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The homeomorphism group of a compact
Hilbert cube manifold is an ANR

By STEVE FERRY*

Abstract

In this paper, we prove that the homeomorphism group, H(M), of a
compact @-manifold is an ANR. Results of Geoghegan and Torunczyk then
show that H(M) is an [,-manifold.

As by-products of the proof, we obtain a CE approximation theorem
for l,-manifolds, a Vietoris theorem for simple homotopy theory (general-
izing the result that a CE map between complexes is simple), and a proof
that the nerve of a suitably nice open cover of a complex is simple homotopy
equivalent to the complex.

1. Introduction

Let @ = JI;-,[—1, 1] be the Hilbert cube and let I, be separable Hilbert
space. A separable metric space M is called a @-manifold or an l,-manifold
if it is a manifold modelled on Q or [,, respectively. If M isa locally compact
separable metric space, we will let H(M) denote the group of self-homeo-
morphisms of M with the compact-open topology. If M is compact, we will
consider H(M) to be a metric space under the norm d(f, g) = Sup,. d(f(m),
g(m)).

In [A-B], Anderson and Bing posed the question: If M is a compact
manifold modelled on R™ or on Q, is HM) an l-manifold? The answer is
“yes” for 2-manifolds ([M], [L-M], [G], [T]) and the question is unsolved for
finite dimensional manifolds of dimension %>2. In this paper we show that
the homeomorphism group of a compact @-manifold is an /,-manifold.

In the years since Anderson and Bing raised the question, several authors
have made important inroads on the problem. In particular, our proof relies
on the following versions of theorems of Geoghegan and Torunczyk.

THEOREM (Geoghegan [G]). If AS M is a closed subset of a (finite
dimensional or Q-) manifold M, then H, (M)~ H,(M)x1,, where H (M) is
the group of homeomorphisms of M which fix A.

THEOREM (Torunczyk [T]). The product of I, with any complete separ-
* Partially supported by NSF Grant.
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able metric ANR is an l,-manifold.

These results reduce the problem of showing that H(M ) is an l,-manifold
to the problem of showing that H(M)is an ANR. We will prove that H (M)
is an ANR, where M is a compact Q-manifold and Ac M is a Z-set (see §2
for the definition of Z-set).

We need some definitions. If « is an open cover of a space Y, then two
maps f, g: X —»Y are a-close if for each x € X there is U, € a such that f(x),
g(®) e U,. A homotopy h: X x I—Y is said to be an a-homotopy if for each
@ € X there is a U, € @ such that a({x} x I\ U,. If h is an a-homotopy from
f tog, we write h: fég or simply fég. In such a case we will say that f
is a-homotopic to g. A homotopy h: X x [ —Y is stationary on X, c X if
h(z,t)=h(z, 0) for eacht e I,x € X,. If Ue a, St(U, a)=U{VealVnU=Q).
By St @ we will mean the cover {St(U, a)|U e al.

A map f: X —7Y is said to be proper if f~(K) is compact for each com-
pact KC Y. The symbol f gf,,g will mean that fis proper homotopic to g.
If @ is an open cover of Y, a proper map f: X —Y is said to be an a-equi-
valence if there is a proper map g: Y — X such that gof f_éa)id and fo gé »id,
where /() is the cover {f(U)|Ue a}. Now g is called an a-inverse for
Sf. If X and Y are l,-manifolds, we drop the requirement that f, g and the
homotopies be proper. A map f: X—Y is called a Jfine homotopy equivalence
if fis an a-equivalence for each open cover a of Y.

Haver [H], Kozlowski [K], Lacher [L], and Price [P] have characterized
the fine homotopy equivalences between locally compact ANRs as being those
maps whose point-inverses are cell-like. These maps are called CE. Armen-
trout [A\], [A,], Siebenmann [S], and Chapman [Ch,] have proven CE ap-
proximation theorems for 3-manifolds, manifolds of dimension n=5, and for
Hilbert cube manifolds, respectively. A CE approximation theorem says
that if f: N— M is a CE map between manifolds of the same (finite or
infinite) dimension and £ is an open cover of M then fis B-close to a homeo-
morphism.

Several of our results are CE approximation-type theorems. Theorem
3.3 says that if M and N are l,-manifolds and /: N — M is an a-equivalence
then fis St a-close to a homeomorphism. This implies that fine homotopy
equivalences between l,-manifolds can be approximated arbitrarily closely
by homeomorphisms. We would like to thank F. Ancel for bringing this
question to our attention.

Theorem 3.1, which contains the main ideas of this paper, is a general-
ization of Chapman’s CE approximation theorem. Theorem 3.1 says roughly
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that an a-equivalence f: N— M is close to a homeomorphism. Moreover,
the smallness of a needed to insure this depends only on M. This im-
mediately implies (Cor. 3.2) that if K is a polyhedron, then there is an open
cover a of K such that if L is a polyhedron and f: L — K is an a-equivalence,
then f is a simple homotopy equivalence. This generalizes Chapman’s
theorem [Ch,] that a CE map between polyhedra is a simple homotopy
equivalence.

