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MANIFOLDS WITH ml=6 X, T .  

By I?. T. FARRELLand W. C. I-ISIAXG.~ 

1. Introduction. After the first author's thesis on fibring a manifold 
over a circle [ll] and our joint paper on non-homeomorphic h-cobordant 
manifolds [13], me realized that there is a very close relation between the 
structure of the Whitehead group TVh 0 Xa T of a semi-direct product G Xa T 
of a finitely presented group G and the infinitely cyclic group T with the 
obstruction to splitting a homotopy equivalence 7 : 11+ 171' along a codimension 
1 submanifold AT'C Jfr where ~ ~ ~ 1 1and T,M' are isomorphic to G Xz T (aq 

usual, xlJl and n,X' are identified under f:), and the inclusion AT' C J1' 
induces the inclusion G C G X, T .  By 'splitting f along N',' we mean that  
there is a codinlension 1 submanifold N c ;lI and a homotopy equivalence oi  
pairs g : (21. N )  + (dl') N') such that g 1 31 is homotopic to f .  The resuli, 
i s  rather neat and the work mas done during 1967. We announced both the 
algqbraic formula on Wh G X, T and the geometric 'splitting theorem' in  

[14]. The details of the algebraic formula and some of its quick applications 
appeared in  1121. Due to our laziness, the deiails of the (splitting theorem' 
itself were never fornlally published except that there were several copies of a 
rough xersion circulated among the friends. I n  this paper, me shall deliver 
this promise of 1141. The precise statenlent of this theorem 1~111 be g i ~ e n  
in  9 2 .  

After the announcement of [14], several applications of the 'cplitting 
theorem' mere obtained by other authors and ourselves. For example, Xhane- 
son and Wall 1311 [36] proved a formula for the \\Tall group L,,+,(GX T )  
in teriils of L,,(G) and L n i L ( G ) ,and we verified the homotopy invariance of 
the higher indices of Noviliov [25] [15]. One can actually prove a formula 
for L,+,(G X, T) using the full strength of the (splitting theorem" and 
follou~ing the argument of Shaneson 1311, Wall [36]. I n  particular, one 
should be able to obtain a classification theorem for manifolds of the homotopjr 
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type of a solvamanifold as a generalization of homotopy tori [I161 [I?'] [36]. 
We shall not explore this possibility in this paper, but we shall give a proof 
of the homotopy invariance of the higher order indices. As we said a t  the 
beginning of the introduction that our motivation of this paper came from 
the intention to relate the algebraic structure of SVh GX, T with our theorem 
on non-homeomorphic h-cobodant manifolds, we shall give the geometric 
interpretation of the decomposition of STTh G X, T and recast the result on 
these non-homeomorphic h-cobordant manifolds. Even though this result is 
obsolete due to the recent developments [19] [20], i t  seems to us that  the 
geometric intepretation of the different pieces of Wh GX, T is still of con-
siderable interest. We originally also had some results on 'projective claes 
group,' but me shall l e a ~ e  them out because Ihe recent understanding of 
topology made them out of date. 

Finally, let us remark that  the 'splitting theorem' is only valid for 
manifolds of the dimension 2 6. A mealier version of the theorem for 5-man- 
folds by the second-named author is given a t  the cnd as an apendix (cf. [37]). 

2. Statement of the ' splitting theorem.' Let  A[' be finite Poincari. 
complex of formal dimension n7. Suppose that T,MJ=G X, T , a semi-direct 
product of a finitely presented group G and the infinitely cyclic group T with 
a preferred generator t such that  the conjugation of G defined by tgt-I is 
the automorphism a. Suppose that  37' is a codinlension 1 finite Poinear6 
subcon~p lex~of Al' such that  h7' has a neighborhood honleomorphic to 
hTJX (- E, E)  for E > 0 in X' and the inclusion h7' C AZ' induces the inclu-
sion G C G X, T. Now, let AT be a closed differentiable %anifold of dimen- 
sion m. Suppose that f :  JlT-31' is a honlotopy equivalence. As always, 
we identify T,JZ with rlJITJ under f,. We say that f is splittable along h7' if 
there is a codimension 1 submanifold A7 of 11 and a homotopjr equivalellce 
of pairs 

such that  g I 111 is honlotopic to f .  Occasionally, we say that  (g, h7) is a 
splitting of (f, N'). I n  order to state our 'splitting theorem,' we recall the 
structure theaorem of TVh G X, T [12]. Let 6 (Z (G) ,  a ) ,  6 (Z ( G) ,a-l) denote 
the Grothencliecli groups of finitely generated free ZG modules with a-linear, 
respectively a-l-linear nilpotent endomorphisnls [ll], [12]. Note that  a 
induces autonlorphisms on Wh G and l ? , ~and let us denote these auton~or- 

See [36], see the clefinition of finite Poincard con~ples. 
Cf. [lS]. 

O E ~ ~ e r y t h i n g~vorks  in P L  or Top category. 
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phisms by a again. Let I ( a )  denote the subgroup of Wh G generated by 
{x- a($) 1 x E Wh G)  and let (K,G), be the subgroup of E,G consisting 
of the elements invariant under a. Then, we h a ~ e  

where X fits into the following short exact sequence: 

In  fact, if we put Q(Z(G),  a) =c(2(G) ,  a )  $K,G, then it follows from 
the 'five term exact sequence' for the a-twist localization [12] [3] that there 
is a projection map 

(4) p :  MTh G X , T - + C ( Z ( G ) ,  a ) ,  


and the projection S+(%.?,G)" of (3) is induced from p. The inclusion 

Wh G/I ( a )  -+ X is induced from the inclusion G C G X, T as one expects. 

Suppose that w :  T =  G X , T +  {*I)  is a homomorphism. It indnces an 

involution Z (G) -+Z (G) which is also denoted by w defined by 


zo induces a conjugation '-' on Wh Q X, T. Under theconjugation '-,' 
the short exact sequence (3)  is invariant and the factors dl(Z(G),a) and 
fi ( ( G), a-l) of (2) are interchanged. 

We are now ready to state the 'splitting theorem.' 

THEOREM L e t  be a pair of fiwite PoincarB complexes  rind2.1. (A/ ' ,  N') 
le t  f : M-+ M' be a h o m o t o p y  equivalence f rom a m a n i f o l d  ill t o  M' as g iven  
above. S u p p o s e  t h a t  dim M =dinlIl '= m > 6. L e t  ~ ( f )E Wh G X, T be 
t h e  tors ion of f a n d  le t  O(f) = p i ( f )  E C(Z(G,a)  be t h e  i m a g e  of ~ ( f )u n d e r  
t h e  projec t ion  p of ( 4 ) .  The72 t h e  obs t~ .uct ion  t o  sp l i t t i ng  f along N' i s  0 ( f ) .  

Let us briefly indicate the program for the proof of Theorem 2.1 .  We 
first make f transversely regular with respect to N' such that the restriction 
map f 1 N : N =f-l (N') -+ N' induces an isonlorphism on T,. Then, mTe 
embark a program for improving the connectivity of f I N. For this purpose, 
we consider the m-cycle covering spaces Ya, YJf, corresponding to the 
normal subgroup G =T , ( N )  C G X, T and the induced map YN+Yx,. 
Suitably lifting N, N' into YN,Ydl, respectively, we have a map of triads 

(YN; As, BN) -+ (YN,;AN,, BNJ) 

where AN, BN and AN,, BN, are gotten from YN, YJf, by dividing through 
AT, LjT' respectively. Suppose that the homology kernels Ki(AA,, N ;  ZG) =0, 
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nz -1
K i ( B x , A T ; Z G ) = O f o r i < k s  -. Then, Kh(Ax, AT;ZG), XX(By, n' ;ZG)

2 
are finitely generated ZG modules and we may represent the generators by 

m-1
immersed handles on n'. If ic < ---, me may represent these handles by 

2 
embeddings and TTe may suitably exchange then1 to the other side to eliminate 
the kernels. The conneetipity will he improved hp 1. I-Iowever, when we 
come to the middle dimension. we meet difficulties. It turns out that the 
obstructions to eliminating these difficulties are precisely described a5 stated 
in the theorem. 

The proof of Theorem 2 . 1  occupies S 3 to $ 5 .  

Now, suppose that g, N exist, i. e., f is splittable ~ ~ i t h  respect to n" and 
(g, N )  is a splitting. Cut Sl  along N and Jl' along N' and we form X f l  and 
Jl'x, respectively. It is easy to checli that Jl47 is a smooth manifold ~ ~ i t h  
boundary after we snlooth out the corners and there is a quotient map 

I n  fact, q-l(n') is a disjoint union of two snlooth manifolds with boundary, 
n'+and AT- such that 

(A)  	 y, =y I NI: n', +n' are diffeon~orphisms, 

(6)  	 ( R )  ills is a cobordi\m between AT+ and N-, 

( C )  	 q I (Ns-(X+U XT)) is a diffeonlorphism of (illy-(N, U ATT)) 
to (X-n'). 

