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Introduction. Let M™ be a closed connected smooth manifold of dimension
greater than five, and let f : M — S’ be a continuous map. The purpose of this
paper is to give necessary and sufficient conditions for there to exist a smooth
fiber map f : M — S homotopic to f.

One condition is that f, is not the zero map, where f, : II;(M) — II,(S%).
The necessity of this condition is seen by considering the homotopy exact
sequence for a fiber space and remembering that the fiber should be a compact
manifold. For convenience, we will assume that f, is onto. This condition cor-
responds geometrically to the fiber of a smooth fibration f being connected.
By the 1-1 correspondence between homotopy classes of continuous maps of
M — 8" and elements of H'(M; Z), the above condition is equivalent alge-
braically to f being an indivisible element of H'(M; Z).

Let G denote the kernel of f, and let X be the covering space of M correspond-
ing to G. A second necessary condition is that X must be the homotopy type
of a finite C. W. complex. This follows since X is the same homotopy type as
the fiber of f, if f exists.

Let (N %, v) be a closed framed submanifold of M such that (N, v) represents
f under the Pontryagin—-Thom construction, M y denote the compact manifold
obtained by “cutting” M along N. M y consists of two copies of N which we
denote by N’ and N”'. Hence, M y is a cobordism from N’ to N’. The pair
(N7, v) is called a splitting of M with respect to f. Let s be an integer smaller
than » — 2 and larger than 1. Under the assumptions made thus far, we can
always find a splitting (¥, v) such that (M y, N) has a handlebody decomposition
consisting of only s and s 4+ 1 dimensional handles.

The existence of a smooth fiber map f is equivalent to the existence of a
splitting (N, v) such that M y is diffeomorphic to N X [0, 1]. There are two
obstructions to the existence of such a splitting. The first obstruction, denoted
by ¢(f), is an element of an abelian group C(Z(G), &) and vanishes if and only
if there exists a splitting (I, v) such that (M y , N) is an h-cobordism. (See Th.
5.2.) The second obstruction, denoted by =(f), is defined if ¢(f) = 0 and is an
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element of a quotient group of Wh(G). (f) vanishes if and only if there exists
a splitting (N, ») such that M y is diffeomorphic to N X [0, 1]. (See Th. 6.2.)
Our main theorem is the following:

Theorem 6.4. Let M" be a closed connected smooth manifold, n = 6; let f
b_e an indivisible element from H'(M; Z). Then there exists a smooth fiber map
f: M — 8" homotopic to f if and only if the following three conditions hold.

1° X 1s the homotopy type of a finite C. W. complex.
2° ¢(f) = 0.
3° r(f) = 0.

We note that in the author’s thesis (21), c¢(f) was defined under the assump-
tion that X is dominated by a finite C. W. complex. This is a weaker assumption
than 1° of Th. 6.4.

Let us say a few words about the groups where the obstructions ¢(f) and
() lie. C(Z(@), a) = CZ(G), o) @ K\(Z(G)). (See Lemma 1.4.) If Z(G) is
Noetherian and the global dimension of Z(Q) is finite then §(Z(@), &) = 0.
(See Th. 1.6.) The groups K,(Z(G)) and Wh(G) have been extensively analyzed,
in particular, when G is a finitely generated abelian group. (See (13) and (14).)
For certain groups G, C(Z(®), ), K+(Z(G)), and Wh(G) all vanish. In particular,
this happens when @ is a finitely generated free abelian group. (To see this use
Th. 1.6. on C(Z(@), &) and see (13) for Wh(G) and K,(Z(®)).) But, when C(Z(G),
a) and Wh(®) both vanish, conditions 2° and 3° of Th. 6.4 drop, and we are
left with condition 1° which is a purely homotopy theoretic condition. On the
other hand, H. Bass and M. O. Murthy have shown that C(Z(G), id) is not
always zero. (See the remark following Th. 1.6.)

The results of this paper when G = 0 have already been obtained by W.
Browder and J. Levine in (3). The reader would be well advised to familiarize
himself with (3) before reading this paper. The first person to study the problem
of when a manifold fibers a circle was J. Stallings. In (16) he solves this problem
for 3 dimensional manifolds.

A version of our main theorem, Th. 6.4, is true in the case when M is a manifold
with a boundary, where the boundary already fibers a circle, and we wish to
extend this fibration to the rest of M. We have restricted ourselves in this
paper to the closed case in order to facilitate the discussion; but the interested
reader is referred to the author’s thesis (21) where the fibering theorem is
proved in the case of a manifold with boundary. Also, see (22) for a statement
of the result in the manifold with boundary case. In addition, Th. 6.4 is true
in the piecewise linear category.

The interested reader will find in (21) a different proof that the obstruction
¢(f) is well defined. This proof is perhaps useful for obtaining other results.
He can also find in (22) an outline of some more recent methods, obtained by
the author in 1968, which give an alternate approach to the problem of fibering
a manifold over a circle.
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There will eventually appear a joint paper to be written with W. C. Hsiang
which will discuss additional connections of the algebraic work of Bass and
Murthy (14), and Bass, Heller, and Swan (1) with the theory of non-simply
connected manifolds. Some of the results of this work have already been an-
nounced in (18) and (19). Also, Chapter III of this paper contains the proof of
some theorems announced in Chapter III of (19).

This paper is a revised version of the author’s doctoral dissertation, which
was written under the direction of Professor Wu-chung Hsiang and submitted
to Yale University in 1967 in partial fulfillment of the requirements for the
Ph.D. degree. The author wishes to express his deep gratitude to Professor
Hsiang for his valuable advice and constant encouragement which enabled the
author to preservere to the completion of this research. Several times without
Professor Hsiang’s encouragement the author may have given up before carrying
this research through to a successful conclusion. He also wishes to thank Professor
Robert H. Szezarba for being a great source of knowledge and enthusiasm from
which the author has continually drawn benefit.

Chapter I. The Grothendieck group of nilpotent matrices. The purpose of
this chapter is to construct and derive the main properties of the group C(R, «).
The major obstruction to a manifold fibering a circle lies in this group.

Let R be a ring with identity, and « be an automorphism of R. Let €*(R, «)
be the category whose objects are pairs (M, f) where M is a right B module
and f is a « semi-linear endomorphism of M. (That is, f(zr) = f(x)a(r) where
x e M and r £ R.) In this category the maps from (M, f) to (N, g) are the R
linear homomorphisms ¢ : M — N such that g 0 ¢ = ¢ o f. €*(R, @) is an abelian
category. Let €(R, ) be the full subcategory of €*(R, a) whose objects are
pairs (P, f) where P is a finitely generated right projective R module and f is
nilpotent. (That is, f* = 0 for some positive integer n.) Let (R, «) be the
full subcategory of @(R, a) whose objects are pairs (F, f) where F is a stably
free projective module and ®(R) be the category of all finitely generated pro-
jective modules. According to Bass, Heller, and Swan (See [1]), there exists an
abelian group C(R, &) and a map ¢ : C(R, o) — C(R, ) which is universal with
respect to the following properties.

1° If F is free, then o(F, 0) = 0.
2°Mf0—>A;, A, 5 A4,—0

is exact in C(R, ), then o(4,) — o(4d)) + o(4d,) = 0. In a similar fashion,
the groups C(R, a) and K,(R) are defined from the categories (R, a) and
®(R), respectively.

Next, we will give a more concrete definition of C(R, «), from which, we will
show that ¢ : @(R, ) — C(R, a) is onto. To do this, we need a lemma which we
now formulate.

Definition 1.1. A triangular object in €(R, o) is a pair (F, f) such that F
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possesses a filtration 0 = F, C F, C --- € F, = F where each F,/F,_, is
free, and f(F;) C F;, .

Lemma 1.2. Let (K, k) be an object in C¥*(R, ). Let 0 = K, T K, & ---
C K,. = K be a filtration of K by finitely generated submodules such that k(K ,) C
K. i . Then there exists an exract sequence in C*(R, a), 0 — (L, £) 5 (F, ) &
(K, k) — 0 where (F, {) is triangular with respect to a filtration 0 = Fo, C F, C
<+« CF, = F such that p(F,) = K, .

Remark. If we define L; = ¢'(F;),then0 = L, C L, C --- C L, =L
is a filtration of L such that 0 —» L,/L;,_, — F;/F._., — K,/K,_, — 0 is exact.

The proof of Lemma 1.2 will be given at the end of chapter I.

We now construct a group C’(R, «), which we will show is isomorphic to
C(R, a). The elements of C’'(R, a) are equivalence classes of isomorphism classes
of objects from C(R, a) where the equivalence relation is generated by the fol-
lowing elementary relations.

1° If F is free, then (P, /) ~ (P@ F, 1 @D 0).
2° If 0 — (P, , f2) — (P1, f1) = (Po, fo) — O is exact in C€(R, a), then (P, , fy)
~ (Pz@Po:fz@fO)-

The group operation is defined by

{P N +1{@ 9} ={(PDQ D9

(Here, {(P, f)} denotes the equivalence class of the pair (P, f).) With this
definition C’(R, ) is an abelian group. Only the existence of inverses is difficult
to verify which we now proceed to verify.

The identity of the semi-group C’'(R, «) is {(0, 0)}.

Lemma 1.3. Any triangular object is equivalent to (0, 0) under the equivalence
relation generated by 1'° and 2'°.

Proof. We proceed by induction on the length of the filtration by which
the object is said to be triangular. If the length of the filtration is 1, then Lemma
1.3 follows immediately from 1’°. Now suppose that Lemma 1.3 is true if the
filtration is of length n — 1 or less. Assume that our filtration is of length m.
Consider the sequence

0— (Fuery 1/Faer) = (F, f) = (Fu/Fuer, 0) = 0.

Then (F, f) ~ (Foeiy @ F,/F,._, , {/F.-y @ 0) by 2'°. Also (Fp-1 @ F./F._.,
f/Faai@®0) ~ (Foey, {/Fn-v) by 1’°. And (F,.—; , {/Fa-1) ~ (0, 0) by the induc-
tion hypothesis. This proves Lemma 1.3.

If (P, g) is an object from C(R, &) where g is nilpotent of order =, let K; =
image ¢"~*. Then the filtration

0=K,CK,&--CSK,=P
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satisfies the hypothesis of Lemma 1.2. Hence there exists an exact sequence
in @*(R, @), 0 — (L, £) — (F, ) — (P, g) — 0. But since both (F, f) and (P, g)
are in (R, «), this implies that (L, £) isin €(R, ). By 2'°, L @ P, L P g) ~
(F, f). Since (F, ) is triangular, (F, f) ~ (0, 0) by Lemma 1.3. Therefore {(L, £)}
is the inverse of {(P, g)} in C'(R, ). Hence C'(R, @) is a group.

