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TOPOLOGICAL CHARACTERIZATION OF FLAT AND ALMOST 
FLAT RIEMNNIAN MANIFOLDS Mn (n # 3,4) 

By F. T. FARRELL* and W. C. HSIANG** 

0. Introduction. A connected manifold M' is aspherical provided 
-xiM' = 0 for all i > 1. Eilenberg obstruction theory shows that an as- 
pherical manifold is determined up to homotopy equivalence by its funda- 
mental group. This fact is one reason for the following conjecture. 

CONJECTURE. A closed (i.e., compact without boundary) aspheri- 
cal manifold is determined up to homeomorphism by its fundamental 
group. 

A. Borel mentioned to R. Szczarba in 1966 that this conjecture was 
plausible in light of Bieberbach's classical theorems on flat manifolds and 
Mostow's work on solvmanifolds; Szczarba related this conjecture to the 
present authors. In 1968, the conjecture was verified for aspherical mani- 
folds with abelian fundamental groups of rank greater than 4 and shortly 
afterwards, for aspherical manifolds with poly-Z fundamental groups of 
rank (Hirsh number) greater than 4. (A poly-Z group is a group possessing 
a normal series with oo-cyclic factor groups). These results are due to Wall 
[27], [28] and Hsiang-Shaneson [20]. 

In this paper, we verify the conjecture for aspherical manifolds (of 
dimensions greater than 4) whose fundamental groups contain nilpotent 
subgroups of finite index. (See Theorem 5.1). In particular, the conjecture 
is true for (high dimensional) aspherical manifolds whose fundamental 
groups are virtually abelian; i.e., contain an abelian subgroup with finite 
index. Since this is the class of fundamental groups of flat Riemannian 
manifolds, we see that any manifold the homotopy type of a closed flat 
Riemannian manifold Mn of dimension n # 3, 4 is homeomorphic to M". 
(See Theorem 6.1). This leads, in Theorem 6.2, to a topological character- 
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ization of (high dimensional) flat Riemannian manifolds as aspherical 
manifolds with virtually abelian fundamental groups. 

Recently, M. Gromov introduced, in [19], the definition of an almost 
flat Riemannian manifold. Roughly speaking, a manifold is almost flat if 
it supports a sequence of Riemannian metrics whose sectional curvatures 
converge to zero but whose diameters stay bounded away from oo. Gromov 
showed that such manifolds are aspherical with virtually nilpotent fun- 
damental groups. His result together with the main result of this paper 
show that these two conditions topologically characterize almost flat 
Riemannian manifolds (of dimensions different from 3 and 4). (See 
Theorem 6.4). 

Theorem 6.1, which was announced in [15], extends our earlier 
results proven in [13] and [14]. Although the present paper is more or less 
independent of [14], we suggest that the reader looks at [14] before study- 
ing this paper in detail. The outlines of the two papers are similar; but the 
difficulties (U Nil problems, etc.) which prevented (when [14] was written) 
the proof of Theorem 6.1 (and the more general Theorem 5.1) are here 
overcome in principally two ways. First, we use a more detailed algebraic 
classification of crystallographic groups (Theorem 1.1) which includes 
those with non-trivial torsion; second, we systematically use a metric 
vanishing criterion (Theorem 3.1) which is based on recent works of F. 
Quinn [25] extending results of T. Chapman and S. Ferry. See the an- 
nouncement [15] for a more detailed description of the differences be- 
tween [14] and the present paper. In proving Theorem 5.1, it is also 
necessary to make use of results of another recent paper of ours [16] where 
we showed that the Whitehead group of a torsion-free virtually poly-Z 
group vanishes. 

We wish to thank Dan Burns, Bob Griess, Karl Gruenberg, Frank 
Quinn and Frank Raymond for useful discussions during the preparation 
of this paper. We also thank K. B. Lee for letting us use his lecture notes 
of a course given by one of the authors. 

1. Group Theoretic Preliminaries. In this section, we will study 
crystallographic groups; i.e., discrete cocompact subgroups of the group 
of rigid motions, denoted by E(n), of n-dimensional Euclidean space. 
(The group of affine motions of Euclidean space is denoted by A(n).) A 
torsion-free crystallographic group is called a Bieberbach group. The 
main object of this section is to prove a more refined version of Theorem 
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1.1 of [14]. First, we fix our notation and recall some basic facts about 
crystallographic groups. (Good references are [5], [10] and [29]). 

Crystallographic groups are algebraically characterized as those 
finitely generated groups F which contain a maximum (under inclusion) 
subgroup A among its abelian subgroups of finite index and A is torsion- 
free. Note A is a characteristic (hence normal) subgroup of F; we call it the 
translation subgroup of F. The factor group G = F/A acts effectively on 
A; G is called the holonomy group of F and A considered as a G-module is 
called the holonomy representation of F. We define the rank of F to be the 
rank of A. For any positive integer s, define Is = F/sA and As = A/sA 
where sA is the subgroup of A consisting of all elements divisible by s; Is is 
an extension of As by G and in fact a semidirect product if (s, J G J ) == 1. 

Throughout this paper, we denote the infinite cyclic group by T and 
the finite cyclic group of order n by T,. We reserve the notation Z and Zn 
for the ring of integers and the ring of integers modulo n, respectively. 
(However in Section 4, we do use Z2 = Z ?) Z to denote the additive 
subgroup of integral lattice points in R2.) The expression G = N >1 S 
means a group G is the semi-direct product of a subgroup S and a normal 
subgroup N. 

Recall a hyperelementary group is an extension of a cyclic group of 
order n by a p-group where (n, p) = 1. We now state the main result of 
this section. 

THEOREM 1.1. Let F be a crystallographic group of rank n and 
holonomy group G, then either 

(i) F = -r X T where ir is a crystallographic subgroup of rank n - 1; 
(ii) there is an epimorphism from F to a non-trivial crystallographic 

group r with holonomy group G and an infinite sequence of positive in- 
tegers s _ 1 mod JGI such that any hyperelementary subgroup of r's 
which projects onto G (via the canonical map) projects isomorphically 
onto G; or 

(iii) G is an elementary abelian 2-group and either 

(a) F = A >X T2 and T2 = G acts on A via multiplication by 
-1, or 

(b) F maps epimorphically onto a crystallographic group I' with 
holomony group T2 ? T2 and translation subgroup T () T 
such that the image of the holonomy representation in 
GL2(Z) is either 
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{i 0)~?} o 
t( )i,i = ?1 or 

{i ) and (0 i ) + 

Proof. First, observe that if r admits a non-trivial homomorphism 
F r- T, then r satisfies (i). This is because r = ker 4 X T and ker k is 

a crystallographic group since it's a normal subgroup of one (cf. [10, 
Theorem 17]). 

We now assume that r satisfies neither (i) nor (ii) and proceed to 
show this forces r to satisfy (iii). By Theorem 3.1 of [16] (which is an 
almost verbatim extension of Theorem 1.1 of [14] from Bieberbach groups 
to crystallographic groups) and the above observation, r = B*HD where 
[B :H] = [D :H] = 2. Hence r admits an epimorphism to T2*T2. There- 
fore by [9, Theorem 5], A contains an infinite cyclic subgroup S such that 
S is normal in r and A/S is torsion-free. Consider-r/S; it may not be 
crystallographic but it is an extension of the torsion-free abelian A/S by 
G. By modifying the Auslander-Kuranishi argument [1], one can con- 
struct a crystallographic quotient r1 of r/s such that rank rF = rank A/S 
= rank r - 1. We briefly sketch the argument. Using group cohomology, 
an isomorphismf1 of r/s to a subgroup of finite index in A/S >1 G can be 
constructed. Since G is finite, one can construct (by an averaging process) 
a homomorphismf2 of A/S >1 G into E(n - 1), where n - 1 = rank A/S, 
such that f2 (A/S) is monic. Then the composite f2fl maps r/S epimor- 
phically onto the desired crystallographic group F,. 

We now inductively continue this process constructing a sequence of 
crystallographic groups ri (i 0, 1, 2, . . ., n) and epimorphisms i: riF I 
- ri such that r1' = r, IF, = 1 and rank ri = n - i. Let {i: I- ri be 
the composite 'i/i-l ... 

