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MANIFOLDS WITH =, — G X T.

By F. T. Farrerr and W. O. Hsiang.?

1. Introduction. After the first author’s thesis on fibring a manifold
over a circle [11] and our joint paper on non-homeomorphic h-cobordant
manifolds ? [13], we realized that there is a very close relation between the
structure of the Whitehead group Wh G X« T' of a semi-direct product ¢ Xo T
of a finitely presented group G and the infinitely cyclic group T with the
obstruction to splitting a homotopy equivalence f: M — M’ along a codimension
1 submanifold N’C M’ where = M and =, M’ are isomorphic to G XTI (as
usual, =M and =M’ are identified under f,), and the inclusion N’ C M’
induces the inclusion G C G XoT. By ‘splitting f along N’ we mean that
there is a codimension 1 submanifold N C M and a homotopy equivalence of
pairs g: (M,N) — (M’,N’) such that g | M is homotopic to f. The result®
is rather neat and the work was done during 1967. We announced both the
algsbraic formula on Wh G X« T and the geometric ‘splitting theorem’ in
[14]. The details of the algebraic formula and some of its quick applications
appeared in [12]. Due to our laziness, the details of the splitting theorem’
itself were never formally published except that there were several copies of a
rough version circulated among the friends. In this paper, we shall deliver
this promise of [14]. The precise statement of this theorem will be given
in §2.

After the announcement of [14], several applications of the ‘cplitting
theorem > were obtained by other authors and ourselves. For example, Shane-
son and Wall [31][86] proved a formula for the Wall group L. (G X T)
in terms of L,(G) and L,"(@), and we verified the homotopy invariance of
the higher indices of Novikov [25][15]. One can actually prove a formula
for Ln.(G XaT) using the full strength of the ‘splitting theorem ™ and
following the argument of Shaneson [31], Wall [36]. In particular, one
should be able to obtain a classification theorem for manifolds of the homotopy
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type of a solvamanifold as a generalization of homotopy tori [16][17][86].
We shall not explore this possibility in this paper, but we shall give a proof
of the homotopy invariance of the higher order indices. As we said at the
beginning of the introduction that our motivation of this paper came from
the intention to relate the algebraic structure of Wh (¢ X« T with our theorem
on non-homeomorphic k-cobodant manifolds, we shall give the geometric
interpretation of the decomposition of Wh G X« T and recast the result on
these non-homeomorphic k-cobordant manifolds. Even though this result is
obsolete due to the recent developments [19][20], it seems to us that the
geometric intepretation of the different pieces of Wh GXo T is still' of con-
siderable interest. We originally also had some results on ‘projective class
group,” but we shall leave them out because the recent understanding of
topology made them out of date.

Finally, let us remark that the ¢splitting theorem’ is only valid for
manifolds of the dimension = 6. A weaker version of the theorem for 5-man-
folds by the second-named author is given at the end as an apendix (cf. [37]).

2. Statement of the ¢splitting theorem.” Let M’ be finite Poincaré
complex * of formal dimension m. Suppose that = M’ = G X« T, a semi-direct
product of a finitely presented group G and the infinitely cyclic group T' with
a preferred generator ¢ such that the conjugation of G defined by tgt™ is
the automorphism «. Suppose that N’ is a codimension 1 finite Poincaré
subcomplex® of M’ such that N’ has a neighborhood homeomorphic to
N'X (—e¢€) for e >0 in M’ and the inclusion NV C M’ induces the =, inclu-
sion G C G XaT. Now, let M be a closed differentiable ¢ manifold of dimen-
sion m. Suppose that f: M— M’ is a homotopy equivalence. As always,
we identify =M with =, M’ under f,. We say that f is splittable along N’ if
there is a codimension 1 submanifold N of M and a homotopy equivalence
of pairs

(1) g: (M,N) — (M, N")

such that g | 3 is homotopic to f. Occasionally, we say that (g,N) is a
splitting of (f,N’). In order to state our ‘splitting theorem,” we recall the
structure theaorem of Wh G Xa T [12]. Let C(Z(G), ), C(Z(G),a™") denote
the Grothendieck groups of finitely generated free ZG' modules with a-linear,
respectively «'-linear nilpotent endomorphisms [11], [12]. Note that «
induces automorphisms on Wh G and K,G and let us denote these automor-

+See [36], see the definition of finite Poincaré complex.
5 Cf. [18].
¢ Bverything works in PL or Top category.
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phisms by « again. Let I(a) denote the subgroup of Wh G generated by
{#—a(x)| 2€ Wh G} and let (K,G)* be the subgroup of K,G consisting
of the elements invariant under . Then, we have

(2) WhGXeT=X®C(Z(R),0) ®C(Z(G),a?)
where X fits into the following short exact sequence:
(3) 0— Wh G/I(a) = X — (K,G)*—0.

In fact, if we put O(Z(G),a) =C(Z(G),a) ® K,G, then it follows from
the ‘five term exact sequence’ for the a-twist localization [12][3] that there
is a projection map

(4) p: WhG@XaT—C(Z(G),a),

and the projection X — (K,G)® of (8) is induced from p. The inclusion
Wh G/I(a) — X is induced from the inclusion G C G X« T as one expects.
Suppose that w: 7=G XoT— {1} is a homomorphism. It induces an
involution Z(G)— Z (@) which is also denoted by w defined by

w( %n(g)y) =§w(g)n(9)g‘1.

w induces a conjugation ‘—’ on Wh @ X« 7. TUnder theconjugation ‘—;
the short exact sequence (8) is invariant and the factors C(Z(G@),«) and
O((G),at) of (2) are interchanged.

We are now ready to state the ¢splitting theorem.’

THEOREM R.1. Let (M’,N’) be a pair of finite Poincaré complexes and
let f: M— M’ be a homotopy equivalence from a manifold M to M’ as given
above. Suppose that dim M =dim M'=m=6. Let v(f) € WhG@ XaT be
the torsion of f and let 0(f) = pr(f) € C(Z(G, a) be the image of +(f) under
the projection p of (4). Then the obstruction to splitting f along N’ is 0(f).

Let us briefly indicate the program for the proof of Theorem 2.1. We
first make f transversely regular with respect to N’ such that the restriction
map f|N: N=f*(N')—> N’ induces an isomorphism on m,. Then, we
embark a program for improving the connectivity of f | N. For this purpose,
we consider the oo-cycle covering spaces Yu, Y corresponding to the
normal subgroup G==m (N) C G Xa«T and the induced map Yy— Y.
Suitably lifting N, N’ into Y u,Yu respectively, we have a map of triads

(Yu; Aw, By) = (Y5 A, By)

where Ay, By and Ay, By, are gotten from Yy, Yy by dividing through
N, N’ respectively. Suppose that the homology kernels K;(Ax,N;ZG) =0,

8
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KBy, N;ZG)—0tfori < k= m_-2—1 Then, K(Ay, N;ZG), Ki(By, N ; ZG)

are finitely generated ZG' modules and we may represent the gemerators by
m—1
2 2
embeddings and we may suitably exchange them to the other side to eliminate
the kernels. The connectivity will be improved by 1. However, when we
come to the middle dimension, we meet difficulties. It turns out that the
obstructions to eliminating these difficulties are precisely described as stated
in the theorem.
The proof of Theorem 2.1 occupies §3 to §5.
Now, suppose that g, N exist, i.e., f is splittable with respect to N’ and
(g, N) is a splitting. Cut M along N and M’ along N’ and we form My and
’y respectively. It is easy to check that My is a smooth manifold with
boundary after we smooth out the corners and there is a quotient map

(5) q: My— M.

immersed handles on N. If k<

we may represent these handles by

In fact, ¢*(N) is a disjoint union of two smooth manifolds with boundary,
N, and N_ such that

(A) ¢.=¢q|N.: N.> N are diffeomorphisms,
(6) (B) My is a cobordism between N, and N_,
(C) q| (My—(N,UN.)) is a diffeomorphism of (My— (N, U N_))
to (M —N).
Similarly, we can show that M’y is a finite Poincaré complex with boundary
and there is a quotient map

") q: My —> M
such that ¢, (N’) is a disjoint union of two finite Poincaré complexes with
boundary, N’, and N’_ satisfying the conditions:

o (A) (¢)..= q|N'.: N'.— N are homeomorphisms,
(8) (B) q|(My— (N'.UN’.)) is a homeomorphism of

(M'y— (N, UN')) to (M'—N).