It is easy to see that C’'(R, «) is universal with respect to properties 1° and
2° used in defining C'(R, «). Hence C'(R, @) is naturally isomorphic to C(R, «).
Thus we have a new construction for C(R, «) from which it is clear that o :
C(R, @) — C(R, ) is onto. We could give similar explicit constructions for the
groups C(R, ) and Ko(R). In particular the maps ¢ : €(R, a) — C(R, o) and
o : ®(R) — K,(R) are both onto.

Next we show that C(R, «) splits as a direct sum of C(R, ) and K,(R).
There is an additive functor § : @(R, a) — ®(R) which sends (P, f) to P. The
functor ¥ induces a map § : C(R, o) — K,(R). There is a functor 3 : ®(R) —
C(R, a) given by sending P to (P, 0). 3 induces a map 3 : K,(R) — C(R, a).
3 is a splitting of 5. Let I : €(R, o) — C(R, «) denote the inclusion functor.
Then I induces a homomorphism I : C(R, «) — C(R, a). It is easily seen that
Fol = 0.If (P, ) is an object in (R, &) then there exists a Q in ®(R) such
that P @ Q is free. Hence o(P, ) = Ie(P @ Q, f ® 0) — 35(Q, 0). Therefore
image I equals kernel 3. If to the object (P, f) in C(R, «) we assign ¢(P @ @Q,
f@®0) e C(R, «), it is easily checked that we obtain a well defined map of C(R, «)
to C(R, ). This map satisfies properties 1° and 2°, and hence defines a map of
C(R, a) to C(R, ) which is seen to be a right inverse to I. Hence we have the
following lemma.

Lemma 1.4. C(R, «) splits as a direct sum of C(R, ) and Ko(R).

The group K,(R) has been extensively studied. (See, for example, [14].) We
next obtain a result stating that C(R, «) = 0 for a certain class of rings R.

Definition 1.5. A ring R is said to be right regular if R is right Noetherian,
and every finitely generated right R module has a projective resolution of finite
length.

Theorem 1.6. If R is right reqular, then C(R, o) = 0.

Remark. The rings which will concern us are integral group rings, denoted
by Z(G@) where G is the group. As an example of Theorem 1.6, let G = Z7,
the free abelian group of rank n, and R = Z(G). This ring is right regular,
and hence C(Z(Z"), a) = 0. Also K,(Z(Z") = 0 (see [13], page 419, ex. 6)
and therefore C(Z(Z"), @) = 0. On the other hand, Bass and Murthy have
shown that C(Z(@), id) # 0 when G is a finitely generated abelian group of
rank >1 and the order of the torsion subgroup of G has a square factor. This
can be derived from the results of [1] and [14].

Proof of Theorem 1.6. Let (P, g) be an object from €(R, ). Then ¢ is nil-
potent of some order n. Let K, =image g,*; then 0=K, C K, C --- C K,=P
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is a filtration of P satisfying the hypothesis of Lemma 1.2. Hence there exists
an exact sequence in C*(R, o), 0 — (P, g:) — (F, f) = (P, g) — 0. Since (F, f)
is triangular, ¢(P, , ¢;) = —a(P, g). But by the remark following Lemma 1.2,
we see that there exists a filtrationof P, ,0 = L, C L, C --- C L, = P,,
such that ¢(L;) € L;_, and 0 —» L;/L,_, —» F;/F,., —» K,/K,_., — 0 is exact.
Since R is Noetherian, we see that L,/L,_, is finitely generated. If M is a right
R module, let d(M) denote the length of a projective resolution of M of minimal
length. Then d(L;/L;-,) = max (1, d(K;/K;_,) — 1). Since R is Noetherian,
each L, is finitely generated, and hence (P, , ¢,) satisfies the hypothesis of Lemma
1.2 with respect to the filtration 0 = L, C L, C --- C L, = P, . Let m =
max;g;s. A(K;/K;_,). Then after m applications of Lemma 1.2, we obtain an
object (P, , gn) of C(R, @) such that ¢(P,, , g.) = (—=1)"¢(P, g) and a filtra-
tion0 = §, C 8, C --- C 8, = P, such that each S,;/8S;_; is an object from
®(R). By application of the defining property 2° for C'(R, «), we see that ¢(P,, ,
gm) = Z?-l a(8:/8i-1, 0) = o(@i-1 (8:/8:i-1), 0) = o(P,, 0) = 0, since
P, is stably free, and hence C(R, o) = 0.

The a-twisted polynomial ring R ,[t] is defined as follows. Additively, R.[{] =
R[t]. Multiplicatively, for f = at” and ¢ = bt™ two monomials, f o g = aa"(b)"*™.
Similarly, we define the a-twisted finite Laurentz series ring R.[T] = R.[t, t7'].

Lemma 1.7. Let P be a module over R ,[t] such that Pt" = 0 for some n. Sup-
pose that 0 — X — Y — P — 0 1s exact in R ,[t] where X and Y are finitely gen-
erated projective R ,[t] modules. Then P is projective when considered as a module
over R.

Remark 1°. Right multiplication by ¢ is an o™' semi-linear endomorphism
of P, and hence it follows from Lemma 1.7 that (P, t) e C(R, o).

Remark 2. Lemma 1.7 remains true when the map from X — Y is only
o' semi-linear.

The proof of Lemma 1.7 will be postponed until the end of this chapter.

We next define a map p : K;(B.[t, t7']) — C(R, o). Let f : (R,[T)" —
(R.[T])" represent an element in K,(R,[t, 7']). Then, ®,» o f : (R[t])* —
(R [t])" for some positive integer m. (Here &, denotes right multiplication by a.)
Let M(®n of) = (R,[])"/®im o f((R.[{D™). By Lemma 1.7 we see that (M (®.= o
D, ®) e €(R, «™"). Define p : Ki(R.[T]) — C(R, «™") by p(f) = o(M (R o f),
®,).

Remark. The map p and Lemma 1.7 were announced in [19]. They represent
joint work of the author and W. C. Hsiang.

If f: X — Y is a linear or semi-linear map, we define M (f) = Y/f(X). For the
sake of brevity, if f denotes the map from X — Y in Lemma 1.7 then M (f) will
also be used to denote the object (M (f), ®,) € C(R, «™ ).

We use the following lemma to show that p is well defined.
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Lemma 1.8. If P, , P, , and P; are modules over a ring R, and f, : P, —
P, , f, : P, — P; are either linear or semi-linear maps, where f, is a monomorphism,
then the following sequence is exact:

0 — fo(M(f)) = M(f2 o f1) = M(fo) — 0.

Proof. Lemma 1.8 follows immediately by considering the triple fo(f;(P,)) C
f2(P2) C Ps .

Applying Lemma, 1.8 to the maps
R.[E])" =2 R.[t])" *=2 (R[4,
we obtain that
00— ®Rn o f(M(R,)) > M(®Rim 0of 0 ®R,) > M(®Rm 0o f) — 0.

is exact. (Here M is considered as a module over R,[f].) Since f is linear, f o
®, = ®, o f. Hence ¢(R;n o f(M(R,))) + c(M(Rin ©f)) = c(M(Rim+. 0 f)).
Since ®,;» is a~ ™ semi-linear

o(®Rem 0 f(M(G))) = a,"(@(M(Re))).

(The automorphism o induces a map e, : C(R, ) — C(R, ) in the obvious
manner.) But M(®,) = (R", 0). Hence o(M(®,)) = 0. Therefore

o(M(®em ©f)) = o(M(®R.n+: ©f)),
and hence p is well defined from
GL(R[T)) — C(R, ).
Notice that if we apply Lemma 1.8 to the maps
Ralt)" 2=t (RL[)" > R,

we obtain that o(M(®,m+: © f)) = o' (e(M(®» © f))). Hence we obtain the
following corollary.

Corollary 1.9. a,(9(f)) = p(f).

Now we complete the proof that p is well defined. Let f, g : (R[T])" — (R[T])"
be elements of GL(R[T]). If we apply Lemma 1.8 to f and g, we obtain that

p(fog) = p(f) + p(9), and hence p : GL(R[T]) — C(R, a™")

is a group homomorphism. But, C'(R, «™') is abelian, and hence p({GL(R[T]),
GL(R[T))]) = 0. Therefore, p defines a homomorphism p : K;(R[T]) — C(R, a7 ").
(Here we use the fact that K,(R[T]) = GL(R[T))/IGL(R[T]), GL(R[TD].)
That is, p is well defined.

We are particularly interested in the case where R is the integral group ring
of a group G. Let « be an automorphism of G, and let @ © , Z denote the semi-
direct product of G with Z via «. Then « induces an automorphism of Z(G)
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which we also denote by a. Since Z(G © Z) =2 Z(G).[T], p : K.(Z(G © . Z)) —
C(Z(@), &™"). One easily sees that p factors through Wh(G © , Z). Therefore,
we obtain a map

P Wh(G © Z) — C(Z@G), a™).

We end this chapter with the proofs of Lemmas 1.2 and 1.7.

Proof of Lemma 1.2. The proof is by induction on n. For n = 1, since K
is finitely generated we can find a map p : F — K — 0 where F is a finitely gen-
erated free module. Then 0 — (ker p, 0) — (F, 0) 2 (K, 0) — is the desired
sequence. Assume that the lemma is true for n — 1. Therefore, there exists
a map

p:(Fn—lrf)-—)(Kn—lyk)_)O

satisfying the conclusion of Lemma 1.2. Since K,/K,., is finitely generated,
there exists a finitely generated free module @ and a map ¢ : Q — K,/K,_, — 0.
This lifts to a map

7:Q—K, =K. Let F=F, ,®DQ

and extend the definition of p to F by the use of ¢. Then, p : F — K — 0. Con-
sider the following diagram.

Q _f) Fn-l
Pl l«P
K i’ Kn-—l

Since @ is free and k o p is « semi-linear, it is easily seen that k o p lifts to an

« semi-linear map f. Extend f from F,_, to F by the use of f. Then the pair

(F, f) and the map p clearly satisfy the conclusion of Lemma 1.2. Let L = ker p,

£ = f/ker p, and q : (L, £) — (F, f) be the inclusion map. This proves Lemma 1.2.
In order to prove Lemma 1.7, we need the following result.