*1 and Ki = ker 6i4; then 

(1.1) K1 C K2 C *** C Kn = r, 

each Ki is normal in r and rank Ki = i. Put Ai = Ki n A; then 

(1.2) A1CA2C ... CAn0A, 

each Ai is normal in r and rank Ai = i. Define groups Ai (i = 1, 2, ..., n) 
by 
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(1.3) Ai= {xE Al sxE Ai for some s > O}; 

then 

(1.4) Al CA2 C *** c A, =A, 

eachAi is normal in r, Ai/Ai+ I= T (i = 2, 3, ...,n) andA T. Pick a 
basis el,e2, ..., en forA such that for each i = 1, 2, .. ., n {e,, e2, . . ., ei} 
spans Ai. For each g E G, the automorphism of A determined by the 
holonomy representation is represented in terms of this basis by an upper 
triangular n X n matrix Mg with integral entries. Each diagonal entry of 
Mg is either 1 or -1, hence (Mg)2 = Mg2 is upper triangular and all of its 
diagonal entries are 1. Since (Mg)2 has finite order, (Mg)2 must be the 
identity matrix. Therefore each element g E G has order 2 and conse- 
quently G is an elementary abelian 2-group. 

If G = T2, then the holonomy representation A is a direct sum of 
T2-modules of the following 3 types: T+, T- and Z(T2). As abelian 
groups T+ and T- are T; T2 acts trivially on T+ and the non-trivial ele- 
ment in T2 acts on T- via multiplication by -1; Z(T2) is the integral 
group ring of T2 and T2 acts on it in the ordinary way. Since (T+ )T2 # 0 

and (Z(T2))T2 # 0, each summand of A must be T-; otherwise, AT2 # 0 

and F = r >A T by [9, Lemma 7] contradicting the assumption that F 
does not satisfy (i). Hence if G = T2, then F satisfies case (a) of (iii) since 
H2(T2, T-) = 0. 

We now assume IGI > 2 and proceed to show case (b) of (iii) is 
satisfied. Let Gi denote the holonomy group of Fi and Bi its translation 
subgroup. Since rank F,-1 = 1 and (i) is not satisfied, G,-1 = T2. Let s 
be the smallest integer such that Gs = T2; then by the last paragraph, Is 
= Bs >l T2 and the non-trivial element of T2 acts on Bs via multiplication 
by -1. Since Os: I's - Is maps Bs_ into Bs, it induces an epimorphism 

Os:Gs-, - Gs. Let Gs-, = ker Os; by our hypotheses, IGs- 1 > 1. 
Choose a basis el, e2, ... ej for Bs-, (j = n - (s - 1)) such that el 
generates ker(os IBs-1). For each g E Gs_, let Mg be the j X j matrix 
representing the action of g on Bs 1 under the holonomy representation in 
terms of the basis {ei, e2, . . ., ej}. If g E Gs_, then 

(1.5)~ ~~~~+11@ 
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i.e., Mg is upper triangular with diagonal entries (Mg)jj = 1 if i > 1. Con- 
sequently, I s- = 2 and hence Gs _1 T2 ? T2, We can enumerate 
the elements in Gs-, as e, h, k, f where e is the identity element and h E 
Gs-, such that the matrices Mg (g = e, h, k, 2) have the following form 

Me = I, Mk I, Mf Mg, 
(1.6) 

Mg( D* 

Consider Bs-1 as a T2 = Gs--module; it decomposes as a direct sum of 
modules T+, T- and Z(T2). Clearly, exactly one summand is different 
from T+ because of (1.6). Hence we can decompose Bs-1 as G^s-l 
modules into 

(1.7) B 1 = B5_1 ( Ds-i 

where Ds-1 is isomorphic to either Z(T2) or T- (D T+. Because of (1.6), 
Bs_ I and Ds- 1 are Gs- l -submodules of Bs l1. Let r = 51 /Bs_ 1, then r 
is a crystallographic group which is an epimorphic image of F via the com- 
posite of ks-,:F - rs-, and the canonical map Ps-, - F. Clearly, the 
holonomy group of P is T2 ? T2 and the image of the holonomy represen- 
tation in GL2(Z) is one of the two subgroups listed in case (b) of (iii) 
depending on whether Ds-1 is isomorphic to T- (D T+ or Z(T2). This 
completes the proof of Theorem 1.1. 

We will also need the following result. 

LEmMA 1.2. Let 0::r - P be an epimorphism between crystallo- 
graphic groups F c E(n) and r c E(m). Then there exists a 
'k-equivariant affine surjection F: R _ R'. 

Proof. Let A, A and G, G be the translation subgroups and 
holonomy groups of F, P, respectively. Pick an origin for Euclidean space 
R'; identifying R' with the group of translations of R', E(n) = Rn Xl O(n) 
where O(n) denotes the orthogonal group. Identify G with its image in 
0(n), then 

(1.8) r C Rn XJ G C E(n). 
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Let K = ker(4 IA), V be the R-subspace of R' spanned by K and V1 the 
orthogonal complement of V. Both V and V' are sub-G-modules; identify 
V' to Rm by an isometry, then G acts orthogonally on Rm but perhaps not 
faithfully. Let G be the image of G in 0(m) and Fl: -R - Rm be the or- 
thogonal projection where ker F, = V. Then F, extends canonically to a 
group homomorphism 

(1.9) R' X G-Rm X G E(m) 

also denoted by Fl. Let r = FI(r) and b = Fl r; it can be shown that ker 
X= ker t and hence X factors as a composite tqb where r,r - r is an 
isomorphism. Also P is a discrete cocompact subgroup of E(m); i.e., F is a 
crystallographic group. By Bieberbach's Theorem [cf. 10, Theorem 19], 
there is a b-equivariant, invertible, affine map F2:Rm - Rm. Then the 
composite F2F1 is the map F posited in Lemma 1.2. 

Let r be a finitely generated, torsion-free, virtually nilpotent group. 
We recall from [16] the notion of afibering apparatus a = (F, k, f) for r. 
This consists of a crystallographic group P C E(m) where m > 0, a group 
epimorphism : F -F, a properly discontinuous (hence free) action of r 
on Rn with compact orbit space, and a k-equivariant fiber bundle map 
f: Rn - Rm with fiber diffeomorphic to Ra-m. In particular, if X:F - Pis 
an epimorphism between crystallographic groups where r is torsion-free; 
then (F, k, F) is a fibering apparatus for r where F is the map posited in 
Lemma 1.2. 

If r is a group, cd r denotes its cohomological dimension; e.g., if r is 
a Bieberbach group, then cd r = rank r. 

LEMMA 1.3. Let r be a finitely generated, torsion-free, virtually 
nilpotent group with cd r > 1, then there exists afibering apparatus (a- 
(r, , f ) for r such that rankr >F 2. 

Proof. In [16, Lemma 1.2] a fibering apparatus a (rF, k,f) was 
constructed for r. In this construction, rank P = dim L/[L, L] where L is 
a simply connected (connected) nilpotent Lie group which contains a 
discrete cocompact subgroup N isomorphic to a subgroup of finite index 
in r and [L, L] is the commutator subgroup of L. Hence dim L ? 2 which 
implies that dim L/[L, L] > 2. (Hint: all 2-dimensional connected nilpo- 
tent Lie groups are abelian.) 

COROLLARY 1.4. Let r be a finitely generated, torsion-free, vir- 
tually nilpotent group and a = (F, 0, f ) be a fibering apparatus for r 
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where Rn/F denotes the orbit space of the action of F on Rn occurring in 
(a. If F = r >A T, then Rn/F fibers over a circle with a closed aspherical 
manifold as fiber and the fundamental group of the fiber is &-1(7r). Note 

- 1(r) is also a finitely generated, torsion-free, virtually nilpotent group 
and cd(/- 1( r)) = (cdI) - 1. 

Proof. Let : F = r >A T - T C E(1) be the canonical map. By 
Lemma 1.2, there is a b-equivariant affine surjection F: R' - R; hence, 
(T, b/, Ff) is a fibering apparatus for F. Therefore, the composite Ff in- 
duces the desired fiber bundle projection between the orbit spaces Rn/F 
and R/T. (Note R/T is the circle.) 

