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Summary
Let M pe a closed connected smooth manifold of dimension
n>6. Let £ : M —> gl e a continuous map. Assume that
f:t— : ﬂl(M) —_— nl(sl) is onto. Let G = kernel :f# .
Then ﬂl(M) is a semi-direct product of G and Z with re-
spect to an automorphism a of G. Let X be the covering
space of M corresponding to G. Let a, denote the auto-
morphism of Wh(G) induced by a. Define Wh(G,a) = Wh(g)/
image (id-a,). Another abelian group C(Z(G),a) can also
be defined via a Grothendieck construction. If X 4is domi-
nated by a finite C.W. complex then an obstruction
c(f) € ¢(2(G),a) is defined. If c(f) = 0 then a second
obstruction 7~(f) ¢ Wh(G,a) is defined. We prove the fol-
lowing theorem.

Theorem. There exists a smooth fiber map T: M—> sl
homotopic to £ if and only if

1° 1 is dominated by a finite C.W. complex

2° c(f) -0

3° TIf) =0
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Introduction

Let M' be a closed connected smooth manifold of di-
mension greater than five. Let f : M —> st be a con-
tinuous map. The purpose of this thésis is to give necessary
and sufficient conditions for there to exist a smooth fiver
map T : M —> gl such that T ig homotopic to f., One
condition is that f 1is not zero where £, m (M) —> m (st )
This is seen by considering the homotopy sequence for a fiber
Space and remembering that the fiber should be a compact
manifold. Now for convenience let us assume that 1“’ is

.
onto. This corresponds to the fiber of f being connected.
Let G denote the kernel of f# - uet X be the covering
space of M corresponding to G. Then a second necessary
condition is that X must be dominated by a finite C.W.
complex. This is true since X is the homotopy type of the
fiber of T.

Let (Nn°1,v) be a closed framed submanifold of M
such that (N,v) represents f under the Pontryogin-Thom
construction. Let My denote the compact manifold obtained
by "cutting” M along N. Then BHN consists of two
copies of N which we denote by }‘ and ﬁ Then
is a cobordism from N to N. The pair (NO~ l,v) is called
a splitting of M with respect to f. Let s be an integer
smaller than n-2 ang larger than 1. Under the assumptions

made thus far we can always find a splitting (N,v) such that
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(MN,N) has a handlebody decomposition consisting of only

8 and s + 1 dimensional handles. The existence of a smooth
fiber map T is equivalent to the existence of a splitting
such that My is diffeomorphic to _b;x [0,1]. There are two
obstructions to doing this. The first c(f) with values in
an abelian group C(Z{G),a) vanishes if and only if there
exists a splitting (N,v) such that (Mu,ﬁ) is an
h-cobordism. The second ?-(f) which is defined if c(r)
vanishes has values in a quotient group of Wh(G) and van-
ishes if and only if there exists a splitting (N,v) such
that My is diffeomorphis to Nx[0,1}. Put briefly ¥
exists if and only if

1° x is dominated by a finite C.W. complex,

2° e(f) =0, and

3° ) -0,
For certain groups G both €(2(G),a) and wh(G) vanish.
For example if G is a free abelian group on k generators.
When this is the case both conditions 2° and 3° drop and we
are left with condition 1° which is a purely homotopy theoretic
condition,

We also consider the case where M is a manifold with
boundary where the boundary already fibers a circle and we
wish to extend this fibration to the rest of M,

The result of this paper for G = 0 had already been
obtained by W. Browder and J. Levine in [3). I recommend




iii

reading their paper before reading this thesis. Finally 1

wish to remark that J, Stallings [16] has studied the case

of when three dimensional manifolds fiber a circle. I know

of no general results for manifolds of dimensions four or

five,




In a similar fashion the groups C(R a) and ¥ (R) are
defined from the categories C?(R @) and ﬁ)(R) respectively.
The functor J induces a map E; : C{R,a) —> K (R). There
is a functor J : GD(R) _ (:YR a) given by sending P
to (P,0). ;7 induces a map ;] : KO(R) —> C(R,a) :I
is a splitting of E} o

We can give an explicit construction of C(R,a) as
equivalence classes of isomorphism classes of objects from

C(R,a) where the equivalence relation is generated by:

o (P,f)~(P +F, £ +0) if p is free
0
2% if 0 —> (Py,£,) —> (P, ;) —> (Po,f)) —> 0
is exact in £ (R,a) then (Pl,fl)~(P2®P°,f2®f°).

The group operation is defined by

[P0} + ()] = [(P®aQ, t@g)].

With this definition C(R,a) is an abelian group. The only
difficult thing to verify is the existence of inverses. Once
this is done it is ‘easy to see that C(R,a) is universal
with respect to properties 1° ang 2° above. As one con-
sequence this shows that the map 6 : C(R,a) —> C{R,a) is
onto,.

Now we will show that C(R,a) possesses inverses. We
define a' triangular object in  C(R,a) to be a pair (P,f)
such that there exists a sequence 0 = F, C F, C FC ...C F . =F




where each Fi is a free finitely generated submodule of P,
each Fi/Fi-l is also free, and f(Fi) CFy

Lemma 1°. pLet (K,k) be an object in C'(B,a). Let

0= Ko C ch...CKm = K be a filtration of K by finitgly
generated submodules such that k(Kk;) ¢ K;_ 3+ Then there
exists an exact sequence in c*(R,u) 00— (L,4) — (F,f) ?>
(K,k) —> 0 where (F,f) is triangular with ‘Tespect to a
filtration 0 = F, C FiCeeeCF = F  (each F; and Fi/fs 1
being free and £(F;) c F;.1) and such that p(Fy) = K.

Proof. The proof is by induction an R.

If n=1 since K is finitely generated we can find g map
P:F—>K—> 0 where F is a finitely generated free
module; then 0 —> (ker p,0) —> (F,0) > (K,0) —> 0 1is
the desired Séquence. Assume that the lemma is true for n-1,
Therefore there exists a map p : (Fn_l,f) —>‘Kn.1’k) —> 0
satisfying the conclusion of Lemma 1°.  Since Kn/Kn-l is
finitely generated there exists a finitely generated free

- module Q and a map q : Q —> Kn/l{.n_l —> 0. This lifts
toamap q:Q—> K, =K. Let F = F,.1@Q and extend
the definition of P to F by the use of a. Then

P:F—>K — o, Consider the following diagram:
7
Q cee Fn‘l
N N
K> K
4
0




Since Q is free and kop is a semi-linear it is easily
seen that keop 1lifts to an « semi-linear map f Extend
f from Fn-l to F by the use of ?. Then the pair (F,f)
and the map p clearly satisfy the conclusion of Lemma 1°,

Remark: 1In the above we let L = ker p and L = f/ker pP.
Let Ly = F,” ker p, then 0=L,CLC...CL =L and

£(Ly) CL; ;. Also 0 —> Ly/Li_y —DFy/Fy 4 —> Ky/Kj 4 —> 0.

The identity of the semi-group C(R,a) is {(0,0)]}. Any
triangular object is equivalent to (0,0). This follows by
induction on the length of the filtration by which the object
(F,f) is said to be triangular. That is consider the sequence

—>(F, l,1‘/ -1) = (F,f) —> (F /F 1,o) —> 0, then
(F, f)~(F A DF /Ry 1. 8/F, , @0) by 2O,
(Fo 1 ®@F /R 1, E/F, 1@ 0)~(F_ 18/Fy 1) by 1°°, ang
(Fpo1:8/F, -1)~(0,0) by the induction hypothesis.

If (P,g) is an object from C(R,a) and g is
nilpotent of ordér n, then let Ki= image gn*i. Then the
filtration 0 = K CK C...CK = P satisfies the hypothesis
of Lemma 1°. Hence there exists an exact sequence in C? (R,a)
0 —> (L,8) —> (F,f) —> (P,g) —> 0. But since both
(F,f) and (P,g) are in C(R,a) this implies that (L,2)
isin C(re). By 2° (L@p, 4@ g)~(F,f) which is
equivalent to (0,0) since (F,£) is triangular. Hence

C{R,a) is a group. We could give similar explicit con-

R s SN




1.5

-~ ~
structions for the groups C(R,2) and KO(R). In parti-
= ~
cular the maps ¢ : € (R,a) —> C{R,a) and

f.:-P(R) —>’IE;(R) are both onto.

Next we show that C(R,a) splits as a direct sum of
?:’(R,a) and 'ﬁ;(a,a). Let I : g(R,a) _ C(R,c) denote
the inclusion functor., Then I induces a homomorphism
T EI(R,a) —> C(R,a). It is easily seen that 39 T=o0.