Lemma 1.10. Let A; and B, , 1 = 1, 2, 3, be modules over a ring R. Let f, :
A; — B; be linear or semi-linear maps. Assume that the following diagram com-
mutes:

0> A4, > 4,—4;—>0
lh lfx lfa
0— B,— B,— B; —0
where the rows are exact. Assume also that fs is a monomorphism. Then,
0— M) = MF,) > M) -0
18 exact.

Proof. Do the obvious diagram chasing.
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Suggestion. To understand the proof of Lemma 1.7, it may be helpful to
look at the proof of Theorem 8, part b, of [23].

Proof of Lemma 1.7. Since Pt* = 0, if we consider X, Y and P as modules
over R ,«[s] where s = (", we see that X and Y are finitely generated projective
R ,-[s] modules and that Ps = 0. If we consider X and Y as R modules, then
they are projective. We obtain a new R ,.[s] module structure on X and Y by
defining Xs = Ys = 0. Denote these modules by X’ and Y’.

Some Notation. 1°. If M is a module over R, then M , is a new module over
R defined as follows: Additively, M, = M. Multiplicatively, if « ¢ M, and
re R, then z-r = za(r) (the right hand side being multiplication in M).

2°. If r is an element from a ring R then £, denotes left multiplication by r.
3°. In the hypothesis of Lemma 1.7, let f denote the map from X to Y.

Since X is a projective B module, X ,- is also projective. Hence,
0 Xor @ Ron[s] 225 X @ R.als] > X' —0
R R

is a resolution of X’ by projective R .»[s] modules. Denote the map id Q £,
by g. Consider the following diagram of R ,.[s] modules

0 0
! l
X @Rwls] X
} Vv
X ® Rols] Y
l l
0-X LY —-P—0
l l
0 0

It is a standard result from homological algebra that there exists a map

7:X —> X Q R.ls]
]

such that Y’ is the cokernel of the map

F:(XaorQrRanls) DX > X Qe Ranls) DY
defined by F(a, b) = (g(a) + 5(b), f(b)). Let X and Y denote

X Qrastes Rasls, 871 and ¥V @z ara Ranls, s7']

respectively. Let f denote f ® id : X — Y. Then, X C X, Y C Y and fis
an extension of f. Since Ps = 0, fis an isomorphism. Since Y is finitely generated,
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there exists an integer m such that ®,» o f(¥Y) C X. Define ' : ¥ —» X Qg
R.[s1byn'=n0 Rmof . Define F/ : X @rRor[s)) DY > (X R Renls)) DY
by F'(z, y) = (™ + 7'(¥), ys™). Then F' o (¢ @ f) = R,m o F. F' and R,
are both monomorphisms, and hence by Lemma 1.8 we obtain the following
two exact sequences.

1) 0> F(MgDN) >MF o(@Df) »>ME)—0

2°) 0 > R (M(F)) > M(®em o F) > M(®n) — 0
It is easily seen that M (®,=) is a projective R module. Hence by 2°, M (®,» o F)
~ M(®R,m) @ ®R,»(Y’') as R modules. But, Y’ is projective as an R module
and hence M(®R,» o F) = M(F' o (g @ f)) is projective. Applying Lemma 1.10
to F’, we obtain the exact sequence

0> M(®,») = M(F') > M(®R,n) — 0.

Hence, M(F') is a projective B module. Therefore, by 1°, we see that
F'(M(g @ f)) is R projective. Since F’ is o™ semi-linear, M (g P f) is R pro-
jective. But clearly, Mg P f) = M((g) @ M(f) = X’ @ P, and hence P is a
projective R module. This completes the proof of Lemma 1.7.

Chapter II. Geometric simplification of the fibering problem. ILet M" be
a closed connected C” manifold of dimension =6, and let f be a continuous map
of M into S'. Suppose that f, : II,(M) — II,(S") is onto.

Remark. The homotopy classes of maps of a space X into S' correspond
in a one to one fashion to elements of H'(X; Z). Under this correspondence,
the above condition is equivalent to f being an indivisible element of H'(X; Z).

Our problem is to determine when there exists a smooth fiber map f: M — S
such that f is homotopic to f. (See [3] for the definition of smooth fiber map.)

Definition 2.1. A pair (N, v) will be called a splitting of M with respect
to f if N is a compact n — 1 dimensional submanifold of M and » is a framing
for the normal bundle of N such that under the Pontryagin—-Thom construec-
tion (N, v) represents f.

When no confusion can result we denote a splitting merely by N.

Definition 2.2. W is an elementary cobordism of dimension s from a split-
ting (N, ») to a splitting (N’, »') if W is a n dimensional compact submanifold
of M such that 6W = N U N’, and the vector field » points into W while »'
points out of W. Also, we require W to be diffeomorphic to N X [0, 1] U,
D* X D", where ¢ is a diffeomorphism of $°™' X D*™*into N X 1.

Remark. In the literature, the passage from N to N’ via W is referred to as
exchanging an s-dimensional handle from one side of N to the other. N will be
called the left side of W and N’ the right side.

We now embark on a program for improving splittings. If we start with an
arbitrary N (splittings always exist by the Pontryagin-Thom construction),
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we can pass to a new splitting N’, where N’ is connected, by a sequence of
elementary cobordisms of dimension 1. This is done explicitly in [3] on page
157. Here we use the fact that f, : II,(M) — II,(S") is onto.

Let G = ker fy . Since @ is a normal subgroup, we will generally omit con-
siderations of base point. Let X be the covering space of M corresponding to G.
A necessary condition for the existence of a smooth fiber map f homotopic to f
is that X be dominated by a finite C. W. complex. Under this single assumption
we will see how much improvement of splittings we can effect. We have N con-
nected, and we wish next to obtain the situation where 7, : II,(N) — II,(M)
is a monomorphism with image G (¢ denotes the inclusion of N into M). First,
we need the following algebraic lemma.

Lemma 2.3. Let A, B, C, and D be groups, and let f : A —> Bandg :C — B
be homomorphisms such that kernel D = ker g and g is onto. Assume that A and
C are finitely generated, and that D is the normal closure in C of a finite set of
elements. Let A o C denote the free product of A and C. Let h : A o C — B be the
homomorphism induced by f and g. Then h is onto and its kernel is the normal
closure in A o C of a finite set of elements.

For a proof of Lemma 2.3 see [5] page 4.

Since X is dominated by a finite C. W. complex, we have that IT1,(X) = G is
finitely presented (see [6] Lemma 1.3.). Let F be a free group on m generators
a;, -, 0, ,and g a homomorphism of F into G whose kernel K is the normal
closure in F of a finite set of elements. Let x be a point inside a tubular neigh-
borhood of N but not on N. Let L, , - - - , L,, be circles embedded in M such that
each L; meets N transversally and L, N\ L; = z if ¢ # j. We pick L; so that
L, represents g(a;). Since under the Pontryagin—-Thom construction (N, »)
represents f and since f4(g(a;)) = 0, we see that the intersection number of L,
with N is 0. Hence, after exchanging a finite number of handles of dimension one,
we can obtain the situation where L; does not meet N. We do this for each <,
finally obtaining the situation where the bouquet of circles L, , - - - , L., is disjoint
from our new splitting N’. Next, by exchanging one dimensional handles
W, -+, W,such that the core of W, is homotopic to L, , we obtain a connected
splitting N’/ such that by van Kampen’s theorem IT, (N”’) = II,(N’) o F, and the
inclusion map % : I;(N"') — G C II,(M) is induced from £; : II,(N’') — G and
g : F — G — 0. Hence, by the algebraic lemma above, the kernel of ¢/} is the
normal closure in II,(N'’) of a finite set of elements. Now, by exchanging a finite
sequence of 2 dimensional handles, (see [7], the proof of Lemma 3.1), we obtain
a connected splitting N’’’ such that 44/ : II;(N’""’") — II,(M) is a monomorphism
whose image is G.

With N thus improved, choose a lifting N of N to X. Then N divides X into
two connected components which we denote by A and B (see [3] Sec. 3.1.). The
framing » also lifts to a framing # .Let B denote the component into which »
points. When no confusion can result, we will use N and » to denote N and ».
Let T denote that generator of the group of covering transformations of X such
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that A C T(A), X the universal covering space of X, and p : X — X the covering
projection. A, B and N will denote p~'(4), p~'(B), and p~*(N), respectively.
Since the inclusion map of N into X induces an isomorphism on fundamental
groups, we see that IV is connected and simply connected. Since N C 4 C X,
we see that the inclusion of A into X induces an epimorphism on fundamental
groups, and hence A is connected. Likewise, B is connected. By applying
van Kampen’s theorem to N, 4, B and X we see that A and B are both simply
connected. Hence, the inclusion maps of A and B into X induce isomorphisms
on fundamental groups.

Consider the groups H,(X, 4; Z). Identify G with the group of covering
transformations of X. Then H,(X, 4; Z) becomes a right Z(G) module via the
action of G on X. We denote these modules by H,(X, 4; Z(G)). Since X and N
are dominated by finite C. W. complexes, and the inclusions of A and B into X
induce isomorphisms on fundamental groups, and A, B, N and X are connected,
we have that A and B are both dominated by finite C. W. complexes (see [2]
Complement 6.6.). It also follows that H.(X, 4; Z(G@)) and H,(X, 4; Z(Q@))
are both zero.

Definition 2.4. A splitting N is s-connected if N is connected; ¢4 is & mono-

morphism onto @ (¢ denotes the inclusion of N into M.), and H;(X, 4; Z(()) = 0
forj < s.

Lemma 2.5. If N s an s-connected splitting, then H,..(X, A; Z(G)) s a
finitely generated Z(QG) module.

Proof. By excision H,,,(X, A4; Z(&)) = H,..(B, N; Z(()). Let N, denote
the s skeleton of N (in some triangulation of N). Consider the homology exact
sequence for the triple N, C N C B. We see that H;(B, N, ; Z(G)) = H;(B, N;
Z(@)) = 0 for j £ s, and that H,..(B, N; Z(G)) is a quotient module of
H,.,(B, N, ; Z(@). By Theorem A of [6] we have that H,.,(B, N, ; Z(G)) is
finitely generated, and hence H,.,(X, A; Z(G)) is finitely generated.

