifm=0mod4

Tm(G/Top) = Z; ifm =2mod 4

L O if m is odd.

The same result is shown to hold for m < 5 by special arguments. This is the method used
by Sullivan in [92] to calculate 7,,(G/PL) and was the first step in his later determination
of G/PL in [93]; cf. Historical Remarks in Lecture 5.

I now formulate a useful abstract property which is possessed by many aspherical man-
ifolds M. This property was introduced in [30]. It will be shown in the next lecture how
this property relates to the question of the split injectivity of the assembly map in the
surgery exact sequence for M.

6.3. Deflnition. A closed manifold M™ satisfies condition (*) provided there exists an

action of m{M™ on D™ with the following two properties.
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1. The restriction of this action to Int(D™) is equivalent via a (7;M)-equivariant home-
omorphism to the action of m; M by deck transformations on the universal cover M of
M™.

2. Given any compact subset K of Int(D™) and any € > 0, there exists a real number
8 > 0 such that the following is true for every v € m M. If the distance between K

and S™~1 = D™ is less than &, then the diameter of YK is less than €.

Note that any manifold satisfying condition (*) is obviously aspherical.
Remark. Every closed (connected) non-positively curved Riemannian manifold M satis-
fies condition (*). This was shown in [30] by considering the geodesic ray compactification
M of M defined by Eberlein and O’Neill [26]. The compactification M of M is homeo-
morphic to D™. The verification of property 2 in condition (*) uses the well known fact

that exp, : TuM — M is weakly expanding; cf. [59, p. 172, Lemma 1.
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Lecture 7. Splitting the Assembly Map

Between the notions of normal cobordism on a manifold M and special normal cobor-
dism on M, there is an intermediate iject called a simple normal cobordism. Recall that
a normal cobordism on M is-a triple (W, F,~) in which F' isamap F: W — M x I such
that F|3+W :0TW — M x 1 is a homotopy equivalence and F'a-w :O0W > Mx0is
the identity map. If F' I otw " YW — M x1 is a simple homotopy equivalence, we say that
(W', F,~) is a simple normal cobordism. (Recall that (W, F,~) is a special normal cobor-
dism if F| 5+w 18 @ homeomorphism.) There is an obvious equivalence relation on the set
of simple normal cobordisms analogous to the équiva.lence relation on normal cobordisms
and special norm;al cobordisms. Wall [96] showed that the equivalence classes of simple
norrhal cobordisms form an abelian group, denoted by L ., (7 M), which depends only
on w3 M and on the first Stiefel-Whitney class w;(M). The forget structure maps define
group homomorphisms

g : (M x[0,1],0;G/Top] = Ly, (71 M) and
N Lypya(miM) = Linys (71 M).

And these homomorphisms factor the assembly map
o [M x[0,1],8; G/Top| = Lyy1(m M)

as 0 =7n03. It is known that 5 is an isomorphism after tensoring with Z[1]. This is a
consequence of Rothenberg’s exact sequence, cf. [96, p. 248]. Of course 1 is an isomorphism
before tensoring with Z[] if Wh(m; M) = 0.

Recall condition (*) defined in Lecture 6. Farrell and Hsiang [30] split the simple

assembly map when M satisfies condition (*). The precise statement is the following.

7.1. Theorem. Let M™ be a closed manifold satisfying condition (x) and let
& : [M x D", 8;G/Top| —+ L:,.(71M) be the simple assembly map. Then & is a split
monomorphism provided n 22 and n+m > 7.
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Proof. In order not to obscure the main idea of the proof, we will assume that M is

triangulated and that n = 2. We will construct a function
d: L% o(mM) = [M™ x D?,8; G/Top]

such that d o & = id. This shows that & is a monomorphism. We will not verify that
d is a group homomorphism since this will not be important to our later applications of
Theorem 7.1.

To construct d, we will use the geometric description of & as the forget structure map
from the equivaleﬂce classes of special normal cobordisms on M X [0,1] to the equiva-
lence classes of simple normal cobordisms on M x [0,1]. Hence, given a simple normal
cobordism (W, F,~) on M x [0,1], I must give a method which produces a special normal
cobordism (W', F',~') on M x [0,1] in such é. way that if (W, F,~) is already special,
then (W', F',~' ) = (W, F,~).

Since M satisfies condition (*), identify the deck transformation action of m1(M) on
M with the action of m;(M) on Int(D™) mentioned in the deﬁnition of condition (*). The
action of m1(M) on D™ naturally extends to an action of m;(M) on D™*! as indicated

in Figure 4.

Figure 4

Here, the action of 4 € 71 (M) linearly maps the vertical line segment L in D™+ which
meets D™ perpendicularly in the point z to the vertical line segment L' meeting D™ at
~(z). Notice that the extended action satisfies the following analogues of properties 1 and

2 of condition (*).
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1. The restriction of the action of m;(M) to D™*! — 8D™ is equivalent to the deck
transformation action on the universal cover of M x [0, 1].
2. Given € > 0 and a compact subset K of D™*1 — D™ there exists a number
d > 0 such that the following is true for every « € m; (M). If the distance between
~K and D™ is less than 4, then diam(yK) < e.
Again identify the action of 7;(M) on M x [0, 1] with the extended action of =1 (M) on

D™+1 — 9D™. Now properties 1’ and 2’ have the following important consequence (xx).

(**) Let h: M x I — M x I be any self-map with h|, . =idaxo. Then its unique
lift h: M xI — M x I, with Blﬂxo = id 7o, uniquely extends to a self map

h: D™*1 — D™*! by setting h| opm = idapm -

For the remainder of the proof, let I’ denote m1(M). Note that the extension h of (**)
is a I'-equivariant map. Since the universal cover M Misa principal I'-bundle, we
can form the associated D™*!-bundle E — M whose total space is M xr D™+1; je. E
is the orbit space of the diagonal action of I'.

The action of I' on D™*! leaves invariant the northern and southern hemispheres of
8D™+1: which we denote by 9, D™*! and 8_D™*!, respectively. It also leaves invariant

the equator D™ . (See Figure 5.)

Figure 5

The associated 8;D™!, 9_D™+! and OD™-bundles to M — M are sub-bundles of
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E — M. Their total spaces are denoted by 8. E, - F and OoE , respectively.

Let (W, F,~) be a simple normal cobordism on M x I. (See Figure 6.)

(M xI)x1
oW o {(MxDx[0,1)| < (M x 81 x [0,1]
F
(M xI)x0
o-w
Figure 6

Recall W = 0_W U8, W U &W and F|,,, = F- UF; U Fy, where
F_:0_W — (M xI)x0 is the identity map;
F,:0,W — (M xI)x1 is asimple homotopy equivalence;
Fo: W — (M x 0I) x[0,1] isa homeomorphism.

Consequently, 04 W is an s-cobordism and hence a cylinder. We can therefore identify
6+W with M x I = M x [0,1] in such a way that Fy : M x I —+ M x I is a homotopy

equivalence; F.,.[ Mxo = Hdmxo and F+[ Mxy 18 @ self homeomorphism.
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Lecture 8. Novikov’s Conjecture

The proof of Theorem 7.1 is completed in this lecture. After that, I formulate a conjec-

ture due to Novikov which is related to the splitting of the assembly map.

Let (W, F,~) be a simple normal cobordism over M x I where dim M > 5. Recall
from lecture 7 that we have identified 0; W with M x I so that h| Mxo = idm and h’ Mx1
is a homeomorphism, where A is an abbreviation for F,. Let A: M x I — M x I denote
the unique lift satisfying 7z| irxo = ijirxo- And let h : D™ ID-"‘+1 be the unique
extensioﬁ of i which exisfs because M satisfies condition (*) and hence condition (*x) is

satisfied. (See Lecture 7.) Note the following properties of h.

0. h is I'-equivariant. (Recall I' = my M.)
1. 'f—z| spm+1 15 @ self homeomorphism of op™+!

2. hla~Dm+1 = ids_pm+1.

3. h~1(0D™) = 8D™.

Recall, also from Lecture 7, that ¢ : E — M is the D™*!-bundle associated to the
universal cover M — M. Let E = E — 8E; it is identified with the total space of
the M x [0, 1]-bundle associated to M — M. (Remember the I'-spaces M x [0,1] and
D™+l — OD™ were identified in Lecture 7.) So property 0 yields that idy x A induceé
a self bundle map of E — M covering idp;. Denote this map by k¥ : E — E. Fix
a triangulation of M. The following properties 1/, 2, 3’ of k are consequences of the
corresponding properties 1, 2, 3 of A. And property 0’ is obvidus_since k is a bundle map
covering id p .
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0. k(¢7(A)) C ¢ (A) for each closed simplex A
of the fixed triangulation of M.

1. k] op 15 aself homeomorphism of OE.

2. k|, p=ids_p-

3. k™1(GE) = BoE.

8.1 Lemma. There is a homotopy k¢ (0 < t < 1) of k such that ko = k, k; is a

homeomorphism, and each map k; satisfies properties 0', 1', 2', 8'.

Proof. The construction of k; proceeds by induction over the skeleta of M via a standard
obstruction theory argument. Note the following. If A is an n-simplex in M, then
g HA) is homeomorphic to D**™+! . Hence, the obstructions encountered in extending
the homotopy from over the (n — 1)-skeleton to over the n-skeleton lie in S(D*t™+! 9).
But these all vanish because of Theorem 6.2; i.e., |S(D*,8)| = 1 when s > 5. Q.E.D.

Let us now continue with the proof of Theorem 7.1. Consider the universal cover W
of W and let £ : W — (M x I) x [0,1] be the lift of F such that F_ = idg,;.
(Recall F_ = idpxy). Since W is a T'-space, we can let V2™+2 3 M be the W-bundle
a,ssociated to the universal cover M — M. Note that E x I — M is the (M x I) x I-
bundle associated to M — M. Hence id j x F induces a bundle map G : V = E x I
covering id ps. Let 8, W, O_W, 8oW be the parts of W lying over O, W, 8_W, &W,
respectively. These are I'-invariant subspaces of OW and W = 8, W U W UO_W.
Denote the total spaces of associated subbundles by 94V, GV, 0_V, respectively. We
can identify Gla_v :0_V - E x0 with idg, and G|a+v : 04V — E x 1 with klE. Also
observe that GI P oV — aE x I is a homeomorphism. We may assume, after a special

homotopy using Lemma 8.1, that G| PR is a homeomorphism and hence

(1) Glav : 0V — B(E x I) is a homeomorphism.
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Identify M with the submanifold of M xp M which is the image of diagonal in M x M
under the quotient map. (We think of this submanifold as the “zero-section” to the bundle
MxrM—> M .) We also, in this way, identify M x I? with a submanifold of E x I using
that E x I = (M xp M) x I*. Note that

2) | 8(M x I) C 8(E x I).

Because of facts (1) and (2), we can make G transverse to M x I? rel 8. Then,
set W2 = G=M(M x I*) and let F : W™ — M x I? be Gl,.,,. Note that
F|6W : OW — O(M x I?) is a homeomorphism which over (M x I) x 0 is idpxr. The
isomorphism 2~ also naturally induces an isomorphism = of the stable normal Bundle of

W to a bundle over M x I 2. The triple (W, F, =) is therefore a special normal cobordism

ovér M x I. One checks that the correspondence
(W,F,~) » (W, F,=)

sends equivalent simple normal cobordisms to equivalent special normal cobordisms and

hence defines a function
d: L2 ,(mM)— [M x I*?,8; G/Top).

(This checking uses a relative version of Lemma 8.1.)

Now suppose that (W, F, E) is a special normal cobordism. Then, in constructing
(W, F,=2), it is unnecessary to use Lemma 8.1.- Hence W‘is the “graph of F'”. To be
more precise, let fWoM denote the composition of F : W — M x I? with projection
onto the ﬁl;st factor of M xI2. Then W = G~1(M x I?) is the image of graph (f) C M xW
under the quétient map to V'= M xpr W. Since the map z — (f(a:), z) is I'-equivariant, it
determines a cross-section f to the bundle V — W and f: W — W is a homeomorphism

such that F o f = F. In this way, we see that (W, F,~) and (W, F,=%) are isomorphic,

hence equivalent, special normal cobordisms. Therefore, do o = id. Q.E.D.
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Remark 1. Lemma 8.1 is the key to the proof of Theorem 7.1. Note we only needed a
proper homotopy rel 0 of k’ g toa homeomorphism. But the obstructions encountered
in extending such a homotopy from the (n — 1)-skeleton of M to the n-skeleton lie in
7n+1(G/Top) and these groups are Z, Z; or 0 dépending on the congruence class of n
mod 4. But condition (*) enabled us to convert the problem to one over E where the
obstructions were automatically 0, since [S(D",0)] =1 for all n > 5.

Remark 2. The simple assembly map 7 : [M™ x D*,0; G/Top] = L; (71 M™) is also
a split injection when M™ = I'\G/K , where G is a virtually connected Lie group, K is
a maximal coﬁlpact subgroup of G and T is a co-compact, discrete, torsion-free subgroup
of G. This is proven by Farrell and Hsiang in [33], [34]. Here it is not known, in general,
that M™ satisfies condition (*). (It does when G is a semi-simple linear Lie group, since
M™ then supports a non-positively curved Riemannian metric.) A weaker condition than
condition (*) does hold, and hence a stronger fact is needed than that |S(D",0){ =1 for
n > 5. The needed fact is that [S(N™ x D', 8| = 1 for every closed infranilmanifold N ™,
orovided n 41 > 5. This fact was proven by Farrell and Hsiang in [32].

Theorem 7.1 has the following geometric consequence which is also proven in [30].

8.2. Corollary. Let f : N — M be a homotopy equivalence between closed manifolds
such that M supports a non-positively curved Riemannian metric. Then, fxid: NxR® —

M x R® is properly homotopic to a homeomorphism.

This corollary is a consequence of the surgery exact sequence together with another
fundamental result in surgery theory; namely, the -7 theorem, due to C.T.C. Wall. (See
[30] for details.)