If (P,f) is an object in (¢ (R,a) then there exists

Q@ in (P(R) such that P@Q is free. Hence o (Pp,f) =

T s(P®Q,r®0) - j ¢ (Q,0). Therefore image T equals
kernel 3 - If to the object (P,f) 1in C(Rr,a) we assign
T(P®Q, £®0) € TR,a), it is easily checked that this
gives a well defined map of C (R,a) to E'(R,a) which
satisfies properties 1° and 2° ang hence defines a map of
C(R,a) to E'(R,a) which is seen to be a right inverse to T.
Hence C(R,a) splits naturally as a direct sum of E'(R,u) and
‘EO(R). A ring is said to be right regular if it is right
Noetherian and every finitely generated right module has a
projective resolution of finite length,

_Theorem 1°: If R is right regular then E'(R,a) = 0,

Proof: Let (P,g) be an object from E(R;c). Then g ig
nilpotent of some order n. Let K; = image gn’i, then

0 = Ko C KlC...CKn = P is a filtration of P satisfying
the hypothesis of Lemma 1°, Hence there exists an exact
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sequence in (< *(R,a) 0 —> (Py,gy) —> (F,f) —> (P,g) — 0.
~s
Since (F,f) and "(P,g) are in C (R,a),
P~

(Pl,gl) is also in  ((R,a). Since (F,f) 1is triangular
G-(Pl'gl) = - ¢ (P,g). But by the remark following Lemma 1°
we see that there exists a filtration of Pl' 0=
Ly CLy C..uCly = P} such that g(ly) C Ly, and
0 —>1,/1; ; — Fi/Fs 1 — K;/Ki_3 —> 0. Since R is
Noetherian we see that Li/Li-l is finitely generated. Ir
M is a right R module let d(M) denote the length of a
projective resolution of M of minimal length. Then
d(Li/Li_l) = max (1:d(Ki/Ki..1)’1')- Since R 1is Noetherian
each L; is finitely generated. Hence (Pl,gl) satisfies
the hypothesis of Lemma 1° with respect to 0O = L0 C LIC...C Ln-
P;. Let m = max d(K,/K. 1)+ Then after m appli-

icigm 1 1- ~
cations of Lemma 1° we obtain an object (Pm,gm) of C(R,a)
such that o"(Pm,gm) = (-1)® o (P,g) and a filtration
0 =85, CsC...c5, = P, such that each S;/S;_1 1is an object
from OD(R). By application of 2° ywe see that

n n
G'(Pm,gm) =i-§ O"(Si/Si_l,O) = 6"(91(31/31_1).0) = f(Pm.O) =0
since P, 1is stably free. Hence EJ(R,a) - 0,

Let Y be an anti-automorphism of R such that
¥o¥= identity and « °o¥ = ¥e a. We proceed to define a
duality functor D : C(R,a) - C(R,a'l). If Peg P(n)
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we denote by Hom (P,R) the collection of anti-homomorphisms
of P to R. (Ye ?IBE(P,R) if  Flxr) = y(r) P(x) for
all x€P and r ¢ R, see [2] page 119). Then

E(P,R) € Pr). Let us denote this object by D(P). Then

D Rl:zecomes & contravariant exact functor from @(R) to P(R).
Also Do D is naturally equivalent to the identity functor.
Let (P,f) € C(R,a). If Y€ D(P) we define (P = a1 Y, g,
Then (D(P),£%) € C(R,a"1). Denote this object by D(P,f).
This defines a contravariant exact functor from C(R,u) to
Cr,e™), 1r p' s the analogous functor from C(Rr,a™1)

to C(R,a) then D'oD 1is naturally equivalent to the
identity functor. Since D takes free modules to free
modules and is an exact functor, one easily sees that D tak.es
triangular object to triangular objects. Let r€R be an
invertible element. Let Rr denote right multiplication by
r. Then G?r induces a functor which is an isomorphism
between C(R,a) and C(R,Iro a) where I. denotes the
inner automorphism of R g —> rlgr. The functor 021_ sends
(P,f) to (P,R_of). If 1 1is the identity element of R,
then -1 denotes its additive inverse. Sometimes we will be
interested in the functor T = @_lo D instead of D.

D: C(R,a) —> C(r,e 1) enjoys. all the properties

which we listed above for the functor D.

We record for later use the following lemma:
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1 P
Lemma 2°, Let 0-—>P2-—->P1-——>P —> 0 and

0 —> Q, _> Q P_> Q, —> O be two exact sequences in (F(R).
Let y; : Qg —> P, i+1 be o semi-linear homomorphisms.
Then there exists an @ semi-linear homomorphism vy - Ql - Pl

such that yloi =ioy, and P°71'70°P-

Proof: Let ¢ and c' be splittings of p and p' re-
spect:.vely. Then Pl = image i ® image ¢ and Q -

image i @image ¢ . With these identifications Y, and 23
clearly define ¥y-




2.1

Chapter 2°. Preliminary Geometric Preparations,

Let M" ve a compact connected C* manifold of di-
mension > 6. Let B denote the boundary of M. Assume
that B is connected (or empty). Suppose that f : B —> gt
is a smooth fiber map (see [3]). Let 2‘ be a continuous map
of M into Sl such that ;‘/B is homotopic to f. Suppose
?_j# : nl(M) - frl(Sl) is onto. Our problem is to deteﬁine
when there exists a smooth fiber map T M —> Sl such
that f/B = f and T is ‘homotopic to T. In order to
avoid obscuring the main ideas in our discussion we postpone
to an appendix consideration of the cases where B is dis-
connected or i‘;’_ is not onto.

Note. The homotopy classes of maps ‘of a space X into Sl
correspond in a one to one fashion to elements of Hl(x). 1
a¢€ Hl(B) corresponds to f then the homotopy classes of
extensions of f to M correspond to the elements b € Hl(M)

such that i*(b) = a, where i denotes the inclusion map
of B into M.

A pair (N,v) will be called a splitting of M 4if N
is a compact n-1 dimensional submanifold of M such that
3N C 3M (N should meet dM transversely) and v is
a framing for the normal bundle of N such that under the
Pontryagin-Thom construction (N,v) represents ?. We also
require that 93N is a fiber of B {that is 3N = f-l(x)

for some x € Sl). When no confusion results we denote a
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splitting merely by N. W is an elementary cobordism of
dimension i from splitting (N,v) to splitting (ﬁ,é) if
W is an n dimensional compact submanifold (with corner, see
" [4] part I) of M such that 3JW = NUf'l(I)U N,, where I
is an arc in S' with endpoints x ang y. NAN = ¢,

8 e(1) = £ 1(x), Narl(1) - £1(y) and the vector field
v should point into W while v should point out of W,
Also W should be diffeomorphic to Nx [0,1] ¢ pdxpn-l,
where ¥ is a diffeomorphism of Si'lx ™1 into the
interior of Nx 1. Note that W has corners at f'l(x) and
£(y), while Nx[0,1] %Dix D™ has corners at ONxO0,
ANX1, and si-1y sn-i-1 e smooth these corners as in

(4] and the diffeomorphism is then between smoothed manifolds.
Since Wall in [4] claims that smoothings are unique this is
well defined. We will avoid further mention of smoothing
corners. In the literature the passage from N to ﬁ via W
is referred to as exchanging an i-dimensional handle from one

side of N to the other.

We now embark on a program of improving splittings. If
we start with an arbitrary N (splittings always exist by
the Pontryagin-Thom construction) we can pass to a new splitting
ﬁ, where 6 is connected, by a sequence of elementary
cobordisms of dimension 1. This is done explicitly in [3]
on page 157. Here we use the fact that g;’: nl(M) —_ nl(Sl)
is onto. This is equivalent to the element b € HY(M) which

e - e

B e S,
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A
corresponds to f not being expressible as m b' where

b’ € Hl(M) and m 1is an integer larger than 1.

Let G = ker g* , f# : nl(M) - nl(Sl). Since G
is a normal subgroup, we will generally omit considerations
of base point. Let X be the covering space of M cor-
respondiﬁg to G. A necessary condition for a smooth fiber
map T homotopic to ? to exist is that X be dominated
by a finite C.W. complex. Under this single assumption we
will see how much improvement of splittings we can effect. We
have N connected. We wish next to obtain the situation
where i$# :m(N) —> 7 (M) 1is a monomorphism with image G
(i denotes the inclusion of N into M). First we need
the following algebraic lemma. Let A, B, C, and D be
groups, f : A—>B and g: C—> B homomorphisms such
that kernel g is D and g is onto. Assume that A,C, and
D are finitely generated. Let Ao C denote the free pro-
duct of A and C and h : AaC —> B the homomorphism
induced'by f and g. Then h 4is onto and its kernel is
finitely generated.

For a proof of this see [5] page 4.