To prove that H(M) is an ANR, we develop the basics of Q-manifold
theory parameterized over an arbitrary separable metric space. We combine
this with the ideas of Theorem 3.1 to exhibit H(M) as a retract of a suitable
space of homotopy equivalences.

We would like to thank T. A. Chapman for his encouragement and
advice during the course of our work. H. Torunczyk has also obtained many
of the results of this paper.

2. Preliminaries

In this section we will establish our notation and state some basic results
from @-manifold theory which are needed in the sequel. All spaces in this
(and all other) sections will be separable and metric. Proofs of the results
stated here, except for Theorem 2.5, may be found in [Ch,, Chapters I-IV].

A closed subset A of a @-manifold M is said to be a Z-set if for each
open cover « of M there isa map 1 M —> M — A with f Zid. This is equi-
valent to requiring an @-homotopy f: M x I — M with f,=id and f(M)cM—A
for all {>0. An imbedding f: X — M is called a Z-imbedding if f(X) is a
Z-set in M.

The basic result on Z-sets in @-manifolds is

THEOREM 2.1 (Z-set unknotting [A-Ch]). If f,¢: X — M are proper
homotopic Z-imbeddings then there is a homeomorphism H: M — M such
that Hof = g. If the homotopy is limited by an open cover « of M then H
can be chosen c-close to the identity.

We will also need stability and collaring theorems.

THEOREM 2.2 (Stability [A-S]). (1) Let M be a Q-manifold and let « be
an open cover of M. Then there is a homeomorphism v: M X Q — M which
18 a-close to projection.

(i) The same statement holds for l-manifolds when Q is replaced by
l,. ||

THEOREM 2.3 (Collaring [Chy]). Let N and M be Q-manifolds and let
J: N— Mbe a Z-imbedding. Thenthereisanopenimbedding F: N x [0, 1)—M
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such that F(n, 0) = f(n). |
If X, f—‘» Xzﬁ -+ is a finite or infinite direct system of maps, we define
Ji fe

Map(X,—= X,=— ---) to be the space obtained from the disjoint union
1, X, %[0, 1] by identifying (», 1) € X, %[0, 1] with (f,(2), 0) € X,,, %[0, 1].
Note (see figure 1) that Map(X — Y') is not the usual mapping cylinder of f.

Map (X—15Y) = 7

X Y < {0} Y (1}

FIGURE 1.

The point of this is that Y x {1} is a Z-set in Map(X EX Y), while the base of
the usual mapping cylinder need not be a Z-set in the mapping cylinder.

An easy corollary of the stability and collaring theorems (compare Cor.
4.10) is

THEOREM 2.4 (Weak mapping cylinder theorem). IfX, 5 X, L f"—_l>X%
18 @ sequence of Q-manifolds and Z-imbeddings and « is an open cover of
X.,, then the collapse c¢: Map (X, -& <o f"—_—1> .)— X, X {1} ©s a-close to a homeo-
morphism. |

The following general deformation result of Fathi and Visetti is crucial.

THEOREM 2.5 [F-V]. Let CCUC M where M is a Q-manifold, C is com-
pact, and U is open. Let 7: U — M be the inclusion and let I(U, M) be the
space of open imbeddings of U into M with the compact-open topology.
Then there is a neighborhood P of 7 in I(U, M) and a map ®: P— H(M)
such that ®(g9)|C = ¢g|C, ®(n) = id and ®(g9)|(M — U) = id.

If C is closed but not compact, then for each open cover & of M there is
an open cover S of M such that if g: U — M is B-close to the inclusion then
there is a homeomorphism g: M — M such that gIUég, glC=g|C, and
gl(M - U) = id. |

3. A generalization of the CE approximation theorem

In this section we will prove our generalization of the CE approximation
theorem and derive some of its corollaries. A parameterized version of this
theorem is used in Section 5 to show that H(M)is an ANR. The theorem of
this section cannot be derived directly from the parameterized version of
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Section 5 because (1) the manifolds in Section 5 are required to be compact
and (2) technicalities in the parameterized version obscure the dependence
of B on a and M.

In what follows, a map such as p,: A X B— A will denote projection onto
A.

THEOREM 3.1 (a-approximation theorem). Let M be a Q-manifold. For
each open cover & of M there is an open cover B of M such that if Nisa
Q-manifold and f: N— M 1is a B-equivalence then f is a-close to a homeo-
morphism.

Proof. Let g be a B-inverse for f. Without loss of generality, f and ¢
are Z-imbeddings.

Step I. The construction of an approximation to f x id: Nx[O0, o) —
M %[0, o).

Pf. (I). Let X = Map(NL M L NL M—...). We first construct
homeomorphisms H: N x [0, c)—Xand K: X—M X [0, =) suchthat p,(K-H)
is St B-close to fopy. See Figure 2.

