Homotoping $\varepsilon$-Maps to Homeomorphisms

Steve Ferry

American Journal of Mathematics, Vol. 101, No. 3 (Jun., 1979), 567-582.

Stable URL:
http://links jstor.org/sici?sici=0002-9327%28197906%29101%3 A3%3C567%3AHTH%3E2.0.CO%3B2-2

American Journal of Mathematics is currently published by The Johns Hopkins University Press.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://uk jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have
obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://fuk.jstor.org/journals/jhup.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http:/fuk.jstor.org/
Mon Oct 17 08:35:08 2005



HOMOTOPING &-MAPS TO HOMEOMORPHISMS.

By STEVE FERRY*

1. Introduction, Notation, and Preliminaries. If Y is a metric space, a
continuous function g:Y—X is called an e-map if diam(g~(x))<e for each
x € X. Kirby and Siebenmann [10, p. 220; 16] have conjectured that if M is a
compact n-manifold without boundary and £ >0 is given, then there is a § >0
such that if N is another compact n-manifold without boundary and g: M—N is
a surjective §-map, then g is homotopic through e-maps to a homeomorphism.
The purpose of this paper is to verify this conjecture (along with an appropriate
modification dealing with noncompact and/or bounded manifolds) for mani-
folds of dimension greater than four.

If a is an open cover of a space Y, maps f,g:X—Y are said to be
a-homotopic if there is a homotopy h,: X—Y, 0<¢<1, such that hy=f, h;=g,
and such that for each x € X there is a U, € a which contains h,(x) for 0<¢< 1.
A map f:X—Y is an a-domination if there is a map g: Y—X such that fog is
a-homotopic to the identity. In such a situation, g is called a right a-inverse for
f. f:X—>Y is called an a-equivalence if f is an a-domination and for some right
a-inverse g, go f is f ~*(a)-homotopic to the identity, where f ~!(a) denotes the
cover { f "} (U)|U €a} of X. We call g an a-inverse for f. A map g: Y—X is
called an a-map if for each xE€ X there is a U,€a such that g~ }(x)C U,.
a-dominations, a-equivalences, and a-maps of pairs are defined by requiring
that all maps and homotopies be maps and homotopies of pairs. A map f: X—Y
is said to be proper if f ~}(K) is compact for each compact KC Y. f:X—Y isa
proper a-equivalence if f, g, and the homotopies are proper. If a is an open
cover of Y, then for each BCY, St(B,a)= U {U€E€a|UNB#J} and Sta=
{St(U,@)|U € a}. St?a =St(Sta). The terms e-map, e-domination, e-equivalence,
etc., are defined by letting a be the open cover of Y by open balls of radius ¢ in
the definitions above. Here is the statement of our main theorem.

TueoreM 1. If M is an n-manifold and a is an open cover of M, then
there is an open cover B of M such that if N is an n-manifold and g: (M,0M)—
(N,0N) is a proper -map, then g is homotopic through a-maps to a homeomor-
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phism. This is true provided that either

i.n>6or
ii. n=5 and g|oM is a homeomorphism onto oM.

Theorem 1 is a direct consequence of the following three theorems.

TueoreMm 2. If X and Y are locally compact ANRs and Y is a closed
subset of X, then for each open cover a of X there is an open cover 8 of X such
that if g: X—Z is a surjective proper B-map, then there is a proper a-domina-
tion of pairs f:(Z,g(Y))—(X,Y) with right a-inverse g.

Tueorem 3. If M is a connected topological manifold and a is an open
cover of M, then there is an open cover B of M such that if N is a connected
topological manifold of the same dimension and f: (N, 0N)—(M,0M) is a proper
B-domination of pairs, then f is a proper a-equivalence of pairs.

THEOREM 4 (a-approximation theorem). If M" is a topological manifold
and a is an open cover of M, then there is an open cover B of M such that if N
is a topological manifold of the same dimension and f:(N,dN)—(M,0M) is a
proper B-equivalence of pairs, then f is a-close to a homeomorphism. This is
true provided that either (i) n>6 or (ii) n=5 and f|0ON is a homeomorphism
onto 0M.