Consider W = T(A) — A. This is a connected manifold with boundary
where 0W = N \U T(N). By considering the four spaces T'(N), B, W, and
T7'(B), we can show that the inclusion map of T(N) into W induces an iso-
morphism on fundamental groups. To do this, we use an argument analogous
to the one used in showing that the inclusion of N into B induces an isomorphism
on fundamental groups. Likewise, the inclusion of N into W induces an iso-
morphism on fundamental groups, and hence H,(W, N; Z(G)) = 0.

Next, consider the homology exact sequence for the triple 4 C T'(4) C X.
In particular, consider the sequence

Hy(X, 4; Z(@) & Hy(X, T(A); Z(@) = H\(T(4), 4; Z(@)).

By excision, H,(T(A), A; Z(G)) = H,(W, N; Z(G)) = 0, and hence j, is onto.
The collection of modules {H (X, T™(A); Z(())}, where ¢ is fixed, form a directed
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—— —
system whose maps are induced by the inclusions of (X, T™(4)) into X, T"(4))
for ' = m. The direct limit of this system is H.(X, X; Z(G)) = 0. (See [3]
Section 2.6.) For 1 = 2, the two facts, j, onto and H,(X, A4; Z(G)) finitely
generated, imply that H,(X, 4; Z(G)) = 0.

Hence, 2-connected splittings can always be found. Next, we show that n — 3
connected splittings can always be found.

X can also be considered as the universal covering space of M. As such, we
can identify II,(M) with the group of covering transformations of X. Let ¢ be
an element of II,(3) such that f,(f) is the generator of II,(S') determined by
the orientation of S' used in setting up the Pontryagin-Thom correspondence.
Under our identification, ¢ : X — X covers T : X — X. t is not uniquely defined,
but for the remainder of this paper, our choice of ¢ will be fixed. Let A be a
subset of X such that A C T(4), then t;‘ induces an endomorphism of H,(X, 4),
for each i- g — tgt™" is an automorphism of G which induces an automorphism
of Z(G), and we denote this automorphism by a. Then one sees easily that ¢* is
an a semi-linear endomorphism of H,(X, A; Z(G)), and hence this module
together with this endomorphism can be considered as an object in C*(Z(G), «).
Let B be a second subset of X such that B C T(B) and A C B. Then, t." is
an « semi-linear endomorphism of H,(B, A; Z(G)) and hence this pair defines an
object in C*(Z(G), ). Consider the exact sequence of homology for the triple
A C B C X. By a straightforward verification, one shows that this is an exact
sequence in the category C€*(Z(G), «). If C is a third subset of X such that
C C T(C) and B C C, then the long exact sequence of homology for the triple
A C B C { is an exact sequence in €*(Z(G), ).

Lemma 2.6. Suppose that N is an s — 1 connected splitting of M, then t.' is
a nilpotent endomorphism of H,(X, A; Z(G)).

N——
Proof. Let j denote the inclusion map of (X, 4) into (X, T™(4)). Using
the two facts

1° H,(X, 4; Z(@®)) is finitely generated, (Lemma 2.5)
2° direct limit,., {H,(X, T"(4); Z(G))} equals 0,

we see that there exists an m such that j, : H,(X, 4; Z(G)) — H.(X, T"(4);
Z(®)) equals 0. But t™ : (X, A) — (X, 4) is the composite of j : (X, 4) —
N N

(X, T"(4)) and t ™ : (X, T"(4)) — (X, 4), and hence t;" = (¢;")" = 0.
Lemma 2.7. There exist n — 3 connected splittings.

Proof. Let N be a s — 1 connected splitting of f. (We know that 2 connected
splittings always exist.) If s £ n — 3, we will show how to construct a s-con-
nected splitting by modifying N. An iteration of this process will finally produce
ann — 3 connected splitting of f. Let ¢ denote ¢! : H,(X, 4; Z(@)) — H,(X, A,
Z(@)). By Lemma 2.6, ¢™ = 0 for some integer m. Let K denote H,(X, 4; Z(G)),
and let K; = image ¢" . By Lemma 2.5, K is finitely generated, and hence
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0=K,CK,C -+ CK, = K is afiltration of K by finitely generated sub-
module such that ¢(K,) C K,., . Consider the homology exact sequence for

the triple A C T(4) C X. We see from it that H,(T(4), A; Z(G)) = 0 for
1 < s — 1. By excision, this module is isomorphic to (H.(W, N; Z(G)). By the
theory of cobordism (see [8] Theorem 6.1.), W = W, U W, U --- U W, where
each W, is an elementary cobordism (¢.e., its image under the covering projec-
tion p : X — M is an elementary cobordism) and s — 1 = dim W, £ n — 2.

Ifxe H,(W, N; Z(G)), then it is possible to arrange things so that dim W, = s
and so that there exists a generator & of H,(W, , N; Z(G) such that 7] (Z) = z
where 4’ denotes the inclusion map of (W, , N) into (W, N) (see [2], the proof
of the Fundamental Lemma 4.8, for the details of this fact). Here we need that
8 = n — 3. Let £ be one of a fixed finite collection of generators for K,. By
considering the exact homology sequence for the triple A C T(4) C X, we see
that there exists an x ¢ H,(T(4), 4; Z(®)) such that ¢, (x) = £. This follows
because t ' : (X, A) — (X, A) is the composite of the inclusion map j : (X, 4) —

N N

(X, T(A4)) and t* : (X, T(4)) — (X, 4). But, ¢(z) ¢ K, = 0 and .t H.(X,
T(4); Z(G)) — H,(X, A; Z(()) is a monomorphism; hence, j, (£) = 0. Therefore,

the exact homology sequence for the triple A C T'(4) C X shows that x exists.
Pick W, as above. Then 5(W,) is an elementary cobordism between N and a
splitting N’. Consider the homology sequence for the triple A C A’ C X (where
the particular lifting of N’ to X is determined by W,). We see that H,(X, 4';
Z(@) = 0 for 7 < s and hence N’ is also an s — 1 connected splitting of f.
Let K’ denote H,(X, A’; Z(G)). Then, in dimension s the sequence becomes:
Z(@ = K % K’ — 0. Let ¢ denote &7' : K’ — K’ and K/ = image (¢/)"7".
Since j, is a map in €(Z(G), a), (¢')™ = 0. Also, j, induces maps K; — K, — 0
for each <, and for 7 = 1 this becomes 0 — (£) — K, — K’ — 0. Hence, K/ is
generated by one fewer element than K, , and therefore after repeating this
process a finite number of times, we obtain an s connected splitting. This
completes the proof of Lemma 2.7.

Chapter III. The obstruction to psuedo fibering a circle. If (N, ») is a
splitting of M, then by My we denote M minus the interior of a tubular neigh-
borhood of N.

Definition 3.1. M pseudo fibers a circle with respect to f ¢ H'(M; Z) if
there exists a splitting N of M with respect to f such that My is an h-cobordism.

Remark. This definition is equivalent to the following condition. There exists
a splitting N such that the inclusion map 7 : N — X induces an isomorphism
on fundamental groups and H,(X, 4; Z(G)) = 0 for all s.

Definition 3.2. A splitting (N, ») is called s-bi-connected if (N, ») is s-
connected and (N, —») is (n — s) — 1 connected; that is, if H,(X, 4; Z(@)) = 0
fori < sand H,(X, B; Z(G)) = 0fori = (n — s) — 1.



OBSTRUCTION TO FIBERING 329

Note. If (N, ») is a splitting with respect to f ¢ H'(M, Z), then (N, —») is
a splitting with respect to —f.

Let (N, v) be a splitting of M with respect to f. Choose a lifting of N to X
and denote this lifting also by N. Then, the cobordism My can be identified
with T(4) — A, and hence we say that My is a cobordism from N to T(N)
and denote this by (My , N, T(N)).

Lemma 3.3. A splitting (N, v) is s-bi-connected if and only if there exists a
handlebody de composition of (My , N, T(N)) consisting of only s and s + 1
dimensional handles.

Proof. If (N, v) is s-bi-connected, then the inclusion maps of N and T(N)
into My induce isomorphisms on the fundamental groups. By considering the
homology exact sequence for the triple N C My C B, we see that H.(My, N;
Z(G)) = 0for ¢ < s. Hence by [8] Theorem 6.1, we see that (My , N) has a
handlebody decomposition consisting of handles only in dimensions = s. By
considering the exact sequence for T(N) C My C T(A), we see that
H(My,TWN); Z(@) = 0forz < (n — s) — 1. Hence by [8] Theorem 6.1,
(My , N, T(N)) has a handlebody decomposition consisting of only s and
s 4+ 1 dimensional handles.

The other half of Lemma 3.3 follows by considering the same homology
exact sequences as in the first half, and using the fact that

direct limit {H.(X, T°(4); Z(@))} = 0,

seZ
plus Lemma 2.5.
Lemma 3.4. There exist 2 bi-connected splittings.
Proof. 'This follows immediately from Lemma 2.7 applied to —f.

Lemma 3.5. If (N, ») is an s-bi-connected splitting of M, then H, (X, A;
Z (@) 1s a projective Z(G) module.

Proof. From Lemma 3.3, we see that (B, N) is the homotopy type of a
pair (K, N), where K is a C. W. complex obtained from N by attaching s and
s 4+ 1 dimensional cells. Therefore, the chain groups for (K, N) vanish except
in dimensions s and s + 1. Look at the following exact sequence:

0— H,+1(K, N; Z(G)) i Ca+1(K’ N; Z(G))
% C(K, N; Z(®) — H,(K, N; Z(®) — 0.

Using the facts that H,(K, N; Z(G)) = H.(X, A; Z(@)) and that H,(X, A4;
Z(@)) = 0, the above sequence becomes:

0—- H,.(X, A; Z(@)) — C,..(K, N, Z(@)) % C,(K, N; Z(G)) — 0.
Since C,(K, N; Z(G)) is a free Z(GF) module, this sequence splits. And since
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C,ii(K, N; Z(@)) is free, we see that H,,,(X, A; Z(G@)) is a projective Z(G)
module.

By Lemma 2.5, we see that H,,,(X, 4; Z(@)) is finitely generated, and by
Lemma 2.6 we see that . is a nilpotent endomorphism of H,..(X, 4; Z(@)).
Therefore, the pair (H,..(X, 4; Z(G)), t;') is an object in the category
C(Z(®@), ). Denote this object by ¢(N, »).

Remark. It appears that the isomorphism class of ¢(N, ») depends on the
particular lifting of N to X. This is not the case. But we will not use this fact.
Hence for our purposes, ¢(V, ») depends on the lifting of N to X. (See the first
remark following the statement of Lemma 4.1.)

