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APPROXIMATE FIBRATIONS WITH NONFINITE FIBERS
STEVE FERRY!

ABSTRACT. It is shown that every ANR fibration over S! with finitely
dominated fiber is homotopy equivalent to an approximate fibration with
compact ANR total space. This yields examples of approximate fibrations
with arbitrary compact pointed FANR fibers.

1. Introduction. We start with some definitions. All spaces considered in
this paper are separable and metric. If Y is such a space and a is an open
cover of Y, two maps f, g: X — Y are said to be a-close if for each x € X
there is a U, € a« such that f(x), g(x) € U,.

If a is an open cover of B, then a map p: E — B is said to be an a-fibration
if for each f: X X I - B and F: X X {0} > E withp o F = f|X X {0} there
is an extension F’: X X I — E of F such that p o F’ is a-close to f. If p is
proper (i.e. inverse images of compacta are compact) and p is an a-fibration
for each open cover a of B, p is called an approximate fibration.

The geometric study of approximate fibrations was originated by Coram
and Duvall [C-D,], [C-D,] and has been continued by L. Husch [H,], [H,], L.
Mand [M], and R. Goad [G]. The point of view taken in these papers is to
study approximate fibrations as generalized cell-like maps. The following
results of Coram and Duvall motivated our work.

THEOREM [C-D,]. Let E and B be locally compact ANRs and let p: E — B be
an approximate fibration. Then

(i) a path w: I — B induces a shape equivalence from p ~'(w(0)) to p ~'(w(1));

(ii) each fiber p~'(b) is a pointed fundamental ANR (pointed FANR).

An FANR is the shape analog of an ANR. The term is defined (along with
the term “shape”) in [B). Our purpose in this paper is to prove a converse to
part (ii), i.e., every pointed FANR is the fiber (up to shape) of some approximate
fibration between compact ANRs.

The point of this is that a compact pointed FANR does not necessarily
have the shape of a finite CW complex. The situation is outlined below. A
space K is said to dominate a space L if there are maps d: K — L and u:
L — K such that d ° u is homotopic (equivalent) to id: L — L. If the maps
are shape maps, we speak of a shape domination. If they are ordinary maps,
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336 STEVE FERRY

we speak of a homotopy domination. No shape theory appears in §§2-4 of this
paper.

Facts about FANRs [S-G-H], [E-G], [Ch-F,]. (1) The following conditions
are equivalent for compact spaces:

(i) X is a pointed FANR.

(i) X is shape dominated by a finite CW complex.

(iii) X has the shape of a CW complex.

(2) If X is a connected pointed FANR, then there is an invariant ¢(X) €
IEOZ#,X which vanishes if and only if X has the shape of a finite complex. All
such obstructions are realized.

Here is the statement of our main theorem.

THEOREM L.1. Let b: & — S be a fibration of an ANR over S'. If the fiber
p~Y(1) is homotopy dominated by a finite complex, then there exist a compact
ANR E, an approximate fibration p: E — S, and a homotopy equivalence g:

& — E such that the diagram
\ %
Sl

commutes up to homotopy.

The proof of Theorem 1.1 is the object of §4. Here is a theorem which helps
to clarify the meaning of Theorem 1.1.

THEOREM 1.2. If
6—2% g
BN
B

is a homotopy commuting diagram as above (with S replaced by an ANR B),
then p~\(b) is shape equivalent to p='(b) for each b € B.

PROOF. Let & be a homotopy inverse for g and let f: E X I - B be a
homotopy from p ° h to p. Since p o h = f|E X {0}, there is an extension of
htoamap H: E X I - & such thatp o H = f. At the 1-level, H;: E —» & is
a homotopy equivalence such that p o H; = p. We therefore have a map of
long exact sequences



APPROXIMATE FIBRATIONS 337

e —> 1Tq+l(B) —_— ﬁq(p—l(l)) m, E) —— "q(B)—_) .