Let pu: Yu— M, py-: Yyr— M’ be the covering projections where Y, Yy
are the oo-cyclic covering spaces of M and M’ respectively corresponding to
the normal subgroup G C G Xo 1. We can lift My and M’y to Yy and Yy
respectively and find a covering map fy: Y u— Yy purfy = fpu and fy sends
My onto M’y.. (Note that the lifting is not unique!)
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Figure 1
N_ N, N'_ N,
My My
X ’
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My My

Let h: My—> My, h': N_— N’_ be the induced maps. It is easy to see that
h, W' are homotopy equivalence, and hence the torsions (%), v(#") are well-
defined. If we identify =My and =, N_ with G, =(h) and +(#") lie in WhG.
Let us consider =74, (r(h) —7(#")) in Wh G X T where j, is induced by
the inclusion j: G— G X T.

THEOREM R.2. (A) If the splitting exists and T is defined as above,
then +=r=(f). In particular, v+ depends only on f, and we shall call it the
torsion of the splitting.

(B) If we consider v(f) as the coset of Wh G with respect to I(ay),
then for every element x of Wh G in the coset, we can find a splitting (N, g)
and maps h: My—> My, W' N_— N’_ induced by suitable liftings such thal
z=r1(h) —7(h).

Proof. (A) Let Z, Z’ be the mapping cylinders of & and h’ respectively.
Denote the acyclic complex of the pair (Z, My U Z”) with coefficients in Z(G')
by €. Let W be the mapping cylinder of fy. We see that C® ,(¢yZ(G X T)
is the chain complex of the pair (W, Yy) with coefficients in Z(G). In fact,
we can identify the action of 7" on € Q) Z(G XoT) (from the right) with
the action on the chain complex induced by the covering transformation, when
we consider W as the oo-cyclic covering space of the mapping cylinder V of
f. Therefore, we may identify € ® ,¢)Z (G X T') with the chain complex of
(V, M) with the coefficients in Z(& X« T). Since the torsion 7,.(r(h) —r(#'))
is exactly equal to the torsion of the complex €C® ¢ Z(G XaT) in
Wh G X T, we see that it is equal to =(f).
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(B) Recall that I is the subgroup of Wh G consisting of the elements
of the type u—a,u for u€ Wh . Let (N, g¢,) be a fixed splitting and
hy: Myr— My, B (N,)-—> N’_ be fixed maps constructed as above. Denote
7(hy) —7 (1) by 7€ WhG. For u€ Wh @, we choose a small %-cobordism
U on N, inside a tubular neighborhood of N, in M with (U, N,) =u.

Ficure 2
M

There is a deformation retract r: U— N,. When we choose the right side of
the tubular neighborhood of N, to put the h-cobordism, we have an embedding
U C My,. When we identify My, with its lifting to Yy, the covering trans-
formation ¢ corresponding to the preferred generator of T' induces a diffeo-
morphism of #(N;). with (N,),. Let us consider the submanifold
V=MyVU ;apt(U) of Yy. Set W= My,—U. It is clear that V—U
=WU ;wtW is a lifting of My where My is the manifold gotten from M
by cutting along N as we defined before. The deformation retract 7: U — N;
induces a homotopy equivalence I, : W— My, relative to (N,),=1¢(N,)- and
a deformation retract r: tU—t(N,)-= N, Piecing them together, we
have a homotopy equivalence I: My— My, such that ¢ =10¢q where
q: My—>M, q.: My,—~ M are the quotient map as defined before and
V:M— M is the induced homotopy equivalence. Set g=g,/’. We see that
(N, g) is again a splitting of f. Let h, 2’ be the maps of My and N_ corres-
ponding to the lifting of the above. Let us compute (%) —=(h’). It follows
from Lemma 7.8 of [22] that +(%) ==(hy) +r(!). Since I is gotten from
I, and 7, by piecing them together, we have +(I) =+(l,) +r(r). Note
that r(l,) =—=(U,N,) = (—1)™i. Using the automorphism on =, (Ny).
under the covering transformation, we have r(r,) = a,u. Putting these we
have

(9) 7(h) =7(hy) + agu + (—1)™q.
We also have
(10) (W) =7(rs(N2) + ()

=u -+ (—1)™@ 4 (k).
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By (9) and (10), we have

(11) r(h) —+(W) = au—u -+ 7(h) — (W)
and the theorem is proved.

3. Exchanging handles below the middle dimension. Starting from
this section, we proceed to prove Theorem 2.1. Let us first make f: M — M’
transversely regular with respect to N’. (Following [6], we make (M’,N’)
a manifold pair with N’ as a codimensional 1 submanifold of M’ and we may
speak of transversality.) We shall call this new map and all the later maps
gotten by modifications and homotopies by g. Following an argument of
(29, p. 15], we can make N =g*(N’) connected by modifying N. By
exchanging a finite number of 2-handles, we can make g in such a way that
the inclusion N C M induces a monomorphism and =N may be identified
as the subgroup G of mM = (f X« T. This is explicitly done in Chapter II
of [29] and Chapter IIT of [11]. Then gy=g|N: N— N’ induces an
isomorphism on ;.

We now embark on a program for improving the connectivity of gy.
In the present section, we shall show that we can always make g satisfy the
condition

(12) mi(g) =0 for 1 <m/2.

Let pu: Yu—> M, pu: Yir—> M’ be the covering projection of §R2.
Consider the following commutative diagram

Jy
Yy———> Y

(13) llm 11’114'
g

MM

where gy covers g (not unique, of course!). Since mN =N = G, we may
life N, N’ into Y3 and Y respectively such that gy sends the lifted N onto
the lifted N’. N divides Yy into Ay and By, and similarly N’ divides Yy
into Ay and By such that ¢{(Ay) C Ay, t(4dy) C Ay, t*(By) C By and
t'l(BN') C BNf. Let dy | AN=9A and gy l BN=gB. We have ga: AN-—éAN'
and gp: By— By. By an abuse of notations, we shall also denote the map of
the triad (Yar; Aw, By) = (Yu ;5 Aw, By) by gy, the induced maps (4x, V)
— (A5, N’) by g4 and (By,N)— (By,N’) by ¢s.
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Figure 3
—t
By Ay By Ay
N gy > N
y2'4 pumr
g
M m

Let us consider the homology (cohomology with compact support) with the
coefficients in R —Z (@) of various spaces. By [6][7][9][R3], these maps
induce split epimorphisms on homology groups® and split monomorphisms
on cohomology grb{lps with compact support [35][36]. We use K; and K*
to denote the kernel and cokernel of the i-th cohomology respectively.

Lemuma 3.1. (A) Ki{(N)=K;(Ady) ® K:(By),
(B) Kii(Ay) =K;(By,N),
(C) Kia(By) =Ki(Ay,N).

Similarly, we have the corresponding statement for cohomology kernels.
(Note that the coefficient group is R—=Z(G) which is always suppressed.
In fact, it is valid for any R-module B.)

Proof. Let us prove the homology part of (A) and (B). The other
parts follow similarly.
(A) We have the following maps of exact sequences:

0

|
— K (Yu) > Ki(N) > Ki(4dy) ® Ki(By) —

(14) l ) J
—)HQH(YM) —>H/L(N) —>H¢(AN) @H,L(BN) —>
= ) {

—>H~i+1(YM') e H@(N,) —> H@(AN') (&) H{(BN') b d

TIf w, (M) =0, we should consider the twisted homology of [36], but we shall
suppress the notation.
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such that each column is ‘naturally ’ split exact [6][238]. K;(¥Yx) =0 for all

(B) Let us consider the following maps of exact sequences:

~ Ki(Y) = Ki(Yu, Ay) =Ki(By,N) — Ki(Ay) =

\: \ \:
(15) —9H¢(YM) —)H@(YM,AN) %H@(BN,N) —>H@—1(AN) g
\ \ \:

%H.L(YMI) %Hi(YM', AN') EHi(BNr7 ZV’) —)H.,',_l (AN') d

The assertion follows from a similar argument as that of (A).

Lemma 3.2. If gy is k-connected, then Ki(N), Ky(Ax), Ki(By),
K1 (Ay, N) and Ky (By,N) are all fimitely generated R-modules.

Proof. By Lemma 3.1, it suffices to show that K3(NV) is finitely generated.
Let H;(gx) be the homology of the mapping cone of gy (with the coefficients
in R, of course!). We have the following exact sequence of R-modules.

