
Chapter 1. Preface

In 1963, John Milnor put forward a list of problems in geometric topology.

1. Let M3 be a homology 3-sphere with π1 �= 0. Is the double suspension of M3

homeomorphic to S5?
2. Is simple homotopy type a topological invariant?
3. Can rational Pontrjagin classes be defined as topological invariants?
4. (Hauptvermutung) If two PL manifolds are homeomorphic, does it follow that
they are PL homeomorphic?

5. Can topological manifolds be triangulated?
6. The Poincaré hypothesis in dimensions 3, 4.
7. (The annulus conjecture) Is the region bounded by two locally flat n-spheres
in (n+ 1)-space necessarily homeomorphic to Sn × [0, 1]?

These were presented at the 1963 conference on differential and algebraic topology in
Seattle, Washington. A much larger problem set from the conference is published in
Ann. Math.81 (1965) pp. 565–591.

In the last 30 years, much progress has been made on these problems. Problems 1, 2,
3, and 7 were solved affirmatively by Edwards-Cannon, Chapman, Novikov, and Kirby in
the late 1960’s and early 1970’s, while problems 4 and 5 were solved negatively by Kirby-
Siebenmann in 1967. Freedman solved the 4-dimensional (TOP) Poincaré Conjecture in
1980. The 3-dimensional Poincaré Conjecture and the 4-dimensional PL/DIFF Poincaré
Conjecture remain open as of this writing. This book introduces high-dimensional PL and
TOP topology by providing solutions – or at least useful information pointing towards
solutions – of problems 1, 2, 3, 4, 5, and 7.

This sort of geometric topology has recently been applied to Gromov-style differential
geometry, index theory, and algebraic geometry. One of the author’s goals in writing this
book is to help workers in other areas to understand what the machinery of geometric
topology can do. In a sense, this is intended as a book for people who haven’t decided, yet,
whether they want to make the (substantial) investment of learning geometric topology!
Accordingly, the focus here is on examples and techniques of proof, rather than on
developing any one theory or technique to its logical limits.
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Chapter 2. Some TOP topology

We begin with a study of embeddings of Sn−1 into Sn. We know from algebraic
topology that if i : Sn−1 → Sn is an embedding, then i(Sn−1) separates Sn into two
parts. We remind the student of the statement of Alexander Duality:

IfK is a polyhedron and i : K → Sn is an embedding, then H̄�(Sn−K) ∼= Hn−�−1(K).

If K = Sn−1 and 
 = 0, this says that H̄0(Sn − Sn−1) ∼= Hn−1(Sn−1) = Z. Thus,
Sn − Sn−1 has two path components. Further applications of Alexander duality show
that each of these complementary domains has the homology of a point.

The naive conjecture is that each complementary domain is homeomorphic to Dn

and that all embeddings Sn−1 → Sn which preserve orientation should be topologically
equivalent – that if i : Sn−1 → Sn is an orientation-preserving embedding, then there
should be a homeomorphism h : Sn → Sn so that h ◦ i is the standard embedding of
Sn−1 onto the equator of Sn. A classical example, the Alexander Horned sphere, shows
that this conjecture is false for n = 3. In Example 2.22, we provide a slightly different
example of an embedded S2 in S3 which fails to bound a disk in S3.

To achieve positive results in the face of such counterexamples, we must impose hy-
potheses on the embedding i. The classical condition is that i should be either locally
or globally collared in Sn. Accordingly, we begin the section with a proof of Morton
Brown’s collaring theorem. In the case of Sn−1 ⊂ Sn, Brown’s theorem says that if
either complementary domain of Sn−1 in Sn is a manifold, then boundary of this com-
plementary domain has a neighborhood (in the complementary domain) homeomorphic
to Sn−1 × [0, 1). Here is the general definition of a local collaring:

Definition 2.1. Let X be a topological space and let B be a subset of X . Then B is
collared in X if there is an open embedding h : B × [0, 1)→ X with h|B × {0} = id. If
B can be covered by a collection of open subsets, each of which is collared in X , then B
is said to be locally collared in X .

Theorem 2.2 (M. Brown [B3], [Con]). If X and B are compact metric and B is

locally collared in X , then B is collared in X .

Proof: The proof is by induction on the number of elements in the cover of B. This
reduces immediately to the case in which B = U ∪ V with both U and V collared in X .
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2. Some TOP topology 3

Form a space X+ = X ∪B × [0,∞). Using the collars on U and V , we can find open
subsets U+ and V + of X+ homeomorphic to U × [−∞,∞] and V × [−∞,∞] so that
U+∪V + is a neighborhood of B. Choose functions σ, τ : B → [0, 1] so that σ+τ = 1, and
so that σ and τ are supported on closed subsets (in B) of U and V , respectively. Define
homeomorphisms hσ : U+ → U+ and hτ : V + → V + so that hσ(u, t) = (u, t+ σ(u)) and
hτ (v, t) = (v, t+ τ(v)). If we choose the inner collars on U and V carefully, perhaps by
reparameterizing U × [−1, 0] and V × [−1, 0] to be the new U × [−∞, 0] and V × [−∞, 0],
we can assume that hσ and hτ extend continuously to X+ using the identity outside of
U+ and V +. The composition hσ ◦ hτ throws X onto X ∪B × [0, 1], exhibiting a collar
on B.

X

U V

X+

Corollary 2.3. The boundary of a topological manifold is collared.

It is amazing that this was a new result as late as 1962. Our main goal for this section
is to prove the Generalized Schoenfliess Theorem, which says that if both complementary
domains of Sn−1 in Sn are topological manifolds, then they are homeomorphic to balls.

Definition 2.4. By an n-ball B in a manifold Mn, we mean the homeomorphic image

of a standard n-ball in Rn. An n-ball is collared if ∂B is collared in Mn −
◦
B. The

homeomorphic image of a k-ball is also referred to as a k-cell.

Many useful homeomorphisms in the topological category are constructed as compo-
sitions of pushes. The next lemma constructs one such push.

Lemma 2.5. Let B be a collared n-ball in Rn with collar C and let D be a compact

subset of Rn. Then there is a homeomorphism h : Rn → Rn with compact support such
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that h|(B) = id and h(B ∪ C) ⊃ B ∪D.

Proof: Choose a point b ∈
◦
B and a standard ball B1 ⊂

◦
B centered at b. Let ρ : Rn →

Rn be a homeomorphism with compact support in B ∪ C shrinking B into B1. This
homeomorphism is easy to construct after parametrizing B ∪ C as the cone from b on
∂(B ∪ C).
Let σ : Rn → Rn be a homeomorphism with compact support so that σ|B1 = id and

σ(B ∪ C) ⊃ B ∪ C ∪ ρ(D). Such a homeomorphism is obtained by radially stretching a
small collar on B1. Setting h = ρ−1 ◦ σ ◦ ρ completes the proof, since we have h|B = id
and h(B ∪ C) = ρ−1 ◦ σ ◦ ρ(B ∪ C) = ρ−1 ◦ σ(B ∪ C) ⊃ ρ−1(ρ(D)) = D.

We obtain a striking characterization of euclidean n-space which is valid for any n.

Theorem 2.6 (M. Brown [B2]). Let Mn be a TOP n-manifold such that every com-

pact subset D of M is contained in some open subset P of Mn with P ∼= Rn. Then

Mn ∼= Rn.

Proof: Write M = ∪∞i=1Di with D1 ⊂ D2 ⊂ . . . and Di compact for all i. Choose a

small standard ball B ⊂ M with collar C. Write B ∪ C = ∪Bi with Bi a ball,
◦
Bi+1 =

Bi ∪ Ci, Ci a collar on Bi, B1 ⊂
◦
B2 ⊂ . . .. We define a sequence of homeomorphisms

hi : Mn → Mn so that hi|Bi = hi+1|Bi and hi(Bi) ⊃ Di. This will suffice to prove the
Theorem, since limi→∞ hi|B ∪ C is a homeomorphism from B ∪ C onto M .
Such a sequence of homeomorphisms is easily obtained by repeated application of

Lemma 2.5. Given hi, choose P ∼= Rn so that P ⊃ hi(B ∪ C) ∪Di+1. Applying Lemma
2.5, we obtain a homeomorphism h′ : P → P with compact support so that h′|hi(Bi) = id
and h′(hi(

◦
Bi+1)) ⊃ Di+1. Setting hi+1 = h′ ◦ hi and extending to Mn by the identity

completes the construction of hi+1.

Theorem 2.7. Let Mn be a compact TOP n-manifold which is the union of two open

sets U and V which are homeomorphic to Rn. Then Mn is homeomorphic to Sn.

Proof: Replace V by a smaller copy of Rn and choose a point p ∈ U − V̄ . We will show
that M −{p} is homeomorphic to Rn, which will complete the proof, since the one-point
compactification of Rn is Sn.
Let D be a compact subset ofM−{p} and let B1 be a standard ball in U−D centered

at p. Now, U − V is a compact subset of U , so there is a homeomorphism σ : U → U

with compact support so that σ(B1) ⊃ U −V . Extend σ by the identity to all of M . We
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have σ(B1)∪ V =M , so B1 ∪ σ−1(V ) =M and σ−1(V ) ⊃ D, so Theorem 2.6 applies to
show that M − {p} ∼= Rn.

Corollary 2.8. If a closed topological manifold Mn is a suspension, then Mn ∼= Sn.

Proof: If ΣX ∼=M , let U ′ and V ′ be euclidean neighborhoods of the suspension points.
Radial expansion gives open sets U and V homeomorphic to U ′ and V ′ covering M.

Our proof of the Generalized Schoenfliess Theorem will depend on a technique called
“Bing Shrinking.” Strictly speaking, the introduction of Bing Shrinking at this stage is
unnecessary, but the proof is not hard and shrinking is a basic technique in the topological
category, so we introduce it as quickly as possible. For an argument which does not
explicitly use Bing’s results, see [B1].

Bing Shrinking

Definition 2.9.

(i) A map p : X → Y between compact metric spaces is called a near-homeomorphism
if p is a uniform limit of homeomorphisms.

(ii) A surjective map p : X → Y between compact metric spaces is said to be shrink-
able if for each ε > 0 there is a homeomorphism h : X → X such that

(1) diam(h(p−1(y))) < ε and
(2) d(p, p ◦ h) < ε.

h is called a shrinking homeomorphism for p.

The first condition in part (ii) says that there is a self-homeomorphism h of X making
the point-inverses p−1(y) arbitrarily small. The second condition says that this homeo-
morphism may be chosen to keep every point-inverse in a small neighborhood of itself.
To an observer standing in the range space Y , and looking up at the graph of p in X×Y ,
the motion h appears to be very small. The exercise below puts this into symbols.

Exercise 2.10. Prove that if X and Y are compact metric and f : X → Y is continuous
with diam(f−1(y)) < ε for all y ∈ Y , then there is a δ > 0 so that if g : X → X is
continuous with d(f ◦ g, f) < δ, then d(g, id) < ε. (Hint: Show that there is a δ > 0 so
that if d(f(x), f(x′)) < δ, then d(x, x′) < ε.)

Theorem 2.11 (Bing Shrinking Theorem [Bi]). A surjective map p : X → Y be-

tween compact metric spaces is a near-homeomorphism if and only if it is shrinkable. In

particular, if p is shrinkable, then X and Y are homeomorphic.
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Proof: (⇐) Suppose that p is shrinkable. The plan is to construct a sequence of home-
omorphisms hi : X → X converging to a map q : X → X which has the same collection
of point-inverses as p. Then p ◦ q−1 is well-defined map X to Y with q ◦ p−1 : Y → X as
its inverse.
We will choose the homeomorphisms hi so that

(h1) d(hi, hi+1) < 1/2i, i ≥ 1.
(h2) diam(hi(p−1(y))) < 1/2i for all y ∈ Y and i ≥ 1.
(h3) d(p ◦ h−1

i−1, p ◦ h−1
i ) < 1/2

i−1 for all i.

We will construct hi as ki ◦ ki−1 ◦ · · · ◦ k1.

X
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In terms of ki’s, the condition (h1) simply says that:

(k1) d(ki+1, id) < 1/2i, i ≥ 1.

Conditions (h2) and (h3) reduce to:

(k2) ki is a shrinking homeomorphism for pi−1 = p ◦ h−1
i−1.

Of course pi is shrinkable when p is, so we need to find shrinking homeomorphisms ki
for which condition (k1) holds. We start by choosing k1 to shrink all point-inverses of p to
diameters of less than 1

4 . At each further stage, we choose ki+1 to shrink all point-inverses
of pi to diameter less than 1/2i+1. This ki+1 can be chosen with d(ki+1, id) < 1/2i, since
the point-inverses of pi have diameter < 1/2i. In fact, choosing ε sufficiently small for
the shrinking homeomorphism ki+1 forces this last condition, since the motion of ki+1

is constrained to lie near the point-inverses of pi. Having chosen hi’s satisfying (h1)-
(h3), we have q = limhi : X → X . Condition (h2) implies that q ◦ p−1(y) is a single
point for all y ∈ Y , so q ◦ p−1 : Y → X is well-defined. Condition (h3) implies that
q′ = lim p ◦ h−1

i : X → Y exists. The maps q ◦ p−1 and q′ are inverses, showing that X
and Y are homeomorphic.

(⇒) Let ε > 0 be given and suppose that p is a uniform limit of homeomorphisms.
Let {hi} be a sequence of homeomorphisms converging uniformly to p. Choose i so that
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d(hj , p) < ε/2 for j ≥ i. By continuity, there is a δ > 0 such that if d(y, y′) < δ,
then d(h−1

i (y), h
−1
i (y

′)) < ε/2. If j is large, diam(hj(p−1(y))) < δ for each y ∈ Y , so
diam(h−1

i ◦ hj(p−1(y))) < ε. d(p ◦ h−1
i ◦ hj , p) = d(p ◦ h−1

j , p ◦ h−1
i ) < d(p ◦ h−1

j , id) +
d(id, p ◦ h−1

i ) = d(p, hi) + d(p, hj) < ε/2 + ε/2 = ε. Thus, h = h
−1
i ◦ hj is a shrinking

homeomorphism for p.

Remark 2.12. We can extend this theorem to the locally compact metric case using
one-point compactifications. In particular, a proper map between locally compact metric
spaces which satisfies the shrinking condition as stated is a limit of homeomorphisms.
The Bing Shrinking Theorem is true in extreme generality. See [D] for much more general
results.

The proof of the Generalized Schoenfliess Theorem

Definition 2.13. A compact subset X of a manifold Mn is said to be cellular if for

each neighborhood U of X there is a topological n-ball (≡ n-cell)Q with X ⊂
◦
Q ⊂ U .

Proposition 2.14. IfX ⊂Mn is cellular, then p :M →M/X is a near-homeomorphism.

Proof: This is an easy application of the Bing Shrinking Theorem. If U is a small open
neighborhood of X and Q is an n-cell in U containing X , a shrinking homeomorphism
is obtained by radially contracting Q in itself to make X small.

Exercise 2.15. The serious student is urged to prove the preceding proposition by hand
without appealing to Bing Shrinking.

Proposition 2.16. If X ⊂ Rn is compact and there is a map φ : Rn → Rn so that

φ(X) = pt and φ−1(φ(y)) = y for y �∈ X , then X is cellular.

Proof: Let Q′ ⊂ Rn be a topological n-cell containing X and let V be an open neigh-
borhood of X . Let σ : Rn → Rn be a homeomorphism which squeezes φ(Q′) into φ(V )
while fixing a (very small) neighborhood of φ(X). Then Q = φ−1 ◦ σ ◦ φ(Q′) is a cell in
V containing X.

Remark 2.17. It is important to notice that the argument above does not require φ to
be onto.

Proposition 2.18. If X, Y ⊂ Rn are compact and there is a map φ : Rn → Rn so that

(i) φ(X) = pt.
(ii) φ(Y ) = pt.
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(iii) φ−1(φ(z)) = z for z �∈ X, Y .

Then X and Y are cellular.

Proof: Let σ : Rn → Rn be a radial contraction from the point φ(X) so that σ(Rn) ⊂
Rn−φ(Y ) and so that σ = id on a neighborhood of φ(X). Then ψ = φ−1◦σ◦φ : Rn → Rn

has Y as its only nondegenerate point-inverse. By the previous proposition, Y is cellular.
Note that since σ = id on a neighborhood of φ(X), ψ = id on a neighborhood of X.

Definition 2.19. Sn−1 ⊂ Sn is said to be bicollared if it is collared in each of its
complementary domains. In view of Theorem 2.2, Sn−1 is bicollared if and only if it is
locally collared in each of its complementary domains.

Theorem 2.20 (Generalized Schoenfliess Theorem [B1], [M]). If Sn−1 ⊂ Sn is

bicollared, then the closed complementary domains of Sn−1 in Sn are topological n-cells.

Proof: Let C be a bicollar on Sn−1 and let D1 and D2 be the complementary domains
of C. Consider the map φ : Sn → Σ(Sn−1) = Sn which crushes D1 and D2 to the north
and south poles. By the previous proposition, D1 and D2 are cellular. Let D be the
closed complementary domain of Sn−1 containing D1. Since D1 is cellular, D → D/D1

is a near-homeomorphism. Since D/D1 is a cell, D must also be a cell, proving the
theorem.

Exercise 2.21. Show that if Sn−1 → Sn is an embedding with a single complementary
domain which is a topological manifold, then that complementary domain is a topological
ball.

Example 2.22 (Fox-Artin arc).

(i) The picture above is a “wild arc” α ⊂ R3. Technically, we have a 1-1 map

[0, 1]→ R3 with image α such that R3 − α is not simply connected. If the loop λ

could be contracted to a point in the complement of α, then it could be contracted
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to a point missing an ε-neighborhood of the endpoints. Inspection (or, better, π1

calculations) shows that this is impossible. See [AF] for details.
(ii) Thickening the arc slightly, tapering towards the ends, gives an embedding of D3

into S3 whose complement is not simply connected. This shows that some local

condition on the embedding is needed to ensure that the complementary domains

of an embedded Sn−1 in Sn are balls.

A similar looking, but (apparently) much harder result is the Annulus Theorem. This
was a famous open problem for a long time, so it is still often referred to as the Annulus
Conjecture.

Theorem 2.23 (Annulus theorem Kirby [K], Quinn [Q]). If f : Bn →
◦
Cn, n ≥ 4,

is a locally collared embedding of a ball into the interior of a ball, then Cn − f(
◦
Bn) is

homeomorphic to Sn−1 × [0, 1].

The proof referred to relies on deep results of Hsiang, Shaneson, andWall classifying PL
manifolds homotopy equivalent to tori. There is another proof in the spirit of Quinn’s
4-dimensional proof which relies on Quinn’s end theorem and Edwards’ Disjoint Disk
Theorem and there is another high-dimensional proof relying on bounded surgery theory
[FP]. We will spend quite a bit of time in these notes discussing the annulus conjecture.
The theorem in dimensions ≤ 3 follows quickly from the unique triangulability of 3-
manifolds. Here is a weaker theorem which follows immediately from the methods used
in proving the Schoenfliess Theorem.

Theorem 2.24. If f : Bn →
◦
Cn, n ≥ 4, is a locally collared embedding of a ball into

the interior of a ball, then Cn − f(Bn) is homeomorphic to Sn−1 × (0, 1].

Proof: Since f(B) is cellular in
◦
C, C/f(B) ∼= C, so

C − f(B) ∼= C − pt ∼= Sn−1 × (0, 1].

Remark 2.25.

(i) The Schoenfliess Theorem for S1 ⊂ S2 is a consequence of the Riemann Map-
ping Theorem and is true without the collaring hypothesis. Of course, purely
topological proofs are also known.
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(ii) The hypotheses on the Schoenfliess Theorem can be weakened. If Sn−1 ⊂ Sn is
an embedded sphere and D is one of its open complementary domains, then D̄
is a ball if and only if for each ε > 0 there is a δ > 0 so that if α : S1 → D

is a map with diam(α(S1)) < δ, then there is a map ᾱ : D2 → D extending
α with diam(α(D2)) < ε. The list of contributors to this result includes Bing,
Cannon, Černavskii, Daverman, Ferry, Price, and Seebeck. For n ≥ 5, the theorem
stated appears as Theorem 5 of [F]. See [FQ] and [C] for the 4- and 3-dimensional
versions.

(iii) A related problem is the PL Schoenfliess Conjecture. If Sn−1 ⊂ Sn is a bicollared
embedding, then the complementary domains are known to be disks for n �= 4. If
the embedding is not known to be bicollared, the problem is open in dimensions
n ≥ 4. An easy induction on links shows that an affirmative answer to the 4-
dimensional problem implies the collaring hypothesis and therefore an affirmative
answer to the high-dimensional problem.
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Chapter 3. Klee’s Trick

In the last section, we saw that there are many different embeddings of [0, 1] into R3.
The purpose of this section is to show that this situation becomes more pleasant if we
allow ourselves to stabilize by including R3 into R4.

Definition 3.1. We will say that embeddings i : A→ X and j : A→ X are equivalent
if there is a homeomorphism h : X → X with h ◦ i = j.

In this section, we will show that topological embeddings become equivalent after
stabilization. For example, any embedding α : [0, 1] → R3 becomes equivalent to the
standard embedding after composition with the inclusion R3 × {0} → R4.

Theorem 3.2 (Klee [K]). If A is compact and i : A → Rm and j : A → Rn are

embeddings, then there is a homeomorphism h : Rm+n → Rm+n with h ◦ (i × {0}) =
{0} × j.

Proof: Consider the function j ◦ i−1 : i(A)→ j(A). By the Tietze extension theorem,
this extends to a function Φ : Rm → Rn. Define a homeomorphism1 v : Rm × Rn →
Rm ×Rn by

v(x, y) = (x, y +Φ(x)).

Similarly, let Ψ be an extension of i ◦ j−1 and let

u(x, y) = (x−Ψ(y), y).

Then h = u ◦ v is the desired homeomorphism, since

u ◦ v(i(a), 0) = u(i(a),Φ(i(a)))
= u(i(a), j(a))

= (i(a)−Ψ ◦ j(a), j(a))
= (i(a)− i(a), j(a))
= (0, j(a)).

In words, u pushes i(A) up to the graph of j−1 ◦ i and v pushes the graph of i−1 ◦ j over
to j(A). Since the graphs of j−1 ◦ i and i−1 ◦ j are the same as subsets of Rm ×Rm, the
composition throws one copy of A onto the other.

1 Check that v′(x, y) = (x, y −Φ(x)) is an inverse.

12
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Corollary 3.3. If i1, i2 : [0, 1]→ R3 are embeddings, then there is a homeomorphism

h : R4 → R4 with h ◦ i1 = i2.

Proof: Both embeddings are equivalent to the standard embedding [0, 1] → R1 ⊂
R3 ×R1.

Exercise 3.4. Examine the compactness hypothesis in Klee’s trick. Prove that embed-
dings of S1 into R3 become equivalent upon inclusion into S4. (Hint: Remove a point
from S1, apply the noncompact theorem, and 1-point compactify.)
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Chapter 4. Manifold factors

Definition 4.1. A space X is called a manifold factor if there is a space Y so that
X × Y is a topological manifold.

Theorem 4.2. In the PL category, manifold factors are manifolds.

We begin the proof by recalling a link formula:

Proposition 4.3. If K and L are polyhedra with k ∈ K and 
 ∈ L, then

Lk((k, 
), K × L) = Lk(k,K) ∗ Lk(
, L).

Here, ∗ denotes the polyhedral join operation.

If K ×L is a manifold, then Lk(k,K) ∗Lk(
, L) is a sphere for each k ∈ K and 
 ∈ L,
so the result follows from:

Lemma 4.4. If K ∗ L is PL homeomorphic to Sn, then both K and L are PL spheres.

Proof: The proof is by induction on n. If n = 1, the result is true by inspection. If
k ∈ K, then Lk(k,K ∗ L) = Lk(k,K) ∗ L, so if K ∗ L is an n-sphere, then Lk(k,K) ∗ L
is an n− 1-sphere and L is a PL sphere by induction. By symmetry, K is a PL sphere,
as well.

The analogous theorem is false in the topological category. In particular, there exist
nonmanifolds X so that X × R1 is homeomorphic to S3 × R1. Here is an example.

Definition 4.5. A Whitehead continuum W is the intersection of solid tori Ti, i =
0, 1, . . . which are geometrically linked but homotopically unlinked as in the picture
below.

Ti+1
Ti

i

W

14
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There are choices involved in this construction, but the specific choices will not affect
the argument of this section.

The space T0 −W is not simply connected, since the curve λ pictured does not bound
in T0−W .2 It follows that the point [W ] ∈ S3/W has no neighborhood U so that U−[W ]
is simply connected. We see from this that S3/W is not a manifold.

Theorem 4.6. S3/W × R1 is homeomorphic to S3 × R1.

Proof: We give an argument due to Andrews-Rubin [AR]. We wish to apply Bing
Shrinking to the map p : S3 × R1 → S3/W × R1. The goal, given ε > 0, is to find a
homeomorphism h : S3 × R1 → S3 × R1 so that h(W × {t}) < ε for each t and so that
d(p◦h, p) < ε. For this, it suffices to find a homeomorphism h : S3×R1 → S3×R1 which
shrinks Ti+1×{t} to epsilon size inside of Ti× [t− ε, t+ ε] for some i and which does not
move points outside of Ti × R1. If we are successful in finding such homeomorphisms,
the Bing Shrinking Theorem shows that p is a uniform limit of homeomorphisms, so in
particular, S3/W × R1 ∼= S3 ×R1.

We write each Ti as Di × S1 in such a way that each Di × θ has diameter εi with
εi → 0. We will control the sizes of the h(Ti+1 × t)’s by making sure that h(Ti+1 × t) ⊂
Di × θt × [t− εi, t+ εi].

Since the composition Ti+1 → Ti → S1 is nullhomotopic, there is a lift to R1. That is,
there is a map φ : Ti+1 → R1 such that φ(x) is equivalent mod(2π) to the S1-coordinate
of x in Ti. Extend φ to a map Ti → R1 which is zero on ∂Ti.

Our homeomorphism h is the composition of two homeomorphisms v and r. The
homeomorphism v pushes by an amount φ in the R1-direction. Thus,

v(x, θ, t) = (x, θ, t+ φ(x, θ)), (x, θ, t) ∈ Di × S1 × R1.

To see that v is a homeomorphism, we need only check that v′(x, θ, t) = (x, θ, t−φ(x, θ))
is its inverse. To define r, we first choose a function ρ : Ti → [0, 1] with ρ(Ti+1) = 1 and
ρ(∂Ti) = 0. Now define

r(x, θ, t) = (x, θ − tρ(x), t) (x, θ, t) ∈ Di × S1 ×R1.

In words, this homeomorphism twists points of Ti+1 × R1 according to their heights
and phases out the twists as we move out to the boundary of Ti. The inverse of r is
r′(x, θ, t) = (x, θ + tρ(x), t).
2 A diligent student could compute the fundamental group and show that λi is nontrivial. See [W] for

details.
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The composition h = r ◦ v is

r ◦ v(x, θ, t) = (x, θ− (t+ φ(x, θ))ρ(x), t+ φ(x, θ)) (x, θ, t) ∈ Di × S1 ×R1.

For x ∈ Ti+1, ρ(x) = 1. Since θ is congruent to φ(x, θ) mod (2π),

r ◦ v(Ti+1 × {t}) ⊂ Di × {−t} ×R1 ⊂ Ti × R1.

After rescaling the R1-direction to make the vertical move εi-sized, the desired shrinking
has been accomplished.

Remark 4.7. The original example of this sort was Bing’s “dogbone space.” See [B1].
The observation that S3/W × R1 ∼= S3 × R1 was made by Arnold Shapiro.

Definition 4.8. A (topological) group G acts on a space X if there is a (continuous)
map · : G×X → X so that for all x ∈ X and g ∈ G:

(i) g1 · (g2 · x) = (g1g2) · x.
(ii) e · x = x.

The action is free if g · x �= x for all x ∈ X and g ∈ G, g �= e.
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Corollary 4.9. There is a free circle action on S3 × S1 so that one of the orbits is

wild. In particular, S3 × S1 contains a circle S1 which is wild but homogeneous in the

sense that given x, y ∈ S1, there is a homeomorphism h : (S3 × S1, S1)→ (S3 × S1, S1)
with h(x) = y.

Proof: S1 acts on S3/W × S1 ∼= S3 × S1 by α · (x, β) = (x, α+ β).

Corollary 4.10. There is a Z/2Z-action on S4 with fixed point set a nonmanifold.

Proof: There is an involution on S3/W × R1 which is obtained by flipping the R1-
coordinate. Since S3/W×R1 ∼= S3×R1, the two-point compactification of this involution
is an involution on S4.

Remark 4.11. The first example of this sort is due to Bing, [B2]. The question of which
spaces are manifold factors has been studied extensively. A great deal of information
concerning this problem can be found in [D]. It is known, for instance, that if β ⊂ Rn

is a (possibly wild) k-cell, then Rn/β × R1 is homeomorphic to Rn+1. See [AnC] for
k = 1 and [B] for k > 1. This construction will be used in constructing noncombinatorial
triangulations of S5.
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Chapter 5. Stable homeomorphisms and the annulus conjecture

In this section, we will define “stable homeomorphisms” and discuss their relation to
the annulus conjecture. We will continue our discussion of the annulus conjecture in
section 14. For the most part, the treatment follows [BG] and [K]. This will also be our
introduction to bounded topology.

Annulus Conjecture. If h : Bn →
◦
Cn, n ≥ 4, is a locally collared embedding of a

ball into the interior of a ball, then Cn − h(
◦
Bn) is homeomorphic to Sn−1 × [0, 1].

Of course, we can assume that Cn is a standard ball inRn and the Schoenfliess Theorem
lets us extend h to all of Rn by coning from a point at infinity in Sn, so we can just as

well ask if Bn −
◦

h(Bn) is an annulus whenever h : Rn → Rn is a homeomorphism with

h(Bn) ⊂
◦
Bn. Note that it would be equivalent to ask whether KBn−

◦
h(Bn) is an annulus

for any large K, since the KBn−
◦
Bn is an annulus and adding or subtracting a boundary

collar does not change the homeomorphism type of a manifold. If KBn −
◦

h(Bn) is an
annulus for some (and therefore all) large K, we will say that the annulus conjecture is
true for h.

Definition 5.1. A homeomorphism h : Rn → Rn is stable if it can be written as a
composition hk ◦ hk−1 ◦ · · · ◦ h1 of homeomorphisms hi : Rn → Rn such that for each hi
there is a nonempty open subset Ui such that hi|Ui = id.

Stable homeomorphism conjecture (now theorem). Every orientation-preserving

homeomorphism h : Rn → Rn is stable.

Proposition 5.2. The stable homeomorphism conjecture implies the annulus conjec-

ture.

Proof: We begin with a claim.

Claim. If the annulus conjecture is true for h and k, then the annulus conjecture is true
for k ◦ h.

Proof of Claim: Choose K large enough that KBn − k(
◦
Bn) is an annulus. Then

h(KBn)− h ◦ k(
◦
Bn) is also an annulus. Choose L large enough that LBn−

◦
h(Bn) is an

annulus and so that h(KBn) ⊂ LBn. Then Z = (LBn−h(K
◦
Bn)) is an annulus, since Z

18
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is a manifold with boundary and adding the boundary collar h(KBn)−h(
◦
Bn) to Z yields

the annulus LBn−h(
◦
Bn). Since h(KBn)−h ◦ k(

◦
Bn) is an annulus, LBn−h ◦ k(

◦
Bn) is

an annulus, proving the claim.

h(KB )n

LBn

h k(B )n

Returning to the proof of the proposition, we need to show that the annulus conjecture
is true for h if there is an open set U such that h|U = id. Choose L large enough that
LBn ⊃ h(Bn) and LBn ∩ U �= ∅. Let B′ be a standard ball in LBn ∩ U .

LBn

h(B )n

U

B'

n
h(KB )

Choose K large enough that h(KBn) ⊃ LBn. Then h(KBn −
◦
B′) = h(KBn)−

◦
B′ is

an annulus, so h(KBn)−L
◦
Bn is an annulus, so LBn−h(

◦
Bn) is h(KBn)−h(

◦
Bn) minus
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a boundary collar and is therefore an annulus.

It follows immediately from the definition of stability that if h, k : Rn → Rn are
homeomorphisms agreeing on some nonempty open set, then h and k are either both
stable or both unstable. Hint: k = h ◦ (h−1 ◦ k).
Using the Schoenfliess theorem, if U ⊂ Rn is open, x ∈ U , and h : U → Rn is an

embedding, then there is a homeomorphism h̄ : Rn → Rn with h̄ = h on a neighborhood
of x. Since any two such homeomorphisms agree on a neighborhood of x, the definition
of stability can be extended to germs of embeddings h : U → Rn. If U is connected,
these definitions agree at all points x ∈ U .

Definition 5.3. A homeomorphism h : Rn → Rn is bounded if there is a k such that
|h(x)− x| < k for all x ∈ Rn.

Theorem 5.4 (Connell [C]). Bounded homeomorphisms are stable.

Proof: Let h : Rn → Rn be a bounded homeomorphism. Since translations >x →
>x + >a are clearly stable, we can assume that h(>0) = >0 and let ρ : [0,∞) → [0, 2) be a
homeomorphism which is the identity on [0, 1]. Then

>x
γ−→ ρ(|>x|) >x|>x|

defines a homeomorphism γ : Rn → 2
◦
Bn which is the identity on Bn. The homeomor-

phism γ ◦ h ◦ γ−1 : 2
◦
Bn → 2

◦
Bn extends continuously by the identity to Rn. This shows

that h agrees on a neighborhood of >0 with a homeomorphism which is the identity on a
nonempty open set, so h is stable.

We digress for a moment to state and prove a smooth isotopy extension theorem.

Theorem 5.5. Let h : U × [0, 1] → Rn × [0, 1] be a smooth isotopy through open

embeddings and let x ∈ U . Then there is a smooth isotopy H : Rn × [0, 1]→ Rn × [0, 1]
with H0 = id such that Ht ◦ h0 = ht in a neighborhood of {x} × [0, 1] and such that H

has compact support.
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Proof: Let ρ : Rn × [0, 1] → [0, 1] be a smooth function which is 1 on a neighborhood
of h({x} × [0, 1]) and 0 outside of a compact subset of h(U × [0, 1]). Then

ρh∗
∂

∂t
+ (1− ρ) ∂

∂t

is a vector field on Rn × [0, 1] which can be integrated to give the required H.

Corollary 5.6. Every orientation preserving diffeomorphism of Rn is stable. The same

is true for PL homeomorphisms.

Proof: If h : Rn → Rn is a diffeomorphism, composing with a translation gives h(0) =
0. Setting

Ht(x) =
{ 1
t
h(tx) 0 < t ≤ 1
dh|x=0 t = 0

gives an isotopy from h to a linear map. The general linear group has two path com-
ponents which are detected by the sign of the determinant, so choosing a smooth path
from dh|x=0 to I in Gln(R) (Gln(R) is an open subset of Rn

2
) gives an isotopy from h

to id. The isotopy extension theorem then gives us a homeomorphism agreeing with h
near 0 which is the identity outside of a compact set, so the result follows.
In the PL case, we know that every orientation-preserving PL embedding of Bn in Rn

is isotopic to the identity. The PL isotopy extension theorem then shows that a germ
near 0 can be extended to a homeomorphism which is the identity outside of a compact
set.

Remark 5.7. To see that Gln(R) has two path components, note that if E is an ele-
mentary matrix, then t→ t(E− I)+ I gives a path through elementary matrices from E
to I. Multiplying such paths gives a path from I to any product of elementary matrices,
so the result follows from the fact that any invertible matrix with positive determinant
is a product of elementary matrices.

Definition 5.8. A coordinate chart on a manifold Mn is a pair (U, φ) where U ⊂ M

is open and φ : U → Rn is an open embedding. The manifold M is said to be smooth
(or PL) if there is a covering {Uα}α∈A of M by coordinate charts φα : Uα → Rn so that
φβ ◦ (φα)−1 is smooth (or PL) on φα(Uα ∩ Uβ) for all α, β ∈ A.

Definition 5.9. We will say that a homeomorphism h : M → N between connected
oriented smooth (or PL) manifolds is stable if for smooth coordinate charts φ : U → Rn,
ψ : V → Rn, with U ⊂M , V ⊂ N , h(U)∩V �= ∅, the germ ψ◦h◦φ−1 : φ(h−1(V )∩U)→
Rn is stable.
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That this notion is well-defined follows from the fact that orientation-preserving dif-
feomorphisms and PL homeomorphisms are stable, together with the following exercise:

Exercise 5.10. If M is a connected (DIFF or PL) topological manifold, and x, y ∈M ,
then there is a (DIFF or PL) ball in M containing x and y.

The arguments above show that the notion of stability is also well-defined for germs
of open embeddings of subsets of M into N . It follows immediately that orientation-
preserving PL homeomorphisms and diffeomorphisms of PL and smooth manifolds are
stable.

Proposition 5.11. Every orientation-preserving homeomorphism h : Tn → Tn is sta-

ble.3

Proof: We can assume that h preserves a basepoint, so lifting to the universal cover
gives a homeomorphism h̃ : Rn → Rn which sends the integral lattice onto itself. This
gives an element of A ∈ Gln(Z), which induces a diffeomorphism hA : Tn → Tn by
passing to the quotient space. It suffices to show that (hA)−1 ◦ h is stable, so we can
assume that h̃ restricts to the identity on the integral lattice. In that case, one easily
checks that h̃ is bounded, the maximum distortion being achieved somewhere in the unit
cube, so h̃ is stable. Using the restriction of the cover to 1

2
Bn as a coordinate chart

shows that h is stable.

We’ve shown that in order to show that h is stable, it suffices to restrict to a germ
and extend to a homeomorphism of Tn or to a bounded homeomorphism of Rn. On the
other hand, a little thought shows that extending a germ to a homeomorphism which is
the identity outside of a ball requires something very much like the annulus conjecture,
(actually, the annulus conjecture in all lower dimensions), so it is not clear that we are
making progress.
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Chapter 6. Cellular homology

Most geometric topologists think of homology as cellular homology or CW homology
because it is rather concrete and makes certain questions a lot easier.
If X is a CW complex, then Xk/Xk−1 is a bouquet of k-spheres with one sphere for

each k-cell of X . Thus, Hk(Xk/Xk−1) ∼= Hk(Xk, Xk−1) for k > 0 can fairly be thought
of as a free abelian group generated by the k-cells of X . We write

Ck(X) ≡ Hk(Xk, Xk−1).

We define ∂ : Ck(X)→ Ck−1(X) by taking the composition:

Hk(Xk, Xk−1) ∂
′

−→ Hk−1(Xk−1) i−→ Hk−1(Xk−1, Xk−2)

where ∂′ is the boundary map in the long exact sequence of the pair (Xk, Xk−1).

This boundary map isn’t terribly hard to understand. If we writeXk = Xk−1∪φ(∪Dk),
where φ : (

∐
Dk,
∐
Sk−1)→ (Xk, Xk−1), then we have a diagram:

Hk(Xk, Xk−1) w∂′ Hk−1(Xk−1) wi Hk−1(Xk−1, Xk−2)

Hk(
∐
Dk,
∐
Sk−1)

u

∼= φ∗

w∂
∼= Hk−1(

∐
Sk−1)

u

φ|∗

Since φ is a relative homeomorphism, the first vertical map is an isomorphism. We know
what the boundary map looks like for (Dk, Sk−1). It takes the (relative) top class of
(Dk, Sk−1) to its boundary, which is the top class of Sk−1. It really is just a boundary
map. If X has r k-cells and s (k − 1)-cells, Hk(Xk, Xk−1) is free abelian of rank r and
Hk−1(Xk−1, Xk−2) is free abelian of rank s, so the boundary map has a matrix with
respect to these bases.
By the diagram above, the ijth entry in the matrix is the degree of the map gotten

by mapping the ith k-cell into Xk−1 using φ| and composing with the maps Xk−1 →
Xk−1/Xk−2 → Dk−1

j /∂. In other words (for decent φ), if you pick a random point in
the middle of the jth (k − 1)-cell and count preimages under φ|Dki , then that number
goes in the ijth slot in the matrix of the boundary operator.

Example 6.1. Let X = 〈a, b, c〉 be a triangle with the CW structure having 0-cells 〈a〉,
〈b〉, and 〈c〉 and 1-cells 〈a, b〉, 〈a, c〉, and 〈b, c〉. Consider ∂ : C1(X)→ C0(X).

24
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H1(X1, X0) is free abelian generated by classes corresponding to 〈a, b〉, 〈a, c〉, and
〈b, c〉, while H0(X0) is free abelian generated by classes corresponding to 〈a〉, 〈b〉, and
〈c〉. The boundary map is:

∂〈a, b〉 = 〈b〉 − 〈a〉
∂〈a, c〉 = 〈c〉 − 〈a〉
∂〈b, c〉 = 〈c〉 − 〈b〉

In other words, we have recovered the simplicial chain complex of X . This is true in
general. If X is a simplicial complex and we give X the CW structure given by the
simplices, then C∗(X) is the simplicial chain complex of X .

On the other hand, we could give X a different CW structure, say one with one 0-
cell and one 1-cell. In that case, the cellular chain complex has one generator in each
dimension and the boundary map is 0. Note that in both cases the homology of C∗(X)
is the homology of S1.
This is generally true. The complex C∗(X) is a chain complex (i.e., ∂∂ = 0) and the

homology of this chain complex is isomorphic to the homology of X .

Proposition 6.2. ∂∂ = 0.

Proof: The composition ∂∂ : Ck(X)→ Ck−2(X) is given by:

Hk(X
k,Xk−1)

∂′−−→ Hk−1(X
k−1)

i−→ Hk−1(X
k−1,Xk−2)

∂′−−→ Hk−2(X
k−2)

i−→ Hk−2(X
k−2, Xk−3).

The composition of the middle two maps is zero because they are two consecutive terms
in the long exact homology sequence of (Xk−1, Xk−2).

The proof that the homology of the cellular chain complex is the homology of X is a
little bit harder. We start the proof with an algebraic lemma.

Lemma 6.3. Suppose we are given a diagram

E

A wα B w
β

C w

u

γ

0

D

u

0

u
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with exact row and column. Then D ∼= ker(γ) ∼= ker(γ◦β)
im(α) .

Proof: This is a diagram chase.

The proof that the homology of the cellular chain complex is isomorphic to the
usual homology now follows from the lemma and the diagram below. The row is the
long exact sequence of (Xk+1, Xk, Xk−1) and the column is the long exact sequence of
(Xk+1, Xk−1, Xk−2).

Hk−1(X
k−1,Xk−2)

Hk+1(X
k+1, Xk) w∂

Hk(X
k, Xk−1)

[
[
[[]∂

w Hk(Xk+1, Xk−1)

u

w Hk(Xk+1,Xk) = 0

Hk(X
k+1, Xk−2)

u

Hk(X
k−1, Xk−2) = 0

u

and the fact that Hk(Xk+1, Xk−2) ∼= Hk(X). This last is true because

(i) Hk(X) ∼= Hk(Xk+1) and
(ii) Hk(Xk+1) ∼= Hk(Xk+1, Xk−2).