~ |id ') =) S

Mo 1(B) —— 1, (p~1(1)) — > 1,(6) ——> 1, (B) — - - -

where the top sequence is the long exact sequence of an approximate
fibration described in [C-D,]. By the Five Lemma, H,|p ~'(1) induces isomor-
phisms of #,(» (1)) and 7,(p~'(1)). Since p~'(1) has the shape of a CW
complex, the Whitehead theorem implies that H,|p~'(1) is a shape equiva-
lence. [

Here are some corollaries of Theorems 1.1 and 1.2.

COROLLARY 1.3. If p: E — B is an approximate fibration between connected
ANRs, then p~'(b) is shape equivalent to the homotopy fiber of p. [

COROLLARY 14. If L is a CW complex which is homotopy dominated by a
finite complex, then there is an approximate fibration p: E — S of compact
ANRs with fiber shape equivalent to L.

PrOOF. Apply Theorem 1.1 to the fibration L X S' > S'. ]

COROLLARY 1.5. If an approximate fibration between ANRs is homotopic to a
fibration, its fibers have the shapes of finite complexes.

ProOF. If p: E— B and p’: E— B are homotopic maps with p an
approximate fibration and p’ a fibration, the diagram

N/
B
satisfies the hypotheses of Theorem 1.2. The fibers of p’ are compact ANRs
which, by [W,], have the homotopy types of finite complexes. []

2. Some facts about Q-manifolds. By the Hilbert cube we mean Q =

® ,[—1, 1]. A Hilbert cube manifold is a separable metric manifold mod-
elled on the Hilbert cube. A good basic reference on the topology of
Q-manifolds is [Ch].

DEFINITION 2.1. A closed subset A4 of a Q-manifold M is called a Z-ser if
for each open cover a of M thereisamap f: M > M — A such that for each
m € M there is a U, € a with m, f(m) € U, (i.e., f is a-close to id). An

imbedding f: X — M is called a Z-imbedding if f(X) is a Z-set in M.
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- The basic result on Z-sets in Q-manifolds is the following theorem of
Anderson and Chapman.

THEOREM 2.2 (Z-SET UNKNOTTING [A-Ch)). If f,g: X - M are proper
homotopic Z-imbeddings, then there is a homeomorphism h: M — M such that

hof=g.

A proper surjection f: X — Y is said to be CE if each point-inverse is
cell-like [L].

THEOREM 2.3. (R. D. EDWARDS [Ch]). If X and Y are locally compact ANRs
and f: X - Y is a CE map, then for each open cover B of Y X Q there is a
homeomorphism B-close to f X id: X X Q - Y X Q. Moreover, X X Q and
Y X Q are Q-manifolds. [

Strictly speaking, none of our constructions requires Edwards’ theo-
rem-West’s mapping cylinder theorem [W,] would be entirely adequate. We
will use Edwards’ result to state general theorems for ANRs which we will use
in the cases where the spaces involved are complexes or Q-manifolds. A case
in point is the next proposition, which is a rewording of Theorem 21.2 of [Ch].

PROPOSITION 2.4. If X and Y are locally compact ANRs and f: X - Y is a
homotopy equivalence, then f X id: X X Q X [0,1)> Y X Q X [0, 1) is ho-
motopic to a homeomorphism. [

In view of the last two results, we introduce the following notation: if f:
X > Y is a map, then X will denote X X 0, and f will denote f X id:
X X Q— Y X Q. Similarly, f: X — ¥ will denote f X id: X X Q X [0, 1)
=Y X Q X [0,1).

We will also need the next result, which lies outside of Q-manifold theory.
(Compare [Ch-F,, Proposition 3.2].)

PROPOSITION 2.5. Let X and Y be locally compact with A a closed subset of
X.Iff: X > Y X [0, o0) is a map such that f|A is proper, then f is homotopic
rel A to a proper map f;: X -> Y X [0, o).