Theorem 4 is the main technical tool used in this paper. It is the main
theorem of [5]. It says that “small” homotopy equivalences can be approxi-
mated by homeomorphisms. Note that Theorems 3 and 4 combine to show that
small homotopy dominations can be approximated by homeomorphisms. This
strengthened version of Theorem 4 is stated as Corollary 3.7.

In Section 5 we use e-maps to give a new proof of a characterization of
manifolds-with-boundary due to Cernavskii and Seebeck. This theorem is stated
in Section 5.

R. D. Edwards has pointed out an interesting consequence of Theorem 1.

Tueorem 6. If f:M"—X is a CE map of an n-manifold without
boundary, n > 5, onto an ANR X, then f is a near-homeomorphism if and only
if for each pair of open covers a of M and B of X there are maps p:M—X and
q:X—M such that p is B-close to f and qp is a-close to id.

The remainder of this paper is organized as follows. Section 2 contains the
proof of Theorem 2, Section 3 contains the proof of Theorem 3, Section 4
contains the proof of Theorem 1, Section contains our proof of Theorem 5, and
Section 6 contains the proof of Theorem 6.

We would like to thank J. W. Cannon, T. A. Chapman, R. D. Edwards, D.
Galewski, and J. Hollingsworth for helpful conversations in the course of this
work.
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2. The Proof of Theorem 2. Let [, be separable Hilbert space with its
usual norm.

ProrosiTioN 2.1. If B is an open cover of I, and g:l,—Y is a proper
B-map onto a metric space Y, then there is a continuous function f:Y—I, such
that for each x € 1,, f o g(x) lies in the convex hull of some element of B which
contains x.

Proof. For each UEp, let Vy={y€EY|g (y)CcU}. Since g is
proper, one easily verifies that V'={V,|U € B} is an open cover of Y. Let
U be an open cover of Y such that St°U refines V, and let {¢y}weas be a
partition of unity subordinate to 9. For each W€ choose xy g~ (W).
The map f:Y—1l, is defined by f(y)=Zow(y)xy. If xEL,
U {W]pw(g(x)) 70} CSt( g(x), W) CVy for some U €EB. Since g~ (V,)C U,
{x} U {2w|ow(g(x))#0} CU and Sy (g(x))xy is contained in the convex
hull of U. QED.

CoroLLarY 22. If X is a closed subset of l,, then for each positive
function €:X—(0,0) there is a positive function §:X—(0,00) such that if
g:X—Y is a proper map of X onto a metric space Y with diamg~'g(x) <&(x)
for each x € X, then there is a function f:Y—l, such that ||x— fo g(x)|| <e(x)
for eaciz xEX.

Proof. Extend ¢ to a continuous function ¢:l,—(0, ). By Proposition 2.1,
there is a continuous function §:l,—(0, 1) such that if g:,—Z is a proper map
onto a metric space such that diamg~'g(x) <8(x) for each x E1,, then there is a
map f: Z—l, such that || fog(x)— x| <&(x) for all xEl,. Let §=5|X.

If g: XY satisfies the hypotheses of the corollary, let Z=1,|J Y and let
g:l,—>Z be the quotient map. Since Z is metrizable, there is a map f:Z-l,
as described above. The restriction of f to Y is the desired map f. Q.E.D.

CoroLLARY 2.3. If X is a complete separable metric ANR, then for each
open cover a of X there is an open cover B of X such that if g:X—>Y is a
proper B-map onto a metric space Y, then there is a map f:Y—X such that
feg is a-homotopic to the identity.

Proof. X can be embedded as a closed subset of L. Since X is an ANR,
there is a neighborhood U of X in I, and a retraction r: U—-X. One can now
choose B to be so fine that the map f’: Y—I, guaranteed by Corollary 2.2 has
the property that the line segment from x to f’ o g(x) is contained in U. If B is
chosen to be sufficiently fine, we can set f=rof’, and the homotopy
hy(x)=r(tx + (1—t)f’ > g(x)) will be the desired a-homotopy. Q.ED.