2. Induction Theorems. In this section, we apply Frobenius induc- 
tion theory to study the group of homotopy-topological structures on an 
aspherical manifold Mn. (A connected manifold Mn is aspherical provided 
-xiMn = 0 for all i > 1.) 

Throughout this section, let Mn be a closed aspherical manifold such 
that Wh(7r,Mn S T') = 0 for all i 2 0 where T" denotes the free abelian 
group of rank i. Let 1k denote the closed k-disc and En+k be the total 
space of an Ik-bundle with base space Mn. Recall [28] [22] a (homotopy- 
topological) structure on En+k is represented by a pair (Nn +k, f) where 
Nnf+k is a compact manifold and f:Nn+k - En+k is a homotopy 
equivalence which maps AN onto aE homeomorphically. Another struc- 
ture (N, f) is equivalent to (N, f ) if there exists a homeomorphism g :N - 

N withfg homotopic tof rel a. Let S(En+k) denote the set of equivalence 
classes of structures on En+k; it is an abelian group when n + k > 4. This 
group is essentially periodic of period 4; namely the following result is due 
to Siebenmann [22] using result of Quinn [24]. 

LEMMA 2.1. If n + k > 4 and k > 0, then S(En+k) = S(En+k X 

I4). Also, if n > 4 and S(Mn X P) = 0; then S(Mn) = O. 
Next, we describe transfer maps for S(En+k). Let S be a subgroup of 

finite index in ir1Mn = 7r1En+k and ps:Es - E denote the covering space 
corresponding to S. (Note Es is the total space of an Ik-bundle whose base 
space is Ms-the total space of the covering space of M corresponding to 
S.) If (Nnf+k, f ) represents an element b E S(En+k), then the top row (N, f) 
of the following pullback diagram represents its transfer i*(b) E S(ESn+k) 
where i: S - r Mn is the inclusion map 
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N f- Es 

(2.1) VP 

N f E 

Also, recall the Sullivan-Wall surgery exact sequence [28] [22] 

(2.2) 

* Ln+k+l(S, --5) _ S(E+k) _ -E +k rel a, G/Top] -Ln+k(S, Cos) 

where co5: 7r-Es - T2 is the first Stiefel-Whitney class of Es. (When S = 
ir1Mn, we abbreviate the notation for ws, d5, r5 and Os to w, d, T and 0; 
respectively.) The following two theorems, which extend results used in 
[13] and [14], are immediate consequences of Andrew Nicas's Ph.D. 
Thesis [23]; they depend heavily on Dress's work [7]. Let G be a finite fac- 
tor group of ir, M' and p: -r M' - G be the canonical map. 

THEOREM 2.2. Let b E S(En+k) where k 2 1. If b vanishes under 
transfer to S(En+k) for every hyperelementary subgroup H of G where 
S =p-1H, then r(b) = 0. 

THEOREM 2.3. Assume k > 0 and 

7s:SS(En+k)- [En+k rel a, G/Top] 

is the zero homomorphism for each hyperelementary subgroup H of G 
where S = p-1H. If b E S(En+k) vanishes under transfer to S(En+k) for 
every hyperelementary subgroup H of G where S = p -1H, then b = 0. 

3. A Metric Criterion for Vanishing. We keep the notation from 
Section 2. Let y E S(En+k X I) where n + k > 4, then it can be 
represented by a homotopy h,:E - E (O ? t < 1) such that ho = id, 
h t IaE = id for 0 c t c 1 and h1 is a homeomorphism; i.e., the homotopy 
equivalence h :E X I - E X I defined by 

(3.1) h(x, t) = (ht(x), t) where x E E, t E [0, 1] 
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represents y. Let F be a torsion-free, finitely generated, virtually nilpotent 
group and a = (r, 5,f) be a fibering apparatus for F. let Mn = Rn/F and 
p :En+k - M' be an Ik-bundle; consider the following pullback diagram 

(3.2) 

E -p Mn 

where the vertical arrows are the universal covering spaces of Mn, En+k 
(respectively) and p :E - Rn is an Ik-bundle. We proceed to define a non- 
negative real number associated toy and (a called the (a-diameter of y. Lift 
the homotopy ht to the homotopy h, of E such that ho = id and define a 
family {l,Ix E E} of paths in Rm by 

(3.3) aox(t) = fi ht(x), t E [0, 1]. 

The diameter of ax , denoted 11 ax 11, is defined by 

(3.4) 11 ax 11 = max{ I ax(t) - ax() I I t E [0, 1]} 

and the ((i, ht)-diameter of y is maxl 11 x E E}. The (a-diameter of y is 
the greatest lower bound of the set of ((i, ht)-diameters of y as ht varies 
over all homotopies representing y. 

The fibering apparatus a = (F, 0, f) is called admissible if for each 
finite subgroup H of r and each Ik-bundle Ef+k (m + k > 4) over Nm 
where Nm is any closed aspherical manifold with r-1 (NmA) = & - 1 (H), then 
S(Em+k) = 0. We now state the main result of this section. 

THEOREM 3.1. Let r c E(m) be a crystallographic group, then 
there is a number c > 0 such that the following is true. Let a = (F, d), f ) 
be any admissible fibering apparatus for a finitely generated, torsion-free, 
virtually nilpotent group F and En+k (n + k > 4) be any Ik-bundle over 
Mn = RRn/F, then the only element in S(E X I) whose (a-diameter is less 
than c is zero. 

Proof. Substituting Theorem A from the Appendix for Corollary 
4.2 of [16], the proof follows more or less by a similar line of reasoning as 
the proof of [16, Theorem 2.1]. However we repeat the whole argument 
here for the reader's convenience. 
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First, recall some elementary facts about a smooth action of a finite 
group G on a closed manifold M. (Some general references are [2] [6].) By 
averaging the metric if necessary, we can always assume that M is 
Riemannian and G is a subgroup of isometries of M. For x, y E M, we say 
that x, y are of the same orbit type if their isotropy subgroups Gx, Gy are 
conjugate. If (H) is the conjugacy class of the subgroup H of G, then M(H) 

denotes the submanifold (generally not closed) of M consisting of the 
points whose isotropy subgroup is in (H); i.e., 

(3.5) M(H) = {X I X E M, Gx E (H)}; 

M(H) is an invariant subset of M under G. Define Cl(M(H)) by 

(3.6) Cl(M(H)) = U (H') D (H) M(H') 

where (H') D (H) means H is a subgroup of some member of (H'). Clearly, 
Cl(M(H)) is a closed invariant subset of M containing M(H)@ (Warning, 
Cl(M(H)) is not always the topological closure of M(H).) 

We can choose equivariant neighborhoods N(M(H)) of M(H) satisfying 
the following conditions: 

(3.7) (i) The set M(H) defined by 

M(H) = M(H) - U (H') (H) N(M(H )), 

is a closed invariant submanifold of M and M(H) is an equivariant deforma- 
tion retract of M(H). 

(ii) Each N(M(H)) has an equivariant disc bundle structure 

(H): D - N(M(H)) r(H) M(H) 

with the associated sphere bundle 

aOM(H): aD -aON(M(H)) - M(H) 

such that if we define N(M(H)) to be the closure of 

N(M(H)) - U (H ) k (H) N(M(H )) 
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then we have an induced equivariant disc bundle structure 

((H): D - N(M(H)) ) M(H) 

with associated sphere bundle 

aOM(H): aD - aON(M(H)) - 
M(H)a 

Moreover, there exists a constant C > 0 such that forx, y E N(M(H)) 

d(r(H)(x), r(H)(y)) < Cd(x,y) 

where d( , ) denotes the distance function of M. 

(iii) The set 

U (H') i (H) N(M(H')) 

is an equivariant "regular" neighborhood of Cl(M(H)). We can produce a 
constant C' > 0 and an equivariant retraction 

r(H): U (H')D(H) N(M(H')) - Cl(M(H)) 

such that 

r(H) I N(M(H)) = r(H) and 

d(r(H)(x), r(H)(y)) < C'd(x, y) for 

x, y E U (H'):D (H) N(M(H')). 

(iv) If (H) ' (H') and x E N(M(H)) n N(M(H')), then 

r(H')(r(H)(X)) = r(H')(X). 