Since X is dominated by a finite C.W. complex we have
that m (x) =G is finitely presented (see [6] Lemma 1.3).
let F be a free group on m generators al,...,am and
g€ a homomorphism of F into G whose kernel K is finitely

generated. Let x be a point inside a tubular nbd of
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N but not N. Let Ll,...I.h be circles embedded in M
such that each Li meets N transversally and Lir\Lj = x
if i 4 j. We pick L; so that L. represents glag).
Since under the Pontryogin-Thom construction (N,v) repre-
sents T and since %* (g(éi)) = 0, we see that the inter-
section number of L; with N is 0. Hence after exchanging
a finite number of handles of dimension one we can obtain
the situation where Li does not meet N. We do this for
each i, finally obtaining the situation where the bouquet
of circles Ll,...,Lm is disjoint from N. Next by
exchanging one dimensional handles Hi,...,w such that the
core of W is 'homotopic' to Li we obtain a connected
splitting N such that by van Kampen's theorem ﬂl(N)
l(N)a F and the inclusion map i&#: nl(N) —-—>GC ﬂl(M) is
induced from ;*b (N) —>G and g : F —> ¢ — 0,
Hence by the algebraic lemma above the kernel of 5; is
finitely generated. Now by exchanging a finite sequence of
2 dimensional handles (see [7] proof of Lemma 3.1) we obtain
a connected splitting ; such that £;=: nl(ﬁ3 - nl(H)

is a monomorphism whose image is G.

With N thus improved, choose a lifting N of N to

X. Then N divides X into two connected components which
we denote A and B (see [3] sec. 3.1) The framing v
also 1lifts to a framing 3. Let B denote the component

A
into which v points. When no confusion can result we will

e o

- cae < e

)
- .t
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A A
use N and v to denote N and +v. Let T denote the

generator of the group of covering transformations of X
such that A C T(A). Let E’ denote the universal covering
space of X and p : }'-4> X the covering map. Denote

by R: B and N p'l(A), p'l(B) and p'l(N) respectively.
Since the inclusion map of N into X induces an isomor-
phism on fundamental groups we see that ;; is connected.
and simply connected. Since NCAC X we see that the
inclusion of A into X 4induces an epimbrphism on funda-
mental groups. Hence 7: is connected. Likewise Y; is
connected. By vun Kampen's theorem applied to E; 32 ﬁl and
i’ we see that 2' and 3' are both simply connected. Hence
the inclusion maps of A and B into X are isomorphisms

on fundamental groups.

Consider the groups H,(X,A;Z). Identify G with the
group of covering transformations of }i Then Hi(x,A:"
becomes a right 2(G) module because of the action of G on
ii We denote these modules by H;(X,A;2(G)). Since X and
N are dominated by finite C.W. complexes; and the inclusions
of A and B into X induce isomorphisms on fundamental
groups; and A,B,N and X are connected we have that
A and B are both dominated by finite C.W. complexes
(see [2] Complement 6.6). Tt also follows that
HO(X,A; 2(G)) and Hi(X,A;Z(G)) are both. zero. Let i
be the first integer such that H,(X,A;8(G)) 4 0. By
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excision H;(X,A;2(G)) =H1(B,N;Z(G)). Let N;_; denote the

i-1 skeleton of N (in some triangulation of N). Con-

sider the homology exact sequence for the triple Ni-l CNCB.

We see that Hj(B,Ni_l;Z(G)) = Hj(B,N;z-(G)) =0 for j<i-l
and that H.(B,N;3(G)) is a quotient module of

H;(B,N; _4;2(G)). By Theorem A of [6] we have that

H;(B,N; ;;2(G)) is finitely generated. Hence Hy (X,4;(G))

is finitely generated.

Consider W = ETZTTZ. This is a connected manifold
with boundary. W = NUDWUT(N) where oW is
diffeomorphic to Fx[0,1] (F denotes the fiber of
f: 3M—> 5, we assume the diffeomorphism chosen so that
Fx t corresponds to the inverse image of a fiber of M
under covering projection P : JX —> JM.) Identify JoW
with Fx[0,1] under this diffeomorphism. Then NO doW =
Fx0 = BN and JT(N) = T(N)NdoW = Fyl. Notice that W
has a corner at Fx O and at Fx 1l. By considering the
four spaces T(N), B, W and X - T(A) where T(N) =
WNX - T(A) and B = Wy X - T(A), we can show that the
inclusion map of T(N) into W induces an isomorphism on
fundamental groups. To do this we use an argument analogous
to that used in showing that the inclusion of N into B
induces an isomorphism on fundamental groups. Likewise the
inclusion of N into W induces an isomorphism on funda-

mental groups. Therefore Hy(W,N;2(G)) = 0. Consider this
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omology exact sequence for the triple A C T(A) CX. In
particular H,(X,A;3(G)) —> K 2(X,T(A);3(G)) —>H 1(T(4),4;8(c)).
By excision H,(T(A),A;2(G)) = Hl(w N;2(G)) = 0. Hence §, is
onto. The collection of modules {H (X, T%(A); i2(G))] for 1
fixed form a directed system whose maps are induced by the
iclusions of (X,T™(4)) into (x, Tm(A)) for m 2 m. The
direct limit of this system is Hi(X,X;Z(G)) =0 (see [3]

{ section2.6). For i = 2 the two facts j, onto and

: 2(X,4;2(G)) finitely generated yield Hy(X,A;3(G)) = 0?

% We shall call a splittiné N s-connected if N is

i connected,i%kis 2 monomorphism onto G {t 'denoting'the
inclusion of N into M), and Hj(x A;3(G)) = 0 for J<s.

In our program for improving splittings we have shown that

ra D)

2-connected splittings can always be found. Next we show that
n-3 connected splittings can always be found.

;' can also be considered as the universal covering
i space of M. As such we can identlfy nl(M) with the group of
. covering transformations of X. Let t € m (M) such that
! :* (t) 1s the generator of nl(S ) determined by the orien-
{ tation of s! used in setting up the Pontryagin-Thom cor-

respondence. Under our identification ¢t : af-£> i' covers
T:X—>ZX t is not uniquely defined; but for the remainder

of this paper our choice of t will be fixed. Let A be a
subset of X such that A C T(A). Let j : (3@;3 _ (iﬁt(23) de-
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note the inclu51on map where if § ig a subset of 3 ?; de-
Pl
notes p~ (S) (note that t(A) T(4)). *103* induces an endo-

@. Then one sees easily that ¢ ]'ej* is an q semi-linear
endomorphism of . (X A; Z(G)) Hence this module with thisg
endomorphism can be con31dered as an object in C:*(R a).

Let B be a second subset of X such that B¢ T(B) and

A CB. Let j (B A) -—>(t(B) t(A)) be the inclusion map.
Then t;lo J¢ is an a semi-linear endomorphism of
Hi(B,A;Z(G)), and hence this pair defines an object in
C?*(R a). Con51der the exact sequence of homology for the
triple A C B C X. By a straightforward verification one
shows that this is an exact sequence in the category (3 (R,a).
If C is a third subset of X such that ¢ ¢ T(C) and
BcCec, then the long eéxact sequence of homology for the
triple A C B ccT is an exact sequence in c* (R,a). De-
note by J the inclusion map of (x t” (A)) into (x,i?.
Then one verifies easily that t* °Jy = j*o t*l.‘ Denote

by J, the inclusion map of (X,A) into (x,tm(A)). Then
by repeated application of the above equality one obtains
(t;lo Jg)® = t;Me Jpx+ Suppose N 4is an s-l-connected
splitting of M, then t;lo Jx 1s a nilpotent endomorphism
of HS(X,A;Z(G)). This is a consequence of three facts:
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1° Ho(X,4;2(G)) is finitely generated,
2°  direct limit [H (X,T7(A);2(G))} equals 0, and

3° (t3le g, = t.%0 Iy

Denote t;lo Jy by ‘f. Then cfm = 0 for some integer ﬁ.
penote Hg(X,A;2(C)) by K. Let K; = image U1, gpen
0= K, C KlC...CKm = K 1is a filtration of X by finitely
generated submodules such that "F(Ki) C K;_ ;. Consider
the homology exact sequence for Z'C f?Z) cT. We see that
Hi(T(A),A;2(G)) = 0 for i < s-1. By excision this module
is isomorphic to H; (W,N;3(G)). By the theory of relative
cobordisms (see [4] Part IV the remarks proceeding Theorem
6.2 and [8] Theorem 6.1) W = Wvw,u... UW_ ‘where each
W, is an elementary cobordism (i.e. its image under
P:X—>M is an elementary cobordism) and s-1 <

dim Wy < n-2.