Similarly, we can show that JI'I'\-ris a finite PoincarP complex with boundary 
and there is a quotient map 

such that q,-l(L\") is a disjoint union of ~ T T Ofinite Poincari! complexes with 
boundary, AT'+ and AT'- satisfying the conditions: 

(A) 	 (y'),. = y 1 : N'*+ N are homeomorphisn~s, 

(B)  	 q 1 (l if i  - (B',U 8'-)) is a homeomorphisn~ of 

Let px : Y X-+ 21, p3.1, : Y.r,+X' be the covering projections here YJI, YJ,, 
are the GO-cyclic covering spaces of M and 21' respectively corresponding to 
the normal subgroup G C G X, T. We can lift &IN and ill'N8to Y Xand Put 
respectively and find a covering nlap f~ : I'~1-3 Yu, pll,fY =fplU and f y  sends 
,lJN onto JI'sr. (Note that the lifting is not unique !) 
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FIGURE1 

lifting lifting(3. > 

v 

Let h :  Xg-+Jl'.\,, h': 8-4E '  be the induced maps. It is easy to see that 
11, h' are homotopy equi~alence, and hence the torsions T (A), ~ ( h ' )  are well- 
defined. If we identify ~ , J l yand T,N_ with G, ~ ( h )  and ~(12') lie in TTh G. 
Let us consider T =j* (T(h)  -7 (12') ) i n  TVh 6' X, T where j ,  is induced by 
the inclucion j : G+G )(, T. 

2 . 2 .  ci.s 
t1len T =~ ( f ) .I n  pcu+liculnr, r delie7zcls only oiz f, iind toe si~cill call i l  lire 
tolsion of the splitti7zg. 

THEOREX (A) I f  llze splilti?zg enisla nncl T is defi~~ecl above, 

(B) I f  toe co7zsicle~ ~ ( f )  as the cosel of TVh G zoilh respecl lo I ( a , , ) ,  
lllen for every elenzenl n: of TVh G in lhe coset, toe ccln find n splilling ( N , g )  
ccild mibps h :  Xs-+Jl's,, h': E-+ AT '_  indz~ced by suitctble liftings such 11z(/f 
z=T(lL) -r(IL'). 

Proof. (A) Let 2, 2' he the mapping cylinders of 12 and h' respectively. 
Denote the acyclic complex of the pair (2 ,  U 2') with coefficients in Z ( Q )  
by C. Let 11' he the mapping cylinder of fp. We see that  C C3 Z ( ~ l Z ( GXoiT) 
is I-he chain complex of the pair (W, Yx)with coefiicients in  Z ( G ) .  I n  fact, 
n-e can identify the action of T on C@,(Q, Z ( G  XaT )  (from the right) miti1 
the action on the chain complex induced by the COT-ering transformation, when 
v e  consider Ti: as the a3-cyclic corering space of the mapping cylinder V of 

f .  Therefore, we may identify C @zcc, ,Z(GXruT) v i t h  the chain conlplex of 
( T i ,  Ji) with the coefficients in Z ( G  X, T) . Xiilce the torsion j + ( ~ ( h )  -(hJ)) 
is exactly equal to the torsion of the complex C @,(GI  Z ( G  Xa T)  in 
TVh G X, T, me see that  i t  is equal to r ( f ) .  
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(B) Recall that I is the subgroup of Wh G consisting of the elements 
of the type u -a,u for u E 14%G. Let (N,,  g,) be a fixed splitting and 
h,: il!l~l+M'H~,h': ( f l l ) - + N ' - be fixed maps constructed as above. Denote 
T (h,) -T (h',) by 71E Wh G. For u E Wh G) me choose a small h-cobordism 
U on N ,  inside a tubular neighborhood of N ,  in M with T ( U )N 1 )=U .  

There is a deformation retract r : U+AT,. When we choose the right side of 
the tubular neighborhood of AT, to put the k-cobordism, we have an embedding 
U C MAT?.,.When we identify IllAT1with its lifting to YM, the covering trans- 
formation t corresponding to the preferred generator of T induces a diffeo-
niorphism of t ( N , ) - with (N,),. Let us consider the submanifold 

V =XX,U tcp,l.t ( U )  of YM. Set TV =MAT,- U .  I t  is clear that V -U 
=SBU t(ATll.tT7' is a lifting of Ms where Alp is the manifold gotten from M 
by cutting along AT as we defined before. The dsformation retract r :  U +  K1 
induces a homotopy equivalence 1, : TV+ MAT, relatire to (AT,), = t ( N , ) - and 
a deformation retract Y, : tU  + t (AT,)- =N,. Piecing them together, we 
have a homotopy equivalence 1 :  Jlp+JIAT, such that q,l=l'q where 
q : illp +M ,  q, : JI\,+ ill are the quotient map as defined before ancl 
1': M+ M is the induced homotopy equivalence. Set g =g,P. We see that 
(AT,g )  is again a splitting of f .  Let lz, h' be :he maps of 17IAT and 3-corres-
ponding to the lifting of the above. Let us compute ~ ( 1 2 )- ~ ( h ' ) .  I t  follows 
from Lemma 7.8of [ 2 2 ]  that ~ ( 1 2 )=~ ( k , )+~ ( 1 ) .Since 1 is gotten from 
1, and r ,  by piecing them together, we have ~ ( 1 )=~ ( 1 , )+~ ( r , ) .  Note 
that ~ ( 1 , )  =- T ( U ,  LV,) = (- l)%. Using thz auton~orphism on T,(LV,) 
under the covering transformation, we have ~ ( r , )=a,:.zL. Putting these me 
have 

(9)  T ( k )=T (12,) + a,u + (- 1)77721. 

We also have 



By ( 9 )  and ( l o ) ,  we have 

and the t,heorem is proved. 

3. Exchanging handles below the middle dimension. Starting from 
this section, we proceed to prove Theorem 2.1. Let us first make f :  IIf+ M' 
transversely regular with respect to N'. (Following [6], we make (Af',it") 
a manifold pair with fl' as a codimensional 1 submanifold of 31' and we may 
speak of transversality.) Mie shall call this new map and all the later maps 
gotten by modifications and homotopies by g. Following an argument of 
[29, p. 151, we can make Y = g - l ( N r )  connected by modifying N .  By 
exchanging a finite number of 2-handles, we can make g in such a way that 
the inclusion N C 21 induces a monomorphism and nlN may be identified 
as the subgroup G of a lM= G X a  T. This is explicitly done in Chapter I1 
of [29] and Chapter I11 of [I l l .  Then gx =g 1 N :  N +  N' induces an 
isomorphism on 7,. 

We now embark on a program for imp~oving the connectivity of ,qs. 
I n  the present section, we shall show that we can always make g satisfy the 
condition 

(12) ~ i ( g )=O for i < m/2. 

Let pM : Yx-+it!, : Y M ,+JP' be the covering projection of 5 2. 
C'onsider the following commutative diagram 

gy
YxA Y*' 

where gp covers g (not unique, of course !) . Since r l N  =rlN' =G, we may 
life N, N' into YNand Yx,respectively such that gy sends the lifted N onto 
the lifted N'. N divides YNinto Ay and B,, and similarly N' divides YM, 
into Ay, and Bsr such that t (Ax) C As, t (A\  ) C Ah,, t-I (B,) C By and 
t-I (By,) C By,. Let gy I Ax =g-4 and gy I BX=g ~ .We have g.4 : ilhr +A T ,  
and g s :  BN+ BN,. By an abuse of notations, we shall also denote the map of 
the triad (YM; Ay, By) + (Yx, ;  Ay,, By,) by g ~ ,  the induced maps (A,, N )  
-+ (Ax,, N') by g L and (By, N )  + (Bx,, N') by gn. 
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FIGURE3 

Let us consider the homology (eohon~ologg with conlpact support) ivith the 
coefEcients in R =Z ( G )  of ~ a r i o u s  spaces. By [ 6 ] [7][ 9 ] [ " I ,  these inaps 
induce split epimorphisms on homology groupsi and split nlononlorphisms 
on cohomology groups with compact support [ 3 5 ] [ 3 6 ] .  We use K, and l C i  
to denote the kernel and eoliernel of the i-th cohonlology respectively. 

L ~ a n r ~  ( A )  =IC,(At) @ K L ( B x ) ,3.1. K,(3) 
(B)  KL-1(A~,)=IC,(BA~,N), 
( C )  K ~ - ~ ( B A )=KL(AA~,N) .  