We can complete the proof of the absolute version of Theorem 2 by
showing that B8 can be chosen so that f and the homotopy are proper.
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For this, it suffices to assume that « is a locally finite cover by relatively
compact open sets. If KCX is compact, g~'of }K)CSt(K,a) and
fYK)Cg(St(K,a)). This shows that f “(K) is compact. A similar argument
shows that the homotopy is proper.

The relative version now follows easily. One first constructs f* so that f'og
is close to the identity. If f’| g(Y) maps into a small neighborhood of Y, then,
since Y is an ANR, we can homotop f’ to a map f: Z— X which carries g(Y)
into Y such that fog is close to the identity. This uses only the estimated
homotopy extension theorem (see, for instance, [5]). We can now homotop fo g
to id by first homotoping fe g|Y to id (and extending this homotopy to all of X)
and then following this homotopy with a homotopy of the resulting map to the
identity rel Y. The details are left to the reader. Q.ED.

Remarks. The compact case of Theorem 2 is due to Eilenberg [6].
Further generalizations of Theorem 2 are known to Kozlowski.

3. The Proof of Theorem 3. In this section we will show that a small
domination between manifolds is a small homotopy equivalence. It is easy to
show that a homotopy domination between compact simply connected mani-
folds without boundary is a homotopy equivalence. The domination and its
inverse are degree one maps. A standard argument (see the proof of Proposition
3.3) using Poincaré duality shows that degree one maps induce surjections on
homology. Since the inverse of the domination is injective on homology as well,
it is a homology equivalence and, by the Whitehead theorem, a homotopy
equivalence. An extension of this argument works in the nonsimply connected
case.

Our strategy is to work through a local version of this argument to show
that if f: M—N is a small domination, then the inverse image of a contractable
open set contracts to a point in the inverse image of a slightly larger open set.
Our proof that f is a small homotopy equivalence is then analogous to Lacher’s
proof [13] that a CE map between ANRs is a homotopy equivalence.

Proposition 3.1 is a local analog of the Hurewicz theorem.

ProposiTiON 3.1.  For each k>0 there is an integer n. >0 such that if
A|CA,C...CA, is a sequence of connected ANRs with i, :m(A;)—>m(A;41)
and iy : H(A;)—>H(A,.) equal to zero for all j and for all | between 0 and k,

then each map of a k-complex into A, is homotopic to a constant map in A, .

Proof. The proof is by induction on k.
i. k=0. Since A, is a connected ANR, each map of a 0-complex into A, is
homotopic to a constant map. Thus ny=1.
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ii. k=1. A map of a 1-complex into A, is homotopic in A, to a map which
takes all vertices to a common point in A,. Since i : 7,(A;)—>7,(Ay) is zero, we
can take n,;=2.

iii. Suppose that the theorem is true for k <[ and that f: K—A, is a map of
an (I+ 1)-dimensional complex into A;. According to the inductive hypothesis, f
is homotopic in A, to a map f':K—A,, which takes the I-skeleton of K to a
point. Each (I+1)-simplex of K determines an element of 7, +1(4,,)- We will be
done if we can show that there exists n;, ; so that i, :w,“(A,,’)-—w,H(Anm) is
zero.

We will sketch a proof that n;, ,=2n,+1 suffices. The details are similar
to the details in the proof of the Hurewicz theorem [9]. If [a]E 7, ,(4,), let
o([a]) E H;,1(A,) be the image of a under the Hurewicz homomorphism. By
our assumptions on Hy, ix@([a]) is zero, where ix:H; . (A,)—>H (A, +1)
Thus, if a: (A", A" 1)—>(A, ,*) represents [a], then a bounds a singular chain
in (A, +1,*)- By the inductive hypothesis, « bounds a singular chain ¢ =2n,f; in
(Agy, +1>*) such that each map f;: A'*25A,, . | takes the (I)-skeleton of A'** to
the basepoint.