Remark 3. It was conceivable, when [30] was written, that every closed aspherical mani-
fold M™ satisfies condition (*). But Davis [21] showed this is not so. His examples where

the universal cover M™ is not homeomorphic to R™ contradict property 1 of condition (*).

(See Remark 1 in Lecture 3.)
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On the other hand, M™ x S! satisfies property 1 of condition (x) whenever M™ is
homeomorphic to R™. This is seen as follows. Let Z denote the additive group of integers.
Its natural action by translations on R extends to an action on [—oo,+00) where each
group element fixes —oo. We hence have a product action of (M x S1) = m (M) X Z
on M x [-c0,+00) = R™ x [0,+00) which extends to its one point compactification
D™*1, If we let this be the action posited in Definition 6.3, then it satisfies property 1 of
condition (*); but, not property 2.

Note that the universal cover X of M™ x S! is homeomorphic to R™*! when m > 5.
This fact is due to Newman [51], since X is contractible and simply connected at infinity.
Consequently, M™ x S x S1 x §? satisfies property 1 of condition (*) whenever M™ is a
closed aspherical manifold with m > 4. Also, if one examines the proof in [30] of Corollary
8.2, it is seen that this result remains true when the condition “M is non-positively curved”
is replaced by the weaker condition “M x S! x S1 x S! satisfies condition (*).”

There is the following question apropos Remark 3.

8.3. Question. Let M™ be a closed manifold such that =3 M™ is virtually solvable.
Suppose M™ satisfies condition (*). Does this imply that m1M is virtually abelian?

This question is motivated by Yau’s result [98] that such an M cannot support a non-
positively curved Riemannian metric which is nof flat.

We end this lecture with a description of a conjecture due to Novikov and its relation Ato
splitting the assembly map. There are two sets of rational characteristic classes associated
to a manifold M ; namely, its rational Pontryagin classes p;(M) and its L-genera L;(M);
both of which are elements of H*(M,Q) and are defined for all integers i > 0. They
contain essentially the same information about M since the L-genera are polynomials in
the Pontryagin classes and vice versa. Novikov [78] proved the fundamental fact that the
rational Pontryagin classes are topological invariants; i.e., if f : M — N is a homeomor-
phism between manifolds, then f*(pi(N)) = pi(M). This is, of course, equivalent to the

analogous statement for L-genera.
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Associate to any map f: M — N elements Li(f) € H*(M,Q) defined by

Li(f) = Li(M) — f*(Li(N)).

Then Novikov’s theorem is equivalent to saying L;(f) =0, for a.ll ¢t 2 0, when f is a
homeomorphism. Now it is easy to construct examples where this vanishing fails when
f is merely a homotopy equivalence. But Novikov conjectured a partial vanishing result
which we proceed to formulate.
8.4. Definition. Given a group T, let H{(M,Q) denote the subset of H(M,Q) con-
sisting of all elements of the form ¢*(z) where z € H i(F: Q) and ¢: mM — T is a group
homomorphism. Here, ¢ : M — K(T',1) is the continuous map induced by ¢.
8.5. Conjecture. (Novikov [79]) Let f: M™ — N™ be a homotopy equivalence between
closed (connected) orientable manifolds. Then the cup products L;(f) Uz vanish for all 1
and every r € Hp' ~4(M,Q), where T is an arbitfa.ry group.

If we fix a group I" but allow f, M and N to vary, then the above assertion is called
Novikov’s conjecture for the group T'.
Remark 4. Suppose H*(M,Q) = H{(M,Q). This happens, for example, when M is
aspherical and mM = I'. With this assumption, the rational Pontryagin classes of M
are invariants of homotopy equivalence provided Novikov’s conjecture for I' is true. This
assertion follows from Poincare duality.

Wall {97, pp. 263-267], expanding on ideas of Novikov [79], gives the following relation-

ship between Novikov’s conjecture and the assembly map.

8.6. Theorem. Let M™ be a compact, orientable, aspherical manifold with mqM™ =T.

Then, Novikov’s conjecture for I' is true if and only if the (rational) assembly maps
On i [M™ xD"0;G/Top] ®Q — L; . (mM™)®Q
are monomorphisms for all integers n satisfying both n > 2 and n+m > 7.

Remark 5. Hence, Theorem 7.1 implies that Novikov’s conjecture for T' is true when

I' = myM and M is a closed (connected) non-positively curved Riemannian manifold.
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However, this result was proven much earlier and via a different technique in Mishchenko’s

seminal paper [73].
Remark 6. Although much work has been done verifying Novikov’s conjecturer for a
very large class of groups I', it remains open and is still an active area of research. See

Kasparov’s paper [64] for a description of the state of the conjecture as of 1988. Additional

important work on it has been done since that date.
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Lecture 9. Geometric groups -

Connell and Hollingsworth [20] introduced the notion of geometric group in the hope of
pfoving the topological inva.ria.née of Whitehead torsion. Although they did not succeed
at that time, their concept was revived by F. Quinn [84] who showed that it is a useful
framework in which to prove “control theorems” in topology.

A geometric group G on a metric space X is a finite sequence zj,...,z, of points
in X; G also denotes the free abelian group equipped with the ordered basis z;,...,z,.
(More precisely, the basis is (1,21),(2,22),...,(n,zxa); e, if ¢ # j but z; = z;, we will
consider z; and z; to be distinct elements in G.)

Remark. One can similarly ciéﬁne the concept of geometric R-module over X where R
is a fixed ring. This notion is particularly useful when R = ZII where II is a discrete
group. But, for the present, we will stick to the case II = 1; i.e., R=Z.

Let G; and G2 be two geometric groups with bases {z;} and {y;}, respectively, and
f : Gy = G5 be a homomorphism. It determines a set valued function C(f) defined by

C(f)(z:) = {yi | yi has nonzero coefficient in f(z;)}-
The. diameter of f, denoted diam f, is defined to be
sup diameter ({z;} U C(f)(zi)).

9.1. Definition. A homomorphism f : G —+ G is a §-endomorphism if diam f < 4. And
f is a §-automorphism ‘if f is invertible and both f and f~! are ¢§-endomorphisms. ‘
Assume from now on that X is compact, locally contractible and arc-connected; e.g.,
X could be either a finite (connected) simplicial complex or a compact (connected) man-
ifold. Fix a pair of positive real numbers §; > do > 0 such that the following metric

connectedness conditions are satisfied.

1. Any two points z,y € X with d(z,y) < Jo are connected by an arc of diameter

<.
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2. Any closed curve of diameter < 2§; is null homotopic.

Let I' = m(X,*) and M,(ZI') be the ring of all n x n matrices with entries in ZI.
Given any do-endomorphism f : G — G of a geometric group on X, there is associated
an el'ement'f € M, (ZT') defined as follows. Let z1,z,,...,7, € X be the basis of G. The
construction of f dependé on a choice of paths a1,...,a, in X such that o; connects *

to z;. Let fij € Z denote the coeflicient of z; in the expression of f(z;); i.e.,
flz5) =Y fijzi.
i

For each pair of indices ¢, j such that d(z;,z;) < &, pick a path vi; connecting z;
to z; and such that diameter v;; < é;. This is possible because of condition 1. (The
construction of f will be independent of this choice.) We now define the i, j entry of f

by‘ the formula
fija7t % vij * @ where fi; #0

f.'j =

0 otherwise
where o1 * ~ij * & is the homotopy class of the closed loop gotten by concatenating the
paths aj, a;j, o 1. Condition 2 shows that f is independent of ?the choice «;;. We now
examine its dependence on {o;}. Suppose new paths {3;} are chosen and let v; € m;(X, *)
be the homotopy class represented by the closed loop 8! *a;. Let D denote the diagonal

n x n matrix defined by D;; = ;. A consideration of Figure 7 yields the first result below.




9.2. Lemma. If we choose new paths B; as above, then the matriz associated to f changes

from f to DfD™!.

9.3. Lemma. Suppose f,g: G — G are two & /3-endomorphisms of the geometric group

G. Then their composition fog is a & -endomorphism of G and f/o\g = f§.

Proof. It is clear that fog is a g-endomorphism. Fix a choice of paths a; and 7;; .as
before. Because of conditions 1 and 2, the concatenation ~;x * vi; is homotopic to ~;;.

Consider the following calculation
(f@)ij = D firdns

k

=Y fuleit * ik * ar)gri(ap’ * ks * aj)
k

= Zfikgkj(ag_l * Yik * Ykj * @)
k .

= (Z fekgkj) a;ilxyij*a;

k
= (fg)ijoi " *vij * @

= (fog)i;. QED.

Remark. If fi, fa,..., fn are endomorphisms of G such that diam f; < a for each 1,

then diam(fp0...0 f1) < 2na.

9.4. Corollary. If f : G = G is a 8 /3-automorphism, then f € GLL(ZT) and deter-

mines a well defined element in Wh(T), which we also denote by f. |
Proof. Apply Lemma 9.3 with g = f~!. Then,
id=Fog=fog and
id = ;)\f =go f .
But clearly id = id. Therefore, f is invertible. And its value in Wh(T') is independent of

the choice of the paths «;, because of Lemma 9.2.
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Lecture 10. Connell-Hollingsworth Conjecture

This lecture continues the discussion of geometric groups started in Lecture 9.
10.1. Definition. An automorphism f : G — G is e-blocked if there exists a partition
P of the basis {z1,...,z,} for the geometric group G such that, for each set S € P, we
have |
1. diam S < ¢ and

2. f(5) C S, where S denotes the subgroup of G generated by S.
10.2. Lemma. If f is 60/3-blocked, then f represents 0. in Wh(T).

Proof. Pick a base point *g for each partition set S € P from among the elements ;ES,
and pick paths as connecting * to *s. For each z; € S pick a path &; connecting *gs to
z; such that diam &; < é;. Let a; = @; * as. Then the loops ai-l * ij * aj, such that

fij # 0, are all inessential as is seen from Figure 8.

Figure 8

" Therefore, f = f € GL,(Z). Hence, its value in Wh(T') is in the image of Wh(1) =0.
Q.E.D.
Remark. Note that the entries of f, where f is any & /3-automorphism, are monomials

from ZI'. The following is an example of a monomial matrix which represents a non-

zero element in WhAT'. In this example, I is the cyclic group of order 5 generated by x.
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Consider the unit 1 + £ — ™2 in Units(ZI'). It represents a non-zero element in WAL

3

since it is not a monomial. But 1+ z — 27 is equivalent to the following 3 x 3 matrix

1+4z—2z 0 O
0 1 0
0 9 1

by stabilization. This matrix is in turn equivalent to
3

T
A=1] - 0
1

PRGN
O -8

by elementary column operations. Hence A represents a non-zero element in WhT and the
entries in A are all monomial. It appears likelv that every ele}nent in WhAT is represented
by a monomial matrix for an arbitrary group T'.

10.3. Conjecture (Connell-Hollingsworth [20]) Let X be an n-dimensional finite sim-
plicial complex. - Given € > 0, there exists § > 0 such that the following is true. Every

d-automorphism f: G — G of a geometric group on X can be factored

f=hHhofa--0fapa

~as the composite of n + 1 e-blocked automorphisms.

10.4. Lemma. Assume Conjecture 10.8 is true and that X is a finite simplicial com-
plez. Then there ezists § > 0 such that f represents 0 in WhT' for any §-automorphism

f:G — G of a geometric group G on X.

Proof. Let n =dim X and € = §/6n. Then § is the number posited in Conjecture 10.3

relative to €. (We may assume that § < 89/3.) Express™f as the composition

f=hofa-r0faps

where each f; is e-blocked. Note that each f; is a do/6n-automorphism of G. Applying

Lemma 9.3 and the remark following it, we obtain

(1) f=f1_f2...fn+1.
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But Lemma 10.2 states that each f; represents 0 in WAL. And equation (1) implies

that the element in WhI' represented by f is the sum of the elements represented by f,-.

Q.E.D.

It is useful to extend the construction f and the results about it to the case of §-
isomorphisms.

10.5. Definition. A homomorphism f : G; -+ G, between two géometric groups on
X is a d-homomorphism if diam f < §. It is a é-isomorphism if both f and f~1 are
‘§-homomorphisms.

If f is a dg-homomorphism, then it detefmines an mXxXn maﬁrix f ‘with entries in ZI'
where m = rank G, n = rank G,. This is done by the natural ahalogue of the pro.cedure
given in Lecture 9 for the special case G; = G2. But now the construction depends on
choices of paths o; from * to z; and B, from * to y;j, where z1,z,,...,z, is the basis
for G; and ‘yl »Y2,---,Ym 1s the basis for G2. If we change the choice of these paths, then

the following analogue of Lemma 9.2 is true.

10.6. Lemma. When changes in the choices of the paths o;, B; are made, f changes

to DfD where both D and D are square diagonal matrices whose diagonal entries are

elements in T

The following analogues of Lemma 9.3 and its Corollary 9.4 are also true.

/
/

10.7. Lemma. Suppose g: Gy, — G5 and f : G — G3 are both do/3-homomorphisms,

then fog i3 a éo-homomorphism and f/o\g = fg.

10.8. Corollary. If f : Gy = G; is a & /3-isomorphism, then fe GL,.(ZT'), where
n = rank G; = rank G “and f determines a well defined element in WhI', which is also

denoted f.

10.9. Definition. A geometric isomorphism of geometric groups is an isomorphism

induced by a bijection of their bases.
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10.10. Lemma. Let f : G; = G, be a geometric §,/3-isomorphism, then f represents

0 in WhT.

Proof. Note that f can be factored as a product of a diagonal matrix with diagonal entries

in I' and a permutation matrix. But both these represent 0 in WhI'. Q.E.D.

- 10.11. Lemma. If two geometric groups Gy and Gy are isomorphic by a é-homomorphism,

then they are geometrically d -isomorphic.