For finite CW complexes, (i) and (ii) follow immediately by Mayer-Vietoris and induction
on cells. The case of infinite CW complexes follows from the finite case by taking direct
limits.
The singular complex is a huge object which is great for proving theorems. The cellular

complex has the advantage that you can write down matrices and really get your hands
on things. To help the beginning student to get his/her feet on the ground, we reprove a
few standard theorems from algebraic topology. We should emphasize that the standard
proofs of these facts are more functorial and have wider applicability. Nevertheless, we
feel that there is some virtue in seeing special cases of the general results done in an
extremely concrete fashion.

Proposition 6.4. If X and Y are finite CW complexes, then C∗(X × Y ) ∼= C∗(X) ⊗
C∗(Y ).
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Proof: The cells in the product complex are the products of the cells of the original
complexes. Sending the product of cells x and y to x ⊗ y is clear enough, so the only
thing to check is that the signs are right. The differential in C∗(X)⊗ C∗(Y ) is

∂(x⊗ y) = ∂x⊗ y + (−1)deg xx⊗ ∂y.

The problem reduces to checking the signs for the case of Im × In and the reader is left
to come to terms with that by him/herself. We could have written dim x instead of deg x
in the display above, but deg somehow looks better in the company of tensor products.

Example 6.5. Give S1 the CW structure with one 0-cell and one 1-cell. The cellular
chain complex is

0→ Z
0−→ Z → 0

with one generator x in dimension 1. T 2 then has a CW structure with one 2-cell, two
1-cells, and one 0-cell. The chain complex is:

0→ Z → Z ⊕ Z → Z → 0

The generator in dimension 2 is x⊗ y and ∂(x⊗ y) = 0. The generators in dimension 1
are x⊗1 and 1⊗y and their boundaries are also 0, so the homology is easy to calculate.

We can calculate the cohomology of a CW complex X by taking the dual of C∗(X),
i.e., by taking the transposes of the ∂’s. This leads to a rather direct understanding of
universal coefficient theorem.

Proposition 6.6. If C∗ is a chain complex of finitely generated abelian groups, then

C∗ can be written as the direct sum of a finite number of chain complexes Ki∗ where K
i
∗

has the form

0→ Kii+1 → Kii → 0.

Proof: Let C∗ be given by:

0→ Ck
∂−→ Ck−1

∂−→ . . .
∂−→ C1

∂−→ C0 → 0

By standard matrix theory, there are bases for C1 and C0 so that ∂ : C1 → C0 has the
form: 

d1 0 0 . . . 0
0 d2 0 . . . 0
...

...
...
. . .

...
0 0 0 . . . 0
0 0 0 . . . 0


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where the integers d1 are nonzero. We can therefore decompose C1 into K0
1 ⊕K1

1 so that
∂|K0

1 is a monomorphism and ∂|K1
1 is 0. The chain complex C∗ now looks like:

. . . → C2
∂−→ K1

1
0−→ 0

⊕ ⊕
K1

0
∂−→ C0 = K0

0 → 0.

An easy induction completes the proof. Note that the boundary map coming from C2

cannot hit the K1
0 summand because ∂|K1

0 is a monomorphism.

The argument shows a little more than we said above – it shows that C∗ decomposes
as a finite direct sum of complexes of the form 0 → Z

d−→ Z → 0 and 0 → Z → 0.
The dual complex C∗ therefore decomposes into corresponding complexes of the form
0 ←− Z

d←− Z ←− 0 and 0 ←− Z ←− 0. Computing the homology and cohomology shows
that the free parts of the homology and cohomology are isomorphic, while the torsion
parts shift by one dimension.

Example 6.7. Consider RP 3 with one cell in each dimension 0− 3. The chain complex
is:

0→ Z
0−→ Z

2−→ Z
0−→ Z → 0

To check the boundary map from the 3-cell to the 2-cell, for instance, think of RP 3 as
being S3 with antipodal points identified. This identifies the northern hemisphere of S3

with the 3-cell in the CW decomposition. The boundary of the 3-cell maps to the lower
skeleton by mapping to S2 by the identity and composing with the quotient map to RP 2.
The inverse image of a point in the 2-cell under this attaching map therefore consists of 2
antipodal points on S2. Since the antipodal map in dimension 2 is orientation reversing,
the signs cancel and the boundary map is trivial.
The dual complex is:

0←− Z 0←− Z 2←− Z 0←− Z ←− 0

from which the cohomology is easily computed.

Proposition 6.8. If M is a closed PL manifold, then H∗(M ;Z2) ∼= Hn−∗(M ;Z2).

Proof: If A is a k-simplex of Mn, then the dual cell A∗ (see Rourke and Sanderson, p.
27) is an (n − k)-ball. Moreover, A < B if and only if B∗ < A∗. This means that the
chain complex C∗(M ;Z2) is isomorphic to C∗(M∗;Z2) under the isomorphism sending
A to A∗.
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Remark 6.9. The same argument works with Z-coefficients modulo signs. When M is
orientable, sending A to A∗ induces maps Ck(M) → Cn−k(M∗) so that the resulting
diagram:

0 w Cn(M∗) w∂ Cn−1(M∗) w∂ . . . w∂ C1(M∗) w∂ C0(M∗) w 0

0 w C0(M)

u

∼=

wδ C1(M)

u

∼=

wδ . . . wδ Cn−1(M)

u

∼=

wδ Cn(M)

u

∼=

w 0

commutes up to sign. This is enough to show that H∗(M) ∼= Hn−∗(M).



Chapter 7. Some elementary homotopy theory

This section contains a short review of some elementary homotopy theory related to the
Hurewicz and Whitehead theorems. These theorems give algebraic criteria determining
when a map f : X → Y is a homotopy equivalence. The theorems below are all stated
for CW complexes, but the results are clearly true for spaces homotopy equivalent to
CW complexes. We shall see that locally compact metric ANR’s, including topological
manifolds, satisfy this last condition.

Theorem 7.1. If X and Y are connected CW complexes and f : X → Y is a map

such that f∗ : πk(X) → πk(Y ) is an isomorphism for all k ≥ 1, then f is a homotopy

equivalence.

Sketch of Proof: Replacing Y by the mapping cylinder of f , we can assume that
f is an inclusion. The long exact homotopy sequence of the pair (Y,X) shows that
πk(Y,X) = 0 for all k ≥ 1. An easy induction on skeleta gives a strong deformation
retraction from Y to X , so f is a homotopy equivalence.

Corollary 7.2. If X is a connected CW complex and πk(X) = 0 for k ≥ 1, then X is

contractible.

The difficulty in applying Theorem 7.1 is that homotopy groups are difficult to com-
pute. A measure of the difficulty is that there is no finite simply connected CW complex
for which all of the homotopy groups are known. Homology is far easier to compute, so
the following is a more useful theorem for X and Y simply connected.

Theorem 7.3. If X and Y are simply connected CW complexes and f : X → Y is

a map such that f∗ : Hk(X) → Hk(Y ) is an isomorphism for all k ≥ 2, then f is a

homotopy equivalence.

Proof: This one is harder. The idea is to replace f by an inclusion and note that
H∗(Y,X) = 0⇒ π∗(Y,X) = 0 by the relative Hurewicz Theorem. This, in turn, implies
that f∗ : πk(X)→ πk(Y ) is an isomorphism for all k.

Of course, we want to be able to deal with all complexes, not just simply connected
ones. The solution is to pass to the universal covers.

Theorem 7.4. If X and Y are connected CW complexes and f : X → Y is a map such

that f∗ : π1(X) → π1(Y ) is an isomorphism and such that f̃∗ : Hk(X̃) → Hk(Ỹ ) is an
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isomorphism for all k ≥ 2, then f is a homotopy equivalence. Here, f̃ : X̃ → Ỹ is a lift

of f to the universal covers.

Proof: This theorem follows from the previous two theorems and the fact that the
covering projection p : X̃ → X induces isomorphisms on πk for k ≥ 2. If f̃ : X̃ →
Ỹ induces isomorphisms on homology, then f̃ is a homotopy equivalence and induces
isomorphisms on homotopy. The diagram:

X̃ w
f̃

u
pX

Ỹ

u
pY

X w
f

Y

shows that f : X → Y induces isomorphisms on πk for all k ≥ 1 and Theorem 7.1 shows
that f is a homotopy equivalence.

Definition 7.5. There is a homomorphism ρ : πk(X) → Hk(X) called the Hurewicz
homomorphism defined as follows: If α : Sk → X represents an element of πk(X),
α∗ : Hk(Sk) → Hk(X), so we define ρ([α]) to be α∗([1]), where [1] ∈ Hk(Sk) ∼= Z is
the generator. The relative Hurewicz homomorphism is defined similarly, starting with
α : (Dk, Sk−1)→ (Y,X).

Theorem 7.6 (Hurewicz Theorem).

(i) If X is a connected CW complex and π�(X) = H�(X) = 0 for 1 ≤ 
 ≤ k, then

ρ : πk+1(X)
∼=−→ Hk+1(X).

(ii) If (Y,X) is a simply connected CW pair and π�(Y,X) = H�(Y,X) = 0 for 1 ≤

 ≤ k, then ρ : πk+1(Y,X)

∼=−→ Hk+1(Y,X).

Remark 7.7. We used mapping cylinder constructions several times in the above to
turn arbitrary maps into inclusions. The point is that if f : X → Y is a map and M(f)
is the mapping cylinder of f with i : X → M(f) the inclusion of X into the top of the
cylinder and c :M(f)→ Y the mapping cylinder retraction, then the diagram

X wi

u

M(f)

u
c �

X w
f

Y
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commutes and we can substitute into the long exact homology and homotopy sequences
of (M(f), X) to get a commuting diagram

. . . w πk(X) w
f∗

u
ρ

πk(Y )

u
ρ

w πk(f)

u
ρ

w . . .

. . . w Hk(X) w Hk(Y ) w Hk(f) w . . .

where Hk(f) ≡ Hk(M(f), X), πk(f) ≡ πk(M(f), X), and the vertical maps are Hurewicz
homomorphisms.

The hypotheses in these theorems are all necessary. Here is a key example of a CW
pair (Y,X) with π1(X)

∼=−→ π1(Y ) and Hk(X)
∼=−→ Hk(Y ) for all k, where X → Y is not

a homotopy equivalence.

Example 7.8. Let X = S1. Let Y be obtained from X ∨ S2 by attaching a 3-cell using
a map S2 → X ∨ S2 which pinches S2 to a dumbbell and maps the top half to S2 by a
degree +2 map, the middle around the S1 once in the positive direction, and the bottom
to S2 by a degree -1 map.

The cellular chain complex of Y is

0 −→ Z
×1−−→ Z

0−→ Z
0−→ Z→ 0

so S1 → Y induces isomorphisms on homology in all dimensions.
The universal cover of S1 ∨ S2 is a line with an infinite string of S2’s. Since there is

an action of Z by the covering translation, it is usual to think of the universal cover as
a complex of free ZZ = Z[t, t−1]-modules.

0 −→ Z[t, t−1] 0−→ Z[t, t−1] t−1−−→ Z[t, t−1] −→ 0
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t

Ỹ is the same with an infinite number of D3’s attached. Each D3 is attached by
squeezing to a dumbbell and using a degree 2 map on one sphere and a degree -1 map on
the next one to the right. The chain complex of Ỹ as a complex of free Z[t, t−1]-modules
is

0 −→ Z[t, t−1] 2−t−−→ Z[t, t−1] 0−→ Z[t, t−1] t−1−−→ Z[t, t−1] −→ 0.

The second homology of this chain complex is not 0, since any element of the form
(2− t)a, a ∈ Z[t, t−1], has its coefficient of lowest degree divisible by 2, so the boundary
map Z[t, t−1] 2−t−−→ Z[t, t−1] is not onto. This means that the inclusion X = S1 → Y does
not induce a homotopy equivalence on universal covers and is therefore not a homotopy
equivalence.

We should say a few more words about the ZZ-module structure used in the last
example.

Definition 7.9. If G is a group, ZG is the integral group ring whose elements are formal
sums

∑
g∈G ngg such that ng = 0 for all but finitely many g. ZG is a ring with addition

given by ∑
g∈G

ngg +
∑
g∈G

mgg =
∑
g∈G

(mg + ng)g

and multiplication given by∑
g∈G

ngg

∑
g′∈G

m′gg
′

 =∑
g∈G

∑
g′∈G

(ngm′g)gg
′.

Let A be an abelian group and let G be a group. An action of G on A is a homomor-
phism ρ : G→ Aut(A). An action of G on A makes A into a ZG-module by∑

g∈G
ngg

 a =
∑
g∈G

ngρ(g)(a)

 .
Conversely, if A is a ZG-module, then a→ (1g)a is an automorphism of A with inverse
a → (1g−1)a and we have a homomorphism G → Aut(A). Thus, actions of G on A are
in 1− 1 correspondence with ZG-module structures on A.
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If X is a connected CW complex, then π1(X) acts freely and cellularly on X̃ by
covering transformations, so the cellular chain complex of X̃ becomes a complex of free
Zπ1(X)-modules with generators obtained by choosing a single lift for each cell of X .
Of course, this also makes Hk(X̃) into a Zπ1(X)-module for each k. The groups πk(X̃)
are also Zπ1(X)-modules with action given by the covering translations, since the higher
homotopy groups of a simply connected space can be defined without reference to a
basepoint. Given an arbitrary α : Sk → X̃, there is a unique way (up to basepoint-
preserving homotopy) of homotoping α to a basepoint-preserving map. The isomorphism
πk(X̃)

p∗−→ πk(X), k ≥ 2 takes this action to the usual action of π1(X) on πk(X), k ≥ 2.

Example 7.10. It is also important that the isomorphism of homotopy groups in The-
orem 7.1 be induced by a map between spaces. The spaces RP2 ×S3 and RP3 ×S2 both
have fundamental group Z/2. Their universal covers are S2 × S3, so their higher homo-
topy groups are also isomorphic, but calculating the homology shows that the spaces are
not homotopy equivalent.

Remark 7.11. A somewhat more detailed treatment of CW complexes, covering spaces,
etc, may be found in pp. 4-15 of [Co]. The Hurewicz theorems appear on p. 349 of [HW].
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Chapter 8. Wall’s finiteness obstruction

In this section, we develop Wall’s finiteness obstruction [W1], [W2]. An immediate
corollary is that every compact simply connected topological manifold has the homotopy
type of a finite polyhedron. The finiteness obstruction will play an important role later
on in Siebenmann’s thesis and in proving various “splitting theorems.” The finiteness
obstruction also provides our first example where analysis of a geometric problem leads to
an algebraic K-theoretic obstruction involving the group ring of the fundamental group.
Our approach is to do a rather geometric development of the basic theory and then use
more algebraic techniques to prove extensions and improvements.

Definition 8.1. A space X is said to be homotopy dominated by a space Y if there are
maps d : Y → X and u : X → Y such that the composition d ◦ u is homotopic to idX .
In this case, the map d is called a domination. A domination is pointed if d, u, and the
homotopy d ◦ u ∼ id preserve basepoints. The space X is said to be finitely dominated if
there is a finite CW complex K which dominates X .

Remark 8.2.

(i) If X is dominated by an n-dimensional CW complex K, it follows immediately
from the definition thatH∗(X) = 0 for ∗ > n. In fact, the diagramH∗(K) w

d∗
H∗(X)u u∗

splits H∗(K) as H∗(X)⊕H∗+1(d).

(ii) A CW complex X is homotopy dominated by a finite n-dimensional CW complex
if and only if there is a homotopy ht : X → X with h0 = id and h1(X) contained
in a compact subset of X(n) for some n. If d : Kn → X is a domination with
right inverse u, then cellular approximation lets us assume that d(K) is a compact
subset of X(n). The homotopy h : d◦u ∼ id drags X into the image of K, proving
one direction. Conversely, if such a homotopy exists, let K be a compact subset
of X(n) containing h1(X). Then i : K → X is a domination with right inverse
h1 : X → K.

Proposition 8.3. Every compact topological manifold is finitely dominated.

Proof: Every compact topological manifold Mn embeds in Rk for some k: Choose a
cover by open balls Bi, i = 1, ..., s and choose maps φi : Mn → Sn which send Bi
homeomorphically to the complement of the north pole and send M − Bi to the north
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36 8. Wall’s finiteness obstruction

pole. The product of these maps embeds M into
∏s
i=1 S

n, and therefore into R(n+1)s.
A more careful argument shows that Mn embeds in R2n+1.

If Mn ⊂ Rk, we construct a retraction from a neighborhood U of M to M . Assume
inductively that we have constructed a neighborhood U� of M and a retraction r� :
(U� −M)(�) ∪M →M . Here, (U� −M)(�) is an 
-skeleton of (U� −M) which gets finer
and finer near M .

U

M

If {∆i} is the collection of (
+ 1)-simplexes of U� −M , the diameters of the r�(∂∆i)
get smaller and smaller as i → ∞. Since M is locally euclidean, r�|∂∆i extends to a
map r�+1 : ∆i → M for i large with limi→∞ diam(r�+1(∆i))→ 0. Choosing U�+1 small
enough that r�+1 is defined on U

(�+1)
�+1 completes the inductive step.

If r : U → M is a retraction, then choosing a finite polyhedron K ⊂ U with X ⊂ K
gives a domination d = r|K with right inverse u = i : X → K.

Definition 8.4. A locally compact metric space X is an ANR if whenever A is a
closed subset of normal space Y , then any continuous function f : A → X extends to a
continuous f̄ : U → X , where U is a neighborhood of A in Y . In particular, if X is a
closed subset of Rn for some n, then the identity map id : X → X extends to r : U → X ,
where U is a neighborhood of X in Rn, giving a retraction from U to X .

Remark 8.5. Every compact ANR is finitely dominated. This is easily seen in the
finite-dimensional case, since we can embed the ANR in Rn for some large n and retract
a polyhedral neighborhood to X . Again, the retraction becomes the d and the inclusion
becomes the u.

Definition 8.6. We will say that a space X is locally contractible if for each x ∈ X and
neighborhood U of x there is a neighborhood V of x contained in U so that V → U is
nullhomotopic. We will say that a space is has dimension ≤ n if every open cover U has
a refinement V so that V0 ∩ · · · ∩ Vn+1 = ∅ for all distinct Vi in V.
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Theorem 8.7. Every locally compact finite-dimensional locally contractible space is an

ANR.

Proof: A standard Baire category argument [Mu] shows that X embeds in Rn for some
n. Replacing X by the graph of a proper function X → R embeds X as a closed subset
of Rn+1. An induction on skeleta as above then produces a neighborhood U of X in
Rn+1 which retracts to X .

A basic question in geometric topology is whether every compact topological manifold
is homeomorphic to a finite polyhedron4. As a step toward answering this question, it
is natural to ask whether every compact topological manifold has the homotopy type
of some finite polyhedron.5 If it could be shown that every finitely dominated CW
complex is homotopy equivalent to a finite complex, the finiteness of homotopy types6

for compact topological manifolds would follow. The next theorem shows that finitely
dominated spaces are homotopy equivalent to finite-dimensional CW complexes.

Theorem 8.8 (Mather [Ma]). If X is homotopy dominated by an n-dimensional CW

complex, then X is homotopy equivalent to an (n+ 1)-dimensional CW complex.7

Proof: This is easily proven using the following:

Definition 8.9. If X and Y are CW complexes, we say that X
e

↘ Y if X = Y ∪f Bn,
where f : F → Y is a map and F ⊂ ∂Bn is a standard face. We write X ↘ Y if

X = X0

e

↘ X1

e

↘ . . .
e

↘ Xk = Y .

Proposition 8.10 (Mapping Cylinder Calculus).

(i) If f1 : X → Y and f2 : X → Y are homotopic maps, then the mapping cylinder

of f1 is a homotopy equivalent to the mapping cylinder of f2 rel X ∪ Y .
(ii) If f : X → Y and g : Y → Z are maps, then the mapping cylinder of g ◦ f is

homotopy equivalent to M(f) ∪Y M(g).

4 Casson has shown this to be false in dimension 4, but the problem is still open in higher dimensions.
5 By Kirby-Siebenmann, the answer to this question is “yes.” Theorem 18.4 of these notes proves a
strong generalization of this.
6We say that a CW complex X has finite homotopy type if X is homotopy equivalent to a finite CW

complex. More algebraic topologists use the same term for a CW complex which is homotopy equivalent
to one with finitely many cells in each dimension.
7 This can be improved to dimension n when n ≥ 3. See Exercise 8.30.
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Proof of Proposition: For X and Y CW complexes, these both follow from the next
lemma.

Lemma 8.11. If f : X → Z and X ↘ Y , then M(f)↘M(f |Y ) ∪X .

Proof: We may as well assume that X
e

↘ Y . Then Bn × I is a cell in the mapping
cylinder and (∂Bn −

◦
F )× I is a free face. Collapsing this cell from this face completes

the argument.

Let F be a homotopy from f1 to f2. Then M(F ) ↘ M(f1) ∪ (X × I) and M(F ) ↘
M(f2) ∪ (X × I). Collapsing X × I to X in M(F ) gives a CW complex which collapses
to both M(f1) and M(f2), proving (i).

If f : X → Y and g : Y → Z, let c :M(f)→ Y be the mapping cylinder collapse and
consider M(g ◦ c). Since M(f)↘ Y , we have

M(g ◦ c)↘M(g ◦ c|Y ) ∪M(f) =M(f) ∪Y M(g)

On the other hand, since a mapping cylinder collapses to a subcylinder,

M(g ◦ c)↘M(g ◦ c|X) =M(g ◦ f).

This proves (ii).

Remark 8.12. The result is true for arbitrary compact spaces and the result is more-
or-less the same. To show that M(g ◦ f) " M(f) ∪Y M(g), for instance, form M(g ◦ c)
as above and note that each point x ∈ X generates a triangle inM(g ◦ c) with vertices x,
f(x), and g ◦ f(x). Collapsing these triangles to x f(x)∪ f(x) g ◦ f(x) and to x g ◦ f(x)
gives a homotopy equivalence as above. The other case is similar. See [F] for details.

Proof of Mather’s Theorem: Let d : K → X be a domination with right inverse u.
Since d ◦ u ∼ idX , we have:

X×R1 = ∪∞i=−∞M(idX) " ∪∞i=−∞M(u)∪KM(d) = ∪∞i=−∞M(d)∪XM(u) " ∪∞i=−∞M(u◦d).

In pictures:
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X X X X X X

idX

u d

KX

K

u  d

idX idX idX idX

u d u d u d u d

KX KX KX KX X

u  d u  d u  d u  d

K K K K

This last space is homotopy equivalent to the CW complex obtained by concatenating
mapping cylinders of a CW approximation to u ◦ d.

Proposition 8.13. If K and X are connected CW complexes and d : K → X is a

domination, then d is a pointed domination.

Proof: Choose basepoints k0 ∈ K and x0 ∈ X , so that d(k0) = x0. Using the homotopy
extension theorem, it is easy to find a homotopy from u to u′ with u′(x0) = k0.
We will be done if we can show that d ◦ u′ is a pointed homotopy equivalence, since if

φ : X → X is a pointed homotopy inverse for d ◦u′, u′ ◦φ is a pointed right inverse for d.
Thus, the result follows from applying the next proposition to d ◦ u′ : (X, x0)→ (X, x0).

Proposition 8.14. If f : (A,B) → (C,D) is a map of CW pairs such that f and

f |B : B → D are homotopy equivalences, then f is a homotopy equivalence of pairs.

Proof: Since the maps are homotopy equivalences, the mapping cylinders M(f) and
M(f |B) strong deformation retract to their tops. Retracting M(f |B) to its top, extend-
ing by the homotopy extension theorem, and then retracting the mapping cylinderM(f)
to its top gives a strong deformation retraction of pairs from (M(f),M(f |B)) to (A,B),
showing that f is a homotopy equivalence of pairs.
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Remark 8.15. This simple argument is extremely useful and is a basic geometric con-
struction which the student would do well to learn. We will often use it without explicit
mention in what follows.

Proposition 8.16. If d : K → X is a pointed finite domination, then the kernel of

d∗ : π1(K)→ π1(X) is normally generated by finitely many elements.

Proof: We prove that if G is a finitely generated group and s : G→ H and t : H → G

are group homomorphisms with s ◦ t = id, then ker(s) is normally generated by a finite
number of elements.
Let {gi} be a generating set for G. Let t ◦ s = α. We show that P = {giα(g−1

i )}
normally generates ker(s). The normal closure of P is contained in the kernel of s, since
s(gα(g−1)) = s(g)s ◦ t ◦ s(g−1) = s(g)s(g−1) = 1. Note that the normal closure of P
contains all elements of G of the form gα(g−1), g ∈ G, by the identity

uvα((uv)−1) = uvα(v−1)α(u−1) = u[vα(v−1)]u−1[uα(u−1)]

and induction on word length. Since u ∈ ker(s) implies u = uα(u−1), we see that the
normal closure of P contains the kernel of s.

Proposition 8.17. If d : K → X is a finite domination of CW complexes, we can attach

2-cells to K to form a complex K̄ and extend d to a map d̄ : K̄ → X so that d̄ induces

an isomorphism π1K̄ ∼= π1X .

Proof: Choose a finite number of maps αi : S1 → K so that the classes [αi] normally
generate ker(d∗). Attach finitely many 2-cells using the maps αi. This kills the kernel
of d∗. The map d extends over the new cells because the boundaries of the cells lie in
the kernel of d∗, providing the nullhomotopy needed for the extension.

Since d̄ ◦ u = d ◦ u, d̄ is a domination with right inverse u. We replace K̄ by K and
d̄ by d to conserve notation. We want to continue attaching higher dimensional cells to
make d : K → X more and more highly connected. For this, we need to prove finite
generation of higher relative homotopy groups.

Let K̃ and X̃ be the universal covers of K and X and let d̃ be a lift of d. We have an
exact sequence in homology:

· · · w H2(K̃) w
d̃∗

H2(X̃)u
ũ∗

w H2(X̃, K̃) w 0.
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Choosing a lift ũ of u so that d̃ ◦ ũ ∼ id, we see that ũ∗ splits the sequence, so we have
H2(X̃, K̃) = 0 and we have split short exact sequences:

0 w Hk+1(X̃, K̃) w Hk(K̃) w
d̃∗ Hk(X̃) w 0

for k ≥ 2.
If Hk(X̃, K̃) = 0 for 1 < k ≤ n, then by the relative Hurewicz Theorem, πk(X̃, K̃) =

πk(X,K) = 0 in the same range.

Definition 8.18. If f : X → Y is a map, we write M(f) for the mapping cylinder of f
and πn(f) for πn(M(f), X). This gives a long exact sequence

· · · → πk(X)
f∗−→ πk(Y )→ πk(f)→ . . .

Next, we wish to prove the following proposition:

Proposition 8.19. If d : K → X is a pointed finite domination between CW complexes

and πk(d) = 0 for 0 ≤ k ≤ n− 1, n ≥ 2, then we can attach finitely many n-cells to K

to form K̄ and extend d to d̄ so that πk(d) = 0 for 0 ≤ k ≤ n.

Proof: The exact sequence of the pair (M(d), K) gives us:

0→ πn(d)→ πn−1(K)
d∗→πn−1(X)→ 0,

which is split by u∗. We need to show that πn(d) = ker(d∗) is finitely generated as a
Zπ1(K)-module so that we can kill it as before by adding finitely many n-cells to K. We
have πn(d) ∼= πn(d̃) ∼= Hn(X̃, K̃) by covering space theory and the Hurewicz Theorem.
Moreover, these are isomorphisms of Zπ1(K)-modules, where the action on πn(d) is the
usual action of πn(K) on the homotopy groups of a pair and the action on πn(d̃) and
Hn(X̃, K̃) comes from the action of π1(X) ∼= π1(K) on X̃ by covering translations. Thus,
we need to show that Hn(X̃, K̃) is finitely generated as a Zπ1(K)-module.

There is an obvious problem at this point. C∗(X̃) is not finitely generated, so it appears
that Hn(X̃, K̃) might not be finitely generated, either. To get back to finite complexes,
consider α = u ◦ d : K → K. Since d ◦ u ∼ id, ũ induces monomorphisms on homology
and ker(d̃∗) = ker(α̃∗). Since α̃ ◦ α̃ " α̃, the exact sequence

0→ ker(α̃∗)→ H∗(K̃)→ im(α̃∗)→ 0
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is split, so H∗(K̃) ∼= ker(d̃∗)⊕ im(α̃∗) and ker(α̃∗) ∼= coker(α̃∗).8 The exact sequence of
the pair (M(α̃), K̃) yields

· · · → Hn−1(K̃)
α∗→Hn−1(K̃)→ Hn−1(α̃)→ 0

which shows that coker(α̃∗) ∼= Hn−1(α̃). The same sequences in lower degrees show
that this is the first nonvanishing homology group of C∗(α̃). The finite generation of
ker(d̃∗) " Hn−1(α̃) now follows from the lemma below.

Lemma 8.20. If C∗ is a chain complex of free, finitely generated Λ modules with

Hk(C∗) = 0 for k < n, then Hn(C∗) is finitely generated.

Proof: Let ∂k : Ck → Ck−1 be the kth boundary map. We will show that ker(∂k) is
a finitely generated projective module for 0 ≤ k ≤ n. This will prove the lemma, since
Hn(C∗) is a quotient of ker(∂n).
The proof is by induction of k. Ker(∂0) = C0 is finitely generated and free by hypoth-

esis. Assuming the result for k − 1, k ≤ n, the exact sequence

0→ ker(∂k)→ Ck → ker(∂k−1)→ Hk−1(C∗) = 0

implies that ker(∂k) is a direct summand of the finitely generated free module Ck, proving
the lemma.

Remark 8.21.

(i) The same argument shows that the ker(∂k)’s are, in fact, stably free for k < n.
(ii) (For the student.) To see what all the fuss about finite generation over Zπ1(K)

is about, consider the kernel on π2 of d : S1 ∨ S2 → S1.

Definition 8.22. If Λ is a ring, we will say that two finitely generated projective mod-
ules P and Q over Λ are stably equivalent if there are finitely generated free modules F1

and F2 over Λ such that P ⊕F1
∼= Q⊕F2. We will denote the stable equivalence classes

of finitely generated projective Λ-modules by K̃0Λ. K̃0Λ is a group under direct sum.

The propositions established so far enable us to improve a given pointed domination
d : K → X, K n-dimensional, to get d̄ : K → X with πk(d̄) = 0, 0 ≤ k ≤ n and
dim(K̄) = n. To make d̄ a homotopy equivalence requires that we be able to add

8 This is standard behavior for projections.
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(n + 1)-cells to K̄ to kill ker(d̃∗) : πn(K̄) → πn(X). This is easily accomplished if the
kernel is free over Zπ1(K̄). If the kernel is even stably free, we can finish by adding
trivially attached n-cells to K to make the kernel free and then adding (n + 1)-cells as
before. In the next proposition, we will show that the kernel is always projective. As
before, we note that the kernel we wish to compute is isomorphic as a Zπ1(K)-module to
Hn+1(M(d̃), K̃). By Theorem 8.8, X can be taken to be an (n+1)-dimensional complex,
so the kernel is the (n+1)st homology of an (n+1)-dimensional complex which is acyclic
in dimensions < n+ 1.

Proposition 8.23. If C∗ is an (n + 1)-dimensional complex of free Λ modules and

Hk(C∗) = 0 for 0 ≤ k < n+ 1, then Hn+1(C∗) is projective.

Proof: The proof proceeds as in the proof of Lemma 8.20. The only difference is
that the Ci’s are not finitely generated, so we cannot conclude that the kernel of the
boundary map ∂n+1 : Cn+1 → Cn is stably free. Since Cn+2 = 0, this kernel is the
(n+ 1)st homology group.

Thus, Hn+1(d̃) ∼= πn+1(d) is a projective Zπ1(X)-module. Of course, Lemma 8.20
shows that this projective module is finitely generated over Zπ1(X). This leads to the
following definition:

Definition 8.24. If K is an n-dimensional finite complex, n ≥ 2, and d : K → X

is a domination with πk(d) = 0, 0 ≤ k ≤ n, we define σ(X) to be the element
(−1)n+1[Hn+1(d̃)] ∈ K̃0(Zπ1(X)).

Theorem 8.25. If X is a finitely dominated space the element σ(X) ∈ K̃0(Zπ1(X))
vanishes if and only if X has the homotopy type of some finite complex.

Proof: The theorem will follow immediately upon showing that the obstruction is well-
defined. For i = 1, 2, let di : Ki → X be finite dominations with right inverses ui.
We may assume that dim(K1) = dim(K2) = n and that πk(di) = 0 for 0 ≤ k ≤ n.
Consider the map β = u2 ◦ d1 : K1 → K2. Clearly, πk(β) = 0 for 0 ≤ k ≤ n − 1
and we have πn+1(d̃2) ∼= Hn(ũ2) ∼= Hn(β̃) as in the proof of Proposition 8.19.9 Since
Hn+1(β̃) ∼= ker(β̃∗) ∼= Hn+1(d̃1) ∼= πn+1(d̃1), applying the following lemma to C∗(β̃)
completes the proof that σ(X) is well-defined.

9 The point is that Hn(K̃i) ∼= Hn(X̃)⊕Hn+1(d̃i).
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Lemma 8.26. If C∗ is an (n+1)-dimensional chain complex of free finitely generated Λ-
modules with Hk(C∗) = 0, 0 ≤ k ≤ n−1, and Hn(C∗) projective over Λ, then Hn+1(C∗)
is stably equivalent to Hn(C∗).

Proof: We have an exact sequence:

0→ Hn+1(C∗)→ Cn+1
∂n+1−→Cn → Hn(C∗)→ 0.

This yields two short exact sequences:

0→ im(∂n+1)→ Cn → Hn(C∗)→ 0

and
0→ Hn+1(C∗)→ Cn+1 → im(∂n+1)→ 0

Since Hn(C∗) is projective, the top sequence splits, im(∂n+1) is projective, and Hn(C∗)
and Hn+1(C∗) are stably equivalent, since each is a stable inverse for im(∂n+1).

Let X be a CW complex which is dominated by a finite n-dimensional CW complex.
If σ(X) = 0, the development above shows that X has the homotopy type of a finite
(n + 1)-dimensional complex. We show that in this case for n ≥ 3, X is homotopy
equivalent to an n-dimensional complex.

Theorem 8.27. Let X be homotopy dominated by a finite n-complex, n ≥ 3, with
σ(X) = 0. Then X is homotopy equivalent to an n-dimensional complex.

Proof: Let d : Kn → X be a finite domination with right inverse u : X → K, and
ht : X → X with h0 = id, h1 = d ◦ u. By cellular approximation, we may assume
that d(K) ⊂ X(n), so taking d′ : X(n) → X to be the inclusion and u′ : X → X(n) to
be h1 shows that X is dominated by its n-skeleton. By cellular approximation and the
homotopy extension theorem, we can assume that h1 = id on the (n− 1)-skeleton.

We want to show that we can attach finitely many n-cells to X(n−1) to get a finite
CW complex X̄ homotopy equivalent to X . Since X is dominated by an n-dimensional
complex,

Hn+1(X̃, X̃(n−1)) = Hn+1(X̃) = 0

and the exact sequence of the triple (X̃, X̃(n), X̃(n−1)) gives us:

0 w Hn+1(X̃, X̃(n)) w Hn(X̃(n), X̃(n−1)) w Hn(X̃, X̃(n−1)) wu
h̃1∗

0.
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This shows that Hn(X̃, X̃(n−1)) is finitely generated and projective.10 It follows that

(∗) [Hn(X̃, X̃(n−1))] = −[Hn+1(X̃, X̃(n))] = (−1)nσ(X)

in K̃0(Zπ1(X)). Since σ(X) = 0, Hn(X̃, X̃(n−1)) is stably free. Subdividing X stabilizes
Hn(X̃, X̃(n−1)), so we can assume that Hn(X̃, X̃(n−1)) is free.

Since H�(X̃, X̃(n−1)) = 0 for 
 < n, the relative Hurewicz Theorem shows that every
element of Hn(X̃, X̃(n−1)) is the image in homology of a map (Dn, ∂Dn)→ (X̃, X̃(n−1)).
Projecting back to X and forming X̄ by attaching cells to X(n−1) to kill a basis for
πn(X,X(n−1)) = Hn(X̃, X̃(n−1)) produces the desired finite n-dimensional complex ho-
motopy equivalent to X .

Remark 8.28. At the time of this writing the question of whether this theorem is true
for n = 2 is open and interesting.

Theorem 8.29. If X is homotopy dominated by a finite n-dimensional complex L,

n ≥ 3, and φ : Kn−1 → X is (n− 1)-connected, K = Kn−1 a finite complex, then πn(φ)
is projective and σ(X) = (−1)n[πn(φ)].

Proof: Form the mapping cylinder M(φ) of Kn−1 → X . By Whitehead’s cell-trading
lemma, Proposition 11.9,11 we can trade cells in M(φ), K) to obtain a CW complex X ′

homotopy equivalent to X with K = X ′(n−1). The theorem now follows from equation
(∗) above.

Exercise 8.30. Show that if X is homotopy dominated by a finite n-dimensional com-
plex, n ≥ 3, then X is homotopy equivalent to an n-dimensional CW complex.

Exercise 8.31. Prove the following theorem of J.H.C. Whitehead: If X, Y are finite
n-dimensional CW complexes and f : X → Y is a map such that f∗ : πk(X)→ πk(Y ) is
an isomorphism for k ≤ n− 1, then there exist r, s so that

X ∨
r∨
i=1

Sn " Y ∨
s∨
i=1

Sn.

10We’ve cheated a tiny bit here. We really only know that h̃1∗ : H∗(X̃, X̃(n−1)) → H∗(X̃(n), X̃(n−1))

is an isomorphism, rather than the identity, but composing with an inverse splits the sequence. The
maps h1 and h1|X(n−1) are homotopic to the identity separately, but possibly not as pairs.
11 The author apologizes for the forward reference, but it seems the least of several evils.
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(Hint: Show that we can assume that X(n−1) = Y (n−1) and f |X(n−1) = id. Then
consider the space X∪X(n−1) Y .) It follows that we can make choices so that X∨

∨r
i=1 S

n

and Y ∨
∨s
i=1 S

n are simple homotopy equivalent, since the negative of the torsion of
an equivalence X ∨

∨r
i=1 S

n �−→ Y ∨
∨s
i=1 S

n can be realized by a self equivalence of
Y ∨
∨s
i=1 S

n for s large.

Here is a more algebraic and/or global view of the finiteness obstruction. This is
inspired by the algebraic treatment in [W2].

Definition 8.32.

(i) If Λ is a ring, the (unreduced) projective class group K0(Λ) of Λ consists of
equivalence classes of pairs (P,Q) where P and Q are finitely generated projective
left Λ-modules and (P,Q) ∼ (P ′, Q′) if P ⊕Q′ ∼= P ′⊕Q. We write [P ] for [(P, 0)]
and −[P ] for [(0, P )]. There is a short exact sequence 0 → Z → K0(Zπ) →
K̃0(Zπ)→ 0 where the kernel is generated by the free module on one generator.

(ii) If s : Λ → Λ′ is a homomorphism, we define s∗ : K0(Λ) → K0(Λ′) by s∗(P ) =
Λ′⊗Λ P . This means that λ′⊗ λp ∼ λ′s(λ)⊗ p. The homomorphism s∗ preserves
direct sums and s∗(Λ) = Λ′, so s∗ takes finitely generated projectives to finitely
generated projectives.

(iii) Let
0→ Pn → · · · → P1 → P0 → 0

be a chain complex of finitely generated projective Zπ-modules. Then

σ̄(P∗) =
n∑
i=0

(−1)i[Pi] ∈ K0(Zπ).

Lemma 8.33. If P∗ is a finite chain complex of free finitely generated Zπ-modules and

H∗(P∗) = 0, then σ̄(P∗) = 0.

Proof: The result follows immediately upon showing that that there is an isomorphism∑
even

Pi ∼=
∑
odd

Pi.

To see this, use the surjectivity of P1 → P0 to write P1 = P0 ⊕ P ′1. We can write P∗ in
the form:

. . . → P2
∂−→ P ′1

0−→ 0
⊕ ⊕
P0

id−→ P0 → 0.
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The lemma now follows by induction, since

0→ Pn → · · · → P2 → P ′1 → 0

has no homology.

Theorem 8.34. If P∗, Q∗ are finite chain complexes of free finitely generated Zπ-

modules and f : P∗ → Q∗ induces isomorphisms on homology, then σ̄(P∗) = σ̄(Q∗).

Proof: The algebraic mapping cone C(f)∗12 has no homology. But C(f)k = Pk−1⊕Qk,
so σ̄(C(f)∗) = 0 implies that σ̄(P∗) = σ̄(Q∗).

Proposition 8.35. If X is a finitely dominated CW complex, then C∗(X̃) is chain ho-

motopy equivalent to a finite chain complex of finitely generated projective Zπ-modules.

Proof: The argument above produced a finite complex Kn and a homotopy domination
d : K → X such that d̃ : K̃ → X̃ induced isomorphisms on homology through dimension
n and such that Hn+1(d̃) was projective.

Since H�(X̃) = 0 for 
 ≥ n+ 1, Hn+1(d̃) is the kernel of Hn(K̃) → Hn(X̃). Consider
the diagram:

. . . → 0 → Hn+1(d̃) → Cn(K̃) → Cn−1(K̃)
∂−→ . . .

↓ ↓ ↓ ↓
. . . → Cn+2(X̃) → Cn+1(X̃) → Cn(X̃) → Cn−1(X̃)

∂−→ . . . .

The vertical maps induce isomorphisms on homology, so by the proposition below, we
are done.

Proposition 8.36. If A∗ and B∗ are free chain complexes over Λ, and f : A∗ → B∗ is a

chain homomorphism inducing an isomorphism on homology, then f is a chain homotopy

equivalence.

Proof: Replacing B∗ by the algebraic mapping cylinder of f , we can assume that we
have a short exact sequence of free chain complexes 0 → A∗

i−→ B∗
j−→ C∗ → 0 with

12 The algebraic, mapping cone C(f)∗ of f : A∗ → B∗ is the chain complex with C(f)k = Ak−1 ⊕ Bk
and ∂(a, b) = (−∂a, ∂b + f(a). The algebraic, mapping cylinder is M(f)k = Ak ⊕ Ak−1 ⊕ Bk with

boundary map ∂(a, a′, b) = (∂a − a′,−∂a′, ∂b + f(a′)). The retraction c : M(f)∗ → B∗ is given by
c(a, a′, b) = (0, 0, f(a) + b) and the chain homotopy s(a, a′, b) = (0, a, 0) gives a chain homotopy from c

to id. The sequence 0→ A∗ →M(f)∗ → C(f)∗ → 0 is exact.