The restriction of f, to any (I+ 1)-face of A'*2 determines an element of
7+ 1(Ag, +1)- By the homotopy addition theorem [9], the sum of these homotopy
elements over each A'*2 is zero. On the other hand, the sum of these elements
over the entire chain is [a]. Thus, [a]=0. QE.D.

CoroLLaRY 3.2. If the ANR A, in Proposition 3.1 is k-dimensional, then
A, contracts to a point in A,, .

Proof. Since A, is a k-dimensional ANR, there exist a k-complex K and
maps d:K—A; and u:A,—K such that dou=~ id. Thus, the inclusion map
i:A;—>A, is homotopic to the map iodou. By Proposition 3.1, iod is homo-
topic to a constant map, so i is homotopic to a constant map into 4,,.  Q.E.D.

We say that a map f: X—Y is an e-domination over a subset A of Y if there
is a map g:A—X such that fog is e-homotopic to the inclusion. Let rB" CR"
be the subset {x € R"|||x|| <r}. Let R} = {x=(x,,...,x,) ER"|x, >0}, and let
B} =rB"N R%. Let 0R} = {xER"|x,=0}.

ProposrTION 3.3.

i. There is an € >0 such that if a proper map f: V'—R" is an e-domina-
tion over B™ with right inverse g such that g(B")Df~'(3B"), then f~'(3B")
contracts to a point in f~'(B™).

ii. There is an € >0 such that if a proper map f:(V",0V")—>(R%,0RY) is
an e-domination of pairs over (B%,B’ NOR%) with right inverse g such that
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g(B1)Df~(3B%), then f~Y(3B?) contracts to a point in f~(B™) in such a
way that f (1 B%)N 9V remains in V.

Proof. (i) Let rC=f"'(rB"), and let rD=g (rC), where g is a right
e-inverse for f. Since fog is e-close to the identity, (r+¢&)D D rB">(r—¢)D.
Thus, (r—¢€)D contracts to a point in (r+¢)D.

For each r<1—2¢, g:rD—rC is a proper map. If K CrC is compact, then
g~ !(K) is a closed subset of (1—¢)B" and is therefore compact. Consider the
composition

D C —f> rB".
Since fog is e-homotopic to the identity, fog is (properly) e-homotopic to a
map which is the identity on (r—2€)B". Let rD* be the component of rD
containing (r—2¢)B", and let g map rD* to the component rC* of rC.

The restrictions g:rD*—rC* and f:rC*—1B are proper maps, so the
composition fog:rD*—7B is a proper map of degree one (rD* and B have
orientations in locally finite homology with Z-coefficients). Thus, *C* has an
orientation. class, and the maps g:rD*—rC* and f:rC*—rB have degree one.

Note that gy, : 7;(rD*)—,(rC*) is onto. Otherwise, g would factor through
a covering space of rC* corresponding to g.(m;(rD*)) and could not be a
proper map of degree one. Thus, we have a commutative diagram

7y((r — 2¢)D*) —> m,(rD*)
g# l/onto . - l/onto

a,((r — 2¢)C*) -:) a,(rC*)

which shows that i, =0.

Let HY denote cohomology with compact supports. By Poincaré duality
[8], there are isomorphisms HX(sC*)=H,_,(sC*) and HX(sD*)=H,_,(sD*)
obtained by capping with orientation classes p,c+ and p .. By naturality of cap
products, we have

Pscr N B = (g*#smﬂﬂ) = g«(mpNg*B).

Since every element of Hy(sC*) has the form p,.N B for some B, g4 : Hy(rD*)
—Hy(rC*) is onto. As in the =, case, it is now easy to see that
ix: Hy((r—2¢)C*)— H(rC*) is zero.