Note that the properties of the above depend on the choices of 
N(M(H)), r(H), etc. We shall call {N(M(H))} a neighborhood system of 
{M(H)}. Suppose that {N(M(H))} is given. For a conjugacy class (HO), we 
can choose a small e > 0 to enlarge N(M(HO)) by an amount e in the follow- 
ing sense. We have a new neighborhood system {N'(M(H))} such that 
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N'(M(H)) = N(M(H)) for (H) ? (Ho) and N'(M(HO)) D N(M(HO)) and 
satisfies the following conditions. 

(3.8) (i) Define M'(H) to be the closure of 

M(H) - U (H')D I (H) N (M(H')). 

For (H) i (Ho), M' (H) is contained inM(H) and d(M' (H), M(HO)) > e where 
d(A, B) denotes the distance between the subsets A, B C M. Otherwise, 
M (H) = M(H)@ 

(ii) We have inclusions of equivariant disc bundles 

(Ho) D N(M(HO)) M(HO) 

V (HO):D D N'(M(HO)) M(HO) 

(Ho): D N(M(HO)) M(HO) 

(Ho): D' - N'(M(Ho)) M(HO) 

such that the distance between the sphere bundles aO4(Ho) and a0V(HO) is 
greater than e. 

We can also shrink N(M(HO)) by a small amount e> 0 satisfying condi- 
tions similar to (3.8). 

The manifold M is equivariantly stratified by {M(H) } and the orbit 
space M/G has the induced stratification {M(H)/G}. Abusing language, we 
shall call {M(H)}, {M(H)/G} the closed strata of M, M/G respectively. 
(Beware that they depend on the choice of N(M(H))!) At the orbit space level, 
we have the cone bundle 

(3.9) CL - N(M(H))/G 1 M(H)/G 

over M(H)/G where L is the link of M(H)/G in M/G, CL = L X [0, 1]/L X 
0. If D is the fiber of the bundle (3.7, ii), then CL = D/H with c corre- 
sponding to the image of the origin of D in M(H)/G. In fact, N(M(H)) n 
M(H') (where (H') C (H)) is an equivariant neighborhood of M(H) in M(H) 
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U M(H') and (N(M(H)) n M(H'))/G has a subcone bundle structure over 
M(H)/G and these subcone bundles over M(H)/G together form the cone 
bundle (3.9). 

Let q :M - M/G be the natural map; M/G has an induced metric 
from M. Namely, dM/G is defined by 

(3.10) dM/G(a, b) = d(q -'(a), q -1(b)) 

where a, b E M/G. 

Now, let us consider the action of r on R'. The decomposition 1 - A 
P - G - 1 factors the action into two steps. The subgroup A acts on 

RX freely and the orbit space is the flat torus TM and the finite group G 
acts on Tm as a group of isometries such that Rm/I' = Tm/G. Apply the 
facts about a finite group action to the present situation. Let 

(3.11) g: R'/P -R' = Tm/G 

be the projection induced from the given admissible fibering apparatus 
a = (1, q$,f). For e > 0 and B a subset of a metric space X, define Be by 

(3.12) BE= {xIxEX, d(x,B) < e}. 

Enumerate the conjugacy classes of subgroups of G as follows. Let 
H1, H2, ..., HS be a complete non-redundant list of conjugacy class 
representatives such that 

(3.13) (a) H1 1, 
(b) HS G and 
(c) if (Hi) ' (Hj), then i c j. 

Let {N(Tm(H.)) I 1 c i c s} be a neighborhood system for (Tm, G) - the 

holonomy action of G on Tm. Enlarge this system several times to obtain a 
family of sets {Nij I 1 ' j c i c s} such that for each i 

(3.14) (a) N(Tm(H.)) = Nil C Ni2 C ... C Nii and 

(b) 9Ti = IN,,,, N2,29 ... ., Nii, Ni+l,J, .., Nsil 

is a neighborhood system for (Ti, G) where Dli+l is obtained from Si by 
enlarging in succession Ni+?1i to Ni+?,i+ I Ni+2,i to Ni+2,+ I, ... , Nsi to 

Ns,i+I via the method described in (3.8) and each enlargement should 
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have size larger than some small number e > 0. Let {Tij Ij ' i ' s} be the 
closed strata of (Ti, G) relative to TOL as described in (3.7) and let Ni = 

N(Tij)relativeto OZ. (Notethat Tii C Tii _ I * ... c Til = Tm(Hi)). De- 
fine Xi C Tm/G and Ci c Xi by 

(3.15) Xi = (Uj>iTm(H.))/G and 

Ci = TiI/G. 

Define subsets Ri, R 'i of Tm/G by 

(3.16) Ri = Uj>i(Nji/G) (ifi > 0), Ro = Tm/G and 

R'i= (Nij/G) U Ri_1 (where i > 0). 

There exists a small positive number e (with 3Y < T) such that if we define 
R "i by 

(3.17) R " i = (Nij/G) U (Ri- 1)), 

then there is a map ri: R "i- Xi (constructable as in (3.7), (3.8)) such that 
ri is a fiber bundle projection over CiE C Xi; in fact, it is essentially the 
cone bundle projection induced from the equivariant disc bundle t(H.) 

where t(Hi) is defined relative to the neighborhood system 

(3.18) ' i = {N1,1, N2,2, , ,Ni i Ni+1,i- , , NsJ- I 

for (Tm, G). For technical purposes, we assume there is an intermediate 
enlargement 9Yi between Zi-I1 and OZ'i where 

(3.19) YiL= {NN,1, IN2,2, * *,Ni- ,U-, Ni i, i ?Ni+,i-1, I * Ns,i-i } 

with Nii_1 c Nii ' Nii and 9Ti is (at least) an e-enlargement of 91i-1 
while 9Z'i is (at least) an eenlargement of 9Ti. Let Ri ' R'i be defined by 

(3.20) Ri = (Nij/G) U Ri_1. 

Denote now Rn/P by Mn and let Mi- IC Mi C M'i Mn be defined by 

(3.21) Mi_ =Ig-(Ri-1), Mi =g (Ri) and M'i =g 1(Ri) 
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and define M(y-l) ' M() ' M'(i) to be the closure of the complements (in 
M") of Mi, Mi and M'i, respectively. Let ir:E- N be anIk-bundle (n + 
k > 4) over Mn. Consider the composite map 

(3.22) p:EXI?E L Mn r Rm/P=Tm/G 

where E X I E is the obvious projection. Define Ei-1 X I, Ei X I, 
E'i X I, E(i_1) X I, E(S) X I and E'(S) X I to be the inverse images 

(rpo)'( ) of Mi-1, AMi, M'i, M(i- ), M(i) and M'(i), respectively. 
The composite of p and ri defines a map 

(3.23) ei:E X I-Xi 

which is a fibration over Cie such that the fiber is a disc bundle over 

Rn-m/l-1(G,) where Gx E (Hi). By the hypotheses of Theorem 3.1 the 
fibration ei satisfies the hypotheses of the Appendix. (Note the main result 
of [16] is also used here; i.e., Theorem 5.2 stated befow in Section 5.) So, 
we may choose a sequence of pairs of positive numbers bi, Ei (1 c i c s) 
satisfying 

(3.24) (a) bi << i << bi+1, 
(b) es<< e < (e/3) and 
(c) i<< ? i 

where bi is the number 6 posited in Theorem A when we consider the pro- 
jection ei and set e = ci, X = Cie C Xi and C = Ci. The symbol a << b in 
(3.24) means the ratio b/a is very large-exactly how large depends on the 
geometry of our particular choice of {Nj I 1 c j c i c s}; e.g., on the con- 
stants C, C', E, etc., occurring in (3.7), (3.8). 