48 8. Wall’s finiteness obstruction

H∗(C∗) = 0. Since H∗(C∗) = 0, there is a chain contraction s : C∗ → C∗+1 with
∂s+ s∂ = 1. Choose r : C∗ → B∗+1 so that j ◦ r = s and consider

q = ∂ ◦ r ◦ j + r ◦ ∂ ◦ j − id : B∗ → B∗.

We have
∂ ◦ q = q ◦ ∂ = ∂ ◦ r ◦ ∂ ◦ j − ∂,

so q is a chain map.
j ◦ q = j ◦ ∂ ◦ r ◦ j + j ◦ r ◦ ∂ ◦ j − j

= ∂ ◦ s ◦ j + s ◦ ∂ ◦ j − j
= (∂ ◦ s+ s ◦ ∂ − id) ◦ j
= 0

This means that q : B∗ → A∗. If a ∈ A, q(a) = −a, so −q is a retraction from B∗ to A∗.
Since

q + id = ∂ ◦ r ◦ j + r ◦ ∂ ◦ j
= ∂ ◦ r ◦ j + r ◦ j ◦ ∂,

r ◦ j is a chain homotopy from −q to id. This shows that −q is a chain-homotopy inverse
for i : A∗ → B∗.

Corollary 8.37. If C∗(X̃) is chain homotopy equivalent to a finite length chain com-

plex of finitely generated projective Zπ1(X)-modules, P∗, then σ̄(P∗) is a well-defined

invariant of X .

Remark 8.38.

(i) This means that σ̄(X) is a well-defined invariant ofX . This invariant combines the
finiteness obstruction of X with the Euler characteristic, since the isomorphism

K0(Zπ1(X)) ∼= Z⊕ K̃0(Zπ1(X))

takes σ̄(X) to (χ(X), σ(X)). The splitting is given by [P ] → (rank(P ), [P ] −
[Zπ1(X)]rank(P )).

(ii) Instead of referring back to the geometry at the beginning of the section, we could
have mimicked all of the constructions algebraically. This would have the virtue
of developing the finiteness obstruction for chain complexes over rings other than
group rings.
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Computations

K̃0(ZΠ) is trivial for Π free or free abelian, [BHS]. For Π finite, K̃0(ZΠ) is finite.
K̃0(ZZ23) has a Z3-summand. In his Whitehead torsion article [Mi], Milnor opines that
K̃0(ZZp) is surely nontrivial for all primes p ≥ 23. Information about these groups can
be found in [U] and [O].

Realization

Realization of finiteness obstructions is easy. Let K be a finite complex and let [P ] ∈
K̃0(Zπ1(K)). Choose Q so that P ⊕Q = Zπ1(K)�. Wedge a bouquet of 
 2-spheres onto
K and attach 
 3-cells to kill off the Q-summand. This creates a copy of P in the 3-
dimensional homology of the universal cover. Attach 4-cells to kill this off and continue.
The result is an infinite dimensional CW complex with finite skeleta in each dimension
realizing the finiteness obstruction [P ]. Alternatively, we could attach infinitely many
wedges of S2’s and kill off all but a copy of [P ] by attaching infinitely many 3-cells.

Remark 8.39. This realization is a geometric version of the “Eilenberg swindle,” which
shows that for any finitely generated projective P over a ring Λ, P ⊕ Λ∞ is free. The
point is that if Q is a stable inverse for P , we have:

P ⊕ Λ∞ ∼= P ⊕ (Q⊕ P ⊕Q⊕ P ⊕Q⊕ . . . )
∼= P ⊕Q⊕ P ⊕Q⊕ P ⊕Q⊕ . . .
∼= Λ∞.

Remark 8.40. A little work shows that every finitely dominated complex comes about
via a construction similar to the above. If X is finitely dominated with finiteness ob-
struction σ(X), attach S2’s and D3’s to add a stable inverse to the finiteness obstruction,
making the obstruction 0. Adding S2’s and D3’s to the resulting finite complex K to
kill off the stable inverse shows that every finitely dominated complex is obtained by
wedging infinitely many finite bouquets of S2’s onto a finite complex K and then attach-
ing D3’s to the result. The first set of D3’s kills off a projective in the first wedge of
S2’s together with a stable complement in K and the other D3’s complete the Eilenberg
swindle. Proving that manifolds (and compact ANR’s!) have the homotopy types of
finite complexes has inspired the development of more refined methods.

With regard to the original finiteness question about homotopy types of closed TOP
manifolds, this argument proves that closed TOP manifolds with trivial, free, and free
abelian fundamental groups have the homotopy types of finite complexes.
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Chapter 9. A weak Poincaré Conjecture in high dimensions

In this section, we will prove a form of the Poincaré Conjecture in dimensions ≥ 7. The
plan of the proof is to show that if Σn is a PL manifold homotopy equivalent to Sn, then
Σn can be covered by two coordinate charts. That Σn is (topologically)homeomorphic
to Sn then follows from Theorem 2.7.

Here is the idea of the proof in the 7-dimensional case. To show that Σ7 is the
union of two coordinate patches, we will use Stallings’ engulfing technique to prove that
every 3-dimensional subcomplex of Σ7 is contained in an open PL ball. We will also
exhibit a decomposition Σ7 = N(K1) ∪ N(K2), where N(K1) and N(K2) are regular
neighborhoods of 3-complexes K1 and K2. If U and V are open PL balls containing
K1 and K2, then U and V contain small regular neighborhoods N ′(K1) and N ′(K2)
of K1 and K2. Uniqueness of regular neighborhoods then provides homeomorphisms
h, k : Σ7 → Σ7 with h(N ′(K1)) = N(K1) and k(N ′(K2)) = N(K2). It follows that h(U)
and k(V ) are open subsets of Σ7 homeomorphic to R7 whose union is Σ7.

We begin the proof that Σ7 has the required decomposition with a quick review of
regular neighborhood theory. Detailed proofs may be found in pp 31-43 of [RS].

A review of regular neighborhood theory

Definition 9.1. Let P be a triangulated polyhedron and let K be a subcomplex of P .
The characteristic function of K is the simplicial map λK : P → [0, 1] which is defined by
sending vertices of K to 0, vertices of P −K to 1, and extending linearly. K is said to be
full in P if λ−1

K (0) = K. This is equivalent to saying that K is full in P if every simplex
in P which has its vertices in K lies in K. If K is full in P , we write C(K) = λ−1

K (1).
This is the simplicial complement of K in P . If K is full in P , a regular neighborhood of
K in P is a neighborhood λ−1

K [0, ε] for any ε ∈ (0, 1).

Given ε1, ε2 ∈ (0, 1), one can construct a PL homeomorphism h : P → P which is fixed
on K ∪ C(K) such that h(λ−1

K [0, ε1]) = h(λ
−1
K [0, ε2]). This is a consequence of Theorem

3.8 on p. 33 of [RS]. It is not difficult to show that λ−1
K (0, 1) is PL homeomorphic to the

product λ−1
K (

1
2) × (0, 1) by a PL homeomorphism preserving projection onto (0, 1). We

sketch an argument below in a series of exercises.
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Exercise 9.2. If X and Y are compact metric spaces, the join of X and Y is the space

X ∗ Y = X × Y × [0, 1]
∼

where (x, y, 0) ∼ (x, y′, 0) and (x, y, 1) ∼ (x′, y, 1) for all x, y. Show that Sm ∗ Sn is
homeomorphic to Sm+n+1, Dm ∗ Dn is homeomorphic to Dm+n+1, and Sm ∗ Dn is
homeomorphic to Dm+n+1 for all m,n.

Note that the join contains copies of X × Y × {t} for all 0 < t < 1, so the join can
be thought of as starting with a copy of X × Y × { 1

2} and building successive copies of
X × Y × {t} where Y shrinks to a point as t→ 0 and X shrinks to a point as t→ 1.

Exercise 9.3. Show that if P is a triangulated polyhedron andK is full in P , then every
simplex ∆ in P decomposes as ∆1 ∗∆2 where ∆1 is a simplex in K and ∆2 is a simplex
in C(K). Show that λ−1

k (t), 0 < t < 1, is a cell complex consisting of cells ∆1 ×∆2 such
that ∆1 is a simplex in K, ∆2 is a simplex in C(K), and ∆1 ∗∆2 is a simplex of P . Use
this to prove that λ−1

K (0, 1) is homeomorphic to the product λ
−1
K (

1
2 )× (0, 1).

Exercise 9.4. If P is a triangulated polyhedron and x ∈ P , x can be represented
uniquely as x = Σλivi where 0 < λi < 1, each vi is a vertex of P , and Σλi = 1. The
λi’s are called barycentric coordinates for x. Write down a formula for a (topological)
homeomorphism λ−1

K (0, 1) ∼= λ
−1
K (

1
2 )× (0, 1) using barycentric coordinates.

Definition 9.5. If K is an abstract simplicial complex with simplices {τ}, K ′ is the
abstract simplicial complex whose vertex set is {τ̂ |τ ∈ K} and whose simplices are
{〈τ̂0, . . . , τ̂n〉 |τ0 < · · · < τn}. K ′ is called the first derived subdivision of K. Geometri-
cally, we can think of K ′ as being obtained from K by inserting a new vertex τ̂ into the
interior of each simplex τ and then retriangulating by starring from these new vertices
in order of increasing dimension.

Definition 9.6. If P is a triangulated polyhedron and K is a full subcomplex, we define
K∗ ⊂ P ′ to be

{〈Â0 . . . Â�〉 | Ai is not a simplex of K}.

K∗ is a full subcomplex of P ′ = {〈Â0 . . . Â�〉 | A0 < A1 < · · · < A�}. P is the union of
regular neighborhoods λ−1

K ([0,
1
2 ]) and λ

−1
K ([

1
2 , 1]) of K and K∗.

Of course, K∗ is just an explicit triangulation of the simplicial complement, C(K),
but we will need the notation later on.
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We will also need the following:

Definition 9.7.

(i) If Bn is a PL ball, then F ⊂ ∂B is a face of B if there is a PL homeomorphism
(B,F ) ∼= (In, In−1 × 0).

(ii) Suppose X ⊃ Y are polyhedra and that X = Y ∪Bn and Y ∩Bn is a face of Bn.
Then we write X ↘e Y . If we have a chain X = X0 ↘e X1 ↘e · · · ↘e Xk = Y , then
we write X ↘ Y .

Theorem 9.8 ([RS p. 41, Thm. 3.26]). If M is a closed PL manifold and X ⊂ M

is a polyhedron. Suppose further that X ↘ Y . Then there is a PL homeomorphism

throwing (any) regular neighborhood of X onto (any) regular neighborhood of Y .

This completes our review of regular neighborhood theory.

We continue with the proof of the Poincaré Conjecture. For definiteness, we stick with
the 7-dimensional case.

Theorem 9.9 (Stallings [St]). Let Σ7 be a PL manifold homotopy equivalent to S7.

Then Σ7 is (topologically) homeomorphic to S7.

Proof of theorem: Step I.We first show that Σ− pt is contractible for each pt ∈ Σ.
To see that H∗(Σ− pt) ∼= H∗(x) for any x ∈ Σ7 − pt, note that Σ− pt " Σ−

◦
B for B a

PL ball containing pt, and

H∗(Σ−
◦
B) ∼= H7−∗(Σ−

◦
B, ∂B) ∼= H7−∗(Σ, B) ∼=

{
Z ∗ = 0
0 ∗ �= 0.

The fact that π1(Σ7 − pt) ∼= π1(Σ7) ∼= {e} is an easy argument using either cellular
approximation or the Van Kampen theorem – the fundamental group of a CW complex
is always isomorphic to the fundamental group of its 2-skeleton. That x → (Σ7 − pt) is
a homotopy equivalence for any x ∈ Σ7 − pt now follows from the Whitehead theorem,
so Σ7 − pt is contractible.

Step II. We prove that it suffices to show that every 3-dimensional subpolyhedron of
Σ7 is contained in an open subset U of Σ7 which is homeomorphic to R7.
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Given that every 3-dimensional subpolyhedron of Σ7 is contained in such a U , choose a
triangulation of Σ and denote its 3-skeleton by Σ(3). Let Σ(3)∗ be defined as in Definition
9.6. Since Σ(3)∗ consists of simplices 〈τ̂0, . . . , τ̂n〉 where τ0 is at least 4-dimensional and
τ0 < · · · < τn, Σ(3)∗ has dimension 3. Find open sets U1 ⊃ Σ(3) and U2 ⊃ Σ(3)∗ with
Ui ∼= R7. U1 and U2 contain small regular neighborhoods of Σ(3) and Σ(3)∗, respectively.
Choosing homeomorphisms h1, h2 : Σ → Σ throwing these regular neighborhoods onto
regular neighborhoods λ−1

Σ(3)([0, 1
2
]) and λ−1

Σ(3)([ 12 , 1]) as above, we see that Σ = h1(U1) ∪
h2(U2), whence Σ is a topological sphere by Theorem 2.7.

Step III. Every 3-dimensional subpolyhedron of Σ7 is contained in an open subset U of
Σ7 which is homeomorphic to R7.

This is the “engulfing” step. We will need to use the following general position theorem.

Theorem 9.10 (General Position for Maps, [RS, p.61]). Let ε > 0 be given. If

P is a finite polyhedron and f : P →M is a map from P to a closed PL manifold Mm,

then f is ε-close to a map f̄ : P →M such that the singular set S(f̄) of f̄ has dimension

≤ m − 2p. The singular set of f̄ is the closure of the set of points for which f̄ is not

one-to-one. In symbols,

S(f̄) = cl{x ∈ P | f̄−1f̄(x) �= x}.

We begin with the case of a 2-dimensional polyhedron K = K2. Since Σ − pt is
contractible, we can remove any point ∗ of Σ−K and find a homotopyH : K×I → Σ−∗ ⊂
Σ withH(K×1) = K andH(K×0) ⊂ U where U is a coordinate patch PL homeomorphic
to R7. By general position, we may assume that the homotopy H is a PL embedding.
Since K × I ↘ K × 0 and H is a PL embedding, H(K × I)↘ H(K × 0), so by Theorem
9.8 there is a PL homeomorphism h : Σ → Σ throwing a small regular neighborhood of
H(K×0) onto a regular neighborhood of H(K× I). This homeomorphism consequently
throws U onto an open set h(U) containing H(K × I). In particular, h(U) ⊃ K. K
has been engulfed. Note that if P ⊂ U is a 3-dimensional polyhedron, we can choose
h|P = id, since by general position H(K × I) need not intersect P . That is to say, in
engulfing a 2-complex into U , we need not uncover a specified 3-complex which already
lies in U .

To see that 3-dimensional polyhedra can be engulfed by copies of R7, let K = K3 and
let H : K × I → Σ be a homotopy with H(K × 1) = id and H(K × 0) ⊂ U ∼= R7. By
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general position, we may assume that the singular set

S(H) = cl{(x, t) ∈ K × I | H−1H(x, t) �= (x, t)}

has dimension 1. This means that the set

Z = {(x, t) | (x, t′) ∈ S(H) for some t’ and t ∈ I} ⊂ K × I

is 2-dimensional. Z is called the shadow of S(H). By engulfing for 2-dimensional poly-
hedra, we can assume that H(Z ∪K × 0) is already contained in U . Let N be a regular
neighborhood of Z ∪K×0 in K× I such that H(N) ⊂ U . Since K× I ↘ K×0∪N and
H is a PL embedding outside of N , we have H(K × I) ↘ H(K × 0 ∪ N) by the same
collapses. Thus, a small regular neighborhood of H(K × 0 ∪ N) can be thrown onto a
regular neighborhood of H(K × I) by a PL homeomorphism h : Σ→ Σ. As before, this
guarantees that h(U) ⊃ H(K × I) and that, in particular, h(U) ⊃ H(K × 1) = K.

7

K

H

S(H)
U

N
H(N)

Remark 9.11. With minor modifications, this argument works in all dimensions ≥ 7.
With a little more work, it can be pushed down into dimensions 5 and 6.
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Chapter 10. Stallings’ characterization of euclidean space

Except for the important Lemma 10.10 the material in this section is taken from [St],
which is beautifully written. The reader is urged to consult the original in addition to
our version.

Definition 10.1. A space X is said to be k-connected at infinity if for every compact
C ⊂ X there is a compact D ⊂ X with C ⊂ D so that π�(X − D) 0−→ π�(X − C) for
all 
 ≤ k. If a manifold or polyhedron X is 0-connected at infinity, then X is said to
be 1-ended. A manifold or polyhedron which is 1-connected at infinity is called simply
connected at infinity. The analogous condition on homology will be called homologically
k-connected at infinity.

Theorem 10.2 (Stallings). If V n, n ≥ 5, is a contractible PL n-manifold without

boundary, then V is PL homeomorphic to Rn if and only if V is simply connected at

infinity.

Corollary 10.3. If V n is a contractible PL manifold without boundary, n ≥ 4, then
V × R is PL homeomorphic to Rn+1.

Proof of Corollary: We begin by showing that every contractible PL manifold with-
out boundary “has the homology of a sphere at infinity.”

Lemma 10.4. If V n is a contractible PL manifold, then for every compact C ⊂ V there

is a compact D ⊂ V so that C ⊂ D and

(*) im(Hk(V −D)→ Hk(V − C)) ∼=
{
Z k = 0, n− 1
0 otherwise.

Proof of Lemma: Given C, choose D so that C contracts to a point in D. By taking
regular neighborhoods of polyhedral neighborhoods, we can assume that C and D are
codimension 0 PL submanifolds. For 1 < k < n, Poincaré duality gives us a sign-

56
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commutative diagram

Hk−1(V −
◦
D) w Hk−1(V −

◦
C)

Hk(V, V −
◦
D) w

u
∼=

u

∼=

Hk(V, V −
◦
C)

u

∼=

u
∼=

Hk(D, ∂D)

u
∼=

Hk(C, ∂C)

u
∼=

Hn−k(D) w0 Hn−k(C)

which shows that Hk−1(V −
◦
D) 0−→ Hk−1(V −

◦
C).

We also have diagrams

H1(V, V −
◦
D) w

u
∼=

H1(V, V −
◦
C)

u
∼=

H1(D, ∂D)

u
∼=

H1(C, ∂C)

u
∼=

Hn−1(D) w0 Hn−1(C)

and
H0(V ) w H0(V )

H0(V −
◦
D) w

u

H0(V −
◦
C)

u

H1(V, V −
◦
D) w

u

H1(V, V −
◦
C)

u

in which an easy diagram chase shows that if α, α′ are generators of H0(V −
◦
D) which

map to the same generator of H0(V ), then the image of α−α′ in H0(V −
◦
C) is 0. It also

follows from the bottom diagram that H0(V −
◦
D) is finitely generated.
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Finally, we have

Hn−1(V −
◦
D) w Hn−1(V −

◦
C)

Hn(V, V −
◦
D) w

u
∼=

u

∼=

Hn(V, V −
◦
C)

u

∼=

u
∼=

Hn(D, ∂D)

u
∼=

Hn(C, ∂C)

u
∼=

H0(D) w H0(C).

The image of the map at the bottom is clearly Z, since it is Hom of H0(C) → H0(D).
This completes the proof of (*).

Continuing with the proof of the corollary, since H0(V −
◦
D) is finitely generated and

H0(V −
◦
D) → H0(V −

◦
C) has image Z, we can use regular neighborhoods of finitely

many arcs to connect up the components of V −
◦
D in the complement of C. This shows

that for every compact C ⊂ V there is a compact codimension 0 submanifold D′ of V so
that D′ ⊃ C and V −

◦
D′ is connected.

It follows that V × R is simply connected at infinity. If C ⊂ V × R is compact, we
can assume that C has the form C′ × I where I ⊂ R is an interval. Choose D ⊃ C′

so that V −
◦
D is connected and choose J to be an interval containing I. Then the

Van Kampen Theorem shows that V × R −D × J is simply connected. If x ∈ J , then
V1 = (V ×R−D×J)∩ [x,∞) and V2 = (V ×R−D×J)∩ (−∞, x] are contractible sets
meeting in a connected set (V −

◦
D)× {x} with V ×R−D × J = V1 ∪ V2.

Before proving Stallings’ theorem, we digress to give some examples of contractible
open manifolds which are not homeomorphic to euclidean space. The construction begins
with an algebraic lemma.

Proposition 10.5. Let P �= 1 be a finitely generated perfect group. Then there is a

two-dimensional complex K with H∗(K) ∼= H∗(pt) and π1(K)
onto−−−→ P .

Proof: Let x1, . . . , xn be generators of P . For each i, let xi = ri be a relation which
writes xi as a product of conjugates of commutators, written as words in the xi. Let Q
be the group

Q = {x1, . . . , xn | x1 = r1, . . . , xn = rn}.
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The group Q is perfect and there is a homomorphism Q onto−−−→ P .

Let K be a complex with a single 0-cell, n 1-cells corresponding to the xi, and n 2-cells
attached according to the words xi(ri)−1. The cellular chain complex of K is:

0→ Zn
id−→ Zn

0−→ Z→ 0

so H∗(K) ∼= H∗(pt).

Exercise 10.6. Show that the K produced in Proposition 10.5 has the homotopy type
of a 2-dimensional polyhedron.

Example 10.7. Embed K2 in S5, where K is a 2-dimensional polyhedron with π1(K) =
Q �= 1 and H∗(K) = H∗(pt). Then S5 −K is an open contractible manifold which is not
simply connected at infinity.

Proof: Let N be a regular neighborhood of K in S5. Then

H�(S5 −K) ∼= H�(S5 −
◦
N) ∼= H5−�(S5 −

◦
N, ∂N) ∼=

H5−�(S5, N) ∼= H5−�(S5, K) =
{
Z 
 = 0
0 otherwise.

π1(S5 −K) = 1 because each loop in S5 −K bounds a disk in S5 which can be pushed
off of K by general position.

The Whitehead Theorem shows that, x→ S5 −K is a homotopy equivalence for any
x ∈ S5 −K and that S5 −K is contractible.

Exercise 10.8. In Example 10.7 show that H∗(∂N) ∼= H∗(S4) but π1(∂N) ∼= Q.

Exercise 10.9 (The Whitehead continuum). Let X be an infinite intersection of

solid tori in S3 as pictured below.
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Note that each solid torus is nullhomotopic in the preceding one. Show that S3 −X
is a contractible open subset of S3 which is not simply connected at infinity. (Hint: All

of the solid tori are unknotted in S3.)

We will now get on with the proof of Stallings’ characterization. The theorem is
another application of Stallings’ engulfing. We begin by noting that our definition of
“simply connected at infinity” implies that there are arbitrarily small simply connected
manifold neighborhoods of infinity. This is given as the definition of “simply connected
at infinity,” in [St], but has the disadvantage of not being a proper homotopy invariant.

Proposition 10.10. Let V n be a noncompact connected PL manifold without bound-

ary, n ≥ 5. If V is simply connected at infinity, then for each compact C ⊂ V there is

a compact codimension-0 PL submanifold D ⊂ V so that D ⊃ C and V −
◦
D is simply

connected with simply connected boundary ∂D.

We defer the proof until the end of the section and proceed with the proof of Stallings’
theorem. Here is the statement of engulfing we will use.

Theorem 10.11 (Stallings’ Engulfing Lemma). LetMn be a PL n-manifold with-

out boundary, U an open set inMn, K a (possibly infinite) complex in Mn of dimension

at most n−3 such that |K| is closed inMn, and L a (possibly infinite) subcomplex of K

in U such that Cl(|K|− |L|) is the polyhedron of a finite r-subcomplex R of K. Suppose

that (Mn, U) is r-connected. Then there is a compact set E ⊂ Mn and an ambient

isotopy et of M
n such that |K| ⊂ e1(U) and et|(Mn − E) ∪ |L| = id.

UM

K

∞

R L
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Proof: The proof is essentially the same as the proof of Theorem 9.9. The reader
wishing more details should consult [St].

Proof of Stallings’ Characterization:

Step I. Since V is contractible and V −
◦
D is simply connected, it follows from the

homotopy sequence of (V, V −
◦
D) that the pair (V, V −

◦
D) is 2-connected. Thus, there

is a homeomorphism h : V → V with compact support so that h(V −
◦
D) contains the

2-skeleton of V . Let E be a compact codimension-0 PL submanifold of V so that h is
supported in E.

Step II. Let W be a coordinate chart in V . The pair (V,W ) is n-connected and (E ∪
V (2))∗ a finite complex with codimension 3, so there is a homeomorphism k′ : V → V

with k′(W ) ⊃ (E ∪ V (2))∗. The open set k′(W ) therefore contains a small regular
neighborhood N of (E ∪ V (2))∗. The region between a small regular neighborhood of
(E ∪ V (2)) and a small regular neighborhood of (E ∪ V (2))∗ is a product ∂N × [0, 1], so
there is a homeomorphism k : V → V with k(W ) ∪ h(V −

◦
D) = V . But then we have

h−1 ◦ k(W ) ∪ (V −
◦
D) = V , so h−1 ◦ k(W ) ⊃ D.

This shows that every compact subset of V is contained in a PL ball. It follows that

V = ∪∞i=1Bi where each Bi is a PL ball and Bi ⊂
◦
Bi+1 for all i. Since the space between

PL balls is a PL annulus, it follows easily that V is PL homeomorphic to Rn.

Lemma 10.12. If Kk ⊂ Mn is a polyhedron in a PL manifold and N is a regular

neighborhood of K in M (by this we mean a stellar neighborhood in a second derived)

then

π�(M −
◦
N)→ π�(M)

is iso for 
 ≤ n− k − 2 and epi for 
 = n− k − 1.

Proof: If α : S� →M is a map, general position allows us to move α(S�) off of K and

out of N for 
 ≤ n−k−1. This shows that π�(M−
◦
N )→ π�(M) is epi. If α : S� →M−

◦
N

extends to ᾱ : D�+1 →M and 
+ 1 ≤ n− k− 1, then ᾱ(S�) can be pushed out of N rel

boundary. This shows that π�(M −
◦
N)→ π�(M) is mono.

Lemma 10.13. If V n, n ≥ 5, is a PL manifold, U ⊂ V is a codimension-0 PL sub-

manifold, D is a 2-dimensional disk in V −
◦
U with D ∩ U = ∂D, and N is a regular

neighborhood of D in V −
◦
U , then π1(∂(U ∪N)) ∼= π1(∂U ∪D).
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V U

D

Proof: The argument is much like the one above. We have π1(∂U ∪D) ∼= π1(∂U ∪N)
and general position arguments show that π1(∂U ∪N) ∼= π1(∂(U ∪N)).

Lemma 10.14. If V n, n ≥ 5, is a PL manifold, U ⊂ V is a codimension-0 PL submani-

fold, D is a 2-dimensional disk in U with D∩∂U = ∂D, and N is a regular neighborhood

of D in U , then π1(∂(U −N)) ∼= π1(∂U ∪D).

V U

D

Proof: The proof is the same as above.

It remains to prove Proposition 10.10. We begin with a lemma.

Lemma 10.15. Let V n be a noncompact PL manifold without boundary, n ≥ 3. If V is

1-ended, then for each compact C ⊂ V there is a compact D ⊂ V so that D ⊃ C and

V −
◦
D is connected with connected boundary ∂D.

Proof of lemma: Given C, choose D1 so that any two points in V −
◦
D1 can be

connected by an arc in V −
◦
C . Choose a finite number of disjoint arcs in V −

◦
C connecting

the boundary components of D1. We can assume that the interior of each arc lies entirely

in D1 or in V −
◦
D1. For each arc in D1, excise a regular neighborhood of the arc from

D1. For each arc in V −
◦
D1, adjoin a regular neighborhood of the arc to D1. This gives

D ⊃ C with ∂D connected. This implies that V −
◦
D is connected. Any two points in

V −
◦
D can be connected by an arc in V . If the arc misses ∂D, we are done. If not, choose

the first and last points where the arc meets ∂D and connect them by an arc in ∂D.
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Next, we prove that embedded D2’s can be made transverse to bicollared codimension
1 submanifolds.

Lemma 10.16. If V is a PL manifold, F is a bicollared codimension-1 submanifold of

V , and 
 is a loop in F which is nullhomotopic in V , then 
 bounds a disk in V which

meets F transversally13 in a finite number of interior circles.

Proof: Since F is bicollared, we can choose a triangulation of the bicollar so that there
are no vertices in the interior.

Think of the collar as being parameterized by a PL map to [-1,1] and extend to a proper
PL map p : V → (−∞,∞). Displace 
 into the −ε-level along the collar lines and extend
to a PL embedding f : D2 → V . By displacing F × 0 slightly towards ε, if necessary, we
13 For now, we’ll just say that this means that near F the embedding of D2 is a product along the collar

lines.
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can assume that f is simplicial with respect to a triangulation with no vertices on F ×0.
This guarantees that (p ◦ f)−1(0) is a submanifold of D2 consisting of a finite union of
collared circles such that p ◦ f maps the collar coordinates map homeomorphically onto
a small interval around 0. This might be more circles than f−1(F ), but that doesn’t
matter. The map f is homotopic to a map f̄ : D2 → V which has the same intersection
with F × 0 but which goes straight across the collar. General position outside of the
collar lets us assume that f̄ is an embedding, completing the proof.

Proof of Proposition 10.10: The proof of the proposition is similar to the proof of

Lemma 10.15. Given C, choose D1 so that V −
◦
D1 and ∂D1 are connected and so that

loops in the complement of D1 contract in the complement of C. Choose a finite set {γi}
of generators for π1(∂D1). By general position, these generators bound disks in V −

◦
C.

C

D1 V

We arrange for the disks to meet ∂D1 transversally in a finite number of circles.
Consider the innermost circles. Add regular neighborhoods of the disks bounded by

these circles to D1 if the disks lie in V −
◦
D1 and excise them from D1 if the disks lie in

D1. Note that neither operation increases π1 of the boundary. Call the resulting region
D′. In either case, the disks meet ∂D′1 in fewer circles, so we continue until all of the disks

lie in D1 or V −
◦
D1. At this last stage, adding or subtracting a regular neighborhood of

the disk kills the generator of π1(∂D) represented by the boundary. Doing this for all of
the generators makes the boundary simply connected. It follows immediately from Van
Kampen’s Theorem that we have constructed the desired simply connected neighborhood
of infinity.
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Chapter 11. Whitehead torsion

This section contains a quick sketch of simple homotopy theory. The classical references
on the subject are [Co] and [Mi]. The reader who wants more details should consult those
references.

Algebra

If Λ is a ring with identity, we define Gln(Λ) to be the group of invertible n×n matrices
over Λ and let

Gl(Λ) = lim
n→∞

Gln(Λ).

Here the inclusion Gln(Λ) ⊂ Gln+1(Λ) is given by

A→
(
A 0
0 1

)
.

We define E(Λ) to be the subgroup of Gl(Λ) generated by elementary matrices.

Lemma 11.1 (Whitehead Lemma). E(Λ) is the commutator subgroup of Gl(Λ).

Proof: It is easy to show that E(Λ) ⊂ [Gl(Λ), Gl(Λ)] – if Ej,k is a matrix with a 1 in
the j, kth slot and 0’s elsewhere, we have:

(I + aEi,k) = (I + aEi,j)(I + Ej,k)(I − aEi,j)(I −Ej,k)

for i, j, k distinct.
Conversely, we show thatGl(Λ)/〈E(Λ)〉 is abelian, which implies that E(Λ) ⊃ [Gl(Λ), Gl(Λ)].

During this argument, if A and B are matrices, we write A ⇔ B if B can be obtained
from A by row and column operations.

AB ⇔
(
AB 0
0 I

)
⇔
(
AB B
0 I

)
⇔
(
0 B
−A I

)
⇔
(
0 B
−A 0

)
(
0 B
−A 0

)
⇔
(
A B
−A 0

)
⇔
(
A 0
0 B

)
(
0 B
−A 0

)
⇔
(
B B
−A 0

)
⇔
(
B 0
0 A

)
⇔ BA.

66
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Definition 11.2. A chain contraction s : C∗ → C∗+1 is a map such that ∂s+ s∂ = id.

Lemma 11.3. If C∗ is a chain complex of finitely generated projective Λ-modules with

H∗(C) = H∗(pt), then C∗ has a chain contraction.

Proof: This is an easy induction. See [Co, p. 47] or the proof of Lemma 11.5 for
details.

Definition 11.4. We write K1(Λ) = Gl(Λ)/E(Λ). If Λ = ZG for some G, we write

Wh(ZG) = K1(ZG)/D

where D is the subgroup generated by 1 × 1 matrices (±g) with entries from G. If
A ∈ Gln(ZG), we will write τ(A) for its image in Wh(ZG). We think of τ(A) as a
generalized determinant of A.

Next, suppose that C∗ is a finite chain complex of free finitely generated ZG-modules
with preferred bases for each of the Ci’s. If H∗(C∗) = 0, we show how to associate an
element τ(C∗) ∈Wh(ZG) to C∗.

Since H∗(C∗) = 0, C∗ has a chain contraction. Consider

(∂ + s) : ⊕
even
Ci → ⊕

odd
Ci.

We have (∂ + s)(∂ + s) = 1 + s2, which is invertible because it has the form

C0 C2 C4 . . .

C0

C2

C4
...


I 0 0 . . .
s2 I 0 . . .
0 s2 I . . .
...

...
...


.

Choose an isomorphism i : ⊕odd Ci → ⊕even Ci which sends bases to bases and define
τ(C∗) = τ(i ◦ (∂+ s)). If i′ is another such isomorphism, then i ◦ (i′)−1 is a permutation
matrix and τ(i◦ (i′)−1) = 0, since a permutation matrix can be reduced to a matrix with
±1’s on the diagonal by row and column operations. This means that

τ(i′ ◦ (∂ + s)) = τ(i ◦ (i′)−1) + τ(i′ ◦ (∂ + s)) = τ(i ◦ (∂ + s))

so our definition is independent of the choice of i. Notice that since 1 + s2 has the form
above, it is a product of elementary matrices and τ(1 + s2) = 0, so τ((∂ + s) ◦ i−1) =
−τ(i ◦ (∂ + s)) in the Whitehead group.
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It remains to show that the definition is independent of the choice of s. We need to
show that

−τ(i ◦ (∂ + s)) + τ(i ◦ (∂ + s̄)) = τ((∂ + s) ◦ i−1 ◦ i ◦ (∂ + s̄)) = τ((∂ + s)(∂ + s̄)) = 0.

We first note that if s̄ is another chain contraction, then s and s̄ are chain homotopic.

Lemma 11.5. There is a collection of homomorphisms {Fk : Ck → Ck+2} such that

∂F − F∂ = s− s̄.

Proof: {Fk} can be defined inductively, starting with F−1 = 0. We have:

∂(Fk−1∂ + s− s̄) = ∂Fk−1∂ + ∂s− ∂s̄
= (Fk−2∂ + s− s̄)∂ + ∂s− ∂s̄
= 0.

Thus letting Fk = s(Fk−1∂ + s− s̄), we have

∂Fk − Fk−1∂ = ∂s(Fk−1∂ + s− s̄)− Fk−1∂

= (1− s∂)(Fk−1∂ + s− s̄)− Fk−1∂

= s− s̄.

We then have

(∂ + s)(∂ + s̄) =(∂ + ∂F − F∂ + s̄)(∂ + s̄)
=∂F∂ + s̄∂ + ∂s̄+ ∂F s̄− F∂s̄+ s̄s̄
=1 + ∂F∂ + (∂F s̄− F∂s̄+ s̄s̄).

Note that 1 + ∂F∂ is invertible with inverse 1 − ∂F∂. The terms in parentheses have
degree +2, so (∂ + s)(∂ + s̄)(1 − ∂F∂) is blocked in the same way as (1 + s2) and has
torsion equal to 0. It therefore suffices to show that τ(1 + ∂F∂) = 0.

Lemma 11.6. ∂s and s∂ are complementary projections. That is:

(i) ∂s∂ = ∂.
(ii) s∂s∂ = s∂.
(iii) ∂s∂s = ∂s.
(iv) (∂s)(s∂) = (s∂)(∂s) = 0.
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Proof: ∂s∂ = (1 − s∂)∂ = ∂. The rest follows from this and the observation that
∂ss∂ = (1− s∂)s∂ = 0.

It follows immediately that the matrix

A =
(
s∂ ∂s
∂s s∂

)
has A = A−1. Thus

τ(1 + ∂F∂) = τ
((

s∂ ∂s
∂s s∂

)(
1 + ∂F∂ 0

0 1

)(
s∂ ∂s
∂s s∂

))
= τ
(

1 0
∂F∂ 1

)
= 0.

This completes the proof that τ(C∗) is well-defined.

Geometry

Definition 11.7. A finite CW complex X̄ is an elementary expansion of a CW complex
X if X̄ = X ∪f Bn where F is a PL (n− 1)-ball in ∂Bn and f : F → X(n−1) is a map
with f(∂F ) ⊂ X(n−2). We write X e↗ X̄ or X̄ ↘e X . If X = X0

e↗ X1
e↗ . . . e↗ Xn = Y ,

we write X ↗ Y . Similarly, If X = X0 ↘e X1 ↘e . . . ↘e Xn = Y , we write X ↘ Y . If
X = X0 ↗ X1 ↘ · · · ↗ Xn = Y , we say that X and Y are simple homotopy equivalent.
We say that the sequence {Xi} is a formal deformation from X to Y and write X/↘Y .
If X/↘Y , we can always do all of the expansions first, so there is a formal deformation
from X to Y which has the form X ↗ Z ↘ Y .

Bn

X
_

X
e

Definition 11.8. If (X, Y ) is a finite CW pair such that Y → X is a homotopy equiv-
alence, we write τ(X, Y ) = τ(C∗(X̃, Ỹ )) ∈ Wh(Zπ1(Y )).
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If (X, Y ) is a finite CW pair such that Y → X is a homotopy equivalence and X e↗ X ′,

then X ′ = X ∪ en−1 ∪ en, where en−1 = ∂Bn −
◦
F . We choose orientations so that

∂[en] = [en−1]+c, where c ∈ Cn−1(X̃, Ỹ ). We extend s toC∗(X̃ ′, Ỹ ) by setting s([en]) = 0
and s([en−1]) = [en]− sc. For n even, the matrix of the new (∂ + s) is

⊕
odd
Ci

[en−1]

( ⊕
even
Ci

1

0

[en]

*

1

)
.

and τ(X ′, Y ) = τ(X, Y ). Similar considerations apply for n odd, so τ(X, Y ) = τ(X ′, Y )
whenever X/↘X ′ rel Y .

We claim that the converse of this last is true, as well. The proof will make use of the
following cell-trading lemma.

Proposition 11.9 (Whitehead’s cell-trading lemma). Let (X, Y ) be a finite CW
pair with πk(X, Y ) = 0, 0 ≤ k ≤ n. Then X/↘ X̄ rel Y so that dim(X̄ − Y ) ≥ n+ 1.

Proof: We can assume by induction that X = Y ∪ {eni } ∪ . . . . Let φ : (Bn, Sn−1) →
(X, Y ) map

◦
Bn homeomorphically onto the interior of an n-cell en of (X − Y ). Since

πn(X, Y ) = 0, there is a homotopy Φ : (Bn, Sn−1)× I → (X, Y ) with Φ(Bn × 1) ⊂ X .

Y X

B
n

B
n+2

(D  I)n = X'

Think of Φ as a map from Bn+1 ⊂ ∂Bn+2 to X and form X ′ = X ∪Φ B
n+2. Let

C = ∂Bn+2 − int Bn+1 be the complementary face to Bn+1 in ∂Bn+2. In the picture,
C consists of everything except the part of Bn+2 which meets X .

Let F : C ∪ Y → Y be the elementary collapse from Bn. Let X̄ = X ′ ∪F Y . We claim
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that the space X̄ is simple homotopy equivalent to X rel Y with one more (n + 2)-cell
and one less n-cell. This follows from the next lemma.

Lemma 11.10. If X ↘e X0 and r : X → X0 is a retraction realizing the collapse, then

M(r)↘ X ∪X0 × I.

Proof: If X = X0 ∪ en ∪ en+1, then M(r) = X ∪X0 × I ∪ en× I ∪ en+1 × I. Collapsing
across en+1 × I from en × I proves the lemma.

Addendum 11.11. If X ↘e X0 and r : X → X0 is a retraction realizing the collapse,

then MX0(r)↘e X , where MX0(r) is the mapping cylinder of r reduced over Y .

To complete the proof of Proposition 11.9, consider the reduced mapping cylinder
MY (q) of q : X ′ → X̄. M(q) ↘ X̄ by the mapping cylinder collapse. Since q is
a homeomorphism off of C, M(q) collapses from the bottom to X ′ ∪ MY (F ), which
collapses to X ′. Since X ′ ↘e X , we have X/↘X̄. Iterating this procedure (or, better,
doing all of the n-cells at once) trades away all of the n-cells of X − Y .

Theorem 11.12. If (X, Y ) is a finite CW pair such that Y → X is a homotopy equiva-

lence, then τ(X, Y ) = 0 if and only if X/↘Y rel Y .

Proof: We have already seen that τ(X, Y ) = 0 if X/↘Y rel Y , so we need only prove
the converse. If (X, Y ) is a CW pair with Y → X a homotopy equivalence, repeated
application of Whitehead’s cell-trading lemma gives X/↘X ′ rel Y where X ′ = Y ∪{eni }∪
{en+1
j } for some n. The chain complex C∗(X̃ ′, Ỹ ) then looks like

0→ Cn+1(X̃ ′, Ỹ )
∂−→∼= Cn(X̃ ′, Ỹ )→ 0.

Case I. Suppose that ∂ = id with respect to the preferred bases given by {eni } and
{en+1
j }. Since Cn(X̃ ′, Ỹ ) = Hn(X̃ ′, Ỹ ) ∼= πn(X̃ ′, Ỹ ), this means that the composition

(Dn, Sn−1, ∗)→ (Dn/Sn−1, ∗, ∗) ∼= (Sn, ∗, ∗) φi−→ (Y ∪ {eni }, Y, ∗)

where φi : Sn → Y ∪{eni } is the attaching map for en+1
i is homotopic to a map φ̄i which

sends
◦
Dn homeomorphically onto the interior of eni . If Φ

′
i is such a homotopy, Φ

′
i induces

a map Φi : ((Dn × I)/(Sn−1 × 0), Sn−1 × I, ∗ × I) → (Y ∪ {eni }, Y, ∗). This gives a
homotopy from φi = Φ|Sn1 to a map φ′i = Φ|Sn2 which sends the upper hemisphere of Sn
homeomorphically onto eni and the lower hemisphere into Y .



72 11. Whitehead torsion

S1
n

S2
n

Lemma 11.13. If X is a finite CW complex and Xi = X ∪φi Dn where φi : Sn−1 → X ,

i = 1, 2, then φ1 " φ2 ⇒ X1/↘X2.

Proof: Let Φ : Sn−1×I → X be a homotopy from φ1 to φ2 and form Z = X∪ΦD
n×I.

Then Z ↘e X1 and Z ↘e X2 by collapses across Dn × I from Φ(Dn × 1) and Φ(Dn × 0),
respectively.

By this Lemma, X ′/↘X ′′, where the n+1-cells of X ′′ are attached using the maps φ′i.
But eni ∪ en+1

i is an n + 1-cell attached to Y along a face, so X ′′ ↘ Y . This completes
Case I.