Proof. Let z,,z9,...,z, and yi1,Ys,...,Yyn bethe bases for the geometric groups G; and
G2. They are also the bases for the corresponding geomeiric Q-vector spaces G; ® Q and
G2 @ Q. We will show, by induction on n, that if G; ® Q and G2 ® Q are isomorphic via
a d-homomorphism f, then Gy and G, are geometrically é-isomorphic. The lemma then
follows since a §-homomorphism which induces an isomorphism of G; to G2 induces an

isomorphism of G; ® Q to G2 ® Q. Let the nn X n matrix F = (f;;) be defined by
(1) fl5)=>_ fijui
Consider the expansion of det (F) using the last row

(2) det(F) = Y (~1)"* fojdet(F™)

where F™ denotes the (n — 1) X (n — 1) matrix obtained by deleting the last row and
j-th column from F'. Since det(F) # 0, equa,tioﬁ (2) shows that there exists an index j
such that both

-

(3) fnj#0 and det(F™) #0.

Now, let G; and G, denote the geometric groups with bases zj,...,%j,...,%n and
Y1,Y2,---,Yn—1, Tespectively. Using the second assertion in (3), we see that G; ® Q
and G2 ® Q are isomorphic via a §-homomorphism. Hence our inductive assumption

yields a geometric §-isomorphism §: Gy — G5. We extend § to geometric isomorphism
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g : G1 = G, by requiring g(z;) = y,. The first assertion in (3) now shows that g is a
é-isomorphism. Q.E.D.

Remark. A geometric isomorphism which is a 6 -isomorphism is a §-isomorphism. But,
an isomorphism which is a §-homomorphism need not be a §-isomorphism in general. To

construct an example, consider the matrix identity

1 -1 0 -~ 0\7! 11 - .1

(07 -1 .0 o) 01 1 - 1
0 0 1 - 0 00 1 - 1

: 0 =|. . . ... 1

0 R |

A T | |

\0 0 .- 0 1/ \o 0 - 0 1/

We can now prove the following analogue of Lemma 10.4.

10.12. Lemma. Assume that the Conjecture 10.8 i3 true and that X is a finite simplicial
complez. Then there ezists § > 0 such that f represents 0 in WAT for any é -isomorphism

f: Gy = G2 of geometric groups on X.

Proof. Denote the number § whose existence is posited in Lemma 10.4 by J§,. (Recall
85 < 80/3.) Then set § = §,/3. Let g : Go = G; be the geometric §-isomorphism given
by Leﬁma 10.11. Then the composite go f : G1 — G, is a §;-isomorphism. Hence, g/o\f
represents 0 in WhAI', by Lemma 10.4. But g/o\f =g f, by Lemma 10.7, and § represents

0 in WhAT', by Lemma 10.10. Consequently, f also represents 0. Q.E.D.

Remark. The results so far described are due to Connell and Hollingsworth [20]. After
proving these, Connell and Hollingsworth then proceéd to show that the topological in-
variance of Whitehead torsion, first proven by Chapman [18], would be a consequence of
Conjecture 10.3. It is also implicit in their paper that the controlled (thin) h-cobordism,
eventually proved by Ferry [57], would also be a consequence of Conjecture 10.3. Our
next lecture will be devote;d to formulating this theorem and showing how Conjecture 10.3

implies it.
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Lecture 11. Thin h-Cobordism Theorem

Recall that an h-cobordism W™¥! with base a closed manifold M™ is a compact
manifold with boundary such that 8W = M II N (disjoint union) and both M and N are
deformation retracts of W. If r, : W — W, where t € [0, 1], is a deformation retraction
onto M, then the tracks of r,; are the following family of curves {a; | £ € W} in M
defined by

az(t) = ri(rez)), t€][0,1].

The h-cobordism W is said to be e-controlled if there exists a deformation retraction r,
onto M such that each of its tracks has diameter < €. (Here, some metric d(, ) on M is

fixed.) The next result is called the Controlled (or Thin) h-Cobordism Theorem.

11.1. Theorem. (Ferry [51]) Let M™ be a closed, connected, smooth manifold with
m > 5 and equipped with a fized metric d( , ). Then, there ezists a number € > 0 such
that every e-controlled h-cobordism with base M 1is a cylinder; t.e., 18 homeomorphic to

M x [0,1].

11.2. Proposition. The Controlled h-Cobordism Theorem is implied by the Connell-

Hollingsworth Conjecture.

The remainder of this lecture is devoted to proving Proposition 11.2. The proo’f given
here is implicit in the Connell-Hollingsworth paper [20].

Assume Conjecture 10.3 is true and let W be an h-cobordism with base M. Smoothing
theory, as developed in [67], shows that W has a smooth manifold structure inducing the
given structure on M. Hence, by the s-Cobordism Theorem, W is a cylinder if its
Whitehead torsion (W, M) is 0 in WHhRT, where I' = m; M. Because of Lemma 10.12,
there is a number § > 0 such that f = 0 in WAT for any &-isomorphism f : G; — G,
between geometric groups on M. We next show that, if we set ¢ = §/(16m + 32) in the

statement of Theorem 11.1, then there exists a §-isomorphism f : Godd — Geven such that
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f = 7(W, M) as elements in WhI'. (Here, f depends on W.) This proves Proposition
11.2, once f is constructed. |

Let K be a triangulation of the pair (W, M) by small simplices; i.e., we require
diameter r1(A) < €

for each simplex A in K. Let 01,02,...,0, and 71,72,...,7n be, respectively, ordeﬁngs of
the odd and even dimensional open simplices of K in W—M . (Since W is an h-cobordism,
the number of odd and even dimensional simplices is same.) Pick i)oints Ty,Z2,...,Zn and
Y1,Y25--+2Yn in M such that z; € r1(o;) and y; € r1(7;). Then, Gogqd and Geven are the
geometric groups with bases z;,2,...,%n and y1,Y2,---,Yn, respectively.

Let (Ci,di) be the integral simplicial chain complex for (W, M). There is an obvious.
identification
) Geven = @Czi and Godd = @02;‘-}-1-

i>0 i>0

Under this identification, the differentials d; determine a pair of homomorphisms

Dodqd : Godd — Geven, Dogq = @dﬁ-{-;};
>0

Deven : Geven — Godda Deyen = d2'i-
i>1

Using the fact that the simplices of K are small, it is seen that both D,q4 and Deven are
e-homomorphisms.
The deformation retraction r; determines a chain contraction ¢; : C; = Ci41. Under

the above identification, this contraction defines a pair of homomorphisms

Todd : Godd = Geven, Todd = EP) cait1;
i>0

Yeven : Geven — qud) Yeven = @ C2-
>0

Using that the tracks of r+ and the simplices of K both have diameter < ¢, it is seen that

both Yo4q and Xeven are 3e-homomorphisms.
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Let f : Gogqa — Geven be the sum Dygq + Loaq- Then, f is a 4e-homomorphism.
Likewise, g : Geven — Godd is also a 4e-homomorphism, where g = Deven + Yeven. The
following calculation is a consequence of the fact that (Cj,¢;) is a chain contraction for
(Ci, dy). |

f-09 = (Dodd + Zodd) © (Deven + Zeven)
(1) = Dodd Deven + Lodd Zeven + Zodd Deven + Dodd Zeven
= 0 + Zodd Zeven + 1d(Goven)-

Since Xodd Yeven raises degree by 2, it is nilpotent. Consequently,
(2) f‘1=go(1+q+a2+...+a’)

where s = [(m +1)/2] and a = ——Eoddileven. (Recall that m +1= dim W.) Using the
Remark after Lemmé 9.3 together with equation (2), we conclude that f ~1isa 16(m+2)e-
homomorphism; i.e., it is a §-homomorphism. Consequently, f is a J-isomorphism and
hence f represents 0 in WAI, becéuse of Lemma 10.12 and the assumption that Conjecture
10.3 ié true.

It is a pleasant exercise, using 11.3 below, to show that the matrices d; represent the
differentials in the simplicial chain éomplex H;(W,M) in terms of a natural ZT basis
given by lifts of the simplices in K. (Here, W denotes the universal cover of W. Also,
d; : C; — C;_; is regarded as a §-homomorphism between geometrié submodules of Geven
and Goda using the identifications given in (0).) Likewise, consider o; : C; — Cit1. Using
Lemma 10.7 on the equation

diy10i + 0i—1di = id,

we obtain the matrix equation
diy16i + &imad; = I
Hence, the matrices &; give a chain contraction of the ZI'-chain complex (Hi(W, M),d;).

Therefore, the Whitehead torsion 7(W, M) of this chain complex is represented by
Doad + Zoaa = .
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The s-Cobordism Theorem now implies that W is a cylinder since f represents 0 in WhAI'.
Q.E.D.
11.3. Second method of constructing f. We end this lecture by giving an alternative
method for constructing f, where f: Gy = G, isa 5 -homomorphism of geometric groups
on a compact Riemannian manifold X. Let p: X — X denote the universal covering
space of X, and identify I’ = m1(X, *) with the group of all its deék transformations by
picking a base point ¥ € X with p(¥) = *. Each G; induces a geometric ZT'-module p*G;
on X as follows. Let z;,%,...,Z, and y1,¥2,...,Ym be respectively the bases of G; and
G2, and «;, B be a choice of paths connecting * to z;, y;. Let &, 5,- be the lifts of
ai, B; to X st&ting at *, and let Z;, §; be the endpoints of &;, ﬁ'jv, respectively. Then,
p*Gy and p*Ga are the free ZI'-modules with bases £i,%,,...,%n and 1,82, -, Gm
respectively. Note that ﬁ*Gl is é, perhaps infinitely generated, “geometric group” on X
with basis {7Z; |1<i<n,y E.“n"l(X )}. A similar remark holds for p*G;.

‘bl\JServe the following consequences of the fact that p is a local isometry when § is

picked to be smaller than the injectivity radius of X.

Observation. Let 7 € X, y € X be a.ny pair of points such that d(p(Z),y) < ¢é. Then,

there is a unique point § € X, with d(%,§) < 4, solving the equation p(§) =y.

.Recall that the §-homomorphism f defines an integra.l matrix (aij) via the system of

equations
n

f(z;) = Z a;jy;-
i=1
Since a;j # 0 implies d(z i yi) < 4, we can apply the obs¢wation to the pair Z;, yi. This
yields a point §;; with p(gi;) = yi. And, there is a unique group element 7;; € T’ such
that vi;Ji = §ij, since also p(§;) = yi. It can be seen, in this way, that f is the ZI'-matrix

whose entries are fi; = a;;vij.
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Lecture 12. Quinn’s Theorem

Quinn [84] used Kirby’s torus trick [66] to verify the stable version of the Connell-
Hollingsworth conjecture. He then gave an alternate proof of Ferry’s thin h-cobordism
theorem by the method, due to Connell-Hollingsworth, given in the last lecture. Namely,

he proved the following result.

12.1. Theorem. Let M™ be a closed (connected) smooth manifold (equipped with a
compatible metric d( , )) and let € > 0 be a real number. Then there ezists a real number
§ > 0 such that any §-automorphism f of a geometric group G on M 1is stably the
composition of m + 1 e-blocked automorphisms. That 1s, there ezisis a second geometric

group Go such that the automorphism
fBidG,: G®Go = G Go

can be factored as the composition of m + 1 e-blocked automorphisms of G & Go.

This lecture and the next are devoted to proving Theorem 12.1. We start by introducing
some notation. Let A C M be a subset and G be a geometric group on M. Then Gl A
is the geometric subgroup on M generated by the basis elements of G in A. Note that
G = G|A &) G|M—-A' Let 14 and psa be the inclusion 14 : GIA — G and projection

pa:G— Gl 4 » Tespectively.

12.2. Definition. An endomorphism f : G — G is a §-automorphism over A if there
exists an endomorphism g : G — G satisfying the following.

1. Both f and g are §-endomorphisms.

2. pAofogoiA=idG| =pgogofoiga.

A
fACM,let AS={zeM|d(z,A)<é}.
The next result follows directly from the definitions.
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12.3. Lemma. Let A C B, BSCC and CC M. If f: G — G is a §-automorphism
of a geometric group on M. Then fopp:Gec — Gc is a §-automorphism over A where

Gec = GIC is considered as a geometric group on C'.

The key step in the proof of Theorem 12.1 is the following lemma which Quinn proves

by a variant of Kirby’s torus trick.

'12.4. Lemma. Fiz an integer n > 2. Given € > 0, there ezists a § > 0 such that the
following is true for any geometric group'G on D™ and any &' -automorphism f: G = G
over (2/3)D", where §' < 6. There ezists a second geometric group H on D™ — ;D™ and

a e-automorphism f: GO H - G&® H with

12.5. Remark. Let =GO H. Ife+4' < l—ls-,then flo(f@idy): G — G is blocked

relative to the decomposition

and f~! o (f @idy) restricted to the 1lst block is the identity map.

Figure 9
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Lemma 12.4 will be proved in the next lecture after we use it in this lecture to prove
Theorem 12.1. We start by giving a first approximation to our proof and then discuss the
modifications needed to give a complete proof. Fix a handle body decomposition of M
where each handle has diameter < ¢/4. Such a handlebody can be constructed as dual to

a sufficiently fine triangulation K of M. See Figure 10.

Figure 10

Let M; = union of all the closed i-handles where 1 < j. We can arrange, for each

j-handle, an embedding

h:(DF x D™, 5971 x D™9) - (M — Int M;_;,0M;_,)

so that the following conditions are satisfied.
1. Diameter (image h) < €/2.
2. These embeddings have disjoint images.
3. The j-handle = h(D’ x 1D™7).