(16) = Hia(gv) > Hi(N) = Hi(N) —.

(We suppress the coefficient group as always!) Since gy: N — N’ is of degree
1, Hiyi(gy) = Ki(N). Because m(gy) =H;(gx) =0 for i=Fk, it follows
from [857 that Hy.:(gwy) is finitely generated.

Let us now consider the inclusion 4: (Y, By) = Y, {By). We have
the e*-linear endomorphism ¢,*: H;(Awx,N)— H;(Ay,N) defined by the
following commutative diagram:

i* t:l:_l
Hi(YM, BN) -—ﬁH@'(YM, tBN) ———)Ht(YM, BN)
aw) = l excision == | excision
« t*'l 2
H@'(A4M, N) H/l(ANj N)-

Similarly, we have o-linear endomorphism ¢,: H;(By,N)— H;(By,N).
These endomorphisms induce endomorphisms on K;(4y, N) and K;(By, N).
Levmma 3.3. The oat-linear endomorphisms (resp. a-linear endomor-
phism) .t (resp. ty) of K (Aw, N) (resp. Kpui (By, N)) s nilpotent, of g
1s k-connected.
Proof. Let us prove the assertion for ¢, and leave the case for t, to

the reader. By Lemma 8.2, K., (4w, N) is finitely generated. Let aq,- - -, s
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be a set of generators. It suffices to show that there is a large integer 7 > 0
such that (¢4,7)!a;==0 for =1, - -,s. Let us prove it for a,. Let ¢, be
a cycle representing a;. We can find an integer 7 > 0 such that the support

of ¢, lies in Ay—t'Ay. Therefore a, is in the kernel of
(18) (247) s Hyaa (Aw, N) = Hya (Yur, By) = Hyoy (Y £'By)

()}
———> Hyy (Yu, By) = Hyi (4w, N).
Hence Ky..(Ay,N) is nilpotent under ¢,
Suppose that (£,)'=0 on K.(4yx,N). We have the following
filtration :

Kia(Aw, N) D t, Kia(Ay, N) D - - - D (£, K 4 (Ax, N) D 0

(19) = (t47) 'Kya (4x, N).

Let H denote the Hurewicz homomorphism and let 7 be the following
composite map:
—_— H —_—
(0) It mp(Ay—tAN, N) ——> Hpy (Ay—1tAy, N) = Hya (Ay, N)

where the unlabelled map is induced by inclusion.
Let us consider the mapping cone (V, W) of map

(A.N—'tAN,N) - (AN'—tAN',N’).

We have a triad (V;Ay—1tAy, W).

Figure 4
N/ Ay —1Ay
I
I
w l v
L-—— —_—— -1
/s
7 Ap—tdy

Nl

Lemma 3.4. Suppose that gy is k-connected for k> 1, and (£,*)'=0
on Ky (Ay,N)=0. Then, the image of the following composite homo-
morphism
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0 l
(21) Wk+2(V;AN—tAN, W) —_—> Ths1 (AN—-tAN,N) ——-—)Hk+1(AN, N)

contains (£, )" (K (4w, N)).

Proof. Let us consider the following commutative diagram

£,

Kyn(Ay—tAy, N)—> Kyu(4w, N)

i J« t*-l oi*

(22) —>Hpa(Ay— Ay, N)—> Hp(Ay, N) = Hy,s(Y 'y, By) ——————>

v ! bt oty
Hy(Ay—tAx, N') = Hyi(Aw, N') = Hyos(Yarr, Byr) —
Ky (Ay, N)

\:

Hk.'.l(A.iv,N) %’Hk.,.l(YM,BN) "‘)Hk(A.N—J/tA.N,N) -
Hini( Ay, N) 2= Hyoo(Varr, By) = Hi(Aw — tdy, N')—

Tt is an easy  diagram chasing of (22) that the image of Ky.,(Ay—tdy, N)
in HkﬂZZN——-tA—N,N ) sontains Ker#,t. Since (#,) (¢y?)¥ =0, it con-
tains (¢47*) %1 K51 (Ay, N). Denote the map (Ady —tAy, N)— (Ay —t4Ay, N’)
induced from g by g,. Since K;(Ay,N)=0 for ¢t =% H(g,) = K;4(4x,N)
=0 for j=k-+1 and g, is (k- 1)-connected. By [35], the triad
(V;Ay—tAy, W) is (k- 1)-connected, and the homomorphism

(R3) T (Ay— 14w, N) = mpor (Ay—tAy U W, W)

is an epimorphism. The following commutative diagram

- 0
7Tk+2(V;AN— tAN, W) —_—> W1 (AN—— tAN, N)

H H
(24) Hy.2(91) ————6————> Hy.(Ay—t4y, N)
(91)
Hy(Ay — Ay, N')

shows that the image of the maps in (21) contains Ker(g;),. This completes
the proof of the lemma.
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The following lemma is the main result of this action, and it is the
first step toward the proof of Theorem 2. 1.

LemMma 3.5. Under the hypothesis of Theorem 2.1, there is a map
g: M— M such that g is homotopic to f and there is a codimension 1 sub-
manifold N C M with gy =g | N: N — N’ which is k-connected for k < m/2.

Proof. Assume that we have done the preliminary steps of the beginning
of ‘the section and keep all the notations of the above. Recall that we may
assume that gy induces an a-isomorphism. ILet us assume that we have
proved our assertions for 1=1—1<m/2. If i=m/2. 1If i=m/2, the
lemma is proved. So, we have to show the assertion for +<m/2. By
Lemma 3.1, it suffices to modify ¢ such that K;(4dx, N) =0 and K;(By,N)
=0 for the new map. By Lemma 3.2 and Lemma 3.3, K;(4x,N) is a
finitely generated R-module with an o-*-linear nilpotent endomorphism #,-*, and
hence we have the filtration (19) with i=F% + 1. Clearly, ({,*)K;(4y,N)

is again finitely generated and let a,,- - -,a, be a set of generators. By
Lemma 3. 4, there are ¢y, + +, ¢s in myy (V; Ay — Ay, W) whose images under
the composite homomorphism (21) are a,,- - -,as. Set ¢y ="by,- - -, 0cs

=bs€ m(Ady—tAy,N). Since i < m/2, we can represent them by disjoint
embeddings

(®5) b;: (D, S"“l) - (4y, N)

j=1,- - -,s. These embeddings project down to embeddings of (D?, S¢*)
into (M,N). Following [11, Chapter III], we exhange the handles on N
with the above D%s as the central discs from Ay to By. Using Lemma 3.4,
we have a new map M — M’ homotopic to g which is again denoted by g such
g(") C N’ where W is the elementary cobordism on N with D/ (j=1,- - -,s)
as the central discs of the added handles. The other boundary of W is denoted
by N, for the moment.

F1GURE 5

Let Ay, By, denote the sets corresponding to Ay, By for N;. We have
epimorphisms
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Ki(AN, N) ——~—-—>K1(AN1, Nl) -0

excision 1 == excision l =

K.i(YM, BN) -——-—)K@(YM, BNl) — 0

induced by inclusions, and these epimorphisms respect the a* endomorphism
ty*. It follows from the construction that the kernel of the epimorphism
K;(Ay,N)— K;(Ay,) cntains (¢,7*) " K;(Ax, V). Hence (¢, K (A, N1)
=0. We may replace N by N, and repeat the argument. After a finite
number of steps, K;(4Ay, N) may be eliminated altogether. During the elimi-
nation procedure of K,;(Ax,N), K;(By,N) is not affected provided that
1< m/2 We can perform a similar procedue to elimnate K;(By, N). This
completes the induction step and f is homotopic to a map g as described in the
lemma.

4. The homological description of 0(f). In this section, we shall give
a homological description of the obstruction 0(f) of Theorem 2.1, and we shall
show that if f is splittable, then 0(f) must vanish.

Lemma 4.1. Under the hypothesis of Theorem 2.1, if m =2k =6 then
f s homotopic to a map g: M — M’ such that there isa codim 1 submantfold
N CM with gy=g | N: N— N’ satisfying the following conditions :

(A) Ki(Ax,N)=0for i=k and K;(By,N) =0 for i < k.
(B) Ku(By,N) is finitely generated projective R-modules.