If x¢ HS(W,N;Z(G)) then it is possible to arrange
things so that dim Wi = s and _there exists a generator
X of H(W),N;2(G)) such that 13(%X) = x where i denote
the inclusion of (@3,33 into (Wﬁﬁ? (see [2] proof of
the Fundamental Lemma 4.8 for the details of this fact).
lere we need that g <n-3. Let % be one of a fixed finite
collection of generators for Kl. By considering the
homology sequence for A CT(A) C X we see that there exists
X € HG(T(A),A;8(0)) such that 1,(x) = %. This follows
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! since Pix) € K, = 0 and ty -1 is an isomorphism, hence
j*(x) = 0. Pick W, as above. Then p(W ) is an elementary
cobordism between N and a splitting N Consider the
homology sequence for the triple A c 4’ C X (where the parti-~

| cular lifting of ﬁ is determined by Wy ). We see that

H; (X, ,Z(G)) =0 for i< s. Hence N is also an
s-l-connected splitting. Let K denote H (X A’ ;3(G)). Then

in dimension s the sequence becomes:

2(G)

/ .
> K >K—>0, |

1401, J
Let ¢ denote 71, e ¢ K —> x and Ki = image ‘-’P““ -
Since j* ic a map 1n Cr ,a), (‘f’)m 0. Also J* ,
induces a map Ki —_— Ki —> 0 for each 1, For 1 =1 this
becomes 0 —> (x) _— K, —> Kl —> 0. Hence él is gen-
erated by one fewer ' elements than Kl} Therefore after re-
peating this process a finite number of times we obtain an
S-connected splitting. Hence we see that we can obtain

b-3 connected splittings.

e N e A




3.1
o A
Chapter 3". The definition of the obstruction c(f) ¢ c(z(c),a).

Let r ; Sl

—> sl denote a fixed diffeomorphism of
degree -1 such that rer = id, for example reflection

thru the x-axis. If (N,v) is a splitting of M with re-
spect to ? then (N,-v) is a splitting with respect to
rof. A splitting (N,v) is saig to be s-bi-connected if
(N,v) is s-connected and (N,v) is (n-s)-1 connected, that

is if Hi(x,A;z(c)) =0 for i<s and Hy(X,B;8(G)) = 0 for

i< ¢n-s)-1. By handlebody theory one sees that this ig
equivalent to W = T(A) - A having a handle decomposition

consisting of only s +1 and s dimensional handles

(see [8] Theorem 6.1). Hence we see that (B,N) is the homo-
topy type of a pair (K,N) where x is a c.w. complex
obtained from N by attaching s and s + 1 dimensional
cells. Therefore the chain groups for (E;ﬁ3 vanish except
in dimensions s and s + 1. Look at the following exact

sequence;

0 —> H,, (K,N;2(G)) —> Coep(K,N;2(G)) R-N C4(K,N;3(G)) —>
Hs(K,N;2(G)) —> o, As+1(K,N;3(6)) T'H_ (x,4;3(6)),
Ho(K,N;2(G)) = H_(X,4;8(G)) = O, and both c_,.(K,N;3(G)) ana
Cs(K,N;2(G)) are free 2(G) modules, Hence Hs+l(X,A;Z(G))

is a projective 2(G) module. Therefore the pair
(HS+1(X,A;Z(G)), t;lo Je) 1is an object in the category CS(R,G).
Denote thig object by c(N,v). We will eventually define an
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a A s+1
obstruction c(f) ¢ C(R,a) by c(f) = (-1) o (c(N,v)).
But first we must show that this is independent of the splitt-
ing (N,v).

Define 9 : g —> 2, (cyclic Eroup of order z) ag
follows: 1f g : }?’~> ' is orientation preserving ¢(g) = o0,
if it is orientation reversing e(g) = 1. Define an anti-auto-
morphism Yof 2(G) by ¥lg) = (-1)8(e)g-1 a(X(g)) =
(-1 egmlp-1 () )legel) (tet™) L = Y(a(q)).

Therefore ¥ commutes with a, '

Let D: C(r,a) —> C(R,al) be the functor defineq
as follows:

1° ir ¢ is orientation Preserving let of) = D (see
Chapter 1°)

2° ¢ t is orientation reversing let D D.

Lemma 1°, 15 (N,v) is an (s-l)—bi-connected splitting of
. A
M with respect to f then 98 c(N,v) ;'c(N,-v) where

i {N,~v) ig an (n-s)—bi-—connectnd splitting of M with re-

A
Spect to rof.

' Proof: Let c(N,v) = (P,¥) ana C(N,~v) = (Q, ¥). Then

there exists ap integer m gych that T eypn, 0. Con-
sider the homology sequence for the triple 4 ¢ T™(A) C x.
Since \Fm = 0 we see that J?* = 0 where 3' :

K8) = (X,7%4)).  Thererore (p, ) 2’(HS(T“‘(A),A;3(G)).

t;% 4y). Likewise (Q,%¥) & (Hy_(B,T™(B);2(c)), teo Jy).
—_—
Let w = 70(5) _ 4.
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If R is aring and B an automorphism of R, we
denote by C **(R,B) the category whose objects are pairs
(K,Y) where K 1is a left R module and Y is a B

semi-linear endomorphism of K.
Step 1°.  (H%(W,N;2(G)), %o t-1%) = {Hom(r,3(c)),

Hom (‘f,a'l)) as objects in ’Cf**(Z(G),a'l). By HS(W,N;Z(G))
we mean Hscomp(ﬁaﬁez), that is cohomology with compact sup-
ports.
Demonstration of Step 1°:

Since (W,N) has a handlebody decomposition consisting
of only s and s-1 dimensional handles, (P,‘f) is iso-
morphic to the kernel of B in the following free based 2(G)

chain complex:
(e Po) 2> (e, P, 1)

Where both Cs and Cs-l are finitely generated and B is

a map in C?*(Z(G),a). The cokernel of @ is also isomorphic
to (P,*f) (look again at the homology sequence for the
triple A C T'(A) C X and use fact that Je = 0. But P

is projective. Hence ker 75 is a direct summand of Ce.

Look at the chain complex

(Hom (C,2(6)), Hom (VP ,a™1)) <Hom(d,id)

(g?g’ (C5_1,3(G)), Hom (‘fs_l,a'l)).
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The cokernel of this complex is isomorphic to

. - - S : -1
(HS?G)(P,‘F), Hom(“f,a™1)). put (Hscomp(w,n;z),j*at *) is

isomorphic to the cokernel of the complex:

%% (Homcomp(cs;g)a Hom (‘fs’id)) <&ib,id)
2

(Hog”mp(cs_l,z), Hom (‘Ps-_l,id))

where Hom°°mp(cs,z) denotes the 2 homcmorphisms which vanish
all but azfinite number of the distinguished basis elements of
Cs (that is the 2 basis for C; determined by the distin-
guished 3(G) basis for C5 by the action of 6). But the
complexes * and #* are isomorphic (see [9] page 223). An
explicit isomorphism is the following, Let h - 2(G) — g

be the 2 1linear map determined by h(g) = 0 4if g41

8 €G and h(1) = 1, Then the map of Hom (Ci,Z(G)) into
Hogcomp(ci,z) (i =sor s-1) given by gt(egc{ing ; to

hoy is the isomorphism,

Step 2°.  J}w = Nu ANXTUT®(N). Let N = I Nx IUTY(N).
Let u represent the fundamental homology class (perhaps
represented by an infinite chain) for (;I/, dW) (this amounts
to choosing an orientation for '\:J/). Now Poincaré duality
implies that Ny - Hﬁomp('v‘v',fvv;z) —> H__(W,§;2) 1s an
isomorphism as g modules (see [9] page 225). For g€ @

consider the following commutative diagram:
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s AL nu 7
HC omp (W2 N;2) > H s( ,N;3)
-]
g l [
Hiomp(w,u,m > Hy_ (W,N;8)

If g is orientation preserving then gelu) =u. If ¢
reverses orientatlon then g*(u) -u. Hence if we change
comp(w N ;3) into a right 2(G) module by use of the anti-
automorphism ¥ then N u becomes an isomorphism between
right 3(G) modules., _

Using the naturality properties of cap product one can

also obtain the following diagram:

~/
Nu ~ I.
comp(w N;3) > Hy_ (W,N;3)
ST '
Jeot 1 J/j*o t*
a7
Hoomp(WoN:3) 085y i)

which commutes if t is orientation preserving and skew
commutes if t reverses orientation. Also as noted before

j;c'b* = - tyo j;. Hence putting these facts together with
Step 1° we obtain that

R (7, ) = (u,__(w,N;500)), ¢ Lo i .