Choose the real number e of Theorem 3.1 such thate << 61 . Let h :E 
X I - E X I represent an element in S(E X I) whose (a-diameter is less 
than e. We will inductively construct homeomorphisms (homotopic to h) 
over 

E(,) X I, E(2) X I, . ,E(s) X I = E X I 

(rel a(E X I)). (Note we will have proven Theorem 3.1 when this construc- 
tion is finished.) To be precise, we will construct embeddings ki:E(j) X I 
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-E X I such that ki(x) E a(E X I) if and only if x E a(E X I) and h(ki(x)) 
= x whenever x E a(E X I). Furthermore, denoting image (ki) by ?(i), we 
will construct homotopies hi( , ): 8(i) X I - E X I (rel a(E X I)) such 
that, for each i, ki and hi satisfy 

(3.25) (a) hi( ,O) h I (i); 
(b) hi( ,1) =k,-1; 
(c) if ki-j(x) tEi X I, then hi(x, u) = hiI1(x, u) for all u E [0, 1]; 
(d) if ki-'(x) E Ei X I, then hi(x, u) E E'i X I (for all u E [0, 1]) 

and the path u - ei(hi(x, u)) has diameter less than 2,E in Xi. 

Assuming k1, k2, ..., ki-1 and h1, h2, ..., hi-1 satisfying (3.25) 
have already been constructed, we now show how to construct ki and hi. In 
Theorem A of the appendix, replace c, X, C, E and p by Ei, Cie, C,i 

ei-l(Cie) and ei' Ieijl(Cie), respectively. Let E' in the statement of 
Theorem A be the closure of 

(3.26) E X I - ki-(E(j) X [0, 1]); 

also, let 0E' = ki_1(a0E el= -1(Cie)). Tapering h 
'E' 

into the homeo- 
morphism kij1-1 near a0E', we obtain a bi-equivalence (over C2Ei) f:E' 
- E such thatf I a0E' = ki 9E- 1 

- 
aoE'. Since bi << 3, and 5i is the number 

6 posited in Theorem A for this situation, f is (properly) Ei-homotopic to a 
map f' which is a homeomorphism over CEi and agrees with ki_1-I on 

N0E'. Hence, we can glue the embeddings (f 1 p (C) and ki_1 l (E(S) 
n E() X I) together to define ki; the homotopy hi is similarly constructed 
using the above data so that the pair ki, hi satisfies (3.25). This completes 
the induction step and the proof of Theorem 3.1. 

4. Metric Properties of Crystallographic Groups. In this section, 
we discuss the metric properties of a crystallographic group r which cor- 
respond to the classification of r given in Theorem 1.1. These properties 
are elaborations of the Epstein-Shub result [8]. 

Let r c E(m) be a crystallographic group with holonomy group G 
and maximal abelian subgroup of finite index A. We say a monomorph- 
ism ob: -I' is s-expansive if 1 induces multiplication by s on A (where s 
is a positive integer) and the identity map on G. 
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THEOREM 4.1. For any positive integer s 5 1 mod I Gj, there exists 
an s-expansive endomorphism Q of P. Furthermore, for any s-expansive 
endomorphism 1 of r, there exists a /-equivariant diffeomorphism g: Rm 
- Rm such that I dg(X) I = s I X I for each vector X tangent to Rm where 
is the Euclidean metric on Rm. 

This result is a restatement of [16, Theorem 2.2] which itself is an 
easy generalization of the main result of [8]. 

Now we examine in much more detail the 2-dimensional crystallo- 
graphic groups relevant to Theorem 1.1. First, we divide these into 3 
types. The group (T (? T) A T2 C E(2) where G = T2 acts on A = T ? 
T via multiplication by -1 is the only group of type 1; explicitly, (T (? T) 
>A T2 is that subgroup r C E(2) = R2 >A 0(2) such that A = r n R2 = 

Z2 and which is generated by A together with the motion x - -x (where x 
E R2). 

To describe the type 2 groups, identify G with 

(4.1) {(0 i,J=?I} 

and A with Z i) Z C R2 c E(2); then pick a single crystallographic group 
rF C E(2) representing each cohomology class 0 E H2(G; A(2)) of group 
extension where A(2) denotes A with the G-module structure determined 
by (4.1). The collection {rol 6 E H2(G; A(2))} are the groups of type 2. 
Similarly, we define the groups of type 3 to be the collection {PF, W E 
H2(G; A(3))} where G is identified with 

(4.2) {( ) and ( i) i=?1}, 

A is identified with Z2, A(3) is A with its G-module structure determined 
by (4.2), and we pick a single group r, C E(2) representing each w E 
H2(G; A(3)). 

Let Doi. denote the oo-dihedral group; explicitly, Dr,. C E(1) is the 
subgroup generated by x - x + 1 and x - -x (where x E R). 

If r is a type 1, 2 or 3 group and p is an odd prime, then a hyperele- 
mentary subgroup E of r'p is called special if I E I = p I G I . Note if E and 
E' are both special and E"Ap = E' n Ap, then E and E' are conjugate 
subgroups of rp. 
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THEOREM 4.2. Let P be a crystallographic group of either type 1, 2 
or 3; p be an odd prime and E be a special hyperelementary subgroup of 
rp; then there exists a second crystallographic group H of the same type as 
r together with a group monomorphism Q: H - r and a group surjection 
-7 H - Dci. satisfying A (H) = q-1(E') where E' C rp is conjugate to E 
and q :r - rp is the canonical projection. Furthermore, there exists a 

b-equivariant biection g:R2 - R2 and an rq-equivariant affine surjection 
h:R2 - R such that 

Id(hg'-)(X) I ' ?A- lX 

for each vector X tangent to R2. 
The proof of this theorem for the type 1 group depends on the follow- 

ing result. 

LEMMA 4.3. Let p be a prime and r be an integer such that 0 < r < 
p, then there exist integers a and b such that 

(i) (a, b) = 1, 
(ii) jbI < p and 

(iii) ap - brj < X 

Proof. By Euclid's algorithm, for each integer i where 1 c i c P 
+ 1, there exist integers xi and yi with 0 ' yi < p such that 

(4.3) i = xip - yir. 

There must be two numbers, sayyj and Yk, in the set {yi I 1 c i c Vp- + 1} 
such that 

(4.4) 0 < (Yj Yk) < VP- 

Let b' = 1- Yk and a' = x -Xk; then subtracting equation (4.3.k) 
from (4.3.j), we obtain 

(4.5) j-k k a'p-b'r. 

Hence, I b'j < v and I a'p- b'r I < Vp. Let d be the greatest common 
divisor of a' and b', then a = a'/d and b = b'/d satisfy Lemma 4.3. 
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Proof of Theorem 4.2. We consider first the case where r = (T ?) 
T) >X T2 is the type 1 crystallographic group. (Represent elements in T (? 
T or Tp 0) Tp by column vectors with entries in Z or Zp, respectively). In 
this case, H- r and both 1 and g are induced in the canonical way by 
matrix multiplication using a 2 X 2 matrix M with integral entries. Also, 
v and h are induced by matrix multiplication using a 1 X 2 matrix N with 
integral entries. In order to describe M and N, let v generate Ap f E 
where 

(4.6) v= or ( ). 

(Here, [r] denotes the congruence class in Zp of the integer r where 0 < r 
< p). If the first possibility in (4.6) holds, let 

/ 0 pA 
(4.7) M ( ) and N (0, 1); 

\1 0/ 

for the second possibility, let 

- 
p O\ 

(4.8) M ) and N=(1,0). 

If the third possibility holds, let 

/1 0\ 
(4.9) M=( ) and N (a,b) 

\r p/ 

where a and b are the integers posited in Lemma 4.3 relative to p and r. 
If r is a type 2 crystallographic group; i.e., r = ro where 0 E H2(G; 

A(2)); then E n Ap is generated by v where 

(4.10) v = or 

The argument for each of the two possibilities in (4.10) is symmetric; 
hence, we consider only the first possibility. Let M be the 2 X 2 matrix 
given by 
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t1 0\ 
(4.11) M= 0) 

\Op/ 

then matrix multiplication by M induces a G-module monomorphism 
4:A(2) - A(2). Since (Icok Gj, GI) = 1, V*:H2(G; A(2)) - H2(G; 

A(2)) is an isomorphism. Let 6' E H2(G; A(2)) be such that t*(w') 6 0, 

then II = r, and there is an extension t: r, - ro of b which induces id 
on G. By Bieberbach's Theorem (cf. [81), there is a b-equivariant affine 
bijection g:R2 - R2. For each a E r, , define a' E E(1) by requiring 
a'(y) to be the second co-ordinate of a(x, y) where (x, y) E R2. Let D' = 
{a' j a E r, }, then D' is a non-abelian crystallographic group in E(1) 
whose translational subgroup is either Z or 1/2 Z. Hence, there is an af- 
fine bijection k: R - R which induces an isomorphism j: D'- D and 
such that I dk(Y) I c 21 YI for each vector Y tangent to R. Let q: r, - 

Doo be defined by q(a) = i(a') for a E ro,, and h :R2 - R be given by h(x, 
y) = k(y). One easily checks that h is q-equivariant and I d(hg 1)(X) I < 

(2/Vp) IXI if X is tangent to R2. This verifies Theorem 4.2 for type 2 
groups. The verification for type 3 groups is similar and we leave it as an 
exercise to the reader. 