Proof. K;(Ay,N) =K;(By,N) =0 for i <k is in Lemma 3.5. Let
us proceed to carry out the argument of Lemma 3.5 to eliminate Ky (Ay, V).
The only place where it may stop us is to represent b,,- - -,bs by disjoint
embeddings, because there is one dimension off for applying Whitney’s em-
bedding range. However, we may represent them by immersions with isolated
intersection points in the interior of D! Since mN —>mAy—1tAy is an
isomorphism, we may pipe out the intersection points [36, § 4], and represent
thsm by embeddings. By the argument of Lemma 3.5, we have (A). Since
Ki(A4n,N) =0 for j=k gy: (45, N)= (Ay,N’) is (k4 1)-connected.
Hence K;(Ax,N;B) =0 for j=% and any B-module 8. TUsing Poincaré
duality, K’/(Ay,B)=0 for j=4%k. By the argument-of Lemma 3.1,
K+ (By, N ; 8) =0 for any R-module 8 and j=%. By [34], K, (Bx,N) is
a finitely generated projective E-module. This completes the proof of the
lemma.
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LeMma 4.2. Under the hypothesis of Theorem 2.1, if m =Rk +1=7,
then f is homotopic to @ map g: M — M’ such that there is a codim 1 sub-
manifold N C M with gy =g | N: N — N’ satisfying the following conditions:

(A) Ki(dw, N) —Ki(Bx,N) =0 for i=h,

(B) Kpa(4dw,N) and Ky (By, N) are finitely generated projective
R-modules.

Proof. (A) follows from Lemma 3.5. By Lemma 3.2, K. (By, N) is a
finitely generated R-module. Since

Ki(Ay,N;B) ® K/ (By,N; B)=KI*(N;B)

for any R-module B by a similar argument of Lemma 3.1 and K/-*(N;B) =0
for j—1 >k by Poincaré duality, K/(Ay,N;B) =K/(By,N;B) =0 for
7>k-+1. By [33], Kiui(Ay, N) and Ky, (By, N) are projective B-modules.

For (N,g) satisfying the conclusion of Lemma 4.1 or Lemma 4.2, we
call it an almost splitting. Recall that ¢, is a a-linear nilpotent endomor-
phism of K (By,N) for m =2k or Ky,..(By,N) for m=2k 4 1 for N an
almost splitting.

Let us define

(26) 0(f) = (—1)¥[Ky(By, V), 8] for m—2k=6,
= (—1)*[Ka(By,N), t,] for m=Rk +1="7
€C(R,a).
LemMMmA 4.3. 0(f) s independent of the choice of the almost splitting.

In fact, O(f) s equal to pr(f) where =(f) is the torsion of f and p is the
projection mapof (4). Moreover, if f is splittable, then 0(f) = 0.

Proof. Let U, V and W be the mapping sylinder of gy,gs and gy
respectively. It follows from the definition and Poincaré duality that
(A) Hy(U,Yu;R)=0 for all 1,
(B) Hy(V,ByUW;R)=0 for is£k+1, m=2RFk or i55k+2R,
m =2k + 1.
(C)  (Hea(V,ByU W;R),t,) = (K(By),1y) for m=2k,
(Hp2(V,ByU W3 R),t,) = (Kp(By, N),t,) for m=2k 41
as objects in @ (R,a) of[12]. It follows from the argument of [14][11,
Chapter III] that
pr(f) = (—1)¥ [Hypua (V, By U W; R), 1] for m =2k,

27
(27) — (—1)®2[Hyo(V, ByU W3 R), t,] for m—2k+1,
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where 7(f) denotes the torsion of f and p is the projectioi of (4). Therefore,
the lemma follows readily.

5. Realizing the object in 0(f) by an almost splitting and the proof
of Theorem 2.1. In this section, we shall show that every object® in 0(f)
is realizable by an almost splitting. In particular, we have a proof of
Theorem 2. 1.

LemMma 5.1, Suppose that m =2k =6 and (N, g¢,) s an almost
splitting. If

(28) 0= (Py, 1) = (P,v) > (F1, 1) >0

is @ short exact sequence in B (R, a) such that (Kx(By,N),t,) = (P,v) and
(Fy, 11) s a triangular object,® then there is another almost splitting (N, g)
such that (K (By,N),t,) = (P,v).

Proof. By an easy induction argument, it suffices to prove the assertion
for (Fy,f1) == (R,0). Let a€ P which projects onto a generator of E. Set
z=v(a) € (Py,v,) = (Ky(By,N),t,). Let n be a large integer such that
there is y € K;,(By,— t™"By,, N;) (where Ky(By,— "By, N,) denotes the
kernel of Hy(By, — t™"By,, N1)—> Hy(By — t By, N')) with the image of y
in Ky (By, N;) equal to . Consider z= ¢,y € Ky(t*By,— t"*By,, t*N,).
It is clear that the image of z under the homomorphism

(29) K (t*By,—t"**By,, t*N,) = K (t*By,, t*N,)
is just f,*z. Let us consider the exact sequence

0
— Ky (t*By,, t*N,) = Ky (By,, By, —t*By,) ——>

30) Lo TV
( Kk—l(BNl—t_lBNl,N1)9Kk—1(BN1,N1>=0'9' .o

Let u=40(¢,*z). Using the argument of Lemma 3.5, we may assume that
% is in the image of the following composite map

0
(31) 7rk+1(V;BN1—t_nBN1, W) -——-97Tk(BN]——-t_”BN1, W)

H
——> Hy(By,— t "By, W)

where V, W are the mapping cylinder of the mappings

8 See [12] for the definition of an object in g (R, a).
® For the definition of a triangular object, see [12].
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‘BN1 —_— t—nBN:l b d BN' — t_nBN’7 1\71 — N’
respectively, and H denotes the Hurewicz homomorphism. Hence, we have
an embedding by Whitney’s embedding theorem
(32) w: (D*1,0D*1) — (By,— t*By,, N1)

representing the class w. Thickening this embedded disc, we have a co-
bordism (U ;N,,N). We may exchange this cobordism to Ay, (i.e., exchange
the handle w(D**) to 4y,), and we have a new almost splitting (I, ¢g) such
that g(U) C N’. Let us consider the following exact sequence

(33) — Hy(W,N,) =0— K;(By,N;) = K;(By, U)

= | excision
Kk(BN) N)
— Hy1 (U, N1) > Ky(By,, N1) = 0.

We see from (83) that Ky (By, N) = K;(By, N) @ R, and it follows from the
construction of U that ¢,z is a generator of the second summand. In fact,
(33) may be identified with

(34) 0— (Py,v,) = (P,v) > (£,0) >0

with the image of ¢,z generating R. TIlere we use the fact that
by (b 'w) =2 € Ky (By, N,). Since t,(ts'¢) ==, (34) is isomorphic to the
exact sequence of the objects in 4 (R, «) as stated in the lemma. The proof
of the lemma is thereby completed.

Lemma 5.2, Suppose that m =2k +1=" and (N, g,) is an almost
splitting. If

(35) 0—(Py,v,) = (P,v) = (Fy,f1) =0

is a short exact sequence in B (R,a) such that (K (By,N),ty) == (Py,vy)
and (Fy, 1) s @ triangular object, then there is another almost splitting
(N, g) such that (K (Bwy,N),t,.) = (P,v).

The proof of this lemma is exactly the same as Lemma 5.1 except some
number change. We leave it tc the reader.

Lemma 5.3, Suppose that m =2k =06 and (N g.) is an almost
splitting.  If

(36) 0> (Fy,f1) = (Pi,v1) > (P,v) >
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is @ short exact sequence in B (R, a) such that (Ky(Bwy,N.),?t,) == (Py,v.)
and (Fy,f.) is a triangular object, then there is another almost splitting
(N, g) such that (Ky(By,N),t,) = (P,v).

Proof. Again, it suffices to prove the assertion for (#,f,) = (R,0). Let
a be a generator of F, = RE. Suppose that ¢,'=0 and £,"*5£0. It is easy
to see that a € ¢,* (K, (By, N1)). By the argument of Lemma 3.5, a is in
the image of the following composite maps.