By considerlng the homology exact sequence for the triple
T™(N) ¢ N CW and remembering that N = Tm(N)Ub(Tm(N)) x [0,1]
we see that (H___(W,N;2(c)), teo Jy) = (H,_ (W,70(N);2(6)),
]
tyoJj.)e But this completes the proof of Lemma 1°. (For
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g properties of cap products see [10], [11] and [9] page 225,)

If W is an elementary cobordism from a splitting
(N v) to a splitting (N v) where v points into W and
v p01nts out of W then N is called the left side of W
while N is called the right side of W,

Lemma 2°, 1If (N,v) and (ﬁ,J) are two splittings of M
with respect to ? and § is connected then there exists a
sequence of elementary cobordisms W ,wz,...,Wh such that
the right side of Wi is the same as the left side of Wi+1,
the left side of Wl is N while the right side of Wb is
N. |

An ordeced elementary cobordism is one in which we
designate a front and back side. (For example front equals
right side, back equals left side.) An ordered chain from
N to ﬁ is a sequence of ordered elementary cobordisms

m
the back side of Wﬁ is N and the front side of W

wl,wz,...,w such that the front side of Wl is N while
141 is
the same as the back side of Wi. The first stage in the
proof of Lemma 2° will be to demonstrate the existence of an
’

ordered chain from N to N.

Step 1° Let M" be a closed oriented manifold., Let (N,v)
and (N v) be n-1 dimensional submanifolds which intersect
transversely and represent the same element of H (M;2) under

the Pontryagin-Thom construction. Then there exists a compact
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submanifold W" of M such that 3 is a component of

M- (NUIG); W= 3+WU3_W where 3+W is a compact ,
submanifold of N while b_w is a compact submanifold N;
and v points into W while -v points out of W. Note
that W has a corner at 3+W11 b_w. We proceed now to

give a demonstration of Step 1°,

The framing v together with the orientation of M
determines an orientation for N, that is an element
4
uy € Ho_1(N;2). Likewise v determines an element .
/
uﬁ € Hn_l(N;Z). Denote alse by uN and uﬁ the images of
these elements in Ho 1 (NUN;2). Consider the homology seq-

/
uence for NUN C M:
/ a . ’ i*
Hn(M,NLJN;Z) -_ Hn_l(h(JN;Z) R Hn_l(M;S)-
!
Since (N,v) and (N,v) represent the same element of
Hl(M;z) under the Pontryagin-Thom construction we have that
fuy) = 1(af),
’
Let W; denote the components of M - (NUN). There
rd
are only a finite number of these since N and N meet
’
transversely. Therefore H (M,NUN;3) = = Hn(M,M-Wi;Z). Let
i

uy  denote the generator of Hn(M,M-Wi;Z) determined by the

i
orientation of M. Then there exist integers ny such that
b(Zniuw ) = uy - ug. Since there are only a finite number

i i -
of n. there is a maximum ngje If we let W = wi it is

i
easily checked that W satisfies the conditions asserted.
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Let us check more closely through the situation when

X €Wn Nr‘)N'. There exists a nbd. U of x and coordinate
functions Xysees,X, on U such that xy(x) = 0,

NOAU = {xlxl(x) =0} and NUU = [x lxz(x) = 0}. Then N
and !\’I divide U into four regions which are contained in

’
components W, ,W, ,W, Wi of M-NUN (see picture).
13" iy,

N
—_
W v w
iz L
1. 2
-V 'S N
X
W —_ w
13 v ih

Clearly n; >n; >n. and n, >n; >n.. Hence W = W.
il 12 13 i, ih 13 11
and wil is distinct from wiz, WiB, and Wih. Hence W

satisfies the condition to be a manifold with boundary at x
/
(x being the corner of W). Also we see that if NAN % ¢

. ’ ‘
then NUN divides M into at least three components., Every-

¥ it S

thing proven so far for orientable manifolds M is also true
for non-orientable manifolds M. Proofs can be given by
considering the orientation covering ’lz of M and making

the obvious observations,
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Step 2°. Let {N,v) and (§,\{) be two splittings of MO
such that N and N/ meet transversely and JIMAN is dis-
Joint from 3J¥IMn N’ Also assume that N, is connected ang
that Nnh;llr $. Then there exists a compact submanifold w2
of M such that QJw = dWUQ W where B+w is a com-
pact submanifold of N while a_w is a compact submanifold
of ‘l,‘?l is a component of M—(NUB;), and either v points

4
into W while v points out of W or vice versa.

Let (N’*,v;) be a connected splitting of M .such that
»;*ﬂ M =NAIM ang ﬁnﬁ* = 0. Such a splitting can be
obtained by using half of the boundary of a tubular nbd of
}; in M which extends the product tubular nbd. of )NI in
M half of whose boundary is NN M. Now consider the
double of M which we denote by MUM. Applying Step 1° to
the two framed submanifolds (l\;U!‘, v’U;) and (h;*u N, ':*U v)
we can prove Step 2°, That these two framed sutmanifolds
represent the same element in Hl(MUM;z) can be seen by
using the reduced Mayer-Vietoris sequence. This is the only
Place where we need that BM is connected.

/
If we drop the assumption that NNN ¢ ¢ then there are
two further possibilities namely:

Case 1°, 3 compact submanifold W exists as above with the
additional condition that 3 w = ¢,

Case 2°, 4 compact submanifold W exists such that
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] ()
W = 3+WU dNx[0,1] U O W where W is a component of
o] 7 /
M - (NUN) while B*W and b_w are as above. Here h_w = N.

Step 3°, we proceed now to construct an ordered chain of

elementary cobordisms associated with the compact submanifold
W of Step 2°, First we construct a thickened W = h;uWu\:
where b; is diffeomorphic to .N x[0,1] and meets W in N;

4 '
and W is diffeomorphic to 0 Wx[0,1] and meets WUW in

/
d WU NwWx[0,1]. We also require that W N dM = JNx[0,1]

where each YNxt is a fiber of DM, (see the picture below.)

=

3!& 3N

i s«
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’
W can be constructed by taking half of a sufficiently narrow ; f

tubular nbd. of N (the half determined by v or -v de- :
pending on which points out of W). The tubular nbd. can be :
picked so as to have the desired property at the boundary of M.
Suppose B+Wﬂ b_w +¢. Let U be an open set containing

T

b+wnb_w. There exists a Riemannian metric on M such that )

NNU is a totally geodesic submanifold of M (that is if

x € NNU and a 1is a geodesic such that a(o) = x and

g_:ltso is tangent to N then there exists an € > 0 such that
a : [-e,e] —> N). For a proof of this fact see f12] paée 4. We

”
construct W as half of a tubular nbd. of BW relative to

e

the exponentlal map determined by this metric and the vector
field v or -v depending on which points out of W. Note that
we may assume that for x € J WN D W v(x) is tangent to N.

r /
If b*wn B_W = ¢ construct W similar to the way that W was

constructed.

/
Clearly W since it is a product can be expressed as the

union of a complementary pair of elementary cobordisms. Also !
’ #

WUWUW can be expressed as the union of elementary cobordisms.

Hence we obtain an ordered chain from N to a new splitting

N. N has the following propert:.es' 1) if ? Mo [} W+t then
the number of components of NﬂN is smaller than the number of

/ H
components of NNN. 2) if Case 1° of Step 2° applies to W i

A
then the number of components of Nf)N is the same as the ;

number of components of NN N. But the number of
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A
components of N is smaller than the number of components
/

of N. Case 2° of Step 2° can only oceur if NAN = 9. Hence
after a finite number of applications of Step 3% e obtain

an ordered Chaln from our orlginal splitting N to a new
splitting N such that Nr)N = ¢. To be able to apply

Step 3° one must first make N transverse to N by an ordered
chain., But this is easily done. If we continue to apply

Step 3° we know that case 2° must eventually occur. Apply-
ing Step 3° now we obtain a splitting N such that one of the
components of N is N {Here we use a modified version of
Step 3° where in the construction af the thickened W we
omit w ) Hence N = NUN’ where (N,v) represents the gero
element of Hl(M;Z) under the Pontryagin-Thom construction.
Also B,N = §. Hence (N',:) represents the zero element

in Hl(MlJM;Z). Applying Step 1° we see that there exists a
compact submanifold W of M such that W C l‘;’, WnNI- ¢
and for all x € 3w either w;l(x) points into W or -v’(x)
points into W. Hence by applying Step 3° to W (where

d_W = ¢) we reduce the number of components of ﬁ; Hence
eventually we eliminate g altogether. 1In this way we have

L4
constructed an ordered chain from (N,v) to (N,v).