N [0, o) = \

M« [0, o) = \

FIGURE 2.

We proceed to construct H and K.

A. There is a homeomorphism H, from N x[0, 1] to Map (N—J; M—g»N)
such that

() pyis f'(B)-closetoc,oH,, wherec, isthe collapse of Map (N -J:»M g, N)
to N.

(ii) H,o%, = %, and H,o1; = 1,.
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Proof. Let 7,: N x[0,1]— N and v,: Map(N — M — N)— N be homeo-
morphisms closely approximating p, and ¢,, respectively. Then 7,04, is
S7'(8)-homotopic to 7, o t, and ¥, ¢ 4, is f'(8)-homotopic to v, 1, (actually, we
can make the last homotopy as small as we want). Thus, there is a homeo-
morphism 7;:: N— N such that 7, is f ~!(B)-close to the identity and such that
YsoVi0t = Yoty and Vg0V, 04y = V,04,. We set H, = Y2toY07,. Then

1 e
coH, =¢ 0 e V5o =y VoY =, Y =, Dy .

That H, -4, = ¢, and H, o1, = i, is clear.

B. There is a homeomorphism K, from Map (NL M)to M %[0, 1] such
that

(ili) 4, = K o1, and

(iv) pyoK,=,c, where ¢, is the collapse. K, may be chosen so that the
homotopy is as small as we please.

N 02
i
N M °
M
P M

C. Thereis a homeomorphism K,: Map (M LN EX M)— M x[0, 1] such
that

(V) K,o%; = i5and K,o4, = 1,

(vi) pyoK, é,, s, Where ¢, is the collapse Map (M—g» N EA M)— M.

M < [0, 1]
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M [0,1]

Proof. The proofs of B and C are entirely analogous to the proof of A.
D. The construction of H and K.

Pf.

N % [0, )

\

o

Pl E

et

N\

H is constructed by gluing together infinitely many copies of H,. K is
constructed from one copy of K, and infinitely many copies of K.

E. The verification that F = Ko H has the desired properties.

We consider three cases according to whether H(z) lies in Regions I, II,
or IIT of X as shown.
Case 1. H(w) € Region I:

Fomn(@) L, foc,o Hix) = Fogoc,o Hyx)
£ 0 H(@)=, puo K, o Hy() = pyo F(2).

M % [0, <)
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Case 2. H(x) € Region II.

Fovs(@) £, foe,o Hw) = oy Hyx)
éppMoKZOHl = pyo F(2) .
Case 3. H(x) € Region III.

B
o py(®) =, focH(%) = fogocyo H (x)
£ o Hi@) £, pyoKyo Hi@) = pyoF(@) .
This completes the proof of Step I.

Step II. The construction of an approximation to f x id: N x [0, 1] —
M % [0, 1].

Pf.(II). Let 0:[0,0)—[0,1)beahomeomorphism and define h,: N x [0, 1)—
Mx[0, 1) by h, = (0 xid,)(F)(o xidy)"?, where F is as in Step I. By choosing
© appropriately and requiring 8 to be fine we can obtain any desired degree
of approximation to fxid. Let h, N x (0, 1] — M x (0, 1] be defined by
hy(m, t) = hy(n, 1 — t).

Consider 7,h;*|(Mx (1/4, 8/4)): M x (1/4, 3/4)— M x [0, 1]. If h, and h, are
v-close to fxid, we have

hohit % (f xid)hit = hohit = id

80 h.h;'| M % (1/4, 3/4) is St(7)-close to id. By Theorem 2.5, if 7 is sufficiently
fine, there is an extension hy;: M x [0, 1] — M x [0, 1] of h,h;'| M x [1/3, 2/3]
which is close to the identity. Thus, for sufficiently fine 8 and appropriate
0, the map h: Nx[0, 1] — M x [0, 1] defined by

h(n, t), t<1/2

h(n, t) =
0 8 = o, 6, 6= 12

is well-defined and satisfies p, oh 5f opy. This completes Step II.

The remainder of the proof of Theorem 8.1 is easy. If we choose 7,
and v, tobe homeomorphismsclosetop,: N x [0, 1]— Nand p,: Mx[0, 1]— M,
Yuoho7y' is a homeomorphism a-close to f. B

COROLLARY 3.2. Let L be a locally compact ANR. Then there is an
open cover & of L such that if K is another locally compact ANR and
J: K— L is an a-equivalence then f is a simple homotopy equivalence.

Proof. By aresultof R.D.Edwards(see[Ch,, §44]), L x Qisa @-manifold.
By Theorem 3.1, there is a cover @, of L X @ such that any «,-equivalence
from a @-manifold to L x Q is homotopic to a homeomorphism. Refine a, to
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a cover by sets of the form U xV where UcC L and Vc @ are open. For
eachleLlet U'x V!, -+, Ui, x Vi, be a finite cover of {l}xQ and write
U'=Nk, Ul Let @ = {U,|leL}.