Si~izilarly, zue hare Lhe co~respoizdirzg stcrLeme?zt f o ~colzornology k e ~ r ~ e l s .  
(flote that the coeflcient group i s  R = Z ( G )  zukiclz is CL~ZCCLYSs ~ L ~ I ~ ~ . ~ s s B T ~ .  

171 fact, it i s  valid for any R-module B.) 

Proof. Let us prove the homology part of ( A )  and (13). The other 
parts follow similarly. 

(A) TVe have the following maps of exact sequences: 

0 

I /  
+KL+l ( Y H )  -+ (x)+ (AY)  @ K%( B A) + 

(14) L L \1 
+H,+l(Yx)+HI ( f l )  +IgL ( A A ~ )  @ 15, (Bh ) + 

$= 4 J 
-+H,+, (YH, )  +H,(Av,)  @H,(B , , )  +-+H,(AT')  

'If wl(lTI) $ 0, we should consider the twisted homology of [ 3 G ] ,  but me shall 
suppress the notation. 
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such that  each colullin is 'naturally' split exact [6] [23]. K,(YX) =0 for all 
i implies that  (N) =Ki(Ax) G3 I<$( B s )  . 

(B)  Let us consider the following maps of exact sequences: 

-+K %(I7z) -+ Ict (YM, Ax) eI<$(Bx, AT) -+ K&l(A&) * 
C 5 L 

(15) - + H , ( Y M ) + H ~ ( Y J I , A N )  eH%(BAr,A7) +H%- , (Ax)+  

C I L 
+H, (YH,) +H,(l"~,,An ,) H,(Bs,, A") +H,l (As,) -+ 

The assertion follo~vs froin a siniilar arg~ull~ent as that  of (A) 

L ~ n ~ n l a3.2. I f  g, is k-connected, then Kr,(AT), I < , ( A , ) ,  Kk(BX) ,  

KT,+, (Ax, AT) and (Bs, AT) are all finitely generated R-modules. 

Proof. By Lemma 3.1, it suffices to sho~v that  Kh(AT) is finitely generated. 
Let Hz(gx) be the homology of the inapping con? of g~ (with the coefficients 
in R, of course !).  STTe have the follo~iring exact sequence of R-modules. 

(We suppress the coefficient group as always !) Since g s :  N +AT' is of degree 

1, H I( g )  ( A ) .  Because ai(g,\;) =H i ( g x )  =0 for i5 k, i t  follows 
from [35] that  Hk+,(ghT) is finitely generated. 

Let us now consider the inclusion i : (Y.t1, BB) +Yx, tBx). We ha,ve 
the a-l-linear enclolliorphism t,:-l: 11%(AX, N) -+ Hi (AN, AT) defined hy the 
follo~ving collimutative diagram : 

t:, 
H i (Yu ,  B s )  4H L ( P ~ ,  (YN, Bx) 

(17) -1.excision 

tBx) -Hi 

-= I excision
'(t<<-l J)) 

Hi (AM, AT) +Hi(Ax, A7) . 

Billiilarly, we have a-linear endolliorphisni t:, : Hi (Bs, N )  3H.i(Bx, AT). 
These endolliorphisms induce endomorphisills on ,Ki (AX,IV) and Iii (Bx, N )  . 

L ~ n r n ~ a3. 3. The a-l-lin,ear endonzorphisms (resp. a-lineal* endonzo~- 
phism) t,-l (resp. t,;) of Kt+,  (AN, AT) (resp. R,,+,(Bs, N) ) is nilpotent, of g 
is k-connected. 

Proof. Let us prove the assertion for t,-l and leave the case for t, to 
the reader. By Lemma 3.2, I<,, (Ax, AT) is finitely generated. Let  a,, . . . ,a, 
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be a set of generators. It, suffices to show that there is a large integer 1 > 0 
such that (t,-l) 1&=0 for i=1,. . . ,s. Let us prove it for a,. Let c, be 
a cycle representing a,. We can find an integer 1 > 0 such that the support 

of c1 lies in AN-tlAx. Therefore u1 is in  the kernel of 

Hence Kk+, (Ax,  N) is nilpotent, under t,-l. 
Suppose that (t,-l) =0 on K,+,(AN,N ) .  We have the following 

filtration : 

Let H denote the Hurewicz homomorphism and let 1 be the following 
composite map : 

H 
(20) 1 : T L + ~( A N- AN,3)+Hkti (Ax-  AN, N ) + ( A N ,  N )  

where the unlabelled map is induced by inclusion. 
Let us consider the mapping cone ( V ,17) of map 

We have a triad ( V ;  Ax -tAx, W ) ,  

/ / 

I 
I V 

W LC---- A-----

/ 
/ A N ,-t A ~ r/ 

iv' / 

LEMMA3.4. Suppose that g~ is Ic-connected for k > 1, and (t,-l) 2 =0 
on Kk+, (Ax,  N )  =0. Then, the image of the following composite homo- 
morphism 
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contains (t,-l) (Kk+l (A,, N )  ). 

Proof. Let us consider the following coinmutative diagram 

Hktl(AN,, N') Hk+l(Yx,, BN,) -Hk(As,-tAN,, AT')+ 

I t  is an easy ' diagram chasing of (22) that the image of Kk+l (A, -tAN, N )  

in  Hk+l(AN-tAN, N )  sontains Her t,-l. Since (t,-l) (t,-l) 1-I =0, i t  con-

tains (t,-1)2+,Kkt,(A~, N). Denote the map (AN -tAN,fl)- (AN,-tANg, N') 
induced from g by gl. Since K ~ ( A N ,  0 for i 5 k HHjl)  rKj-l(A,,AT) = N) 
=0 for js k + 1 and g1 is ( k+ 1)-connected. By [35], the triad 

( V  ;Ax- AN, W ,  is ( I c  + 1)-connected, and the homomorphism 

(23) a k + l  (AN- AN, N )  + ~ k + i(AN- AN U W ,  W )  

is an epimorphism. The following commutative diagram 

shows that the image of the maps in (21) contains Her (9,) ,. This completes 
the proof of the lemma. 



The following lenlnla is the main result of this action, and it is the 
first step toward the proof of Theorem 2 .1 .  

L~nxnxa3. 5 .  Urzde~ the hypoil~esis of Theorem 2.1, there is a map 

g : ,II+ 21' sz~ch thut g i s  lzorizotopic to f and t1~el.e is a codirizension 1 sub-
nzc~nifoldN C M with gu= g I AT: AT+ N' 7c < m/2.wlzich is k-conlzected f o ~  

Proof. Assume that  we have done the preliininarg steps of the beginning 
o f  the section and keep all the notations of Ihe above. Recall that  we nlay 
assunle that  ghr induces an 7,-isomorphisni. Let us assume that  we haye 
proved our assertions for 15 i- 1< nz/2. If i 2. m/2. If i 2 nz/2, the 
leninla is proved. So, we have to show the assertion for i < nz/2. By 
Lemma 3.1, i t  suffices to modify g such that ICi(Ax, X)  =0 and Ki(Bs,  AT) 
=0 for the new map. By Lemma 3 . 2  and Leninla 3.3, I<t(AX>X) is n 
finitely generated R-module with an a-'-linear nilpotent endomorphisnl t,-l, and 
hence we have the filtration (19) with i =k + 1. Clearly, (%,-I) l-'Ki(As, _1') 
is again finitely generated and let a,, . . . , a s  be a set of generators. By 

Leninia 3.4, there are c,, . . . , c, in ri,+, - ITr) whose images under (V  ;Ah. la,, 
the composite honlomorphism (21) are a,,. . . ;a,. Set ac, =b,,. . . ,i7cs 

= b, E T~(Ah7-%AA-,N ). Since i < nz/2, we can represent then1 hy disjoint 
embeddings 

3
. 
=2, 

. . . . ,s. These enibeddings project down to emheddings of (Dl, S t - , )  
i t  ( 1 ,  A T )  Following [ll, Chapter 1111, we exhange the handles on 3 
with the a b o ~ e  Dl's as the central discs from Av to By. Using Lemma 3.4, 
we have a new niap J I +  X3omotop ic  to g which is again denoted by g such 

g (Ti') C AT' where IT' is the elementary cohordism on A7 with Dj (j =1 , .  . ,s) 
as the central dlscs of the added handles. The other boundary of W is denoted 
hy 3,for the moment. 

Let Ah.?-,, BJ, denote the sets corresponding to A,., Bh7 for 3 , .  TT'e hare 

epinlorphisms 



excision i= excision I s 
Ki (YM, BN) -Kc (YM, B N ~ )  3 O 

induced by inclusions, and these epimorphisms respect the a - I  endomorphism 
t,-l. It follows from the construction that the kernel of the epimorphism 
K, (AAT, N ) +K, (AN1) cntains (t,-l) I-lK, (AA7, W). Hence (t,-l)l-lK,(An;,, N,) 
=0. We may replace N by N, and repeat the argument. After a finite 
number of steps, K&(As, AT) may be eliminated altogether. During the elinii- 
nation procedure of K,(A#, AT), Kh(BN, N )  is not affected provided that 
i < m/2. Slre can perform a similar procedue to elimnate K,(BN, N ) .  This 
completes the induction step and f is homotopic to a map g as described in the 
lemma. 