We will apply the above results together with the vanishing criterion 
of Section 3 to analyze the transfer maps discussed in Section 2. Let r be a 
torsion-free finitely generated virtually nilpotent group and a ('r, 0, f) 
be a fibering apparatus for r. Let Mn = R'/r denote the orbit space of 
the action of r on R' determined by (a. (Because of Theorem 5.2 of Sec- 
tion 5, the definitions in Section 2 apply to Mi). We say that (a is a special 
fibering apparatus provided either 

(4.12) (i) r is a type 1, 2 or 3 crystallographic group or 
(ii) there is an infinite sequence of positive integers s -1 mod 

I G I (where G is the holonomy group of r) such that any hyperelementary 
subgroup of rs which projects onto G (under the canonical map) is 
isomorphic to G. 

THEOREM 4.4. Let a = (r, X, f ) be both a special and an admissi- 
blefibering apparatus for r and let En+k be an Ik-bundle (where n + k > 
4) over Mn = Rn/I and let y E S(En+k X I). Then there exists an infinite 
set @(y) of positive integers each of which is relatively prime to I G I and 

satisfying the following property. For each s E (9(y) and each hyperele- 
mentary subgroup H of rs such that I G I divides I HI, y vanishes under 
transfer to S(Esn+k X I) where S = /-l(q-l(H)) and q :r- - rs denotes 
the canonical map. 
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Proof. We first consider the case where r satisfies condition (ii) in 
(4.12). Let e > 0 be the number posited in Theorem 3.1 for r, then (Py) 
consists of all the integers s given in (4.12.ii) subject to the following con- 
straint 

(4.13) (( - diameter of y) < se. 

We proceed to verify that co*(y) = 0; here, w*: S(E X I) - S(Es X I) is 
the transfer map where C: S- r denotes the inclusion map. Let 4': - r 
and g: R' - Rm be the s-expansive endomorphism and 4-equivariant dif- 
feomorphism, respectively, posited in Theorem 4.1. Note that A(r) 
q -'(H') where H' is a subgroup of rs conjugate to H. Since the vanishing 
under transfer of y with respect to a given subgroup depends only on the 
conjugacy class of the subgroup, we may assume that H' = H; i.e., +(r) 
= q- 1(H). Then, as = (rf, '-1 . ( kIS), g-lf) is an admissible fibering 
apparatus for S where the action of S on R' is the restriction (to S) of the 
action of r determined by (2. It is easily checked that the (s - diameter 
of w*(y) is (1/s) ((i - diameter of y); hence by (4.13) and Theorem 3.1, 
@*(y) = 0. 

Next, we consider the remaining case; i.e., when r is a type 1, 2 or 3 
crystallographic group. In this case, let e > 0 denote the number posited 
by Theorem 3.1 for the oo-dihedral group D,,,,, and let cP(y) be the set of 
all odd primes p such that 

(4.14) (( - diameter ofy) < 2. 

One easily sees that there is a special hyperelementary subgroup H' con- 
taining H. (Special hyperelementary subgroups were defined in the 
paragraph preceeding Theorem 4.2). Hence, to show that y vanishes 
under transfer; we may assume that H is a special hyperelementary 
subgroup of rp. By Theorem 4.2, there is a crystallographic group II of 
the same type as r, group homomorphisms 4': II- and -q: It - D,,, and 
affine maps g:R2 - R2 and h:R2 - R which are 4' and --equivariant, 
respectively. Furthermore, 4 is a monomorphism, q is an epimorphism 
and {I(H) = q'-(H). In this case, let (i = (D4S, r7 4 ' . (kIS), hg'lf); 
then (is is an admissible fibering apparatus for S. One easily checks that 
the (is-diameter of w*(y) is smaller than 

(a - diameter ofy); 
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hence by (4.14) and Theorem 3.1, @*(y) = 0. This completes the proof of 
Theorem 4.4. 

5. The Main Result. We now state the main result of this paper. 

THEOREM 5.1. Let M' be a closed aspherical manifold whose fun- 
damental group is virtually nilpotent and let En+k be the total space of an 
Ik-bundle whose base space is Mn (n + k > 4), then S(En+k) = 0; in par- 
ticular, S(Mn) = 0 when n > 4. 

Before we can prove this theorem, we need some preliminary results. 
First, we recall the main result of [16] because of which the results of Sec- 
tion 2 are applicable in proving Theorem 5.1. 

THEOREM 5.2. Let H be a torsion-free virtually poly-Z group, then 
Wh H = 0; in particular, if r is a finitely generated torsion-free virtually 
nilpotent group, then Wh(r X T7) = Oforalln 2 0. 

Recall a poly-Z group is a group with a normal series where each of 
the successive factor groups in co-cyclic. 

LEMMA 5.3. Let Mn be a closed aspherical mahifold which fibers 
over the circle with fiber Na'_, if w, M' is a virtually poly-Z group and 
En+k (n + k > 5) is an Ik-bundle over Mn, then there is an exact sequence 

S(E X I) - S(E) - S(E) 

where E(n1)+k is the restriction of the bundle E to Nn 

LEMMA 5.4. Let Mn be a closed aspherical manifold with iri(Mn) a 
virtually poly-Z group and let En+k be an Ik-bundle over M' (n + k > 4), 
then there is an exact sequence 

S(E X I) - S (E X S1) - S(E) - 0. 

Proofs. These two Lemmas follow directly from [11] or [12] using 
Theorem 5.2 (cf. [3]). 

COROLLARY 5.5. Let Mn and Mn be two closed aspherical manifolds 
such that w1(M) is virtually nilpotent and rl(M) _ rl(M). Assume that 
S(En+k) = Ofor every Ik-bundle over Mn where n + k > 4. Then 8(En+k) 

Ofor every Ik-bundle over Mn where n + k > 4. 

Proof. If n < 3, then clearly Mn and Mn are homeomorphic and 
there is nothing to prove; hence assume n > 3. Applying Lemma 5.3 
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twice, we see that S(En+k) = 0 for any Ik-bundle (n + k > 6) over Mn X 
S1 X S1. In particular, S(Mn X S1 X S1 X I4) = 0; hence S(Mn X S1 X 
S1) = 0 by Lemma 2.1. But, there is a homotopy equivalence h :Mn _ 
Mn; hence h X id:Mn X S1 X S1 - Mn X S1 X S1 represents an element 
of S(Mn X S1 X Sl); therefore Mn X S1 X S1 and Mn X S1 X S1 are 
homeomorphic. Consequently, S(En+k) = 0 for any Ik-bundle (n + k > 
6) over Mn X S1 X Sl. Let En+k (n + k > 4) be an Ik-bundle over Mn, 
thenEn+k X S1 X S1 isanIk-bundleoverKP Xn X sl X S1; hence S(E X S1 
X S1) = 0. Now a double application of Lemma 5.4 shows that S(En+k) 

=0. 

If r C E(m) is a crystallographic group, we call the integer m the 
dimension of r and denote it by dim r. (Note that if r is torsion-free, then 
dim r = cd(r). In general, dim r = vcd(r); i.e., it is the same as the vir- 
tual cohomological dimension of r.) 