We will eventually define an obstruction ¢(f) ¢ C(Z((), «) to psuedo fibering
a circle by c(f) = (—1)""'¢(c(N, »)). But first we must show that this element
is independent of the splitting (&, »). To do this we assume that X is the homo-
topy type of a finite C. W. complex. This is clearly a necessary condition which
M must satisfy in order to psuedo fiber a circle.

Remark. In the author’s thesis, ¢(f) was shown to be well defined under the
weaker assumption that X is dominated by a finite C. W. complex. The proof
which follows uses results announced in [19].

Let ¢ : X — K be a homotopy equivalence, where K is a finite C. W. complex.
Let T : K — K be a cellular homotopy equivalence which makes the following
diagram homotopy commutative:

K%K
¢T Tso
X5Xx.

The mapping torus of T, X, , is defined as X X [0, 1]/(z, 0) = (T'(z), 1). From
the above diagram, we see that there exists a homotopy equivalence F : X7 — K.
such that F~Y(K X 0) = X X 0. If we consider the covering space Z —» X £ M
as a principle Z bundle, then R — X, £5 M is the associated principle R bundle,
where p’(z, {) = p(z). Since R is contractable, any two cross sections of p’ are
homotopic. Let N be a splitting of M. Then we can construct a cross section
cy of p’ such that ¢y' (X X 0) = N. To do this, pick a function g : My — [0, 1]
such that ¢7*(0) = N and ¢~'(1) = T(N). Under the identification of My with
T(A) — A, define cy(z) = (z, g(x)). Consider Fy = F ocy : M — K. , then
Fy is a homotopy equivalence between finite C. W. complexes. The remainder of
Chapter III will be devoted to showing that p(r(Fy)) = (—1)*"'o(c(N, »)) if N
is s-bi-connected. Here, 7(Fy) denotes the Whitehead torsion of the homotopy
equivalence Fy , and p : Wh(G ©. Z) — C(Z(@), a) is the homomorphism
defined in Chapter I. If N’ is an s’ bi-connected splitting then, since cy. is
homotopie to ¢y , 7(Fy:) = 7(Fy). Hence (—1)""'o(c(N, »)) = (—1)*""'a(N', ¥).
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Therefore, if we can establish the above formula then our obstruction c(f)
would be well defined.

LetC:C,—C,.;— --+ = C; — Cy — 0 be a based free chain complex over
R ,[t], where each C; is finitely generated. Then, the basis for C induces a basis
forC" = C ®R¢[¢] Ra[t, t_l].

Lemma 3.6. Let C and C' be given as above. Assume that C' is acyclic, H,(C) =0
for i # s, and Proj dimy .y H,(C) < 1. Then, (H,(C), t) is an object in C(R, o)
and p(r(C")) = (—1)*¢(H,(C), t), where 7(C) & K,(R,[t, t™"]) is the torsion of C'.

The proof of Lemma 3.6 will be postponed until the end of this chapter.

Let (K, K, , K,) be a triad of finite C. W. complexes with II,(K) = G O, Z.
Suppose that II,(K,) is mapped onto the normal subgroup G of II,(K) under
the map induced from inclusion. Suppose that we can lift K, into the covering
space X of K corresponding to G; such that K, divides X into A and B with
T(A) C A where T stands for the lifting of the element ¢ ¢ II, (K) to X. Assume
that K, is a deformation retract of K. Let Y denote the portion of X covering K, .
Assume further that

(a) H{(A, ANY; Z(@) = 0for ¢ # s, and
(b) Proj dimyey.n H.(4, A NY; Z(@)) = 1.

Let (K, K,) e WhIl,(K) = WhG ©, Z denote the torsion of the pair (K, K,).

Lemma 3.7. H,(A, A N\ Y; Z(@)) is a finitely generated projective module
over Z(G). The covering transformation t induces an «”' semi-linear mnilpotent
endomorphism of H,(A, A N\ Y; Z(@)), and pr(K, K,) = (—1)'¢(H, (A, ANY;
Z(@), 4.

Proof. Let C = C (4, ANY;Z(()).Since C’' = C, (X, Y; Z(()), C satisfies
the hypothesises of Lemma 3.6. Hence the conclusions of Lemma 3.7 follow
directly from those for Lemma 3.6.

Now, let f : K — L be a homotopy equivalence of finite C. W. complexes.
Suppose that II,(L) = @ ©, Z and that L, is a subcomplex of L with IT,(L,)
identified with G under the map induced by inclusion. Let X be the covering
space of L corresponding to G. Suppose that a lifting of L, into X divides X into
A and B, such that T(A.) C A, where T is the lifting of ¢ ¢ II,(L) to X.
Let Y be the corresponding covering space of K; f, : ¥ — X cover f and ¥ and
X denote the universal covering spaces of Y and X respectively. Let f: ¥ — X
cover f, , K, = {7 '(L,), Ax = fi'(4L), and Bx = f{'(B.). Assume that

(a) fo :Hi(Ax ; Z(@)) = H(AL ; Z(@)) is always epimorphic,
(b) f, is monomorphic except when ¢ = s,

(¢) Proj dimy(g). ker f, = 1,

(d) f is cellular,

(e) K, Ax, and By are subcomplexes of Y.
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Lemma 3.8. After making the above assumptions, ker f. is a finitely generated
projective Z(G) module. The covering transformation t induces an o™ semi-linear
endomorphism on ker . , and

pr(f) = (—=1)""o(ker f. , &).
Proof. Form the mapping cylinder of f and apply Lemma 3.7 to it.

Remark. Lemmas 3.6, 3.7, and 3.8 were originally announced in [19].
They represent joint work of the author and W. C. Hsiang.

Lemma 3.9. Let (N, v) be an s — 1 bi-connected splitting of M. Let
Fy : M — K. be the homotopy equivalence constructed in the paragraph preceding
Lemma 3.6. Then p(r(Fy)) = (—1)'¢«(C(N, v)).

Proof. Let X’ denote the «-cycle covering space of K. . Then K divides X’
into two components which we denote by A’ and B’. There exists a lifting of
Fy,F}:X — X' suchthat (F)~'(4") = A, (F})"'(B’) = B,and (F})"'(K) = N.
Let Fy : X — X’ be a lifting of Fy to the universal covering spaces. Consider
the commutative diagram involving the two exact sequences in homology for
A C X and A’ C X, and the map between them induced from Fy : (X, 4) —
(X', A). Tt follows immediately that Fy. : H;(4; Z(G)) — H.(A’"; Z(G)) is an
isomorphism for 7 % s — 1, s. For 2 = s — 1 and s, this diagram reduces to:

0—> H,(4;Z2(0) — H(X;Z(@G) -5 H(X, 4;Z(@) —
n.
0—> H,(4;Z(G) — H,(X';Z(G) — 0 —_—

11

S H(X, A; 2(@) —> H,-(4; Z(G)) —> H,(X;Z() —>0
Fy. =

—_ 0 ——> H, (4" 2(®)) —> H,(X’; Z(G)) —> 0

The maps in the above diagram are all Z(G),[t™"] module maps. Next, we will
show that j. is the zero map. By Lemma 2.5, H,(X, A, Z(G)) is a finitely gener-
ated Z(G) module. Since direct limit;,, {H,(X, T°(4); Z(G))} = 0, there exists
an integer r such that j! : H,(X, 4; Z(G)) — H,(X, T"(A); Z(®)) is the zero map.
This implies that j; : H.(X, T™"(4); Z(#)) — H,(X, A; Z(@)) is the zero map.

But j : X — (X, 4) is the composite of the inclusion map of X into (X, T7"(4))
N

and §' : (X, T™"(4)) — (X, 4), and hence j. = 0. This implies that 7. (see the
above diagram) is an isomorphism. Therefore, 1° Fy. : H,(4; Z(G)) — H,(A’ ;
Z(®)) is an isomorphism, and 2° Fy. : H,_,(4; Z(G)) — H,_,(A"; Z(®)) is an
epimorphism with kernel isomorphic as a Z(G),[t"'] module to H,(X, A; Z(G)).
Now Lemma 3.8 yields that p(r(Fy)) = (—=1)* ¢ C (N, »), and this completes
the proof of Lemma 3.9.
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Remark. 1If an R,[{] module X is projective as an K module then the Proj
dimp, ;X < 1. (See [23] Lemma 9.) H,(X, 4; Z(G)) is projective over Z(G)
by Lemma 3.5, and hence Proj dimz g, -1 H.(X, 4; Z(G)) = 1.

Definition 3.10. If (N, ») is an s-bi-connected splitting of M with respect
to fe H'(M, Z), then c¢(f) = (—1)*"'ac(N, v).

Remark 1. c(f) is independent of the choice of the splitting (N, »). This
follows from Lemma 3.9 together with the fact that if (N’, »') is a second splitting
then F'y is homotopic to Fy. and hence 7(Fy) = 7(Fy-).

Remark 2. If M pseudo fibers a circle with respect to f, then ¢(f) = 0.
To see this, compute ¢(f) using a splitting N such that (My , N) is an A-cobor-
dism.

Remark 3. In Chapter V, we will see that ¢(f) = 0 implies that M pseudo
fibers a circle with respect to f.

We conclude this chapter by giving the proof of Lemma 3.6. To do this,
we need the following lemmas.

Let C:C, % C,., — -+ — C; & C, — 0 be a based finitely generated free
acyclic chain complex over a ring R. Let ¢ : C, — C, be a splitting of 9, . Let

¢:.0,2C0,_,—» - —C,—0
be a new chain complex, where C; = C,if i # 0and 2,C, = C.@ C,,Co = 0,

d; = d;if i # 1,2 and 3, d; = 0, dy(z, y) = da(z) + £(¥), and ds(x) = (ds(x), 0).
Let C inherit a basis from C in the obvious way.

Lemma 3.11. If C and C are as above, then (C) = 7(C).
Proof. See Barden [8].

Let ¢ : C._, — C, be a splitting of d, . Form a chain complex ¢ as follows.
Let C; = Ciif i #nandn — 2,0, =0, Coez = Coea @ C, . Let d; = d, for
i#n,n—1,andn — 2. Let d, = 0, d,—1(z) = (d.-1(2), £ (2)), and d._.(z, y) =
d,_(x). Let € inherit a basis from C in the obvious way.

Lemma 3.12. (C) = =(C).
Proof. Similar to that of Lemma 3.11.