0 H
(37) 7rk+1(V; BNI —_— t'lBN], W) e Wk(BNl —_— i_lBNl, Nl) — Hk<BN1, Nl)

where V, W are the mapping cylinders of the mappings By,—¢*By,
— By— 1By, N;—> N’ respectively, and H denotes the Horewicz homomor-
phism. Let ¢ € mpye (V3 By,—¢*B;, W) such that the image of b==0dc in
Hy(By, Ny) represents a. Using the piping out argument [36, § 4], we have
an embedding

(38) b: (D*,0D*) — (By,— t*By,, Ny)

representing b. Thickening this embedding, we have a cobordism (U ;N,,N).
We may exchange W to Ay, to define a new splitting (&, ¢) as we did in
Lemma 5.1. Consider the following exact sequence

(39) 0—> Hy(U,N,) = Ky(By, N.) > Ex(By, U) =0
excision | ==
K (By,N).
It is easy to see that (39) respects the action of ¢, and it is isomorphic to
0= (Fy, f1) = (Py,v1) > (P,v) >0

as exact sequences of @(R,a). In particular, (K3 (By,N:),t,.) = (P,v),
and this completes the proof of the lemma.

LemMA 5.4, Suppose that m =2k +-1=" and (N, g.) s an almost
splitting.  If

(40) 0— (Fy,f1) = (Py,v1) > (P,v) >0

1s @ short exzact sequence in B (R, a) such that (Kp.(By, Ni),ty) == (P, v4),
then there is another almost splitting (N, g) such that (K. (By,N),t,)
= (P,v).
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Proof. Again, we may assume that (F,,f;) = (R,0) without loss of
generality. By the same argument of Lemma 5.3, there is a generator a of
Fiand an element ¢ of w2 (V ; By,—t'By,, W) (where V, W are the mapping
cylinder of the mappings By,—.By,— By-—t'By,, N,—> N’ respectively)
such that a is the image of ¢ under the following composite of maps:

i)
(41) 7rk+2(V;BN1— t'lBNv W) ﬂwk-}.l(BNl_ t_lBNl, Nl)

H

—_— Hk+1(BN1_ tllBNl, Nl).
We have an immersion
(42) b: (D¥, §D**) — (By,—t*By,, N,)

representing b= 0c € y,4 (By,—t*By,, N;). We are now completely off the
range for Whitney embedding theorem, and we do not have enough connec-
tivity to pipe out the sigularity. What we are going to do is to follow a trick
of [36, §4]. Let us assume that

(43) B: oD X I,— N, X I,

F1cugre 6
t_lN 1 N 1
1', ( Dk+1 )

—CX

N. XL
My,
b ( Dk
w P .
(N1)+ X I

is a level-preserving embedding where Iy = [—1,0] and oD** X I,, N, X I,
are the collars of dD*1, N, in D** and By,— By, respectively. This is
because w Ny —> w, By, — t*By, is a isomorphism and we can apply Whitney’s




MANTFOLDS. 831

trick to the singularities on the boundary 8D** of the immersion (42). Let
My, be the manifold gotten from N, by cutting M along N, as we did before.
By,—{"'By, is diffeomorphic to My,— (N;)_ under the obvious projection.
and we have the immersion b of D** into My, — (N,)_ by the identification.
Let (N1). X I,=(N.), X [—1,0] be the corresponding collar of (N,)..
Then b: 0D¥* X I, — (N.), X I, is a level-preserving embedding.

Let I,=[0,1] and let us attach a (k4 1)-handle to the normal disc
bundle of

(44) bXid: D" X [—4,—14] > (V). X [—4,—1] X1

We have a cobordism W on My,.

Fiaure 7

(M), X1,

—s the added
= (% + 1)-handle
(N3)- X T

B(Dkn) >< 1

Since’ the added (% 4 1)-handle dees not {ouch (N,).X I, and (N?). X I,
we may identify (N,), X I, with (N'). X I, in the obvious way to form a
cobordism U on M X I, with a (k-4 1)-handle added.

In fact, the cobordism (U;M,M,) containg N, X I, such that when cut
along N X I, we get W back. We can define a retract

(45) rfi: U—>M X1,

as follows. We first retract the added handle to its central disc D** and
then we map the central disc into M X 1 by & X id . This composite map
is r;. In fact, ; induces a degree 1 map of triads.

(46) ri(U; M, M;) > (MXI,; M X 0,MX1).

Let us consider the following exact sequence of kernels of = and r;:

(A7) 0= Ky (My) = Ky (U) = Ka (U, M) = Ko (M) —> 0.
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F1cure 8

M X0
67/7 .

~ 1 T |

<
—CZ \ the added

M X1 | (% 4 1)-handle

O — o . —— e ——— —

//—\J
__// /

-

It follows from the construction that

)

(48) 0'—>Kk+1(M1)_———>Kk+1(U)'—)OJ
and hence we also have
(49) 0= K. (U, My) > Ky (M,) = 0.

In fact, they are all isomorphic to R. Let us look at K (M,) a little closer
and pick up a generator for it. Recall that U is gotten from M X I, by
attaching a (k 4-1)-handle to Ny X [—$%,— 1] X 1 where N X [—1,0] X 1
is the collar of N, X 1 gotten from (N,),X [—1,0] X 1. Therefore, we
have a cobordism V inside of M, such that V is gotten from N, X [—4,0] X 1

Figure 9

N é\

N X (—1) X1 N.X0X1

b(D*1) X normal disc in Ny X (—1) X 1
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by adding a (k -+ 1)-handle which was induced from the attached (k- 1)-
handle of U.

In fact, the (k¥ + 1)-handle of V is contained in the (k + 1)-handle of U and
the latter is a 1-dim thickening of the former. Write the elementary
cobordism V as (V;N,,N) with N, =N, X (—1) X1, and consider V as
gotten from N by adding a k-handle. It is not difficult to see that the attaching
map of this k-handle is actually trivial in N. Therefore, the central disc of
this %k-handle together with the homotopy of the (k—1)-sphere of the
attaching map in N gives us an element ¢ € = (V).

Fiaure 10
Central disc of the k-handle

N, X (—1) X1 N N, XO0X1

ikl

><zf--A
|

homotopy of the (k— 1)-sphere
of the attached map

We see that
(50) c: S*>V—->M,

represents a generator of Ky(M,). In fact, we may assume that Im(c) C Int(V)
without loss of generality. Let 1s analyze the element ¢ € m;(M;) with a little
more care. ¢ induces a map

(51) i SE>TV->W.
¢ extends to a map
(52) d: Dt — W

such that the Hurewicz homomorphism sends the elements in ., (W, M,)
represented by the pair of mappings (d,é) to a generator of

Kk+1(W 5 MNv (Ml) Nl)
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which denotes the kernel of the retraction
ro: (W5 My, My)w,) = (My, X I3 My, X 0, My, X 1)

where 7, is induced from the retraction r of (46) by cutting along N, X I,.
Using the trick of piping out of singularity of [36, § 4], we may assume that
d is an embedding and &(S*) C V. Applying handle subtraction to the
embedded disc d(D*') [36, §4] and gluing the resultant along N, X I,
again, we have a cobordism (U,;M,M,) and a map

(53) ra: (U; My, M) — (M X I, ;M X0,MX1)

induced from r, and the handle subtraction. It is easy to check that r; is a
homotopy equivalence and r3(N; X I;) C Ny X I,. Therefore U, is an h-
cobordism on M. Since we have never touched N X I, during the construction
of U,, we see that the torsion =(U,, M) € Wh . Let us now consider the
following composite of maps:

1 T3 D1 g1

(54) M, U, MXxI, M M

where ¢ is the inclusion and p, is the projection map. Now, the generator a
of F bounds an embedded (k1) dimdisc in By, — - By, satisfying all the
requirements. Following the argument of Lemma 5.3, the generator ¢ of ¥
may be eliminated by the almost splitting (N, g) of M,. Now, observe that

(55) +(Us, M) = f7(Uy, M) € Wh G-

U may be gotten from M X L by attaching 2-handles and 3-handles without
touching N X I C M X I. Therefore, there is an almost splitting (&,g) in
M such that (Kp. (Bw,N),t,) = (P,v). This completes the proof of the
lemma.

The following theorem is a summary of all the above lemmas from §3
to §5.