If f: K— L is an a-equivalence with a-inverse g, then fxid: Kx Q@—L X Q
is an a,-equivalence with «,-inverse g xid. Thus, fxid is proper homotopic
to a homeomorphism and, by [Ch,], f is a simple homotopy equivalence. [l

COROLLARY 3.3. Let X be a compact ANR. Then there is an €>0 such
that if @l is a finite open cover of X by open sets such that

(i) diam U<e for each U el and

(ii) intersections of subcollections of U are either empty or contractible
then X and N(U) have the same simple homotopy type. Here, N(OU) is the
nerve of Al.

Proof. If ¢ is sufficiently small, X is homotopy equivalent to N(°U) in
such a way that Corollary 3.2 applies. The proof is a modification of Ex-
ample 1 of Chapter 5 of [Su], which is a proof that the Lubkin nerve of a
complex is homotopy equivalent to the complex. One can prove statements
analogous to Corollary 3.3 about sufficiently fine Lubkin nerves and brick
decompositions ([B, 13.2]). ]

THEOREM 3.4. Let M and N be l,-manifolds. If f: M— N is an q-equi-
valence then f is St(a)-close to a homeomorphism.

Proof. The proof of Step I of Theorem 3.1 works equally well for
l,-manifolds. Let h: N x[0, o) — M x[0, ) be a homeomorphism approxi-
mating fxid. Since [,=1[,x[0, ), Theorem 2.2 implies that we can choose
homeomorphisms v,: Nx[0, ) — N and 7,: M x[0, =) — M as close as we
like to projection. Thus, 7,A75" is a homeomorphism approximating f. [}

One can modify the argument of Theorem 3.1 above to prove a local
theorem.

Definition 3.5. Let M be a @-manifold, let Uc M be an open set, and
let « be an open cover of M. A map f: N— M is said to be an a-equivalence
over U if there is a map g: U — N such that gof| f~(U) and fog are f~'(a)-
and a-homotopic to the appropriate inclusions.

THEOREM 3.6. If C is a closed subset of M, U is an open subset of M
containing C, and a is an open cover of M, then there is am open cover 8
of M such that iof f: N— M is a B-equivalence over U then f is a-close to a
map f: N— M such that f|f‘1(C) is a homeomorphism and f = f over
M- U. ]
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Remark 3.7. The reader who is familiar with completely regular maps
will note that Theorem 1(1) of [Ch-F] follows from Theorem 3.1 by a selec-
tion argument. Similarly, Theorem 1(i) of [F] follows from Theorem 3.1 and
R.D. Edwards’ result that the product of a locally compact ANR with Q is
a @Q-manifold. [ ]

4. Parameterized preliminaries

In this section we will prove parameterized versions of some basic
theorems of @-manifold theory. Our starting point is a slightly weakened
version of a canonical Z-set unknotting theorem due to Chapman.

ProrosiTION 4.1 ([Chﬁ, Thm. 5.1]). Let A be a compact metric space and
let M be a @-manifold. Then thereis a continuous map ¢: C*(A X I, M x s)—
H(M X Q) such that ¢(F)oF, = F,. Here, C*(Ax I, M x s) denotes {F: Ax I—
M x s|F|A x {0} and F|A x {1} are 1 — 1} (with the C-O topology) and
F, = FlAx({t} (s]I; (-1, 1)cQ).

The difficulty in using this theorem is that it is not expressed in topo-
logically invariant form. By defining sliced Z-sets and imitating Chapter 2
of [Ch,], we prove a parameterized analogue of Theorem 2.1.

Definition 4.2. A map f: X x B— Y x B is said to be JSiber-preserving
(f.p.) if pyof = ps. A closed set A M x B is said to a sliced Z-set if for
each open cover 8 of M x B there is an f.p. map f: M x B— (MxB)— A
which is B-close to id. An f.p. map f: Ax B— M x B is said to be a sliced
Z-vmbedding if f(Ax B) is a sliced Z-set.

Remark 4.3. The following modification of Example 5.2 of [Ch;] shows
that a set ACMx Bsuchthat AN Mx {b}isa Z-set in M x {b} is not necessarily
asliced Z-set. Let Q x Q be fibered over Q by projection onto the first factor.
The diagonal A CQ x Q is not a sliced Z-set. An f.p.maph: @xQ—QRxQ—A
would have the form i(q,, 2.)=(q,, (., ,)) with hy(g,, ¢:) #q,. Then k(q,, ¢,)=
(P g, qv), 0) would be a map from Q x Q to itself with no fixed point, a con-
tradiction.