4. The homological description of O ( f ) ,  I n  this section, we shall give 
a homological description of the obstruction 0 ( f )  of Theorem 8. 1, and we shall 
show that if f is splitta.ble, then O(f) must vanish. 

LE~IMVIA Under the hypothesis of Theorem 2.1, if 7n 8k 2 6 then4.1. = 

f is honzotopic to a nzup g :  11- ,V' such that there isn codirn 1 submanifold 
AT C N with gx =g I N :  N +N' satisfying the following conditions : 

(A) Kj(AN, AT) =0 for i 5 k and Ki(BV, AT) =0 for i < k. 

(B)  K ~ ( B N , N )  is finitely generated projective R-modules. 

Proof. K,(A#, AT) =K,(B#, AT) =0 for i < k is in Lemma 3.5. Let 
us proceed to carry out the argument of Lemmq 3.5 to eliminate Kk(AAT, 3 ) .  
The only place where i t  may stop us is to represent b,; . ., b, by disjoint 
embeddings, because there is one dimension off for applying Whitney's em-
bedding range. However, we may represent them by immersions with isolated 

intersection points in the interior of D1. Since ~,hT+a,A,y- tA~ is an 
isomorphism, we may pipe out the intersection points [36, § 41, and represent 
thsm by embeddings. By the argument of Leinn~a 3.5, we haye ( A ) ,  Since 
K, (AN,N) =0 for j 5 k, g~ : (AN, AT) + (Ax,, N') is (k +1 )  -connected, 
Elence K,(AN,N; 83) =0 for js k and any R-module a3. Using Poincari! 
duality, K3 (AN, 83) =0 for j 2 k. By the argument of Lemma 3.1, 
KJ t l  (Bx, AT; a3) =0 for any R-module a3 and j 2 k.  By [34], KL(BN, N )  i a  
a finitely generated projective R-module. This completes the proof of the 
lemma. 



LEMMA4.2. Under the hypothesis of Theo~em 2.1, if m =2k +1 2 7 ,  
then f is homotopic to a map g :  M +  31' such that there is a codim 1 sub- 
manifold T c M zuith gX  =g I N :  AT+ AT' satisfying the follozuing conditions: 

( A )  (A,, N )  =K, (BN,  AT) =O for i 5 k, 

( B )  Kk+,(Ax ,AT) and Kk+, (BN,  AT) are finitely gene~ated p~ojective 
R-modules. 

Proof. ( A )  follows from Lenlnia 3. 5. By Leninla 3.2, Iiktl(BN, N) is a 
finitely generated R-module. Since 

for any R-module 83 by a similar argument of Lemma 3.1 and Kj-,(AT;33) =O 
for j-1 > k by Poincarit duality, K](AN,T;8 3 )  W )  = O=K ~ ( B , v , A ~ ;  for 
j > k + 1. By [33], Kk+, ( A N ,  T ) and Kk+, (Bw, AT) are projective R-modules. 

For (AT,g )  satisfying the conclusion of Lemma 4.1 or Lemma 4.2, we 
call it an almost splitting. Recall that t ,  is a a-linear nilpotent endomor- 
phism of K L ( B N ,N )  for m =2k or Kk+,(BX,N )  for m =2k + 1 for N an 
almost splitting. 

Let us define 

( 2 6 )  O ( f )  = (- l)k-l[I<I,(BN, for m =N ) ,  t,] 2k 2 6 ,  

= ( - l )k[Kk+l(BN,N) ,  t,] f o ~m= 2k +1 2  7 
E C(R,a) .  

LEMMA4.3. O ( f )  is independent of the choice of  the almost splitting. 
In fact, O ( f )  is equal to p ~ ( f )  zuhere ~ ( f )is the torsion of  f and p is the 
projection mapof ( 4 ) .  Noreove~, if f is splittable, then O ( f )  =0. 

Proof. Let, U, V and W be the mapping sylinder of g ~ , g ~  g~and 
respectively. It follows from the definition and Poincarit duality that 

(A) 	 Hi(U,Y M ;R )  =O for all i, 

(B)  	 H ~ ( V , B N UW ; R ) = O  for i # k + l ,  m=2k or i f  k+2,  
m=2k+1. 

( C )  	 (Hkt1(V, BN U W ;  R ) ,t*)  = t g )  for m 2%( ~ ( B N ) ,  = 

(Hlc+2(V,BX U W ;  R ) ,  t*)  = (Kk+l(Bx,N ) , t,) for m =2k + I 

as objects in 4 (R, a )  of[12] .  It follows from the argument of [14] [ l l ,  
Chapter 1111 that, 

p ~ ( f )= 	 W ; R ) , t , ]  f o ~m=2k,( - l ) k + l [ H ~ l ( V , B ~ U  
(27) 

= ( - 1 ) k + 2 [ H ~ + 2 ( V , B ~ UW ; R ) , t $ ]for m=2k+1, 



where ~ ( f )denotes the torsion of f and p is the projectioi of (4) .  Therefore, 
the lemma follows readily. 

5. Realizing the object in O ( f )  by an almost splitting and the proof 
of Theorem 2.1. I n  this section, we shall show that every object in O(f) 
is realizable by an almost splitting. I n  particular, we have a proof of 
Theorem 2.1. 

LEMMA5. 1. suppose that m 22k 2 6 and (8,,  g,) is a72 almost 
splitting. If 

('28) 0+ (PI,v1) + (P,  v) + (PI,f l )  +0 

is a short ezact sequence in a (22,a )  such that (Rk(Bs,N),  t:b) = (P,v) n r ~ d  
(E",, fl) is a trin?zguZar ~ b j e c t , ~  g)then there is alzother almost splitting (8, 
suck that (.TCk(BT, N ) ,  t:k) (P,v ) .  

Proof. By an easy induction argument, it suffices to prove the assertion 

for (PI,f,)= (R, 0) .  Let, a E P which projects onto a generator of R. Set 

z =v (a)  E (P,, v,) = (K7&(BN, . a large integer such that AT), t,) Let )z be 
there is y E K7,(Bs1- t-nBXl, N,) (where Kh(Ewl -t-?lBvl, XI)  denotes the 
kernel of Hk(Bsl -t-llBN1, 8 , )  +HI,(BN,-t-"BA-,, AT') ) with the image of y 
in Kk(Bflv 8 , )  equal to s. Consider x = t,,-ly E K L  (t-lBYl -t-"-lBv0 t-lNl). 
It is clear that the image of x under the homomorphism 

is just t,-lx. Let us consider the exact. sequence 

Let u =8(t:,-lz) . Using the argument of Lenlina 3. 6 ,  we may assume that 
u is in the image of the following composite map 

where V, W are the mapping cylinder of the mappings 

See [12] for the definition of an object in iR,a ) . 
For the definition of a triangular object, see 1121. 
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respectively, and H denotes the EIurewicz honiomorphism. Elence, we have 
an embedding by Whitney's embedding theorem 

representing the class u. Thickening this embedded disc, we have a co-
bordism ( U ;N1, N )  . We may exchange this cobordism to AN1 (i. e., exchange 
the handle u(Dk-l) to AH1), and we have a new almost splitting (11,g)  such 
that g ( U )  c N'. Let us consider the following exact sequence 

(33) +H L(TI7, 8 , )  =0 +IT7,(BY,,ATi) +li-,t(BH,, U )  

e1excision 

Ki, (BN, N )  

We see from (33) that K,(BX, N )  =IilC(BN,AT) @ R, and i t  follows from t.he 
const~uction of U that t,-lx is a generator of the second summand. I n  fact, 
(33) may be identified with 

with the image of t,-lx generating R. Sere  we use the fact that 
t:, (t,-lx) =x E K7, (By,, N1). Since t, (t,-lz) =z, (34) is isomorphic to the 
exact sequence of the objects in ,& (R, a )  as stated in the lemma. The proof 
of the lemma is thereby completed. 

L~nfnfa5.2.  Xuppose that 7n =216 +127 and (N,, g,) is an almost 
splitting. If 

(35) 0 +(PI,  v,) + ( P ,v) + ($'I, f l )  +0 

is cb short exnct sequence in (R, a )  such tknt (KL+, (By,, N ) ,  t,:) = (P,,v,) 
and (F,,f,) is cc trinngula~. object, then thelee is another alnaost splitting 
(N, g )  such that (KI,+,(BN,AT), t*.) = (P,  v) .  