It now follows from Corollary 3.2 that *C* contracts to a point in f ~*(B
if r<1 and € is small. To complete the proof of (i), we need only show that
1C* D f~}(3B") for r>1 and & small.
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Let x €f ~'(; B"). By hypothesis, x=g( y) for some y €B". Since fog(y)=
flx)€ B andf g is e-close to id, y E(; +€)B™ and f ~X(3 B")Cg((% + e)B”).
Moreover fe g((2 + e)B") 3+2¢)B™, so g((2 + e)B") C(3+2¢)C. Since
g((% + s)B") is connected, f‘l(—;—B")C(—;— +2¢)C*. This completes the proof of
part i. ‘

(i) Let f: (V,9V)—(R%,9R%) be a proper map which is an e-domination of
pairs over (B%},9B%). Let g:(B%,9B%)—(V,dV) be a right inverse for f. We
first note that the collars on dB™ and 0V allow us to construct maps f;:(V,dB)
—(Ri%,0R%) and glz(B,';,aBi)—>(V,8V) arbitrarily close to f and g so that
fi Y(0R%)=23V and g{ }(dV)=0B";. Moreover, we can require that there be an

e-homotopy of pairs from f; o g, to id which takes only boundary points into the
boundary.

We now proceed as in part i, defining 1C=f,”!(#B%) and D= g; (rC).
We note as before that (r+¢)D D B D (r—¢)D. By the argument of part i, we
can choose ¢>0 small enough so that f,; !(30B7%) contracts to a point in
fi'(39B7%) and so that f{ Y(2B% — 23BY) contracts to a point in fY(B% -
dB7). Since fiY(2B7) can be d1splaced into f;"(2B% — 20B?%) by an arbitr-
arlly small homotopy, fiY(2B7) contracts to a pomt in f1 (B%). Using the
homotopy extension theorem this contraction can be performed in such a way
that one point in f ~'(3B7}) remams fixed.

We can now contract f; ( Bi) to a point relative to the boundary in
fi"}(B%) by first contracting f;"}(33B7%) to a point * in f,"(29B%) and then
contracting f; }(2B%) to * (rel *) in f;(B%). Q.ED.

Remark. Parts of this argument are modeled on arguments from [7] and
(2]

Definition 34. A map f:(X,X;)—(Y,Y,) has the a-homotopy lifting
property of pairs with respect to (Z,Z,) if for each pair of maps s,,s5:(Z,Z,)—
(X,X,) such that fos, and fo s, are a-homotopic as maps from (Z,Z,) to (Y, Y;),
there is a St%f ~a-homotopy (of pairs) from s, to s,.

The next proposition characterizes a-equivalences in terms of the a-homo-
topy lifting property.

ProposrTION 3.5.

i If f:(X,X)—>(Y,Y,) is an a-equivalence of pairs, then f has the
a-homotopy lifting property with respect to any pair (Z,Z,).

ii. If (X,X,) is an n-dimensional ANR pair and f is a proper a-domina-
tion of pairs which has the a-lifting property with respect to n-complexes, then
f is a St a-equivalence of pairs.
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Proof. (i) Let s,,85:(Z,Z,)—(X,X,) be maps with fos, éfosz. Then

fla Stf ~la fla
8y = gofes; = gofosy > s,
where all homotopies are homotopies of pairs and the middle homotopy is
obtained by applying g to the given homotopy from fos, to fos,.

(ii) Since (X, X;) is an n-dimensional ANR pair, for each open cover y of X
one can find a pair (K,K,) of n-dimensional complexes and a y-domination of
pairs d: (K,K,;)—>(X,X,).

'I;he maps s;=d and s,=go fod:(K,K;)—(X,X,) have the property that
fos, = fos, Thus,

St?f ~la

d =~ geofod.
This implies that

S f~la
dou {’\;’ gofodou’

where u is a right y-inverse for d. Thus, if v is sufficiently fine,
id >~ gof. Q.ED.

ProrosiTiON 3.6. Let f:X—Y be a proper map, and let a be a locally
finite open cover of Y such that U is compact for each U€a. If g: Y—>X is a
map such that

a ~la
fog=~id and go]j: id,
then f is a proper a-equivalence with a-inverse g.

Proof. We need only show that g and the two homotopies h,:fog=id
and k,: g o f=~id are proper. h, is proper, since if K C Y is compact, then h "'(K)
is a closed subset of the compact space St(K,a) X L.

To show that k is proper, note that if K is a compactum in X, then
fY(K)Df (k) Dk is also compact. Then

kTHK) C kT TAK)) € (fok) T fK)).