See Figure 11 for j = 1.
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( h:(DIX-l/‘&Dm—l) <>

\}SOX D™ -—1/

Figure 11
Let f : G = G be a §-automorphism of a geometric group G on M. We proceed
fo Qérify- the conclusion of 12.1 for f, provided § = &y is sufficiently small. (How small
will become evident from the proof and depends on the handlebody structure just chosen.)
First apply Lemma 12.4 and Remark 12.5 to each 0-handle independently. Hence there

exists a geometric group Gg, whose basis is in M —vMo, such'{that
fo=f®id:Go=GGo — Go

is the composite map ¢ o ¢ where ¢ is e-blocked and % is an €p-automorphism of Go

which 1s blocked relative to

g0|M0 ®g0|M—Mo

and v restricted to Go is id. Let 1; denote the restriction of ¥ to Go . Then

|Mo IMfM0

it suffices to show that 1; is stably the composition of m e-blocked automorphisms over
M — Int My.
For each 1-handle, 3, restricted to D' x %D”‘”l (identifying via the embedding k)

is a 6;-automorphism over D' x D™ !. Projecting the basis for the geometric group
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Go|p ypm-1 to D™7! gives a §);-automorphism over ;D™~!. Applying Lemma 12.4 and
Remark 12.5 once again over the transverse core (i.e., D™™1) of each 1-handle yields a

geometric group G; whose basé is in M — M; and the following factorization. Let
6 = golM__Mo @G, and f; =1 @idg, : G1 — G,

then f, is factored as the composite map ¢; o ¢; where ¢; is e-blocked and ; is an
€; -automorphism of G, which is blocked relative to g1| M, ® Qll M—M, and ; restricted

to g1| My is id. The number ¢; is determined by
max{diam h(D' x pt)}

and by € which is the number ‘¢’ usgd in this application of Lemma 12.4.

If we can continue this argument inductively to the 2-handles, 3-handles, ..., (m — 1)-
handles and m-handles, then we will have proven Theorem 12.1. But there are two weak
points which must be faced. First, if the diameters of the cores of the 1-handles are too
large, i.e., the numbers diam h(D! X pt), then v¥; may not be sufficiently controlled to
continue the argument to the 2-handles. (And the same problem must be faced in going
from the 2-handles to the 3-handles, etc.) Quinn overcomes this difficulty by carefully
subdividing the original handlebody so that the new cores of the handles h(D’ X D™~7)
all have “very small” diameter. This turns out not to be too difﬁcult to do once one has
correct bookkeeping; i.e., once the notion of very small is made precise. See [84, p. 330]
for details. |

The second difficult occurs in proceeding over the (m —1)-handles since their transverse
cores are D' and Lemma 12.4 is false for D*. (A little thought shows that the final step
of proceeding over m-handles presents no difficulty.) There are three ways around this.
Quinn’s method is by introducing the notion of flux for a §-automorphism of D! over
3D'. See (84, §8] for details. On the other‘ha.nd, the core of M — Int(M,,—2) is a 1-
complex and Connell-Hollingsworth [20] proved their Conjecture 10.3 for geometric groups

on l-complexes. Hence their result can also be used to complete the argument.
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- The third method uses that m;(M — M,,_,) is a free group. It combines this fact
with a vanishing result due to Stallings [91]; namely, Wh(T') = 0 when T is a free group.
Now the main argument, valid through the (m — 2)-handles, shows that f stably factors
as the composition of m — 1 e-blocked automorphisms fo, f,..., fm-2 together with an
e-automorphism ¢ which is blocked relative to M;,—2 and M — My, and such that
= id. Consequently, $ represents 0 in Wh(m M) since it is in the image of

¢le—2
Wh(m (M — Mp_2)) = 0. And Lemma 9.3 yields the equation

f=fot ..t fnatd

in Wh(mM), prévided € < 8o/6m where 8y denotes the number “dg” fixed in Lecture 9.
Furthermore, under this proviso each fi = 0 by Lemma 10.2. Therefore, f = 0. Although
this third method does not prove Theorem 12.1, it does establish the two applications
discussed in the Lectures 10 and 11; namely, the topological invariance of Whitehead

téréioxl and the thin_ h-cobordism theorem.
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Lecture 13. Torus Trick

This lecture is devoted to giving Quinn’s proof from [84] of Lemma 12.4. The key to his
argument is constructing a geometric group version of Kirby’s torus trick [66]. To do this,
Quinn makes crucial use of the Bass-Heller-Swan Theorem [5] which states that WA = 0
when T is a free abelian group.

Identify the n-torus T™ with the quotient group R"/(3Z)". Then, D® C T™. See

Figure 12.

Figure 12
Let B be a second small closed n-dimensional round ball which is disjoint from D® in T".
And let

1 -2
S ot - “myn
1:T Int(zB) —)311)

be a smooth immersion such that j| = id. Let OB denote the center of B. More

lmn
3D

generally, let
rB={z €B|d(z,0B) <r} and

rD® ={z € R" | || < r}
where 0 < r < 1. Such an immersion exists because of the Smale-Hirsch immersion

theorem and the fact that T™ — OB is parallelizable. An explicit such immersion, when

n = 2, can be constructed by considering Figure 13.
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Figure 13
Given a geometric group G with basis z1,...,Zm on D", define a geometric group
m
§*G on T™ — Int(3B) with basis LJ{j_1 (z;)}. The order of the basis elements in j*G is
=1

ambiguously determined; but this is unimportant. Fix a positive real number ~ satisfying

the following condition:
(0) If d(z,y) <2y and j(z) =j(y), then z=y.

Such numbers exist since j is an immersion with compact domain. We also choose v to be
smaller than the number € given in the hypotheses of Lemma 12.4. The following assertion
is also a consequence of the fact that j is an immersion. There exists a number é > 0
such that, for each a € T — (y + 1)B and each b € D" with d(j(a),b) <4, the equation
j(z) = b has a unique solution z € T" — %—B subject to the constraint d(z,a) < . This
property allows us to associate to any J -homomérphism f : G =+ G a y-homomorphism
f:4*G — j*G such that jo f and foj are equal when restricted to T — (y+ %)B Here,
7 :j*G — G is the canonical homomorphism induced by the natural basis correspondence.
Furthermore, f restricted to T™ — (v + 3)B is uniquely determined. (Note the similarity

between this construction and the second construction of f given in 11.3.)
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This uniqueness property shows that if f is a §-automorphism over D", then f isa «-
automorphism over T"—(2v+ %)B We assume from now on that f is the §-automorphism
given in the statement of the Lemma 12.4. Let Go = j*GIT"_§B and G; = j*G|§B,
Hence, j*G = Go ® G, . Using that f is a y-automorphism over T" — (274 )B, it is seen

that f(Go) is also a direct summand of j*G. Stated more precisely
G = f(Go) ®Gs

where G3 is a subgroup of j*Gl ap- But the Fundamental Theorem of Finitely Generated
4
Abelian Groups implies that G; ~ G3. Using these facts, we can construct an automor-

phism f; : j*G — j*G such that

fllT"—%B = f and

fi(G1) C j‘G|%B.
It is easy to construct a self-diffeomorphism g : T™ — T™ with the following properties:

1. ngﬂ_B = id.
2. diam g(3B) <~.

3. |dg(v)| < 4|v] for each vector v tangent to T™.

A new geometric group G; on T" is constructed by applying g to the basis elements of

j*G. This process also yields a new automorphism f; : Gy = G such that

1. fi is a 4y-automorphism, and

2. filyp =17

Assuming 4y < 1, we can form the square matrix fi with entries from Z(m;T").
If we use its second construction from 11.3 to do this, then f1 can be regarded as an

automorphism of the “geometric group” p*G; over R™, where p: R* = T" = R" /(3Z)"
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is the canonical projection. Considered this way, p*G; is a free but not finitely generated
Z-module. It is however a free and finitely generated Z(m,T")-module.
Quinn now uses the Fundamental Theorem of Algebraic K -theory, due to Bass-Heller-
Swan [5]; this results states that
Wh(mT") = 0.

It allows him to factor f as a certain product
(1) ExEx_1--- E1Eo

after stabilizing f outside the orbit of 7D" under the action of m;(T™). The matrix Ep,
in this factorization, is strongly diagonal; i.e., only its first (diagonal) entry is possibly
not equal 1 and thai; entry is either a or —a for some a € 71 (T™). The matrices E;
(for i+ > 0) are strongly elementary; i.e., the non-zero off diagonal entry of E; is a;a;
whéxzé ‘,‘a,->€ Z and a; € m(T™). Let Gy be a geometric group over T — %D“ such that
p*(G1 ® G2) is the stabilization in the factorization (1).

Now fix a very large positive real number s. How large will be presently evident.  We

proceed next to modify each of the automorphisms
E; :p*(G1 ® Gz2) = p*(G1 8 G2)

where : = 0,1,.. ,k. We change E; to a new automorphism &; satisfying the following
properties:

L. & ,pn = Ei| pn;

2. Eilgn _popn =1d;

3. diam &; = diam 8,-—1 < diam E;.
The €; are automorphisms of § = p*(G1 ® G2) ® G3 where G; is a (finitely generated)

geometric group on R™ — sD". Also each &;, where i > 1, is blocked relative to the

subgroups p*(Gi @ G3) and G3 so that S;I Gy = id. Note that each E; (¢ > 1) is blocked
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via a partition of the basis of p*(G1 ® G2) into subsets containing either 1 or 2 elements.

And the matrix representing E; on the 2 element partitions is

(6 %)

Also each 2 element member of the partition relative to E; has the same diameter. Then

&; is determined by changing the matrix

(0 %) = (1)

on each 2 element member of this partition which meets R® — 2sD".

Note that Ey is blocked relative to a partition P consisting of singletons and infinite
sets S; where each S; lies on a straight line L; in R™. The set S; divides L, into intervals
of constant length [, independent of the index ¢. Furthermore, E, maps each point in S,
one unit [ in the same direction. For each L, that intersects sD®, draw a smooth curve
in 2sD™ — sD™ connecting the first exit point on L; to the first entrance point. (Note this

is impossible to do when n = 1.) See Figure 14.

Figure 14

Introduce new basis elements along these curves so that the distance between successive

elements is < !. These new points are the basis for G3. Define & to circulate around
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the new cycles just constructed as indicated in Figure 14, and to be the identity off these
cycles.

It is clear that the automorphisms &; thus constructed satisfy conditions 1, 2 and 3
posited above. Furthermore, when s is sufficiently large, each £; is blocked relative to the

decomposition

G= é‘-’.’.aD" © glR"—3sD"

and is the identity map on the second factor.
It is easy to construct a diffeomorphism h : 3sD™ — D" having the following three
properties:
1. h‘%]l)" = id;
2. |dh(v)| < |v| for each vector v tangent to 3sD";
3. |dh(v)| £ 1{v| for each vector v tangent to 3sD™ — sD",
A new geometric group Ql on D" is constructed by applying h to the basis elements of
Q[smn . And conjugating Ex&k_1 - - 81_80| 35Dn with the geometric automorphism induced
by h yields an automorphism £ : él - C;l Let the geometric groﬁp H posited in Lemma,

12.4 be Ql and notice that

[ — 3
GoH =G|y 11 ©61

Set f = id @ £ relative to this decomposition. Then f|, . = f|,p. and f is a 4y-
5 5
automorphism provided s is chosen to be sufficiently large. If we pick 4y <

sufficiently large, then this proves Lemma 12.4.
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Lecture 14. Non-positively curved manifolds

This lecture is devoted to motivating the proof of the following topological rigidity result

due to Farrell and Jones [43].

14.1. Theorem. Let M™ be a closed non-positively curved Riemannian manifold. Then
|S(M™ x D", 0)| =1 when m+n > 5.

Remark. This is a partial verification of Borel’s Conjecture 1.3 and its generalization,
Conjecture 2.3. The special cases of 14.1 when M is Riemannian flat or real hyperbolic
were proven earlier by Farrell and Hsiang in [32] and by Farrell and Jones in [38], respec-
tively. The assertion of 14.1 is also true when M™ is a closed infrasolvmanifold. This was
proven in [37] by Farrell and Jones extending the result for infranilmanifolds proven by
Farrell and Hsiang in [32]. Yau showed in [98] that a closed infrasolvmanifold M™ sup-
ports a non-positively curved Riemannian metric only when m;(M) is virtually abelian;
hence, neither class of manifolds contains the other.

Theorem 14.1 is proven by the surgical method for analyzing S(M™ x D", 9) described
in Lecture 4. Recall this is a three step method. Step 1 is an immediate consequence
of Theorem 7.1 in Lecture 7 since closed (connected) non-positively curved Riemannian
manifolds satisfy condition (*). (See the Remark at the end of Lecture 6.) And Step 3 is

a direct consequence of the following result proven by Farrell and Jones in [42].

14.2. Theorem. Let M be a closed (connected) non-positively curved Riemannian man-

ifold. Then Wh{m M) =0.

-

Remark. The special cases of 14.2 when M is Riemannian flat or real hyperbolic were
proven earlier by Farrell and Hsiang in [29] and by Farrell and Jones in [36], respectively.
Farrell and Hsiang also showed in [31] that Wh(m; M) = 0 when M is a closed infrasolv-
manifold.

Theorem 14.2 was discussed for the case when M is real hyperbolic in a separate course

of lectures given by Professor Raghunathan, We also refer the reader to the expositions
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of the Riemannian flat and real hyperbolic cases of Theorem 14.2 given in Chapters 2 and
3 of the book [40]. Lectures 9-13 above give the background material prerequisite for the
foliated control theorem used in proving Theorem 14.2.

We hence only discuss Step 2 in this lecture. This is the most complicated step and
the last to be solved. We make simplifying assumptions in order to make the discussion
as transparent as possible; e.g., we assume throughout that M™ is orientable and n = 0.
Refer now back to Lecture 5 and note that

Ly n(miM™) = Linyn(71M™) and
S(M x D",8) = S(M x D", 8)
since Wh(miM) = 0. These facts together with the periodicity of the surgery exact

sequence (and Theorem 7.1) yield the following short exact sequence of pointed sets
0= [M™ x1,0;G/Top] = Lppi(mM™) = S(M™) = 0.

Hence it remains to show that ¢ is an epimorphism. The argument accomplishing this is
modeled after the one used to solve Step 3 in [36], [42]; i.e., the method used to show that
the only h-cobordism with base M is the cylinder. '

The s-cobordism theorerﬁ was used in that argument. It’s surgery analogue is the
algebraic classification of normal cobordisms over M due to Wall [96]. We refer back to
Lecture 4 and expand on the discussion given there. Given a group I', Wall a.lgebra.icaliy
defined a sequence of abelian groups La(T') with L, 44(T) = La(T) for all n € Z. He
then showed that there is a natural bijection between the equivalence classes of normal
cobordisms W over M™ x I™~! and Lm_;.n(vrlM ™) with the trivial normal cobordism

correspon‘ding to 0. Denote this correspondence by
W — w(W) € Lm+n(7r1Mm).