A properly ordered elementary cobordism is one whose
front side is the same as its left side. 1In order to prcve
Lemma 2° we must find an ordered chain from (N,v) to (N,v)

in which each elementary cobordism is properly ordered. In
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the ordered chain just constructed let W be an elementary
cobordism with front side (Nl,vl) and back side (N ,vz)
such that v, points out of W. We now show how to replace
W by an ordered chain from (Nl,vl) to (Nz,vz) such that
each elementary cobordism in it is properly ordered. To do
this let W = N oW, Then aw= N U N, XIUN,. v, points
into J while vV, points out of W. We can express é as
the union elementary cobordisms and this gives the desired

ordered chain. This completes the proof of Lemma 2°,

Corollary: 1If (N,v) and (é,;) are as in Lemma 2° then
there exists a splitting (§2¢3 and a diffeomorphism f of
M homotopic to the identity map such that f maps (J,;) to
(ﬁ';3 and an ordered chain WysWo,eeoW  from (N,v) to

" op

(N,v) such that each W; is properly ordered and

dim W; < dim W, ,,.

Proof': Let Wy,W 27+++,W, be the ordered chain from (N,v)
'

to (N, v) whose existence is given by Lemma 2°, Suppose

dim Wi+1 < dim wi. Let N j.1 denote the left side of wi

while Ni and N1+l denote the left and right sides of wi+l.

Case 1°. If W, AW, = Ny let W =wW,UW, .. By rearrange-
ment of handles we have that W=Ww L’W1+1 where dim Wi

dim W1+1 and dim wi+1 = dim Wi Then the ordered chain
wl,wz,...wi 1 i,wl+l,w1+2,...,w would be one step closer

to the desired chain than wl,wz,...,wh




3.14

Case 2°. There exists a diffeomorphism g& of M which is
homotopic to the identity map such that g leaves a nbd. of
N; fixed, g is fiber preserving ’when restricted to )M
3gd g(Wi+1)(\Wi = N;. Then let W = g(Ws) for s>41i and
LA W, for s <i. This gives an ordered chain from (N,v)
to (g(ﬁ),dg¢) in which Case 1° applies to éi’
by repeated applications of Case 2° and Case 1° we obtain a

’
wi+1.‘ Hence

proof of the corollary.

The diffeomorphism g of Case 2° can be constructed by
observing the following facts. Wi is diffeomorphic to
N;_1¥[0,13UD%x D™2 where ta' 1is the dimension of W,.
Let D? denote the core of the handle Wy and D™® the
disc transverse to thg core. Let Db denote the core of the
handle Wi+1 where dim wi+l equals b. When Db is
isotoped slightly so as to be transverse to D™? e have
that Db must miss p"~2 since b < a. Hence we can isotope
D® out of D®xDU® without crossing D2x S™%-1, wien
this fact the construction of g 1is easy. See [8] page 6 for

a similar construction. Also see picture on following page.

T T e i e T e
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We proceed now to show that we have a well defined
obstruction c(?) € C(R,a). Let (N,v) be an s-bi-connected
splitting of M. First we must show that o (c(N,v)) 1is
independent of the lifting of N to X. This reduces to
showing that

¢ (Hg,y (X,4;8(0)), t5le 3,) = 6 (Hgyq (X,T(A);2(G) ), t71 e 3,).

Let W =T(A) - A. Then W = LAY Wy, where Wy is a
cobordism consisting of only f's' dimensional handles and
Wse4y consists of 's+l' dimensional handles. Let A = AUWS.
T

Consider the homology sequence for the triple ACACX. It
reduces to:

] t
0 —> Hs*l(X,A;Z(G)) _>Hs+l(x’A ;3(G)) — Hs(A yA;3(G)) —> 0.
Since A' C T(A) t'i © j, 1s then zero endomorphism on the
free 2(G) module HS(A',A;Z(G)). Hence

6 (Hgyy (X,4;2(6)), t—i°j*) = ((Hs+1(xnﬂ';3(0”, t-i °Jg).

Similarly 6 (Hy,(X,A";3(6)), t'1o3,) =
6 (Hg,1(X,T(8);2(G)), t‘ioj*). Hence 6 (c(N,v)) is inde-
pendent of the lifting of N to X.

Suppose g : M—> M is a diffeomorphism homotopic to
the identity map and that ({J,w;) is the image of (N,v) under
this diffeomorphism. We proceed to show that 6 (c(N,v)) =
f(c(b;,w;)). Regarding ;{l as a principall n(M) bundle over
M we have that id : 3(,—->’; is a bundle map covering

id : M —> M, Since id is homotopic to g, we have a
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lifting E’ of g to ’f which is homotopic to id through
bundle maps. Such a lifting is unique. From its construction
one easily sees that g commutes with the action of nl(H)

on i’. Hence 'gV defines a diffeomorphism 2 X —> X. Let
ﬁ be a lifting of N to X and g(ﬁ) the corresponding
lifting of N to X. T : (L,A) —> (%,i') induce an
isomorphism E* : Hs+l(3[’,:;z) —> qu('f,X';z). Since E
commutes with the action of ﬂl(M) we see that 'E* is an
isomorphism between (Hs+1(x,A;Z(G)), tTyo0Jy) and
(Hs+1(X,A';Z(G)), t-ioj*) as objects from (C(3(G),a). Hence
& (c(N,v)) = ¢ (c(, V).

Let (N,v) and (ré 1:) be two s-bi-connected splittings
of M. We wish to show that & (c(N,v)) = 6‘(c(N v)) By the
above remarks and the corollary to Lemma 2° we may assume that
there exists an ordered chain W -,Wz,.'..wm of properly ordered
elementary cobordisms from (N,v) to (l(l,g) such that
dim W, < dim W;,,. Let Q be a lifting of N to X. Lift-
ing the wi to- X we can obtain a sequence A:I. of sub-
 manifolds of X such that A; C Ag,; C T(Ay) and Ay - Ay
is diffeomorphic to wi under the covering projection. Then
bAm-S is a lifting of N to X. Let Ao C Al C...CA;
be a subcollection of the Ay's such that ;;:-—Ai con-
sists of only 'i+l1l' dimensional handles in the handlebody
decomposition induced by the Ws's. One shows easily that

1.)

(Hs+1(A's+l:A;;3(G)), t 3o Jg) 1is a triangular object in
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CT(Z(G),a). (Use the fact that Ajy; C T(Ai).) By consid-
ering the homology sequence for triple A C A' C X (where

A = A;) we see that Hi(A',A;Z(G)) = 0 except when 'it
equals st or 's+l', By considering the sequence for B
ACA{CA' where i<s we see that Hj(A;,A;Z(G)) =0

unless j = i. Now consider the sequence for A C A;-l C A;
where i < s. By the above remarks it reduces to the follow-
ing short exact sequence of objects from CB*(R,a):

0 —> H;(A,A;3(G)) —> Hy(A{,A;_1;8(G)) —> Hy_;(A{_1,A;8(G))—
0. If by induction we assume that H; ,(A; ;,A;8(G)) is

a projective 2(G) module such that

F(Hi-l(A;_l,A;z(G)), t xo0Jdg) = 0 (the case i-1 = 0 was
proven above) we see that (Hi(A;,A;Z(G)), t'i«>j*) is an
object in C(8(G),a) and that & (H,(A;,A;3(6)), t31e 3,) = O.
In particular we see that 6'(HS(A;,A;Z(G)), tfi ©Jg) = O.

Now consider the sequence for A C A; C X. It reduces to the
following short exact sequence of objects from C:*(Z(G),a) :

0 —> H_,;(X,A;8(G)) —> H,(X,A_;28(G)) —> H,(A],A;5(G)) —>Q.

1]
Hence (Hs+1(X,AS;3(G)), 1

¥©Jy) is an object from

C(z(c) o) and 6 (H_, (X,AL;2(G)), tTho J) = & (c(N,v)).
B A .bX is the lifting of an s-bi-conneqted splitting
which we denote (ﬁ,ﬁ). Hence we have shown that

6 (c(N,v)) = 6’(c(§ 3)) By analogous arguments we can show
that 6‘(c(ﬁ,-4)) 6'(c(N -v)) But by Lemma 1° gb(c(N v))

/ /
glc(N,-v) and D (c(N,v)) = c(N,-v). By the discussion of

i b cai s Sttt o Ak e o v
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the functor ﬁ : C(Z(G),a) _— C(Z(G),a°1) given in
Chapter 1° we see that ﬂ induces an isomorphism of
c(2(G),a) omto C(2(G),a”}). Hence o~(c(N,v)) = 6~ (e(N,v)).
Hence & (c(N,v) = 6“(c(h’l,w/r)). Therefore if we define

c(,i\‘) = (_l)s+1 6 (c(N,v)) we see that this obstruction is
well defined for a fixed 's'. We note that Lemma 1° was not
used in an essential fashion here since we could have shown
that d‘(c(l:l,wj)) = d“(c(!’ﬁl,w'rv)) by continuing the line of argu-
ment used in showing that ¢ (c(N,v)) = F(c(ﬁ,:)). In order
to show that c(;‘\) is independent of s .we need to find an
s-bi-connected splitting (N,v) and a (s+l)-bi-connected
splitting (lé,v’) such that 6 (c(N,v)) = -6~ (c(N,v)). This
will follow from the following lemma. ‘

Lemma 3°. Let (N,v) be an s-bi-connected splitting of M
where 2 <s < n-4L. Let 0 —> (P,, ‘~P2) — (Pl,“Pl) —_
(Po,‘fo) —> 0 be an exact sequence in C(Z(G),a). Suppose
that (Pl, "Fl) is a triangular object in G(Z(G),a) and

~that c(N,v) = (Po,‘f’o). Then there exists an (s+1)-bi-

7 /) o~
connected splitting (N,v) such that c(N,v) = (PZ’ ‘fz). of
/7
course c(N,v) and ‘c(N,v) are defined relative to particular

/

liftings of N and N to X.