Wong [W,] has shown that if B is a finite-dimensional polyhedron, then
a closed set ACMx B is a sliced Z-set if and only if AN M x {b} is a Z-set in
Mx{b} for each beB. Wong has developed an entirely satisfactory
Q-manifold theory parameterized over finite complexes. |

For the remainder of this section, M will be a compact @Q-manifold and
B will be a separable metric space. Our main objective is to prove the
theorem below.
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THEOREM 4.4 (Z-set unknotting). Let A be compact and let f, g: AX B—
M x B be £.p. homotopic sliced Z-imbeddings. Then

(i) there is an f.p. homeomorphism H: M x B— M x B such that Hof=g;

(i) if A, is a closed subset of A, f[(A, X B) = g|(4,x B), and the
homotopy from f to g is stationary on A, X B, then H|(A,x B) = id;

(iii) @f the homotopy is limited by an open cover B of M X B, then H
can be chosen B-close to the tdentity;

(iv) if B, s a closed subset of B and the homotopy is stationary on
A X B, then we can choose H|(M X B,) = id.

We will prove some intermediate propositions before arriving at a proof
of Theorem 4.4. We remark that Theorem 4.4 remains valid for noncompact
M and A if all maps and homotopies are proper.

PROPOSITION 4.5. Let A be compact and let f, g: A X B— M X s X B be
f.p. imbeddings such that f and g are £.p. homotopic in M X QX B. Then
there is an f.p. homeomorphism H: M x @ X B— M X Q x B such that Hof=g.
Furthermore, if the homotopy from f to g is limited by B, then H may be
chosen B-close to the tdentity.

Proof. The original homotopy can be approximated arbitrary closely
by a homotopy in M x sx B. The unestimated version then follows directly
from Proposition 4.1. The estimated version follows from the unestimated
version by the Anderson-McCharen trick. See [A-M], [Ch,, § 19] or the proof
of our Theorem 4.4 (which follows Proposition 4.8) for details. B

We will need an f.p. version of the stability theorem.

THEOREM 4.6 (Fibered stability). Let M be ¢ Q-manifold and let 5 be
an open cover of M x B. Thenthereisan f.p. homeomorphism h: M x QX B—
M x B ibhich 1s B-close to projection.

Proof. Let h;: MxQ — M be a homeomorphism. It suffices to find an
f.p. homeomorphism a: M X @ x @ x B— M x @ x B which is (h, xid)™* (8)-
close to projection.

In [W,], R. Wong constructs a map h: @ X @ X [1, o) — @ such that

(i) h;:QxQ— @ is a homeomorphism, 1 < ¢ <o,

(ii) if n=t then h, is 27"-close to projection on the first factor. (See also
[Ch,, §13].)

One can now construct a function p: M x B—[1, «) such that the homeo-
morphism defined by a(maq,, q, b) = (m, h(q,, ., o(m, b)), b) has the desired
properties. B

PROPOSITION 4.7. Let AC M X @ X B be a sliced Z-set and let B be an
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open cover of M X Q X B. If X 1iscompactand f X X B— M x Q X B is an
f.p. map, then there is an f.p. imbedding f: X x B— M x s X B— A such that
£ s B-close to f.

Proof. Let B, be a star refinement of 8. Since A is a sliced Z-set, there
is an f.p. map fRXXB— MxQxB which is B-close to f such that
S (XxB)nA = @. Let B, be an open cover of M xQ x B such that St 3,
refines 8, and such that if f* is St B,-close to f’, then f*(XxB)NA = @&.

Choose f.p. f” B,-close to f’ such that f”(Xx B)c M xsx B. Our task
reduces to finding f”: XX B— M xsx B such that f”’ is 1-1 and f"” is
Bs-close to .

Let s" be a copy of s and let 7: s’ x s x B—sx Bbe an f.p. homeomorphism
suchthatid x7: M xs"xXsxX B—M X s X Bis8;-close to p,,,x5. Letg: X x B—s'
be an imbedding. Then f"(x, b) = (id X V)(pyoS"(x, b), g(, b), .o f"(x, b), b)
has the desired properties. | |

PROPOSITION 4.8. Let AC M xXQ X B be a sliced Z-set and let B be an
open cover of M X QxB. Then there is a homeomorphism h: M X Q X B—
M Qx B which is B-close to the identity and such that hA)YCM < sx@Q.

Proof. We sketch a proof along the lines of [Ch,, §10]. The details
may be found there. Let W = {1} xJ];" [—1, 1] be a face of Q. Given an
open cover B, of Mx QX B, we construct a homeomorphism %4, which is
B,-close to the identity and such that h,(A)N W = @.

Let k,: @ — Q be an isotopy such that &, = id and k(W)cs, 0 <t < 1.
Such an isotopy may be constructed as follows. Let k': W [0, 1]—@Q be an
imbedding such that k’is theinclusion and k(W x(0, 1])cs. ¥'isa Z-imbedding,
so there is an isotopy (see [A-M] or the discussion following the proof of
this proposition) k,: @ —»Q with &, = id and k,(w) = ¥'(w, t) for each ‘w, t)e
W %[0, 1]. This is the desired isotopy.