The proof of this lemma is exactly the s a ~ ~ l e  as Lemma 5 .1  except some 
number change. We leave it l c  the reader. 

L~nrnr-15.3. Xuppose that m =216 2 G and (N,, 9,) is alz almost 
splitting. I f  

(3'1, f,) + (P1,v,) -+ ( p , ~ ~ )(36) 0- + 
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is a short ezact sequence in &(R,  a )  such that (K,c(B~rl,Nl),t,:) G (P1,vl) 
and (F,, f,) is a triangular object, then there is another almost splitting 
(8,g) suck that ( E L  (Bx, N ) ,  t,:) r (P,  v) . 

Proof. Again, it suffices to prove the assertion for (F,,f,) e (R, 0) .  Let 
a be a generator of Fl rR. Suppose that t,l= 0 and t:, l-l f 0. It is easy 
to see that a E t,:l-l (lik(Bs,, N1) ) .  By the argument of Lemma 3.6, a is in 
the image of the following composite maps. 

where V, IT' are the mapping cylinders of the mappings BAT,- tt1Bxl 
+Bxf- t-lBh7,, Nl -+N' respecti~rely, and H donotes the Horewicz homomor- 
phism. Let c E rLtl(V  ;Bhrl-tklB,, 11') ~ u c h  ihat the image of b =dc in 
Hh(BA,,, AT,) represents a. Using the piping oat argument [36, § 41, we have 
an embedding 

(38) b : (D" a w )  -+ (BA,,- t - l ~ ~ r , ,AT^) 

representing b. Thiclcening this en~bedding, we have a cobordism ( U ;N,, 8 ) .  
We may exchange TV to As, to define a new splitting (N, g) as we did in 
Lemma 5.1. Consider the following exact sequence 

(39) O +Hli(U, N,) +Kk (ByI, AT1) +ICk (BN,,U )+0 
m 

excision G 

1i-k(BN, N )  . 

I t  is easy to see that (39) respects the action of t,: and it  is isomorphic to 

as exact sequences of ,@ (R, a ) .  I n  particular, (El;(By,, 8 , )  ,t,:) = (P,v) , 
and this completes the proof of the lemma. 

L E ~ I ~ I A5.4. Xuppose that nz =216 +127 a n d  (AT,, g,) is an alnzost 
splitting. If  

is a short exact sequence in & (R, a )  suck that (Elctl (ELi, ATl),t*) =(PI,vl), 
then there is another almost splitting (AT, ~ , g )  szlch that (Kktl (BY, N )  ,f y )  

5z (P,v). 
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Proof. Again, we may assume that (PI,f,) = (R, 0) without loss of 
generality. By the same argument of Lemma 6.3, there is a generator a of 
P,and an element c of ( V  ;BNI- t-lBN1,W) (where V, W are the mapping Z-,, 

cylinder of the mappings BN1 -. B N ~+ BB -t - lB~, ,N14N' respectively) 
such that a is the image of c under the following composite of maps: 

We have an immersion 

representing b =a c  E ,,+, (BN1-t-lBx,, N,) . We are now completely off the 
range for Whitney embedding theorem, and we do not have enough connec-
tivity to pipe out the siplarity.  What we are gojng to do is to follow a trick 
of [36, § 41. Let us assume that 

is a level-preserving embedding mhere I,= [- 1,0] and aDktl X I,, N ,  X I, 
are the collars of allkt1, ATl in Dktl and BN,- t-lBx1 respecti~~ely. This is 
because a1Nl -+ T , B ~ -  t-lBN, is a isomorphism and me can apply Whitney's 



trick to the singularities on the boundary gok+'of the imnlersion (42) .  Let 
XLVlbe the manifold gotten fl-om ATT,by cutting 31 along N,as we did before. 
K,I-,-Lk1Bxl is diff eomorphic to Ad,-, -(AT,) - wider the obvious projection. 
and we have the immersion b of Dbl into ;IIAV,-- (AT,)- by the identification. 
Let (N,) + X I,= (N,) + X [- 1 , O ]  be the corresponding collar of ( N , )+. 

Then 6 : aDk+lX I,+ ( N , ) ,  X I, is a lei-el-preserving embedding. 
Let I, = [O; 11 and let us attach a ( k  + 1)-handle to the normal disc 

bul~dle of 

We have a cobordism W on 

the added 
( k  +1)-handle 

Since the added ( k  f 1)-handle dct.. not i o l l r ; i  (,I7,)+XI ,  and ( S 1 )  X I , ,  
we may identlfp ( X I ) +  X I, with (12-') X I ,  ill  the obv~oui way to f o r m  a 
cobordism U on iM X I, with a ( k  +1)-hanilltx added. 

In fact, the cobordism ( U ; J I , A l , )  c.ontailis S, X I ,  such that when cut 
along N X I,, we get W back. We c a n  tlefi112 :I retract 

(451 rf,: U+M x12 
as follows. We first retract the added handle to its central disc Dhl and 
then we map the central disc into M X 1 by 6 X id . This composite map 
is r,. In fact, r, induces a degree 1 map of triads. 

Let us consider the following exact sequence of kernels of r and r,: 



It follows from the construction that 

and hence we also have 

In fact, they are all isomorphic to R. Let us look at Kb(Ml) a little closer 
and pick up a generator for it. Recall that U is gotten from Jf X I, by 
attaching a ( k  + I )  -handle to N1 X [- $, -a:] X 1where N X [- 1 , O ]  X 1 
is the collar of N1 X 1 gotten from (N1)+X [- 1,0] X 1. Therefore, we 
have a cobordism V inside of M1 such that V is gotten from N1 X [- i , O ]  X 1 



by adding a (it: +1)-handle which was induced from the attached ( k  +1)-
handle of U.  

In fact, the ( k + I )-handle of V is contained in the ( k  +1)-handle of U and 
the latter is a 1-dim thickening of the former. Write the elementary 
cobordism V as ( V ;N,, N) with N, =N, X (- 1)X I, and consider V as 
gotten from N by adding a k-handle. It is not di%cult to see that the attaching 
map of this k-handle is actually trivial in N. Therefore, the central disc of 
this k-handle together with the homot,opy of the (k- 1)-sphere of the 
attaching map in N gives us an element c E ak(V). 

FIGITRE10 

Central disc of the k-handle 

holriotopy of the (k -1)-sphere 
of the attached map 

We see that 

(50) 

represents a generator of E k ( M l ) .  In  fact, we may assume that Im ( c )  C Int(B) 
without loss of generality. Let 1s analyze the elenlent c E ~ ~ ( l l f , )with a little 
more care. c induces a map 

(51) c :  S k +  T7+ W. 

F extends to a map 

such that the Hurewicz homomorphism sends the elements in T~+,(W,N,) 
represented by the pair of mappings ( d , ? )  to a generator of 



which denotes the kernel of the retraction 

r,: (W;A.ffll,Af~)~l)+ (Ngl X I ~ ; N N ,X O,Mfl1X 1 )  

where r, is induced from the retraction r of (46) by cutting along N ,  X I,. 
Using the trick of piping out of singularity of [36, 5 41, we may assume that 
2 is an embedding and C(Sk)C Ti .  Applying handle subtraction to the 

embedded disc d(Dk+l ) [36, 9 41 and gluing the resultant along N, X I, 
again, we have a cobordism ( U ,  ;Af, M,) and a map 

induced from r, and the handle subtraction. It is easy to check that ,r3 is a 
homotopy equivalence and r,(N, X I,) C N, X I,. Therefore U, is an h-
cobordism on 31. Since we have never touched N X I, during the construction 
of U,, we see that the torsion T(U,, M) E Wh G. Let us now consider the 
following composite of maps : 

where i is the inclusion and p, is the projection map. Now, the generator a 
of F bounds an embedded (k + 1 )  dim disc in By,- t-lBN, satisfying all the 
requirements. Following the argument of Lemma 5.3, the generator a of E' 
may be eliminated by the almost splitting (N, g) of M,. Now, observe that 

U may be gotten from M X L by attaching 2-handles and 3-handles without 
touching N X I C 1.fX I. Therefore, there is an almost splitting (N, g)  in 
A1 such that (K,+, (BN, N ) ,  t,) = (P, v) .  This completes the proof of the  
lemma. 

The following theorem is a summary of all the above lemmas from $ 3  
t o  8 5 .  