He also proved the following product formula. Let N*k beka simply connected closed

oriented manifold and W = (W, f,~) be a normal cobordism over M™ x I"~!. Form a
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new normal cobordism W x N over. M™ x I"~! x N 4k by producting W with N ie.,
Wx N=(WxN,f xid,~ xid).

Then,
w(W x N) = Index(N)w(W)

under the (algebraic) identification
Linintar(m1(M X N)) = Lmya(mM).

This product formula has following geometﬁc consequence.

14.3. Proposition. Let K** be a closed oriented simply connected manifold with
Indez (K) = 1. Let f : N -+ M be a homotopy equiv.alence where N 13 also a closed
manifold. If

fXd:NxK->MxK

13 homotopic to a homéomorphism, then f i3 also homotopic to a homeomorphism.

The complex projective plane CP? is the natural candidate for K when applying 14.3.
It is important for this purpose to have the following alternate description of CP?. Let
C, denote the cyclic group of order 2. It has a natural action on S™ X S™ determined by

the involution
(z,y) = (y,2)

where z,y € S™. Denote the orbit space of this action by F,; i.e.,
F,=8"xS"/C;.

14.4. Lemma. CP? =F,.

Proof. Let sl2(C) be the set of all 2 x 2 matrices with complex number entries and trace

zero. Since si, (C) is a 3-dimensional C-vector space, CP? can be identified as the set
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of all equivalence classes [A] of non-zero matrices A € sl;(C) where A is equivalent to
B if and only if A = 2B for some z € C. The characteristic polynomial of A € sl,(C)
is A2 + det A. Consequently, A has two distinct l—dimensiona.l eigenspaces if det A # 6,
and a single 1-dimensional eigenspace if dét A =0 and A4 # 0. Also, A and 24 have the
same eigenspaces provided z # 0. These eigenspaces correspond to points in S? under

the identification S? = CP!. The assignment
[A] — the eigenspaces of A

determines a homeomorphism of CP? to F;.

Remark. Theorem 14.1 was first proved in the case where M™ is a hyperbolic 3-
dimensional manifold by making use of Lemma 14.4. It was then realized that the general
result for m odd could be proven using Fy,~; once one could handle the techm"palcompli-
cations arising from the fact that Fi is not a manifold when k > 2. The fo_llowing result
is used in overcoming these complications. It shows that F; is “very close” to being a

manifold of index equal to 1 when k is even.

14.5. Lemma. Let n be an even positive integer. Then F, has the following properiies.
1. F, is an orientable 2n-dimensional Z[%]-homology maﬁifold.

2. F, 13 simply connected.

(Z ifi1=0,n,2n
3. H(F,)=<{ Zy ifn<i<?2nandiis even

. 0 otherwise

(Z ifi=0,n,2n

4. H(Fo)={ Zy ifn+2<i<2nandiisodd

. 0 otherwise
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5. The cup product pairing
H™(F,) ® H*(F,) - H*(F,)

1s unimodular and its signature is either 1 or —1.

Proof. There is a natural stratification of F,, consisting of two strata B and T. The
bottom stratum B consists of all (agreeing) unordered pairs (u,v) where u = v; while the
top stratum T consists of all (disagreeing) pairs (u,v) where u # v. Note that B can be
identified with S™. Also real projective n-space RP™ can be identified with the set of all
unordered pairs (u,—u) in F,. It is seen that F), is the union of “tubular neighborhoods”
of S™ and RP™ intersecting in their boundaries. The first tubular neighborhood is a
bundle over S™ with fiber the cone on RP™ !, The second tubular neighborhood is a
bundle over RP™ with fiber D®. Furthermore, they intersect in the total space of the
RP™!_bundle associated to the tangent bundle of S™. This description of F;, can be

used to verify 14.5.

Caveat. The fundamental class of B represents twice a generator of H,(F,). On the
~other hand, if we fix a point yo € S™, then the map = — (z,yo) is an embedding of S™
in F, which represents a generator of. H,(F).

Let f: N — M represent an element in S(M). Then f xid : N x St - M x St
represents an element in S(M x S). This defines a map S(M) — S(M x S*). It is seen
that this map is monic by using Theorem 14.2. Hence it suffices to show that f x id is
homotopic to a homeomorphism in order to prove Theorem 14.1. Note that M x S! is
also non—pbsitively curved. One consequence of this discussion is that we may assume that
m = dim M is odd when proving 14.1.

We now formulate a variant of Proposition 14.3 which is used in showing that
fxid: Nx 8 - Mx St is homotopié to a homeomorphism. There is a bundle

p: FM — M x S' whose fiber over a point (z,6) € M x S consists of all unordered

61



pairs of unit length vectors (u,v) tangent to M x S ! at (z,6) satisfying the following two
constraints. | |
1. If u # v, then both u and v are tangent to the level surface M x 6.
2. If u = v, then the projection @ of u onto T_o.S'1 points in the counterclockwise
- direction (or is 0).

The total space FM is stratified with three strata:

B={(u,u) [@=0},
A= {{u,u) | u#0},
T = {(,v) | u # v}
Note that B is the bottom stratum and FM — B is the union of the two open sets A and

T. The restriction of p to each stratum is a sub-bundle. Let F., B,, A; and T, denote

the ﬁbers of these bundles over z € M x S?; i.'e.,

‘fz = p_l(m)7
B =p7'(z) NB,
A; =p7l(z) NA,

T.=p Yz)NT.

Note that B, = S™™', A, =D™, T, UB; = F,_; and the bundle p: B — M x S! is
the pullback of the tangent unit sphere bundle of A under the projection M x S! — M
onto the first factor. |

The space Fr,—; will play the role of the index one manifold K in our variant of
Proposition 14.3. Since it is unfortunately not a manifold when m > 3, we need to
introduce the a.uxiliaiy fibers A,;. Hence the total fiber is hémeomo:phjc to Fpp—q UD™
where the subspace B in Fy,_, is identified with S™~! = D™ . Let F ¢ — N xS denote
the pullback of FM — M x S! along f xid: N x S* - M x S* andlet f: F; - FM be
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the induced bundle map. Note that the_stratiﬁca.tion of M induces one on Fy and that
f preserves strata. We say that f is admissibly homotopic to a split map provided there

exists a homotopy h¢, t € [0, 1], with ho = f and satisfying the following four conditions.

1. Each h, is strata preserving.

2. Over some closed “tubular neighborhood” My of B in BUT, each h; is a bundle
map; in particular, h; maps fibers homeomorphically to fibers.

3. There is a larger closed “tubular neighbbrhood” Niof Bin BUT such that hy
is a homeomorphism over BU T — Int A, and over BUA.

4. Let p: Ny - M x S denote the composition of the two bundle projections
Ni - B and B -+ M x S'. Then there is a triangulation K for M x §1
such that h; is transverse to p~1(o) for each simi)lex o of K. Furthermore,

hy : A7 (p~ (o)) = p~ (o) is a homotopy equivalence.
The variant of Proposition 14.3 needed to prove Theorem 14.1 is the following result.

14.6. Proposition. The map f: N — M s homotopic to a homeomorphism provided

f:FL o FM is admissibly homotopic to a split map.

Proposition 14.6 is the surgery theory part of the proof of Theorem 14.1 and is proven
in [38, Theorem 4.3]. The geometry of M (in pa.rtlcula.r its non-positive curvature) is used
to show that the hypothesis of 14.6 is sa.txsﬁed; i.e., that f is admissibly homotopic to a
split map. This is done in [43, Proposition-0.4]. The key step there is the construction of a
“focal transfer” which improves on the “asymptetic transfer” ﬁsed in [38] to prove 14.1 in
the special case when M is real hyperbolic. The focal transfer is used to gain control; after
this, applications of both foliated and ordinary control theorems are ma.de to complete the
argument. The reader is referred to [43] and [38] for details. Also, [40, Chapter 5] contains
a detailed sketch of the proof of Theorem 14.1 for the case when M is real hyperbolic.
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Lecture 15. Expanding Endomorphisms

Wervs»/ill be concerned for the remainder of these lectures with constructing exotic ex-
amples of certain natural structures. We start this program by constructing in this lecture
exotic examples of one of the simplest types of dynamical systems; namely, of expanding

endomorphisms.

15.1. Definition. Let M be a closed smooth manifold. A self-map f: M — M is said

to be an expanding endomorphism provided M supports a Riemannian metric such that

|df (v)| > Jv] for every non-zero vector v tangent to M.

15.2. Question. What closed smooth manifolds support expanding endomorphisms?
The question is answered up to topological classification as follows by results due to

Shub [89], Franks [52] and Gromov [53].

15.3. Theorem. If a closed smooth manifold M supports an ezpanding endomorphism,

then M 1is homeomorphic to an infranilmanifold.

Recall that infranilmanifolds were defined in 1.4. Shub showed that the universal cover
M of M is diffeomorphic to R™ where m = dim M. Then Franks showed that mM
has polynomial growth and that M is homeomorphic to an infranilmanifold provided
71 M is virtually solvable. Gromov completed the proof of 15.3 By showing that a group
of polynomial growth must be virtually nilpotent. Gromov’s result was motiﬁted by
Hirsch’s paper [60] where it is shown that the solution to Hilbert’s fifth problem is related
to 15.3. Hirsch also implicitly poised Question 15.2 in his Remark 1; i.e., whether the word -
“homeomorphism” can be replaced by “diffeomorphism” in 15.3. But Farrell and Jones

showed in [35] that this is not the case; namely, they proved the following result.

15.4. Theorem. Let T" be the n-torus (n > 4) and " an arbitrary homotopy sphere,

then the connected sum T"#X" admits an ezpanding endomorphism.

When X" is not the standard sphere, Wall [96, §15A] showed that T™#X™ is not

diffeomorphic to T™. This fact combined with the classical rigidity results of Bieberbach
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(6] and Malcev [70] yields that T"#X" is not diffeomorphic to any infranilmanifold. Morc
details of this argument will be given in lecture 16. The remainder of this lecture is devoted
to constructing the expanding endomorphism f : T"#X" — T"#X" posited in.r 15.4. |
Let 6, denote the Kervaire-Milnor group of homotopy n-éphcrcs (n > 5). “We note
that 0, = S°(S™) as sets and the abelian group structure on §, is given by the connected
sum operation of oriented manifolds; cf. [65]. Kervaire and Milnor préve that 6, is a finite
group and that it is a non-trivial group for infinitely many n. They also calculate ité order

[8,] for small values of n. This calculation is given by the following table:

n |5 6 7 8 9 10 11 12 13 14 15,
. | 1 1 28 2 8 6 992 1 3 2 16,250

Let s denote the order of [E"] in 6, and set t = ms + 1 where m is a large positive
integer. Let f : T — T™ be multiplication by t. (Recall T" is an abelian group.) It
is an expanding endomorphism. The exotic expanding endomorphism f is topologically
conjugaté to f and is constructed as the composite of the 4 maps illustrated in the diagram

below; i.e., f=Po EoDoF. (In the 'illustra;tion, s=2.)

CHEB - f=)
ey

Figure 15
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Here P denotes the covering projection in the standard t®-sheeted covering space of
Tr#X"; i.e., the one sﬁch fha.t image (Pg) is the subgroup of w;v(T“#E’n‘) consisting
of all elements divisible by t". Note that P is a local isometry. The map D is the
diffeomorphism which is uniform dilation by t. It can of course be made as expanding as
we want by choosing m large enough. |

The map E is a diffeomorphism with bounded distortion independent of m. It is
constructed by carefully grouping the ¢"-connected summand of £™ occurring in its range
into sets of s-each with 1-summmd left over. And then independently “canceling” each
group of s-summands using the fact that [I"] has order s. Each. canceled group is
illustrated by the shaded disc in the domain of E. |

Finally, the diﬁ'eoniorphis_in F is the identity map outside a closed n-ball B® contained
in T". The domain and range of F are both connected sums of T with ™ and 1/t Z7",
résﬁéctively. Both connected summings occur inside of B"®. Here, 1/t X" is the same
smooth manifold as £"; but its Riemannian metric is dilated by 1/t. The diffeomorphism

F is constructed “inside of B™” by using the “commutator” 1 /t ®t®~1 illustrated below.

M @uyex

Figure 16
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Here ® : R® — R"#X" is the diffeomorphism defined as follows. Note first that
R"#X" = B" I, (R" — Int B")

where ¢ : S*~1 — S™=1 is a self-diffeomorphism and the identification ~ above is given
in polar co-ordinates by

(z,1) ~ (gb(:c),f) where r = 1.
(We can take B™ to be the ball of radius 1 centered at the origin of R".) Then @ is defined
in terms of polar co-ordinates (z,r) where z € S™™! and r € [0, +00) by the formula

(a:., r) ifr<1
O(z,r) =
(¢(z),r) ifr=>1.

It is easily shown that the “commutator”
y > 1/t (187 (y))

is the identity map outside of B and also that its derivative has bounded distortion inde-
pendent of our choice of m. Consequently, f is an expanding endomorphism of T"#%"

provided m is chosen to be sufficiently large.
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Lecture 16. Exotic Smoothings

This lecture is concerned with the problem of detecting non—diﬁ'g:omorphic smooth struc-
tures on the same topological manifold ‘M . Let (N, f) be a pair consisting of a smooth
manifold N together with a homeomorphism f : N = M. Two such pairs (Ny, f1) and
(N2, f2) are equivalent provided there exists a diffeomorphism g : N; — N2 such that the
composition fz o g is topologically conqqrdant (a.k.a. topologically pseudoisotopic) to fi;

i.e., there exists a homeomorphism F : Ny x [0,1] & M such that

F|N1x0 = fi and F|N2X0 = fa-

Note that F' is not required to be level preserving; i.e., F(N; X t) needn’t be cont;l.ined in
Mxt. (If Fis a.dditioné.lly level preserving, then it is a topological isotopy.) The set of
all such equivalence classes is denoted C(M) and an equivalence class is called a smooth
’struc_ture on M.