Case II. In general, since τ(X ′, Y ) = 0, we know that after stabilization by the identity,
the matrix of ∂ is a product of elementary matrices and diagonal matrices with ±group
elements on the diagonal. Doing a few more elementary expansions stabilizes the matrix
by the identity, while passing one n+1-cell over another changes ∂ by an elementary row
operation. Choosing new lifts for the cells eni+1 changes the matrix by multiplication by a
diagonal matrix with ±group elements on the diagonal, so a sequence of such operations
tells us how to deform X ′ to X ′′ such that the boundary map is the identity. This is
covered in considerably greater detail on pp. 30-32 of [Co].

References

[Co] M. M. Cohen, A course in simple-homotopy theory, Springer-Verlag, Berlin-New
York, 1973.

[Mi] J. Milnor, Whitehead torsion, Bul. Amer. Math. Soc. 72 (1966), 358–426.



Chapter 12. Siebenmann’s Thesis

Siebenmann’s 1965 Princeton thesis deals with the problem of when a noncompact
manifold without boundary is the interior of a manifold with boundary. In order to
state the theorem, we will introduce some language for discussing systems of groups and
homomorphisms.

Some pro-language

We begin by talking a little bit about the pro-category, which is the setting in which
we will discuss the fundamental group system at infinity.

Definition 12.1. Let
G1

h2←− G2
h3←− G3

h4←− . . .

be a sequence of groups and homomorphisms. By a subsequence of {Gi, hi}, we shall
mean a sequence

Gi1
hi1+1◦···◦hi2←−−−−−−−− Gi2

hi2+1◦···◦hi3←−−−−−−−− Gi3
hi3+1◦···◦hi4←−−−−−−−− . . . .

We will say that two such sequences are pro-equivalent if they are equivalent under the
relation generated by passing to subsequences.

Exercise 12.2. Show that {Gi, hi} and {G′i, h′i} are pro-equivalent if and only if after
passing to subsequences, there is a commuting diagram:

Gi1 Gi2u

447

Gi3u

447

Gi4u

447

. . .u

G′j1

[̂

G′j2u

[̂

G′j3u

[̂

G′j3u

[̂

. . .u

Definition 12.3. A system {Gi, hi} is said to be stable if and only if it is pro-equivalent
to a constant system {G, id}.

Definition 12.4. The inverse limit, lim←−{Gi, hi} is the subgroup of
∏
Gi consisting of

elements (g1, g2, . . . ) such that hi(gi) = gi−1.

Exercise 12.5. If {Gi, hi} and {G′i, h′i} are pro-equivalent, then their inverse limits are
isomorphic.

73
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Definition 12.6. The system {Gi, hi} is said to be Mittag-Leffler if it is pro-equivalent
to a system {G′i, h′i} where all of the maps h′i are epimorphisms.

The fundamental group at infinity

We now have the appropriate language for talking about fundamental group systems
at infinity.

Definition 12.7. IfMn is a PL manifold, a clean neighborhood of infinity inM is a PL

submanifold V with bicollared boundary such that M −
◦
V is compact.

Definition 12.8. If Mn is a noncompact PL manifold which is connected at infinity,
then a proper ray R in M is a proper map p : [0,∞)→M .

Definition 12.9. If Mn is a noncompact PL manifold which is connected at infinity,
{Vi} is a nested collection of connected clean neighborhoods at infinity such that ∩Vi = ∅,
and R is a proper ray in M , then the π1-system of M at infinity with respect to R is the
pro-equivalence class of the system of groups and homomorphisms given by

π1(V1)←− π1(V2)←− π1(V3)←− π1(V4)←− . . .

where the basepoint bi ∈ Vi is taken in the noncompact component of R ∩ Vi and the
map π1(Vi)→ π1(Vi−1) is induced by changing basepoints using the arc from bi to bi−1

in R.

Exercise 12.10. Show that the π1-system of M at infinity is well-defined (up to pro-
equivalence) and that if R and R′ are proper homotopic rays, then the fundamental group
systems with respect to R and R′ are isomorphic.

Unfortunately, it is possible for a manifold to be connected at infinity and yet have
many different proper homotopy classes of proper rays. Here is a simple example:

R

R'

Proposition 12.11. If the fundamental group system of M is stable at infinity with

respect to the proper ray R, then any other proper ray R′ is proper homotopic to R.
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Proof: Choose clean connected neighborhoods V1 ⊃ V2 ⊃ . . . of infinity with ∩Vi = ∅.
After passing to a subsequence, if necessary, we may assume that there is a commuting
diagram:

π1(V1) π1(V2)u

447

π1(V3)u

447

π1(V4)u

447

. . .u

G

[̂

Gu id

[̂

Gu id

[̂

Gu id

[̂

. . .u .

Let bi and b′i be the basepoints in Vi along the rays R and R
′, respectively. Choose paths

in Vi connecting bi to b′i. Consider the loop ω formed by following the path from b2 to
b′2, the segment of R′ from b′2 to b′3, the path from b′3 to b3, and the segment of R back to
b2. This gives an element of π1(V2, b2). According to the diagram, there is an element ν
of π1(V3, b3) whose image is the same as the image of ω in π1(V1, b1). Changing the path
from b′3 to b3 by ν

−1 gives a loop ω′ which is nullhomotopic in V1. Going “up the ladder”
iterating this procedure fills in a proper homotopy from R to R′ (by retracting R and R′

to the portions beyond b2 and b′2 and then using the homotopy we’ve just constructed.)

V1 V2 V3 V4
R

R'
b'

b1

b1
'

b2

b2
'

b3

3

b4

b'4

Remark 12.12. Note that we did not use the full strength of stability. It would have
sufficed to have known that the π1 system was Mittag-Leffler.

Exercise 12.13. The dyadic solenoid is the inverse limit D = lim←−{S
1, 2} where “2” is

the degree two map z → z2. Show that the dyadic solenoid is homeomorphic to the
subset of S3 obtained by intersecting a sequence of suitably chosen solid tori. Show that
there are uncountably many proper homotopy classes of proper rays in M = S3 −D.
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The statement of Siebenmann’s theorem

Definition 12.14. A manifold is said to be tame at infinity if each clean neighborhood
of infinity is finitely dominated.14

Theorem 12.15 (Siebenmann, 1965). Let Mn, n ≥ 6 be a 1-ended PL manifold

without boundary. Then M has a compactification to a PL manifold with boundary W

if and only if

(i) The π1-system of M is stable at infinity.

(ii) M is tame at infinity.

(iii) An invariant σ(ε) ∈ K̃0(π1ε) vanishes.

Here, ε denotes the end of M and π1ε = lim←−{π1Vi} where {Vi} is a sequence of clean

connected neighborhoods of infinity with V1 ⊃ V2 ⊃ . . . and ∩Vi = ∅.

Remark 12.16. If V is chosen to be a small enough neighborhood of infinity that
projection from the inverse limit gives homomorphisms π1ε

t−→ π1V
r−→ π1ε with r◦t = id,

then r∗σ(ε) = σ(V ), where this last is Wall’s finiteness obstruction. In particular, since
r∗ ◦ t∗ = id, σ(ε) = 0 if and only if V has the homotopy type of a finite complex.

Corollary 12.17 (Browder-Levine-Livesay). If Mn is a noncompact PL manifold

without boundary, n ≥ 6, H∗(M) is finitely generated, and M is connected and simply

connected at infinity, then M is the interior of a compact manifold with boundary.

Proof: By a Mayer-Vietoris argument, H∗(V ) is finitely generated for every clean neigh-
borhood V of infinity. We need only show that if V is simply connected and H∗(V ) is
finitely generated, then V has the homotopy type of a finite polyhedron.
The argument follows the proof of Wall’s finiteness obstruction: H2(V ) ∼= π2(V ) is

finitely generated, so there is a finite wedge K2 of S2’s and a map φ2 : K2 → V which
is onto on π2. We have π3(φ2) ∼= H3(φ2) and this last group is finitely generated, so we
can construct a 3-dimensional complex K3 and a map φ3 : K3 → V so that πi(φ3) = 0
for i ≤ 3. Proceeding, we obtain φn : Kn → V with πi(φn) = 0 for i ≤ n. Since V is
noncompact, Hn(V ) = 0 and Hn+1(φn) ∼= Hn(Kn). But this group is free and finitely
generated, since it is a subgroup of a finitely generated abelian group, so we can attach
(n+ 1)-cells to obtain a finite (n+ 1)-dimensional complex homotopy equivalent to V .

The strategy

14 This is different from Siebenmann’s definition, which includes π1-stability. The definition given here

is more consistent with later developments by Chapman-Siebenmann and Quinn.
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The idea of the proof is to find a sequence V1 ⊃ V2 ⊃ . . . of clean neighborhoods of
infinity such that ∩Vi = ∅, π1(Vi) → π1(Vi−1) is an isomorphism for all i, and so that

∂Vi → Vi is a homotopy equivalence for all i. Let Ci = Vi −
◦
V i+1. The homology exact

sequence of the triple (Ṽi, C̃i, ∂Ṽi) is

· · · → Hk(C̃i, ∂Ṽi)→ Hk(Ṽi, ∂Ṽi)→ Hk(Ṽi, C̃i) ∼= Hk(Ṽi+1, ∂Ṽi+1)→ . . . .

The last two terms are zero for all k, so we have Hk(C̃i, ∂Ṽi) = 0 for all k. This, together
with the π1 isomorphisms, shows that each Ci is an h-cobordism15.

Vi Vi+1

Ci

It follows that V1
∼= ∂V1 × [0,∞). The point is that every h-cobordism (W,M0,M1)

is invertible in the sense that there is a cobordism (W ′,M1,M0) so that W ∪N1 W
′ ∼=

M0 × [0, 1]. If τ is the torsion of W , W ′ is just the h-cobordism with torsion −τ con-
structed by starting with M1. This means that if V is a concatenation of h-cobordisms
(Ci, ∂Vi, ∂Vi+1), then by adding on h-cobordisms with appropriately chosen torsions τi
inside a collar neighborhood of each ∂Vi+1 we can guarantee that all of the cobordisms
C′i in the picture are product cobordisms. This shows that that V ∼= ∂V × [0,∞).

C1 C2 C3
1 2 3

C1
' C2

' C3
'

Poincaré duality over Zπ

Suppose that we have a compact n-dimensional cobordism (V,M0,M1) and consider
the universal cover (Ṽ , M̂0, M̂1).16 We have a chain complex of finitely generated Zπ-

15 See the section on Poincaré duality over Zπ below.
16We are not assuming that the homomorphisms π1Mi → π1V are isomorphisms. In fact, the case

Mi = ∅ is an interesting special case. This is why we use M̂i instead of M̃i.
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modules, where π = π1(V ).

. . .
∂−→ Ck+1(Ṽ , M̂0)

∂−→ Ck(Ṽ , M̂0)
∂−→ Ck−1(Ṽ , M̂0)

∂−→ . . .

We wish to compare this with C∗(Ṽ , M̂1), but first a few definitions are in order.

Definition 12.18.

(i) An (anti)involution on a ring Λ is a map M : Λ→ Λ such that M(a+ b) = Ma+ Mb
and M(ab) = (Mb)(Ma).

(ii) If Λ is a ring with involution M and A is a left Λ-module, we define the dual module
A∗ to be HomΛ(A,Λ) with the left Λ-module structure λh(a) = h(a)(M(λ)).

(iii) If f ∈ HomΛ(A,B), then f∗ : B∗ → A∗ is defined by f∗(g) = g ◦ f .

Example 12.19. The example we have in mind is the group ring ZG with M(
∑
nigi) =∑

nig
−1
i .

Choosing a handle decomposition for V on M0, C∗(Ṽ , M̂0) is the chain complex

. . .
∂∗−−→ Ck−1(Ṽ , M̂0)

∂∗−−→ Ck(Ṽ , M̂0)
∂∗−−→ Ck+1(Ṽ , M̂0)

∂∗−−→ . . . .

For V orientable, this isomorphic up to sign to the chain complex

. . .
∂′−→ Cn−k+1(Ṽ , M̂1)

∂′−→ Cn−k(Ṽ , M̂1)
∂′−→ Cn−k−1(Ṽ , M̂1)

∂′−→ . . .

which is the chain complex C∗(Ṽ , M̂1) with respect to the dual handle decomposition of
V on M1. The anti-involution comes in at this point, since if the core of the handle ek

meets the cocore of the handle gek−1, then the core of the dual handle g−1en−k+1 meets
the cocore of the dual handle en−k. We have:

Theorem 12.20 (Zπ Poincaré-Lefschetz Duality). If (V n,M0,M1) is oriented,

then

Hk(Ṽ , M̂0) ∼= Hn−k(Ṽ , M̂1).

In particular, if H∗(Ṽ , M̂0) = 0, then there is a chain contraction s for the chain
complex C∗(Ṽ , M̂1), so dualizing gives a chain contraction s∗ for the chain complex
C∗(Ṽ , M̂1). It follows that if the inclusions Mi → V induce π1-isomorphisms and
H∗(Ṽ , M̃0) = 0, then H∗(Ṽ , M̃1) = 0, so we have:



12. Siebenmann’s Thesis 79

Proposition 12.21. If Mi → V induce isomorphisms on π1, i = 0, 1, and H∗(Ṽ , M̃0) =
0, then V is an h-cobordism.

Fixing up π1

Proposition 12.22. Let Mn, n ≥ 5 be a 1-ended manifold with compact boundary

which is tame at infinity with π1 stable at infinity. Then there exist arbitrarily small

clean neighborhoods V of infinity with V and ∂V connected and π1∂V
∼=−→ π1V ∼= G,

where G is the fundamental group at infinity.

Proof: Let {Ui} be a sequence of decreasing clean, connected neighborhoods of infinity
with connected boundaries.

U1 U2 U3

We may assume that there is a diagram:

π1(U1) π1(U2)u

447

π1(U3)u

447

π1(U4)u

447

. . .u

G

[̂

Gu id

[̂

Gu id

[̂

Gu id

[̂

. . .u .

Since Ui is finitely dominated, π1Ui is finitely presented (see Proposition 8.16). The
diagram shows that we have G t−→ π1Ui

s−→ G with s ◦ t = id, so Proposition 8.16 shows
that π1Ui

s−→ G has kernel normally generated by finitely many elements. Of course,
an element of ker(π1Ui → G) is an element of ker(π1Ui → π1Ui−1), so we can find
finitely many loops in Ui bounding disks in Ui−1 so that these loops normally generate
ker(π1Ui → G). Trading disks along the boundary as in the proof of Proposition 10.10
gives us a sequence of U ′i ’s so that π1U

′
i
∼= G for each i. Choose a set of generators

for π1U
′
i based at a point on ∂U

′
i . Removing tubular neighborhoods of these arcs from

U ′i gives U
′′
i with π1(∂U ′′i )

onto−−−→ π1(U ′′i ). By general position, the fundamental group
of U ′i is not changed by this. The following algebraic lemma allows us to excise regular
neighborhoods of finitely many D2’s from U ′′i to obtain Vi.
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Lemma 12.23 (Siebenmann). Suppose that θ : G→ H is a homomorphism of a group

G onto a group H. Let {x; r} and {y; s} be presentations for G and H with |x| generators
for G and |s| relators for H. Then ker(θ) can be expressed as the least normal subgroup

containing a set of |x|+ |s| elements.

Proof: Let ξ be a set of words so that θ(x) = ξ(y) in H. Since θ is onto, there exists a
set of words η so that y = η(θ(x)) in H. Then Tietze transformations give the following
isomorphisms:

{y; s} ∼= {x, y; x = ξ(y), s(y)}
∼= {x, y; x = ξ(y), s(y), r(x), y = η(x)}
∼= {x, y; x = ξ(η(x)), s(η(x)), r(x), y = η(x)}
∼= {x; x = ξ(η(x)), s(η(x)), r(x)}.

Since θ is specified in terms of the last presentation by the correspondence x → x, it is
clear that ker(θ) is the normal closure of the |x|+ |s| elements ξ(η(x)) and s(η(x)).
Using this lemma, we can find a finite collection of disjoint loops in ∂U ′′i generating

the kernel of π1∂U
′′
i → π1U

′′
i . Since we are in dimension ≥ 5, these loops bound disjoint

embedded disks in U ′′i . Excising regular neighborhoods of these disks from U ′′i gives us
manifolds Vi ⊂ U ′′i so that the maps π1∂Vi → π1Vi are isomorphisms.

Lemma 12.24. If V is a finitely dominated clean neighborhood of infinity with π1∂V ∼=
π1V ∼= π1ε, we can find a finite collection of embeddings {(D2

i , ∂D
2
i )→ (V, ∂V )} so that

excising regular neighborhoods of the Di’s gives V
′ ⊂ V with H2(Ṽ ′, ∂Ṽ ′) = 0.

Proof: We need to examine the effect of excising a regular neighborhood of a single D2

from (V, ∂V ).

V

D

C

Let C be a regular neighborhood of ∂V ∪ D and consider the homology sequence of
(Ṽ , C̃, ∂Ṽ ).

0→ H3(Ṽ , ∂Ṽ )→ H3(Ṽ , C̃)→ H2(C̃, ∂Ṽ )→ H2(Ṽ , ∂Ṽ )→ H2(Ṽ , C̃)→ 0



12. Siebenmann’s Thesis 81

Since Hk(Ṽ , C̃) ∼= Hk(Ṽ ′, ∂Ṽ ′), where V ′ = V −
◦
C and H2(C̃, ∂Ṽ ) ∼= Zπ, this becomes

0→ H3(Ṽ , ∂Ṽ )→ H3(Ṽ ′, ∂̃V ′)→ Zπ → H2(Ṽ , ∂Ṽ )→ H2(Ṽ ′, ∂Ṽ ′)→ 0.

Thus, the effect is to kill the image of (D, ∂D) in the homology of the universal cover
while creating homology in the next dimension corresponding to the kernel of (D, ∂D)→
(V, ∂V ). To achieve our goal, we need only show that H2(Ṽ , ∂Ṽ ) is finitely generated
over Zπ and that a generating set is represented by maps (D2, ∂D2)→ (V, ∂V ).
The last part is easy, since by the Hurewicz Theorem and covering space theory,

H2(Ṽ , ∂Ṽ ) ∼= π2(Ṽ , ∂Ṽ ) ∼= π2(V, ∂V ). Given our work on Wall’s finiteness obstruction,
the first part is equally easy. Since V is finitely dominated, it has the homotopy type of a
space X which has only finitely many cells in each dimension. Taking a mapping cylinder,
we can assume that ∂V ⊂ X . The chain complex C∗(X̃, ∂Ṽ ) is a chain complex of finitely
generated free Zπ-modules which has its first nonvanishing homology in dimension 2. By
Lemma 8.20, H2(X̃, ∂Ṽ ) ∼= H2(Ṽ , ∂Ṽ ) is finitely generated.

Remark 12.25. In general, if we excise a regular neighborhood of a k-cell (Dk, ∂Dk) ⊂
(V, ∂V ), we get an exact sequence

0→ Hk+1(Ṽ , ∂Ṽ )→ Hk+1(Ṽ ′, ∂̃V ′)→ Zπ → Hk(Ṽ , ∂Ṽ )→ Hk(Ṽ ′, ∂̃V ′)→ 0.

We can repeat the process of Lemma 12.24 without change until we reach the middle
dimension. At that point, we begin to have trouble embedding the disks. That we can
overcome this problem is the main point of the following.

Proposition 12.26. IfM is as above, we can find arbitrarily small clean neighborhoods

V of infinity with π1∂V ∼= π1V ∼= π1ε and H�(Ṽ , ∂Ṽ ) = 0 for 
 ≤ n− 3.

Proof: We proceed by induction, our hypothesis being that there are arbitrarily small
neighborhoods V of infinity with H�(Ṽ , ∂Ṽ ) = 0, 
 ≤ k. As before, Hk+1(Ṽ , ∂Ṽ ) is
finitely generated. We need to show that the generators are represented by finitely many
disjoint embeddings (Dk+1, ∂Dk+1)→ (Ṽ , ∂Ṽ ).
Choose a neighborhood V ′ of infinity so that H�(Ṽ ′, ∂Ṽ ′) = 0, 
 ≤ k and so that

Hk+1(C̃, ∂Ṽ ) → Hk+1(Ṽ , ∂Ṽ ) is onto, where C = V −
◦
V ′. This last is possible because

chains are compact. The homology sequence of (Ṽ , C̃, ∂Ṽ ) shows that H�(C̃, ∂Ṽ ) = 0
for 
 ≤ k − 1. Consider a handle decomposition of (C, ∂V ) as in the schematic picture
below.
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k-handles k+1-handles∂V ∂V'

C

...

L

C C10

By the Reordering Lemma [RS, p. 76], we can assume that the handles are attached
in order of increasing index. Let L be the new boundary after all of the K-handles have
been attached and before any of the (k + 1)-handles have been attached. L divides C
into regions C0 and C1.
Introduce a cancelling (k + 1)-(k + 2) pair in (C1, L). If [c] ∈ Hk+1(C̃, ∂Ṽ ), write

c =
∑
nigiei, where the ei’s are preferred lifts of (k + 1)-handles of V . By adding our

newborn trivial handle to the handles giei with appropriate multiplicities, we can find
a single handle ek+1 representing c. Since ∂c = 0, we can use the Whitney trick to
move the attaching sphere of ek+1 off of the cocores of the k-handles. This means that
there is a handle ek+1 attached to ∂V which represents c in Hk+1(Ṽ , ∂Ṽ ). As before,
excising such handles corresponding to a set of generators for Hk+1(Ṽ , ∂Ṽ ) gives us a
new manifold V ′ with Hk+1(Ṽ ′, ∂Ṽ ′) = 0.

Lemma 12.27. If V1 ⊃ V2 are clean neighborhoods of infinity with π1∂Vi ∼= π1Vi ∼= π1ε,

then (C, ∂V1) has the homotopy type of a CW pair (Kn−2, ∂V1), where C = V1 −
◦
V 2.

Proof: By Van Kampen’s theorem, π1∂V2 → π1C is an isomorphism. Starting with a
handle decomposition of (C, ∂V2), we may therefore trade away all of the 0- and 1-handles
as in the proof of the s-cobordism theorem. The dual handle decomposition of (C, ∂V1)
has handles of index 0 . . . n − 2. Collapsing to the underlying (n − 2)-dimensional CW
complex completes the proof.

Proposition 12.28. Let Mn, n ≥ 5 be a 1-ended manifold with compact boundary

which is tame at infinity with π1 stable at infinity. If V is a clean neighborhood of

infinity with V and ∂V connected and π1∂V ∼= π1V ∼= π1ε, then (V, ∂V ) is homotopy

dominated rel ∂V to a finite CW pair (Kn−2, ∂V ).
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Proof: This follows immediately from the lemma above by a direct limit argument.

Proposition 12.29. Let Mn, n ≥ 5 be a 1-ended manifold with compact boundary

which is tame at infinity with π1 stable at infinity. If V is a clean neighborhood of infinity

with V and ∂V connected and π1∂V ∼= π1V ∼= π1ε, and Hk(Ṽ , ∂Ṽ ) = 0, k �= n− 2, then
Hn−2(Ṽ , ∂Ṽ ) is a finitely generated projective module over Zπ.

Proof: By the above, (Ṽ , ∂Ṽ ) is homotopy equivalent to a CW pair (K̃n−2, ∂Ṽ ). By
cell-trading, we may assume that Kn−2 = ∂V ∪ {en−3

i } ∪ {en−2
j }. The chain complex

C∗(K̃, ∂Ṽ ) is then

0→ Cn−2(K̃, ∂Ṽ )→ Cn−3(K̃, ∂Ṽ )→ 0

Since Hn−3(K̃, ∂Ṽ ) = 0, the boundary map splits and it follows immediately that
Hn−2(K̃, ∂Ṽ ) is projective. That Hn−2(K̃, ∂Ṽ ) is finitely generated follows as in Lemma
12.24.

Remark 12.30. Since the chain complexes for (V, ∂V ) and V differ by the chain complex
of the finite complex ∂V , it follows immediately from the Euler characteristic definition
of the finiteness obstruction that [Hn−2(K̃, ∂Ṽ )] = (−1)nσ(V ). It follows from the
sum theorem for the finiteness obstruction, which we will discuss in due course, that
[Hn−2(Ṽ , ∂Ṽ )] ∈ K̃0(Zπ) is independent of the choice of V .

Definition 12.31. LetMn, n ≥ 6 be a 1-ended manifold with compact boundary which
is tame at infinity with π1 stable at infinity. If V is a clean neighborhood of infinity with
V and ∂V connected and π1∂V

∼=−→ π1V , and Hk(Ṽ , ∂Ṽ ) = 0, k �= n− 2, we define σ(ε)
to be the class of Hn−2(Ṽ , ∂Ṽ ) ∈ K̃0(Zπ).

It remains to show that M admits a boundary if the obstruction σ(ε) vanishes. The
basic idea is the same as before. We stabilize by excising trivial (n− 3)-handles from V .
This allows us to assume that Hn−2(Ṽ , ∂Ṽ ) is free. Next, we introduce trivial handles
and use handle additions and the Whitney trick to create a collection of new handles
representing a basis for Hn−2(Ṽ , ∂Ṽ ). This all follows the corresponding steps in the
proof of the s-cobordism theorem. After excising these handles to form a new manifold
V ′, we will be done once we show that ∂V ′ → V ′ induces an isomorphism on π1. Notice
that this is no longer an automatic consequence of general position, since we are excising
handles whose cores are (n− 2)-dimensional.



84 12. Siebenmann’s Thesis

∂V ∂U

(n-2)-handles
to be excised

(n-3)-handles (n-2)-handles

∂V'

C

As before, choose a clean neighborhood U of infinity with π1∂U → π1U → π1(ε)

isomorphisms and let C = V −
◦
U . First, we note that π1∂V

′ ∼= π1C ∩ V ′, since C ∩ V ′ is
obtained from ∂V ′ by attaching (n−2)- and (n−3)-handles. On the other hand, C ∩V ′
is obtained from ∂U by attaching 2- and 3-handles. Moreover, C is obtained by attaching
even more 2-handles to C ∩ V ′. Since π1∂U

∼=−→ π1C, all of these 2-handles are trivially
attached and π1∂U

∼=−→ π1C ∩ V ′. Thus, ∂V ′ → V ′ induces a π1-isomorphism and we
have produced arbitrarily small neighborhoods V ′ of ∞ with ∂V ′ → V ′ a homotopy
equivalence.

The sum theorem for the finiteness obstruction

Theorem 12.32 (Siebenmann). If X is a CW complex with subcomplexes X1, X2,

and X0 = X1 ∩ X2 such that each Xi is finitely dominated, then σ̄(X) = i1∗σ̄(X1) +
i2∗σ̄(X2)− i0∗σ̄(X0), where ij∗ : K0(Zπ1Xj)→ K0(Zπ1X) is the inclusion induced map.

Proof: By Remark 8.40, each of the Xi’s may be thought of as the union of a finite
complex Ki together with infinitely many bouquets of S2’s and infinitely many D3’s. X
is then homotopy equivalent to the double mapping cylinder of X0 → X1 and X0 → X2.
The theorem is then self-evident, since the cells representing the projective on X0 appear
only once in the double mapping cylinder.

Remark 12.33. Another way to see this is to note that if di : Ki → Xi is a domination
with right inverse ui and ji : X0 → Xi is the inclusion, then we have a homotopy
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commuting diagram

K1

u
d1

K0u
u1◦j1◦d0

w
u2◦j2◦d0

u
d0

K2

u
d2

X1

u

u1

X0u
j1

w
j2

u

u0

X2.

u

u2

This leads to maps between the double mapping cylinders as pictured below. We see
that the double mapping cylinder composed of Ki’s dominates the one composed of Xi’s,
since the compositions up and down on each of the Xi’s is homotopic to the identity, the
composition on the entire double mapping cylinder is a homotopy equivalence and that
the map down is a domination.

X0X1 X2

K0K1 K2

u 0u 1 u 2d 0

d 0 d 0

d 1 d 2

j 1 2j

j 1 2ju 1 u 2˚ ˚ ˚ ˚

It is now easy to compute the kernel of this domination in terms of the kernels of the
original di’s, proving the sum theorem.

Remark 12.34. The sum theorem shows that the obstruction to adding a boundary
can be measured in any Vi for which π1∂Vi ∼= π1Vi ∼= π1ε, since if V2 ⊂ V1 is another

such neighborhood, then σ(V1) = σ(V2) + σ(V1 −
◦
V 2)− σ(∂V2) = σ(V2), since the other

two complexes are finite.
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Chapter 13. Torus trickery 101 - local contractibility

Theorem 13.1 (Černavskii, Kirby). Given n, there is an εn > 0 so that if α : Rn →
Rn is a homeomorphism such that ||α(x) − x|| < εn for x ∈ Bn, then α is stable. In

particular, α is isotopic to the identity.

We begin with a statement of the Generalized Schoenfliess Theorem for the torus.

Proposition 13.2. Let Sn−1 ⊂ Tn be a bicollared sphere, n ≥ 2. Then Sn−1 bounds

a disk in Tn.

Proof: Pass to the universal cover. By the Generalized Schoenfliess Theorem, each lift
of Sn−1 bounds a disk which projects to a disk in Tn bounded by the original Sn−1.

Definition 13.3. A map β : Mn → Nn is an immersion if for each x ∈ M there is a
neighborhood U of x so that β|U is a homeomorphism.

Proposition 13.4 (Smale). If M is a smooth n-manifold with no closed components,

then M immerses in Rn if and only if the tangent bundle of M is trivial. In particular,

there is an immersion β : Tn − {pt} → Rn.

This is a special case of Smale’s general immersion theory, which shows that for M a
smooth n-manifold with no closed components, regular homotopy classes of immersions
i :Mn → Nn are in one-to-one correspondence with homotopy classes of bundle maps

TM w
f̂

u

TN

u
M w

f
N

such that the restriction of f̂ to each fiber TMm is nonsingular. At the end of this
section, we will give an explicit construction of a smooth immersion β : Tn−{pt} → Rn.
A PL immersion may be found on pp. 290-292 of [Rus]. Here is a picture of an immersed
T 2 − {pt} ⊂ R2.

87
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Proof of Theorem: We will think of S1 as being [0, 2]/{0 ∼ 2}, so [0, 1] ⊂ S1. Then
[0, 1]n ⊂ Tn − {pt}. Choose a small ball B′ ⊂ Tn so that β|B′ is a homeomorphism and
let B′′ = β(B′). Choosing homeomorphisms h : Tn−{pt} → Tn−{pt} and k : Rn → Rn

so that h(B′) = [0, 1]n and k(B′′) = B, the unit cube, k ◦ β ◦ h−1 is an immersion
Tn − {pt} → Rn which is the “identity” on [0, 1]n = B. After a radial squeeze, we can
assume that β(Tn − {pt}) ⊂ 2Bn.
Choose balls Dn ⊂ 2Dn centered at {pt} and disjoint from B in Tn.

(i) Choose ε1 > 0 so that β|B(ε1, x) is a homeomorphism for each x ∈ Tn −
◦
Dn.

(ii) Choose ε2 > 0 so that β(B(ε1, x)) ⊃ B(ε2, β(x)) for each x ∈ Tn −
◦
Dn.

(iii) Choose ε3 > 0 so that ε3 < ε2 and so that if ||y−β(x)|| < ε3, x ∈ Tn− 2
◦
Dn, then

y ∈ β(Tn −
◦
Dn).

If ||α(x)− x|| < ε3/2 on 2Bn, then the formula

ᾱ(x) = (β|B(ε1, x))−1 ◦ α ◦ (β|B(ε1, x))(x)

defines a “lift” ᾱ of α making the diagram below commute.

Tn −
◦
Dn y wᾱ

u
β

Tn − 2
◦
Dn

u
β

Rn wα
Rn

Our convention that β identifies B ⊂ Tn with B ⊂ Rn allows us to say that ᾱ = α on
(1− ε3)B. By Proposition 13.2, ᾱ(∂Dn) bounds a disk in Tn. We can therefore extend
ᾱ to a homeomorphism α̂ : Tn → Tn with α̂ = α on (1− ε3)B. The result is a diagram:

Tn y wα̂ Tn

Tn −
◦
Dn

u

y

y wᾱ

u β
Tn − 2

◦
Dn

u

y

u β

Rn wα
Rn.

We now pass to the universal cover, choosing e : Rn → Tn so that B = [0, 1]n ⊂ Rn is



13. Torus trickery 101 - local contractibility 89

mapped onto B ⊂ Tn by the “identity.” The result is a diagram

Rn

u e
wα̃
Rn

u e

Tn wα̂ Tn

Tn −
◦
Dn

u

y

y wᾱ

u β
Tn − 2

◦
Dn

u

y

u β

Rn wα
Rn

with α̃ = α on (1− ε3)B.
The homeomorphism α̃ is bounded, and therefore stable, so the original homeomor-

phism α, which agrees with α̃ on an open set, is also stable.

Remark 13.5. Stable homeomorphisms of Rn are isotopic to the identity. If h : Rn →
Rn is fixed on a ball B, we can extend to Sn by one-point compactifying and then use

an Alexander isotopy on h|Sn−
◦
Bn coning from infinity to isotop h to the identity. The

entire Theorem 13.1 can be done canonically in such a way that it continuously deforms
homeomorphisms of Rn which are sufficiently close to the identity back to the identity.
This leads to a proof that the homeomorphism group of Rn is locally contractible. See
[Rus] for details.

Several stronger theorems are known. Reference [EK] contains elegant proofs of the
following:

Theorem 13.6 ([Cer]). The homeomorphism group H(M) of a compact manifold is

locally contractible.

Theorem 13.7. Let ht : C →M , t ∈ I be a proper isotopy of a compact subset C of a

manifold M such that ht has a proper extension to a neighborhood U of C. Then ht can

be covered by an ambient isotopy of M , that is, there is an isotopy Ht : M → M such

that H0 = 1M and ht = Ht ◦ h0 for all t.

Definition 13.8. If ht : M → M , t ∈ I is an isotopy of M and B is a subset of M ,
then ht is supported by B if ht|M −B = 1 for all t.

Theorem 13.9. Let ht : M → M , t ∈ I be an isotopy of a compact manifold M and

let {Bi|1 ≤ i ≤ p} be an open cover of M , Then ht can be written as a composition of
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isotopies ht = hk,t ◦ · · · ◦h1,t ◦h0 where each isotopy hj,t :M →M is an ambient isotopy

which is supported by some member of {Bi}.

Theorem 13.6 suggests the following well-known open question:

Question 13.10 (The homeomorphism group problem). Is the homeomorphism

group of a compact topological n-manifold an ANR?

The answer is known to be “yes” for n = 2 and for Hilbert cube manifolds. In general,
the results of Edwards-Kirby referred to above can be used to reduce the question to
whether H(Dn, ∂Dn) = {h : Dn → Dn | h|∂ = id} is an ANR. An affirmative answer to
the question implies that H(M) is a manifold modeled on separable Hilbert space.

An explicit immersion

Elements of Tn will be written as θ = (θ1, . . . , θn) with θi ∈ S1.

Lemma 13.11. Let (θ, t) → (f1(θ, t), . . . , fn+1(θ, t)) be an embedding of Tn × (−1, 1)
into Rn+1 with fn+1(θ, t) > 0. The map of Tn+1 × (−1, 1) into Rn+2 defined by

(θ, t)→ (f1(θ, t), . . . , fn(θ, t), fn+1(θ, t)cos θn+1, fn+1(θ, t)sin θn+1)

is an embedding.

Definition 13.12. The standard embedding of Tn × (−1, 1)→ Rn+1 is the embedding
obtained by starting with (θ1, t) → ((1 + t)cos θ1, (1 + t)sin θ1 + 2) and iterating the
process described in the lemma above. At each stage we must add 2 to the last term so
that the condition fn+1(θ, t) > 0 will be satisfied.

As an example, for the standard embedding of Tn × (−1, 1)→ R4, we have

f3(θ, t) = (((1 + t)sin θ1 + 2)sin θ2 + 4)cos θ3

and

f3(θ, t) = (((1 + t)sin θ1 + 2)sin θ2 + 4)sin θ3 + 8

Let S ⊂ Tn be the set of θ such that θi = 0 for some i and let

φ(θ) =
sin θ1 . . . sin θn

2n
+
sin θ2 . . . sin θn

2n−1
+ . . .

sin θn
2

Theorem 13.13. Let (θ, t) → (f1(θ, t), . . . , fn+1(θ, t)) be the standard embedding of

Tn × (−1, 1) into Rn+1. For some ε > 0 the map θ → (f1(θ, εφ(θ)), . . . , fn+1(θ, εφ(θ)))
has nonsingular Jacobian on S. It therefore immerses a regular neighborhood of S, and

therefore of Tn −Dn into Rn.
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Proof: We compute:

det

(
∂fi
∂θj

+ ε
∂fi
∂t

∂φ

∂θj

)∣∣∣∣ θ∈S
t=εφ

= det

(
∂fi
∂θj

+ ε∂fi∂t
∂φ
∂θj

0
∂φ
∂θj

1

)∣∣∣∣∣ θ∈S
t=εφ

= det

(
∂fi
∂θj

−ε ∂fi
∂θj

∂φ
∂θj

1

)∣∣∣∣∣ θ∈S
t=εφ

= det

(
∂fi
∂θj

−ε ∂fi
∂θj

∂φ
∂θj

0

)∣∣∣∣∣ θ∈S
t=εφ

+ det
(
∂fi
∂θj

−ε ∂fi
∂θj

0 1

)∣∣∣∣ θ∈S
t=εφ

By construction, fi involves only θ1, . . . , θi and ∂fi
∂θi

has a factor of sin θi. Thus, on S,
the upper left hand corner of the second matrix is triangular with at least one 0 on the
diagonal. We have

det

(
∂fi
∂θj

+ ε
∂fi
∂t

∂φ

∂θj

)∣∣∣∣ θ∈S
t=εφ

= −ε det
(
∂fi
∂θj

∂fi
∂θj

∂φ
∂θj

0

)∣∣∣∣∣ θ∈S
t=εφ

Notice that fn+1(θ, 0) = 2nφ(θ) and that ∂fn+1
∂t

is identically zero on S. Thus, if the
above determinant is evaluated at θ ∈ S, t = 0, it is

(−ε
2n

)
times the determinant of the

standard embedding. It is therefore nonsingular when evaluated at θ ∈ S, t = εφ for
sufficiently small ε. This completes the proof.

Remark 13.14. This immersion is taken from [F].
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Chapter 14. Torus trickery 102 – the Annulus Conjecture

In this section, we outline Kirby’s proof of the annulus conjecture. We say “outline”
because the proof relies heavily on the following result, which we will not prove.

Theorem 14.1 (Hsiang-Shaneson [HS], Wall [Wa, p. §15A]). If Wn, n ≥ 5 is a

PL manifold and f : W → Tn is a homotopy equivalence, then there is a commuting

diagram of 2n-fold covering spaces

Ŵ w
f̂

u
2n

Tn

u
2n

W w
f

Tn

so that f̂ is homotopic to a PL homeomorphism.

Before proceeding with Kirby’s proof, the reader unfamiliar with the pullback con-
struction is urged to work the following exercise.

Definition 14.2. If f : A→ C and g : B → C are maps, the pullback of f and g is the
subset P = {(a, b) ∈ A×B | f(a) = g(b)}. We have a commuting diagram

P w
f∗

u
g∗

B

u
g

A w
f

C

where the maps f∗ and g∗ are induced by projection.

Exercise 14.3.

(i) Show that if P ′ is a space with maps f ′ : P ′ → B, g′ : P ′ → A so that g ◦ f ′ =
f ′ ◦ g∗, then there is a unique map P ′ → P making the diagram below commute.

P ′NNNNNNP
f ′A

A
A
AAC

g′

(()

P w
f∗

u
g∗

B

u
g

A w
f

C

92
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(ii) Each point-inverse of f∗ is homeomorphic to some point-inverse of f and each
point-inverse of g∗ is homeomorphic to some point-inverse of g.

(iii) If f is proper, i.e., if the inverse image under f of a compact set is compact, then
f∗ is also proper.

(iv) If A and B are polyhedra and f and g are PL, then P is a polyhedron and f∗ and
g∗ are PL.

(v) If g is a covering projection, then g∗ is also a covering projection.

Theorem 14.4 (Kirby [K]). Every orientation-preserving homeomorphism of Rn is

stable for n ≥ 5.

Proof: The proof follows easily from the diagram below, which we now explain.

Rn w
g̃−1

PL

u

W̃PL w
h̃1

u

Rn

u
Tn w

g−1

PL
ŴPL

1 w
ĥ1

u
2n

Tn

u
2n

WPL
1 w

h1 Tn

WPL
0 w

h0

u
β′PL

u

y

Tn − {pt}

u
βPL

u

y

Rn wh
Rn

Let h : Rn → Rn be a homeomorphism and let β : Tn−{pt} → Rn be a PL immersion
which, as before, is the identity on Bn. Let W0 be the pullback of β over h with
β′ : W → Rn and h0 : W0 → Tn − {pt} the natural maps. The map β′ is an immersion
(see Lemma 14.5 below) so W0 is a PL manifold with PL coordinate patches obtained
by restricting β′. Since β|B = id, β′|h−1(B) can be thought of as the identity. With this
convention, h0 is a topological homeomorphism which is equal to h on h−1(B).
The end of W0 is homeomorphic to Sn−1× [0,∞), so it is tame. If n ≥ 6, by Browder-

Livesay-Levine, W0 admits a PL boundary which, by the Generalized Poincaré Conjec-
ture, must be a PL sphere. For n = 5, we use a theorem of Wall [Wa], which says
that a PL manifold which is homeomorphic to S4 × R is PL homeomorphic to S4 × R.
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Cutting back a little bit and coning now allows us to extend h0 to a homeomorphism
h1 : W1 → Tn. We now apply Hsiang-Shaneson-Wall to conclude that after passage to
a finite cover, there is a PL homeomorphism g : Ŵ1 → Tn which is homotopic to ĥ−1

1 .
Lifting to the universal covers gives us the top row of the diagram.
The homeomorphism g̃−1 is PL, and therefore stable. The homeomorphism h̃1 ◦ g̃−1 is

bounded because it covers a homeomorphism of Tn which is homotopic to the identity.
Therefore, the homeomorphism h̃1 is stable. But h̃1 agrees with h on h−1(B), so h is
stable.

Lemma 14.5. The pullback of an open immersion is an immersion.

Proof: Consider a pullback diagram

P w

u
β′

Q

u
β

R w
f

S

with β an immersion. Given q ∈ Q, choose a neighborhood U of q in Q such that β|U
is a homeomorphism. If r ∈ R with f(r) = β(q), choose a neighborhood V of r with
f(V ) ⊂ β(U). Then (V × U) ∩ P = {(v, (β|U)−1(f(r)))} is an open neighborhood of
(r, q) ∈ P such that β′|(V × U) is an immersion.
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Chapter 15. Homotopy structures on manifolds

In this section and the next, we will say a few words about surgery theory, which is the
machinery used in proving the theorem of Hsiang and Shaneson used in the last section.
A basic object of study in surgery theory is the set of homotopy structures on a manifold
M . Here is the definition.