THEOREM 5.5. Under the hypothesis of Theorem 2.1, if (N4, g¢1) ts an
almost splitting such that

0(f) = (—1)*¥* [Kx(By, N1), t,] for m=2k=6
e (— 1)} [Eon (Bry M), £y] for m—2k 4127

defined by (26) and Lemma 4.3, then for any object (P,v) € B (R,a) in the
class of 0(f), there is another splitting (N, g) such that

(Kx(Bw,N),t,) = (P,v) for m =2k =6,
(K1 (By, N),ty) = P,v) for m=2k41=".
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Proof of Theorem 2.1. The necessity is trivial. So let us assume
0(f) =0. Then, (0,%,) is an object in [Ky(By,N,),t,] for m =2k =6
and [Kx(Bw, Ni).t,] for m=2k+41=7. By Theorem 5.5, there is an
almost splitting (I, g) such that K;(By, N) =0 for i=% and m =2k =6,
and K;(By,N) =0 for i=k-+1 and m =2k -+ 1 =a. By Poincaré duality
and Lemma 3.1, we see that K;(N) =0 for 1== 0 in both cases. Hence, gy
is a homotopy equivalence. This completes the proof of the splitting theorem.

6. Obstruction to finding a homotopy strip. Starting from this section,
we shall give some applications of the splitting theorem, Theorem 2.1. For
other applications, see [81], [16], [36]. We first give a geometric inter-
pretation of the components of the algebraic decomposition of C'(R,«) into
C(R,a) ® K,G [12]. We shall see that the component of 0(f) in C(R,a)
for f is essentially the obstruction to finding a homotopic open strip, and then
the component of 0(f) in K,G is the Novikov-Siebenmann obstruction to
splitting M X R [29], [26].

Let (M’,N’) and f: M — M’ be given as in §R. Let us ask what is the
obstruction to finding a map ¢: M— M’ and an open submanifold U of M
such that

6 (A) g(U) CN and gp: U— N’ is a homotopy equivalenve.
(56) (B) ¢ is homotopic to f.

When such (U, g) exists, we say (U,g) is a splitting of f by a homotopy
open strip. Let

(57) q:: O(R,a) = C(R,a), ¢.: C(R,a) > K,G

be the projections of the direct decomposition C (B, ) = C (R, @) @ K,G [12].
TaroREM 6.1. Suppose that f: M— M’ is given as Theorem 2.1. f is

splittable by a homotopy open strip if and only tf ¢,0(f) =0.

Proof. Let us first prove the necessity. Let (U, g) be such a splitting.
It is easy to see that U is an open manifold with two tame ends &,, &..
Following the argument of [29, Chap. V], we find a codimension 1 submani-
fold N C U satisfying the following conditions:

(58) (A) N divides U into Cw, Dy such that Oy N Dy=N,
(B) Hi(Dy,N)=0 for i<k and m =2k =6, or
for ik +1 and m =Rk 41=7.

It follows from Lemma 3.2 and Lemma 4.2 thet H;,(Dy, N) for m =2k =6
or Hyi(Dy,N) for m =2k +1=" is finitely generated projective module.
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Let us consider the pair (N, g) induced from (U, g). It is easy to check that
(N, g) is an almost splitting and we can choose Cy C Ay, Dy C By. Lifting
U into Y, we have the following maps of exact sequences:

0

I

(59) V= ) 3
c > Ki(N)—> Ki(Ay) ® Ki(By) > Ki(Yu) =
I
0
0

ll
- > Ki(Oy) > Ki(U) - Hi(U,Cy) =Hi(Dy,N)—
(60) \: \: \:
. ——)K,‘(AN) —)K,,(YM) —)K,i(YM,A.N) %K@(BN,N) -
I
0

0
I
c > K(Dy) = Ki(U) — Hy(U,Dy) =H(Cy,N)—
(61) \ \’ {
.o —)KIL(BN) -—>K«;(YM) —)Ki(YM,BN) %Kz(AN,N) -
I
0

where K;(Cy), K;(Dy) denote the kernels of the mappings of Cy— N/,
Dy — N’ respectively. We see that

Ki(ON) %Ki(AN), Ki(DN) %KIL(BN)

(62)
Ki(ON,N) %Ki(AN,N), K.i(_DN, N) &"Ki(BN,N)

where the isomorphisms are all induced by inclusions. Since U C ¢*(4y),
(62) implies that the endomorphism ¢, in (Kx(Bx,N),t,) for m =2k or
in (K (Bw,N)t,) for m =2k +1 is zero. Therefore, ¢:0(f) =0 by the
definition.

Before we prove the sufficiency we need the following lemma which is of
interest in its own right.
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LeMMA 6.2. Let W be an elementary cobordism on an (m—1)-dim
manifold N™ 1 with s j-handles (3 =j=m—3) attached on N™* X 1 of
Nm-1x I. If we can decompose H;(W,N) =P @ Q with P,  projective
R-modules (R=Z(G), G=mN=mW) such that the boundary homo-
morphism :

(63) 9: H(W,N)— H;(N)

of the ewact sequence of the pair (W,N) is isomorphic to the projection
onto the second summand Q and Im(0) is a direct summand of H;,(N), then
there 1s an open subset of W which is a manifold with boundary N and has
a tame end & such that o(€) = [Q] where o(E) denotes the obstruclion of
Novikov-Siebenmann ([25], [29]), to adding a boundary to €. (Note that

we suppress the coefficient group of the homology groups again. We always
use F=2(@), G =mN=mW as the coefficient group.)

Proof. Suppose that W is gotten from N X I by attaching as,- - -, as
j-handles on N X 1. Let us introduce s pairs of complementary (j—1)-
handles and j-handles (b4, ¢1)," - -, (bs, ¢5) into W. We can view that by, - -, b,
are handles attached to N X % by trivial embeddings

(64) bi: DIt X DI —>NX % =1, ,s

contained in D™* C N X 4. By trivial embeddings, we mean that
{b; (0D X z,), t=1,- - -,s} bound disjoint dises {D;**, i=1,- - -,s} in

8
Dt — ) by(Di-* X Int D™7), where z, € 0D™% is a base point. Therefore
i1

(65) (DI X @) U Dt i—1,- - -,s

are embedded spheres in N X [0,3]U { U bs(D-* X D™7)}. For simplicity,
=1

let us denote the cobordism N X [0,4] U { LSJ bi(D™1)} on N by (W3;N,, Ny).
i=1

Let us pick up a base point y, € N; and join paths from ¢, to the embedded
spheres of (65). It is easy to see that these based embedded spheres represent
a set of free generators {e¢;} of a direct summand R® (R=Z(G), G=mN!)
of H;j4(N;). In fact, if j—154(m—1)/2, H;,(N;)=H;,(N) ® R*
and {e;|i=1,- - -,s} is a set of generators of R¢; while

j—1=(m—2)/2, H; (N;)=H;(N) @ R Rs

such that {e;|i=1,- - -,s} generates one of the summands Rs. Set
Vy=W—W,;. V,is a cobordism on »; with 2s j-handles attached to N,
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i.e., V3 is diffeomorphic to a cobordism gotten from N; X I by attaching
2s j-handles to N; X 1. In fact, they are just as,- * +,a, C€i,- ", 6. So,
H;(Vy,N;) =F,® F, where F, is a free B-module generated by a,," - -, as
and F, is the free R-module generated by c¢i,* - -,¢; (When we join paths
in V; from y,€ N; to ay,* * *,8s €1, * *,Cs. Let us examine the boundary
homomorphism '

(66) 62Hj(VbNi)=F1@F2—)Hj_1(N§)

of the exact sequence of the pair (V;, N;). We find that 4 | F, is an isomor-
phism onto the B-module H;,(N;) generated by bi,- - +,bs and 9| F, is
maped into the direct summand of H; ((N;) which is identified with H;, (N).
In fact, under this identification, Im(d | ) is identified with the direct
summand isomorphic to @ of H;,(N) given in the hypothesis. Let us
decompose

(67) F,=P,®Q, with x| P,=0 and 9| @, an isomorphism onto
Q Cc H:f—l (N)a

(68) F;=P;® Q.

where P,, Q, are isomorphic to P, @ respectively. We may also decompoce
the direct summand of H;,(N;) generated oy by,- + -,bs by P’ @ Q" with
9: P,b—> P, 8: Q,— Q" isomorphisms. Let us rearrange the direct decom-
positions of (67), (68) such that

(69) FLOF,= (P1®Q.) ® (P.D Q).

Since (P, @ Q) is a free R-module of rank s, we can realize a basis of it
by s j-handles on N;. Let V3 be the elementary cobordism on N, by attaching
these s j-handles and let N3 be the other end of the cobordism of Vj Set
Uy=V,UV3 and W/=W-—U. It is easy to see that W,” contains an
elementary cobordism W, on Nj such that the inclusion W, C W, is a
homotopy equivalence and W, verifies all the hypotheses W. Applying the
same procedure to Wy, we have U, and W,, etc. Immediately, we construct
Uy, Wy (1=1). Set U=1J U; It is easy to check from the construction that

H;(U,N) == @ is the only non-vanishing homology group of the pair (U, N)
This completes the proof of the lemma.