~ The key to analyzing C(M) is the following result due to Kirby and Siebenmann [67,
p- 194].

16.1. Theorem. There exists a connected H -space Top/O such that there is a bijection
between C(M) and [M; Top/O) for any smooth manifold M with dim M > 5. Further-

more, the equivalence class of (M,idys) corresponds to the homotopy class of the constant

map under this bijection.

Assume n > 5 and recall that 4, is $°(S"). Considér the obvious forgetting informa-
tion map |
o(s™) —» §*(5™).

This map is a bijection which can be seen by using the fact that both |S(S™)| = 1 and

|S(S™ x [0,1],0)| = 1. We can hence identify C(S™) with the set of all equivalence classes

of oriented n—dirﬁensional homotopy spheres 3. Here two oriented homotopy spheres

3, and ¥, are equivalent provided they are orientation preservingly diffeomorphic. Also
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the abelian group structure on 6, given by connected sum agrees with the one given by
Theorem 16.1 via the identification C(S™) = m,(Top/0).

We can more generally show that the natural map C(M) — S§°(M) is a bijection for any
closed smooth manifold M such that both & (M) and S(M x [0,1],8) have cardinality
1 (and dim M > 5). To do this, one notices that |S(M x [0,1],0)] = 1 implies that
any self-diffeomorphism of M which is homotopic to id ps is, in fact, topologically pseudd—
isotopic to id py. Combining this observation with Theorem 14.1, we see, in pé,rticula,i‘,
that the natural map C(M™) — S ’(M ™) is a bijection for every closed‘non-positively
curved manifold M™ (with m > 5).

Recall now from Lecture 2 how mo&(M™) acts on S*(M™). One sees immediately from
this description how Mostow’s Rigidity Theorem, cf. [75], implies that the concordance
class of (M™,idpym) is a fixed point of this action whenever M™ is a non—pbsitively
curved locally symmetric space such that its universal cover has neither a one nor a two
dimensional metric factor. This is, in particular, the case when M™ is negatively curved.
And Bieberbach’s Rigidity Theorem, cf. [6], shows that this is also the case when M™
is a flat Riemannian manifold. Stringing the above remarks together yields the following

consequence of 16.1.

16.2. Coroliary. Let M™ be a closed Riemannian manifold (with m > 5) which is a lo-
cally symmetric space whose sectional curvatures are either identically zero or all negative.
Let (N™, f) be a smoothing of M™. If N™ is diffeomorphic to M™, then (N'",f) and

M™, idpm ) represent the same element in C(M™); i.e., they are topologically concordant.
p -

We will next apply 16.2 to the problem of determining when connected sum with a
homotopy sphere X char;ges the differential structure on a smooth oriented (c.onnected)
manifold M. Start by noting that the homeomorphism M#Y to M which is the inclusion
map outside of ¥ is well defined up to topological concordance. We will denote the class

in C(M) of M#Y. equipped with this homeomorphism by [M#ZX]. (Note that [M™#S™]
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is the class of (M™,idym).) Let far : M™ — S™ be a degree-one map and note that fu

is well-defined up to homotopy. Composition with fys defines a homeomorphism
fig 2 [S™, Top/O} = [M™, Top/O).
And in terms of the identifications
0 = [S™,Top/0] and C(M™) = [M™,Top/O]

given by 16.1, fi, becomes [E™] —» [M™#ZI™].
Recall that a smooth manifold is stably parallelizable (a.k.a. a w-manifold) if its tangent

bundle is stably trivial. We need the following result due to Browder [13] and Brumfiel

[14].

16.3. Lemma. Assume that M™ is an oriented closed (connected) smooth manifold

ﬁh;éhfis stably parallelizdble and that m > 5. Then f3; : 0 — C(M™) is monic.

Proof. Since X + [X, Top/O] is a homotopy functor on the category of topological spaces,
16.3 would follow immediately if fas : M™ — S™ is homotopically split. That is, if there
e;;ists amap g:S™ — M™ such that fy og is homotopic to id Sn: . Unfortunately, fa is
only homotopically split when M is a homotopy sphere. But wev can use the fact that M
is stably parallelizable to always stably split far up to homotopy; i.e., to show that the
(m + 1)-fold suspension

EmH (fpr) : TPHIM™ o 52

of far is homotopically split. This is done as follows. Note first that M™ x D™+! can
be identified with a codimension-0 smooth submanifold of S2™+! by using the Whitney
embédding theorem together with the fact that M is stably parallelizable. Let * be a

base point in M. Then dual to the inclusion.

Mm X Dm+1 g S2m+1
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is a quotient map ¢ : S?™*! — T™HIM™ realizing the (m + 1)-fold reduced suspension
TmHIAf™ of M™ as a quotient space of $?™+!. Namely, ¢ cbllapses everything outside of
M™ x Int(D™*1) together with * x D™*! to the base point of Z™+!M™  and is a bijection
between the remaining points. And it is easy to see that the composition $™+1(fys) 0 ¢
is homotopic to id gm ; i.e., Z™+1( fps) is homotopically split.

But this is enough to show that fM is monic since Top/ O is an oo- loop space (8]; in
particular, there exists a topological space Y such that Q™+}(Y) = Top/O. This fact is

used to identify the functor
X+ [X,Top/0] = [X, 27 ()]
with the functor X ~ [E™*1X|Y]. Consequently,
fir + [S™, Top/O] ~ [M™, Top/O)]
is identiﬁed‘ with
(E™ ()" [P Y] = BT, Y
But, this last homomorphism is monic since £™!(fas) is homotopically split. | Q.E.D.

A homotopy m-sphere is called ezotic if it is not diffeomorphic to S ™ The followmg
result is an immediate consequence of 16.2 and 16.3; it will be used to construct exotic

smoothings of some symmetric spaces.

16.4. Corollary. Let M™ be a closed, oriented (connected) stably parallelizable Riemann-
ian locally symmetric space (with m > 5) whose sectional curvatures are esther identically
zero or all negative (e.g., M™ could be an m-torus). Let ¥™ be an ezotic homotopy

sphere, then M™#X™ is not diffeomorphic to M™.

Remark. Recall we asserted in Lecture 15 that T"#X" is not diffeomorphic to any
infranilmanifold when X" is exotic (and n > 5). We now give a more complete argument

for this fact. Corollary 16.4 shows that T"#X" is not diffeomorphic to T". Also Malcev’s
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Rigidity Theorem, cf. [70], shows that any closed infranilmanifold with abelian fundamental
group must be Riemannian flat. And finally Bieberbach’s Rigidity Theorem shows that

any such manifold is diffeomorphic to a torus. QED
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Lecture 17. Smooth Rigidity Problem

Recall we remarked in Lécture 1 that the obvious smooth analogue of Borel’s Conjecture
1.3 is false. Namely, Browder had shown in [13] that it is false even in the basic case where
M is an n-torus. In fact, it was shown in Lecture 16 that T™ and T"#X" (n > 5) are
not diffeomorphic when 2" 1s an exotic sphere; although they are clearly homeomorphic.

But when it is assumed that both M and N in Conjecture 1.3 are non-positively curved
Riemannian manifolds, then smooth rigidity frequently happens. The most fundamental
instance of this is an immediate consequence of Mostow’s Strong Rigidity Theorem; cf.
[75]. Namely, Mostow showed that any isomorphism between fundamental groups is, in
fact, induced by an isometry if M and N satisfy some more geometric constraints and
pfovided we are allowed to change the metric on M Dby scaling it on each irreducible metric
factor of its universal cover. Adequate extra constraints are that both manifolds be locally
symmetric spaces and that the universal cover of M does not have a 1or2 dimensional
metric factor. Mostow’s result led Lawson and Yau [99, p. 673, Problem 12] to pose the
problem of whether smooth rigidity always holds when both M and N are negatively
curved; in particular, does myM ~ m N imi)ly that M and N are diffeomorphic? Farrell
and Jones showed rin [39] that this is not always true even when M is a real hyperbolic
manifold. This lecture is devoted to constructing such a counterexample to smooth rigidity.
It is loosely motivated by the construction used to prove Theorem 15.4.

The manifold N™ in this counterexample will be M™#E™ where £™ is an exotic
sphere and M™ is a stably parallelizable, real hyperbolic manifold (with m > 5) and
having sufficiently large ihjectivit& radius; i.e., every closed geodesic in M™ must be
sufficiently long. To implement this program, we need to know that such manifolds M™
exist. To show this, we will use the following three results: the first due to Sullivan [94],

the second to Borel [9] and the third to Malcev [71]; cf. [68].
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17.1. Theorem. (Sullivan) Et\)cry closed real hyperbolic manifold has a stably paralleliz-

able finite sheeted cover.

17.2. Theorem. (Borel) There ezists closed real hyperbolic manifolds in every dimension

m>2, as well as closed complez hyperbolic manifolds in every even (real) dimension.

17.3. Theorem. (Malcev) Let M be a closed Riemannian manifold which is either real or
complez hyperbolic, then w1, M is residually finite; i.c., the intersection of all its subgroups

of finite indez contains only the trivial element.

The combination of Theorem 17.1 with Theorem 17.2 clearly yields the existence, in ev-
ery .dimenéic?n m > 2, of a m-dimensional, closed and stably parallelizable real hyi)erbolic
manifold M™. Furthermore, any finite sheeted cover of M™ will have these same prop-
erties. And Theorem 17.3 can be used, as follows, to §how that there exist finite sheeted
covers of M™ of arbitrarily large injectivity radius r ./’Since there are only a finite number
of closéd geodesics in M™ with length less than 2r + 1, we can use 17.3 to find a normal
subgroup I' with finite Hindex in wl.(Mm) such that every closed geodesic in M™ which
represents the free homotopy class of an element in I' — {e} must have length at least
2r + 1. Then the injectivity radius of the finite sheeted cover of M™ which corresponds
to I' is at least r. This demonstrates the existence of the manifolds M™ néeded for our
counterexample.

- It remains té put a negatively curved Riemannian metric on M™#X™. We use the

_following result to do this.

17.4. Lemma. Given m > 5 and € > 0, there ezists a real number a > 0 such that the
following is true. Let M™ be a m-dimensional, oriented, closed, real hyperbolic manifold
whose injectivity radius is bigger than a, and let ¥™ be an ezotic sphere. Then M™#X™
supports a Riemannian metric whose sectional curvatures all lie in the open interval
(—1—¢—-1+¢€).
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Before proving 17.4, let us precisely describe the counterexamples from [39] that it

immediately yields.

17.5. Theorem. The following statement is true in each dimension m > 5 such that
there ezists an ezotic m-dimensional sphere (e.g., m =4k —1 where k > 2 and k E. Z).
Given € > 0, there ezist two m -dimensional, closed, ﬁegatively curved Riemannian mani-
folds M™ and N™ such that

1. M™ 1s real hyperbolic;

2. the sectional curvatures of N™ are all contained in the interval (—1—¢—1+¢€);
8. M™ 1s not diffeomorphic to N™;
4.

M™ is homeomorphic to N™.

The remainder of this lecture is devoted to proving 17.4. Each exotic sphere ™ arises
by ta.ki;lg 2 disjoint copies of the closed m-ball D™ and identifying their boundaries
S™=! by a self-diffeomorphism f : S™~! — §™~1  (Note that this construction yields
S™ when f = idgm-1.) Since there are only a finite number of exotic spheres in each
,divmension m 2 5, it suffices to consider a single L™ and thus fix a single diffeomorphism
f:8m1 45 gm-1

The connected sum M 'ﬁ#Em is likewise constructed from the disjoint union .
(M™ — Int(D™)) I D™

by identifying the boundaries of its two components using f. Let us make this construction

more explicit. Fix a point £ € M™ and look at the exponential map

-

exp: T M™ - M™,

The closed ball in T,M™ of radius « and center 0, denoted by aD™, is smoothly embed-
ded via exp into M™ since the injectivity radius of M™ is greater than a. Dilate f by

a to define a self-diffeomorphism f, of 8(aD™); i.e., set

falaz) = af(z) forall z € S™! = oD™
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Then M™#X™ is
(0) (M™ — Int(aD™)) I, (aD™)

where IIf, means to glue together the boundaries of the two components in the disjoint
ﬁnion II using fo.

We put a Riemannian metric Bo( , ) on M™ in terms of this decomposition (0)
as follows. Restricted to both M™ — Int(aD™) and D™, B,( , ) is the real hyper-
bolic metric. Then we interpolate to define By( , ) on the rest of M™; namely, on
aD™ — Int(%D’”) which we denote by A,. To do this interpolation, put a Riemannian
metric (, ) on S"“l X [3,1] with the following properties (1-4).

(1) The manifolds S’-’"_l x ¢t and z x [3, 1] intersect perpendicularly at (z,t) for each
(z,t) € S™1 x [1,1].
(2) Themap £+ (z,1) is an isometry between (3,1] and [}, 1] xz for each z € S™~1

) (3) The map z — (z, 3) is an isometry from $™~! to S™~1 x 1.

(4) The map z — (f(z),1) is an isometry from S™~! to S™~1 x 1.
It is easy to construct such a metric ( , }. Then we “warp” (, } by sinh?(at) to do the

interpolation. That is, let ¢ and n be the distributions tangent, ‘respectively, to the first

and second factors in the product structure S™~! x [1,1]. And define Bus(, ) on A, by

( sinh?(at){u,v) ifu,vel

(5) Bga(u,v) = { a?(u,v) ifu,ve€n

(0 ifueandven.

Remark. In this formula (5), S™~! x [, 1] is identified with A, via multiplication by «
on the %, 1] factor; i.e., we used multiplication by « to shift (, ) to a Riemannian metric
(, )a on A, and then “warped” this metric by sinh?(t).

It is easily seen that these definitions fit together to give a well-defined Riemannian

metric on all of M™#5¥™. Note also that the Riemannian metric By( , ) defined on
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S™~1 x [1,1] by (5) is independent of M™. Hence to complete the proof of Lemma 17.4,

it suffices to verify the following statement.