PRroOF. Let N be a closed neighborhood of 4 such that f|N is proper. Let p:
X — [0, o0) be a proper map and let 6: X -0, 1] be a function which is
identically 0 on 4 and which is identically 1 outside of N. If Py Y X [0, o0)
— Yand p,g ) ¥ X [0, 0) - [0, o) are the projections, we define fi(x) =
(Py ° f(X), Po,o0) © f(X) + 6(x) - p(x)). This clearly has the desired proper-
ties. [J ’

3. Facts about mapping cylinders. The purpose of this section is to establish
some constructions for piecing together proper homotopy equivalences and
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homeomorphisms of mapping cylinders. These results are analogous to
Lemmas 3.3-3.5 of [C].
DErFINITION 3.1. If

x5x,5. . 5x
is a sequence of spaces and proper maps, we define the iterated mapping
cylinder M(f;, ..., f,_,) to be the space obtained from the disjoint union
[7-.X; X [0, 1] by identifying (x, 1) € X; X I with (f(x),0) € X,,, X L. If
X, = X,, we define the iterated mapping torus, T'(f,,..., f,_,), to be the
space obtained from I[7Z X, X [0, 1] by identifying (x, 1) € X, X [0, 1] with
(fi(x),0) € X;,y X [0, 1] for i < n — 2 and by identifying (x, 1) € X,_; X
[0, 1] with (f,_,(x),0) € X, X [0, 1]. Figure 1 illustrates M(f,, f,) and

T(fl’ fz)

Xl
fl fz
Xl X2 X3
M(fy, 1))
XZ
fy, 1)

FIGURE 1

~ ReMARKk. (i) Note that M (f)) differs from the usual mapping cylinder in
that a “pad” is added to the base. This makes the base a Z-set in M (f)).

(i) There is a natural projection from T(f,,f, ..., f,) to S'. Each
mapping cylinder projects to (1/n)th of the total circle. []

ProPOSITION 3.2. Let X and Y be locally compact ANRs and let f,g: X - Y
be proper homotopic maps. Then:

(i) M (f) and M (g) are proper homotopy equivalent via homotopy equiva-
lences H and G which are the identity on the ends X X {0} and Y X {1}.
Moreover, the homotopies from G o H and H o G to the identity are the identity
on the ends at each level.

(ii) M (f) and M (Z) are homeomorphic via a homeomorphism h which is the
identity on the ends X X {0} and Y x {1}.

PROOF. (ii)'=~(i). M(fy=M(f)x Q and M(8) = M(g) X Q, so we
define ‘
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X0 h proj
H:M(f) SM(f) X Q5>M(g) X Q> M(g)
and
X0 A1 proj
G: M(g) SM(g) x Q"> M(f) x Q= M(f).
These maps are the desired proper homotopy equivalences. Consider the
composition:

M) SM) x 05 M(g) x 0% M(g)

SM(g) x 0% M) x 0 M().
The homotopy from (X0) o proj to id in the middle of the above diagram
takes place in the Q-factor. Since 4 and h~! are the identity on the ends, the
composition provides a homotopy which is the identity on the ends at each
stage.

(ii) By Theorem 2. 3 the natural collapses M ( f) — Y and M(g) > Y can
be approximated by homeomorphisms y,: M ( f)_—-> Y and vt M(g)— Y.
Since f and g are homotopic, v1/(X X {0} U Y X {1}) is homotopic to
YJ(X X {0} U ¥ X {1}). Since both maps are Z-imbeddings, there is a
homeomorphlsm s Yo>Y such that vy, ° 'yl|(X X {0} u Y X (1) = yz|(X
X {0} U Y X {1}). Thus, y; ' o y5°v;: M(f)—> M(g) is the desired ho-
meomorphism.

ProPoOSITION 3.3. Let X, Y, and Z be locally compact ANRs and let f:
X —>Y,g: Y — Z be proper maps. Then:

(i) There are proper homotopy equivalences H and G between M (g ° f) and
M (f, g) which are the identity on the ends and such that the homotopies from
G o Hand H ° G to id are the identity on the ends at each level.

{)yM(g - f-) is homeomorphic to M ( f, g) via a homeomorphism which is the
identity on the ends.