THEOREM Under the hypothesis of il'heorem 2.1, if (N,, gl) is an5 . 5 .  
almost splitting such that 

O(f) = (-l)k-- '[Kk(B~l,N1),t*] for m=2?c>=G 

= (--l)k[Kk+l(B~~l,Nl)~t~lfor r n = 2 k + 1 > = 7  

defined by (26) and Lemma 4.3, then for any object (P,2;) E (R, a )  in the 
class of O(f), there .is another splitting (N,g)  such that 

(Kk(BN,N),t,) r (P ,v )  for m=Bk>=6,  

(Kk+, (Bs, N ) , t,) =P, V )  for m -2k + 12 7. 
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Proof of Theorem 2.1. The necessity is trivial. So let us assume 

O(f) =0. Then, (0, t,) is an object in [XI,(BX,,N,), t,] for m -2k 2 6 
and [Kk (BN,, N,) . t,] for m = 2k + 12 7 .  By Theorem 5.5, there is an 
almost splitting (N, g) such that Ei(BN, N )  =0 for i 5 k and m =2k 2 6, 
and Ki(BN, N )  =O for i5 k 4-1 and m =2k .-i By Poincark duality 12 G. 

and Lemma 3.1, me see that K + ( N )  =O for i 2O in both cases. Hence, g~ 
is a homotopy equivalence. This completes the proof of the splitting theorem. 

6. Obstruction to finding a homotopy strip. Starting from this section, 
we shall give some applications of the splitting theorem, Theorem 2.1. For 
other applications, see [31], [16], [36]. We first give a geometric inter- 
pretation of the components of the algebraic decomposition of C(R, a )  into 
6(R, a )  @ H,G [l2]. We shall see that the component of O ( f )  in G (R, a )  
for f is essentially the obstruction to finding a homotopic open strip, and then 
the component of O(f) in K ~ Gis the Noviko7-Siebenmann obstruction to 
splitting M X R [29], [26]. 

Let (M', N') and f :  M+ ,91' be given as in 8 2. Let us ask what is the 
obstruction to finding a map g : fiI+ $1' and an open submanifold U of Jl 
such that 

(A) g ( U )  C N' and g~ : U +N' is a homotopy equivalenve. 
(56) 

(B)  g is homotopic to f. 

When such (U, g )  exists, we say (U, g )  is a splitting of f by a homotopy 
open strip. Let 

be the projections of the direct decomposition C(B,a )  -C(R, a )  @ K,G [12]. 

THEOREM 6.1. Suppose that f :  4141M' is given as Theorem 2.1. f is 
splittable by a homotopy open strip if and only if qlO(f) = O .  

Proof. Let us first prove the necessity. Let (U, g )  be such a splitting. 
It is easy to see that U is an open manifold with two t,ame ends e',, 6-. 
Following the argument of [29, Chap. V], we find a codimension 1 submani-
fold N C U satisfying the following conditions: 

( 5 8 )  (A) N divides U into CN, Dx such that CN n DN=N, 

(B)  	 Hi (Dx,N)=O for if3c andm-21626 ,  or 
for i f  k + l  ant1 r n = 2 l c + 1 2 7  

It follows from Lemma 3.2 and Lemma 4.2 the t Hr,(Dx, N )  for m =23c 2 6 
or Hkil(DN, N )  for m -2k  + 12 ? is finitely generated projective moclule. 
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Let  us consider the pair ( N ,g)  induced from (U, g) . I t  is easy to check that  
($7, g) is an  almost splitting and we can choose GX C AN, Dg C BN Lifting 
U into Y M ,we have the following maps of exact sequences: 

where Ki(CN),  K.i(DN) denote the kernels of the mappings of CN+N', 
Dg+N' respectively. We see that  

K ~ ( C N )  Ki (Ag) ,  Ki ( D N )  Kf, ( B N )  
( 6 2 )  

K< (CN, N )  Ki (AN, N ) ,  Ki (DN,N )  ES Ki (BN, N )  

where the isomorphisms are all induced by inclusions. Since U C k 1 ( A f l ) ,  
( 6 2 )  implies that  the endomorphism t ,  in (Kk(BH,$7),t,) for m =23c or 
in  (blro,(BN,N) t,) for m =2k + 1 is zero. Therefore, q,O ( f )  -0 by the 
definition. 

Before we prove the sufficiency me need the following lemma which is of 
interest in its own right. 
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LEXX,~6.2. Let Wqn be an elementary c~bordism on an (m- 1)-dim 
manifold N1"-l with s j-handles (3 (= j 5 m -3 )  attached on Nm-l X 1 of 
Nm-IX I .  If we can decompost! Hj(W, N )  -P $ Q with P, Q projective 
R-modules (R =Z ( G ) ,  G=a lN =a,W) such that the boundary honzo-
morphism 

of the eract sequence of the pair (IV,N) is isomorphic to the projection 
onto the second summand & and I m  (a) is a direct summand of Hj-,(N), then 
there is an open subset of W which is a manifold with boundary N and has 
a tame end E such that ~ ( 8 )  = [&I where u (&)  denotes the obstruciion of 
Xovikov-Siebennzunn ([25], [291) ,  to adding a boundary to E. (Note that 
we suppress the coe(@cient group of the homology groups again. We always 
use F =Z(G) ,  G =a lN =~ ~ 1 8as the coefficient group.) 

Proof. Suppose that W is gotten from 3'X I  by attaching a,; . . ,us 

1-handles on N X 1. Let us introduce s pairs of complementary ( j-1 )-
handles and j-handles (b,, c,), . . . ,(b,, c,) into W. We can view that b,, . . . ,b, 
are handles attached to N X 4 by trivial einbeddings 

contained in Dnhl C N X 4. By trivial embeddings, we mean that 
{bi(dDi-' X s o ) ,  i=1,. . . ,s )  bound disjoint discs {Dij-l, i=1, . ., s)  in 

s 

DVL-1-U bi(Di-l X I n t  Dm-j), where xo E ODm-i is a base point. Therefore 

i=l 


S 

are embedded spheres in N X [0, *] U { U bi(Di-l X Dm-j)). For simplicity, 
i-1 

8 

let us denote the cobordism N X [O,*] U { U bi(Dm-j)) on N by (Wq;  No, Nb). 
i=l 


Let us pick up a base point yo E Na and join paths from yo to the embedded 
spheres of (65). It is easy to see that these based embedded spheres represent 
a set of free generators {ej) of a direct summand RS (R =Z ( G ) ,  G =T,N !) 
of Hj_,(N3) .  I n  fact, if j- 1# (m -l)/2', Hi-, (N,) =Hi-, ( N )  $ R8 
and {ei I i=1,. . . ,s )  is a set of generators of RS ; while 

such that {ei 1 i=1,. . . ,s)  generates one of the summands BS. Set 
V+=TV- TV*. V, is a cobordism on ?7+ with 2s j-handles attached to Ni, 
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i. e., Vt is diffeomorphic to a cobordism gottcn from N d  X I by attaching 
2s j-handles to N +  X 1. I n  fact, they are just a,, . . .,a,,c,, . . . ,c,. So, 
Hj(V4, N 4 )  =P I @  F, where P, is a free R-module generated by a,, . . . ,a, 
and F, is the free R-module generated by c,,. . ., c, (when we join paths 
in V+ from yoE N +  to a,, . . .,us, c,, . . ., c,. Let us examine the boundary 
homomorphism 

of the exact sequence of the pair (V*, N3) .  We find that 8 I P, is an isomor- 
phism onto the R-module Hi-, ( N g )  generated by b,, . . . ,b, and 8 I P, is 
maped into the direct summand of H+, (N*) which is identified with Hj-, ( N ) . 
I n  fact, under this identification, Im(8  I P,) is identified with the direct 
summand isomorphic to Q of Hj-,(N) given in the hypothesis. Let us 
decompose 

(67) 	 P, =P, @ Q, with A I P, =0 and a I Q, an isomorphism onto 
Q cHj-1 ( N ) ,  

where P,, Q, are isomorphic to P, Q respectively. We may also decompoce 
the direct summand of Hj_,(Nt) generated oy b,, . . . ,b, by P' @ Q' with 
a : P, +P', 8 : Q, +Q' isomorphisms. Let us rearrange the direct decom-
positions of (67), (68) such that 

(69) F1 @ F z =  (PI@Qz) @ (3'2 @ &I) 

Since (P, @ Q,) is a free R-module of rank s, we can realize a basis of i t  
by s j-handles on Nq. Let V gbe the elementary cobordism on N3 by attaching 
these s j-handles and let N2 be the other end of the cobordism of V3. Set 

U, =Vt U V2 and W,' =W -U. It is easy to see that W,' contains an 
elementary cobordism W, on N2 such that the inclusion W, C W,' is a 
homotopy equivalence and W ,  verifies all the hypotheses W. Applying the 
same procedure to W,, we have U, and W,, etc. Immediately, we construct 

Ua, Wa (i2 1 ) .  Set U =U U,.I t  is easy to check from the construction that 
01 

Hj(U, N )  r Q is the only non-vanishing homology group of the pair (U, 3) 
This completes the proof of the lemma. 

Let us now prove the sufficiency of Theorem 6.1. We divide the proof 
into two cases according to m =21% or m =2k -+1. 