Define g: MxXQ@XIXB— Mx@QxB by g.m, g, b) = (m, klg), b). Then
¢7'(8,) is an open cover of M xQxIx B. Let p: MxQx B— (0, 1) be a con-
tinuous functionsuch that for eachm, ¢, and b the set {m} x {q} x [0, o(m, q, b)] x
{b} is contained in a single element of ¢~'(8,). Then g(m,q,b)=(m, koim,q1.1(q), )
is an f.p. homeomorphism limited by 8, such that g(Mx Wx B)CM xsx B.
Since A is a Z-set, there is an f.p. imbedding j: Mx Wx B—(Mxsx B)—A
which is as close as we like to g| M x W x B. By Proposition 4.5, there is an
f.p.homeomorphism J: M x Q@ X B—M x Q X BsuchthatJg(Mx Wx B)N A=
and Jg is B,-close to the identity. h, = (Jg)~' is, therefore, our desired
homeomorphism.

We can now (as in [Ch,, § 10]) choose a sequence {h,} of homeomorphisms
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such that the infinite left composition --:oh,oh,_o---0h, converges to a
homeomorphism % such that & is S-close to the identity and A(A)c M x s X B.
The idea is to use &, to push A off of M x W, x B where W, is the ¢** face of
Q. . a

We now proceed to prove Theorem 4.4. Write M as M, xQ. Then we
have homotopic sliced Z-imbeddings f, g: Ax B—M, x @ x B. By Proposition
4.5, there is an f.p. homeomorphism H: M, xQ x B— M, x @ x B such that
H(f(AxB)Ug(AX B))cM,xsxB. Theorem 4.4 (i) now follows from Pro-
position 4.5. The estimated version (iii) follows by the Anderson-McCharen
trick. We modify this trick slightly to prove (ii).

Let A’ = Ax I/~ where (a,t)~(a,t') if @ = a’' € A,. The idea is to
consider the homotopy to be a map of A’ x Binto M x @ x B. Approximating
this map (rel fand g) by a sliced Z-imbedding G: A’ x B— M X Q X B we can
use part (i) of the theorem to find a homeomorphism H: M X @ X B—
M x @ x Ix B such that HoG(A’ x B) is nicely positioned with respect to the
I-factor (see Fig. 3).

Mx@QxXB
FiGcure 3.
It isnow easy to construct the required homeomorphism by hand. For details
see [A-M] or [Ch,].

(iv) If f, g: AXx B— M x Bare sliced Z-imbeddings which are f.p. homo-
topic via a homotopy F which is the identity over B,, we define a cover 3 of
Mx(B—B,) as follows. For each b e B define functions 9,(b) and d,(b) by
0,(b) = 1/2d(b, B,) and 8,(b) = 2 sup,., diam F(a x I x b). 9, and 0, are con-
tinuous functions. Note that 6;*(0) = 9;'(0) = B,. Let

U(m, b) = {(m', b")|d(m, m") < 8,(b), d(b, b") < 6,(b)}

and let 8 = {U(m, b)|(m, b) e Mx B}. Then F|Mx(B—B,) is a 8-homotopy
and there is an f.p. homeomorphism H: M x (B—B,) — M x (B— B,) which is
limited by 8. We claim that H can be continuously extended by the identity
to an f.p. map H: Mx B— M x B such that Ho f = g¢.

If lim(m, b,) = (m, b), beb, let (mi, bj)e Mx(B — B,) be such that
(m., b,) € U(m!, b}). Since d(b,, b;)<1/2 d(b, b), d(b;, b)<2d(b,, b) and lim b;=b.
Thus,
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lim, ... ,(b;) = lim,_,, 0,(b7) = 0, and lim, ... H(m,, b,) = (m, b).
This completes the proof of Theorem 4.4. B

PROPOSITION 4.9 (Fibered mapping approximation). Let A be compact
with A, C A a closed subset. If f: A x B— M x B is an f.p. map such that
F1(AyX B) is a sliced Z-imbedding and B is an open cover of Mx B then
there is an f.p. sliced Z-imbedding f, B-close to f, such that f[(AOXB):
S1(4,% B).

Proof. Let 7: MxQXxB— MxBbe an f.p. homeomorphism close to
Py«s. By Theorem 4.4 (i), we may assume that v ‘o f|A4,x BCMx{0}x B.
Let g: A/A,— sCQ be an imbedding with g([4,]) = 0 and let g: A— s be the
map induced by g. The map f: AXB— MxsxB defined by f'(a,b)=
(Pyov "o f(a,b), g(a), b)is an imbedding (and therefore a sliced Z-imbedding),
s0 f = 7of’ is the desired sliced Z-imbedding approximating f. [ |

COROLLARY 4.10 (Collaring theorem). Let M and N be Q-manifolds and
let f: NxB— MxBbe a sliced Z-imbedding. Then there is an f.p. open
imbedding F: Nx[0, 1) x B— Mx B such that F(n, 0, b) = f(n, b).