Since fok, is a-close to f for each t, (fok)™*(f(K))Cf X (St{f(K),a)) X1,
which is also compact. Thus, k is proper. A similar argument shows that g is
proper. Q.ED.
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We now complete the proof of Theorem 3 by showing that for each
manifold M", k>0, and open cover a of M" there is an open cover 8 of M"
such that if f:(N,dN)—(M,dM) is a proper S-domination of pairs, then f has
the a-homotopy lifting property for pairs of k-complexes. For simplicity, we
consider only the unbounded case. The general case is entirely similar. The
proof is by induction on k.

@ ) If k=0, let s;,5,: K—N be maps of a 0-complex into N so that
fos, = fosy Let h,:K XI—>M, 0<t<1, be an a-homotopy with hy=fos, and
hy=fos, If B is Sufflclently fine, goh, is an f~'a-homotopy from geofeos, to
gofos,. Thus, it suffices to find f ~'a-homotopies from s, to gofos, and from
sy to gofos,.

Choose a locally finite cover of M by open sets V; such that each V is
contained in a W, with (W, V;)=(B", 3 B") and such that the cover { W,} of M
refines a. If B is chosen to be sufﬁmently fine, f ~(V;) will contract in f (W)
for each i and for each element x of K, s,(x) and go fos,(x w1]l be contamed in
fXV,) for some i. One can now use the contractions of f ) in f }(W)) to
define an f ~'a-homotopy from s, to go fes;. The homotopy from sy to g ofos,
is constructed in a similar fashion.

(ii) Assume that for each « there exists 8 so that if f: N—M is a proper
B-domination, then f has the a-lifting property for complexes of dlmensmn <l
Let s),5,: K— N be maps of an (I+ 1)-complex into N such that fos, zfo Sy. As
before, it suffices to show that 8 can be chosen sufficiently fine so that

slfz gefes, and szf: gofos,.
We consider the s, case.

Let {V;} and { W;} be locally finite open covers of M such that V,;c W,,
(W,,V,)=(B",3B"), and { W,} refines a. Choose an open cover y so that St®y
refines V= { V.}. Now choose B so fine that:

1. f~YV,) contracts in f ~}(W)).
2. If ql,q2 PN are maps of an l-complex into N with fo ‘h-— feoqq,
tf " ly

s
then q, = q,.
3. B refines y.

Subdivide K so that the track of each simplex of K under the S-homotopy
from fogofos to fos, lies in an element of y. By condition 2, there is a
St*f ~'y-homotopy from s,|K’ to gofos,|K'. For each (I+1)-simplex A of K,
then, s,|A, gofos,|A, and the restriction of the homotopy to dAX I define a
map of S'*! into N. The image of every such map lies in an element of
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f~'St3y, which refines f (V). Thus, we can use the contractions guaranteed
by (1) to extend the homotopy over K'*!, This completes the inductive step
and the proof of Theorem 3. Q.E.D.

CoroLLARY 3.7. If M™ is a topological manifold and « is an open cover
of M, then there is an open cover B of M such that a proper B-domination
f:(N,ON)—>(M,dM) (n>6 or n=>5 and f|ON a homeo) is a-homotopic to a
homeomorphism.

Proof. This strengthened version of Theorem 4 is an easy corollary to
Theorem 3. Q.ED.

We will now state a local version of Theorem 3 which will be useful in the
next two sections. First, we need a definition.

Definition 3.8. Let Y be a space, and let C be a closed subset of Y. If « is
an open cover of Y, then f: X—Y is said to be a proper a-equivalence over C if
f|f ~'C is proper and there exist a proper map g: C—X and proper homotopies

fog2id|C and gof="id|f"'C.

TueoREM 3.9. Let M be an n-manifold. If C is a closed subset of M and
C,, C, are closed neighborhoods of C with C,DC,, then for each open cover «
of C, there is an open cover B of C, such that if N is another n-manifold and
f:(N,0N)—(M,0M) is a proper B-domination of pairs over (Cy, CoNOM) with
inverse g such that g(Cy)D f~(C,), then f is a proper a-equivalence of pairs
over C.