Proof: Llet p : Py —> Hs+l(x,A;Z(G)) denote the map from
Pl to Po composed with the given isomorphism from Po to

Hs+1(X,A;Z(G)). Since (Pl, "Fl) is triangular there exists a
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filtration o = F C FyC...CF, = P such that ) (Fy, 1) C 7y,
each Fi is free and Qi = Fi/Fi-l is free on one generator.
We prove Lemma 3° by induction where the 'i-th*' inductive
statement is as follows: After exchanging i 's+l' dimen-
sional handles from B to A we can find a monomorphism

e : Hs+l(R,N,Z(G)) —> P; where R is the cobordism formed
from the union of the i exchanged elementary cobordisms.

j0 § is amap in Cf(z(G),a), and
po ? = 1, where i is the inclusion of (R,N) into (X,4).

The image of € is F

By exchanging i 's+l' dimensional handles from B to A

we mean lifting a chain of properly ordered ‘'s+l! dimensional
elementary cobordisms to X so that the lifted chain starts

at the given lifting of (N,v) to X.

The 1'0'th statement is clearly true, Let us assume
the 'i'th statement and try to prove the 'i+l'st statement,
Pick e € Fy,) such that F;®[e] = F;,;. Let b = p(e).
Denote the region obtained by exchanging the first i handles

by R and let A' = AUR.
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Since LFl(e) € Fi "fl(e) is in the image of ? - Let
¢ be the element of Hs+l(R N) such that ?(c) = ‘Pl(e)
(for the rest of this proof we will always be deallng with
homology with local coefficients in 2(G).

Some notation
The following are inclusion maps:

(A",8) —> (x,4)
(T(A'),A) —> (X,A)
(a',8) —> (T(1"),4)
(T(A"),8) —> (T(a"),T(A))
w1l — (',
k7 (1(a"),4) —> (1(a"),4")
b denotes the boundary map in homology associated to

the triple AcC A’ C IX.

b' denotes the boundary map associated to the triple
AcT(a') cx.

a” is the boundary map associated to T(A) C T(A') C I.

Step 1°. We wish to find an element x € Hs+l(T(A ),A) such

that i (x) =b and t *k*(x) = ¢. One can show "easily®
that there exists an ‘x € Hsﬂ(T(A },A) such that i;(f) = b,
It is also easy to see that i (c) = t'ij*(b) = i;(t*j*(x))
(remember that i; is a map in C(Z(G),a)). 1=1'01"
and t~ 1o j=jet™1 -1

" [} & _l
=jok ot = iot "ok, Therefore

i'ot'loj =i0t™lok and hence 1.(c) = i*(t'io ky(x)). Thus
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there exists 3 € Hs+l(X’A') such that b Z=c- t'io k,(x).
Let 3 = t,(3) € Hg, (X,T(A")). Let x = }'(8") +x'. Then
ince 1,00’ = 0 we see that ij(x) =b. But ko 3' = )

1 —l -1 N ety ~~
ence tTik, 3'(8") = 197 (2"). since t1: (%, T(A ),T(R)) —>
~ NN ~ '
(X,A",A) we have that t *°a = Bot*. Hence t~ h (2') =
‘bt°*(z ) = t-i tyl2) = D2 =7¢c -t *k*(x). Therefore

a

£Taka(x) = T, D) ¢+ tli(x) = e X (3") + v lk (x")

= ¢ - tThk(X) + 7l (x) = e

o ’ “ / | '
Step 2°. Let y = k,(x), hence ye€ Hoyg(T(A),A7). Let
WyoWayeee Wy
cobordisms constructed so far. Let (Ni,vi) denote the right

be the chain of properly ordered elementary -

side of W;. Then by considering the triple ACA' C X we
see that (N;,v;) 1is an s-connected splitting of M. By
applying the final construction of Chapter 2° to the element

y we obtain an elementary cobordism w +1 of dimension se¢l
with left side (Ni,vi) such that a generator of Hs+l(wi+1’Ni)
maps onto y wunder the inclusion map of (wi+l’“i) into
,(T(A'),A'). Let §? denote this generator. (Here Wi, also
is used to denote the lifting of Wi+1 to X determined by

/"
the lifting N; to X). Let A = A'U W, Consider the

i+l*
following picture:
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Some more notation
The following are inclusion maps:

I: (A58) —> (x,A)

I: (A8 —> (1(a"),a)
I:(AA)——>(T(A)A)

K : (a58) —> (452")

L: (A,A) —> (&%)

L: (T(A"),T(A)) —> (T(A*),T(a))

-

&

—

The inclusion map of the triple (A’:A',A) into (T(A'),A',A)

induces the following diagram in homology.

Ly, Ho,q(A A) > Hs+l(A A")
v/ 4 ” \
Hgﬂ_“‘ »A) I, I, /0

e S (0,0 5> B, (1) A")

*
Using the facts that f (;") =y and k”(x) = y’ we find after
chasing the above diagram an element y € Hs+1(A A) such that
x «(y) = ” and T «(¥) = x. Define P Hs+1(A,A) —> P, by
§> (y) = and S’ ©Ly = £. This is well defined since
s‘_,1(A A) ¥ inmage L,®{y}l, and L, is a monomorphism,
pf(y) =ple) =b = 1,(x) = i;f*(y) = I,(y). Also if
u € Hs+l(A A) such that u = L.(v) for some v ¢ qu(A ,A)
then pgb(u) = pr (v) = pﬁ(v) =d,(v) = I1,(v) =1 «{u).
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Hence po f’ = I,. lf{(U) ="F flv) =ft'ij*(v) =)°'L*t'ij*(v)
fo(t i_]*)o Ly(v) = fF(t743x(u)).  (Remember from Chapter 2°
that L, is a map in 6 (2(G),0) and hence L, o (t” *j*) =
(¢” *J*)oL*.) PLF) = Pite) =pib) = L1 p) =
Prale” k*(x)) (by Step 1°) = FL,t 1k (I,(y)) =
f‘t T (Lgk I (y)) But Lo koI j. Hence “f’lﬁ(y) f(t'*;j*(y!).
Therefore f’ is a map in f(Z(G) a). Hence we have com-
pleted the proof of the inductive statement. Consider the
inductive statement for i = m. Also consider the'homology
exact sequence for the triple A C A C X. We obtain the fol-
lowing diagram:

1 L .
0 —> Hgypo(X,A7) —> H 1 (A',4) —> H_,,(X,A)

0

Since all the maps in this diagram are maps in e(z(G),u) we
" see that (Hs+2(X,A';Z(G)),t'ioj*) = (P2, “Pz). One also shows
easily that (Nm,vm) is an (s+l)-bi-connected splitting.

Hence we have proven Lemma 3°.

Let (N,v) be an s-bi-connected splitting of M where
2<s<n-4. Let (P,Y) be an object of E(Z(G),a) such
that 6 (P, §) = 67 (c(N,v)). We now will show that there

t 7
exists an s-bi-connected splitting (N,v) such that
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1 1 —-— /7
c(N,v) = (P, ). (Remember that c(N,v) and c(N,v) are
/7
defined with respect to particular liftings of N and N to X.)
To do this we need only show that the equivalence relations

1'° and 2"Q of Chapter 1° can be realized.

First let us consider relgtion 1'°. Let
0—> (Py, f,) — (P, ;) — (P, ¥,) —> 0 be an exact
sequence in C(Z(G) a). Suppose that (Pl, “Pl) is triangular
and that c(N,v) < (P,, ¥,). Then by Lemma 3° there exists an
s+l-bi-connected splitting (Nl,vl) of M such that
e(Ny,vy) = (P, Fp). By Lemma 1° c(Ny,-v) ¥ Dip,, F,). But
since L) is an exact contravariant functor
0 <= B (Py, ) <— D (P, $1) <— D(r,,¥,) <0 1
exact in G(Z(G),a'l). Also as remarked in Chapter 1° ﬁ(Pl,‘?l)
is triangular. Let F be a finitely generated free 32(G) -
module. Let g :aB(PO,“PO) ——>£(P1,‘-Pl) denote the map in
the exact sequence above. Then

g®id

0 —=>0 (r,, ) @ (F,00 ==>D (P, P,) ® (F,0) —>D(p,,f2)—0
- is exact and D) (Pl, \fl)@ (F,0) is triangular. AHence there
exists a splitting (Nz,v } with respect to rof such that
C(Ny,v,) 'o@(l’o,'f )@ (F,0). By Lemma 2° again
C(Ny,-v,) = o%ab(Po,“P )@aD(F 0). But ﬂo‘ﬁ is naturally
equivalent to the identity functor and ,;D (F) ¥ F. Hence
C{N,,-v,) < (Py, "P,)@ (F,0). Thus relation 1'° going in one

direction can be realized. The opposite direction can be
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realized in a similar fashion.