Let r be a finitely generated, torsion-free, virtually nilpotent group 
and let (Rn, r) be a free properly discontinuous action with compact orbit 
space Rn/r. We define the holonomy number of this action, denoted by 
h(Rn, r), to be the minimum order of the holonomy group of a crystallo- 
graphic group r that can occur in a fibering apparatus a = (F, X, f ) for r 
where ved F 2 2 and (Rn, r) is the action of r on Rn occurring in (a. If 
there is no such apparatus (a in which (Rn, r) occurs, we set h(Rn, r) = 
co. And we define the holonomy number of r, denoted by h(r), to be the 
minimum of h(Rn, r) as (Rn, r) varies over all free properly discontinuous 
actions with Rn/r compact. Note that if cd(r) > 1, then h(r) < oo; this is 
a consequence of Lemma 1.3. (Warning, the definition of h(r) made 
above is slightly different from the one used in [16].) 

Proof of Theorem 5.1. Let r = 7r,(Mn); we will proceed by induc- 
tion first on n = dim Mn and next on h(r); i.e., we assume S(Em+k) = 0 
for any Ik-bundle whose base space is a closed aspherical manifold NA 
where 7r1(Nm) is virtually nilpotent and either m < n, or m = n and 
h(7r1(Nm)) < h(r). If n = 0, then Mn is a point and En+k = Ik; in this 
case, Theorem 5.1 is a consequence of Smale's h-cobordism theorem, the 
Alexander trick and Lemma 2.1. When n = 1, Mn is a circle and Theorem 
5.1 is a consequence of the case n = 0 together with Lemmas 5.3 and 2.1. 
Hence, we may assume that n 2 2. 

If h(r) = 1, then there is a fibering apparatus (i = (r, f, 4) for r 
such that r is free abelian of rank at least 2. Let (Rn, r) denote the r ac- 
tion in (i; then by Corollary 1.4, Rn/r fibers over a circle with a closed 
aspherical manifold Nn-1 for fiber where 7r, (Nn- 1) is virtually nilpotent. 



ALMOST FLAT RIEMANNIAN MANIFOLDS 665 

Hence, we see S(En+k) = 0 by Lemmas 5.3 and 2.1 together with Cor- 
ollary 5.5 and our induction hypothesis. Therefore, we can assume both 
cd(r) 2 2 and h(r) 2 2. 

The induction argument now splits into two steps. First, we show that 
the normal map 

(5.1) r: (En+k X I4) [Efl+k X I4rela, G/Top] 

vanishes where En+k is any Ik-bundle (n + k > 4) with base space Rn/r 
and h(Rn, r) = h(r). To do this step, let e = (r, X, f ) be a fibering ap- 
paratus for r with (Rn, r) its r-action and such that vcd(r) 2 2 and I G 
= h(r) < oo where G is the holonomy group of r. 

Now r satisfies one of the three possibilities listed in Theorem 1.1. If 
it satisfies possibility (i), then again Rn/r fibers over a circle and S(En+k 
X I4) = 0 by the same argument as before. 

In the case of possibility (iii), r maps onto a crystallographic group r 

of either type 1, 2 or 3; let : r- P denote this epimorphism. By Lemma 
1.2, there is a {-equivariant affine surjection F: R _ R2 where r c 
E(m). Composing F with f and A with X, we obtain a new fibering ap- 
paratus (r, {0, Eff) for r which is a special fibering apparatus. (See 4.13). 

In the case of possibility (ii), we proceed analogously (to the above 
method) to obtain a special fibering apparatus (r, r, F) with (Rn, r) as its 
r-action and where P is a crystallographic group satisfying (4.12.ii) in 
which r is replaced by P and G by the holonomy group of r. We can also 
assume that vcd(P) 2 2 since there are (up to isomorphism) only 2 
crystallographic groups T and T2 * T2 of dimension 1 and T2 * T2 does not 
satisfy (4.12.ii) while if r = T, then r would satisfy possibility (i) which we 
have already discussed. 

Because of the above remarks, we may as well assume when possibili- 
ties (ii) or (iii) occur that (i = (r, X, f) is a special fibering apparatus for r 

with (Rn, 4) as its r-action and with vcd(r) 2 2. By our induction 
hypothesis, (i is also an admissible fibering apparatus. Let E = En+k X 
P and y E S(E x I). By Theorem 4.4, there is a positive integer s which is 
relatively prime to I G I and such that y transfers to 0 in S(Es X I) for each 
hyperelementary subgroup H of rs whose order IH is divisible by G , 
where S = qY l(q-l(H)) and q:F - rS is the canonical map. We will use 
Theorem 2.2 (in its statement, replace G by r), to conclude that r(y) = 
0. To show that Theorem 2.2 is applicable, it remains to show that y 
vanishes under transfer to S(Es X I) where S = qV'(q 1(H)) and H is a 



666 F. T. FARRELL AND W. C. HSIANG 

hyperelementary subgroup of rs such that I G I does not divide I HI. Con- 
sider aH = (q -(H), 0 1S, f); it is a fibering apparatus for S and 
vcd(q-1(H)) = vcd(r) 2 2. Note that the holonomy group of q1l(H) is a 
proper subgroup of G; hence h(S) < h(r). Therefore, S(Es X I) = 0 by 
our induction hypothesis; consequently, Theorem 2.2 is applicable; this 
completes the verification of step 1. 

Our second step is to show that S(En+k X I4) = 0 where En+k is as 
above; i.e., En+k is an Ik-bundle (n + k > 4) over Rn/r where h(R', r) = 
h(r). We also keep the same fibering apparatus ai = (r, Xf,) as before; in 
particular, if r satisfies either possibility (ii) or (iii) of Theorem 1.1 (but 
not possibility (i)), then vcd(r) - 2 and ai is a special fibering apparatus 
which by our inductive assumption is also admissible. 

If possibility (i) is satisfied by r, then Rn/r fibers over a circle and (as 
was argued above) S(En+k X I4) = 0. If either possibility (ii) or (iii) (but not 
(i)) is satisfied by r, lety E S(E X I) (where E = E X I3) and s be one of the 
positive integers given by Theorem 4.4 and such that (s, G ) = 1 and y 
vanishes when transferred to S(Es X I) for each S = /V1(q -1(H)) where H 
is any hyperelementary subgroup of rs with IH divisible by IG. As we 
showed above using our induction hypothesis, y also vanishes when we 
transfer it to S(Es X I) where S = qY1(q -(H)) and H is any other 
hyperelementary subgroup of rs since in this situation the group S(Es X I) 
itself is zero. Hence, if Theorem 2.3 is applicable; then y = 0 and we will 
have verified step 2. 

To show that Theorem 2.3 is applicable, we must see that the normal 
map 

(5.2) rs:S(Es X I) - [Es X Irela; G/Top] 

is the zero homomorphism where S = 471(q 1(H)) and H is any 
hyperelementary subgroup of rP. If IGI does not divide H, we saw 
above that S(Es X I) 0 and hence r5 = 0. If I G I divides H, then aH 

= (q -1(H), 0 S,f) is a fibering apparatus for S such that vcd(q -1(H)) = 
vcd(r) 2 2 and the holonomy group of q 1(H) is isomorphic to G. Hence, 
either h(S) < h(r) or h(Rn, S) = h(S) = h(r). In the first case, S(Es X I) 
vanishes (and hence rs 0) by our induction hypothesis. In the second 
case, step 1 is applicable to the pair (Rn, S) which also shows that rs 0. 
(Note that although S need not be isomorphic to r, it is a torsion-free, 
finitely generated, virtually nilpotent group such that cd(S) = cd(r) and 
h(Rn, S) = h(S) = h(r); and the arguments above actually showed that 
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step 1 is valid for any pair (Rn, S) satisfying these hypotheses.) This com- 
pletes the verification of step 2. Theorem 5.1 now follows immediately 
from step 2 together with Lemma 2.1. 

6. Applications. In this section, we deduce several consequences of 
Theorem 5.1. Our first result is a specialization of this theorem to the case 
of virtually abelian fundamental groups. 

THEOREM 6.1. Let Nn be a closed connected flat Riemannian 
manifold where n ? 3, 4 and let Mn be an aspherical manifold such that 
wi(M?) is isomorphic to rl(Nn), then Nn and Mn are homeomorphic. 

This improves on Theorem A of [14]; in the eariler result, we had to 
assume the holonomy group of Nn had odd order. (To deduce Theorem 
6.1 from Theorem 5.1, recall that two aspherical manifolds with isomor- 
phic fundamental groups are homotopically equivalent.) 