Proof. The proof of Theorem 3 generalizes to show that f has an
appropriate lifting property over C, with C, D CyD CyD C. One then uses the
nerve of a fine open cover of f~!(C) to generalize Proposition 3.5 (i) and
complete the proof. Q.ED.

4. The Proof of Theorem 1. To prove Theorem 1 is now an easy matter.
Let M be a topological manifold and let a be an open cover of M. Then:

1. By Theorem 4, there is an open cover B such that any proper
B-equivalence of pairs f:(N,dN)—(M,9M) is a-homotopic to a homeomor-
phism provided that either n>6 or n>5 and f|0N is a homeomorphism.

2. By Theorem 3, there is an open cover B, of M such that any proper
B;-domination of pairs f:(N,dN)—(M,dM) is a proper B-equivalence.
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3. By Theorem 2, there is an open cover B, of M such that any proper 8,
map of pairs g: (M,dM)—(N,dN) is the right inverse of a proper 8,-domination
f:(g(M),g(dM))—(M,dM). Note, however, that since there is a proper homo-
topy of pairs from fog to id, we have (fog)spu=p, where  is the orientation
class of (M,0M) in locally finite homology with Z, coefficients. Thus,
(g(M),g(dM)) supports the orientation class of (N,3N), g is onto, and f is
defined on all of N. Moreover, if g|oM is a homeomorphism, we may take
fIdN=g™". This is an easy application of the homotopy extension theorem.

It now follows that a proper B,-map g:(M,3M)—>(N,dN) is a B-inverse for

a proper S-equivalence f: (N,0N)—(M, dM) which is a-homotopic to a homeo-
morphism, h. We therefore have an f ~!Sta-homotopy from g to h~! given by
h™l~gofoh '~gohoh '=g. This is the desired homotopy from g to a
homeomorphism. It is clear that each stage of the homotopy is a Sta-map.
Q.ED.

We wish to prove a local version of Theorem 1. This will be useful in
proving the taming theorem of the next section. We will first need an invari-
ance of domain result for e-maps. Let rD™ be the closure of rB™ in R™.

ProrosiTiON 4.1.  For each r<1 there is an ¢>0 such that if V" is a
manifold without boundary and g:B"—V" is an e-map, then g(rB™) is con-
tained in the interior of g(B

Proof. By Theorem 2, for small ¢ there is a map
f:(g(B").g(B")) - (B",aB")

such that fo g is close to the identity. Moreover, for & small, g(rB") is contained
in a single component U of V—g(dB™).

Consider the induced maps g:B"/3B" —g(B")/(g(B")—U) and
f:g(B")/(g(B")— U)—B"/(B"—1B"™). fog is a degree one map between
manifolds. We may consider g(B™)/ ( g(B™) — U) to be a subset of the relative
manifold V/(V—U). Since g(B")/(g(B™)— U) supports an n-dimensional
homology class, g(B")/(g(B")—U)=V/(V-U) and g(B")DUDg(rB").

Q.E.D.

Remark. Similarly we can show that for each r<1 there is an € >0 such
that if g:(B%,9B%)—(V",dV") is an e-map, then g(rB") is contained in the
interior of g(B").

THEOREM 4.2. Let M™ be a manifold and let C,,C, be closed subsets of
M with C,C C,. Then for each open cover o of C, there is an open cover B of
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C, such that if g:(Cy,CoNOM)—(V",3V) is a proper B-map, and either n>6
or n=>5 and g|C N 0M is a homeomorphism then g|C, is g(Sta)-homotopic to a
homeomorphism. By this we mean that there is a homotopy h:C; X I-V with
hy = g|C,, hy, a homeomorphism, and such that for each x€ C,,
h{(x) X ) C g(St{(x},0))

Proof. Choose closed sets C; and C, so that ¢,0C;0C;0C,0C,0C,.
By the proof of Theorem 2, given an open cover vy, of M, we can choose an
open cover 8 of M which is so fine that g a proper -map implies that there is a
map f: g(Cy)— M such that fo g is y,-homotopic to the inclusion. By Proposition
4.1, we can also choose 8 so that g(C;) is contained in the interior of g(Cy).