17.6. Lemma. The sectional curvatures of the Riemannian metric Bo( , ) defined by

formula (5), converge uniformly to —1 as a — co.

The proof of 17.6 uses that sectional curvatures are computable in terms of the first
and second order partial derivatives of the first fundamental form together with the form

itself. The following is a precise statement of what is used.

17.7. Theorem. Given a positive integer m, there ezists a polynomial p( ) such that the
following is true. Let g;;(y), where y € R™ and 1 <1,7 <m, be any smooth Riemannian

metric on R™ satisfying

1 ifi=j
9;(0) =
0 ifi#j
and let u = (u1,Us,...,um) and v = (v1,V2,...,Um) be any pair of vectors in R™ satis-

fying
LR (w)? =1, DZ,(v)?=1, DZ(uvi)=0.

Then the sectional curvature of this Riemannian metric at 0 in the direction of the tangent

plane spanned by u and v s the polynomial p( ) evaluated at

L] -

m g gm @g}"‘ | {fﬁi}m
{“1}1‘:1’ {v’}i=1’ {Bxk ,',J-7k=1’ Oz Oz, i,7,k,I=1

Remark. This fundamental result is a direct consequence of Cartan’s second structural
equation combined with the Koszul formula description of the Levi-Civita connection; cf.
[59, §85.3 and 6.2].

We proceed to sketch the proof of 17.6. (See [39] for details.) Given (z,t) € S™ X (3,1,
one first constructs local co-ordinates y1,¥s,...,Ym—1,t about (z,t) sending (z,t) to

0 € R™ and such that the matrix entries gi;(y1,y2,--.,Ym—1,%) of the first fundamental
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form satisfy
1 ife=3

9i5(0) =
0 ifi#j
and their pa.rtlal derivatives D(g,J) evaluated at 0 have the following limiting values V

(uniformly in (z,%)) as @ — +oo:

( 8 & &
0 ifD= -
BT By Byedt O Byrdyr
(6) v={2 ifD=56t=
. o2
L 4 lf.D = -‘6-75—{.

Recall next the “cusp description” of real hyperbolic m-dimensional space H™ is given
by the warped product R™~! x.: R of the Euclidean spaces R™~! and R in terms of the
_warping function ef on R. (See [82, pp. 204-211] for the definition and basic properties
of: w;a.rped products. Note that we’ve reversed above the normal order of base énd fibre.)
Let (h;j) be the first fundamental form of H™ in terms of the canonical co-ordinates
(y1,92,---sYm—1,%) on R™1 x  R. Then it is easily seen that

1 fi=j
hi;(0) =
0 if:#j.
and that the values V of the partial derivatives D(h;;) evaluated at 0 are given by for-
mula (6). But the sectional curvatures of H™ are identically —1. Hence an elementary
continuity argument based on Theorem 17.7 shows that the sectional curvatures of B,( , )

approach the value —1 uniformly as a — +oo. Q.E.D.
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Lecture 18. Complex hyperbolic manifolds

This lecture starts the discussion of the counterexamples constructed by Farrell and
Jones in [46] to the smooth rigidity problem when M™ is a complex hyperbolic manifold.
(The discussion is completed in the following lecture.) I start by identifying complex
hyperbolic n-space CH" with an open subset of complex projective n-space CP™. Recall
that CP™ is the space whose points consist of all complex lines containing 0 in C**1. Fix

the following non-degenerate indefinite Hermitian form b( , ) on C"*! defined by
b(z,y) =191 + -+ + Tn¥n — Tnt1Pnt1
where the subscript denotes the co-ordinate of the vector referred to. Then
CH™ = {L € CP™ | the restriction .b| L 1s negative definite}.

It is relatively easy to see that the thus defined CH" is an open subset of CP" and is
biholomorphically equivalent to C" .’ The group of all isometries of b( , ) with determinant
equal to 1 is SU(n, 1) This Lie group acts transitively on- CH™ and its isotropy subgroup
at the complex line spanned by (0,...,0,1) is S(U(n)xU(1)) which is a maximal compact
subgroup of SU(ﬁ, 1). There is a Riemannian metric { , ) on CH" such that SU(n,1)
acts via isometries of it. And (, ) is unique if we require, as we now do, that its maximal
sectional curvature is —1. This is the canonical Riemannian metric on CH". Let A(CH™)
denote the subgroup of Iso(CH") consisting of all holémorphic isometries; it has index 2 in
Iso(CH"). The homomorphism SU(n,1) — Iso(CH") has 'image A(CH") and its kernel

is the center of SU(n,1) which is a finite group and is identified as
{wl|weC- and W™ =1}

where I denotes the identity matrix.
We now recall the basic curvature properties of CH™ starting with the fact that all of its

sectional curvatures lie in the closed interval [—4,—1]. Since CH" is a complex manifold,
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given a tangent vector v, we can form iv. Then the sectional curvature in the direction of
the R-plane P spanned by {v,iv} is —4. On the other hand if u L P, then the sectional
curvature in the direction of the R-plane @ spanned by {u,v} is —1. This is dual in some
specific sense to the situation for CP"; in particular, CP™ has a canonical Riemannian
metric whose sectional curvatures all lie in [1,4]. And, if P and @ are as above, then the
sectional curvature of P is 4 while that for @ is 1; cf. [82, pp. 321-329].

A comple:_z: n-dimensional hyperbolic manifold is a orbit space CH"/T" where T' is a dis-
crete, torsion-free subgroup of A(CH"). (The real dimension of CH" /T is, of course, 2n.)
Such a group I is said to be regular provided it splits back to SU(n, 1); i.e., if there exists a
subgroup ' of SU(n,1) mapping  isomorphically  onto I'  under
SU(n,1) » A(CH™). It is an easy consequence of Theorem 17.3 that T' contains a regular
subgroup of finite index when CH"/I" is compact.

Since complex hyperbolic manifolds are negatively curved locally symmetric spaces,
MOé’tow’s Strong Rigidity theorem yields isometric rigidity in the special .ca.se of Conjecture
1.3 where both M and N are complex hyperbolic of C-dim # 1. Herndndez [58] and Yau
and Zheng [100] independently extended this result to the situation where N is assumed
only to be a Riemannian manifold whose sectional curvatures are all contained in [—4, -1].
(But M is still assumed to be complex hyperbolic of C-dim # 1.) I now state precisely
the nature of the counterexamples to smooth rigidity constructed in [46] in the case where

M is a complex hyperbolic manifold.

18.1. Theorem. Given any positive numbers n € Z and € € R, there exists a pair of
closed negatively curved Riemannian manifolds M and N having the following properties:
1. M 13 a complez 4n + 1 dimensional hyperbolic manifold.
2. The sectional curvatures of N are all in the interval [—4 — ¢, —1 + ¢].

3. The manifolds M and N are homeomorphic but not diffeomorphic.

The manifold N in 18.1 is M#X where M and ¥ are, respectively, an appropriately

chosen complex 4n + 1 dimensional hyperbolic manifold and a 8n + 2 dimensional exotic
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sphere. (Recall that a complex manifold is canonically oriented.) The choices must be
made so that properties 2 and 3 of 18.1 hold. I show in this lecture how to choose M
and ¥ so that property 3 holdé. And the extra conditions necessary to guarantee that
property 2 also holds will be discussed in the next lecture. Recall that M and M#X é.re
always homeomorphic since dim ¥ > 4. Hence we need only choose M and ¥ so that
M and M#X are not diffeomorphic in order to satisfy property 3. Letting [M] denote
the concordance class of (M,idys), Corollary 16.2 shows that it is sufficient to choose M
and ¥ so that [M#X] # [M] in C(M); i.e., so that f3,([X]) # 0. It would be convenient
at this point to be able to use Lemma 16.3; but unfortunately this can’t be done since a
closed complex m-dimensional manifold M is never stably parallelizable when m > 1; in
fact, its first Pontryagin class is never zero.

This last fact is a result of the close relationship between the tangent bundle: TM of M
and that of its positively curved dual symmetric space CP™. In fact, the following result

was proven in [46; §3].

18.2. Lemma. Let M be any closed complez m -dimensional hyperbolic manifold. Then
there exists a finite sheeted cover M of M and a map ‘f : M — CP™ such that the

pullback bundle f*(TCP™) and TM are stably equivalent compie:c vector bundles.

Remark. This result has recently been generalized by Boris Okun in [80]. He obtains a
similar relationship between the tangent bundles of any finite volume locally symmetric
space of non-compact type and that of its dual symmetri¢ space of compact type. Both
18.2 and [80] depend on a deep result about flat complex vector bundles due to Deligne
and Sullivan [25]. Their result was also used by Sullivan in [94] to prove Theorem 17.1.
The observation made above that M has a finite sheeted cover CH™ /T' where T' is regular
is needed to apply [25] in proving 18.2.

Now Lemma 18.2 can be used to prove the following useful analogue of 16.3.
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18.3. Corollary. Let M be any closed complez m-dimensional hyperbolic manifold.
Then there exists a finite sheeted cover Mo of M such that the following is true for every
finite sheeted cover M of Mq. The group homomorphism fépm : 62m — C(CP™) factors
through 3y : 2m — C(M). |

The posited factor homomorphism 7 : C(M) - C(CP™) is constructed geometrically as
follows. Note first that 18.2 implies M x D?m+1 embeds as a codimension-0 submanifold

in Int (CP™ x D?™+1), This embedding determines a “dual map”
¢ . 22m+1CPm - 22m+1M

satisfying £2™*+1(fcpm) and the composite £2™+1(fyr) o ¢ are homotopic. The homo-
morphism 7 is then induced by ¢ via the construction given at the end of the proof of

16.3. See [46, p. 70] for details.
Recall that 17.2 yields a closed complex m-dimensional hyperbolic manifold M in every
C-dimension m. Hence 18.3 reduces the problem of satisfying property 3 of 18.1 to that

of showing the homomorphism
f6P4n+1 . 98n+2 — C(CP4n+1)

is non-zero for every n € Z*. This is a classical (albeit hard) type of algebraic topology
problem. Results of Adams [1], Adams and Walker (2], and Brumfiel [15] are used in [46]
to give a positive solution to it; i.e., f&pim41 is never the zero homomorphism. See again

[46] for details.

82



Lecture 19. Berger spheres

The proof of Theorem 18.1 is completed in this lecture by constructing a negatively
curved Riemannian metric on M#X satisfying préperty 2 of 18.1 when the injectivity
radius of M is large enough; how large depends on how small the given real number ¢ is.
This construction depends on the following result that puts a negatively curved Riemannian
metric on R?*™ which agrees with CH™ near oo, with H?>™ near 0, and whose sectional

curvatures are e-pinched close to [—4, —1]. Here is the precise statement.

19.1. Lemma. Given a positive integer m, there ezists a family b,( , ) of complete
Riemannian metrics on R*™ wiﬁch i3 parameterized by the real numbers v > e and has
the follounng three properties.
1. The sectional curvatures of by( , ) are all contained in [—4—e(7y), —1+€(7y)] where
e(v) is @ Rt valued function such that 7£§1we(7) =0.
2. The ball of radius v about 0 in (R®*™,b,) is isometric to a ball of radius v in
H2m '
8. There 13 a diffeomorphism f from (R?™,b.,) to CH™ which maps the complement
of the ball of radius v* centered at 0 1sometrically to the complement of the ball

of radius v* centered at f(0).

Before constructing these metric b,( , ), let us use them to complete the proof of 18.1.
Start by using the last paragraph of Lecture 18 to select an exotic 8n+2 dimensional sphere
¥ such that f§ P.;,,_,,Q([E]) # 0. Then fix a positive real num'ber ~ such that e(y) < g where
€0 = min(e, ) and let M be a closed complex 4n + 1 dimensional hyperbolic manifold
such that M#X is not diffeomorphic to M and so that the injectivity radius of M is

‘bigger than 4% +1. Such a manifold M exists because of 17.2, 17.3, 18.3 and 16.2. Let D,
be a ball of radius v2 +1 in CH***! centered at f(0) where f is the diffeomorphism given
by property 3 of 19.1. Isometrically identify D; with a codimension-0 submanifold of M.

Now change the metric on D; to b,(, ) using f. Let D, be the ball in (R2"+1b,) with
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center 0 and radius +. Perform the connected summing of M with ¥ inside of f(Dg).
And additionally require that v > a + 1 where a is the real number given in Lemma 17.4
which depends on 8n + 2 and ¢p. Then the argument proving 17.4 also shows how to put
a Riemannian metric on M#X, keeping the already constructed Riemannian metric on
M-—f (Dé), so that property 2 of 18.1 is satisfied. Setting N = M#X, Theorem 18.1 is
proven.

The remainder of this lecture is devoted to constructing the Riemannian metrics b,( , )
posited in 19.1. This is done by finding a “nice” family of Riemannian metrics c¢( , ) on
S2m-—1 pa.ra.metefizgd by t € (0,400) such that (§2™~1,¢,) is isometric to the boundary
of the ball of radius ¢ in H?>™ for ¢ < v and, respectively, in CH™ for ¢ > ~%. Use vector
space scalar mult_iplica.fioﬂ to identify S?™~! x (0,+00) with R?™. Then b,(, ) is defined
so that the induced metric on S?™~1 x t is ct( , ), the induced metric on z x (0, +o0)
' comes from the canonical one on R, and S?™~! x t is perpendicular to z x (0,400) for
each (:z:,t) € 52™m~1 x (0, +o0). This outlines the construction. We now furnish details.

Let S2™~! be the sphere of unit radius in C™ relative to the standard positive definite
Hermi.tian form

’u"U='u1’51 +u21'52+---+um17m.

There is a natural free action of the circle
S'={zeC||z| =1}

on $2™~1 whose orbits fiber $2™~! over CP™~!. This equips S?™~! with complementary
distributions 7, 7, where the Whitney sum 7, @7, equals the tangent bundle T.5?™~1 of
§2m=1_ The 1-dimensional distribution 7; is tangent to the orbits of the S*-action while
the (2m — 2)-dimensional distribution 7, consists of all tangent vectors perpendicular to
n; relative to the inner product real (u-v); i.e., the real part of the Hermitian form u - v.