Next we consider relation 2'°., Let 0 —> (Pz, LPZ) -
(Pys P1) —> (7, T) —> 0 and 0 —> (Q,, ¥,) —>
(Ql,“]“l) —_— (Qo’ Yo) —> O be two exact sequences. in

’
C(3(6),a). Let ¥,¥, : Q@ —> P, be two a-semi-linear maps.
Define g, : P,®Q, —> P, ®Q, by g,(x,y) =
*
(‘fo(x) @71 (y), ‘1’0(3:)). Define g : POCDQO —> P, ®Q, by
g;(x,y) = (‘-f’o(x)@Yo(y),Lf’o(y)). Then applying Lemma 2° of
Chapter 1° twice with ¥, = 0 = Y, we obtain the following
two exact sequences in (C(2(G),a):
0—=> (P, @0, Y@ ¥, — (R @a,e) — (P,@0q,,8,) —> 0
1 ] 1 ]

0—> (P, @0, f,® t,) — (P ®Q,g) —> (P, @ Q,,8,) — O
Assume that (P, kf:'l) and (Q;,Y;) are triangular. Then
(Pl @Ql,gl) and (Pl @Ql,gi) are triangular. Suppose that
c(N,v) ¥ (Py ®Q,,8)). Then by Lemma 3° there exists an
s+l-bi-connected splitting (Nl,vl) - such that o(Nl,vl):'
(P, @Qp, f, +¥5). By Lewma 2° c(Ny,-v)) ¥D(p, ® 0, f, @Y.

But since a@ is contravariant and exact

0<—D (P, @0, ¥, d%t,) «—D(F1@Y,e) <, ® 05500

is exact in C) (Z(G),a'l). By Lemma 3° there exists an

n-(s+1)-bi-connected splitting (NZ’VZ) of M with respect

A
to ro f such that c(Nz,vz) s "6(P06Qo’g<’))' Applying Lemma
2° again we sce that (Nz,-Vé) is an s-bi-connected splitting of

. ~ -~ L
M with respect to f such that c(Nz,-v.) = (POC-BQo,go). Hence
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relation 2'° can be realized.

Hence we have shown that there exists a splitting (N,v)
with respect to ? such that ETKT_:_K is an h-cobordism
iff c(?) = 0. (If we delete an open tubular nbd. of N
from M then the resulting manifold is diffeomorphic to

T(A) - A. see [3] Section 2°.)
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- : A
Chapter 4°. The definition of the obstruction T“(f).

If c(?) = 0 then there exiéfs a splitting (N,v) such

that W = m is a relative h-cobordism. W=

N cl?%(W)L!T(N) where we have a given diffeomorphism of

acw onto JYNx[0,1]. This diffeomorphism can be extended
to a diffeomorphism of W onto Nx[0,1] if and only if .
T(W,N) is the zero element of Wh(G). If this happens then
there exists a differentiable fiber map T:M— S1 such
that f is homotopic to £ and f/JdM = f. But it is
possible that T (W,N) 4 Q although there exists another
splitting (ﬁ,é) such that ?”(&,&) = 0. We proceed to
measure this ambiguity. Let a, : Wh(G) —> Wh(G) be the
automorphism induced by a : 3(G) —> 2(G). Let Wh,(G) =
Wh(G)/{x-a,(x)|x € wh(G)}. If (N,v) is as above we define
’("'(I/“) € Wh_ (G) to be the image of T (W,N) in Wh (G). We
proceed to show that T‘(g) is well defined. Since

T : (W,N) —> (T(W),T(N)) is a diffeomorphism we see easily
that T (T(W),T(N) = « (T (W,N)). Therefore if p denotes
the quotient map of Wh(G) onto Wha(G) we see that
p(T{W,N)) 1is independent of the lifting of N to X. Let
(ﬁ,4) be a second splitting such that (6,&) is also a

relative h-cobordism. We may assume that T(A) Cc A'. Let

I'4
W=a'- T(A). Then one sees easily that (W,T(N)) is a
iy LA
relative h-cobordism. Let Wl = WUW and wz = WUW (see

picture on next page.)
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Since T : (W,,N) — (VZ,T(N)) is a diffeomorphism we -

see that T(W,,T{N)) = a™} T-(W,N). But T(W;,T(N)) =
TOLK) + TW,T(N)) while (W, T(N)) = T(W,T(N)) + T(W,K).
Putting these three equations together we see that

p(7-(W,N)) = p(’("(wl,}g)). Hence ’C‘(?) is well defined.

Let x € p']'?(f), then x =T(W,N) +y - a,(y) for
some y € Wh(G). By a result due to Stallings (see [13] page
398) there exlsts a cobordism (Wl,N) such that T’(WI,N) =
a,(y). Let N be the r1ght side of Wl. Then there exists
a second cobordism (Ué,N) such that ‘TTWz,N) = -a,(y). We
can identify half of a marrow tubular nbd. of N with

W UW, (see picture below. )

w
o~ N\
A Wl \ '2 . -r(wll X
N T(N) T(f)
e Y\_—/
/
w
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Let A' = AUW, and W=T(A') - A". Then r(wluv;.n) -
'
£ (WUT(W,),N),ZGUW, N) = ay(y) + T(W,H), and

- 7 ¢ .
T"(\’duT(wl),N) = T(W,N) +a 1 a*(y’)\. Hence TH(W,N) = x, and
(N,v) is a splitting relative to f. Hence we obtain our

theorem namely:

A : -
Theorem: f 1is homotopic to a smooth fiber map f such

T/d3M is the given fiber map f if and only if
1° X is dominated by a finite C.W. complex.
A
2° c(f)=0
3° T(f)=o0




Appendix

If the boundary of M is disconnected then the statement
of the fibering theorem must be modified. Namely we must
consider smooth fiber maps T which are homotopic to f
relative to the boundary. (If. 3 M is connected f homotopic
to © implies that T is homotopic to f leaving the boundary
fixed.) The problem occurs in the proof of Lemma 2° of
Chapter 2°. But if we restrict ourselves to maps homotopic
to g relative to dM everything goes through as before.
The major technical annoyance is to give the proper inter-
pretation of the Pontryagin-Thom correspondence in this con-
text. This is accomplished by working with pairs (g,h) where
g:M—>5' and h: IM I-—>5' such that h/3Mx0 = £
and h/3Mx1 = g/DM. A homotopy from (g,h) to (g,h) 1is
a pair (G,H) sucﬁ that G is a homotcpy from g to g'
and H : QMxIxI—> 5! such that H/YIMAIxO = h,
H/3MxI%X1 =h', H/DMx1lxI =G/IM and H(x,0,t) = £(x)
‘for x€ 3M and t€I. h

Next we consider the situation when ? : m (M) —> ﬂl(Sl)
1s not onto. This corresponds to the case where the fiber
is disconnected. For convenience assume thét dM = ¢.
Regard ? as an element of Hl(M,Z). Let £ = m§
where ? is indivisible. If m = 0 there cannot exist a

A

"
smooth fiber map homotopic to f. 14‘#: m, (M) —> ﬂl(Sl) —> 0.
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If m$ O then there exists a smooth fiber map homotopic to
A
f 1if and only if there exists a smooth fiber map homotopie

2
to f. The case when QM $ ¢ can be treated similarly.

Let G be a finitely presented group. Let
o~/
x € C(2(G),id) then there exists a closed manifold M and a

1

A Ao A .
map f : M —> 5~ such that ker g* =G, fg disonto, X

A
is the homotopy type of a finite C.W. complex and c(f) = x,

By results of Bass and Murthy if G is a finitely
generated abelian group of rank > 2 whose torsion subgroup
is not cyclic of square free order then E?Z(G),id) is not
finitely generated. Also Bass and Murthy show that C(R,id)
fits into the following exact sequence:

Ky (R[t]) —> K, (R[t,t71]) —> C(R,1d) —> Ko (R[t]) —>
Ko (Rt,t710),

A
There is also a product formula for ¢(f) analogous
to that discovered by Kwum and Szezarba for Whitehead torsion
(SEQ [153. )
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