Let us now prove the sufficiency of Theorem 6.1. We divide the proof
into two cases according to m =2k or m =2k - 1.

Case I. m=2k=6. It follows from Theorem 5.5 that there is an
almost splitting (NV,, go) of f such that
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(A) Ki(By,No) =0 for 154k,
(B) Ky(By,N,) is a finitely generated projective E-module,
(C) ¢, is the zero endomorphism of Ky (B, No).

Let @, - -, as° be a set of generators of Ky(By,, No). By the argument of
Lemma 5.3, there are maps

(71) a: (D% 8D%) —> (By,—t*By, No) t=1,- s

representing a%,- + 5,a,°. We can make them as disjoint embeddings. Thick-
ening up these discs, we have an elementary cobordism (W,;N,,N;). We
may modify g, such that go(Wo) C N’. W, satisfies the hypothesis of Lemma
6.2. By the argument of Lemma 6 2, we may decompose Wo=W_U W,
such that W, W_ are elmentary cobordisms on N satisfying the following
conditions:

(A) W.nW_=N,
(72) (B) Hy(W_,N)=0 for ik and

H(W,N)=0 for is£k+1,
(C) N is an almost splitting.

By Lemma 6.2, we have U, in W, add U_ in W_ such that
K3 (U, N) == K1 (A5, N) and Kx(U_,N) == Kx(Bw, N).

Set U=U,U U_. It is easy to see that (U, g) is a splitting by open strip
of f.

Case II. m =2k +1=". Let us follow the argument of Lemma 5.4
to find a cobordism W similar to that of Case I. Let (N, go) be an almost
splitting of f satisfying the conditions:

(B) Knu(By,NNo) is a finitely generated projective R-module,
(73) (A) Ki(By,No,) =0 for 15k 41,
(C) t, is the zero endomorphism of Ky, (By,No).

Let a,%- - -, as° be a set of generators of Ky,:(Bw,V,). By the argument
of Lemma 5. 4, we may assume that they are represented by disjoint embeddings

(74) a: (D#, D) — (By,— By, N,).

Thickening up thesediscs, wehave an elementary cobordism (W ;N,, N,).
Except some number changing, the same argument for Case I works for
Case II. This completes the proof of Theorem 6. 1.
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TrarorEM 6.3. If (U,g) s a splitting of f by an open homotopy strip,
then U is of the proper homotopy type of N” X R, and hence U has two tame
ends €., E_ with o(€-) = q0(f).

Proof. Tt follows from definition that ¢ | U: U— N’ is a homotopy
equivalence. With a little care, we may create a proper homotopy equivalence

Jgu proj
gv: U—> N" X R such that U—— N’ X R———— N’ is homotopic to g.

Hence, U has two tame ends &€,, €&.. In order to compute o (&), we follow
the sufficiency part of Theorem 6.1. Let N C U be the codimension 1 sub-
manifold satisfying the conditions of (56). 'The exact sequence (61) shows
that H;(Dy,N) =K;(By,N). It follows from the definition that o(&.)

=0(f).

THEOREM 6.4.1° Let f: M— M’ be a homeomorphism of closed mani-
folds with =M == M’ = G XoT where G is a finitely presented group. (We
identify = M with =M via f,.) Then =(f) has no components in C(R,a)
and C(R,a) of the decomposition ().

Proof Since M;, M, are closed manifolds, it follows from [22] that
m(f) = (—1)™%(f) where m = dim M. By [12], the conjugation ‘— inter-
changes C(R,a) and C(R,a"). It suffices to show that r(f) has zero com-
ponent in C'(R,a). Moreover, we may assume that m = dim M = dim ¥’ =6
without loss of generality by applying the product formula of Whitehead
torsion to f X id: M X P— M’ X P where P is a high dimensional simply-
connected manifold with Euler number 1. Since G is finitely presented, we
may interpolate a closed submanifold N’ of codim 1 in M’ such that =, N'— =, M’
is a monomorphism onto the subgroup G of G XoT. Let U’ be the tubular
neighborhood of N” and r: U"— N’ is a deformation retraction. r extends
to a homtopy to the identity f': M’— M’ by ‘homotopy extension theorem.
Set U=f(U’) and g=fF: M—> M’. Clearly (U,g) is a splitting of ¢
by a homotopy strip. The theorem follows from Theorem 6.1.

CoroLrARY 6.5 [13]. Let M, (m=5) be a closed manifold with
m M — Tpe X T where Ty 1s the cyclic group of p?, and n=2. There are
infinitely many h-cobordisms on M which are not homeomorphic to M X I.

Proof. Let G=1Tp X T*! and a=id. We can write mM =G X T.
Acording to [5], C(R,«) is an infinite group where R—Z(G). Pick
€ Wh#, M which has non-zero component in cne of the ¢ (R, @) of the
decomposition (R). Building an h-cobordism W, on M with (W, M) ==.

10 After the work of [19], [20], the result is obsolete, of course! We include it here
as an illustration.
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Let M’ be the other end of W,. If there is a homeomorphism F': W,— M X I,
there is a homseomorphism f: M"— M such that the induced isomorphism
. is the same as that induced by the composite map

incl def. retract
(75) M W, M.

By [12], =(f) has ==z in the second and the third component of (2) where
z denotes the component of z in the second component. Hence, ¢,0(f) %0
and this contradicts Theorem 6. 4.

7. Novikov’s problem on homotopy invariance of L-genus.!* In this
section, we shall answer a problem raised by Novikov in [25], [28], [15]
about L-genus. Let M™ be an orientable closed manifold. Suppose that
2€ Hy(Mm;Z) be an element whose Poincaré dual is

(76) Dz=ys," ", Yn (m=n+4k)

where ¥y,- + +,yn € H*(M";Z) form a linearly independent set. Novikov
asked in [R5], [26]:

) ‘Is (Ly(M™),z) a homotopy invariant?’
(Ly(Mm™) € H*(M™; Q) is the k-th L-genus of (M™.)

Tuarorem 7 ([R5], [28], [15]). Lx(M™),z) is a homotopy invariant
where Ly(M™) and z are given as above.

Proof. By multiplying a fixed simply-connected closed manifold P with
non-zero signature, we may assume that k=2 without loss of generality.
Let M™ be given as above and let f: M™— M;™ be a homotopy equivalence.
We have the following commutative diagram

fx

WlM“——‘;—')WlMl
AT
T
(78) H1(MSZ)_';—‘)H1(M15Z)
U U

where A, A, are the torsion subgroups of H,(M;Z) and H,(M,;Z) respec-
tively. Since m =8, the kernel of = M,— H,(M,;Z)/A, are carried by a

11 Tusztig has proved the result by a different method.
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set of finitely many embedded circles. Making f transversely regular with
respect to these embedded circles and performing surgery on the inverse
images, we may assume that =, is also represented by embedded circles, f is
a diffeomorphism when we restrict it to the tubular neighborhood of the
circles, and the inverse image of the circles in M; are those corresponding
ones in M. Performing simultaneous surgeries to these circles, we have a
new homotopy equivalence

(79) g: Lm— Lm

where L, L, are the manifolds gotten from M, M, by these surgeries. It is
easy to see that ¢ is a homotopy equivalence and L™ = =, L,™ is a free abelian
group. By a ‘diagram chasing,’ it is easy to see that it is sufficient to prove
the theorem for g. Following [28], it suffices to assume that f,z is repre-
sented by the intersection of n connected codim 1 submanifold N,®,- - -, N,
of L such that the intersection of any number of them, N,0v- - - N,U0 (j;54 g,
of L such that the intersection of any number of them, N,0v- - - N U0 (554 gy
for 4541") is connected. Then

n
(80) (Lx(Ly), g4#) = the signature of the manifold [ N,(.
i=1
If we can find a corresponding set of codim 1 submanifold N,®,- - -, N,(®

of L satisfying the conditions of N,®,- - - N® and a map ¢: L— L,
n n n

homotopic to g such that g | N N®: N — [ N, is a homotopy equiv-
1 1 1

alence, then the theorem follows from Hirzebruch’s theorem. This can be
achieved by a successive application of Theorem 2.1 and making use of the
fact that Z[T*] is a regular ring and hence C'(Z[T*],id) =0. This com-
pletes the proof of the theorem.