Note that 7, is a C-vector bundle.
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Fix an ordered pair of positive real numbers a, b and define a new Riemannian metric

(, ) on §2™~! by requiring the following equations be valid when v € 71 and u € n;;

(u,u) = a’u-u,

(u,v) = b*v-v, and

(u,v) =0.

The Riemannian manifold S?™~! equipped with (, ) is called a Berger sphere and is
denoted by S’Z,':"l.

Berger spheres are relevant to constructing the family of Riemannian manifolds (2™~ ¢,)
since the distance sphere of radius ¢ in CH™ and H?™, respectively, is S, 3 where
a = sinh(t), b = sinh(t)cosh(¢) in the case of CH™ and a = b = sinh(t) in the case
of H?™. It is also interesting to note that the distance spheres of radius ¢ in the positively
curved dual symmetric spaces to CH™ and H?™; namely, in CP™ and S?™, are also the
Berger spheres S, ; where a = sin(t), b = sin(t) cos(t) in the case of CP™, t € (0, T),
and where a = b = sin(t) in the case of S2™ , t€(0,m).

To prove that the metrics b,(, ) constructed by the above outline using Berger spheres
for (S2™~1 ¢,) sati‘sfy property 1 of 19.1, it is necessary to know the sectional curvatures
of Berger spheres. Fortunately, these are well known; cf. [11] and [19]. One method for
calculating them is the following. Let U(m) denote the unitary group; i.e., the isometry
group of the Hermitian form u-wv. It acts transitively on S?™~!. On the other hand,

2m-—1)

it is also contained in Iso(S;}7"); i.e., (, ) is a U(m)-invariant Riemannian metric on

)

S§?m=1_ Therefore O’Neill’s Riemannian submersion formula [81] can be used to give the
following calculation of the sectional curvature K(P) of a plane P tangent to .5'2"2_1\
(See [46, §2] for the details of how this calculation is done.) Pick an orthonormal basis
{u,cos 6v + sin fw} for P where u,v €y and w € n;. (All measurements relative to the

calculation of K(P) are with respect to ( , )ap.) Note that 8 is the angle between 7, and

P. And let w denote the angle between v and iu, then

at a2 at

b2 2 _p2
K(P)= —sin®6 + < . +Mcos2w> cos? 6.
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Berger’s interest in the Riemannian manifold S, ; can be explained from this formula by

setting a = 1 so that it specializes to
K(P) =b*sin?6 + (1 + 3(1 - b?) cos? w) cos? 6.

It is then immediately seen that {S;5 | b < 1} is a set of positively curved, simply
connected, Riemannian rﬁa.nifolds whose sectional curvatures are all bounded above by 5
but which contains manifolds of arbitrarily small injectivity radius. In fact, this family
of Riemannian manifolds more and more resembles CPl"“l as b = 0. Berger called
attention to this interesting phenomenon when m = 2. It is also interesting to note that
these examples of Berger are essentially the distance spheres of radius ¢ in CP™ as ¢ - 3
more precisely, these distance spheres are S, 5 where a =sint, b = sintcost. |

On the other hand, we are interested in the distance sphere of radius ¢t in CH™ which
is Sa,p where a = sinh(t), b = sinh(t)cosh(t), and that of radius ¢ in H?>™ which is S, ,.

We a.i'sé_need to interpolate between these two; i.e., to consider S,; where a = sinh(¢)

and a < b < sinh(t)cosh(t). Now the above curvature formula in this situation yields the

following fact.

19.2. Proposition. Assume that a = sinh(t) and a < b < sinh(i)cosh(t). Then all of

the sectional curvatures of S, lie in the interval [—3, coth?(t)].

I now construct the Riemannian manifolds (S*™~1,¢,(, )) used to define b,(, ). To
do this, fix a smooth function % : R — [0, 1] which has the following properties.
1. (t) >0 for all t € R;
2. $71(0) = (—o0,1];
3. v7I(1) =[2,+00).
Then use ¥ to define a family of smooth functions ¢., parameterized by all real numbers

v > e where ¢, : (0,+00) — [0,+00). These functions are defined by the following

formula:

Int

d4(t) =19 (m) t where t € (0,+00).
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Then (S?™1, ¢4(, )) is the Berger sphere S, 3 where a = sinh(t) and b = sinh(t)cosh(¢.(t)).
It is easy to see from this definition that b,( , ) satisfies properties 2 and 3 of 19.1. How-
ever, the curvature calculations needed to verify property 1 are quite complicated. These
calculations use 19.2; but, more importantly, they use the method fof obtaining 19.2 via
O’Neill’s Riemannian submersion formula. This method is used in a mofe elaborate way

in verifying property 1. See [46, §2] for details.
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Lecture 20. Final Remarks

This final lecture contains a potpourri of some of the more recent results related to the
topics discussed in my previous lectures.
I start by mentioning a result due to Ontaneda [83] giving counterexamples to “PL-

rigidity” for closed negatively curved manifolds.

20.1. Theorem. (Ontaneda) Given € > 0, there ezist a pair of 6-dimensional, closed,
negatively curved Riemannian manifolds M and N with the following four properties.
1. M is real hyperbolic.
2. The sectional curvatures of N are all contained in the interval (—1 — ¢, —1+¢).
3. M and N are homeomorphic.

4. But, M and N are not piecewise linearly homeomorphic.

Remark. Since M and N are smooth manifolds, they can be vpiecewise smoothly tri-
a,ngulatéd. Property 4 of Theorem 20.1 means that the underlying simplicial complex of
any such triangulation of M must be different from that of any such triangulation of N.
In particular, M and N are not diffeomorphic. On the other hand, the counterexamples
to smooth-rigidity for negatively curved manifolds given by Theofems 17.4 and 18.1 qré
piecewise linearly homeomorphic.

Ontaneda’s construction builds oﬁ the ideas used in making the counterexamples given
by Theorem 17.4; but employs the Kirby-Siebenmann obstruction to PL-equivalence,
which lies in H3(M, Z,), instead of exotic spheres. The paper of Millson and Raghunathan
[71] provides the real hyperbolic manifolds M with rich enough cohomology structure to
carry out the argument.

There are also counterexamples to smooth rigidity for finite volume but non-compact
negatively curved Riemannian manifolds. Thése were constructed by Farrell and Jones

in [44]. Here is employed a different technique to change the differential structure than

that used to prove Theorems 17.4 and 18.1. A new technique is necessary since connected
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summing with an exotic sphere never changes the smooth structure on a non-compact,
connected manifold M™, where m > 5. The teéhnique used in [44] is a type of “Dehn
surgery” along a closed geodesic in M™ using an m — 1 dimensional exotic sphere.

There are also examples constructed by Farrell aﬁd Jones in [47] of complete real hyper-
bolic manifolds M with finite volume where some exotic smoothing of M cannot support
a complete, finite volume, pinched negatively curved Riemannian metric. However, it is
an open question whether any such examples exist where M is closed. See [3] for a related
result.

These counterexamples taken together with the discussions in Lectures 17-19 motivate
a search for extra geometric conditions which will yield smooth or PL-rigidity when both
M and N are non-positively curved. This problem was addressed by Farrell and Jones
in [49]. I now describe the result obtained in [49]; but, ﬁake the added assumption that
both M and N are negatively curved to sharpen the discussion. We also assume that
M and N are closed with dim M > 5 and o : 7;(M) — m;(N) is an isomorphism. Let
M(c0), N (co0) be the Eberlein-O’Neill visibiiity spheres of the universal covers M, N of
M and N, respectively; cf. [26].. The fun.da.menta.l groups 73 (M) and m;(N) act naturally
on M(oo) and N(co), respectively. And Mostow showed (implicitly; cf. [75]) there is a

unique a-equivariant homeomorphism @, : M(00) — N(oo). There is also a natural map
F:SM — M(oco)

defined by F(v) = v,(+00). Here, SM — M denotes the tangent sphere bundle of M
v, is the unique geodesic in M satisfying Yo (0) = v and v,(400) is the asymptoty class
containing the geodesic ray {v,(t) | ¢t > O} (Recall from [26] that the asymptoty classes
of geodesic rays in M are the points of M (00).) The map F restricted to any fiber of
SM — M is a homeomorphism onto M (00). And the visibility sphere M (co) is said to
be naturally C' provided it has a C!-manifold structure such that F is a C’l‘-map and

when restricted to each fiber of SM — M is a C? -diffeomorphism.
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Remarks. If M (o0) is naturally C', then this C? structure is unique and the action of
71 (M) 'onVM (co) is via C!-diffeomorphisms. Furthermore, M(oo) is naturally C! when
M is strictly %-pinched; i.e., when there exists a positive real number b such that all the
sectional curvatures of M lie in the open interval (—b, —b/4). This second comment is a
consequence of the fundamental result of Hirsch and Pugh [61].

The rigidity result in [49] can now be stated as follows.

20.2 Theorem. Assume, in addition to the above assumption, that both M(co) and
N (00) are naturally C' and that aw is @ C!-diffeomorphism. Then, o is induced by

a piecewise linear .homeom-orphism. In fact, there i3 a smooth diffeomorphism
fiM#sE - N

“inducing a. Here, 3 i3 a homotopy sphere and s denotes the FEuler characteristic of M.

Remark. If dim M is odd, then s =0. And hence f: M - N is‘a. diffeomorphism; i.é.,
smooth-rigidity holds in this case.

Unfortunately, the condition in 20.2 that ae is a -Cl -diffeomorphism is quite strong.
In particular, it is not a necessary condition for smooth rigidity. Mostow showed in his
original work on strong rigidity [74] that if ac is a C!-diffeomorphism and M and N are
both reé.l hyperbolic manifolds, then « is induced by an isometry; even when dim M = 2!
In fact, we do not know an example where the conclusions of 20.2 cannot be replaced by
the stronger statement “a is induced by an isometry after multiplying the metric on M
by a suitable constant.” Hopefully, weaker conditions “at oo” will be found which imply
smooth (or PL )-rigidity.

Let M be a closed and connected Riemannian manifold. Then there is a natural se-

quence of groups and homomorphisms

Iso(M) — Diff(M) — Top(M) — Out(mr M);



consisting of all self-isometries, diffeomorphisms, homeomorphisms of M and outer auto-
morphisms of 71 (M), respectively. An immediate consequence éf Mostow’s Strong Rigid-
ity Theorem; cf. [75], is that the cdmpositioh of these homomorphisms maps Iso(M) onto
Out(m; M) when M is a non-positively curved locally symmetric space whose universal
cover has no 1 or 2 dimensional metric factor. Likewise, it is an immediate consequence of
Theorem 14.1 that Top(M) — Out(m M) is an epimorphism when M is non-positively
curved and dim M # 3,4. On the other hand, the examples of Theorem 17.5 were used by
Farrell and Jones in‘[41] to show that the homomorphism Diff (M) — Out(m; M) is not, in
general, an epimorphism under these same assumptions. However, it had been hoped that
this map was always epimorphic; cf. [86]. One reason for this optimism was the following

fundamental result due to Eells and Sampson [28].

20.3. Theorem. Let f : M — N be a homotopy equivalence where N is a closed non-

positively curved Riemannian manifold. Then f is homotopic to a harmonic map.

Remark. A harmonic map is a smooth map which is a critical point of the energy
functional. And the energy of f : M — N is essentially the integral over all v € SM of
Ldf(v)P.

It was hoped that every harmonic homotopy equivalence between closed non-positively
curved Riemannian manifolds was a diffeomorphism, or at least a homeomorphism; cf. [27,
Problems 5.4 and 5.5]. Theorem 17.5 showed that the diffeomorphism conclusion is false,
in general. But the homeomorphism conclusion is still an open problexh. The paper [50]
of Farrell and Jones is an attefnp,t to address this problerr'l. Among other things, there
are constructed in [50] examples of harmonic homotopy equivalences f:M — N which
are not homeomorphisms even though N is negatively curved. But in these examples it is
unknown if M can also be non-positively curved. The examples are based on a topological
result due to Hatcher and Igusa, cf. [57, §4].

I finish these lectures with some additional comments about Whitehead groups. Recall

Theorem 14.2 showed that Wh(T") = 0 for a large class of torsion-free groups I'; namely, for
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I' = 7 (M) where M is a closed (connected) non-positively curved Riemannian manifold.
Much is also known about Wh(F) where F is a finite group, cf. [4]; in particular, it
is finitely generated and its rank is r — g, where r is the number of irreducible real
representations of F' and ¢ is the number of irreducible rational representations. On the
other hand, there are many examples due to M.P. Murthy (cf. [4]) of finitely generated
abelian groups I' such that Wh(I") is not finitely generated. Recently, Farrell and Jones
in [45] have given a method for “computing” Wh(T) in terms of Wh(S), Ko(ZS) and
K_n(ZS) (n 2 1), where S varies over the class of all virtually cyclic subgroups of T'.
This method is valid for any subgroup I' of a uniform lattice in a Lie group G (where G-
has only finitely ﬁmy connected components). Their method is additionaliy conjectured
in [45] to be valid for all groups T'. A similar conjecture is also made in [45] for a method
of calculating the surgery L-groups of integral group rings.

Remarks. A group is virtually cyclic Vif it contains a cyclic subgroup with finite index;
eg: finite groups, the infinite cyclic group, and the infinite dihedral group are virtually -
cyclic. The lower K -groups of a ring R, denoted by K_,(R) where n is any integer > 1,
were defined by Bass in [4].

W.-C. Hsiang conjectured in [62] that K_n(ZI') = 0 for every group I' and every
integer n > 2. Farrell and Jones in (48] verified Hsiang’s conjecture for any subgroup I' of
a uniform lattice in a Lie group with finitely many connected components. They did this.
by directly verifying Hsiang’s conjecture for all infinite virtually cyclic groups and then
applying the main result of [45]. Carter in [17] had previously verified Hsiang’s conjecture

for all finite groups.
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