Definition 15.1. IfM is a PL manifold, a homotopy PL structure on M is a PL manifold
N together with a homotopy equivalence f : N →M . Structures (N, f) and (N ′, f ′) are
equivalent if there is a PL homeomorphism φ : N → N ′ so that f ′ ◦ φ is homotopic to f .

N[[[[]
f

u
φ ∼= M

N ′
��
���

f ′

We denote the set of equivalence classes of PL structures onM by SPL(M). In words,
a homotopy structure on M is a homotopy equivalence from a manifold N to M . Two
of these are equivalent if there is a homeomorphism from one to the other making the
diagram homotopy commute.

For n ≥ 5, SPL(M) can often be calculated using the Sullivan-Wall surgery exact
sequence [Br, p. 49], [W, pp. 107-108], [Su]:

. . . w [M × I,M × ∂I;G/PL] w Ln+1(Zπ1(M)) wacts SPL(M) w [M ;G/PL] w Ln(Zπ1(M)).

In case M is simply connected, the Wall groups Ln(Zπ1(M)) are:

Ln(e) =


0 n odd

Z n = 4k
Z2 n = 4k + 2.

The computation of these groups follows from Kervaire-Milnor [KM].

The reader should be warned that since SPL(M) has no obvious group structure, this
is an exact sequence of sets at the term SPL(M)17 in the sense that there is an action

17Actually, this is a sequence of groups and homomorphisms. See 25.7. The corresponding sequence in

DIFF is not known to be a sequence of groups and homomorphisms.
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96 15. Homotopy structures on manifolds

of Ln+1(Zπ1(M)) on SPL(M) and two elements of SPL(M) go to the same element of
[M ;G/PL] if and only if they are in the same orbit of the action of Ln+1(Zπ1(M)). This
still provides quite a bit of information. Letting M = Sn and using the fact that the
Generalized Poincaré Conjecture gives SPL(Sn) = 1 for n ≥ 5, we see that πn(G/PL)
injects into Ln(e) and that πn+1(G/PL) surjects onto Ln+1(e). Thus, the homotopy
groups of G/PL are isomorphic to the surgery groups Ln(e) in high dimensions. A more
careful argument [MM, p. 43] shows that the map [Sn;G/PL]→ Ln(e) is an isomorphism
for n ≥ 5.

The surgery exact sequence for Tn is

[Tn × I, ∂;G/PL]→ Ln+1(ZZn)→ SPL(Tn)→ [Tn, G/PL]→ Ln(ZZn).

One can show that there is a space B(G/PL) so that G/PL is homotopy equivalent to
ΩB(G/PL), so ignoring low-dimensional problems, we have

[Tn, G/PL] = [Tn,ΩB(G/PL)] = [ΣTn, B(G/PL)] = [
n
∨
i=1

(n
i

)
Si, G/PL] =

n
⊕
i=1

(n
i

)
πi(G/PL).

The group Ln(ZZn) was computed in Shaneson’s thesis [Sha] and turns out to be the
same. This is a clever splitting argument. The remaining problem in proving the theorem
of Hsiang-Shaneson and Wall is to understand the maps [Tn, G/PL] → Ln(ZZn) and
[Tn×I, ∂;G/PL]→ Ln+1(ZZn) in the surgery exact sequence. The map turns out to be
multiplication by 2 on π4, so there is potentially a nonzero obstruction. That obstruction
is eliminated by passing to a suitable finite cover. We will not go into that part of the
argument here.

Next, we try to give a quick idea of how the Sullivan-Wall sequence is derived. The
basic tool is surgery theory. A very nice survey of surgery theory is contained in the first
three chapters of Shmuel Weinberger’s upcoming book The topological classification of
stratified spaces.

A surgery problem is a degree one map f : N → M ,18 N , M closed manifolds, which
is covered by a map of normal bundles in Rk, k large. The bundle map is part of the
data. A solution to a surgery problem is

18 I lied here. In general, the target space is a Poincaré Duality space rather than a manifold. The

reason I lied is that the bundle theory is more difficult to describe in the Poincaré case, so this seems an

inappropriate level of generality for a quick sketch. The theory with a Poincaré duality space in place of
a manifold is more satisfying in that the output of a solved surgery problem is a homotopy equivalence

from a manifold to the Poincaré Duality space.
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(i) A manifold with boundary (W,N,N ′), called a cobordism.
(ii) A map

F : (W,N,N ′)→ (M × [0, 1]; M × {0}, M × {1})

such that

(a) F |N = f
(b) F is covered by a map of normal bundles in Rk × [0, 1]
(c) F |N ′ is a homotopy equivalence.

A surgery problem f gives rise to a surgery obstruction σ(f) in the Wall group
Ln(Zπ1(M)). Of course, σ(f) = 0 if and only the surgery problem has a solution.

Here is how surgery is used to classify homotopy PL structures: If f : N → M is a
homotopy equivalence of PL manifolds, we first ask if there is a normal cobordism from
N to M . This is a manifold with boundary (W,N,M) together with a map

F : (W,N,M)→ (M × [0, 1]; M × {0}, M × {1})

such that F |N = f , F |M = id, and such that F is covered by a map of normal bun-
dles. Given a homotopy equivalence f : N → M , a transversality construction shows
that the desired normal cobordism exists if and only if a certain map M → G/PL is
nullhomotopic. This gives rise to the map

SPL(M)→ [M,G/PL]

in the surgery exact sequence.

If the normal cobordism exists,

F : (W,N,M)→ (M × [0, 1]; M × {0}, M × {1})

can be considered to be a relative surgery problem, the problem being to find a cobordism
rel boundary to a homotopy equivalence. This leads to an obstruction in Ln+1(Zπ1(M)).
If this obstruction dies, then there is an h-cobordism (W ′, N,M) together with a homo-
topy equivalence

F ′ : (W ′, N,M)→ (M × [0, 1]; M × {0}, M × {1})

extending f and the identity. In the simply connected case, at least, the h-cobordism
theorem then shows that the original structure was trivial. In general, one either cobords
to simple homotopy equivalences or relaxes the definition of equivalence of structures.
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In analyzing a surgery problem, one constructs the cobordism W starting with M ×
[0, 1], attaching one handle at a time to in an effort to make f more and more highly
connected.

K1 K2 K3 X

1 2

The problem is quite analogous to the problem of attaching cells to a domination to
obtain a homotopy equivalence which was discussed in §8.
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Chapter 16. Bounded structures and the annulus conjecture

The purpose of this section is to mention a new variant of surgery theory which can
also be used to prove the Annulus Conjecture. This is bounded surgery theory [FP].

Definition 16.1.

(i) A bounded n-manifold over X is an n-manifold M together with a not necessarily
continuous map p :M → X so that the inverse image of every bounded subset of
X has compact closure in M . A homotopy ht : M → M is bounded if there is a
d so that diam(p ◦ ht(m)) ≤ d for all m ∈M .

(ii) If p : Mn → X is a bounded object over X , a bounded structure on M is a
bounded homotopy equivalence f : (N, q) → (M, p). Two bounded structures
f : (N, q) → (M, p) and f ′ : (N ′, q′) → (M, p) are equivalent if there is a PL
homeomorphism φ : N → N ′ so that the diagram

Nh
h
hhj
f

u

φ ∼= M

N ′
''
'')

f ′

bounded homotopy commutes over X .

In particular, we can consider SPL
(

Rn

↓ id
Rn

)
, the bounded PL structures on Rn pa-

rameterized over itself. A bounded homotopy equivalence f : M → Rn is equivalent
to the trivial structure if and only if f is bounded homotopic to a PL homeomorphism
f̄ :M → Rn.

There is a bounded surgery theory analogous to the compact theory and the bounded
surgery exact sequence in this case is

. . . w LRn,n+1(e) wacts SPL
(

Rn

↓ id
R
n

)
w [Rn;G/PL] w LRn,n(e).

A splitting argument shows that

LRn,k(e) =


0 k − n odd
Z k − n ≡ 0(mod 4)
Z2 k − n ≡ 2(mod 4),
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100 16. Bounded structures and the annulus conjecture

so both LRn,n+1(e) and [Rn;G/PL] are trivial, implying the triviality of SPL
(

Rn

↓ id
Rn

)
.

A topological homeomorphism h : Rn → Rn gives a bounded homotopy equivalence
(Rn, h) → (Rn, id). Since the structure (Rn, h) is equivalent to the trivial structure,
there is a PL homeomorphism h̄ : Rn → Rn which is boundedly close to h. But h̄ is
stable, since it is PL and h◦ h̄−1 is bounded (and therefore stable), so h = (h◦ h̄−1)◦ h̄ is
stable. This proves that (simply connected) bounded surgery theory implies the Annulus
Conjecture in dimensions n ≥ 5.

Addendum

Actually, if we’re going to use SPL
(

Rn

↓ id
Rn

)
= ∗ to prove the annulus conjecture, we can

dispense with most of the stable homeomorphism stuff. Let Rn be compactified by Dn.

Lemma 16.2. If h : Rn → Rn is a homeomorphism which extends to a homeomorphism

h̄ : Dn → Dn, then the annulus conjecture is true for h.

Proof: Dn−L
◦
Bn is an annulus, so h̄(Dn−L

◦
Bn) = Dn− h(L

◦
Bn) is an annulus for all

L. This implies that h(LBn)−
◦
Bn is an annulus for large L, since the annulus Dn −

◦
Bn

is h(LBn)−
◦
Bn plus a collar.

If h : Rn → Rn and k : Rn → Rn is a PL homeomorphism boundedly close to h, then

k−1 ◦ h is bounded. Bounded homeomorphisms extend to Dn, so k−1 ◦ h(LBn)−K
◦
Bn

is an annulus for L* K. This means that h(LBn)−k(K
◦
Bn) is an annulus for the same

values of K and L. Since k is PL, regular neighborhood theory shows that the annulus

conjecture is true for k, so for K * L, L large, h(KBn) −
◦
Bn is the union of annulii

h(KBn)− k(L
◦
Bn) and k(LBn)−

◦
Bn.

The stable homeomorphism apparatus is worth retaining, however, since it is the basic
ingredient required for the proof of the following Product Structure Theorem.

Theorem 16.3 (Product Structure Theorem). LetM be a TOP manifold without

boundary. If n ≥ 5 and s ≥ 1, then M has a PL structure if and only if M × Rs has a
PL structure.

The proof of this fundamental result is contained in pages 31–37 of [KS]. We have
stated only a very weak version of the theorem. The commercial-grade version in [KS]
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gives a relative version and shows that concordance classes of structures onM andM×Rs
are in 1-1 correspondence.

The Product Structure Theorem reduces questions about the triangulability of topo-
logical manifolds to bundle theory. Here is an outline of the argument. We will say more
about this later on.

First, one develops an appropriate topological bundle theory. The main results say:

(i) Topological n-manifolds have tangent Rn bundles τM with structure group the
self-homeomorphisms of Rn.

(ii) If i : M → Rm is a topological embedding, then i × 0 : M → Rm × Rk has a
normal bundle νM for sufficiently large k.

(iii) The total space of νM is an open regular neighborhood ofM in Rm+k and τM⊕νM
is trivial.

If the structure group of τM reduces to PL, then the total space of the pullback of τM
over proj : E(νM ) → M is a PL bundle over a PL manifold, so it is a PL manifold.
(Since E(νM) is an open subset of euclidean space, it is a PL manifold.) The pullback
of τM over proj : E(νM )→M is the total space of the Whitney sum τM ⊕ νM , which is
trivial, so M ×Rm+k has a PL structure for some m and k, so by the Product Structure
Theorem, M has the structure of a PL manifold.

Corollary 16.4. IfMn is a contractible topological manifold without boundary, n ≥ 5
or with boundary, n ≥ 6, then M has a PL structure.

A tantilizing aspect of the stable homeomorphism approach to the annulus conjecture
is that it shows that if we could find some way to extend the tiniest germ of a homeomor-
phism so that it had reasonable behavior at infinity, then we would have a direct proof
of the annulus conjecture. The reader should be warned that the 3-parameter annulus
conjecture is false – if f : Bn × S3 → Bn × S3 is a 3-parameter family of embeddings,

Bn× S3 − f(
◦
Bn× S3) need not be fiber-preserving homeomorphic to Sn−1 × [0, 1]×S3.

This means that an elementary proof of the annulus theorem must contain steps which
don’t generalize to the 3-parameter case.
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Chapter 17. The topological invariance of Whitehead torsion

Definition 17.1. If (L,K) is a polyhedral pair, and r : L → K is a retraction, we say
that r is an ε strong deformation retraction or ε-SDR if there is a homotopy rt : L→ L

with r0 = id, r1 = r, rt|K = id, and such that for all x, supt({d(r(x), r ◦ rt(x)) | 0 ≤ t ≤
1}) < ε. In words, this says that the images under r of the tracks of the homotopy rt are
small. In general, we will define the radius of a homotopy ht to be sup{d(p ◦ h0(x), p ◦
ht(x))}, where p is the control map. The advantage of this over the more obvious notion
of diameter is that if r : L→ K and r′ : L′ → K are ε-SDR’s, then L ∪K L′ → K is also
an ε-SDR.

Our next goal is to give a proof of the following, which generalizes Chapman’s topolog-
ical invariance of Whitehead torsion. The original argument used the theory of Hilbert
cube manifolds [Fe]. The argument given here is modeled on an argument of Chapman
[Ch2] which is modeled on an argument of Siebenmann [Si]. An argument similar to
Chapman’s appears in [L].

Theorem 17.2 (Ferry [Fe]). If K is a finite polyhedron, then there is an ε > 0 so

that if (L,K) is a polyhedral pair and r : L→ K is an ε-SDR, then τ(L,K) = 0.

Corollary 17.3 (Topological invariance of torsion, Chapman [Ch]). If K

and L are finite polyhedra and h : K → L is a homeomorphism, then τ(h)=0.

Before proving the corollary, we should say a few more words about Whitehead torsion.
If f : K → L is a homotopy equivalence, we will say that f is simple if τ(M(f ′), K) = 0,
where f ′ is a cellular approximation to f . If f ′′ is another cellular approximation to f ,
then by the mapping cylinder calculus we have M(f ′)/↘M(f ′′) rel K ∪ L. Since the
torsion of a homotopy equivalence belongs in the range for formal reasons, if f : K → L

is a cellular homotopy equivalence, we define τ(f) = f#τ(M(f), K). Geometrically, this
is the same as defining τ(f) to be the torsion of the pair (M(f)∪K M(f), L). It follows
easily from the mapping cylinder calculus that τ(g ◦ f) = f#τ(g)+ τ(f). The interested
reader should see the first 30 pages of [Co] for details.

Proof of Corollary: The mapping cylinder of h retracts to K by an ε-SDR for each
ε > 0. Unfortunately, the space M(h) is not a polyhedron. Taking fine subdivisions of
K and L and a cellular approximation h′ to h, there is an ε-SDR from M(h′) to K,19

19 This follows from a controlled version of the mapping cylinder calculus. See Proposition 19.5.
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104 17. The topological invariance of Whitehead torsion

showing that h′, and therefore h, is simple.

The sum theorem for Whitehead torsion

Theorem 17.4 ([Co], p. 76). Suppose that K = K1∪K2, K0 = K1∩K2, L = L1∪L2,

L0 = L1 ∩ L2 and that f : K → L is a map which restricts to homotopy equivalences

fα : Kα → Lα (α = 0, 1, 2). Then f is a homotopy equivalence and

τ(f) = j1#τ(f1) + j2#τ(f2)− j0#τ(f0).

where jα : Lα → L is the inclusion.

Remark 17.5. As in the proof of the sum theorem for the finiteness obstruction, the
proof is basically an Euler characteristic argument. The chain complex for C∗(M̃(f), K̃)
contains the complexes for C∗(M̃(f1), K̃1) and C∗(M̃(f2), K̃) but this union counts
C∗(M̃(f0), K̃0) twice.

We start the proof of topological invariance with a useful theorem.

Theorem 17.6. If X is a compact ENR, then for every ε > 0 there is a δ > 0 so that

if f, g : Z → X are maps with d(f, g) < δ, then there is a homotopy ht : Z → X with

h0 = f , h1 = g, and diam(ht(z)) < ε for each z ∈ Z. Moreover, if Z0 ⊂ Z is a set with

f |Z0 = g|Z0, then ht|Z0 = f |Z0 = g|Z0.

Proof: Embed X in Rn for some n and let U be a neighborhood of X with retraction
r : U → X . Choose ε0 > 0 so that B(ε0, x) ⊂ U for each x ∈ X . If d(f, g) < ε0, then
h′t(z) = tf(z) + (1− t)g(z) is a homotopy from f to g in U . Letting ht = r ◦ h′t gives a
homotopy from f to g in X . Continuity of r gives the estimate.

Remark 17.7. A slight generalization of this argument also works for compact metric
ANR’s, since they are neighborhood retracts in separable Hilbert space. This local
homotopy property is the basic property which distinguishes ANR’s from other spaces.
We can think of ANR’s as having “local homotopy geodesics.”

Definition 17.8. A PL map f : K → L will be called CE-PL if f−1(
) is contractible
for each 
 ∈ L.

As an application of the Sum Theorem and as a warm-up for the proof of Theorem
17.2, we will prove the following

Theorem 17.9. If f : K → L is CE-PL, then τ(f) = 0.
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Lemma 17.10. If f : K → L is CE-PL, then f is a homotopy equivalence.

Proof that Lemma ⇒ Theorem: The proof is by induction on the number of cells
in L. We write L = L1 ∪ ∆n, where ∆n is a top-dimensional cell of L. Then K =
f−1(L1) ∪ f−1(∆n) and the sum theorem applies to show that

τ(f) = j1#τ(f |f−1(L1)) + j2#τ(f |f−1(∆n))− j0#τ(f |f−1(∂∆n)).

The first and last terms are zero by induction, while the second is zero because ∆n is
contractible.

Claim A. If f : K → L is CE-PL and α : P → L is continuous with (P, P0) a polyhedral
pair, then for every ε > 0 there is a δ > 0 depending only on dim(P − P0) so that if

α0 : P0 → K is a map with d(f ◦α0, α|P0) < δ, then there is a map ᾱ : P → K extending

α0 so that d(f ◦ ᾱ, α) < ε.
P0 w

α0

z

u

K

u
f

P

i
i
ijα̂

wα L

Claim ⇒ Lemma: Choose basepoints for K and L so that f : (K, ∗) → (L, ∗) is a
pointed map. We show that f induces an isomorphism on homotopy groups. If α :
(Sk, ∗) → (L, ∗) is a map then for any ε > 0, applying the Claim with P0 = ∗ gives a
map α̂ : (Sk, ∗)→ (K, ∗) with d(f ◦α̂, α) < ε. Applying Proposition 17.6, we see that for ε
sufficiently small, α is homotopic to f ◦ α̂ rel ∗. This shows that f∗ : πk(K, ∗)→ πk(L, ∗)
is onto. To see that f∗ is 1-1, we consider α0 : (Sk, ∗) → (K, ∗) with an extension
α : Dk+1 → L of f ◦ α0. Applying the Claim gives α̂ : Dk+1 → K extending α0, as
desired.

Proof of Claim: We prove the theorem by induction on n = dim (P − P0). The
case n = 0 is trivial, so we assume the result for n < k and try to prove it for n = k.
Triangulate K and L so that f is simplicial. If x ∈ L, choose a derived subdivision of
L so that x is a vertex. If Nx is a simplicial neighborhood of x in the second derived,
then f−1(Nx) is a a regular neighborhood of f−1(x) and is therefore contractible. L is
covered by such Nx’s and we may assume that the triangulations have been chosen to be
so fine that each Nx has diameter < ε/3. Let ε1 > 0 be a Lebesgue number for the cover
of L by Nx’s and let δ1 > 0 be so small that the Claim is true for dim(P − P0) ≤ k − 1
with ε1/3 and δ1 in place of ε and δ. Triangulate P so that the image of each simplex of
P under α has diameter < ε1/3.
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By induction, we can find α̂′ : P (k−1) ∪ P0 → K so that d(f ◦ α̂′, α) < ε1/3. It follows
that for each ∆k in P − P0, diam(f ◦ α̂′(∂∆k)) < ε1. There is therefore an x ∈ L so
that f ◦ α̂′(∂∆k) ⊂ Nx, so α̂′(∂∆k) ⊂ f−1(Nx). Since f−1(Nx) is contractible, α̂′|∂∆k
extends to α̂ : ∆k → f−1(Nx). Since f ◦ α̂(∆k) ⊂ Nx, diam(f ◦ α̂(∆k)) < ε/3. We also
have diam(α(∆)) < ε1/3 and d(α|∂∆, f ◦ α̂|∂) < δ1, so d(f ◦ α̂, α) < ε.

We can use the Sum Theorem for Whitehead torsion and Theorem 17.9 to show that
polyhedra K and L are simple homotopy equivalent if and only if they are stably PL
homeomorphic.

Theorem 17.11. Let K and L be polyhedra and let

n ≥ max(2max(dim(K), dim(L)) + 1, 5).

Then f : K → L is a simple homotopy equivalence if and only if there is a homotopy

commutative diagram

N(K) w
f̂

u
pK

N(L)

u
pL

K w
f

L

where N(K) and N(L) are regular neighborhoods of K, L in Rn and pK and pL are

CE-PL regular neighborhood collapses, and f̂ is a PL homeomorphism.

Proof: Since CE − PL maps are simple, f̂ is simple if and only if f is. In particular,
if f̂ is a PL homeomorphism, then f is simple.

If f : K → L is simple, let i : L → N(L) be the inclusion and approximate i ◦ f :
K → N(L) by an embedding, f ′. Let N(K) be a regular neighborhood of f ′(K) in N(L)
and let ī : N(K)→ N(L) be the inclusion. Passing to the universal cover and applying
excision and Poincaré duality, we discover that

(N(K), ∂N(K), ∂N(K)) −→ (N(L), N(L)−
◦
N(K), ∂N(K))

is a homotopy equivalence of triples. The sum theorem then tells us that ∂N(K) →
N(L) −

◦
N(K) is a simple homotopy equivalence, so the space between ∂N(K) and

∂N(L) is a collar and the existence of the PL homeomorphism f̂ follows.
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Definition 17.12. We will use the word over to mean “when restricted to the inverse
image of.” Thus, the phrase “f :→ Y is CE-PL over A” will mean that f |f−1(A) :
f−1(A) → A is a CE-PL map. The hypothesis “if r : V → Rn is a δ-SDR over 3Bn”
below is slightly more complicated. It means that there is a homotopy rt : r−1(3Bn)→ V

with r0 = id, r1 = r, rt|3Bn = id such that the images of the tracks {r(rt(x))|t ∈ I}
have diameter < δ.

Main Technical Theorem. If V is a polyhedron and n is given, then for every ε > 0
there is a δ > 0 so that if r : V → Rn is a δ-SDR over 3Bn, then there exist a polyhedron

V̄ and a map r̄ : V̄ → Rn so that

(i) r̄ is an ε-SDR over 3Bn.

(ii) r̄ = r over Rn − 2
◦
Bn and r̄ is a PL homeomorphism over Bn.

Remark 17.13. Condition (ii) implies, in particular, that V and V̄ are the same space

over Rn − 2
◦
Bn.

Main Technical Theorem ⇒ Theorem 17.2: Let r : L → K be a δ-SDR and let
Dn = ∆n be a top-dimensional simplex of K. We identify

◦
Dn with Rn in such a way

that 1
2D

n is identified with Bn. For δ small, the Main Technical Theorem applies over
Rn to give us r̄ : V̄ → Rn as above. Form a complex L̄ by ripping out r−1(3Bn) and
pasting in r̄−1(3Bn) in its place. The result is an ε-SDR s : L̄→ K, where we can make
ε as small as we like by choosing δ sufficiently small.
Define a map g : L → L̄ as follows: Let g = id over K − 3Bn and let g = rρ(r(x))(x)

for x over 3Bn, where ρ : 3Bn → [0, 1] is a function which is 0 on ∂(3Bn) and 1 on 2Bn.
In other words, g is constructed by doing more and more of the retraction rt as we get
in towards Bn and including into L̄ by the identity.

Bn

r

K

3Bn

Bn

3Bn

K

L L
_

r
_V=V V=V
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The map g is a homotopy equivalence, since it is homotopic to the composition of the
retraction r with the inclusion. The torsion of g is trivial by the sum theorem: If P is a
regular neighborhood of a polyhedron in r−1(4Bn) containing r−1(3Bn), τ(g) = 0, since
g = id outside of P and on the boundary. But i is nullhomotopic for ε sufficiently small,
so i∗τ(g|P ) = 0. Since r̄ ◦ g is homotopic to r, we have τ(r) = r∗τ(g) + τ(r̄) = τ(r̄), so
it suffices to show that τ(r̄) = 0.

This is like the earlier proof for CE-PL maps. Let K = K1 ∪∂Dn Dn and excise
r̄−1(Bn), Bn ⊂ Dn. By the sum theorem, τ(r̄) = i∗τ(r̄′), where r̄′ is the restriction of r̄
over K −

◦
Bn. Let s : (K −

◦
Bn) → K1 be a CE-PL retraction and let r̄1 = s ◦ r̄′. The

torsion of r̄1 is the torsion of r̄′, as above. Since r̄1 is a controlled SDR over K1, the
induction hypothesis shows that τ(r̄1) = 0, completing the proof.

The MTT is a consequence of the following Main Technical Lemma. The lemma has
the same hypotheses as the theorem. It differs in that it shows how to leave things alone
near the origin while fixing them up near infinity.

Main Technical Lemma. If n is given, then for every ε > 0 there is a δ > 0 so that if

r : V → Rn is a δ-SDR over 3Bn, then there exist V̄ and an ε-SDR r̄ : V̄ → Rn so that

r̄ = r over Bn and r̄ is the identity over Rn − 2
◦
Bn.

Proof that MTL ⇒ MTT: This is “Siebenmann’s inversion trick.”

r
_

Rn
V
_

The data for the MTT is the same as for the MTL, so we apply the MTL to get r̄
and V̄ as in the schematic picture above. Add a point N at infinity and extend r̄ to a
retraction r̄′ : V̄ ′ → Sn.
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V'
_

r'
_

N

V'
_

r'
_

N

S

Bn

B'n

3

3

Let S be the south pole. Removing S and r̄′−1(S) and identifying Sn − S with Rn,
we again have an SDR satisfying the hypotheses of the MTL except, of course, that the
control has become a bit weaker.

Apply the MTL again and plug S back in. The result is an SDR ˆ̄r : ˆ̄V → Sn such
that ˆ̄r agrees with r̄′ over Bn and is CE-PL over a neighborhood of infinity. Remove the
inverse image of 0, which is the original∞. The result of all of this is r̂′ : V̂ ′ → Rn which
is a PL homeomorphism over Bn and which is equal to r̄′ over Rn − 2Bn.

If the various reparameterizations were chosen to overlap correctly, this means that r̂′

is equal to the original r over a band, say 3Bn − 2
◦
Bn in the original coordinate system,

so we can paste it back together with the original r, proving the MTT.

The next step in the proof of Theorem 17.2 is the proof of the MTL. This is a torus
argument and involves the construction of the diagram below:
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2Bn ×Dk ∪ Rn w
r5

Rn

2
◦
Bn ×Dk

u

y i

w
r4 2

◦
Bn

u

y i

Rn ×Dk

u

γ×id

w
r3

u
e

Rn

u

γ

u
e

Tn ×Dk w
CE−PL

WPL
2 w

r2 Tn

WPL
1 w

r1

y

u i

u

y i

Tn − 2
◦
Dn
y

u
i

u

y i

WPL
0 w

r0

u β
′PL

Tn − {∗}

u β
PL

V wr
Rn

(i) The map r is a δ-SDR as in the statement of the MTL. The map β : Tn − ∗ →
2Bn ⊂ Rn is a PL immersion. As usual, we take β to be the “identity” sending
our favorite ball in Tn to the unit ball in Rn.

(ii) Next, we form the pullback, W0. Since β is an immersion, β′ is an immersion, as
well. We use the coordinate charts from β′ to make W0 into a polyhedron. The

map r0 is an ε0-SDR (see Lemma 17.14 below) over Tn−
◦
Dn, where Dn is a small

disk centered at ∗. In addition, r0 = r over Bn.
(iii) After stabilizing W0 by multiplying by D� for some 
, we can use the Split-

ting Lemma below to find a compact subpolyhedron W1 ⊂ W0 and an ε1-SDR,

r1 : (W1, ∂W1) → (Tn − 2
◦
Dn, ∂(2Dn)). The map r1 agrees with r0 over the

complement of a small neighborhood of ∂(2Dn).
(iv) Plug the hole in the torus, obtaining W2. Since r1 is a retraction, this also plugs

the hole in W1. The retraction r2 : W2 → Tn extends r1 by the identity over the
plug. The map r2 is r ◦ proj over Bn ⊂ Tn.

(v) Take a regular neighborhood of W2 in euclidean space. By Bass-Heller-Swan
[BHS], Wh(ZZn) = 0, so a regular neighborhood of W2 is PL homeomorphic to
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Tn ×Dk in such a way that the composition

Tn ×Dk CE−PL−−−−−→W2
r2−→ Tn

is homotopic to the identity.

(vi) Lift to the universal covers. Choose a radial homeomorphism γ : Rn → 2
◦
Bn,

which is the identity over Bn and use it to squeeze r3 to an SDR r4 which extends
by projection to 2Bn ×Dk → 2Bn. We take γ = id on Bn.

(vii) Include r4 into 2Bn ×Dk ∪ Rn, where the union is along the copy of 2Bn in the
image of the retraction. Extend the retraction by the identity. The result is an

ε-SDR which is r ◦ proj over B and which is id outside of 2
◦
Bn.

We have obtained a polyhedron V ′ = 2Bn × Dk ∪ Rn with an ε-SDR to Rn and a
subset V ′0 with a CE-PL map c : V

′
0 ∪ Rn → r−1(Bn) ∪ Rn so that the diagram below

commutes.
V ′0 ∪Rn w

CE−PL
cA

A
ACr5|

r−1(Bn) ∪ Rn
�

�
��
r

Rn

We form the polyhedron V̄ = (V ′ ∪ Rn) ∪c (r−1(Bn) ∪ Rn).

Digression on simplicial adjunction spaces

If (K,K0) is a triangulated polyhedral pair with K0 full in K and f : K0 → L is a
simplicial map, here is how we form K ∪f L: First, we pass to derived complexes K ′,
L′ and f ′ : K ′ → L′. Let N be a simplicial neighborhood of K0 in K. N consists of
simplices of the form τ ∗ σ with τ ∈ ∂N and σ ∈ K0. The polyhedron K ∪f L consists of
simplices of K ′− int(N), simplices of L′, and simplices of the form τ ∗ f(σ) with τ ∈ ∂N
and σ ∈ K0. A simplicial map K ′ → K∪fL is given by mapping simplices of K ′−int(N)
by the identity, simplices ofK0 by f , and simplices τ ∗σ by id∗f . The preimages of points
under this map are the original preimages together with convex cells arising from maps
of the form τ ∗ σ → τ ∗ f(σ) where σ → f(σ) is not 1-1. A more efficient triangulation
can be obtained by deriving K near K0, that is, by starring at points in simplices which
meet, but are not contained in, simplices of K0. In the construction of the simplicial
mapping cylinder of f : K → L, for instance, this yields a polyhedron containing K and
L, rather than subdivisions.
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Returning to the proof of MTL, the induced map j : V ′ → V̄ is a CE-PL map which
is the identity on Rn. The basic lifting property of CE-PL maps proven in Claim A at
the beginning of this section shows that for any µ > 0 we can find a map s : V̄ → V ′ so
that s|Rn = id and d(j ◦ s, id) < µ. Define r̄′ : V̄ → Rn to be r5 ◦ s. This is a retraction
from V̄ → Rn and for points x in r−1(Bn), we have

d(r(x), r̄′(x)) = d(r(x), r5 ◦ s(x)) ≤ d(r(x), r(j(s(x))))+ d(r(j(s(x))), r5(s(x))).

For x ∈ (1−µ)Bn, s(x) ∈ r−1(Bn), so d(r(x), r̄′(x)) = d(r(x), r(j(s(x)))). By continuity,
this is small for small µ. We now construct r̄ by first doing the SDR r on (1 − 2µ)Bn,
phasing it out to be the identity outside of (1 − µ)Bn. In symbols, we deform by a
map x → rtρ(x)(x), where ρ is 0 outside of (1 − µ)Bn and 1 inside of (1 − 2µ)Bn. We
follow this with r̄′. By choosing µ > 0 to be sufficiently small, we can guarantee that
this composition will be an ε-SDR. This completes the proof of the MTL modulo the
Splitting Lemma.

Here are the statement and proof of the immersion lemma which was promised in Step
(ii) of the construction of the main diagram.

Lemma 17.14. Let β : Y → X be an open immersion and let C be a compact subset of

Y . Let V ∗ be the pullback. Then for every ε > 0 there is a δ > 0 so that if r : V → X is

a δ-SDR over β(C), then r∗ is an ε-SDR over C.

V ∗

u
β∗

wr∗ Y

u
β

V wr X

Proof: If c ∈ C, choose Uc ⊂ Y containing c so that β|Uc is a homeomorphism. Let
δ′ be a Lebesgue number for the cover of C by such U ’s and let δ′′ be chosen20 so that
β(B(δ′, c)) contains the ball of radius δ′′ around β(c) for every c ∈ C. If δ = δ′′/3,
then r∗ is an SDR over C, since r∗t (v, c) = (rt(v), β−1(r ◦ rt(v))) is well-defined in a
neighborhood of (v, c) for 0 ≤ t ≤ 1. It is clear that making δ sufficiently small forces r∗
to be an ε-SDR over C.

20 Exercise!
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Lemma 17.15 (Splitting Lemma). Given disks Dn ⊂ 2Dn ⊂ 3Dn ⊂ Tn centered

at ∗, there is a δ > 0 so that if r : W → Tn − ∗ is a δ-SDR over Tn −
◦
Dn, then there

exist a compact subpolyhedron W ′ ⊂W ×Dk for some k and an SDR, r′ : (W ′, ∂W ′)→
(Tn−2

◦
Dn, ∂(2Dn)). The map r′ agrees with r over the complement of a 3δ-neighborhood

of 2Dn.

*
rW

∂W' 2D
n

Dn

Proof: Here is a blown-up picture of the end of W . We parameterize the end of Tn−∗
as Sn−1×(0, 3]. The polyhedron r−1(Sn−1×{2}) splits the end into components. We call
the component containing Sn−1 ×{1} “LHS” and the component containing Sn−1 ×{3}
“RHS”.

S   1
n-1

S   2
n-1

S   3
n-1

BW

LHS RHS
B1

By simplicial approximation, we can assume that r is a PL δ-SDR. Choose a function
ρ : W → [0, 1] so that ρ is 0 on LHS ∪ r−1(Sn−1 × {2}) and so that ρ = 1 outside
of a 2δ-neighborhood of r−1(Sn−1 × {2}) ∩ RHS. Let B = r−1[2, 3]. We construct a
deformation of B into B1 = r−1([2, 2 + 3δ]) inside of r−1([2, 3 + δ]) as follows: First use
x→ rtρ(x)(x) to deform B into r−1([2, 2+ 3δ])∪Sn−1 × [0, 3+ δ]. Then use the product
structure on Sn−1 × [0, 3 + δ] to deform into B1.

Call this deformation et and note that et(B1) ⊂ B for all t and that et = id on a
neighborhood of r−1([2]) for all t. We write e : B → B1 for e1.

Claim B. There is a finite polyhedron B̄ and a map ē : B̄ → B1 extending e so that
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the composition

(*) B̄
ē−→ B1

i−→ B̄

is homotopic to the identity.

Given this claim, we can cross W with Dk for some k and approximate ē2 by an
embedding. Crossing with another copy of [0, 1], we can embed B̄ into W ×Dk × {1}.
Call the result B̄1 = ē2(B̄). We simplify the notation by suppressing the Dk factors in
what follows.

BW

LHS RHS

B
_

1

0

1

1 2 3

W''
N

We claim that there is a deformation of B × I into (r−1{2} ∪ B̄1) rel r−1{2} ∪ B̄1.
Crossing with some Dk’s and approximating by embeddings, we have

B̄1 ⊂ e(B) ⊂ ē(B̄) = B̄2.

The inclusion B̄1 → B̄2 is a homotopy equivalence, so restriction gives a deformation
from e(B) into B̄1 rel B̄1. A deformation of B is then obtained by deforming B to e(B)
and following that by the previous deformation. Since B̄1 → B̄1 ∪ r−1(2) is a homotopy
equivalence, an application of the homotopy extension theorem gives a deformation from
B to B̄1 ∪ r−1(2) rel B̄1 ∪ r−1(2).
Let N be a regular neighborhood of B̄1∪ r−1(2) in RHS. Since B̄1 ∪ r−1(2) lies in the

boundary, N isN0×I, whereN0 is a regular neighborhood of B̄1∪r−1(2) in the boundary.
By homotopy extension, there is a deformation from B to N rel N . Composing with a

retraction N → ∂N gives a deformation from W ′′ = (B −
◦
N) to ∂N .

We now play the same game on the left side, starting with ∂W ′′ in place of r−1{2}.
This involves proving a similar claim.
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W

LHS
0

1

1 2 3

RHS

∂W' M

∂W"

The result is a bicollared subset ∂W ′ so that there is a deformation e∗ of r−1([1, 2])
into r−1{2} rel r−1{2}. Note that ∂W ′ is a strong deformation retract of RHS ∪M ,
since the retraction to ∂W ′′ can be followed by a retraction from M to ∂W ′′.
One checks easily that this guarantees that the map proj ◦ r : ∂W ′ → Sn−1 is a

homotopy equivalence and that the retraction r̄ = r◦e∗|RHS has the desired properties.
Proof of Claim B: The map e : B → B has the property that e ◦ e is homotopic to
e rel r−1(Sn−1 × {2}), since a homotopy is given by et ◦ e. Form the infinite mapping
cylinder T (e) of e : B → B and let d : B → T (e) be inclusion into the top level.

e

B

e

B

e

B

e

B

T(e) =

1 2 3 4

B

e e ee

There is a map u′ : T (e) → B defined by setting u = e on each of the levels Bi and
extending using the homotopy e ◦ e ∼ e.
Next, we show that d is a domination. Choose ∗ ∈ B with et(∗) = ∗ for all t. This

gives us a base ray R in T (e). If α : (Sk, ∗) → (T (e), R) is a map, sliding down the
rays of the mapping cylinder, we can assume that α maps into one of the Bi levels. But
then we may as well assume that α maps into B0, since sliding down to Bi+1 gives a
homotopy between α and the “same” map into the top level. The same argument shows
that d ◦ u′ ◦ α is homotopic to α keeping ∗ in R. It follows that d ◦ u′ is a homotopy
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equivalence and that d is a domination with right inverse u = u′ ◦ φ, where φ is a right
homotopy inverse for d ◦ u′.
Since π1(B) = 0, or Z, the finiteness obstruction dies and we find B̄ ⊂ B and d̄ : B̄ →

T (e) so that d̄ is a homotopy equivalence.

This completes the proof of Theorem 17.2.
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Chapter 18. Compact ENR’s have finite types

Our next goal is to show that every compact ENR has the homotopy type of a finite
polyhedron. This theorem is originally due to J. West [We]. His proof used Hilbert cube
manifold theory. The proof we give here is a modification of a proof due to Chapman,
[Ch2]. We begin with a definition and a useful extension of Theorem 17.2.

Definition 18.1. Let X , Y , and Z be spaces, Z metric, and let p : Y → Z be a map.
A map f : X → Y is an ε-equivalence over Z if there exist a map g : Y → X and
homotopies ht : idX " g ◦ f , kt : idY " f ◦ g so that the tracks p ◦ f ◦ht(x) and p ◦ kt(x),
0 ≤ t ≤ 1, have radius < ε.

X w
f

Yu g

u
p

Z

Theorem 18.2 (Chapman). If K is a finite polyhedron, then there is an ε > 0 so that

ifM and N are finite polyhedra p : N → K is a map, and f :M → N is an ε-equivalence

over K, then p#(τ(f)) = 0.

Proof: Geometrically, p#(τ(f)) is represented by the torsion of the pair (M(g) ∪N
M(p), K), where g is a controlled right inverse for f as in the definition.

M N K

g p

The controlled mapping cylinder calculus shows that there is a 5ε-SDR from (M(g)∪N
M(p) to K, so p#(τ(f)) = 0.

Lemma 18.3 (M. Mather). If X is a compact ENR, then X × S1 has the homotopy

type of a finite complex.

Proof: Let r : U → X be a retraction from a neighborhood of U in Rn to X and let
K ⊂ U be a polyhedron containing X . Now consider the mapping torus of r|K, which
we rename r.

117
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= T(r)

K

r

X S1

By simplicial approximation and the mapping cylinder calculus, T (r) is homotopy
equivalent to a finite polyhedron. Rotating T (r) gives a deformation from T (r) into
X × S1 which keeps X × S1 inside of itself. By homotopy extension, this gives a strong
deformation retraction from T (r) to X × S1, so X × S1 also has the homotopy type of
a finite polyhedron.

Theorem 18.4 (Borsuk Conjecture). Every compact ANR is homotopy equivalent

to some finite complex.

Proof: We can make the strong deformation retraction from T (r) to X × S1 into a
controlled strong deformation retraction over X×S1 by passing to a smaller polyhedron
K1 containing X and adding on more fins or, equivalently, passing to a large finite cover.
Retracting into X ×S1 and including into a reversed copy of this (multi)-mapping torus
gives us a controlled homotopy
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X S1

K

K

K

K

K

K

K

K

K

K

1

11

1
1

1
1

1

1

1f

p

1

equivalence over X × S1 which reverses the orientations of the mapping tori. Choose a
homotopy equivalence φ : T (r)→ P , where P is a finite polyhedron and choose ε > 0 so
that Theorem 18.2 holds for P . If we choose K1 close enough to X and use enough fins,
we can insure that f1 is an ε-equivalence over P via the control map φ◦p. If our mapping
tori were finite polyhedra, we could deduce that τ(f1) = 0, since (φ ◦ p)#(τ(f1)) = 0 and
(φ ◦ p)# is an isomorphism. To get around this problem, we replace our mapping tori by
tori constructed using simplicial mapping cylinders of a close simplicial approximation
r1 to r. The result is a simple homotopy equivalence f2 : T1 → T2 of simplicial mapping
tori homotopy equivalent to X × S1.
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K

K1

K

K

K

K

K

K

K

K

1

1

1
1

1
1

1

1

1f2

Z

CE-P
L CE-PL

T  =1 = T2

c1 c 2

This means that we have a finite polyhedron Z and CE-PL maps Z → T1 and Z → T2.
Passing to cyclic covers by pulling back R1 → S1, we have:

r1 r1 r1 r1 r1r1

r1 r1 r1 r1 r1r1

CE-PL

CE-PL

T  =1

T   =2

Z =

c 2

c 1

K L

K R

c 1
-1 -1

K L c 2 KRZ 0



18. Compact ENR’s have finite types 121

Choose KR to be one of the copies of K1 in T̃2. Since c̃2 is CE-PL, c̃−1
2 (KR) divides

Z̃ into two pieces homotopy equivalent to the corresponding pieces of T̃2. In particular,
there is a strong deformation retraction from the right-hand component of Z̃ − c̃−1

2 (KR)
to KR, where “right” and “left” are measured in R1. Now choose KL so that c−1

1 (KL)
is to the left of c−1

2 (KR). Then there is a strong deformation retraction from the part of
Z̃ to the left of c−1

1 (KL) to KL. This means that the compact polyhedron Z0 trapped
between c−1

1 (KL) and c−1
2 (KR) is a strong deformation retract of Z̃. Since Z̃ has the

homotopy type of X , X has the homotopy type of a finite polyhedron.