Remark. Novikov proved it for n =1 in [25] and Rohlin proved for
n=2 in [28]. We can generalize the above result to nilpotent =, by the
result of [12].

Appendix. A weakly splitting theorem for 5-manifolds.'? In this
Appendix, we shall prove a weaker version of Theorem 2.1 for 5-manifolds.
Let us now set up the problem and state the result. Let f: M®— M’ be a
homotopy equivalence of closed 5-manifolds with the fundamental group
a1 =G XaT, a semi-direct product of a finitely presented normal subgroup

12§, Cappell and J. Shaneson have generalized this theorem by a different approach
(cf. Theorem 5.1 of [37]).
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@ and the infinitely cyclic group 7. (As always, we identify = M® with =, M’
via f,.) Let N”®* C M’ be a codimension 1 submanifold such that the inclusion
G C G XaT. Cutting M’ along N’, we have a manifold M’y.. Suppose that
we have an embedding S? C Int M’y- representing an element of m,(M'y-).
Joining a tube from the normal sphere bundle of 8% in M’'— N’ to N’, we
have a new codimension 1 submanifold of M’. Repeating this procedure a
finite number of times,we have a codimension 1 submanifold L’* of M’% and
the inclusion I’ C M’ again induces the =, inclusion G C G X T. We say
that f is ‘weakly splittable’ along N’* if we can find such a submanifold
L* C M” and a codimension 1 submanifold L* of M® together with a map
of pairs g: (M5, L*) — M’® L’*) such that g | M* is homtopic to the original f.

THEOREM A. If 0(f) =0, then f is ‘weakly splittable’ along N".

The reason that one should expect Theorem A to be true is because of
the feling that 4-manifolds behave better when we stabilize them by per-
forming connected sums with many copies of 82 X §2 In the present paper,
we have no control of the number of copies of 8% X 8% However, it seems
to me that it is possible to estimate the numbsr of copies if we are careful
enough in some special cases.

Proof of Theorem A. TFollowing § 3, we may assume that f*(N') =N
is a codim 1 submanifold of M5 such that fy induces a m;-isomorphism. Recall
that we have

(81) 0(f) = [Ks(By, N), t,] € O(R, )
and it follows from the hypothesis that there is a ltration
(92) 0=F,C---CF,C---CF,=Ky(By,N)

of submodules of K;(By,N) such that ¢,F., C F; and Fi,,/F =Z(G) for
t=1,- - -,n—1. Let [a] be a generator of F,. Since {,F;=0, we have
an immersion

(83) a: (D3, 8%) —> (M5, N*)

such that a(IntD?®) C M®*—N* and it represents the homology class [a]
when we lift it up to (Bwy,N). Without loss of generality, we may assume
that the preimages of the self-intersection points of @ consists of pairs of arcs
L0 o Ul s - o by b with a(l) =a(lf) (j=1,- - -,m). Of course
an arc l; (or I) may be knotted with itself. For example, I; is one of such
arcs. )See Fig. 11)
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Figure 11

O\
<&

We can join two arcs from the knotted arc /; to S* to break it into two arcs
I, I; such that [; [; have simpler knots than I; and the number of knots is
not increased. We join two arcs from the corresponding points of I/ to S?

such that I/ is also broken into two arcs J/, ;7. We can choose the arcs
joining from Iy to 82 so carefully that no new knot is introduced and the ares

I, Wl 1y - 5115 Z: f” 3 lm, I’ are disjoint from each other. Now
we can perform a regular homotopy a;(0=¢=1) on the immersion a such
that @o—oa and a, has self-intersections I,,1,";- + ;1,1 ; l L sl b

with ay (1) = a1 (1) for k54 7, a, () — a. (i), al(i;.) — al(l,) "and at(Int D#)
C M5—N* for 0=t¢=1. Therefore, we may assume from the very begin-
ning that each I; (or Ij) for j=1,- - -, m is never knotted with itself with-
out loss of generality. It may see that /; winds around some other arcs, but
wecan easily unwind it by a regular homotopy. (For example, see Fig. 12).

Figure 12

unwinding ¥, around I; //\
/\

;unwinding U around 7
I

Therefore we may assume that I,,l,";- - - ;lm, [,/ are parallel arcs and l],l
(j=1, - -, m) bound disjoint D, D/*(j="- - -, m) in D?* such that D},
D, (j=1,~ - -,m) are contained in S* without loss of generality.
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a(D#U D{?) (j=1,- - -, m) represents an element of x,(My, N) where My
is gotten from M by cutting along N. Since §: =, (My, N) — = (V) is trivial;
a(Ds#U Dy?) represents an element [b;] € wy(M —N) (j=1,- - -,m). Let
fuy: M — M’y be the induced map and let b/ : §2— M’ — N’ (j=1,- - -, m)
be an embedding representing the element (fu,)[b;] € w2 (M'y). Joining a
tube from the normal sphere bundles of b/(S?) to N4, we have a new co-
dimensien 1 submanifold L,” of M’® and the inclusion induces the =, inclusion
G C G XoT. When we thicken the 2-handles a(D2U D/?)( j=1,- - -, m)
on N*, we have a new codimension 1 submanifold L,* of M5 After we examine
the evaluation of

(84) wy (M) = frw, (M%) € H?(M°;Z,)

on the 2-cycles represented by [b;] (=1, - -,m), it is easy to construct
a map homotopic to f,

(85) gi: M3— M®

with ¢,7*(L,"*) = L,*. We can lift L,* L,’* onto Y3 and Y respectively
and let us denote the corresponding triads gotten from L,, L, by (Y'u; 4,4, B1),
(Y ; Ay, BY) respectively. It is not difficult to see that we have an
isomorphism

(86) K.(By,N) = K, (B;, L,).

If we denote the image of [a] in Ks(By, Li;ZG) by [a.], then [a,] is repre-
sented geometrically as follows. When we thicken the 2-handles a (D2 U D/?)
(j=1,- - -,m) on N in order to obtain L,;, we may do it so carefully that
there are disjoint regular neighborhoods D2, D/ (j=1,- - -,m) of D3, D/*

m

respectively in D® that if we put D,*=D*—{J (D;#U D/®), then the im-
j=1

mersion ¢ induces an embedding

(87) a,: (D?,0D,%) > (Mg, L,)

representing [a,] € K3(4,,L,;ZG) where My, denotes the manifold with
boundaries from M by cutting along L,.

Then, we can hicken up this 3-handles on L, and exchange it to 4,. Now
we have a new codimension 1 submanifold and a new map M®— M’S which
we shall again denote by L, and ¢, such that

(88) K,(By, L,) = K;(By,N)/F,.

But unfortunately, we may mess up the =, isomorphism. However, we still
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Ficure 13

| ' /4 a(Dy?) N

have the epimorphism (g¢y)y: mLly—> =Ly, Let {@, - -, 2} be a finite set
of elements such that their normal closure in =L, is the kernel of (g,).

Following §3, wemay assume that z; (i=1,- - +,s) are represented by
disjont embeddings
(89) zi: 81> Lyt (=1, - -,s)

such that #,(8*) bounds a 2-disc D? in 4, or B,, say By, and we can choose
the embedding of D* in B;—t*B,. We can choose the embedding so care-
fully that if we thicken it up and exchange it to 4, and let us denote the
new codimension 1 submanifold by L, the induced triad by (Y ;4. B,)
with £(4,) C 4,, etc., then we shall kill #, and z,(S*) will bound a 2-dise
in A,—1t4,, etc. After we carry on this procedure s times, we have a new
. codimension 1 submanifold of M® and it will be again denoted by L,5. Of
course, if we modify the map g, in the same way as we did in [35], we may
just complete a vicious circle or worse. Now, let us make the following

Ty
observation. Since the composite map S, — L, — L, is trivial, the com-
posite map
Y1
(90) (D? 8*) —— (B, —t'By, L) > AB’— B, L)

with 9, | §' ==, actually represents an element in =, (M’z,). In fact, we can
do anything so carefully that it represents the trivial element. Choose a
trivially embedded 82 X 82 in Int M’z and join a tube from § X 8% to L,
from the B,” side. Denote the new codimensional submanifold of M’® by L,".
Clearly, the inclusion L)’ C M’ again induces the =, inclusion.
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