Lemma 3.13. Given the assumptions of Lemma 3.6. If n > s + 1, then there
exists a splitting ¢ : C,_y, — C,o0f d, : C, = C,,_; .

Proof. The sequence
* 0-C,%Cy—> -+ >C 2B, -0
is exact. The sequence

o 0-C/Z2,5Cpy—> e+ > C,—0
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is also exact. From ** we see that C,/Z, is a projective R,[{] module. From
0—-2%2,—-C,—C,/Z,— 0, we see that Z, is projective. From 0 — B, — Z, —
H, — 0 and the fact that Proj dimg,,; H, =< 1, we see that B, is projective.
Hence from *, we see that a splitting ¢ of d, exists.

Proof of Lemma 3.6. If,in C, C; = 0 for ¢ # s and s 4+ 1, then lemma 3.6
would follow directly from the definition of p : K,(R,[{]) — C(R, «). Now by
repeated use of Lemmas 3.11, 3.12, and 3.13, we can reduce the proof of Lemma 3.6
to the above special case. That is, we can find a chain complex C such that
7(C Rruta Ralt, 1)) = 7(C Rzt Ralt, t71]), C; = 0 for s 5% sand s + 1,
and H.(C) = H.(C). This completes the proof of Lemma 3.6.

Chapter IV. A duality formula for the obstruction to psuedo-fibering. If
(N, ») is an s-bi-connected splitting of M with respect to f ¢ H'(M; Z), then
(N, —») is an (n — s)-1 bi-connected splitting of M with respect to —f. ¢(f) was
defined in the preceding chapter to be (—1)**'a(c(N, »)) £ C(Z(@), ). (Here
¢(N,») = (H,n(X, 4; Z(@)), t7) £ €(Z(G), «).) Likewise, ¢(—f) = (=1)""*
a(c(N, —»)) £ C(Z(G), o). The purpose of this chapter is, by use of Poincare
duality, to give a relationship between c¢(f) and ¢(—f). We will need, in fact,
a slightly stronger result. Namely, we will establish a relationship between
¢(N, ») as an object in C(Z(G), &) and ¢(N, —v) as an object in €(Z(GF), a™").
The duality formula which we obtain is similar to that obtained by Stallings [20]
for the torsion of a h-cobordism and Siebenmann [2] for the obstruction to
adding a boundary to an open manifold.

We start this chapter by making some definitions of an algebraic nature.
Let v be an anti-automorphism of a ring R such that y oy = ¢d andy o o =
a oy. We proceed to define a duality functor © : €(R, a) — C(R, «"). If P ®(R),
we denote by Homz (P, R) the collection of anti-homomorphisms of P to R.
(¢ ¢ Homg (P, R) if o(ar) = v(r)e(z) for all z ¢ P and 7 & R, see [2], page 119.)
Then Homz (P, R) £ ®(R). Let us denote this object by D(P). D is a contra-
variant exact functor from ®(R) to ®(R). Also, D o D is naturally equivalent
to the identity functor. Let (P, f) ¢ C(R, @). If ¢ ¢ D(P), we define f*(¢p) =
a™' o ¢ of. Then (D(P), f*) ¢ €(R, o~ '). Denote this object by D(P, f). This
defines a contravariant exact functor from C(R, «) to C(R, o™ '). If D' is the
analogous functor from €(R, a™') to €(R, ), then D’ o D is naturally equivalent
to the identity functor. Since D takes free modules to free modules and is an
exact functor, one easily sees that D takes triangular objects to triangular
objects.

Let r be an invertible element in B. Let ®, denote right multiplication by .
Then ®, induces a functor which is an isomorphism between C(R, «) and
C(R, I, o ), where I, denotes the inner automorphism of R which sends s to
7~ 'sr. The functor ®, sends (P, ) to (P, ®, o).

If 1 denotes the identity element of R, then —1 denotes its additive inverse.
Sometimes, we will be interested in the functor = ®_, o D instead of D.
D:e(R, a) — C(R, « ') enjoys all of the properties which we listed above for D.
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Now, we return to our manifold M in order to define a particular anti-auto-
morphism of Z(G).

Define 6 : G — Z, (the cyclic group of order 2) as follows: if ¢ : X — X is
orientation preserving, let 8(g) = 0; if it is orientation reversing, then let 8(g) = 1.
Define an anti-automorphism v of Z(G@) by v(g) = (=1)’“¢™" ak(g) =
(=D = (=124 V(tgt™) ™! = y(a(g)). Therefore, ¥ commutes with e.
Alsoy oy = 1d.

Let A : C(Z(G), a) — C(Z(@), a”') be the functor defined as follows:

1° if ¢ is orientation preserving, let A = D (defined above).
2° if ¢ is orientation reversing, let A = 9.

Lemma 4.1. If (N, ») is an s — 1 bi-connected splitting of M with respect to f,
then Ac(N, v) = ¢(N, —v).

Remark. To be precise, Lemma 4.1 claims that given a lifting (N, , »;) of
(N, ») to X then there exists a second lifting (N, , v,) such that Ac(N, , »,) =
¢(N3y, — wy). Our line of proof actually gives as a corollary that ¢(N, ») is inde-
pendent of liftings, 7.e., c(Ny , 1) = ¢(N2 , vp) for any pair of liftings (N, , »)
and (N, , v,). This follows because we show that for all sufficiently large positive
integers m, A ¢c(N,, vy) = ¢(T"N,, — »,) and hence A ¢(N,,v1) = A c(N., v,)
which implies that ¢(N, , v) = ¢(N,, v,).

Remark. A induces a homomorphism from C(Z(®), a) — C(Z(G), a™)
sending z ¢ C(Z(G), &) to an element in C(Z(G), a”') which we denote by Z.
Since A’ o A is naturally equivalent to the identity functor, we see that £ = .

Corollary 4.2. ¢(—f) = (—1)"""¢(f).

The remainder of this chapter will be devoted to proving Lemma 4.1.
Let ¢(NV, ») = (P, ¢) and ¢(N, —») = (@, ¥). Then there exists an integer m
such that ¢" = y™ = 0. Consider the homology exact sequence for the triple
N

A C T"(4) C X.Since ¢" = 0, we see that j, = 0 where j: (X, 4) — (X, T™(4)),
Therefore (P, o) = (H,(T™(A4), A; Z((G)), t;‘). Likewise (Q, ¢) =~ (H,_,(B.
T™(B); Z(()), t,). Let W = T,(A) — A.

Let u represent the fundamental homology class (perhaps represented by an
infinite chain) for (W, 8W). (This amounts to choosing an orientation for W.)

Poincare duality implies that "u : H,., W, N; Z) — H,_(W, T"(N); Z) is an
isomorphism as Z modules (see [9], page 225). By H* .. we denote cohomology
with compact supports.

Recall the following result about cap products. Let (X, 4,, 4,) and (Y, B, , B;)
be triads, where the A; are closed subsets of X and the B, are closed subsets
of Y. Let f: (X, A, , A,) — (Y, B, , B,) be a proper map; f; , 2 = 1 and 2,
denote f; : (X, A,) — (Y, B,), and fdenote f: (X, 4,\U 4,) — (Y, B, U B,).
Let ue H,, (Y, By), and z ¢ H™ (X, 4, U 4,). (H* denotes homology with
infinite chains.)
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Lemma 4.3. f5,(f5(w)"2) = u"f,(2).

_ N - N
If ge G, theng : (W, N, T"(N)) — (W, N, T"(N)). Applying Lemma 4.3 to g,
we obtain the following commutative diagram:

~ ~ N
H:omp(W; N; Z) '_—rL) Hn-n(W) TM(N); Z)
l(v")‘ lﬂ‘

N——
Hoo(W, N; 2) 2295 H,_ (W, T™(N); Z).

If g is orientation preserving, then g, (u) = u, while if g reverses orientation, then
g,(w) = —u. Hence, if we change H:.., (W, N; Z) into a right Z(G) by use of
an anti-automorphism v, then "w becomes an isomorphism between right Z(G)
modules.

Next, we will show a stronger result, namely,

H: oy (W, N; Z), £t7'%) = (N, —»)
as objects in €(Z(@), o).
N T\ N_— N o
Let j : (T™(4), A) — (T™"'(4), T(4)) and §’ : (T(B), T"*'(B)) — (B, T™(B))
N N
denote inclusion maps. Denote t* : (T™*'(4), T(4)) — (T™(A), A) by F and
N N — L —
t: (B, T"(B)) — (T(B), T""'(B)) by F'. Then t™" : (T™(4), 4) — (T™(4), 4)
L ——— —

is the composite of j and F. Likewise, { : (B, T"(B)) — (B, T™(B)) is the com-
posite of F/ and j'.

By several applications of Lemma 4.3, we obtain the following commutative
diagram:

L o ———
H, (B, T"(B); Z) = H,-(T(B), T""'(B); Z)
- e e
() ——— N~

H:ouo(T™(4), 4; Z) —5 Hion(T™'(4), T(4); Z).

In this diagram u’ represents the fundamental homology class of T™*'(4) — T(A)
(since X is an orientable manifold, we can pick the fundamental class u’ to be
consistent with the class ).

Using Lemma 4.3 again, we obtain that the diagram

S~ —— N
H, .(TB), T""'(B); Z) = H.-.(B, T"(B); Z)
*ok Trw! T
( ) N~ N

H.onp(T™'(4), T(A); Z) = Hoone(T™(4), 4; Z)

either commutes or skew commutes, depending on whether ¢ is orientation
preserving or reversing. Putting diagrams * and ** together, we obtain the
diagram
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N——
HZO’DD(WZ _N’);‘Z) __Q"__) Hn—a(W) T"’(N); Z)
! !

Hmi(W, N; Z) 2 H,. (W, T"(N); 2).

This diagram commutes if ¢ is orientation preserving and skew commutes if ¢
reverses orientation.
Hence we have completed step 1° in the proof of Lemma 4.1.

Step 1°. (H:omy W, N; Z), 2t7%) = c(T™(N), —v) as objects in €(Z(GF), o).
Notice that -+t™'* appears if ¢ is orientation preserving. Otherwise, —t¢'*
appears.

If R is a ring and ® is an automorphism of R, we denote by €**(R, ®) the
category whose objects are pairs (K, {), where K is a left B module and ¢ is
a ® semi-linear endomorphism of K. Using this definition, step 2° in the proof
of Lemma 4.1 has the following formulation.