Remark 18.5. In [Mi], Milnor asked whether the finiteness obstruction of a finitely
dominated compact space is always zero. In [Fe], the author proved that every finitely
dominated space has the homotopy type of a compact metric space.
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Chapter 19. CE maps and controlled homotopy lemmas

The material on cell-like maps is from [La1] and [La2].

Definition 19.1.

(i) A compact metric space X is cell-like if it can be embedded in an ANR Z so that
for each neighborhood U of X there is a neighborhood V of X contained in U so
that V contracts to a point in U . This is often called property UV∞.

(ii) A map f : X → Y is said to be proper if f−1(K) is compact for each compact
K ⊂ Y .

(iii) A proper map f : X → Y is cell-like or CE if f−1(y) is cell-like for each y ∈ Y .

Proposition 19.2. If X is cell-like and X is embedded in an ANR Y , then X has

property UV∞ in Y .

Proof: We have X ⊂ Z and X ⊂ Y and we know that X has property UV∞ in Z.
Let U be a neighborhood of X in Y as in the definition. Since Y and Z are ANR’s, the
identity map extends to iZY : UZ → U ⊂ Y . Choose a neighborhood VZ of X so that
VZ contracts to a point in UZ . Now choose a neighborhood VY ⊃ X in Y so that the
identity map extends to iY Z : VY → VZ and so that the composition iZY ◦ iY Z : VY → U

is homotopic to the identity in U . This last uses the remark following Proposition 17.6.

We now see that the inclusion VY → U is homotopic to iZY ◦ iY Z , which is nullhomo-
topic, since iY Z |VY is nullhomotopic.

Z Y

U

Z

UZ
VZ

X VY

iZY

iYZ

X

Theorem 19.3 (Lacher). If X and Y are compact ENR’s and f : X → Y is a cell-like

map, then f is an ε-homotopy equivalence over Y for all ε > 0.
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Proof: We will first prove the following claim:

Claim A (Polyhedral lifting property). If f : X → Y is CE, X a compact

ENR, and α : P → Y is continuous with (P, P0) a polyhedral pair then for every ε > 0
there is δ > 0 depending only on dim(P − P0) so that if α0 : P0 → X is a map with

d(f ◦α0, α|P0) < δ, then there is a map ᾱ : P → X extending α0 so that d(f ◦ ᾱ, α) < ε.

P0 w
α0

z

u

X

u
f

P wα
i
i
ijα̂

Y

Proof of Claim: Since each point-inverse of f is cell-like,and therefore has property
UV∞ in X , given ε > 0, there is a δ > 0 so that f−1B(δ, y) contracts to a point in
f−1B(ε, y) for each y ∈ Y . The proof of the claim is then essentially the same as the
proof of Lemma 17.10.

Claim B (Lifting property for ENR’s). If f : X → Y is CE, X a compact ENR,

and α : Z → Y is continuous with (Z,Z0) an ENR pair, then for every ε > 0 there is

δ > 0 depending only on dim(Z) so that if α0 : Z0 → X is a map with d(f ◦α0, α|Z0) < δ,
then there is a map ᾱ : Z → X extending α0 so that d(f ◦ ᾱ, α) < ε.

Z0 w
α0

z

u

X

u
f

Z wα
i
i
ijα̂

Y

Proof of Claim B: Embed (Z,Z0) in (D�, ∂D�) and choose a polyhedral neighbor-
hood (P, P0) with a retraction r : (P, P0) → (Z,Z0). Extend α and α0 to P and P0

by composing with r. Cutting (P, P0) down to a smaller neighborhood of (Z,Z0), if
necessary, the conditions of Claim A are satisfied, giving α̂ : P → X . Restricting α̂ to Z
completes the proof of Claim B.

Proof of Theorem: Applying Claim B to the diagram

X

u
f

Y wid
\
\
\\]g

Y
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for δ1 > 0 small produces g : Y → X so that f ◦ g is ε1-homotopic to id. Applying Claim
B again to the diagram for ε1 = δ sufficiently small

X × {0}
∐
X × {1} w

id
∐
g◦f

u

X

u
f

X × [0, 1] w
f◦proj

55
55
55
56

H

Y

for ε1 = δ sufficiently small gives an ε-homotopy H from id to g ◦ f where ε is measured
over Y .

Remark 19.4. The proof above actually shows that Y is locally k-contractible for all
k in the sense that for every ε > 0 there is a δ > 0 such that a map α : Sk → Y with
diameter < δ extends to a map ᾱ : Dk+1 → Y with diameter < ε. Just lift to X , use
one of the contractions in X , and project back. The proof of Claim B then works for
finite-dimensional compact pairs, (Z,Z0) by using the ANR property of X and the local
contractibility of Y to extend (α, α0) to a neighborhood of (Z,Z0) in (D�, ∂D�) and
proceeding as above.

Proposition 19.5 (Estimated Mapping Cylinder Calculus).

(i) If p : Y → B is a map and f1 : X → Y and f2 : X → Y are ε-homotopic maps

over B, then the mapping cylinder of f1 is ε-homotopy equivalent to the mapping

cylinder of f2 rel X ∪ Y . Where the control map M(f2)→ B is the composition

of p with the mapping cylinder projection.

(ii) If f : X → Y and g : Y → Z are maps, then there is a cell-like map

c :M(f) ∪Y M(g)→M(g ◦ f)

which is the identity on X
∐
Z. The diagram

M(f) ∪Y M(g) wc
����

projg◦projf

M(g ◦ f)
N
NNQ proj(g◦f)

Z

strictly commutes, where projk denotes the mapping cylinder projection of the

map k. Thus, if the spaces are ANR’s, the homotopy equivalence is as controlled

as we like over Z or any image of Z.
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Proof:

(i) For each point x ∈ X , we have a triangle bounded by segments attaching x to
f1(x) and f2(x), along with the path from f1(x) to f2(x) given by the homotopy.
These triangles collapse from one free face to the union of the bottom and the
other free face, giving a homotopy whose tracks are the tracks of the original
homotopy.

(ii) c is the map which collapses M(g) to Z.

Theorem 19.6. If f : X → Y is an ε-equivalence over B, then X is a 5ε-SDR of M(f).
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B

X Y

X X

X X

X X

Y

f

f g

g   f

H G

CE

i

rt

c

r'

id

Proof: Consider the diagram above, where r′ :M(f)∪YM(g) is the retraction obtained
by id

∐
f : Y

∐
X → Y using the homotopy from f ◦ g to id and rt is a deformation

from X × I to X . The retraction is given by:

r′ ◦ c−1 ◦G ◦ rt ◦H ◦ c ◦ i.
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The last ε sneaks in because the diagram only 2ε-commutes in the r′ direction.

Remark 19.7. The teacher doesn’t have much faith in the 5. It seems clear that some-
thing < 106 works, however.

Remark 19.8. Since there is a CE map from the ordinary mapping cylinder to the sim-
plicial mapping cylinder, using the simplicial mapping cylinder with respect to sufficiently
fine subdivisions gives the same result.
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Chapter 20. Bounded structures and the CE Approximation Theorem

The purpose of this section is to give a proof of Siebenmann’s CE Approximation
Theorem using bounded topology.

Theorem 20.1 (CE Approximation Theorem [Si]). Let f :Mn → Nn, n ≥ 5, be a
CE map between topological n-manifolds without boundary. Then f is a uniform limit

of homeomorphisms.

Proof: For each x ∈ N , choose a disk Dn containing x. Let V = f−1(
◦
D). Let

φ :
◦
Dn → Rn be a radial homeomorphism. By Corollary 16.4, φ ◦ f : V → Rn defines

an element of SPL
(

Rn

↓ id
Rn

)
= ∗. If h : V → Rn is a PL homeomorphism boundedly

close to φ ◦ f , φ−1 ◦ h is a homeomorphism from f−1(
◦
Dn) to

◦
Dn which extends by f

on the complement to give a CE map from M to N which is a homeomorphism over
◦
Dn. Applying this process inductively gives a homeomorphism from M to N which is
homotopic to f .

We have to work a little harder to get the approximation. The basic idea is to do a finite
induction by working on lots of disjoint balls at once. This is easy if the range manifold is
PL – we just induct over a handle decomposition. In the general case, dimension theory
***

Theorem 20.2 (Edwards-Kirby [EK]). If C is a compact subset of a TOP manifold

M and U is a neighborhood of C in M , then for every ε > 0 there is a δ > 0 so that

if i : U → M is an embedding with d(i(x), x) < δ, then there is a homeomorphism

h : M → M with compact support in U so that h(x) = i(x) for x ∈ C and so that

d(h(x), x) < ε for all x ∈M .
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Chapter 21. The α-approximation theorem

The goal of this section is to prove a manifold version of Theorem 17.2. The reader
is advised to read the proof of that theorem first, since we will be assuming familiarity
with the details of that argument. We should also mention that this section and the next
on rational Pontrjagin classes are rather badly out of historical and logical order. This
proof of the α-approximation theorem invokes the topological classification of homotopy
tori, which uses most of the machinery of Kirby-Siebenmann. In contrast, the topological
invariance of Pontrjagin classes would be an immediate consequence of any useful form of
topological transversality. Nevertheless, we feel that this section is useful as motivation
for what follows. Since well-controlled homotopy equivalences between manifolds are
close to homeomorphisms, it makes sense to look for proofs of topological invariance
theorems which apply to controlled homotopy equivalences between manifolds, rather
than just to homeomorphisms. We have already done this with the invariance of torsion.
We will do the same with the topological invariance of rational Pontrjagin classes. We
will return to this point later. The α-Approximation Theorem is a “finite” form of
Siebenmann’s CE approximation Theorem. Using bounded methods, we proved by the
CE Approximation Theorem itself as Theorem 20.1, but the proof of our generalization
will use the techniques of Siebenmann’s original proof.

Theorem 21.1 (α-approximation theorem [ChF]). Let Mn, n ≥ 5, be a closed

topological manifold with a fixed topological metric d. Then for every ε > 0 there is

a δ > 0 so that if f : N → M is a δ-equivalence over M , then f is ε-homotopic to a

homeomorphism.

We give the proof in dimensions ≥ 6. The proof is a torus argument modeled on
the proof of Siebenmann’s CE Approximation Theorem. The first step in the proof is a
(rather!) technical lemma.

Corollary 21.2 (CE approximation theorem [Si]). Let f : Mn → Nn, n ≥ 5, be
a CE map between topological n-manifolds without boundary. Then f is a uniform limit

of homeomorphisms.

Lemma 21.3 (Handle Lemma). Let V n be a topological manifold, n ≥ 5, and let

f : V → Bk × Rm be a proper map such that ∂V = f−1(∂Bk × Rm) and f is a

homeomorphism over (Bk − 1
2

◦
Bk)× Rm. For every ε > 0 there is a δ > 0 so that if f is

a δ-equivalence over Bk × 3Bm and m ≥ 1, then:
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130 21. The α-approximation theorem

(i) There exists an ε-equivalence F : Bk × Rm → Bk × Rm such that F = id over

(Bk − 5
6

◦
Bk)× Rm ∪Bk × (Rm − 4

◦
Bm), and

(ii) There exists a homeomorphism φ : f−1(U)→ F−1(U) such that F ◦φ = f |f−1(U),

where U = (Bk − 5
6

◦
Bk)×Rm ∪Bk × 2Bm.

B
k

R
m

fV

homeo

homeo

B
k

R
m

F

R
m

B
k

4B
m

id

id

id idU

Uf   U
-1

F   U
-1



21. The α-approximation theorem 131

Proof: We construct the following diagram:

Bk ×Rm wF Bk ×Rm

Bk ×Rm

u

i

wF ′

u
id×e

Bk ×Rm

u

i

u
id×e

Bk × Tm W3u h w
f3 Bk × Tm

W2

u

y

y

u

w
f2 (Bk × Tm)−

◦
Dn

u

y

y

u
W1 w

f1 (Bk × Tm)− ( 2
3
Bk × {x0})

W0

u

y

w
f0

u
β′

Bk × Tm0

u

y

u
id×β

V w
f

homeo over ∂
Bk ×Rm

(i) W0 is constructed by taking the pullback. W0 is a manifold and f0 is an δ1-
equivalence away from the hole in the torus. One way to see this is to pull back
the mapping cylinder projection from the mapping cylinder of f to V . This is the
mapping cylinder of f0 and the 5δ-SDR from M(f) to V lifts to a δ1-SDR from
M(f0) to W0 away from the hole.

(ii) Since f is a homeomorphism over the boundary, we can put the plug in over
Bk − 2

3
Bk)× Tm. This gives us W1 and f1.

(iii) Parameterize the end of (Bk×Tm)−( 2
3B
k×{x0}) as Sn−1× [0, 1) and choose Dn

to be a disk in Bk×Tm containing ( 2
3
Bk×{x0}). For δ sufficiently small, we can

use the Splitting Theorem below to find W2 ⊂W1 and a homotopy equivalence of

pairs f2 : (W2, ∂W2) → ((Bk × Tm)−
◦
Dn, ∂Dn). Moreover, we can take f2 = f1

outside of a small neighborhood of ∂Dn. Note that at this stage we have lost
some control, since f2 is an uncontrolled homotopy equivalence over ∂Dn and Dn

is not small.
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(iv) We cone off ∂W2 and extend to f ′3 : W3 → Bk × Tm. We regain the lost control
by Stretching out a collar on a disk 2Dn ⊃ Dn and squeezing Dn to be small.
The result is a δ2-equivalence f3 :W3 → Bk × Tm.

(v) Choose h : W3 → Bk × Tm to be a homeomorphism agreeing with f3 over (Bk −
5
6

◦
Bk)×Tm and homotopic to f3. The existence of h is a consequence of topological
surgery theory.

(vi) Pass to the universal cover and get F ′, which is bounded and equal to the identity

over (Bk − 5
6

◦
Bk)× Rm.

(vii) Let ρ : Rm → 4
◦
Bm be a radial homeomorphism which is the identity on 2Bm.

Conjugating F ′ by id×ρ squeezes F ′ to a homeomorphism F ′′ = ρ◦F ′◦ρ−1 : Bk×
4
◦
Bm → Bk × 4

◦
Bm which comes closer and closer to commuting with projection

near the boundary. Squeezing in the Bk-direction – this is essentially an Alexander

isotopy – gives an F : Bk × 4
◦
Bm → Bk × 4

◦
Bm which extends by the identity to

Bk ×Rm.

id

id

F ''

id

id

F

(viii) The construction of φ proceeds as usual. We simply note that F contains a copy
of f over Bn and extend near the boundary using f to identify a neighborhood of
the boundary in V with a neighborhood of the boundary in the range.

This completes the proof of the Handle Lemma.

The next step in the proof is to use Siebenmann’s inversion trick to prove the following
Handle Theorem.

Theorem 21.4 (Handle Theorem). Let V n be a topological manifold, n ≥ 5, and
let f : V → Bk × Rm be a proper map such that ∂V = f−1(∂Bk × Rm) and f is a

homeomorphism over (Bk − 1
2

◦
Bk)× Rm. For every ε > 0 there is a δ > 0 so that if f is

a δ-equivalence over Bk × 3Bm, then there exists a proper map f̄ : V → Bk × Rm such

that

(i) f̄ is an ε-equivalence over Bk × 2.5Bm
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(ii) f̄ = f over [(Bk − 2
3

◦
Bk)× Rm] ∪ [Bk × (Rm − 2

◦
Bm)],

(iii) f̄ is a homeomorphism over Bk ×Bm.

Proof: The case m = 0 follows from the generalized Poincaré Conjecture and coning,
so we assume m ≥ 1.

We apply the Handle Lemma to obtain F as above and compactify F by the identity
to obtain a homeomorphism Bk ×Sm → Bk ×Sm. We take out Bk× south pole and its
inverse image and apply the handle lemma again, parameterizing Bk ×Rm so that there
is an overlap where we still have the original f . We compactify again.

As in the proof of Theorem 17.2, the result is a new space V̄ with a global ε-equivalence
F̄ : V̄ → Bk × Rm so that F̄ is a homeomorphism over Bk × Bm and F̄ = f over

Bk×(3Bm−2
◦
Bm)∪(Bk− 7

8

◦
Bk)×3Bm. Using the Splitting Theorem and the Generalized

Poincaré conjecture, we can find an Sn−1 ⊂ f−1(Bk×(3Bm−2
◦
Bm)∪(Bk− 7

8

◦
Bk)×3Bm)

which bounds a ball in V containing f−1( 1
2B
k × Bm). By coning, we can identify

F̄−1(Bk × 3Bm) with a subset of V , completing the proof.

Proof of α-approximation: The proof of the α-approximation theorem is now an
easy handle induction. We begin by taking a small handle decomposition of M . A 0-
handle is a closed n-ball. Taking an open collar on the boundary, we have a B0 × Rn.
The Handle Theorem produces a new δ1-equivalence which is a homeomorphism over a
neighborhood of the original handle. After doing this for all 0-handles, each 1-handle
is a B1 × Bn−1 meeting the 0-handles in ∂B1 × Bn−1. Adding a collar, we have a δ1-
equivalence over B1 × 3Bn−1 and a homeomorphism over a neighborhood of ∂B1 ×Rm.
Applying the Handle Theorem gives a δ2-equivalence which is a homeomorphism over
a neighborhood of the original 1-handle. The induction continues until the Poincaré
Conjecture and the Alexander trick allow us to cone off at the last stage. The degree of
approximation is governed by the sizes of the original handles.
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Remark 21.5. Of course, this requires that we know that topological manifolds in
dimensions ≥ 6 have small handle decompositions. This is one of the results of the Kirby-
Siebenmann program [KS, p.104]. A way of avoiding this is to use a handle decomposition
of Rn to prove the result over coordinate patches and then use the following strong version
of local contractibility of the homeomorphism group.

Theorem [EK]. Let Mn be a topological manifold. If C is a compact subset of M and

U is an open neighborhood of C in M , then for every ε > 0 there is a δ > 0 so that if

h : U → M is an open embedding with d(h(x), x) < δ, then there is a homeomorphism

h̄ :M →M so that h̄|C = h|C, h̄|(M − U) = id, and d(h̄(x), x) < ε.

Here is how the piecing together process works. Cover M by finitely many balls

{Bi}pi=0 and for each i, let Bi,0 ⊃
◦
Bi,0 ⊃ Bi,1 · · · ⊃

◦
Bi,n−1 ⊃ Bi,n = Bi be a sequence

of nested neighborhoods of Bi. We prove inductively that for every ε > 0 there is a
δ > 0 so that every δ-equivalence f : N →M is ε-close to an ε-equivalence fi which is a
homeomorphism over B1,i ∪ · · · ∪Bi,i.

The case i = 1 is easy. We take a handle decomposition of
◦
B1,0 and use the handle

induction above to get a homeomorphism over B1,1.

The case i = 2 is representative of the general case. We have homeomorphisms h
and k over B1,1 and B2,1 which are close to our original f . We therefore have an

homeomorphism h ◦ k−1 :
◦
B1,1 ∩

◦
B2,1 → M which is close to the identity. By the

Edwards-Kirby theorem above, we can find h̄ : M → M agreeing with h ◦ k−1 on
◦
B1,2 ∩

◦
B2,2 which is close to the identity and which is equal to the identity outside of

◦
B1,1∩

◦
B2,1. Defining a new homeomorphism over

◦
B1,2∪

◦
B2,2 to be h over

◦
B1,2 and h̄ ◦k

over
◦
B2,2 completes the inductive step.

Of course, we’re still left using the classification of topological homotopy tori in high
dimensions, but this trick of blending homeomorphisms using local contractibility is often
useful.

Theorem 21.6 (Splitting Theorem). Let Wn be a manifold, n ≥ 5 and ∂W = ∅,
and let f : W → Sn−1 × R be a proper map which is an ε-equivalence over [−2, 2]
via the projection map p : Sn−1 × R → R. If ε > 0 is sufficiently small, then there

is an (n − 1)-sphere S subset f−1(Sn−1 × [−1, 1]) such that f |S : S → Sn−1 × R is a

homotopy equivalence, S is bicollared, and S separates the component of W containing
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f−1(Sn−1 × [−1, 1]) into two components, one containing f−1(Sn−1 × {−1}) and one

containing f−1(Sn−1 × {1}).

Proof: In dimensions n ≥ 6, this is similar to the proof of Siebenmann’s thesis. Split
by transversality over Sn−1 × {0} and do surgery to make the map

Hk(f−1(Sn−1 × [0, 1− 1
n−k+3

]), f−1(0))→ Hk(f−1(Sn−1 × [0, 1]), f−1(0))

the zero map.

The only novelty here is that at each stage we must extend the map so that the
surgered boundary manifold is the new inverse image of zero. This is done by applying a
homotopy ht which drags the image of the handle into Sn−1 × {0} and then poking the
interior of the handle across Sn−1 × {0} inside a collar neighborhood of Sn−1 × {0}.

Remark 21.7. Given the basic tools of topological surgery – handle decompositions,
transversality, and periodicity – the proof of the torus geometry we need isn’t too hard.

It suffices for our argument to show that a homotopy Bk×Tm rel ∂ becomes standard
after passage to a finite cover. After passing to a finite cover, we can use a relative
version of Siebenmann’s thesis to split open over Tm−1 and reduce to the same problem
for Bk+1×Tm−1 rel ∂ and for Bk×Tm−1. The first factor is no problem. We just induct
on down to the case of Bn rel ∂, which we solve by an Alexander trick. The second is more
of a problem because of low-dimensional difficulties. Here is where periodicity comes into
play, since S(Bk×Tm−1) ∼= S(Bk+3×Tm−1, ∂), which pushes up the dimension, avoiding
low-dimensional difficulties. See [We] for a nice explanation.
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Chapter 22. The topological invariance of rational Pontrjagin classes

The signature of a topological manifold

Definition 22.1. We will say that a bilinear form 〈 , 〉 on a finite-dimensional rational
vector space V is nonsingular if det(A) �= 0 where 〈x, y〉 = xAyt.

Lemma 22.2. Let Mn be a closed oriented 4k-manifold. Then cup product induces a

nonsingular quadratic form on H2k(M ;Q).

Proof: We define 〈α, β〉 = 〈α∪β, µM〉, where µM is the orientation class. This is singu-
lar if and only if there is a β ∈ H2k(M ;Q) so that 〈α∪β, µM 〉 = 0 for all α ∈ H2k(M ;Q).
But this is impossible, since 〈α∪β, µM 〉 = 〈α, β∩µM 〉 and we could take α dual to β∩µM ,
which is nonzero by Poincaré duality, in H2k(M ;Q) = Hom(H2k(M ;Q),Q).

Definition 22.3. Any nonsingular rational quadratic form can be diagonalized. This
is just a matter of completing the square. The signature of the form is the number of
positive diagonal entries minus the number of negative diagonal entries. This is well-
defined because the number of positive diagonal entries is the dimension of the maximal
subspace on which the form is positive definite. The signature or index σ(M) of a 4k-
manifold is the signature of the quadratic form on 2k-dimensional cohomology.

Exercise 22.4. If M4k is an oriented manifold, show that the signature of M ×CP 2 is
the same as the signature of M .

Theorem 22.5. If M4k is the boundary of an oriented W 4k+1, then σ(M) = 0.

Proof: We have a sign-commuting diagram with Q coefficients:

H2k(W ) w
j∗

u
∼=

H2k(M) wδ

u
∼=

H2k+1(W,M)

u
∼=

H2k+1(W,M) w∂ H2k(M) w
j∗ H2k(W )

We have dim(im j∗) + dim(ker(δ)) = dimH2k(M). But
dim(ker(δ)) = dim(ker(j∗)) = dim(im(∂))

= dim(im(δ)) = dim(im(j∗)) = dim(im(j∗)),
where the last uses the fact that j∗ and j∗ are duals and row rank equals column rank.
The upshot is that the dimension of im(j∗) is half the dimension of H2k(M).
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138 22. The topological invariance of rational Pontrjagin classes

Now we have

〈j∗α ∪ j∗β, µM 〉 = 〈j∗α ∪ j∗β, ∂µW 〉 = 〈j∗α, j∗β ∩ ∂µW 〉
= ±〈j∗α, ∂(β ∩ µW )〉 = 〈δj∗α, β ∩ µW 〉 = 0.

Thus, im(j∗) is a self-annihilating subspace whose dimension is half the dimension of
H2k(M). Since neither a maximal positive definite subspace nor a maximal negative
definite subspace can intersect im(j∗), σ(M) = 0.

Corollary 22.6. If M4k
1 and M4k

2 are oriented cobordant, then σ(M1) = σ(M2).

Proof: M1

∐
(−M2) bounds, so σ(M1)− σ(M2) = 0.

Corollary 22.7. If f :Mn → Nn is a map between smooth closed oriented manifolds

and Q4k is a smooth closed oriented submanifold of N , then sgn(f̄−1(Q)) is an invariant

of the homotopy class of f , where f̄ is homotopic to f and transverse to Q.

Characteristic classes

Definition 22.8. The Gk(Rn) is the space of k-planes in n-space. We topologize
Gk(Rn) by noting that O(n) acts transitively on the k-planes in Rn and that the subgroup
of O(n) fixing the standard Rk is O(k)×O(n− k). The Grassman manifold is therefore

O(n)
O(k)×O(n−k) . There is a natural inclusion Gk(Rn) → Gk(Rn+1). We call the limit

Gk. We construct the space G̃(Rn) similarly and prove that G̃(Rn) =
SO(n)

SO(k)×SO(n−k) .
The universal bundle γk over Gk is the bundle for which the fiber over x ∈ Gk is the
k-dimensional vector space x. The universal bundle γ̃k over G̃k is defined similarly.

Proposition 22.9 ([MS], §5). Any vector bundle ξk over a paracompact base space

B admits a well-defined homotopy class of classifying maps cξ : B → Gk such that the

pullback (cξ)∗γk = ξ. Similarly, an oriented vector bundle ξk over a paracompact base

space B admits a well-defined homotopy class of classifying maps cξ : B → G̃k such that

(cξ)∗γ̃k = ξ.

This map is particularly easy to describe for the tangent bundle of a smooth manifold:
If M is a smooth n-manifold, embedding M into R�, 
 large and sending each m ∈ M
to a tangent plane at m gives a map cM : M → Gn. This map is well-defined up to
homotopy since any two such embeddings can be extended to an embedding of M × I.
A similar construction gives a well-defined homotopy class of maps c̃M :M → G̃r when
M is an oriented manifold.
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Whitney sum with a trivial bundle gives stabilization maps Gk → Gk+1 and G̃k →
G̃k+1. Calling the limits Gr and G̃r, we have:

Theorem 22.10 ([MS], p. 179). Let M be a smooth manifold.

(i) There are classes w1, . . . , wi, . . . with wi ∈ Hi(Gr;Z2) so that

H∗(Gr;Z2) ∼= Z2[w1, w2, . . . ].

(ii) There are classes p1, . . . , pi, . . . with pi ∈ H4i(G̃r;Z) so that

H∗(G̃r;Z[
1
2
]) ∼= Z[

1
2
][p1, p2, . . . ].

Definition 22.11.

(i) The classes wi = wi(τm) = c∗M (wi) obtained by pulling back these wi’s are called
the Stiefel-Whitney classes of M .

(ii) The classes pi = pi(τM ) = c̃∗M (pi) obtained by pulling back the pi’s are called the
Pontrjagin classes of M .

The Stiefel-Whitney classes are completely characterized by axioms (see [MS, p. 37]):

(i) To each vector bundle ξ there corresponds a sequence of cohomology classes

wi(ξ) ∈ Hi(B(ξ);Z/2).

The class w0(ξ) is 1 ∈ H0(B(ξ);Z/2).
(ii) If f : B(ξ)→ B(η) is a map covered by a map of vector bundles which is a linear

isomorphism on each fiber, then wi(ξ) = f∗wi(η).
(iii) If ξ and η are vector bundles over B, then wk(ξ ⊕ η) =

∑
wi(ξ) ∪ wk−i(η).

(iv) For the Möbius band γ1 over the circle, w1(γ1) �= 0.

The Pontrjagin classes satisfy similar formulas, except that (iii) is only true modulo
2. Here is Hirzebruch’s signature theorem, which relates the characteristic classes of
τM to the algebraic topology of M . This is a major result in differential and algebraic
topology. It has some of the flavor of the Poincaré-Hopf and Gauss-Bonnet Theorems, in
that it relates differential geometric invariants of a smooth manifoldM to its underlying
homotopy structure.
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Theorem 22.12 (Hirzebruch’s signature theorem([MS, p. 225], [H])). There is

a sequence {Lk(p1(τM ), . . . , pk(τM ))} of polynomials with rational coefficients so that

σ(M4k) = 〈Lk(p1, . . . , pk), [M ]〉.

The first few L-polynomials are:

L1 =
1
3
p1

L2 =
1
45
(7p2 − p2

1)

L3 =
1
945

(62p3 − 13p2p1 + 2p3
1)

L4 =
1

14175
(381p4 − 71p3p1 − 19p2

2 + 22p2p
2
1 − 3p4

1).

This shows that the signature of a smooth manifold is determined by the characteristic
classes of its tangent bundle. This leads fairly directly to the following: Let u ∈ Hk(Sk,Z)
and µM ∈ Hn(M ;Z) be the standard generators.

Lemma 22.13 ([MS, p.232]). For every smooth map f :Mn → Sn−4i and every regular

value y, the Kronecker index

〈Li(τn) ∪ f∗(u), µM〉

is equal to the signature of the manifold M4i = f−1(y). In the case 4i < (n− 1)/2, the
class Li(p1(τn), . . . , pi(τn)) is completely characterized by these identities.

Notice that this means that we can solve for pi(τn) ∈ H4i(M ;Q) for 4i < (n− 1)/2.
The maps i : M → M × T � and proj : M × T � are both covered by maps of the
stabilized tangent bundles, so the Pontrjagin classes of M may be identified with those
of M × T �. After such stabilization, the lemma above gives an interpretation of the
rational Pontrjagin classes in terms of signatures of inverse images of submanifolds with
trivial normal bundles. This is the basis of Thom’s definition of the rational Pontrjagin
classes of a piecewise linear manifold. See [MS, p. 231].

The proof of the second part of the theorem proceeds by noting that

[Mn, Sk]→ [ΣM,ΣSk] ∼= [M,ΩΣSk]

is an isomorphism for n < 2k − 1. This means that [Mn, Sk] is the kth cohomotopy
group of M . Cohomotopy is a generalized cohomology theory for which the coefficients
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in dimensions other than zero are finite groups. It follows that for any finite complex
Kn, n < 2k − 1, [Kn, Sk] ⊗ Q ∼= Hk(K;Q) where the isomorphism is given by pulling
back the top-dimensional cohomology class of Sk.

Cup products and intersections

Proposition 22.14. Suppose that P p and Qq are closed oriented submanifolds of the

closed oriented manifold Mn with p + q = n. Suppose further that P and Q meet

transversally in a finite number of points and let [P ] and [Q] be the orientation classes.

Then

〈(i∗[P ])∗ ∪ (j∗[Q])∗, [M ]〉 = ε(P,Q)

where i and j are the inclusions, ∗ denotes Poincaré duality, and ε(P,Q) is the intersection
number as defined in [RS].

Proof: LetN be a regular neighborhood of P inM . We have a sign-commuting diagram

Hp(N) w

u
∼=

Hp(M) w

u
∼=

Hp(M,N)

u
∼=

Hn−p(N, ∂) w

u
∼=

Hn−p(M) w4
4
446

Hn−p(M −N)

u
∼=

Hn−p(M,M − P )
[
[
[[]

Hn−p(M − P )

[P ] ∈ Hp(N) is dual to [P ]∗ ∈ Hn−p(M,M−P ) and the image of [P ]∗ under restriction is
(i∗[P ])∗. Similarly, (j∗[Q])∗ is the image under restriction of a class in Hn−q(M,M−Q),
so the product (i∗[P ])∗ ∪ (j∗[Q])∗ is the image of [P ]∗ ∪ [Q]∗ ∈ Hn(M,M − (P ∩ Q)).
Therefore, to understand the cup product, we need only understand what happens in
neighborhoods of the intersection points. But the formula works for Sp ∩ Sq ⊂ Sp+q,
where the local picture is the same, so the formula works in general.

Milnor’s seven sphere

We now digress to present one of the most famous examples in topology – Milnor’s
example of a smooth manifold which is homeomorphic to S7 but not diffeomorphic to
S7. Take 8 copies of the tangent disk bundle to S4 and “plumb” them together according
to the following diagram:
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The eight dots stand for the eight copies of the disk bundle. If two dots are connected
by a line, we choose a ball in S4, identify the total space over the ball with B4×B4, and
identify it with a similar ball in the other disk bundle with the fiber and base directions
reversed. The result is a 8-dimensional manifold W 8 which has the homotopy type of
∨8
i=1S

4 and which has intersection form given by:

E8 =



2 1
1 2 1
1 2 1
1 2 1
1 2 1 0 1
1 2 1 0
0 1 2 0
1 0 0 2


The twos down the diagonal come from the Poincaré-Hopf Theorem and the fact that
S4 has Euler characteristic 2. If we try to separate two copies of the zero-section in the
tangent disk bundle to S4, we find that the intersection number is 2. The matrix has
determinant 1. This says that Hk(W ) ∼= Hn−k(W ) for k �= 0, n. Since Poincaré duality
gives Hk(W ) ∼= Hn−k(W, ∂W ), this gives Hk(∂W ) = 0 for k �= 0, n− 1. It follows that
∂W is a homology sphere. Since W is a simply connected 8-manifold with a 4-spine,
π1(∂W ) = 0. Therefore, the boundary of W is a topological sphere. On the other
hand, if the boundary of W 8 is a standard sphere, we can attach a disk to the boundary
and obtain a closed smooth manifold Ŵ with σ(Ŵ ) = σ(E8) = 8. The manifold W 8

is parallelizable, so p1(Ŵ ) = p1(W ) = 0. Therefore, Hirzebruch’s formula says that
σ(W ) = 1

45
(7p2), so the signature must be divisible by 7. The manifold ∂W = Σ7 is

therefore not diffeomorphic to S7.

Exercise 22.15. Prove the fact, which was used above, that ∂M4k is a homology sphere
wheneverM is 2k−1-connected and H2k(M, ∂M)⊗H2k(M, ∂M)→ H4k(M, ∂M) = Z is
nonsingular. As above, this pairing is dual to the intersection of 2k-dimensional homology
classes.
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We wish to prove the following celebrated theorem of Novikov. For reasons of historical
piety,21 we work in the smooth category, though the PL category would work equally
well. The reader who would like a quick introduction to the smooth category and the
sorts of transversality arguments used here is urged to consult [M].

Theorem 22.16 (Topological invariance of rational Pontrjagin classes,

[N]). If Mn and Nn are closed smooth oriented n-manifolds, and h : M → N is an

orientation-preserving homeomorphism, then h∗(pi(τN )) = pi(τM ) in H∗(M,Q).

Given this topological invariance of rational Pontrjagin classes, Milnor’s construction
also gives us an example of a PL manifold with no smooth structure. M8 is clearly a
PL manifold, so Σ7 is a standard PL sphere and we can get a closed PL 8-manifold
M̂ by coning the boundary. Since p1 is a topological invariant, we would have p1 = 0
in any smooth structure on M̂ , so for the reasons described above, M̂ could not be
homeomorphic to a smooth manifold.

Proof of topological invariance: By Lemma 22.13, it will suffice to show that
if f : N → Sk is a map and h̄ : M → N is a smooth approximation to h, then
σ((f ◦ h)−1(y)) = σ(f−1(y)) for some regular point y ∈ Sk of f ◦ h.

Definition 22.17. Let B be a metric space and let p : X → B be a function such that
p−1(C) has compact closure for every compact C ⊂ B. A map f : Y → X is said to be
a bounded homotopy equivalence over B if there exist a map g : X → Y and homotopies
kt : g ◦ f " idY , ht : f ◦ g " idX so that there is a d > 0 so that the tracks p(ht(x)) and
p(f(kt(y))) all have diameter < d.

Our proof of the topological invariance of rational Pontrjagin classes makes use of the
following stable bounded splitting theorem.

Theorem 22.18 (Stable Bounded Splitting Theorem). Let V n be a closed ori-

entable smooth manifold and let Wn+k → V n×Rk be a bounded homotopy equivalence

over Rk, W a smooth manifold and n+k ≥ 5. Then there is a bicollared smooth subman-

ifold W ′ ⊂ W × S1 so that W ′ → V n × S1 × Rk−1 is a bounded homotopy equivalence

over Rk−1.

This splitting theorem is called “stable” because of the extra S1 factor.

21 ...and also to make the transversality arguments easier.
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Proof that stable bounded splitting implies topological invariance: Let
Wn and Mn be smooth manifolds and let f : W → M be a homeomorphism. If p :
M → Sk is a smooth map, let y ∈ Sk be a regular value of p. By the implicit function
theorem, there is a neighborhood U of Y homeomorphic to Rk and a diffeomorphism
p−1(U) ∼= V × Rk, with V smooth and compact. We will show in due course that it
suffices to consider the case in which V is simply connected. For now, we assume that
π1V = 0.

Setting W = f−1 ◦ p−1(U), we have a homeomorphism f | : W → V × Rk. Since a
homeomorphism is a bounded homotopy equivalence over any control space, we are in the
situation of the Bounded Splitting Theorem, except for the dimension assumption, which
can always be satisfied by crossing with CP 2k for some k. We split and find a smooth
map f̄1 : W × S1 → V × S1 × Rk so that f̄1 is transverse to V × Rk−1 and so that the
restriction of f̄1 to f̄−1

1 (V × S1 ×Rk−1 × {0}) gives a bounded homotopy equivalence to
V ×S1 ×Rk−1×{0} over Rk−1 ×{0}. Assuming that the dimension condition continues
to hold, we proceed by induction, eventually arriving at f̄k : W → V × Rk so that f̄k
is transverse to V × {0} and f̄−1

k : f̄−1
k (V × T k × {0}) → V × T k × {0} is a homotopy

equivalence. We have therefore reduced the question to the following:

Lemma 22.19. If f : W → V × T k is a homotopy equivalence of closed smooth oriented

manifolds, V simply connected, then σ(V ) = σ(V ′), where V ′ = f−1(V × {y}) for y a

regular value of projTk ◦ f .

Proof: Since crossing with CP 2 does not change the signature, we may assume that
n ≥ 6. Passing to a cyclic cover, we have W̃ → V × T k−1 × R. We can split as in
the proof of Theorem 21.6 to obtain a bicollared W ′ ⊂ W and a homotopy equivalence
W ′ → V × T k−1. This uses the vanishing of K̃0(ZZk).

By induction, we eventually getW ∗ ⊂W and a homotopy equivalenceW ∗ → V . Since
the signature is a homotopy invariant, σ(W ∗) = σ(V ). But W ∗ is the transverse inverse
image of V × {0} under a map homotopic to some finite cover of the original map f , so
σ(W ∗) = σ(f−1(V × {y}) for y a regular value of projTk ◦ f , as desired.
In case the original manifolds M and N are simply connected, the reduction to sim-

ply connected V is not difficult. We do ambient surgery on the map p : N → Sk is
obtain a simply-connected point-inverse. This is like the first few steps in the proof of
Siebenmann’s thesis. We divide Sk along Sk−1 and trade 0-, 1-, and 2-handles across the
inverse image of Sk−1 to get p−1(Sk−1) to be smoothly bicollared and simply connected.
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We then split Sk−1 along Sk−2 and continue the process until we arrive at a regular
value x0 ∈ Sk whose inverse image under a map homotopic to p is simply connected.
This completes the proof of the topological invariance of rational Pontrjagin classes in
the simply-connected case modulo the proof of the Stable Bounded Splitting Theorem.

Remark 22.20. Lemma 22.19 is a very special case of the Novikov Conjecture on higher
signatures, which we now state.

Novikov Conjecture. If M is a closed manifold, g : M → Bπ is a map and α ∈
H∗(π;Q), then the number

〈g∗α ∪ Li(τM ), [M ]〉

is a homotopy invariant of M . That is, if h : M ′ → M is an orientation-preserving

homotopy equivalence, then

〈g∗α ∪ Li(τM ), [M ]〉 = 〈(g ◦ h)∗α ∪ Li(τM ′), [M ′]〉.

Lemma 22.19 is the case in which π = Zk, Bπ = T k, g : V 4i × T k → T k is projection,
and α is the orientation class of T k. Since the orientation class of T k pulls back from the
orientation class of Sk, Lemma 22.13 says that 〈(g ◦ f)∗α∪Li(τW ), [W ]〉 is the signature
of the inverse image of a regular value in Sk under the composition

W → V × T k → T k → Sk.

The usual transversality argument shows that the signature of the inverse image of a
regular value is a homotopy invariant of the map, so this is the same as the signature
of the inverse image of a regular value of W → V × T k → T k, which is the same as the
signature of f−1(V × {y}) for y a regular value of projTk ◦ f . On the other hand, the
Lemma 22.13 also shows that 〈g∗α∪Li(τM ), [M ]〉 = σ(V ). This shows that the Novikov
Conjecture for Zk implies Lemma 22.19. Note that the Novikov Conjecture contains
nothing analogous to our simple connectivity hypothesis on V , so in the presence of Stable
Bounded Splitting the Novikov Conjecture for Zk implies the topological invariance of
rational Pontrjagin classes.

We now proceed with the proof of the stable bounded splitting theorem. Thus, we
have a homotopy equivalence W → V ×Rk which is bounded over Rk.
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W

V  R

proj

R

f

E (E)(E)-1

For notation, we writeW[a,b] = (proj ◦f)−1[a, b], where proj is projection onto the last
factor. Using the bounded homotopy equivalence and the homotopy extension theorem,
we can find a K > 0 so that for any α ∈ R and N ∈ N , there is a bounded homo-
topy ht : W → W over Rk−1 so that h0 = id, h1(W ) ⊂ W[α−(N+1)K,α+(N+1)K], and
ht |W[α−NK,α+NK] is the identity for all t. By engulfing, we will construct a bounded
diffeomorphism γ : W → W so that γ has support in WA,B] for some A and B, γ is
smoothly isotopic to the identity, γ(W0) ⊂ W[K,2K], and γ2(W0) ⊂ W[3K,4K]. Post-
poning the construction of γ, we proceed with the proof, which is a manifold version of
Mather’s trick.