Next, we topologically characterize (high dimensional) flat Rieman- 
nian manifolds. (This result improves on Theorem A' of [14].) 

THEOREM 6.2. Let Mn (n ? 3, 4) be a closed connected manifold. It 
supports aflat Riemannian structure if and only if wr(MA) = Ofor all i > 1 
and w1((M) contains an abelian subgroup with finite index. 

The implication in one direction is a consequence of Bieberbach's 
theorem that a crystallographic group is virtually abelian together with 
Killing's result that the univeral cover of a closed connected flat Rieman- 
nian manifold is R . In the other direction, the implication follows im- 
mediately from Theorem 6.1 together with a result due to Zassenhaus [30] 
and Auslander and Kuranishi [1] that any finitely generated, torsion-free, 
virtually abelian group is crystallographic. 

Recall an infranilmanifold (cf. [21], [26], [28]) is a double coset space 
r\G/K with G = L X K where L is a simply connected nilpotent Lie 
group, K is a compact Lie group, and r is a discrete cocompact subgroup 
of G. Theorem 5.1 also has the following immediate consequence. 

THEOREM 6.3. Let Nn (n # 3, 4) be a closed connected infranil- 
manifold and Mn be an aspherical manifold with wl(Ma) isomorphic to 

wl(Nn), then Nn and Mn are homeomorphic. 
If Nn is a nilmanifold, this result was proven 10 years ago by Wall [28, 

Theorem 15 B.1]; and if Nn is the n-torus, the result was proven earlier yet 
by Wall [27], and Hsiang and Shaneson [20]. 

If b( , ) is a Riemannian metric on a compact manifold Mn, let 
d(M', b) denote the diameter of Mn with respect to b( , ) and let c(Mn, b) 
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denote the maximum of the sectional curvatures of Mn relative to b(, 
Following the terminology introduced by Gromov in ]19], an almost flat 
structure on a closed connected smooth manifold Mn is a sequence of 
Riemannian metrics bi(, ), where i = 1, 2, 3, ..., such that 

(6.1) (a) lim c(Mn, bi) = 0 and 
i-0oo 

(b) {d(M, bi) I i = 1, 2, ... ,} has a finite upper bound. 

Our final application is a topological characterization of (high 
dimensional) almost flat manifolds. 

THEOREM 6.4. A closed connected manifold MA (n ? 3, 4) supports 
an almost flat smooth structure if and only if wi(M) = Ofor all i > 1 and 
ir (Ms) contains a nilpotent subgroup with finite index. 

The implication in one direction is a consequence of the Main 
Theorem in Gromov's paper [19]. The implication in the other direction 
follows from Theorem 6.3 together with the fact that there exists an infra- 
nilmanifold Nn with rl1(Nn) isomorphic to 7r1(Mn) (cf. [16, proof of Lem- 
ma 1.2]) and the following result whose proof was outlined to us by Dan 
Burns. 

LEMMA 6.5. Any infranilmanifold supports an almost flat struc- 
ture. 

Proof. We follow Gromov's argument [19, p. 235] extending it from 
nilmanifolds to infranilmanifolds. Let Mn be an infranilmanifold, then 
recall Mn = r\G/K with G = L X K where L is a simply connected (con- 
nected) nilpotent Lie group, K is a compact Lie group (in fact, we can 
assume K is finite) and r is a discrete cocompact subgroup of G. Let f 
denote the Lie algebra of L, then the action of K on L is uniquely deter- 
mined by an action of K on f via Lie algebra automorphisms. Let 

(6.2) f = Cf ID C2f D ... Cmf = 0 

be the descending central series for f, then the action of K on f respects 
this filtration; i.e., gx E C'I provided x E C'I and g E K. Since K is compact 
(finite), we can decompose the representation relative to this filtration; 
i.e., there are K-invariant R-subspaces A1, A2, ..., Am of f such that C1i 

=Ai C'+1I for i = 1, 2, .. ., m. (Let Cm+1f = 0). For eachj, choose a 
K-invariant inner product bi( , ) on Aj and define an infinite sequence bi 
of K-invariant inner products on f determined by 
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(0, if s t 
(6.3) bi(xs, y,) = 

(y tibJ(xs, y,), if s= t =j, 

where xs E As, Yt E At and Itij is an array of positive real numbers indexed 
by i= 1, 2, 3, ... andj = 1, 2, . . ., m such that 

(6.4) (a) ,i = and 

(b) (,llj)nf+4 < /ji-j for all i andj. 

Then, each bi determines a left invariant Riemannian metric bi on L; fur- 
thermore, K acts on L via isometries of this metric. Identifying L with 
G/K, we see that r c (L >1 K) = G acts on L via isometries of bi; let bi be 
the induced Riemannian metric on Mn = r\G/K. Then, by [19; 4.4], we 
see that condition (6.1.a) is satisfied. To see that copdition (6.1.b) is also 
satisfied, consider the nilmanifold Nn = (r n L)\L which is a finite 
sheeted cover of Mn and let {b'iIi = 1, 2, ... ,} be the set of induced 
Riemannian metrics on Nn. Clearly, 

(6.5) d(Nn, b 'i) 2 d(Mn, bi); 

but, as observed in [19; 4.5], {d(Nn, b'i) I i-1, 2, ... .,} has a finite upper 
bound. This completes the proof of Lemma 6.5. 

7. Appendix. In this section, we shall state a variance of Chapman- 
Ferry-Quinn theory [18], [4], [24] for the structure set. The proof is almost 
the same as that in [4] except for some modifications; it is carried out in 
detail in [17]; in fact, a more general result than stated here is proven 
there. 

Let Mn be a closed aspherical manifold satisfying the following condi- 
tions where Te denotes the {-dimensional torus: 

(7.1) (i) Wh(7rw(Mn X TV)) = 0 for 2 ? 0; 
(ii) if Fn+4+a _Mn X Tf is an Ia-bundle over Mn X Te (Q 2 0), 

then S(Fn+f+a) = O for n + Q + a 2 6. 
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Consider a locally trivial bundle 

(7.2) F-E X 

where F = Fn+c+a is as in (7.1) and X is a topological manifold (possibly 
open, possibly with boundary) with metric d. For a compact submanifold 
(or subset) C ' X, we have the c-neighborhood CE of C defined to be 

(7.3) Ce = {xId(x, C) < c}, 

Let f:E' - E be a homotopy equivalence. We say that f is a 
6-homotopy equivalence (6-equivalence) over a subset Y of X if there exists 
a (proper) homotopy inverse g :E - E' and (proper) homotopies F:E' X 
I - E' connecting gf to IdE, and G :E X I -E connectingfg to IdE satis- 
fying the following conditions: 

(7.4) (i) each path pfF(x X I) (where x E (fp)1 (Y)) has diameter less 
than 6 (in X); 

(ii) each pathpG(x X I) has diameter less than 6 providedp(x) E Y. 

(Notef need only be a homotopy equivalence over Y; in particular, F and 
G need only be defined over Y). In the case a > 0 in (7.1) and (7.2), we 
modify the notion of 6-equivalence as follows. Let aoE be the sub-bundle 
of (7.2) whose fiber is aF and let aOE' be a codimension-0 submanifold of 
aE. Then f restricted to aOE' is a homeomorphism onto aoE (such that 
f 1(aoE) = aoE') with inverse g I aoE and the homotopies FI (aoE' X I), 

GI (aoE X I) are constant. 
Similarly, we can define a-homotopies of maps. 

THEOREM A. Let p :E - X be given as above and let C be a com- 
pact subset of X and e > 0 be a small number. Then, there exists a 
number 6 > 0 depending only on C, X and c (in particular, 6 does not de- 
pend on E) such that every 6 equivalence (over C2E) f :E' - E (where 
dim E = dim E' > 5) is c-homotopic to a map f ':E' -E such that 

f I (Pf) (Ce): (pf)f l(CE) _ p-1(Ce) 

is a homeomorphism. Furthermore, f' agrees with f on aOE' and the 
homotopy between them is constant there. 
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ADDENDUM. Iff is already a homeomorphism over a codimension-O 
submanifold of WX, then we can arrange (in Theorem A) for f' to agree 
with f over this part of the boundary and for the homotopy to be constant 
there. 
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