Step 2°. (Hiom, (W, N; Z), t7'%) = (Homyz o (P, Z(G)), Hom (¢, a™"))
as objects in €**(Z(®), a™"). If we change both of these objects from €**(Z(G),
a™') into objects in €(Z(G), a™') by use of the anti-automorphism v and put
steps 1° and 2° together, we obtain that ¢(T™(N), —») =2 Ac(N, v). This proves
Lemma 4.1, modulo the demonstration of step 2°.

Demonstration of step 2°. Since (W, N) has a handlebody decomposition
consisting of only s and s — 1 dimensional handles, (P, ¢) is isomorphic to the
kernel of 8 in the free based Z(G) chain complex thus determined:

(Cos 00 5 (Cocr , @0m1).
Here, both C, and C,_, are finitely genelzxﬁl\and 9 is a map in C*(Z(G), a).
The cokernel of 8 is isomorphic to H,(X, T"(4)). (Look again at the homology
sequeng?ﬁr\ the triple A C m C X and use the fact that je = 0.) But

H,(X, T"(4)) is projective, and hence ker 9 is a direct summand of C, . Look
at the chain complex

*  (Homg(C. , Z(®), Hom (¢, ,a™))
222205 (Homz(e)(Co-1 , Z((), Hom (p,-1 a’).
The cokernel of Hom (9, #d) is isomorphic to
(Homz (6,(P, Z()),  Hom (¢, @™)).
But (H:.., (W, N; Z), t7*) is isomorphic to the cokernel of Hom (9, ¢d)
**  (Homz™(C. , Z), Hom (o, , id))
SHom@:30y (Homy™(C,-1 , Z), Hom (p,-, , id)),
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where Homy™ (C, , Z) denotes the Z homomorphism with vanish on all but a
finite number of the distinguished basis elements of C, . (The distinguished Z
basis for C, is determined by the distinguished Z(@) basis for C, by the action
of G.) But the complexes * and ** are isomorphic in C**(Z(@®), a) (see [9],
page 223). An explicit isomorphism is the following. Let h : Z(G) — Z be the
Z linear map determined by h(g) = 0if ge G, ¢ #% 1, and h(1) = 1. Then the
map of Homy ¢y (C; , Z(@)) into Homy™ (C; , Z) (i = sor s — 1) given by
sending y to A o y is the isomorphism.

This completes the demonstration of step 2°, and hence Lemma 4.1 is proven.

Chapter V. M pseudo fibers a circle if an only if ¢(f) = 0. In this chapter,
we show that if ¢(f) = 0, then M pseudo fibers a circle with respect to f. This
will be a consequence of the following more general result.

Lemma 5.1. Let (N, v) be an s bi-connected splitting of M where2 < s S n —4,
and let (P, ¢) be an object from C(Z(R), a) such that o(P, ¢) = o(c(N, v)). Then,
there exists an s bi-connected splitting (N’, v') such that c(N', v') =2 (P, o).

Suppose that ¢(f) = 0. Then, there exists a 2 bi-connected splitting (N, »)
such that o(c(NV, v)) is the identity element of C(Z(@®), ). But ¢(0, 0) is also
the identity element of C(Z(G), a). Hence, by Lemma 5.1, there exists a 2 bi-
connected splitting (N’, »’) of M with respect to f, such that Hy;(X, A’; Z(®)) = 0.
By the remark following Definition 3.1, this shows that M pseudo fibers a circle
with respect to f. This fact together with Remark 2° following Definition 3.10
proves the following theorem.

Theorem 2.5. M pseudo fibers a circle with respect to f if and only if c(f) = 0.
The remainder of this chapter will be devoted to the proof of Lemma 5.1.

Lemma 5.3. Let (N, v) be an s bi-connected splitiing of M, where 2 £ s =
n — 4, and let 0 — (Py, ¢,) = (P1, ¢1) = Py, ¢;) — 0 be an exact sequence
n C(Z(F), a). Suppose that (P, , ¢,) s a triangular object in €(Z(G), o) and that
¢(N, v) = (P, , ©o). Then, there exisis an s + 1 bi-connected splitting (N', »')
such that c(N', v') = (Py, ¢2).

The proof of Lemma 5.3 will be given at the end of this chapter.
Next, we need the following algebraic lemma.

Lemma 5.4. Let0 — P, 5P, 2 P, —and 0 — Q%> Q, 2 Q, — 0 be two
exact sequences in ®(R), and let y; : Q; — P; , 7 # 1, be a semi-linear homomor-
phisms. Then, there exists an o semi-linear homomorphism y, : @, — P, such that
Y09 =10y, and poy, = yoop.

Proof. Let ¢ and ¢’ be splittings of p and p’ respectively. Then, P, = image
1 @ image ¢ and Q, = image 7’ @ image ¢’. With these identifications y, and y,
clearly define y, .

Proof of Lemma 6.1. Let (N, v) be an s bi-connected splitting of M, and
let (P, ¢) be an object from @(Z(@), a) such that ¢(P, ¢) = o(c(N, »)). From
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the explicit construction of €(Z((), «) given in Chapter I, we see that the
isomorphism class of (P, ¢) is related to the isomorphism class of ¢(V, ») by a
sequence of elementary equivalences of type 1’° or 2’°. Hence, to prove Lemma
5.1, it suffices to prove it in the special case when (P, o) is related to ¢(N, »)
by an elementary equivalence of type 1’° or 2’°. Let us recall the statement
of relations 1’° and 2'°.

1’° If F is free, then (P, f) ~ (P@DF, f P 0).

2° If (P, fo) — (Py, f1) = (Po, fo) — 01is exact in €(R, «), then (P, , f,) ~
(PZ@PO}f2®fO)'

First, let us consider relations 1’°. Let 0 — (P5, ¢2) — (P11, ¢1) = (Po, 0o) — 0
be an exact sequence in C(Z({), a). Suppose that (P, , ¢,) is triangular and
that ¢(N, v) = (P, , ¢). Then by Lemma 5.3 there exists an s + 1 bi-connected
splitting (N, , »1) of M such that ¢c(N, , v1) = (P2, ¢;). By Lemma 4.1, ¢(N, , —
y) = A(P:, ¢). But A is an exact contravariant functor, and hence 0 «
APy, ¢3) & APy, 01) — APy, 0o) < 0 is exact in €(Z(G), o). Also as
remarked in Chapter IV, A (P, , ¢,) is triangular. Let ¥ be a finitely generated
free Z(G) module, and let g : APy , ¢o) — A(P:, ¢1) denote the map in the
exact sequence above. Then 0 — AP, , ¢) D (F, 0) LBids A(P,, o0 @ (F, 0)
— APy, ) — 01is exact, and AP, , ¢) @ (F, 0) is triangular. Hence by
Lemma 5.3 there exists a splitting (N, , v,) with respect to —f such that ¢(N , v,)
= APy, v0) P (F, 0). By Lemma 4.1 again, ¢(N; , —v2) =2 A’ APy, o)
@ A'(F, 0). But A’ o A is naturally equivalent to the identity functor and
A'(F) = F. Hence ¢c(N», —vs) =2 (P, ¢) @ (F, 0), and thus relation 1’° going
in one direction can be realized. The opposite direction can be realized in a
similar fashion.

Next we consider relation 2°. Let

0P, 0) > Py, o) > Py, 0)) =0
and

0— @, ¥2) = @1, ¥1) = @, ¥o) =0
be two exact sequences in C(Z(G), o), and let y, , y4 : Qo — P, be two « semi-
linear maps. Define g, : Py @D Qo — Py D Q, by go(a, b) = (¢o(a) D yo(b), (b)),

and g4 : Po @ Qo — Po @ Qo by gi(a, b) = (¢o(a) D y5(b), ¥o(b)). Then applying
Lemma 5.4 twice with ¥, = 0 = ¥}, we obtain the following two exact sequences

in €(Z(G), «):
0_’(PZC‘DQz;(Pz@‘pz)“’(PI@Q1701)"’(P0@Q0;90)“*0

and

0“‘)(P2(“BQ2;<P2(‘B'P2>""(PIC‘DQI:g{)_’(Po@Qo;gé)_"O-

Assume that (P, , ¢,) and (Q, , ¥;) are triangular. Then (P, @ @, , g,) and
P, @ Q. , g)) are triangular. Suppose that ¢(N, ») = (Po @ Qo , ¢o). Then
by Lemma 5.3 there exists an s 4 1 bi-connected splitting (¥, , »,) such that
c(Ny,v) = (P @D Qs 02D ¢2). By Lemma 4.1 ¢(N, , —»)) X AP: D Q:,
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¢2 @D ¥,). But since A is contravariant and exact, 0 «— A(P; D Qa, 02 D ¥3) «—
AP, DQ,, ) — AP P Qo, gi) «— 0is exact in €(Z(F), a™"). By Lemma 5.3,
there exists an n — (s + 1) bi-connected splitting (N, , »,) of M with respect
to —f such that ¢c(NV, , ) = AP, D Qo , ¢). Applying Lemma 4.1 again, we
see that (N, , —»,) is an s bi-connected splitting of M with respect to f such
that c(Ny , —»;) = (Po @ Q, , g5), and hence relation 2’° can be realized. This
completes the proof of Lemma 5.1, modulo the proof of Lemma 5.3.

Proof of Lemma 6.3. Let p : P, — H,,..(X, 4; Z(@)) denote the map from
P, to P, composed with the given isomorphism from P, to H,.,(X, 4; Z(®)).
Since (P, , ¢;) is triangular, there exists a filtration 0 = F, C F, C --- C
F, = P, ,such that ¢,(F;,,) C F,, where each F, is free, and Q, = F,/F;_, is
free on one generator.

We prove Lemma 5.3 by induction, where the i-th inductive statement is
the following.

Inductive statement. After exchanging ¢ (s + 1) dimensional handles from
B to A, we can find a monomorphism p : H,,,(R, N, Z(@)) — P, , where R is
the cobordism formed from the union of the 7 exchanged elementary cobordisms.
The image of p is F; ; p is a map in €(Z(G), &); and p o p = 7, , where ¢ is the
inclusion map of (R, N) into (X, A4).

Remark. By exchanging ¢ (s 4+ 1) dimensional handles from B to A, we
mean lifting a sequence of (s 4 1) dimensional elementary cobordisms (see
Definition 2.2.) to X, so that the lifted sequence starts at the given lifting of
(N, ») to X.