Since γ is boundedly isotopic to the identity, the mapping torus, T (γ) is boundedly
diffeomorphic to W ×S1. After a few preliminary surgeries, we may assume that (proj ◦
f)−1{0}) is a connected bicollared codimension-one submanifold separating W into two
components. It then makes sense to talk about the closure of the region between M =
(proj ◦ f)−1{0} and γ(M). We call this region E. E is a manifold with two connected
boundary components and U = ∪∞i=−∞γi(E) is an open subset of W . For any N , we can
consider the region UN = ∪Ni=−Nγi(E) and form a manifold PN = UN × [0, 1]/ ∼ where
x× {0} ∼ γ(x)× {1} for x ∈ ∪N−1

i=−(N−1)γ
i(E).
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= PN

B

Note that there is a bounded strong deformation retraction – by collapsing from the
free faces γ−N (E)×{0} and γN (E)×{1} – from PN to the codimension-one submanifold
B = E × {0} ∪M × [0, 1]/ ∼. This codimension-one submanifold is homeomorphic to
E/ ∼, where x ∼ γ(x) for x ∈M .

We wish to show that B splits T (γ) ∼= W × S1, so we need to construct a bounded
strong deformation retraction from T (γ) to B. We do this by using the homotopies ht
above to retract T (γ) into PN for some N rel B and then retracting PN into B. Here
are the details:

= T( )

B

U

N

= T( )

B

U

Choose a deformation ht :W →W so that h0 = id, h1(W ) ⊂ γ−1(E)∪E and so that
ht is the identity onM . Choose ε with 1

12 > ε > 0 and apply hρ(t) toW×{t} ⊂W×[0, 1],
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where ρ is a function ρ : [0, 1]→ [0, 1] which is 1 on [3ε, 1− 3ε] and 0 on [0, ε]∪ [1− ε, 1].
Identifying the two ends via γ, we have a deformation of T (γ) into the shaded region in the
left-hand picture above. Now choose kt :W →W so that k1(W ) ⊂ γ−2(E)∪ · · · ∪γ2(E)
and kt is fixed on γ−1(E) ∪ E ∪ γ(E). Applying k1 on W × [0, 3ε] and γ ◦ k1 ◦ γ−1

on W × [1 − 3ε, 1] and phasing out as above gives a deformation k̄t : T (γ) → T (γ).
Composing with the previous deformation, we have a deformation from T (γ) into P2.
Composing with the strong deformation retraction P2 → B completes the construction
of the desired deformation retraction from T (γ) to B.
The manifold B is boundedly homotopy equivalent to V × S1 × Rk−1, since B is a

bounded deformation retract of T (γ), which is boundedly diffeomorphic to W × S1.
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the construction of γ: We still have to complete the engulfing argument, but this
is not difficult in the present case.

Let rt : V × R → V × (−∞, 3d] be a bounded strong deformation retraction. Then
kt = g ◦ rt ◦f :W →W is a homotopy so that there is a d-homotopy from idW to k0 and
so that k1(W ) ⊂ W(−∞,4d]. Using the homotopy extension theorem, we get a bounded
homotopy k̄t : W → W over Rk−1 so that k̄t = id on W(−∞,d] and k1(W ) ⊂ W(−∞,4d].
Note that this deformation is especially nice in that W[0,∞) stays inside of itself. Of
course, similar deformations exist deforming W[β,∞) into W[β,β+4d] for all β.

Claim A. If P p ⊂W0,∞, p ≤ [n2 ], n large, is a finite polyhedron, then there is a bounded

isotopy 
t with 
0 = id and 
1(P ) ⊂ W[0,8d]. If P is contained in W[0,a], we can take 
t
to be supported on W[0,a+8d].

Proof of Claim A: A deformation as above gives a homotopy dragging P intoW[0,4d] .

The singular P0 set of this homotopy is at most 2-dimensional, so the shadow S(P0) of
the singular set is at most 3-dimensional. The reader is urged to reread the proof of
Theorem 9.9 to align his brain cells for this engulfing argument.

For n ≥ 9,22 which by the “cross with CP k trick” is no restriction, there is a nonsin-
gular bounded homotopy dragging the singular set into W[4d,8d], so there is a bounded
isotopy ht : W[4d,∞) → W[4d,∞) with h0 = id and h1(W[4d,8d]) ⊃ S(P0). Moreover,

22 The isotopy exists for n ≥ 5. The extra dimensions just make the estimated engulfing easier
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ht |W(−∞,4d] = id for all t. We therefore have a nonsingular bounded homotopy of P
into h1(W[0,8d]), so regular neighborhood theory provides an isotopy kt “inverting col-
lapses” with k0 = id and k1(W[0,8d]) ⊃ P . Composing with h−1

t gives an isotopy 
t
dragging P into W[0,8d], as desired. Note that the tracks of this isotopy are close to the
tracks of the two homotopies used in the isotopy’s construction, so bounded homotopies
yield bounded isotopies. It is clear that if P is contained in W[0,a], then we can take 
t
to be supported on W[0,a+8d]. This completes the proof of Claim A.

Claim B. For every a, b ∈ R there is a bounded isotopy qt supported on W[a−16d,b+16d]

so that q0 = id and q1(W[a−16d,a]) ⊃W[a,b].

Proof of Claim B: By Claim A, there exist a bounded isotopy ht supported on
W[a−8d,b+16d] so that

h1(W(−∞,a]) ⊃W(−∞,a−8d] ∪W (k)
[a−8d,b+8d].

Similarly, there is an isotopy 
t supported on W[a−16d,b+8d] so that


1(W[b+8d,∞)) ⊃
(
W

(k)
[a−8d,b+8d]

)∗
∪W[b+8d,∞) ⊃ h1(W(−∞,a])∗.

Here ∗ denotes the dual complex as in Definition 9.6. It follows as in the proof of Theorem
9.9 that there is a homeomorphism s isotopic to the identity so that

W = h1(W(−∞,a])) ∪ s ◦ 
1(W[b+8d,∞)).

We then have
W = 
−1

1 ◦ s−1 ◦ h1(W(−∞,a])) ∪W[b+8d,∞),

so

−1
1 ◦ s−1 ◦ h1(W(−∞,a])) ⊃W(−∞,b+8d].

Setting qt = 
−1
t ◦ s−1

t ◦ ht completes the proof of Claim B.
Clearly, the bounded isotopy qt constructed in Claim B pushes Wa intoW[b,b+16d]. Let

rt be a bounded isotopy supported on W[b−16d,c+32d] pushing W[b,b+16d] into W[c,c+16d].
If a < b − 16d, this isotopy is fixed on Wa. It follows that γ = q1 ◦ r1 sends Wa into
W[b,b+16d] and γ(Wa) into W[c,c+16d]. Setting a = 0, K = 32d, b = 32d, and c = 96d
yields a bounded γ with γ(W0) ⊂W[K,2K] and γ2(W0) ⊂W[3K,4K], as desired.

The last remaining technical point is our assumption that V is simply connected. We
have already dealt with this in case the original manifoldsM and N are simply connected.
We will now deal with it in general.
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We go back to the stage where we had a homeomorphism f | :W → V ×Rk. We choose
a finite set of embedded S1’s in V generating π1. Since V is orientable, these S1’s have
trivial normal bundles and we can attach 2-handles to V × [0, 1] to form a cobordism
from V to a simply connected V ′. Crossing with Rk gives a cobordism from V × V to
V ′ × Rk.

Applying f−1 gives topologically embedded S1 ×Dn−1 × Rk’s in W . Approximating
these embeddings by smooth embeddings – as usual, we can assume that n* k – we get
a simply-connected smooth manifold W ′ cobordant to W which is boundedly homotopy
equivalent to V ′ × Rk. Since cobordism does not effect signatures, we have reduced the
problem to the simply-connected case.

Notice that this would have been more difficult technically if we had tried to preserve
the homeomorphism, rather than just the bounded homotopy equivalence. This is one
of the advantages of proving invariance theorems using controlled homotopies. We can
approximate and work in the smooth or PL categories without losing our inductive
hypothesis.

With a little more care, we could use the same technique to prove an ε-version of the
invariance of Novikov’s theorem.

Theorem 22.21. If M is a smooth manifold, then there exists ε > 0 so that if f : N →
M is an ε-equivalence, then f preserves rational Pontrjagin classes.

The point is that we didn’t require the full strength of the bounded hypothesis to
construct γ. We only used d-control over a 128d region in the direction of the last
coordinate factor. On the other hand, since we know that the α-approximation theorem
is true, this extra generality is only apparent.23

Remark 22.22. With a larger investment in developing bounded machinery, we could
have proven the theorem using

Theorem 22.23 (Bounded Splitting Theorem). Let V n be a closed orientable

simply-connected smooth manifold and let Wn+k → V n × Rk be a bounded homotopy

equivalence over Rk, W a smooth manifold and n + k ≥ 5. Then there is a bicollared

23 But on yet another hand, our proof of the α-approximation theorem relies on topological surgery

and is hardly self-contained. Except for Groethendieck’s Theorem on K̃0(ZZk) and the references to

Milnor-Stasheff, the proof given here of the topological invariance of Pontrjagin classes is complete.
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smooth submanifold W ′ ⊂ so that W ′ → V n×Rk−1 is a bounded homotopy equivalence

over Rk−1.

Since this introduces no extra S1-factors, the last splitting argument is unnecessary.
Groethendieck’s theorem appears here in showing that the obstruction group for simply
connected bounded splitting is zero. This is the approach taken in [FW]. The general
approach taken here owes a good deal to that paper and to [We].24
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Chapter 23. Homotopy equivalent manifolds which are not homeomorphic

Our next goal is to use this machinery to produce simply-connected smooth manifolds
which are homotopy equivalent without being (topologically) homeomorphic. The basic
idea is to take advantage of the fact that Pontrjagin classes take integral values, while
higher homotopy groups of spheres are finite. This is used to construct an (n + 1)-
dimensional vector bundle E over S4 so that the unit sphere bundle S(E) is homotopy
equivalent to S4 × Sn but so that p1(τS(E)) �= 0.

The first step is to show that we can build bundles over S4 with nontrivial Pontrjagin
classes. We know from [MS] that H∗(G̃r,Q) is a polynomial algebra generated by pi ∈
H4i(G̃r,Q). Choosing maps αi : G̃r → K(Z, 4i) representing the pi’s (see [S, p. 428]),
we see that

∏
i α : G̃r →

∏
K(Z, 4i) induces isomorphisms on rational cohomology, and

therefore on rational homology. A generalized Whitehead theorem of Serre (see below)
then tells us that

∏
αi induces isomorphisms on rational homotopy. The homotopy

of
∏
K(Z, 4i) has a single Z in each dimension 4i, so we know that the rank of the

homotopy group πk(G̃r) is 1 for k = 4i and 0 otherwise. More particularly, we know
that if β : S4 → K(Z, 4) represents the generator, then there is a map β1 : S4 → G̃r

so that αi ◦ β1 : S4 → K(Z, 4) is a nonzero multiple k of α. Pulling back the universal
bundle γ over β1 therefore gives a vector bundle E over S4 whose first Pontrjagin class
p1(E) is kι where ι ∈ H4(S4) is the generator. Vector bundles over S4 with dimension
≥ 5 admit nontrivial sections, and such a section allows us to split off a line bundle and
exhibiting E as a sum E ⊕ ε. This means that we can destabilize E without disturbing
the Pontrjagin class. We choose E to be 6-dimensional, so S(E) is a 5-sphere bundle
over S4.

Next, we show that the sphere bundle corresponding to some integral multiple of β1 is
homotopy equivalent to S4 × S5. The vector bundle E is trivial over the northern and
southern hemispheres of S4. This says that there is a “clutching function” γ : S3 → S0(6)
so that E is obtained by pasting D4

−×R6 to D4
+×R6 by (x,v )→ (x, γ(x)v ) for x ∈ S3.

Of course, we can forget about the linear structure and just think of E(S) as a space
obtained by pasting together two copies ofD4×S5 using a fiber-preserving map S3×S5 →
S3 × S5. Thus, we can compose γ with the map SO(6) → Maps(S5, S5) obtained by
restriction to the unit sphere to get γ′ : S3 →Maps(S5, S5).
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What is the third homotopy group of Maps(S5, S5)? Evaluating at a point ∗ gives a
map Maps(S5, S5) → S5. By the homotopy extension theorem, this map is a fibration
(exercise) and the fiber is Maps(S5, ∗;S5, ∗). The homotopy sequence of the fibration
shows that π3(Maps(S5;S5)) ∼= π3(Maps(S5, ∗;S5, ∗)).

Maps(S5;S5) has Z components enumerated by degree, so we write

Maps(S5;S5) =
∐
d∈Z

Mapsd(S5;S5).

We have a sum

+ :Maps(S5;S5)×Maps(S5;S5)→Maps(S5;S5)

where f + g is given by the composition

S5 → S5 ∨ S5 f∨g−−→ S5 ∨ S5 fold−−−→ S5.

The degree of f + g is deg(f) + deg(g), so sum with a fixed map of degree −d gives a
map

Mapsd(S5;S5)→Maps0(S5;S5).

It is easy to check that sum with a fixed map of degree d gives a homotopy inverse,
so the homotopy groups of Mapsd (S5;S5) are isomorphic to the homotopy groups of
Maps0 (S5;S5). The clutching construction above gives us a map S3 →Maps1(S5, S5),
but we will compute π3Maps0(S5, S5).

A map (S3, ∗) → Maps0(S5, ∗;S5, ∗) gives a map S3 × S5 → S5 such that S3 × ∗ ∨
∗ × S5 → ∗. We therefore have a map S3 ∧ S5 ∼= S8 → S5. But π8(S5) is a group of
order 24, so 24γ′ is nullhomotopic. Thus, if we take the bundle E24 pulled back by 24β1,
S(E24) is homotopy equivalent to S4 × S5.25

It remains to show that p1(τS(E24)) �= 0. This will guarantee that S4 × S5 and S(E24)
are not homeomorphic.

25 The student worried about showing that p1(E24) = 24p1(E) is urged to consider the fact that the
Hurewicz homomorphism is a homomorphism and then to apply the universal coefficient theorem in

rational cohomology.
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Let proj : E24 → S4 be the projection. The tangent bundle to E24, considered as a
smooth manifold, is proj∗(E)⊕proj∗τS4 . But τS4 ⊕ ε is trivial, so the Pontrjagin classes
of E24 as a smooth manifold pull back from the Pontrjagin classes of E24 considered as
a vector bundle over S4. Consider the codimension-one embedding i : S(E24) → E24.
We have i∗τE24

∼= τS(E24) ⊕ ε, so i induces an isomorphism of Pontrjagin classes and
p1(τS(E24)) is 24kι1, where ι1 = proj∗ι. This completes the construction of the example.
Of course the same argument applies to S(E24�) for any 
. Since any homotopy equiva-
lence to a manifold homotopy equivalent to S5×S4 sends a generator26 of H4(S5×S4;Q)
to ± a generator, infinitely many of these manifolds are pairwise nonhomeomorphic.

In [MS, pp. 245-248] there is a more specific construction of the above sort along with
an exposition of Milnor’s original construction of a smooth homotopy 7-sphere which
is not diffeomorphic to S7. One key lemma explicitly determines the multiple of the
generator of H∗(G̃r4;Z) which lies in the image of the Hurewicz homomorphism.

Lemma 23.1. Given integers k, 
 satisfying k ≡ 2
 (mod 4), there exists an oriented

4-plane bundle ξ over S4 with p1(ξ) = ku, e(u) = 
u, u the generator of H4(S4).

The interested student is urged again to consult [MS].

Here are a few definitions and theorems supporting the homotopy theory used above.
Most of this material is found in §3 – §7 of Chapter 9 of [S].

Definition 23.2. A homomorphism h : A → B between finitely generated abelian
groups is called

(i) a rational monomorphism if the kernel is finite.
(ii) a rational epimorphism if the cokernel is finite.
(iii) a rational isomorphism if both the kernel and the cokernel are finite.

Theorem 23.3 ([S, p. 512]). Let f be a map between simply connected spaces. For

n ≥ 1, the following are equivalent:

(i) f# : πi(X) → πi(Y ) is a rational isomorphism for i ≤ n and a rational epimor-

phism for i = n+ 1.
(ii) f# : Hi(X) → Hi(Y ) is a rational isomorphism for i ≤ n and a rational epimor-

phism for i = n+ 1.

26 By this, we mean the image of a generator of H4(S5 × S4;Z).
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Theorem 23.4 ([S, p. 509]). A simply connected space X has finitely generated ho-

mology groups in every dimension if and only if it has finitely generated homotopy groups

in every dimension.

Theorem 23.5 ([S, p. 515, 516]). If n is odd, then πm(Sn) is finite for all m �= n. If
n is even, then πm(Sn) is finite for all m �= n, 2n− 1.



Chapter 24. The surgery exact sequence revisited

We have just given a direct construction showing that the structure set of S4 × S5 is
infinite. We will now reexamine the same situation using the surgery exact sequence. By
[Br, p. 49], the sequence in this case is

L10(e) wacts SDIFF (S4 × S5) w
η [S4 × S5;G/O] wσ L9(e).

Here SDIFF (S4 × S5) is a set and exactness means that two structures (M, f) and
(M ′, f ′) have the same image in [S4 × S5;G/O] if and only if there is a τ ∈ L10(e) so
that τ(M, f) = (M ′, f ′). The action is connected sum with a homotopy sphere obtained
by realizing a surgery obstruction as in our discussion of plumbing. See [Br, II.4.10]27.
Since L10(e) = Z/2Z, and L9(e) = 0, this means that

| [S4 × S5;G/O] | ≤ |S(S4 × S5) | ≤ 2| [S4 × S5;G/O] |,

where | · | denotes cardinality.

Lemma 24.1. If X and Y are pointed spaces, X compact, then Maps(ΣX, ∗;Y, ∗) ∼=
Maps(X, ∗; ΩY ).

Proof: Since X is pointed, ΣX refers to the reduced suspension (X×I)/(X×∂I∪∗×I).
A map ρ : ΣX → Y gives us a map ρ′ : X → ΩY by

ρ′(x)(t) = ρ(x, t).

This formula evidently defines a homeomorphism between the mapping spaces under
consideration.

Lemma 24.2. There is a space B(G/O) such that ΩB(G/O) is homotopy equivalent to

G/O.

It follows that [S4 × S5, G/O] = [Σ(S4 × S5), B(G/O)].

Lemma 24.3. Σ(S4 × S5) " S5 ∨ S6 ∨ S10.

27 THis means that in the PL and TOP cases, the action becomes trivial and we have SCAT (M) ∼=

[
◦
M,G/CAT ] for CAT=TOP, PL.
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Proof: We have maps γ1 : S4 × S5 → S4, γ2 : S4 × S5 → S5, γ3 : S4 × S5 → S9. After
suspending, we can add these maps and the resulting map

Σγ1 + Σγ2 + Σγ3 : Σ(S4 × S5)→ Σ(S4 ∨ S5 ∨ S9)

induces isomorphisms in homology and is therefore a homotopy equivalence.

Therefore,

[Σ(S4 × S5), B(G/O)] = π5(B(G/O))⊕ π6(B(G/O))⊕ π10(B(G/O))

= π4(G/O)⊕ π5(G/O)⊕ π9(G/O).

The surgery exact sequence for Sn is

Ln+1(e) wacts SDIFF (Sn) w [Sn;G/O] w Ln(e).

Kervaire and Milnor showed that SDIFF (Sn) is finite for n ≥ 5, so up to finite ambiguity,
πn(G/O) ∼= Ln(e). Therefore, up to finite ambiguity, [S4 × S5;G/O] = π4(G/O) ∼= Z.
This shows that there are infinitely many smooth manifolds M and homotopy equiva-
lences h :M → S4 × S5.

It is probably (past) time to say something about the space G/O and the map η :
SDIFF (S4 × S5) → [S4 × S5;G/O]. The space BO is the space we have been calling
Gr. Homotopy classes of maps from X into BO classify vector bundles over X . The
space BG is a classifying space for spherical fibrations. We have ΩBO " O, the infinitely
stabilized orthogonal group, and ΩBG " G, where G = lim−→ Maps{Sn;Sn}. See [Br,
p. 45] for more information. The space G/O is defined to be the homotopy fiber28 of
a map O → G. The map is obtained by restricting an orthogonal transformation to the
unit sphere.

The homotopy groups of G are the stable homotopy groups of spheres, which are
finite by Theorem 23.5, so Theorem 23.3 above says that the homology groups are also
finite. This means that the map G/O → BO is a rational equivalence, so H∗(G/O;Q)
is a polynomial algebra generated by Pontrjagin classes. As before, G/O is rationally
equivalent to a product of K(Q, 4i)’s, so

[M,G/O]⊗Q ∼= ⊕H4i(M ;Q).

Rationally, the map S(M)→ [M,G/O] measures the difference between the L-classes of
the domain and range of a structure.

28 The homotopy fiber is the fiber of the mapping path fibration Pf , [S, p. 99].
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In the case of M = S5 × S4, the surgery exact sequence produces infinitely many
smooth manifolds Ni homotopy equivalent toM such that the difference between M and
Ni is detected by the first Pontrjagin class.

The computation would be much the same for any simply connected manifold of di-
mension �= 4k. In the 4k-dimensional case, we have:

0→ S(M)→ [M,G/O]→ Z

so after tensoring with Q and interpreting the terms in the sequence, we see that up to
finite ambiguity, S(M) is in 1-1 correspondence with the kernel of a homomorphism

⊕H4i(M ;Q) σ−→ Q.

The map σ is onto because Hirzebruch’s signature theorem says that Lk of a 4k-dimensional
manifold is a homotopy invariant, which means that H4k(M4k;Q) is not in the image of
the structure set.

The upshot is that subject to Hirzebruch’s formula and a possible finite ambiguity,
the Pontrjagin classes of manifolds homotopy equivalent to a smooth simply connected
manifold M take on all possible values. For sharper integral results, see [Ka]. The space
G/O and its siblings G/TOP and G/PL are much studied. See, for instance, [MM].
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Chapter 25. Generalized homology theories

We also need to say something about spectra and generalized homology theories. Basic
references for this topic are [A1], [A2]. One reason for our interest in this topic is role
played by stable cohomotopy theory in the last two sections. An understanding of stable
cohomotopy was essential to the proof that rational L-classes could be understood in
terms of signatures of submanifolds with trivial normal bundles.

A second reason for our interest is appearance of the term [M ;G/TOP ] in the surgery
exact sequence. We have already seen that this is calculable rationally. For purposes of
integral computation and, even more importantly, in order to improve the functoriality
of the surgery exact sequence, it is good idea to replace this first by H0(M ;G/TOP )
and then by the Poincaré dual expression Hn(M,G/TOP ). It is obvious that we need
some definitions.

Definition 25.1. A spectrum is a sequence En of spaces with maps εn : ΣEn → En+1.
Of course, we are equally free to specify maps ε′n : En → ΩEn+1. If these maps En →
ΩEn+1 are homotopy equivalences, the spectrum is called an omega spectrum.

It is often good to take the maps εn to be embeddings and the maps ε′n : En → ΩEn+1

to be homeomorphisms. We ignore such points here.

Example 25.2.

(i) The sphere spectrum is the spectrum with En = Sn and maps ΣSn → Sn+1.
(ii) If X is a CW complex, its suspension spectrum, Σ∞X is the spectrum with En =

ΣnX .
(iii) The Eilenberg-MacLane spectrum is the spectrum

K(Z, n)→ ΩK(Z, n+ 1).

(iv) If E = {En} is a spectrum, then so is X ∧ E = {X ∧En} for any fixed X .

Definition 25.3 (G. W. Whitehead, [W]).

(i) H̃n(X,E) = lim−→[Σ
kX,En+k] and

(ii) H̃n(X,E) = lim−→[S
n+k, Ek ∧X ].
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Part (i) should be familiar to most readers in case En = K(Z, n), since by obstruction
theory,

[ΣkX, ∗, K(Z, n+ k), ∗] ∼= H̃n+k(ΣkX, ∗;Z) = H̃n(X ;Z).

To the geometrically oriented reader, such as the author, part (ii) may be less clear. One
derives some comfort from the observation that

H̃n+1(ΣX,E) = lim−→[S
n+k+1, (S1 ∧X) ∧ Ek] = lim−→[S

n+k,ΩΣ(X ∧Ek)],

so if Ek is (k− 1)-connected, as in the examples above, then X ∧Ek is (k− 1)-connected
and πn+k(X ∧ Ek) ∼= πn+k(ΩΣ(X ∧ Ek)) if n ≤ 2k − 3, [S, p.458]. The upshot is that
H̃n+1(ΣX,E) = H̃n(X,E). We will refer to a spectrum for which Ek is (k−1)-connected
as a connective spectrum.

We define relative groups by H̃n(X,A;E) = Hn(X ∪ CA;E) and verify that the re-
sulting theory satisfies the Eilenberg-Steenrod axioms.29 The only axioms which are in
doubt are the long exact sequence of a pair and excision. The long exact sequence of
(X,A) comes about by considering the sequence:

A→ X → X ∪ CA→ X ∪ CA ∪ CX → . . .

where at each stage we form the next stage by coning off the image of the previous stage.
Applying Hn( ;E) to this sequence and identifying X ∪ CA ∪ CX with the homotopy
equivalent space ΣA, we obtain

Hn(A;E)→ Hn(X ;E)→ Hn(X ∪ CA;E)→ Hn(ΣA;E) ∼= Hn−1(A;E)→ . . .

It is clear that the composition

H̃n(A;E)→ H̃n(X ;E)→ H̃n(X ∪ CA;E)

is trivial. It is less clear that it is exact at the middle term. In fact, if we think about
the possibility (X,A) = (M,Σ), where Σ is a homology sphere and M is a contractible
manifold which it bounds, then the possibility of an exact sequence of such homology
groups defined as homotopy groups seems rather unlikely. The solution lies in the magic
of stabilization:

29 Excepting, of course, the dimension axiom, which is false for such theories.
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Theorem 25.4 ([S, p. 487]). Let (X,A) be an n-connected relative CW complex,

where n ≥ 2, such that A is m-connected, where m ≥ 1. Then the collapsing map

k : (X,A)→ (X/A, ∗) induces an isomorphism

k# : πq(X,A)→ πq(X/A)

for q ≤ m+ n and an epimorphism for q = m+ n+ 1.

We are interested in the exactness of the bottom row in

πn+k(Ek ∧ A) w

u

πn+k(Ek ∧X) w

u

πn+k(Ek ∧X,Ek ∧ A)) w

u
πn+k(Ek ∧ A) w πn+k(Ek ∧X) w πn+k(Ek ∧ (X ∪ CA)) w

The top row is exact. Because of the suspension isomorphism, proving exactness for the
pair (X,A) is the same as proving exactness for the pair (Σ�X,Σ�A), 
 large. We may
therefore assume that X and A are highly connected, whence the bottom row is exact
as a consequence of the Five Lemma. If E is connective, the limit stabilizes and this is
enough to prove exactness.

The excision axiom follows easily from suspension and the exact sequence of a pair, so
we have all of the axioms of homology except the dimension axiom. What is Hk(pt,E)?
We write

Hk(pt;E) = H̃k(S0;E) = lim−→ πn+k(S0 ∧ En) = lim−→πn+k(En).

For the Eilenberg-Maclane spectrum, then, the homology of a point has a Z in dimension
0 and nothing elsewhere. Thus, all of the Eilenberg-Steenrod axioms hold for “Eilenberg-
MacLane homology” and for finite CW complexes, at least, Eilenberg-MacLane homology
is isomorphic to ordinary homology with Z coefficients. The coefficients of the homology
based on the sphere spectrum is the stable homotopy groups of spheres. This homology
theory is called stable homotopy theory30 and the associated cohomology theory is stable
cohomotopy theory.

These results also hold in the nonconnective case, but there they require a certain
amount of infrastructure. The third section of [A1] – which is more-or-less independent of
sections 1 and 2 – contains a pleasant exposition of the theory of spectra and generalized
homology.

30Note that Hk(X;S) = lim−→πn+k(Σ
mX).
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Computing [X, Y ] is much easier when we know that Y is one of the spaces in an
Ω-spectrum, since we have Mayer-Vietoris sequences, transfers, duality – all of the usual
homological machinery – helping us out. There is also an Atiyah-Hirzebruch spectral
sequence which starts with E2

p,q = Hp(X ; πq(E)) and converges to H∗(X ;E).

The slogan, as expressed in a memorable lecture by Frank Quinn, is that “homology
is your friend,” the point being that one should regard oneself as being able to compute,
or at least extract reasonable information from any part of a theory which is expressible
as generalized homology.

Remark 25.5. Workers in this area often prefer to talk about the homology spectrum
of X with coefficients in E as being H(X ;E) = X ∧ E and then consider the homology
groups to be the homotopy groups of the homology spectrum. With this approach, the
usual long exact sequences of topology become homotopy exact sequences of fibration
sequences. Thus, for example, we have a fibration

H(A)→ H(X)→ H(X,A)

whose homotopy sequence is the usual homology sequence of a pair.31 The advantage of
this is that spaces contain considerably more information – k-invariants, for instance –
than their sequence of homology groups.

One particularly interesting spectrum, constructed by Frank Quinn in his thesis [Q],
is the simply connected L-theory spectrum. The space Li(e) is a (huge) simplicial
complex where the 0-simplices are surgery problems f : (N i, ∂N) → (M i, ∂M) with
f |∂N a homotopy equivalence.

A 1-simplex connecting 0-simplices (N, f) and (N ′, f ′) is a cobordism of such objects,
that is, a surgery problem F : (P ; ∂P,N,N ′) → (W ; ∂W,M,M ′) so that F |N = f ,
F |N ′ = f ′, ∂P = N ∪N ′∪Q, ∂W =M ∪M ′∪R, and F : (Q, ∂N, ∂N ′)→ (R, ∂M, ∂M ′)
is a homotopy equivalence of triples.

31 The bemused reader will be relieved to hear that fiberings and cofiberings are the same for CW spectra

[A1, p. 156].
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N

N N'

N'

P

M

M M'

M'

W
F

h.e.

Q R

A 2-simplex is a similar gadget modeled on a 2-simplex, etc.

We call this space Li(e) because we have not controlled the fundamental group. If

(N, ∂N)→ (M, ∂M) is a vertex, i ≥ 5, we can do simultaneous surgery on S1’s in
◦
N and

◦
M to make N and M simply connected and then excise neighborhoods of corresponding
disks (D2

i , ∂D
2
i ) in (N, ∂N) and (M, ∂M) to make the boundaries simply connected. A

similar process works for higher-dimensional simplices.

Notice that a loop in Li(e) would give us a sequence of cobordisms which could be
pasted together to give a vertex in Li+1(e).

N1

N2

N3

N1

N2

N 3

F M1

M2

M 3

M1

M2

M3

Now, a loop in Li(e) is a vertex in ΩLi(e), so this leads to

ΩLi(e) ∼= Li+1(e).
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This says that the spaces Li(e) form an (upside down) spectrum. Wall’s theorem that
“×CP2” induces an isomorphism of surgery groups generalizes to give a homotopy equiv-
alence Li(e) ∼= Li+4(e), i ≥ 5, so we have a 4-periodic sequence of “surgery spaces.”

Quinn goes on to perform similar “spacification” operations in the nonsimply connected
case and on the other terms of the surgery exact sequence. The result is that the surgery
exact sequence becomes the homotopy sequence of a fibration. See [Q], [N], [We] for more
information.

Remark 25.6. The reader will have noticed that the sketch above lacks detail. Talking
about the “space of all manifolds,” for instance, should and does lead to confusion. The
reference [N] contains a very nice treatment of these and many other issues.

One consequence of this is:

Theorem 25.7 [N, p. 81]. The surgery exact sequence in the TOP and PL categories

is an exact sequence of groups and homomorphisms.
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Chapter 26. Double Suspension and the Giffen construction

In this section, we will exhibit a simplicial complex which is homeomorphic to S5 but
which is not PL homogeneous. This shows that manifolds can have simplicial triangu-
lations which are not PL triangulations. We begin with the construction of a certain
homology 3-sphere and a contractible 4-manifold which it bounds.

Example 26.1 (The Mazur manifold [Z]). Construct W 4 by attaching a 2-handle

to the link in S1 ×D2 ⊂ ∂(S1 ×D3) pictured below:

W 4 is contractible and its boundary is therefore a homology sphere. Computation
shows that π1(∂W ) �= 1. The homology sphere ∂W is called the Mazur homology sphere.
Consider the universal cover of S1 ×D2 pictured below. Note that the two-point com-
pactification of this universal cover is a D3 containing a Fox-Artin arc.32

32 See example 2.22.

166



26. Double Suspension and the Giffen construction 167

The shift on the universal cover induces a shift σ : D3 → D3 with two fixed points
at ±∞. Cutting the D3 in half yields the picture below, where β is the part of the
Fox-Artin arc over the positive real axis:

Form the mapping torus T (σ) = D3 × [0, 1]/ ∼, where (x, 0) ∼ (σ(x), 1). T (σ) is
homeomorphic to D3 × S1 and contains the mapping torus of the restriction of σ to the
piece β of the Fox-Artin arc. Even though β has two components, the mapping torus of
α|β is homeomorphic to S1 × [0, 1]. We can verify this by noting that the mapping torus
is a connected 2-manifold with Euler characteristic zero and boundary consisting of two
S1’s. A more direct verification is to straighten out the arc and draw the mapping torus.

t

The top boundary curve of this annulus is a Mazur link in the boundary of S1 ×D3.
This Mazur link consists of the fundamental domain of the shift, which is in the boundary
of the mapping torus, together with three arcs formed by dragging the points at the top
of the fundamental domain around the mapping torus. The confused reader should look
back at the picture of the Mazur link. The other boundary curve is a standard circle.
Adding a boundary collar to S1 ×D3 and pushing the Mazur link out to the boundary
shows that S1 ×D3 contains a (wild) annulus such that one boundary component is a
Mazur link in the boundary and the other component is S1 × {0}. This is the Giffen
construction. Attaching the core of the 2-handle of the Mazur manifold W 4 to this
annulus gives a (wild) D2 in the interior of W 4 whose boundary curve is the central
circle in S1 ×D3. The disk D is called the Giffen disk.

Theorem 26.2 (Double Suspension [Ca]). The double suspension of any homology

3-sphere is homeomorphic to S5.

Proof for the Mazur homology sphere: We will prove that the double suspension
of ∂W 4 is homeomorphic to S5. By Theorem 2.7, it suffices to show that the double
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suspension of ∂W 4 is a manifold. The double suspension of ∂W 4 is the join S1 ∗ ∂W 4,
which is a manifold away from a singular circle. Near this singular circle, S1 ∗ ∂W 4 is
locally homeomorphic to cone (∂W 4)×R.
Claim: W 4/D is homeomorphic to cone(∂W 4), where D is the Giffen disk.

Given this claim, the special case follows from a theorem of Bryant:

Theorem 26.3 (J. Bryant [B]). If D ⊂
◦
Mn is homeomorphic to Dk, thenMn/D×R1

is homeomorphic to Mn ×R1.33

Proof of claim: We will show that D = ∩∞i=1Ki, where K1 ⊃ K2 ⊃ . . . and W
collapses toKi for each i. This suffices, since if Ni is a small enough regular neighborhood

of Ki, we have
◦
N i ⊃ Ni+1) for all i and (Ni −

◦
N i+1

∼= ∂Ni × [0, 1] for all i, so W −
D ∼= ∂W × [0,∞). Since cone(∂W ) and W |D are both one-point compactifications of
∂W × [0,∞), they are homeomorphic.
Let K1 be the union of S1×D3 with the core of the 2-handle. Since a mapping cylinder

collapses to a subcylinder, the mapping torus of σ collapses to the mapping torus of σ|α
union the mapping torus of σ|[1,∞]× D2. The result is K2. Here is a very schematic
picture:

7

K

H

S(H)
U

N
H(N)

Further Ki’s are constructed by collapsing further around the torus.

33 For k = 1, this theorem is due to Andrews-Curtis [AnC]. The proof is a Bing Shrinking argument

using the “Bing staircase construction.” A different proof of Bryant’s theorem is given in [D].
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Remark 26.4. In fact, to get the Ki’s into the interior of W , we should probably add
a boundary collar to W before starting this process. Begin by collapsing the collar and
then collapsing to K1 as above.

Corollary 26.5 (Edwards). Noncombinatorial triangulations of S5 exist.

Proof: The link of a 1-simplex of the singular circle is ∂W , so the double suspension
triangulation of ∂W is not combinatorial.

Remark 26.6. Notice that the simplices of the double suspension triangulation of S5 are
wild when viewed in the ordinary triangulation. In particular, it is not always possible
to move a 2-disk off a “singular” 1-simplex by general position.

Edwards proved that the double suspension of the Mazur homology 3-sphere is S5

and showed that the triple suspension of any homology sphere is a sphere. Soon after,
Cannon [Ca] proved that the double suspension of an arbitrary homology 3-sphere is a
sphere.

Definition 26.7. A metric space X has the disjoint disk property if for any f1, f2 :
D2 → X and ε > 0, there exist f̄1, f̄2 : D2 → X so that d(fi, f̄i) < ε, i = 1, 2, and
f̄1(D2) ∩ f̄2(D2) = ∅.

Definition 26.8. A metric space X is an ANR homology n-manifold if

(i) X has finite covering dimension.
(ii) For each x ∈ X and neighborhood U of x in X , there is a neighborhood V of x

contained in U so that V → U is nullhomotopic.
(iii) For each x ∈ X, Ȟk(X,X − {x}) is 0 for k �= n and Z for k = n.

Theorem 26.9 (Edwards’ Disjoint Disk Theorem [D]). If f : M → X is a cell-

like map from a closed n-manifold to an ANR homology manifold, n ≥ 5, then X is a

manifold if and only if X has the disjoint property.

Theorem 26.10 (Quinn’s Resolution Theorem [Q1], [Q2]). If X is a connected

ANR homology n-manifold, n ≥ 4, then there exist an n-manifoldM and a cell-like map

f : M → X if and only if a single Z obstruction vanishes. This obstruction vanishes

whenever X contains a manifold point. Thus, a connected ANR homology manifold with

a manifold point is a manifold if and only if it has the disjoint disk property. When a

resolution exists, it can be taken to be a homeomorphism over any n-manifold subset of

X .
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Remark 26.11. Ferry-Weinberger and Bryant-Mio have recently shown that this ob-
struction can be realized.

We illustrate the use of these theorems by proving that every embedding of Sn−1 in
Sn can be approximated by a locally flat embedding. (Corollary 3.5 shows that not
all codimension one embeddings of Sn−1 in Sn are locally flat.) This proof is due to
R. Ancel [A]. We begin by stating the basic tameness condition for codimension-one
embeddings of manifolds.
Here is the statement of the theorem:

Theorem 26.12 (Locally flat approximation theorem [AC]). Let Mn−1 and

Nn be manifolds, M closed, ∂N = ∅, n ≥ 5, and let f : M → N be an embedding. Let

ε > 0 be given. Then there is a locally flat embedding f̄ :M → N with d(f(x), f̄(x)) < ε
for each x ∈M .

Proof: If Mn−1 ⊂ Nn is a separating submanifold, let C1 and C2 be the two compo-
nents of N −M . Form an ANR homology manifold X = C1 ∪M × [−1, 1]∪C2. There is
a CE map p : X → N obtained by collapsingM × [−1, 1] toM . By the Resolution Theo-
rem, there is a manifold P and a CE map q : P → X . The map q can be taken to be the
identity on a neighborhood of M × 0. Using Siebenmann’s Theorem to approximate the
CE composition p ◦ q by homeomorphism h gives the desired locally flat approximation
to M .
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Chapter 27. Inverse limits

Definition 27.1. If X1
α2←−− X2

α3←−− X3
α4←−− . . . is an inverse sequence of spaces and

maps, we define
lim←−{Xi, αi} = {(x1, x2, x3, . . . )|αi(xi) = xi−1}.

We write αij for the composition αj+1 ◦ · · · ◦ αi : Ki → Kj . The space lim←−{Xi, αi} is
called the inverse limit and the maps αi are called bonding maps.

Exercise 27.2. If X = lim←−{Ki, αi} and Y = lim←−{Li, βi}, the a collection of maps
fi : Ki → Li with βi ◦ fi = fi−1 ◦ αi induces a map f : X → Y .

Let X = lim←−{Ki, αi}, with diam(Ki) ≤ 1. We metrize
∐
Ki as follows: If k, 
 ∈ Ki, let

kj = αij(k) and let 
j = αij(
). Then

d(k, 
) =
i∑
j=1

1
2j
ρj(kj, 
j).

Here, ρj denotes the metric on Kj . If k ∈ Ki, 
 ∈ Kj , i > j,

d(k, 
) =
1
2j
d(αij(k), 
) + (

1
2j

− 1
2i
).

Lemma 27.3. The metric completion of
∐
Ki with this metric is

∐
Ki ∪X .

Proof: If {xi} is a Cauchy sequence with xi ∈ Ki, then the sequences {αij(xi)}i≥j
are Cauchy in Kj for each j and their limits determine an element of X . Conversely,
projections of elements of X determine Cauchy sequences in

∐
Ki.

For emphasis, we state the following as a lemma.
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Lemma 27.4. If k, 
 ∈ Ki and j < i, d(kj, 
j) ≤ d(k, 
).

Theorem 27.5 (M. Brown). Let X = lim←−{Zi, αi}, where the Zi’s are compact metric

spaces. For each i, let Ai be a subset of Map(Zi, Zi−1) such that αi ∈ Āi. Then we can

choose α′i ∈ Ai so that X ∼= lim←−{Zi, α
′
i}.

Proof: We show that the α′i’s can be chosen so that the identity map
∐
Zi →

∐
Zi

with metric induced by the αi’s and α′i’s is uniformly continuous in each direction. The
existence and uniqueness of the extensions to the metric completions completes the proof
that X ∼= X ′.

id

' '

Let {εi} be a sequence of numbers approaching 0. Our goal is to show that the α′i’s can
be chosen so that there is a sequence {δi} of numbers so that for k, 
 ∈ Zt ⊂

∐∞
j=1 Zj ,

d(k, 
) < δi ⇒ d′(k, 
) < εi and d′(k, 
) < δi ⇒ d(k, 
) < εi.
We prove inductively that we can choose a sequence {δi}, 0 < δi <

εi
2 , so that if

k, 
 ∈ Zj , and d(k, 
) < δi, then

|d(k, 
)− d′(k, l)| < εi
2
.
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Note that the existence of such a sequence immediately implies the theorem, since then

d(k, 
) < δi ⇒ d′(k, 
) <
ε1
2
+ δi < εi.