Case I. m =2 k  2 6. It follows from Theorem 5 . 5  that there is an 
almost splitting (No, go) of f such that 



(A)  K4 (BNo, No)  =0 for i# k, 

(B) K k ( B ~ ,AT,) is a finitely generated projective R-module, 

( C )  t ,  is the zero endomorphism of Kk (BLv,, No). 

Let alO, as0 be a set of generators of Kk (Bx,,No) .  By the argument of a ,  

Lemma 5.3, there are maps 

representing GO,. . 5 , as0. We can make them as disjoint embeddings. Thick-
ening up these discs, we have ,ve elementary cobordism (W,; No, N,). We 
may modify go such that go(Wo) C N'. Wo satisfies the hypothesis of Lemma 
6.2. By the argument of Lemma 6 2, we ~ n n ydecompose W, -- W- U W+ 
such that W,, W- are elmentary cobordisms on N satisfying the following 
conditions : 

(A) W, n W-= N, 

(72)  	 (B)  H i ( W - , N ) = O f o r i # k a n d  

Hi(W,,N) = O  for i # k + l ,  


(C) N is an almost splitting. 

By Lemma 6.2, we have U+ in W+add U- in W- such that 

Set U =U+U U-. It is easy to see that (U, g )  is a split,ting by open strip 
of f .  

Case 11. rn =2k + 12 7. Let us follow the argument of Lemma 5.4 
to find a cobordism W similar to that of Case I. Let (No, go) be an almost 
splitting of f satisfying the conditions : 

(B) Kk+l (BH~, No) is a finitely generated projective R-module, 

(73) (A) 	 K((BN,, No) =0 for if  k + 1, 

(C) t ,  is the zero endomorphism of Kktl (BNo, No).  

Let alO,. . . ,a,O be a set of generators of Kk, (Bxo, No).  By the argument 
of Lemma 5.4, we may assume that they are reprosented by disjoint embeddings 

Thickening up thesediscs, wehave an elementary cobordism ( W;No, N1). 
Except some number changing, the same argument for Case I works for 
Case 11. This completes the proof of Theorem 6.1. 
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THEOREM6.3. If (U, g)  is a splitting of f by ccn open honzotopy strip, 
thela U is of  the proper homotopy type of N' X R, and hence U has tzoo tame 
ends E,, 6- with u (6-) =q20( f )  . 

Proof. It follows from definition that g 1 U :  U +N' is a homotopy 
equivalence. With a little care, we may create a proper Ilomotopy equivalence 

9v P T O ~  
g u :  U +N' X R such that U -N' X R 8' is homotopic to g. 
Hence, U has two tame ends 6+,6-. I n  order to compute ~ ( 6 - ) ,  we follow 
the sufficiency part of Theorem 6.1.  Let N C U he the codimension 1 sub-
manifold satisfying the conditions of (56). The exact sequence (61) shows 
that Hi N )  rKd ( B N ,  N ). from definition u (6-)(DN, It follows the that 

= o m .  
THEOREM 6.4.1° Let f :  M+21I' be a hom&omorphism of  closed mani- 

folds with rlM =T~&I'= G X a  T where G i s  a finitely presented group. ( W e  
identify a1JI with rlM' via f,: .)  Then ~ ( f )hus no components i n  C'(R, a)  
and C(R,a-l) of the decomposition ( 2 ) .  

Proof Since X I ,  M 2  are closed manifolds, it follows from [22] that 
~ ( f )= (- 1 ) l l " l ; ( f )  where m =dim A!. By [I%],the conjugation '-' inter-
changes c(R, a )  and c(R, a-l). It suffices to show that T ( f )  has zero com- 
ponent in C (R, a ) .  Moreover, we may assume that m =dim 112 =dim X' 2 6 
without loss of generality by applying the product formula of TIThitehead 
torsion to f X id :  iM X P+&I'X P where P a high dimensional simply- 
connected manifold with Euler number 1. Since G is finitely presented, we 
may interpolate a closed subnlanifold AT' of codim 1in M' such that a1Nf+alJI' 
is a monomorphism onto the subgroup G of G X ,  T. Let U' be the tubular 
neighborhood of N' and r :  Ur+N' is a deformation retraction. r extends 
to a homtopy to the identity f': ill'+ 211' by 'homotopy extension theorem.' 
Set U =f-I (U') and g =f'f : lV+ J1'. Cleal-ly (U, g )  is a splitting of 9 
by a homotopy strip. The theorem follows from Theorem 6.1. 

COROLLARY6.5 [13]. Let iM,, ( m 2  5) b e  a closed manifold with 
T,A~--T,~X T n  where Tpz is the cyclic groz~p o f  p2, and n,Z 2. There are  
infinitely many h-cobordisms on A 1  which are not homeomorphic to 11X I .  

Proof. Let G=Tpz X Tri-l and a =id. We can write alM =G X T .  
Aeording to [5], C(R, a)  is an infinite group wherc R = % ( G ) .  Picli 
x E Wha1$I which has non-zero component in one of the 6 ( ~ ,  ofu )  the 
decomposition ( 2 ) .  Building an 12-cobordism IV, on 1I1 with T (WZ,,V) =x. 

After the work of [ I D ] ,  [ZO], the result is obsolete, of course ! We include i t  here 
aa an  illustration. 



Let 31' be the other end of TV,. If there is a hotneomorphism P :  IY, +V X 1, 
there is a homseomorphism f :  Y ' + X  such that the induced isomorphislil 
f, is the same as that induced by the composite map 

ill cl def. retract 
$1'-----+ TY, -J1.(75) 


By [12], r ( f )  has -t z in the second and the third component of (2) where 

2 denotes the component of z in the second component. Eence, qlO(f) +0 
and this contradicts Theorem 6.4. 

7. Wovikov's problem on homotopy invariance of L-genus.ll I n  this 

section, we shall answer a problem raised by Novikov in [25], [28], [15] 
about L-genus. Let Jfjll be an orientable closed manifold. Suppose that 
z E H4k(J fn l ;Z)  be an element whose PoincarQ dual is 

where y,, . . .,y, E H1(Mn; 2 )  form a linearly independent set. Novikov 
aslied in [25], [26] : 

(77) ' I s  (Lk (Aft") ,z )  a homotopy invariant ? ' 

(Lk (Jfm) E H4k(J11n;Q )  is the k-th L-genus of ( N m . )  

THEOREMS' ([25], [28], [ l z ] ) .  L,(,JInz),z)  is a homotopy invariant 
where Lk(J1tn) and z are given ns above. 

Proof. By multiplying a fixed simply-connected closed manifold P with 
non-zero signature, we may assume that 3G 2 2 without loss of generality. 
Let illmbe given as above and let f :  3inz+ JIlrrl be a homotopy equivalence. 
We have the following commutative diagram 

A-A 
N-

where A, A, are the torsion subgroups of H, (111; Z )  and H I  (31, ; Z )  respec- 
tively. Since m 2 8, the kernel of nlM1+ H,(ilI,;Z)/A, are carried by a 

Lusztig has proved the result by a different method. 
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set of finitely many embedded circles. Making f transversely regular with 
respect to these embedded circles and performing surgery on the inverse 
images, we may assume that rlAf is also represented by embedded circles, f is 
a diffeomorphism when we restrict it to the icbular neighborhood of the 
circles, and the inverse image of the circles in &I, are those corresponding 
ones in M. Performing simultaneous surgeries to these circles, we have a 
new homotopy equivalence 

where L, L1 are the manifolds gotten from M, ild, by these surgeries. It is 
easy to see that g is a homotopy equivalence and r lLnG= rlLlnl is a free abelian 
group. By a 'diagram chasing,' i t  is easy to see that i t  is sufficient to prove 
the theorem for g. Folloming [28], i t  suffices .to assume that f,x is repre- 
sented by the intersection of n connected codim 1submanifold hT1(l). . . . ,N1(n) 
of L such that the intersection of any number of them, N1(jl) . . . hT1(ja) ( j i  i:j,, 
of L such that the intersection of any number of them, Nl(il) . . . hT1(il)( y i  # ji, 
for i# i') is connected. Then 

n 

(80) (Lk (L,), g,x) =the signature of .th? manifold n N1ci). 
i=l 

If we can find a corresponding set of codim 1 submanifold N1cl), . . ., hT1(n) 
of L satisfying the conditions of N1(l),. . . ,Nl(n) and a map g': L += L', 

homotopic to g such that g 1 n n 
N ( % ): n n 

N($)+ n n 
N1(i) is a homotopy equiv- 

1 1 1 

alence, then the theorem folloms from Hirzebruch's theorem. This can be 
achieved by a successive application of Theorem 2.1 and making use of the 
fact that Z[T1] is a regular ring and hence C(Z[TL],id) = O .  This com-
pletes the proof of the theorem. 