Fig. 51—~

TCA)

We show next how Lemma 5.3 follows from the m-th inductive statement,
and then we will conclude this chapter by proving the inductive statement.
Consider the inductive statement for ¢ = m, and the homology exact sequence
for the triple A C A’ C X. We obtain the following diagram, 4’ = A U R:

P,

/l

0 = Houo(X, A%; 2(6) — Hon (A", E 2(G) 2 Hon(X, A; Z(G)).
|

0
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Since all of the maps in this diagram are maps in C(Z(G), «), we see
that (H,,.(X, 4’; Z(@)), t™'*) = (P, , ¢;). One also shows easily that the new
splitting is s + 1 bi-connected, and hence we have proven Lemma 5.3, modulo
the proof of the inductive statement.

Proof of the inductive statement. The 0-th statement is clearly true. Let us
assume the truth of the 7-th statement and try to prove the (¢ + 1)-st statement.
Pick e ¢ F;,, such that F; @ {e} = F.., . Let b = p(e). Denote the region
obtained by exchanging the first < handles by R, and let A’ = A \U R. Since
o1(e) £ F, , ¢,(e) is in the image of p. Let ¢ be that element of H,.,(R, N) such
that p(c) = ¢,(e). For the rest of this proof, we shall always be dealing with
homology with local coefficients in Z(G).

Some notation. The following denote inclusion maps:

i@, A) - X A4

N
i (1), &) — (X, 4)
N
k:(T(A), 4) — (T(4), A").
S~
3 denotes the boundary map in homology associated to the triple A C A’ C X.
9" denotes the boundary map associated to the triple A C T(4") C X.

Remark. t will be used to denote all maps between pairs of topological
spaces induced by the covering transformation ¢ : X — X as long as the context
in which it is used makes its domain pair and range pair clear. The same remark
applies to ¢,

The first step in our proof of the inductive statement is the following.

Step 1°. There exists an element x ¢ H,,,(T(4’), A) such that ¢/(z) = b
and . (x) = c.

Demonstration of step 1°. One can show by a short computation that there
exists an z’ ¢ H,,,(T(A"), A) such that ¢/(z') = b. It is also easy to see that
i, (0) = 1.1(b) = t.'i[(z") = 4,2.'(2), and hence there exists z ¢ H,.,(X, 4’)
such that 9z = ¢ — ' (2'). Let 2’ = t,(2) e H,..(X, T(4")). Let z = &' (¢) + «’.
Then, since 7/ o ' = 0, we see that 7/(x) = b, and moreover that ¢'(z) =
'@ + 9'(@)) = t;}(&) + t;! 8'(2). Let us analyse ¢ 8'(2'). Since t™ : X,
T(4"), A) — (X, 4’, ), we have that ;' 6 = 0t;' , and hence £;' 9'(z') =
]t (2) = 9z = ¢ — t,'(2'). Therefore t.'(x) = ') + (c — ;') = ¢
and this completes the demonstration of step 1°.

Let y' = k,(x); then y' e H,,,(T(A’), A"). Let Wy, W,, --- , W, denote the
sequence of elementary cobordisms constructed so far, and let (N, , »;) denote

the right side of W, . Then by considering the triple A C A’ C X we see that
(N, »;) is an s-connected splitting of M. By applying the construction in the
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proof of Lemma 2.7 to the element y’, we obtain an elementary cobordism
Wis1 of dimension s -+ 1 with left side (N, »;), such that a generator of
H,.x(W:,, , N;) maps onto 3’ under the inclusion map of (W.,, , N.) into
N

(T(A"), A"). Let " denote this generator. (Here W, is used also to denote the
lifting of W,., to X determined by the lifting of N; to X.) Let A” = A'U W,,.
(See Fig. 5.2).

/

__'f‘,/“‘\
Fig. 52 A IR W,

a___\—/”
A

More notation. The following denote inclusion maps:

1" &) — (%, A
~ ————
I': A", 4) - (T4, 4)
N

1" (A", &) — (T(4%), ')
K : (4", d) — (4", &)
L:@, X)) — @A, ).

To complete the proof of the inductive statement, we must construct a map
p' 1 H,. (A", A) — P, such that image p’ is F,., and p o p’ = I, . The inclusion
map of the triple (4", A’, A) into the triple (T'(4"), A’, A) induces the following
diagram in homology:

I{s+l(A,,) A) —E*—__} Ha+1(A”: A’)

L*
Hon(A, 4) i v
H,.(T(A"), A) > H,..(T(4"), A")

/
Using the facts that I'/(y'") = ¥’ and k(z) = y’, we find, after chasing the above
diagram, an element y ¢ H,,,(4"”, A) such that K,(y) = " and I/(y) = =.
Define p : H,.,(4", A) — P, by letting p’(y) = e and p’ o L, = p. This is well
defined since H,,,(4", A) = image L, @ {y} and L, is a monomorphism.

A) Demonstration that p o p’ = I . Notice that pp'(y) = ple) = b = i/(2) =
iJI(y) = I,(y). Also, if uw ¢ H,,,(A”, A), such that u = L,(v) for some v ¢
H,.,(4’, A), then

pe’'(w) = pp'L,(v) = pp(v) = 1,(v) = L,L (v) = I ().
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It is also clear from its definition that image o' = F;,, . Hence it remains to
prove the following.

B) o’ is amap in €(Z(G), @). Let u = L,(v). Then ¢1p'(u) = @1p(v) = pt,'(v) =
YL 0) = 005 (L) = ¢/ W)). Secondly, ¢/ @) = ¢i(e) = p(e) =
p'Ly(c) = p'L,t.'(x) (here we used step 1°). Since I/(y) = z, p10'(y) = p'Lt™"
I)(y) = p't,'(y). This last step is a consequence of the following commutative
diagram.

(A7, Iy <L (A7), ) =5 (T, 7)
(- lL

(A7, A)
Hence, we have completed the proof of the inductive statement.

Chapter VI. The obstruction to a pseudo fibration fibering. In this chapter

we show that if M pseudo fibers a circle with respect to f ¢ H'(M; Z), then there
exists an obstruction 7(f) such that 7(f) vanishes if and only if there exists a
smooth fiber map f: M — S' homotopic to f.
__Assume that ¢(f) = 0. Then there exists a splitting (N, ») such that W =
T(A) — A is an h-cobordism (W, N, T(N)). By the s-cobordism theorem (see
[8]), W is diffeomorphic to N X [0, 1] if and only if the Whitehead torsion
(W, N) of the h-cobordism is the zero element of Wh(G). If this happens,
then there exists a smooth fiber map f : M — S' such that f is homotopic to f
(see [3]). But it is possible that (W, N) = 0 although there exists another
splitting (N’, +') such that +(W’, N’) = 0.

We proceed to measure this ambiguity. Let o, : Wh(G) — Wh(G) be the
automorphism induced by « : Z(@) — Z((), and let Wh,(G) = Wh(@)/{z —
o, (z) | e Wh(G)}.

Definition 6.1. 1If (N, ») is as above, we define »(f) ¢ Wh,(G) to be the image
of 7(W, N) in Wh,(G).

Remark. +(f) is only defined when ¢(f) = 0.
We proceed to show that 7(f) is well defined.

Step 1°. Since T : (W, N) — (T(W), T(N)) is a diffeomorphism, we see easily
that 7(T'(W), T(N)) = o' (r(W, N)). Therefore, if p denotes the quotient map
of Wh(G) onto Wh,(G), we see that p(+(W, N)) is independent of the lifting
of N to X.

Step 2°. Let (N’, ¥') be a second splitting such that (W', N') is also an h-
cobordism. By step 1° we may assume that 7(4) C 4’. Let W’ = A'— T(4).
Then one sees easily that (W', T(N)) is an h-cobordism. Let W, = W \U W"
and W, = W U W’ (see Fig. 6.1).
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Since T : (W,,N) — (W,, T(N)) is a diffeomorphism, we see that (W, , T(N))
= a't(W,, N). But +(W, , N) = «(W, N) + +(W", T(N)), while #(W, ,
T(N)) = «(W”, T(N)) + =(W’, N’). Putting these three equations together,
we see that p(#(W, N)) = p(=(W’, N’)), and hence =(f) is well defined.

Theorem 6.2. When c(f) = 0, there exists a smooth fiber map f : M — S'
homotopic to f if and only if 7(f) = 0.

The proof of Theorem 6.2 will depend on the following lemma.

Lemma 6.3. If ¢(f) = 0 and z & p 'v(f) (p_: Wh(G) — Wha(Q)), then there
exists a splitting (N’, v') of M such that W' = T(A’) — A’ is an h-cobordism and
(W', N') = z.

Proof of Lemma 6.3. Since ¢(f) = 0, there exists a splitting (N, ») such that
W = T(A) — A is an h-cobordism. By definition, p(r(W, N)) = 7(f), and hence
r=7W,N)+y — ay) for some y e Wh(G). By a result due to Stallings
(see [13], page 398), there exists an h-cobordism (W, , N) such that +(W, , N) =
a,(y). Let N’ be the right side of W, . Then there exists a second h-cobordism
(Ws, N') such that (W, , N') = —a,(y). We can identify half of a narrow
tubular nbd. of N with W, \U W, . (see Fig. 6.2).

w
/A\

N N TNy TN)
—~——
/\/XEO,I]

¥-—\/‘*,/

\"\%
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Let A’ = AU W,and W = T(A") — A’. Then r(W, U W', N) = «(W U
T(W,), N). But (W, U W, N) = o, (y) + +(W’, N'), while (W U T(W,), N)
= 7(W, N) + o}'a,(y), and hence 7(W’, N') = x, where (N’, /) is a splitting
relative to f.

Proof of Theorem 6.2.

Step 1°. If a smooth fiber map f : M — S' exists, let N denote a fiber of
this map. Then clearly W = T(4) — A is diffeomorphic to N X [0, 1], and
hence (W, N) = 0. Therefore, 7(f) = 0.

Step 2°. 1If +(f) = 0, then by Lemma 6.3 there exists a splitting (N, ») of M
such that +(W, N) = 0. Hence, by the s-cobordism theorem (see [8]), W is
diffeomorphic to N X [0, 1], and therefore, by [3], there exists a smooth fiber
map f : M — S' homotopic to f.

This completes the proof of our main theorem.

Theorem 6.4. An indivisible element f ¢ H'(M; Z) is homotopic to a smooth
fiber map f: M — S' if and only if

1° X is the homotopy type of a finite C. W. complex.
2° ¢(f) = 0.
3° 7(f)

0.

]
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