We begin with n = 1. In this case, d(k, 
) = d′(k, 
) = 1
2ρ1(k, 
) and the result is

trivial. We take δ1 = ε1
4
. Of course, this only holds on Z1, since d′ is not yet defined on

all of
∐
Zi.

For the inductive step, assume that we have chosen δi < εi
2
, 1 ≤ i ≤ n− 1, so that if

k, 
 ∈ Zi, i = 1, . . . , n− 1, and d(k, 
) < δj or d′(k, 
) < δj , 1 ≤ j ≤ n− 1, then

|d(k, 
)− d′(k, l)| < εj
2
.

Let k, 
 ∈ Zn. Then

|d(k, 
)− d′(k, 
)| = |d(k, 
)− d′(k′n−1, 

′
n−1)|.

Choosing α′n close to αn, we have

|d(k, 
)− d′(k′n−1, 

′
n−1)|

.= |d(k, 
)− d′(kn−1, 
n−1)| <
εi
2

whenever d(k, 
) < δi or d′(k, 
) < δi, i = 1, . . . , n− 1. Choosing dn so that

|d(k, 
)− d′(k, 
)| < εn
2

for d(k, 
) < δn, k, 
 ∈ K1

∐
· · ·
∐
Kn completes the induction and the proof.

Corollary 27.6. If X = lim←−{Xi, αi} with each αi a near-homeomorphism, then X is

homeomorphic to Xi for each i.

Corollary 27.7 (M. Brown). If X and Y are spaces with maps f : X → Y and

g : Y → X so that f ◦ g and g ◦ f are near-homeomorphisms, then X ∼= Y .

Proof: Consider the inverse limit

Z = lim←−{X
g←− Y f←− X g←− Y f←− X g←− . . .}.

Associating one way, we see that Z is a limit of copies of X under bonding maps which
are near-homeomorphisms. Letting the sets Ai in Theorem 27.5 be the set of homeomor-
phisms from X to X , this shows that Z is homeomorphic to X . Associating the other
way shows that Z is homeomorphic to Y , so X is homeomorphic to Y .
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Example 27.8. The inverse limit of near-homeomorphisms need not be a near-homeomorphism.

Proof: Consider the diagram below:

[0, 1]

u

[0, 1]u
α2

u

[0, 1]u
α3

u

. . .Xu
α4

u
∗ ∗u ∗u · · · ∗u

If the result were true, we could cross the diagram with the Hilbert cube Q34 and show
that the product of an arbitrary inverse limit of intervals times Q is homeomorphic to
Q. This is false, since such an inverse limit need not be an ANR.

Example 27.9. We give an example of spaces X and Y such that for each ε > 0 there
are maps fε : X → Y and gε : Y → X so that the compositions fε ◦ gε and gε ◦ fε are
ε-close to the identity.

Proof: Let α ⊂ S3 be a wild arc and let X = S3, Y = S3/α. Given ε > 0, choose
a copy of α in S3 which has diameter , ε and let fε be the map which collapses α to
a point. Let gε be a δ-inverse to fε, where δ , ε. Such δ-inverses exist by standard
CE map stuff. We have fε ◦ gε δ-close to id by construction. The composition gε ◦ fε is
ε-close to the identity because the tracks of the homotopy lie in small neighborhoods of
the point-inverses. Thus, the homotopy is quite small away from the arc α and is ε-sized
near the arc. This makes it ε-sized overall.

Theorem 27.10 (Alexandroff). Every compact metric space is an inverse limit of

finite polyhedra and PL maps.

Proof: Choose a countable dense subset {xi} of X and let φi(y) = min{d(y, xi), 1}.
Then φ(x) = (φi(x)) defines an embedding of X into Q. We write X = ∩Ui where Ui
is a neighborhood of X in Q, Ui ⊃ Ui+1. For each i, X is covered by finitely many
basic open sets Uij ⊂ Ui, where Uij = Vij ×

∏∞
kij+1[0, 1]. Here, Vij is an open subset

of
∏kij

1 [0, 1]. Since a finite union of such sets is a set of the same form, we can take
Ui = Vi ×

∏∞
ki+1[0, 1]. Since the projection of X onto

∏ki
i=1[0, 1] is a compact subset of

Vi, we can choose a finite polyhedron Ki ⊂ Vi so that X ⊂ Ki ×
∏∞
ki+1[0, 1].

34 The Hilbert cube is Q =
∏∞
i=1

[0, 1] with the metric d((qi), (q
′
i)) =
∑∞

i=1

|qi−q′i|
2i

. The projection map

Q× [0, 1]→ Q is clearly (?) a near-homeomorphism.
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We have X = lim←−{Ki ×
∏∞
ki+1[0, 1], αi}, where the bonding maps are inclusions. By

Theorem 27.5, there is some choice of {
i} so that X = lim←−{Ki×
∏∞
ki+1[0, 1], pi−1 ◦αi},

where

pi : Ki ×
∞∏
ki+1

[0, 1]→ Ki ×
�i∏
ki+1

[0, 1].

But then

X = lim←−{K1×
∞∏
k1+1

[0, 1] ×0←−− K1×
�1∏
k1+1

[0, 1]
p1◦α2←−−−− K2×

∞∏
k2+1

[0, 1] ×0←−− K2×
�2∏
k2+1

[0, 1]←− . . . }

and passing to the subsequence of even-numbered terms writes X as an inverse limit
of finite polyhedra. By Theorem 27.5 and simplicial approximation, we can use PL
bonding maps. Note that there do not exist triangulations of the Ki’s making {Ki, αi}
into a sequence of polyhedra with simplicial bonding maps, since the inverse limit of
positive-dimensional polyhedra and simplicial maps contains nontrivial simplices.

Exercise 27.11. Let γ : [0, 1]→ [0, 1] be the map

γ(x) =
{
2x 0 ≤ x ≤ 1

2

1− 2x 1
2 ≤ x ≤ 1.

Show that lim←−{I, γ} is connected but contains no nontrivial arcs.

Exercise 27.12. Show that the bonding maps can be taken to be surjective. (Hint:
This requires some work.)
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Chapter 28. Hilbert cube manifolds

Definition 28.1. A compact Hilbert cube manifold is a compact metric space X such

that every x ∈ X has arbitrarily small neighborhoods homeomorphic to
◦
Bn ×Q, where

◦
Bn is an open n-ball and Q is the Hilbert cube. Of course, n varies with the size of the
neighborhood.

Theorem 28.2. If c : K → L is a CE-PL map between finite polyhedra, then K ×Q is

homeomorphic to L×Q.
We begin by stating a proposition on inverting CE maps.

Proposition 28.3. Let c : K → L be a CE-PL map. Then for any ε > 0 there is a

CE-PL map ρ : L×D2dimK+1 → K so that the composition c◦ρ is ε-close to projection.

Proof of Theorem: We have K × Q = lim←−{K × In, proj}. Repeated application of
Proposition 28.3 lets us construct a sequence of CE-PL maps

L←− K ←− L× IN1 ←− K × IN2 ←− L× IN3 ←− K × IN4 ←− . . .

so that the 2-fold compositions are as close as we like to projection. The inverse limit of
the odd-numbered terms is therefore L×Q, while the inverse limit of the even-numbered
terms is K ×Q.

Proof of Proposition: Choose a PL embedding i : K → K ×
◦
DN and consider the

embedding c×i : K → L×DN . Choose triangulations so that c×i is simplicial and choose
a subdivision of the triangulation of L × DN so that proj : L × DN → L is simplicial
with respect to a fine triangulation of L. Take second deriveds so that projection is still
simplicial and let R be a simplicial neighborhood of (c× i)(R) in the second derived.

For each simplex ∆ ∈ L, (c×i)(K)∩(∆×DN ) is PL homeomorphic to the contractible
polyhedron c−1(∆), so R∩(∆×DN ) is a PL ball. We call R a blocked regular neighborhood
of (c × i)(K) over L. By induction on dim(L), there is a block-preserving CE-PL map
R→ (c× i)(K).

There is also a block-preserving CE-PL map from L ×DN to R. One way to obtain
this is via a sequence of CE-PL maps

(L(i) ×DN ) ∪R→ (L(i−1) ×DN ) ∪R
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which can be constructed by applying the h-cobordism theorem for manifolds with bound-

ary over each ∆i ∈ L to show that L×∆i −
◦
R.

Theorem 28.4 (Anderson-West). If K is a finite polyhedron, thenK×Q is a Hilbert

cube manifold.

Proof: The proof is by induction on simplices in a triangulation. Let K = K1 ∪ ∆,
where ∆ is a top-dimensional simplex. Let 1

2
∆ be a small simplex inside of ∆. By

induction, K1 × Q is a Hilbert cube manifold, so by Theorem 28.2, K − int( 1
2∆) is a

Q-manifold. It is now easy to see that every point in K × Q has neighborhoods of the
required sort, so K ×Q is a Q-manifold.

Remark 28.5. The argument of this section is adapted from [BC].

Homogeneity of the Hilbert cube

Our next task is to show that Q is homogeneous, that is, we will show that if x, y ∈ Q,
then there is a homeomorphism h : Q → Q with h(x) = y. If x ∈ Q and none of
the coordinates of x are either 0 or 1, then it is easy to construct a homeomorphism
s : Q→ Q with s(x) = ( 1

2 ,
1
2 ,

1
2 , . . . ). Thus, we need to show that if x ∈ Q, then there is

a homeomorphism h : Q→ Q so that h(x) has no coordinates equal to 0 or 1. Applying
the Baire category theorem to the space of homeomorphisms h : Q → Q, we see that it
suffices to prove that for each n ∈ Z and ε > 0, there is a homeomorphism h : Q → Q

with |h− id| < ε so that the nth coordinate of h(x) is neither 0 nor 1.

Recall that the metric on Q is d(x,y) =
∑ |xi−yi|

2i . Suppose that the nth coordinate
of x is 1. Choose m so that 2−m , 2−n and let h be a small self-homeomorphism of the
rectangle in the n−m plane pictured below.



28. Hilbert cube manifolds 179

x

h(x)

1_
2n

1_
2

m

The picture has been drawn to emphasize that distances are very compressed in the
m-direction for m large. Extend h̄(x) to h : Q→ Q by fixing the other coordinates. The
homeomorphism h clearly has the desired property, so homeomorphisms throwing x into
the “interior” of Q are open and dense in the self-homeomorphisms of Q.

Theorem 28.6. If M is a connected Q-manifold, then M is homogeneous.
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Chapter 29. The Grove-Petersen-Wu finiteness Theorem

The next few sections will be concerned the Gromov-Hausdorff space of isometry classes
of compact metric metric spaces. Here is a theorem, due to Grove-Petersen-Wu, which
is a spectacular application of this very global approach to differential geometry.

Theorem 29.1. Let M·D·
k·v(n) refer to the set of closed Riemannian n-manifolds with

curvature bounded below by k, diameter bounded above by D, and volume bounded

below by v. If n �= 3, M·D·
k·v(n) contains only finitely many homeomorphism types of

manifolds. For n �= 3, 4, smoothing theory then implies that M·D·
k·v(n) contains only

finitely many diffeomorphism types of manifolds.

Some properties of ANR’s

Definition 29.2. A function f : X → Y is (ε, δ)-continuous if

d(x, x′) < δ ⇒ d(f(x), f(x′)) < ε.

f is ε-continuous if there is a δ > 0 such that f is (ε, δ)-continuous.

Remark 29.3. Perhaps this definition should be rephrased to say that f : X → Y is
only (ε, δ)-continuous, since (ε, δ)-continuous does not imply continuous.

Lemma 29.4. If f : X → Y is uniformly continuous and d(f, g) < ε, then g is 3ε-
continuous (using the same δ that works for ε and f).

Proof: Choose δ > 0 so that d(x, x′) < δ ⇒ d(f(x), f(x′)) < ε. Then g is (3ε, δ)-
continuous.

Lemma 29.5. The composition f ◦ g of an (ε1, ε2)-continuous function f and an (ε2, ε3)-
continuous function g is (ε1, ε3)-continuous.

Definition 29.6. Let X be a compact metric space and let U be a finite open cover
of X . Then the nerve of U is the abstract simplicial complex N (U) whose simplices are
〈U0, U1, · · · , Un〉 such that Ui ∈ U and

⋂n
i=1 Ui �= ∅. The geometric realization |N (U)|

of N (U) is obtained by associating each 〈Ui〉 to ei, the ith basis vector in the separable
Hilbert space l2, and associating to each simplex 〈U0, U1, · · · , Un〉 the convex hull of
e0, · · · , en. If {φU} is a partition of unity subordinate to U , then φ(x) =

∑
φU (x)〈U〉
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gives a map from X into |N (U)|. Note that if z =
n∑
i=0

ti〈Ui〉 ∈ |N (U)|, ti �= 0, then

φ−1(z) ⊂
n⋂
i=0

Ui.

Theorem 29.7. If X is a compact ANR, then for every ε > 0 there is a δ > 0 so that if

Z is a metric space and f : Z → X is δ-continuous, then there is a continuous f̄ : Z → X

such that d(f, f̄) < ε. If Z0 ⊂ Z is a closed subset such that f | Z0 is continuous, then

we can take f̄ | Z0 = f | Z0.

Proof: To keep things relatively simple, we restrict ourselves to the case in which Z is
compact. Suppose that f is (δ, δ′)-continuous.

Step I. We show that Z can be taken to be a finite polyhedron.

Proof: Choose a finite covering U of Z by open sets U of diameter ≤ δ′

3
. Let φ : Z →

|N (U)| the map associated to a partition of unity subordinate to U , as above. Define a
discontinuous map ρ : |N (U)| → X by setting ρ(int σ) = f(xσ), where xσ is any element
of U0 ∩ · · · ∩ Un, σ = 〈U0, · · · , Un〉. Clearly, ρ is δ-continuous and d(ρ ◦ φ, f) < δ, so f
can be closely approximated by continuous functions if ρ can.

Step II. We assume that Z is a polyhedron, that f : Z → X is (δ, δ′)-continuous, and
that Z0 �= ∅.
Proof: Embed X in Rm for some m and let r : U → X be a retraction, U an open
neighborhood of X . Choose δ > 0 so that for each x ∈ X , Bδ(x) ⊂ U and r | Bδ(x) is
ε
4 -close to the identity. We may also assume that δ <

ε
4 .

Subdivide Z so that diam(σ) < δ′ for each simplex σ ⊂ Z. For each vertex v of Z, let
f ′(v) = f(v) and define f ′ : Z → Rm by extending linearly over each simplex σ. Note
that since diam(σ) < δ′, f(σ) is contained in Bδ(f(v)), where v is any vertex of σ. Since
Bδ(f(v)) is convex, f ′(σ) ⊂ Bδ(f(v)) ⊂ U for each σ ⊂ Z. Finally, set f̄ = r ◦ f ′. f̄ is
clearly continuous, and d(f, f̄) ≤ d(f, f ′) + d(f ′, f̄) ≤ 2δ + d(f ′, r ◦ f ′) ≤ 2δ + ε

4 < ε.
To finish the proof of the theorem, we need to consider the case in which Z0 �= ∅.

Triangulate Z − Z0 by a triangulation which gets finer and finer near Z0. In the con-
struction of f ′, if v is a vertex of a simplex σ with diam(σ) ≤ δ′

3 and d(v, Z0) < δ′

3 ,
let f ′(v) = f(z) for some z ∈ Z0 with d(v, z) < δ′

3
and extend linearly, as before. Let

f̄ | Z − Z0 = r ◦ f ′ | Z − Z0. Extending over Z0 by f gives the desired function f̄ .

Definition 29.8. If f1, f2 : Z → X are maps, then f1 and f2 are ε-homotopic if there
is a homotopy h from f1 to f2 such that diam(h({z} × I)) < ε for each z ∈ Z.
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Corollary 29.9. If X is a compact ANR, then for every ε > 0 there is a δ > 0 so that

if f1, f2 : Z → X are maps with d(f1, f2) < δ, then f1 and f2 are ε-homotopic.

Proof: Let h : Z × I → X be defined by h(x, t) =
{
f1(x), x ≥ 1

2

f2(x), x < 1
2 .
Approximating h

by a continuous map rel Z × {0, 1} gives the desired homotopy.

Corollary 29.10 (Eilenberg). If X is a compact ANR, then for each ε > 0, there
is a δ > 0 so that if f : X → Y is continuous with diam f−1(y) ≤ δ for each y ∈ Y ,
then there is a continuous function g : f(X)→ X such that g ◦ f is ε-homotopic to the

identity.

Proof: For each point y ∈ f(Y ), let g′(y) be a point in f−1(y). Approximating g′ by a
continuous function g and applying Corollary 29.9 does the trick.

Corollary 29.11. If Mn is a closed connected n-manifold, then there is an ε > 0 so

that if N is a connected n-manifold and f : M → N is a map with diam f−1(y) ≤ ε

for each y ∈ N , then f is onto, N is closed, and there is a map g : N → M such that

G ◦ f ∼= id.

Proof: By Corollary 29.9, we can choose ε > 0 small enough that there is a map
g : f(M) → M with g ◦ f " id. Then g∗ ◦ f∗ : Hn(M) → Hn(M) is the identity, which
implies that Hn(f(M)) = Z ⇒ f(M) = N . The rest follows. �

Remark 29.12. It follows from this that f is a homotopy equivalence. The argument
is not difficult, but it takes us a bit afield, so we omit it. In fact, Berstein and Ganea
have proven: “Let f : X → Y be a continuous map of an arbitrary topological space to
a manifold. If Hn(X ;Z) �= 0 and if f has a left homotopy inverse, then f is a homotopy
equivalence.”

Definition 29.13. A function ρ : [0, R) → [0,∞) is a contractibility function if ρ is
continuous at 0 and ρ(t) ≥ t for all t. We define M(ρ, n) to be the set of all compact
metric spaces of dimension ≤ n such that for each r, the ball Br(x) contracts to a point
in int Bρ(r)(x). Here, n can be any nonnegative integer or infinity.

Theorem 29.14. A compact, n-dimensional metric space X is an ANR if and only if

X is in M(ρ, n) for some contractibility function ρ.

Proof: (⇒) We may assume that X ⊂ Rm for some m. If X is an ANR, let r : U → X

be a retraction from a closed neighborhood U of X to X . Let ε > 0 be given. WLOG, we
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may assume that Bε(x) ⊂ U for each x ∈ X . Now choose δ > 0 so that r(Bδ(x)) ⊂ Bε(x)
for each x ∈ X . This is possible by uniform continuity of r. If ct : Bδ(x)→ U is a straight-
line homotopy from the inclusion to the constant map x, then r ◦ ct | (Bδ(x) ∩X) is a
homotopy from the inclusion to a constant map in Bε(x)∩X . If δn is the δ corresponding
to ε = 1

n
, let ρ(t) be 1

n
for all t between δn and δn+1.

(⇐) We begin by noting that:
(∗) If ∆ is a simplex, then every continuous f : ∂∆ → X with diameter < t extends

to a map f̄ : ∆→ X with diameter < ρ(t).
It follows by induction that if 0 < δi ≤ ρ(δi) < δi+1 < R for i = 1, · · · , n−1, then any δ1-
continuous map f from an n-dimensional polyhedron to X can be ρ(δn−1)-approximated
by a continuous map f̄ . As in the last part of the proof of Theorem 29.7 that we can
take f̄ = f on any closed subset K0 ⊂ K where f is continuous.
Embed X in Rn for some n and choose a sequence

{
δi
}n−1

i=1
as above. Let f : Rn → X

be a function such that d(v, f(v)) = d(v, X) for all v ∈ Rn. If K ⊃ X is a polyhedral
neighborhood so small that d(k,X) < δ1 for all k ∈ K, then f | K can be approximated
by a continuous function f̄ : K → X such that f̄ | X = f | X = id.

Corollary 29.15 (Kuratowski see Theorem 8.7). Compact topological manifolds

and finite polyhedra are ANR’s. In fact, every compact, finite-dimensional, locally con-

tractible space is an ANR.

Remark 29.16. Theorems 29.7 and 29.14, are quite similar, but they differ in an impor-
tant regard. In Theorem 29.7, the δ depends on ε and on X , but not on Z. In Theorem
29.14, the dimension of Z comes into play.

The Gromov-Hausdorff metric

Definition 29.17. If Z is a compact metric space and X and Y are closed subsets of
Z, then dHZ (X, Y ) = inf{ε > 0 | X ⊂ Nε(Y ) and Y ⊂ Nε(X)}. This is the Hausdorff
distance from X to Y in Z. The Gromov-Hausdorff distance from X to Y is:

dG(X, Y ) = infZ{dHZ (X, Y ) | X and Y are embedded isometrically in Z}.

Theorem 29.18. dG(X, Y ) = 0⇔ X and Y are isometric.

Proof: The proof is deferred.
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Definition 29.19. If X and Y are subsets of a metric space Z, then we will say that X
and Y are homotopy equivalent by ε-moves if there are maps f : X → Y and g : Y → X

such that f , g, and the homotopies all move points less than ε.

Theorem 29.20. If ρ is a contractibility function, then for each ε > 0 there is a δ > 0
such that if X, Y ∈ M(ρ, n) and dG(X, Y ) < δ, then X and Y are homotopy equivalent

by ε-moves.

Proof: Choose a sequence
{
δi
}n
i=1

with 0 < 4ρ(δi−1) < δi < ε for i = 2, · · · , 2n. If
dG(X, Y ) < δ1

2 , then there are δ1-continuous functions f
′ : X → Y and g′ : Y → X . f ′

and g′ can be ρ(δn−1-approximated by continuous functions f : X → Y and g : Y → X .
This argument is the same as the last half of Theorem 29.14. Since f ′ and g′ were δ12 -close
to id, f and g are 2ρ(δn−1)-close to id and f ◦ g and g ◦ f are 4ρ(δn−1)-close to id. The
same inductive argument now produces ρ(δ2n)-homotopies f ◦ g " id and g ◦ f ∼= id.

Corollary 29.21 (Borsuk, Petersen). Any precompact subset of M(ρ, n) contains
only finitely many homotopy types. (A metric space X is precompact if X has a finite

cover by ε-balls for each ε > 0).

Proposition 29.22. Given compact metric spaces X and Y and ε, δ > 0 there is a

finite set f1, · · · , fk of (ε, δ)-continuous functions fi : X → Y such that if f : X → Y is

(ε, δ)-continuous, then d(f, fi) < 4ε for some i.

Proof: Choose a finite collection
{
Bδ(ci)

}n
i=1

covering X . Consider the set Y n of func-
tions {1, · · · , n} → Y and choose f ′1, · · · , f ′k so that for each function f : {1, · · · , n} → Y

there is an i so that d(f ′i(j), f(j)) < ε for j = 1, · · · , n. If there are any (ε, δ)-continuous
functions f : X → Y , such that d(f ′i(j), f(cj)) < ε for all j, choose one and call it fi.
We claim that for every (ε, δ)-continuous function f : X → Y , there is an i so that

d(f, fi) < 4ε. Given such an f , choose i so that d(f ′i(j), f(cj)) < ε for all j. Then
d(fi(cj), f(cj)) < 2ε for all j. Since both f and fi are (ε, δ)-continuous and every x ∈ X
is within δ of one of the cj ’s, we conclude that d(fi, f) < 4ε.

Corollary 29.23. If X and Y are compact metric spaces,
{
(εi, δi)

}∞
i=1

is a sequence

of pairs of positive numbers with lim
i→∞

εi = lim
i→∞

δi = 0, and
{
fi
}∞
i=1

is a sequence of

functions from X to Y such that fk is (εi, δi)-continuous for i ≤ k, then {fi} has a

subsequence which converges to a continuous function f : X → Y .

Proof: By Proposition 29.22, there is a subsequence {fij} of {fi} so that d(fij , fik) <
8ε1 for all j, k. Keeping fi1 and taking another subsequence gets d(fij , fik) < 8·min(ε1, ε2)
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for j, k ≥ 1. Iterating this procedure yields a sequence of functions which converges to a
function which is (εi, δi)-continuous for all i and which is therefore continuous.

Remark 29.24. Note that (ε, δ)-continuous does not imply (kε, kδ)-continuous for k > 1.
Consider {0, 1} ⊂ R1. Any map defined on this space is ( 1

2
, 1

2
)-continuous, but not all

maps are (2, 2)-continuous.

Lemma 29.25. If X and Y are compact metric and dG(X, Y ) < ε, then there are maps

f : X → Y and g : Y → X which are (3γ, γ)-continuous for every γ ≥ ε. Moreover, f ◦ g
and g ◦ f are 4ε-close to id.

Proof: Let Z be a compact metric space containing isometric copies of X and Y such
that dZ(X, Y ) < ε. For each point x ∈ X , choose f(x) ∈ Y so that d(x, f(x)) < ε. The
inclusion i : X → X is (δ, δ)-continuous for every δ > 0 and d(i, f) < ε ≤ γ, so f is
(3γ, γ)-continuous for γ ≥ ε by Lemma 29.4.
We are now in a position to prove Theorem 29.18:

Proof: If dG(X, Y ) = 0, we can choose sequences {fi} and {gi} of functions fi : X → Y

and gi : Y → X for i = 1, · · · ,∞, so that fi and gi are 3
2i -continuous and fi ◦ gi and

gi ◦ fi are 2
i
-close to id. This is Lemma 29.25 with ε = 1

2i
. By Corollary 29.23 we can

find a subsequence so that {fij}, {gij}, {fij ◦ gij}, and {gij ◦ fij} converge to continuous
functions. Lim

i→∞
{fij ◦gij} = idY , lim

i→∞
{gij ◦fij} = idX , and f = lim

i→∞
{fi} and g = lim

i→∞
{gi}

are isometries.

Theorem 29.26 (Gromov-Hausdorff). dG is a complete metric on the set of isometry

classes of compact metric spaces.

Definition 29.27. The set of isometry classes of compact metric spaces with the
Gromov-Hausdorff metric will be denoted by CM.

Proof: Clearly, dG(X, Y ) = dG(Y,X) and we just proved that dG(X, Y ) = 0⇔ X and
Y are isometric, so it remains to prove the triangle inequality.
We will show that dG(X, Y ) < ε1 and dG(Y, Z) < ε2 implies that dG(X,Z) < ε1 + ε2.

Since dG(X, Y ) < ε1 and dG(Y, Z) < ε2, we can choose metrics d1 and d2 on X
∐
Y and

Y
∐
Z so that d1(X, Y ) < ε1 and d2(Y, Z) < ε2. Define d3 on X

∐
Y
∐
Z by:

d3(a, b) =


d1(a, b) if a, b ∈ X

∐
Y

d2(a, b) if a, b ∈ Y
∐
Z

inf{d1(a, y) + d2(y, b) | y ∈ Y }, if a ∈ X and b ∈ Z.
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It is not difficult to check that d3 is a metric and that d3(X,Z) < ε1 + ε2.
That dG is complete is not difficult to prove. If {Xi} is a Cauchy sequence of metric

spaces, one can metrize
∞∐
i=1

Xi as above and take the metric completion X̄ on X . One

then shows that X̄ is compact and that lim Xi = X̄ −X .

Theorem 29.28 (Gromov? Hausdorff?). If X and Y are compact metric spaces

such that every finite subset of X is isometric to a finite subset of Y and vice versa, then

X and Y are isometric.

Proof: Let ε > 0 be given and let
{
xi
}n
i=1

be a maximal collection of points in X
such that d(xi, xj) ≥ ε for i �= j. This maximal number n must be less than the
number of elements in any cover of X by balls of radius ≤ ε

2 , since no element of such a
cover can contain two of the xi’s. Let

{
yi
}n
i=1

be a collection of points in Y such that
d(yi, yj) = d(xi, xj) for all i, j. The hypotheses imply that {yi} is also maximal. Then

dG(X, Y ) ≤ dG(X, {xi}) + dG({xi}, {yi}) + dG({yi}, Y ) ≤ 2ε+ 0 + 2ε = 4ε.

Since ε was arbitrary, it follows that dG(X, Y ) = 0 and that X and Y are isometric.

Definition 29.29. If ρ : [0, R) → R is a contractibility function, we will say that a
space X is in class LGC(ρ, n) (LGC stands for locally geometrically contractible) if for
every ε > 0 and map α : ∂∆k → X , 0 ≤ k ≤ n, with diam(α(∂∆k)) < t < R, there is a
map ᾱ : ∆k → X with diam(ᾱ(∆k)) < ρ(t). We say that X ∈ LGC(k) if X ∈ LGC(ρ, k)
for some contractibility function ρ. Note that if X ∈M(ρ,∞), then X ∈ LGC(k) for all
k.

Proposition 29.30. Let ρ : [0, R) → R be a contractibility function and let 0 < δi ≤
ρ(δi) ≤ δi+1 < R for i = 1, · · · , k − 1. If X ∈ LGC(ρ, k − 1), then any δ1-continuous

map f from a k-dimensional polyhedron to K to X can be ρ(δn−1)-approximated by a

continuous map f̄ : K → X . Moreover, we can take f̄ = f on any close subset of L

where f is continuous.

Proof: We proceed exactly as in the proofs of Theorems 29.7 and 29.14. By induc-
tion, any δ1-continuous map f from an n-dimensional polyhedron to X can be ρ(δn−1)-
approximated by a continuous map f̄ . As in the last part of the proof of Theorem 29.7,
we can take f̄ = f on any closed subset K0 ⊂ K where f is continuous. �

Proposition 29.31. If X is n-dimensional and X ∈ LGC(ρ, 2n+1), then X is an ANR.
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Proof: The argument above shows that X ∈ LGC(ρ2n+1, 2n + 1). If we embed X
into R2n+1, then the proposition above allows us to construct a contraction from a
neighborhood U of X in X2n+1 to X . �
The next proposition gives a criterion for finite dimensionality.

Proposition 29.32. If X is a compact metric space such that for every ε > 0 there is

a map f : X → K from X to an n-dimensional polyhedron such that diam f−1(y) < ε
for all y ∈ Y , then X has dimension ≤ n.

Proof: Let U be an open cover of X and let ε be a Lebesgue number for U . Choose
f : X → K so that K is n-dimensional and diam f−1(y) < ε for each y ∈ K. For
each y ∈ K, choose a neighborhood Vy of y so that f−1(Vy) ⊂ U for some U . Then
V = {Vy | y ∈ Y } is an open cover of K and has a refinement V ′ such that no more than
(n+ 1) distinct elements of V ′ can have nonempty intersection. f−1(V ′) is a refinement
of U having the same property, so X is ≤ n-dimensional.

Definition 29.33. We say that X ∈ LGC(ρ, k) (LGC stands for locally geometrically
contractible) if for each 
 ≤ k and α : S� → X with diam(α(S�)) < t < R, we have
ᾱ : D�+1 → X with ᾱ|∂D�+1 = α and diam(ᾱ(D�+1)) < ρ(t).

Proposition 29.34. If Xi ∈ LGC(ρ, k), i = 1, 2, · · · , and lim
i→∞

Xi = X in the Gromov-

Hausdorff metric, then X ∈ LGC(k).

Proof: We induct on k, so we may assume that X ∈ LGC(ρ′, k−1) for some ρ′. Setting
ρ′′ = max(ρ, ρ′) and then renaming ρ′′ as ρ, we may assume that Xi, X ∈ LGC(ρ, k−1).
Claim: For any map α : ∂∆k → X , 0 ≤ k ≤ n, with diam(α(∂∆k)) < t < R, and ε > 0,
there is a triangulation T of ∆k and a map ᾱ : |T k−1| → X with ᾱ | ∂∆k = α and diam
(α(|T k−1|)) < 2ρ(t) and diam (ᾱ(∂|σ|)) < ε for every σ ∈ T k.
We defer the proof of the claim and show how the claim implies the proposition. Let

α : ∂∆k → X with diam(α(∂∆k)) < t < R. Choose {εi} so that 2ρ(εi) < t/2i for each
i > 0. By the claim, we can find a triangulation T1 of ∆k and a map α1 : |T k−1| → X

with α1 | ∂∆k = α, diam(α1(|T k−1|)) < 2ρ(t), and with diam(α1(|σ|)) < ε1 for every
σ ∈ T k−1

1 . Applying the claim again to the k-simplexes of T1, we obtain a subdivision
T2 of T1 and a map α2 : |T k−1

2 | → X extending α1 with diam(α2(|∂σ|)) < 2ρ(ε1) < t/2
for each simplex σ ∈ T k1 and diam(α2(|∂σ|)) < ε2 for every σ ∈ T k2 . Subdivisions Ti and
maps αi : Ti → X are defined similarly, with simplexes at the ith level having diameter
< t/2i. In the limit, these maps define a continuous function ᾱ : ∆k → X , since the
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image of every point is specified to within t/2i−2 at the ith stage of the construction.
The diameter of ᾱ(∆k) is less than or equal to 2ρ(t) + t, so X ∈ LGC(2ρ(t) + t, k). We
now prove the claim

Proof of claim: By the proof of Theorem 29.14, it suffices to show that for any
δ > 0 there is a δ-continuous map ᾱ : ∆k → X such that diam(ᾱ(∆k)) < ρ(t) + δ and
d(α, ᾱ | ∂∆k) < δ, since we can define β : ∆k → X to be α on ∂∆ and ᾱ elsewhere. This
β is 2δ-continuous, so if ε > 0 is given and δ is chosen sufficiently small, β | |T k| can be
ε-approximated by a continuous function ᾱ : |T k| → X extending α. One easily checks
that for a fine enough triangulation T , ᾱ has the desired properties.
Given δ > 0, choose Xi ∈ LGC(ρ, k) with dG(Xi, X) < δ′. Then there are (3δ′, δ′)-

continuous maps f : Xi → X and g : X → Xi so that d(f, id), d(g, id) < δ′. Since f ◦α is
3δ′-continuous, by Theorem 29.14, we can ε′-approximate f ◦α by a continuous function
α′ : ∂∆k → Xi. Since diam(α′(∂∆k)) < t, there is a continuous extension ᾱ′ of α′ to ∆k

with diam(ᾱ′(∆k)) < ρ(t). Now, ᾱ = g ◦ ᾱ′ : ∆k → X is the desired approximation to
α.

A finite-dimensional compact metric space is an ANR if and only if it is locally con-
tractible. This condition does not suffice when X is infinite-dimensional. Here is a useful
criterion for an infinite-dimensional compactum to be an ANR. Since we use only the
easy half of this theorem, we will prove only that half.

Theorem 29.35 (Hanner). A compact metric space X is an ANR if and only if it is

ε-dominated by finite complexes K for each ε > 0.

Proof: (⇒) Let δ > 0 be given. Cover X by open sets of diameter < δ/3 and let U be
a finite subcover of this cover. Let φ : X → N (U) be the map from X to the nerve of U
obtained by φ(x) =

∑
ψU (x)〈U〉 where ψU is a partition of unity subordinate to U .

The map ν : N (U) → X obtained by ν(
∑
ti〈Ui〉) = x, where x ∈ Ui and ti �= 0 is

δ-continuous. For δ small, it can therefore be ε′-approximated by a continuous function.
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The composition ν ◦ φ is 2ε′-close to the identity, so for ε′ small, it is ε-homotopic to the
identity. Thus, K = N (U) ε-dominates X .

Proposition 29.36. Suppose that:

(i) X = lim
i→∞

{Xi} in the Gromov-Hausdorff metric.

(ii) Each Xi is in M(ρ, n).

Then X is n-dimensional iff X is an ANR.

Proof: If X is n-dimensional, then the fact that X ∈ LGC(ρ′, 2n+ 1) implies that X
is ANR.
If X is ANR, choose a finite complex K and maps d : K → X , u : X → K so that

d ◦ u is ε-homotopic to the identity. Since the Xi’s are inM(ρ, n), the (⇐) argument in
Theorem 29.14 shows that if X ∈ M(ρ, n), then X ∈ LGC(ρk, n) for each k, where ρk
is a function depending only on ρ. Proposition 29.30 then shows that for large i there
are maps di : K → Xi so that lim

i→∞
di = d. It follows that for sufficiently large i di ◦ u

is ε-close to the identity and, therefore, has small point-inverses. By Proposition 29.32,
therefore, X has dimension ≤ n.

Remark 29.37. Note that the proof above shows that X is n-dimensional ⇔ X is
finite-dimensional. We have X finite-dimensional ⇒ X ANR ⇒ X n-dimensional.

Proposition 29.38. Suppose that:

(i) X = lim
i→∞

{Xi} in the Gromov-Hausdorff metric.

(ii) Each Xi is a closed manifold in M(ρ, n).
(iii) X is finite-dimensional.

Then X is an ANR homology manifold.

Proof: (X,X−pt) = lim−→{(X,X− int Bεi(x))}, where the bonding maps are inclusions
and the εi’s converge monotonically to zero. Thus, H∗(X,X − pt) = lim−→{H∗(X,X −
int Bεi(x))}, where the bonding maps are inclusions and the εi’s converge monotonically
to zero. If we fix i and choose δ’s so that εi < δi < εi+1 < δi+1 < εi+2 < δi+2, then for
sufficiently large j, we have:
(X,X − int Bεi(x))← (Xj, Xj − int Bδi(pj(x)))← (X,X − int Bεi+1(x))←
(Xj, Xj − int Bδi+1(pj+1(x)))← (X,X − int Bεi+2(x))← (Xj , Xj − int Bδi+2(pj+1(x)))
with all two-fold compositions homotopic to the appropriate inclusions. This shows that
X is a homology manifold.



Chapter 30. Simple homotopy theory in M(ρ, n)

This section is devoted to proving:

Theorem 30.1. Every precompact subset ofM(ρ, n) contains only finitely many simple

homotopy types.

It suffices to show that if {Xi} is a sequence in M(ρ, n) with lim
i→∞

Xi = X ∈ CM,

then Xi and Xj are simple homotopy equivalent for sufficiently large i, j.

Definition 30.2. If f : K → L and p : L→ B are maps and ε > 0, then f is a p−1(ε)-
equivalence if there exists a g : L→ K and homotopies H : f ◦ g " id, G : g ◦ f " id so
that p ◦H and p ◦ f ◦G are ε-homotopies.

We begin by recalling the statements of Theorem 17.2 and Theorem 18.2.

Theorem 17.2. For every finite complex L there is a δ > 0 so that if f : K → L is a

δ-equivalence, then f is simple.

Theorem 18.2. If B is a finite polyhedron, then there is an ε > 0 so that if K and

L are polyhedra, p : L → B is a map and f : K → L is a p−1(ε)-equivalence, then
τ(f) ∈ ker(p∗ :Wh(L)→Wh(B)).

Let Xi be a sequence of spaces inM(ρ, n) with lim
i→∞

Xi = X ∈ CM. By Proposition

29.30, X ∈ LGC(k) for all k ≥ 0. If X = lim←−{Ki, αi}, then pro-πn(X) refers to the
sequence {πnKi, (αi)#}. A sequence {Gi, αi} of groups and homomorphisms is stable if
it is equivalent as a system to a sequence of isomorphisms. The sequence isMittag-Leffler
if it is equivalent to a sequence of epimorphisms.

Theorem 30.3 [F2]. A compactum X is shape equivalent to an LGC(n) compactum if

and only if pro-πl(X) is stable for 0 ≤ l ≤ n and Mittag-Leffler for l = n+ 1.

Actually, we only need the (⇒) half of this theorem, which is due to Kozlowski-Segal
and Borsuk. Since X is surely shape equivalent to itself (no matter what shape theory
might be!), we see from this that our limit compactum has stable pro-πl(X) for all l.

Theorem 30.4 [F2]. A compactum X with pro-πl(X) stable for 0 ≤ l ≤ n and Mittag-

Leffler for l = n + 1 can be represented as an inverse limit X = lim←−{Ki, αi} with

αi : Ki → Ki−1 (n + 1)-connected. This means that αi# : πn+1(Ki) → πl(Ki−1) is an
isomorphism for each i and for 0 ≤ l ≤ n and that αi# : πn+1(Ki) → πn+1(Ki−1) is epi
for all i.
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It follows from all of this that if X ∈ LGC(k), then we can represent X as an inverse
limit lim←−{Ki, αi} with πl(Ki) = πl(X) for l ≤ k. Let Xi be a sequence of spaces in

M(ρ, n) with lim
i→∞

Xi = X ∈ CM and metrize X
∐( ∞∐

i=1

Xi

)
as before. Write X =

lim←−{Ki, αi} with αi# : π1(Ki) → π1(Ki−1) an isomorphism for each i. Let p : X → K1

be the projection from the inverse limit to the first term of the inverse sequence. By the
above, p# : π1(X)→ π1(K1) is an isomorphism. By passing to a subsequence of {Xi} if
necessary, Theorem 29.20 allows us to assume that there are 1/2i-(bi)homotopy equiv-

alences fi : Xi → Xi+1. The sequence of maps

{
fj ◦ · · · ◦ fi : Xi → X

∐( ∞∐
k=1

Xk

)}
is

Cauchy and converges to a map gi : Xi → X with d(gi(x), x) ≤ 1/2i−1 in X
∐( ∞∐

k=1

Xk

)
.

For large i, fi is a (p ◦ gi+1)−1(ε)-equivalence, where ε is chosen for K1 as in Chapman’s
Improvement. Thus, for large i, τ(fi) ∈ ker{(p ◦ gi+1)∗ : Wh(Xi+1)→ Wh(K1)} = {0},
since p ◦ gi+1 is a π1-isomorphism. This proves the Theorem.

There is a related “limiting form” of this result:

Theorem 30.5. If K and L are finite polyhedra and c1 : K → X and c2 : L → X are

CE maps, then K and L are simple-homotopy equivalent.

Proof: Choose p : X → K1 as above so that the composition p ◦ c2 induces an isomor-
phism of fundamental groups π1(L) → π1(K1). Let ε > 0 be given and choose δ > 0 so
that if Q ⊂ X is a set with diameter < δ, then p(Q) ⊂ Ki is a set of diameter < ε. By
Lemma A on p. 506 of [L], we can find maps f : K → L and g : L→ K and homotopies
F : g ◦ f " id, G : f ◦ g " id so that d(c1, c2 ◦ f) < δ, d(c2, c1 ◦ g) < δ, and so that c1 ◦F
and c2 ◦G are δ-homotopies. It follows immediately that f is a c−1

2 (δ)-equivalence and
a (p ◦ c2)−1(ε)-equivalence. By Chapman’s Improvement, this implies that f is a simple
homotopy equivalence.
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Chapter 31. Shape Theory

Definition 31.1.

(i) If {Ki, αi} is an inverse sequence of compact polyhedra and PL maps, we define
the shape of {Ki, αi} to be the equivalence class of {Ki, αi} generated by passing
to subsequences and homotoping the bonding maps. Thus, {Ki, αi} ∼ {Ki, α′i} if
αi ∼ α′i for all i and {Ki, αi} ∼ {Kij , αijij−1}.

(ii) If X is a compact subset of Rn for some n, we define the shape of X to be the
shape of the sequence {Ki, αi} where K0 is a PL ball containing X , Ki is a closed
polyhedral neighborhood of X in Rn, and αi : Ki → Ki−1 is the inclusion.

(iii) In general, we define the shape of a compact metric X to be the shape of any
inverse system {Ki, αi} with lim←−{Ki, αi} = X and K0 contractible.
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