Proof. The idea is to show that f(Nx B) is locally f.p. collared and to
apply Brown’s collaring theorem. The details are similar to those in [Ch-F,
Prop. 2.5]. [ |

COROLLARY 4.11 (Weak mapping cylinder theorem). If M and N are
Q-manifolds and f: Nx B— M x B is a sliced Z-imbedding and 8 is an open
cover of Mx B then the collapse of Map (Nx B EA MXxB) to Mx B is B-close
to an f.p. homeomorphism.

Proof. Perform the collapse in two stages. ¢,: Map (N x B —Ji Mx B) —
MxIxBand ¢, MxIxB— MxB. The collaring theorem allows us to ap-
proximate ¢, by a homeomorphism. If k: MxQxB— MxB is a homeo-
morphism B'—close to projection, and h: Qx I ——»Q is a homeomorphism then
M x Bx 114 MxQxBx IldMXBXh M x Q><B—-—>M><B is a homeomorphism
St B'-close to projection. Thus, ¢, may be approximated as closely as we like
by a homeomorphism and the desired approximation to ¢ exists. [ |

COROLLARY 4.12. Let M be a Q-manifold and let Ac M be a Z-set. Then
there is an open set U H(M) such that H,(M)C Uc H(M) and H,(M) is @
retract of U.

Proof. Choose a cover a of M so fine that maps into M which are a-close
are canonically homotopic. Let UC H(M) be the set {h|h|A is a-close to
inclusion}. Define F: Mx U — Mx U by F(m, h) = (7(m), h) and note that
there is an f.p. homotopy from F|AX U to id|Ax U. This homotopy is
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stationary on A x H,(M).

AXxU is a sliced Z-set in Mx U. Since F'is an f.p. homeomorphism,
F(AXU) is also a sliced Z-set. Thus, by Theorem 4.4 there is an f.p. homeo-
morphism H: MX U — Mx U with HoF|AXxU =id|Ax U and H = id on
MxH,M). The map h+ Ho F|Mx{h} is the desired retraction of U onto
H,(M). |

Remark. It is not difficult to adapt this construction to prove the weak
handle lemma of Fathi and Visetti [F-V]. This avoids the torus trick used
in their paper. [ ]

5. H(M) is an ANR

In this section, M and N will denote compact @-manifolds and C(X, Y)
will denote the space of continuous functions from X to Y with the compact-
open topology.

Definition 5.1. Let HE(N, M)CC(N, M)xC(M, N)xC(N) xC(M)" be
the set {(f, g, , k)| h(0) = gof, h(1) =1id, Kk(0) = fog, k(1) =id}. This is
the space of homotopy equivalences, homotopy inverses, and homotopies to
the identity. Note that the closed subspace of HE(N, M) consisting of
homeomorphisms, their inverses, and constant homotopies is homeomorphic
to H(N, M), the space of homeomorphisms from N to M. We will identify
H(N, M) with this subspace. We study H(N, M) rather than H(M) to avoid
confusing the domain and range during the argument.

ProprosITION 5.2. HE(N, M) is an ANR.

Proof. We show that HE(N, M) is a retract of an open subset of
C(N, M)xC(M, N)xC(N)' xC(M)'. Let a, be an open cover of M such that
maps into M which are «,-close are canonically homotopic. Let a, be a
similar cover of N. Consider the neighborhood U of HE(N, M) in C(N, M) X
C(M, N)xC(N)' x C(M)" defined by

U={(f, 9, h k)|hO0) = gof, k1) £ id, %(0) Z fog, k(1) = id} .
The retraction is defined by (f, g, &, k) — (f,g,h’, k') where b’ and k&’ are homo-
topies from g o f and fog. Here is the definition of %’. & is defined similarly.

d(gof, 1(0))
3(1 + d(gof, h(0)))

d(h(1), id)
3(1 + d(r(1), id))
d(h(1), id)
3(1 + d(h(1), id))

canonical homotopy from gofto h(0) 0=t <

homotopy (k) from ~(0) to i(1)
hy = < d(gof, h(0))
3(1 + d(g > £, 1(0)))

canonical homotopy from A(1) to id

A
IA

t

=t<1
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Each homotopy is reparameterized linearly to fit into its assigned interval. i

THEOREM 5.3. There is a continuous retraction of a neighborhood of
H(N, M) vn HE(N, M) onto H(N, M).

This theorem is the goal of the remainder of this section.

Definition 5.4. An f.p. proper map f: Xx B— Y x B is called an f.p.
B-equivalence, 8 a cover of Y x B, if there exist an f.p. proper mapg: Y x B—
XxB and f.p. proper homotopies A and % such that h:gof f_'\gﬁ)id and
ki fog Lid.

PROPOSITION 5.5. Let N and M be Q-manifolds and let f: Nx B— Mx B
be an f.p. B-equivalence. Then there is an f.p. homeomorphism
F:Nx[0,00) X B—Mx[0,c0) X Bsuchthat py. o FisStB-closetop,, zo(fxid)
and such that d(Dg..,°oF, D)) < 3.