PrOOF. The proof is similar to the proof of Proposition 3.2. (ii) = (i) and
(ii) is proven by projecting to the base and unknotting. []

PROPOSITION 3.4. Let X and Y be locally compact ANRs and let f,g: X - Y
be proper homotopic maps. Then

() T (f) is proper homotopy equivalent to T (g).

(i) T (f) is homeomorphic to T(g).

Proor. These follow directly from Proposition 3.2. [

REMARK. Part (i) of each proposition can be proven in greater generality by
other methods. We use infinite dimensional methods because they are
convenient in our context.

4. Constructing approximate fibrations. Let p: & — S be a fibration with &
an ANR and let § = p~!(1) be homotopy dominated by a finite CW
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complex. Represent S! by S' = {€2™|0 < ¢ < 1}. By the covering homotopy
property, there is a map ¢: & X I — & such that ¢, = inclusionand p o ¢, =
e?™!, The map ¢,;: F — ¥ is called the characteristic homotopy equivalence. It
is well defined up to homotopy. Since ¥ is an ANR, ¥ has the homotopy
type of a locally finite CW complex L. Let w: % — L be a homotopy
equivalence and let v: L — % be a homotopy inverse for w.

The map ¢, = wp,0: L —» L is a homotopy equivalence. By Proposition
2.4, @,: L - L is homotopic to a homeomorphism ¢,: [ — I. The natural
projection p: T (p;) —» S' is a locally trivial bundle map. It is not difficult to
construct a fiber homotopy equivalence from (&, p, S') to (T(¢5), p, S ).

PROPOSITION 4.1. Let
K2L
u
be a homotopy domination with K a finite complex and let ® = up,d: K — K.

Then there is a homotopy equivalence between T (®) and T (¢p;) such that the
diagram

T(®) ——— T(p,)
N/

homotopy commutes.

Proor. By Proposition 3.4 we have homotopy equivalences T'(P) ~ T(3)
=T (u«pzd) T (u<p3d) which homotopy commute with the natural
projections to S°. 1. By Proposition 2.5, the map i: L Kis homotopic to an
imbedding. If L is identified with its image under this imbedding, d |L. L>LC
is homotopic to the identity. By the homotopy extension theorem (and
Proposition 2.5), d is homotopic to a proper retraction, r: K- L.

Thus, T (@p,d) = T (@sr) =T(r, ). Note that T(r, p,) contains a copy of
T (p5) (see Figure 2).

A rotation of 180° clockwise carries all of T (r, @,) into the shaded region.
Since the shaded region is carried into itself, the 180° rotation is homotopic to
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a deformation retraction of T'(r, ¢,) onto the shaded region. Thus, there is a
homotopy equivalence T'(r, ;) =~ T(9;). O
REMARK 4.2. Proposition 4.1 is based on an observation from [Fa]. The
proof above illustrates the techniques we shall use to prove Proposition 4.3. A
more pedestrian proof can be constructed using the Whitehead theorem. []
We have shown that there is a homotopy equivalence making

& —=—1(®)

/

Sl

homotopy commute. The proof of Theorem 1.1 will be complete with the
proof of the following.

PROPOSITION 4.3. The natural map T(a) — S is homotopic to an approxi-
mate fibration.

Proor. Recall that ® = ug,d where
KL

is a homotopy domination and ¢,: L — L is a homotopy equivalence. Let
a=ud: K— K. Notethata ca~ a and thata c P~ P o a ~ P.

The proof will consist of several steps.

Stepl.Let T, = T(®, a, a0, . . ., @) be the mapping torus of @ followed by
2" — 1 copies of a and let p,: T, > S! be the projection. For each n > 0,
there is a homeomorphism h,: T,— T,,, such that d(p,,,° h, p,) <
1/2"1, distance in S'' being measured by normalized arc length.