Remark. Novikov proved it for n =1 in [25] and Rohlin proved for 
n = 2  in [28]. We can generalize the above result to nilpotent a, by the 
result of [12]. 

Appendix. A weakly splitting theorem for 5-manifolds.12 I n  this 
Appendix, we shall prove a weaker version of Theorem 2.1 for 5-manifolds. 
Let us now set up the problem and state the result. Let f :  I f 5  + Mf5 be a 
homotopy equivalence of closed 5-manifolds with the fundamental group 
al=G Xorl', a semi-direct product of a finitely presented normal subgroup 

l3 S. Cappell and J. Shaneson have generalized this tlleoreln by a different approach 
(cf. Theorem 5.1 of [37]  ) . 



G and the infinitely cyclic group T. (As always, we identify r1X5 with T,AI '~  
via f,.) Let Nr5 C Mr5 be a codimension 1submanifold such that the inclusion 
G C G X, T. Cutting 4f' along N', we have a manifold -?f'N,. Suppose that 
we have an embedding X2 C IntMrN8 representing an element of .rrg(llrl'N.). 
Joining a tube from the normal sphere bundle of S2 in JIJ-AT' to N', we 
have a new codimension 1 submanifold of Mr.  Repeating this procedure a 
finite number of times,we have a codimension 1 submanifold L'4 of Afr5 and 
the inclusion L' C 31' again induces the T ,  incalusion G C G X, T. We say 
that f is 'ureakly splittable' along NJ4 if we c.an find such a submanifold 
L'4 C MT5 and a codimension 1 submanifold L4 of Jf5 together with a map 
of pairs g :  (M5,L4)+ W5, L'*) such that g I iM5 is homtopic to the original f. 

THEOREM8. I f  0 ( f )  =0, then f is 'weakly splittable ' along 

The reason that one should expect Theorem A to be true is because of 
the feling that 4-manifolds behave better when we stabilize them by per-
forming connected sums with many copies of 8% S2. I n  the present paper, 
we have no control of the number of copies of S2X S2. However, i t  seeins 
to me that i t  is possible to estimate the numbsr of copies if we are careful 
enough in some special cases. 

Proof of Th,eorem A. Following 5 3, we may assume that f - l (Nr)  = N 
is a codim 1submanifold of M5 such that fx induces a 7,-isomorphism. Recall 
that we have 

and it  follows from the hypothesis that there is a ,Itration 

of submodules of K3(BAr,N) such that t , p ~ + ~  forC F4 and pi+,/FrZ(G) 
i --1,. . . ,n- 1. Let [a] be a generator of PI. Since t,P, -0, we have 
an immersion 

such that a ( Int  D 3 )  C M5-hT4 and i t  represents the homology class [a] 
when we lift it up to ( B N ,  AT). Without loss of generality, we may assume 
that the preimages of the self-intersection points of a consists of pairs of arcs 
Z,,l{;. . .,lj,lj ';. . .,Zm,lmr with a ( l j )=a( l j ' )  ( j = l , .  . . , m ) .  Of course 
an arc Z j  (or 1;) may be knotted with itself. For example, lj is one of such 
arcs. ) See Fig. 11) 
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We can join two arcs from the knotted arc l j  to S2 to break it into two arcs 
,, I j  such that ij, T j  have simpler knots than l j  and the number of knots is 
not increased. We join two arcs from the corresponding points of lj' to S2 
such that lj' is also broken into t,wo arcs i;, lj". We can choose the arcs 
joining from lj' to S%o carefully that no new knot is introduced and the arcs 

l,, 1,'; 12, 1;; . . ,.i. - 3  ,T. t! '..)- 3 ,  i ? .  -3, 3 1,' l,,,.;. are disjoint from each other. Now 
we can perform a regular homotopy at(O5 t 5 1 )  on the immersion - a such-
that a, = a  and a, has self-intersections l,, 1,';. -. . ;ij, T+,J j ' ; .  . . ;Z,, 1,' 

with a, (1,) =a, ( I { )  for k # j, a, ( i j )=a, ( l j ' ) ) ,  a, (ij)=a, ( J j )  and at (Int  D 3 )  
C M 5 -N4 for 0 5 t 5 1. Therefore, we may assume from the very begin- 
ning that each l j  (or 1;) for :j =1,. . . ,m is never'knotted with itself with- 
out loss of generality. It may see that l j  minds around some other arcs, but 
wecan easily unwind it by a regular homotopy. (For example, see Fig. 1 2 ) .  

Therefore we may assume that l,, 1 ; ; .  . . ;l,, l,,,' are parallel 1,'l j ,arcs and 
( j=1,. . . ,m )  bound disjoint Dj2, Dj '2 ( j  =. . . ,m )  in D3 such that dDj2,
a~~ '" ( j=  1,.  . .,m )  are contained in S 2  without loss of generality. 
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a(Dj2U Dl2)  ( j  =1,. . . ,m )  represents an element of 7, (Jfh,,W )  where -?JN 
is gotten from M by cutting along N. Since 8: T ,  ( . d f ~ ,  N )  +7,( N ) is trivial ; 
a(Dj2U D;Z) represents an element [bj] E a, (&I-N) ( j  =1,. . . ,m ) .  Let 

f ~ ,: 31 +M'H, be the induced map and let bj' : S2+ -V'- N' ( j  =1,. . . , m) 
be an embedding representing the element .+ [bj] E a2(M'N,) . Joining a (fJfd , )  

tube from the normal sphere bundles of bj'(X9 to we have a new co-
dimension 1submanifold L,' of JIf5and the inclusion induces the a, inclusion 
G C G X a T. When we thicken the 2-handles a(Dj2U Doj' ( j =1,. . . ,m )  
on N4,we have a new codimension 1submanifold LI4of M5. After we examine 
the evaluation of 

on the 2-cycles represented by [b j ]  ( j = l ;  . ., m ) ,  i t  is easy to construct 
a map homotopic to f, 

with g1-1(L,'4)=L14. We can lift L14, Llt4 onto YMand YyTrespectively 
and let us denote the corresponding triads gotten from L,, L,' by (YY;A,, B1 ) ,  
(YAP;A,', B,') respectively. It is not difficult to see that we have an 
isomorphism 

If we denote the image of [a] in K3 (B,, L,; ZG) by [a,], then [a,] is repre- 
sented geometrically as follows. When we thickcn the 2-handles a(Dj2U D;') 
( j =  1,. . ., m )  on N in order to obtain L,, we may do it so carefully that 
there are disjoint regular neighborhoods Dj3,DIP ( j  =1,. . . ,m )  of Dj2, 

nl 


respectively in D3 that if we put Dl3=D3- U (Dj3U D?), then the im- 

mersion a induces an embedding 

representing [a,] E E 3  (A,, L, ;ZG) where J lh ,  denotes the manifold with 
boundaries from 41 by cutting along L,. 

Then, we can hicken up this 3-handles on L, and exchange i t  to A,. Now 
we have a new codimension 1 submanifold and a new map M5+ Xt5 which 
we shall again denote by L, and g, such that 

But unfortunately, we may mess up the a, isomorphism. However, we still 
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FIGURE13 


have the epimorphism (g,), : nlLl a1Llt. Let {x,, . . ;.I.,,) be a finite set 
of elements such that their normal closure in x1Ll is the kernel of (g,),. 
Following 8 3, wenlay assume that zi (i=1,. . . ,s )  are represented by 
disjont embeddings 

(89 xi: S1+L14 (i-1,. . . , s )  

such that xl(S1) bounds a 2-disc D2 in A, or el,say B,, and we can choose 
the embedding of Dl  in B,- t-lB1. We can choose the embedding so care- 
fully that if we thicken it up and exchange it to A, and let us denote the 
new codimension 1 submanifold by L, the induced triad by ( Y M ;A,, B,) 
with t (A , )  C A,, etc., then we shall kill x, and x,(S1) will bound a %disc 
in A,- tA,, etc. After we carry on this procedure s times, we have a new 
codinlension 1 submanifold of M5 and it will be again denoted by LZ5. Of 
course, if me modify the map g, in the same way as we did in [35], we may 
just complete a vicious circle or worse. Now, let us make the following 

51 

observation. Since the composite map S, -+ L, +L< is trivial, the com- 
posite map 

with y1 [ I n  fact, we can S1=s1actuall~r represents an elcment 11: ~ ~ ( ; l f ' ~ , , ) .  

do anything so carefully that i t  represents th. trivial element. Choose a 
trivially embedded SLX S2in I n t  and join a tube from X X S2to L{ 
from the B,' side. Denote the new codimeilsionxl submanifold of J f ' j  by L,'4. 
Clearly, the inclusion L,' C X' again induces the T,  inclusion. 
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