Proof. The proof of Step I of Theorem 3.1 can be translated word for
word into this context. [ |

PROPOSITION 5.6. Thereisacontinuousmap®: HE(N, M)— H(N x[0,1),
M0, 1)) such that ®(h, h7', id, id) = h xid.
Proof. The idea is to map HE(N, M) — H(N, M) to H(Nx][0, 1),
M x[0, 1)), exercising sufficient control that we can extend to all of HE(N,M)
in a way which fulfills our requirements.
Define 9., 6,: HE(N, M)—][0, ) by
0.(f, 9, h, k) = 2 max{diam h, diam %, diam foh}, where h, k, and foh are
considered as paths in C(N) or C(M).
o(f, 9, h, k) = 1/2d((f, 9, h, k), H(N, M)) .
Note that 6;'(0) = 6;'(0) = H(N, M). Let 8 = {U(m; f, g, h, k)} where
Uem; f, g, b, k) = {(m'; ', ¢', W, K') | d(m, m’) < 6.(f, g, I, k)
and d((f, g, h, k), (f', ¢, &', &) < 6.(f, 9, h, k)} .
B is an open cover of Mx HE(N, M), where HE(N, M) = HE(N, M)—

H(N, M). Define an f.p. 8-equivalence F' (with B-inverse G and homotopies
H and K) from Nx HE(N, M) to Mx HE(N, M) by

F(n, f, g, h, k) = (f(n), f, 9, h, k) ,

G(m, £, g, h, k) = (9(m), f, 9, b, k) ,

Hn, f, g, b, k) = (hi(n), £, 9, b, k),

K(m, f, 9, h, k) = (k(m)f, g, h, k) .
By Proposition5.5thereisanf.p. homeomorphism F: N x [0, o) x HE(N, M)—
Mx[0, o)X HE(N, M) such that DyrxmEy N0 o F'is B-close to Fopyngynm
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and d(Dio.e), Dio,r°F)<3. Wedefine yry: Nx [0, o) x HE(N, M)— N x [0, 1) x
HE(N, M) by the formula
, - 0u(f, g, I, k)t
b t ’ ’ h’ k - ’ 2 ’ b b h’ k .
Faln, 15 0, 1 1)) = (m, AL LB, (7, g, 1, 1)

oy is defined similarly. We then define ®: HE(N, M)— H(Nx|[0, 1),
Mx[0, 1)) by

M— ;71 Yy ’ )h’ , ’ ’ 0 ’
O(f, g, h k), 1) = {””"“’"’“‘” o, (0,0, 1) 0,5 1) € HELN, 1)

ind (f’g’h’k)eH(N)M)’
The proof that @ is continuous is similar to the proof of Theorem 4.4
@iv). [ |

Consider the space of open imbeddings I(Mx (1/4, 3/4), M %[0, 1]). By
Theorem 2.5, there are a neighborhood P of the inclusion » and a map +r: P—
H(Mx [0, 1]) such that y()=id and y(g) |(M x[1/3, 2/3])=g | (M x[1/3, 2/3]).
Let

UcH(Nx[0, 1), Mx [0, 1)) x H(N (0, 1], Mx (0, 1]))
be
{(ha, ho)| hhi| (M (1/4, 3/4)) € P} .

PROPOSITION 5.7. There is a continuous function o: U— H(N X0, 1],
M x[0, 1]) such that a(h xid, hxid) = h xid.

Proof. Define
hi(n, t) (n, t) € by (M % [0, 1/2])
y(hhit)oh, (n, t) & hi' (M %[0, 1/2]) .

This is well-defined since +(h,h;*) = hh; on M x[1/3, 2/3]. The second state-
ment follows from the fact that 4(n) = id. [ ]

o(hy, ho)(m, t) =

PROPOSITION 5.8. There is a continuous map v: H(N x[0,1], M x [0, 1])—
H(N, M) such that T(h xid) = h.

Proof. Let B = H(Nx[0, 1], Mx[0,1]) and let B, C B be the set of
homeomorphisms of the form # xid. Letay: Nx[0, 1]Xx B—Nx Bbean f.p.
map such that a,|Nx[0, 1]x(B — B,) is a homeomorphism and such that
| Nx[0, 1] x B, is the projection map. Such a map is easily constructed
using Theorem 4.9. We write ay(n, t, h) = (@y(h)(n, t), h). &, is defined
similarly. We write 7(h)(n) = [@,(R)]h[@y(R)]*(n). Note that this is well-
defined (even over B,) and, therefore, continuous. ]

It is now an easy matter to complete the proof of Theorem 5.3. Let
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®,: HE(N, M)— H(N %[0, 1), M0, 1)) and @,: HE(N, M) — H(Nx (0, 1],
M (0, 1]) be maps as in Proposition 5.6 and let ¢, 7 and U be as in Proposi-
tions 5.7 and 5.8. The map togo(®, X O,): (P, X D,) (U )—H(N, M) is a retrac-
tion. ||
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