Proor (I). By Propositions 3.2 and 3.3, M(®) = M(a > ®) = M(®, @)
and M (a) = M (a ° &) = M (a, a) via homeomorphisms which are the iden-
tity on the ends. Piecing these together yields the desired homeomorphism. 4,
is illustrated in Figure 3 below. This completes the proof of Step I.

o3

o
\ /
Sl

‘ FIGURE 3
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Let g, =p,oh,_,o -+ ohy Ty=T(® —S' Then d(q, g,,) =
d(Ppsy © by p,) <1/2" 'and g = lim,_, g, exists. Our plan is to show that
q is an approximate fibration by showing that each g, is a (1/2"~3)-fibration.
The result then follows as in Proposition 1.1 of [C-D,] where it is shown that
the uniform limit of fibrations is an approximate fibration.

Step 11. g, is a (1/2"~3)-fibration if p, is.

ProoF (II). Suppose that p, is a (1/2"~3)-fibration and let f: X X [ — S
and F: X X {0} > T, be given with g, o F = f|X X {0}. g, F=

ppo(h,_yo -+ ohyo F), so, by hypothesis, there is a map F': X X I -
T, such that d(p, ° F',f) <1/2"3 and F'(x,0)=h,_; o --- ohyoF.
Let F” = (h,_,o -+ ohy)~'o F'.F”is the desired lifting of f.

Step I11. To show that p,: T, — S'is a (1/2"~3)-fibration, it suffices to find
amap y: T, X R’ - T, such that Y(x, 0) = x and d(p,¥(x, 1), p,(x) + 1) <
1/2"3. Addition of z € S' and ¢t € R’ is performed modulo 1 and z + ¢t €
St

Proor (III). Let f: X X I - S' and F: X X {0} - T, with p, o F = f|X
X {0} be given and let f: X X I — R! be a lifting of f(x, ) — f(x, 0) to the
universal cover of S' such that f(x,0) =0. Define F': X X I > T, by
F'(x, 1) = Y(F(x, 0), f(x, £)). F'(x, 0) = $(F(x, 0), 0) = F(x, 0) and

d(p, o F'(x,0)) = d(py = $(F(x, 0. (5 0). 2 © F(x,0) + f (x, 1))
<1/203
Step IV. The construction of .
_Proor (IV). To construct y: T, X R' — T, it suffices to construct y,:

T, X R'— T, such that d(p,¥(x, 1), p,(x) + t) < 1/2""3 If ¢, is such a
function then the composition

1 X0 R proj
T,XR' ->T,XR >T,-T,

is the desired function .

Sl
FiGURE 4
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T, X [0,1) = T(®,a,..., ). As in the proof of Proposition 4.1, & is
homotopic to a retraction r: K — L c K and ® is homotopic to the composi-
tion of r with a homeomorphlsm L @: L L. By Propositions 3.2 and 3.3 there
is a homeomorphism h: T'(®, a, s E) X Q- T where T is the space
pictured in Figure 4. Note that T @ a,...,a0 X Q= T h can be chosen
s0 that d(p ° h, p,,) < 1/2", where p: T — S! and (by abuse of our notation)

: T, —> S are the projections.

The shaded region in Figure 4 is a fiber bundle with fiber L X @ and
characteristic homeomorphism ¢ X id. We describe amap y,: T X R' - T.

For 0 < |#| < 1/2",y, rotates T one notch to the right. This carries T
down the mapping cylinders and into the shaded region. For |¢| > 1/2", y, is

a map into the shaded region which covers the map f: T X R' — S'! defined
by

t>1/2",
flx 1) = {t+ 1/ 1< —1/2%,

Thus, we have d(p(x) + £,p © Yy(x, 1)) < 1/2""L,
Lety, = h=' oy, o (h X id). Then

d(pa(x) + 6,0, o (%, 1)) = d(Pa(x) + 1,p, ° B! 0 Yy(h(x), 1))
< d(p(x) + t,p o h(x) + 1) + d(p o h(x) + 1, p > Y(h(x), 1))
+d(p o Yy (h(x), 1), p, © h~" o Yy (h(x), 1))
<1/2"+1/2" "'+ 1/2" = 1/2"-2{ 1/2772,
This completes the proof of Step IV, Proposition 4.3, and Theorem 1.1. []
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