Let U be the interior of g(C,). We will show that f|U: U—-M is a proper
y,-domination over C;. This will follow by Proposition 3.6 once we have
verified that f is proper over C;. This is easy. If KCC; is compact,
g~ of~Y(K) is a closed subset of St(K,y,). This is compact whenever elements
of v, have compact closures. Since the image of g contains U, f~'(K)=
gog tofY(K) is compact.

By Theorem 3.9, given y, we can choose y, so that if f is a proper
v,-domination over Cj, then f is a proper y,-equivalence with inverse g over C,.
The a-approximation theorem of Theorem 4 is proved by a handle induction
and therefore has a local version (see Theorem 5.3 of [5] for a statement). Thus,
we can choose v, so fine that if f is a proper y,-equivalence over C,, then
f]f ~C, is a-homotopic to a homeomorphism. Given &, we need only choose v,,
Y, and B in that order to complete the proof that f is a-homotopic to a
homeomorphism. ‘

To see that g is g(Sta)-homotopic to f ~*, note that we have

e _
fV= gofof~' =g

Thus, we need only show that an f'a-homotopy is a g(Sta)-homotopy.
Suppose that x;,x,€f ' (U), U€a. Since g is onto, there exist y,,y, with
1, =g(y,), %= g(y,), and we see that y, is Sta-close to y,, since y, is a-close to
fog(y,)=f(x,), which is a-close to f(x,), which in turn is a-close to y,. This
completes the proof. Q.E.D.

5. A Theorem of Cernavskii and Seebeck.

Definition. Let X be a metric space, and let M be a subset of X. M is said
to be k-LCC in X if for each x € M and & >0 there is a § >0 such that each map
f:S'—B(8,x)N(X— M), i <k, is homotopic to a constant map in B(e,x) N (X —
M).
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TueorREM 5. Suppose that U is a noncompact n-manifold without
boundary, n>5, and that M is an (n— 1)-manifold without boundary. Suppose
that X=UU M is a locally compact metric space such that Un M=, U is
dense in X, and M is (n—1)-LCC in X. Then X is an n-manifold with
boundary M.

Remark. This theorem was announced by Cernavskii in [3]. He says that
the proof is a difficult engulfing argument. Details have never appeared.
Seebeck has recently circulated a proof [14, 15] which is indeed a difficult
engulfing argument. We will show that this result is a straightforward corollary
to Theorem 4.2.

Let X, U, and M be as in the statement of Theorem 5.
Lemma 5.1, For each open cover o of X,

i. there is a map f:M—U such that f is a-close to the inclusion, and
ii. there is an open cover B of X such that two maps f,,fy: M— U which
are f-close to the inclusion are a-homotopic in U.

Proof. The proof of this lemma is standard. If M is triangulable, the
required maps and homotopies are easily constructed by induction on skeleta.
Otherwise one works through the nerve of an appropriate open cover of M.

Q.E.D.

LemMma 5.2.  For each open cover a of M X[0,1) there is a proper a-map
g:M X[0,1)> U such that g extends continuously by the identity to a map
g:M X[0,1]->X.

Proof. For simplicity, assume that M is compact. Choose a sequence of
points 0=t, <t,< ... with lim#;=1 and a sequence {;} of open covers of M so
that { U, X[t,t,,]|U,Eq;, i=1,2,...} refines a.

Let v, be an open cover of X such that Sty,|M refines a,, and let 8, be an
open cover of X such that two maps fi,f,: M—U which are B,-close to
inclusion are y;-homotopic. Let g|M X {0} be a map from M to U which is
Bi-close to the inclusion. Let y, be an open cover of X such that (St3vy,)|M
refines ay, v, refines y;, and such tthat no element of Sty, meets both M and
g(M x{0}). Let B, be an open cover of X such that maps of M into U which
are PBy-close to the inclusion are y,-homotopic. Let g|M X {t,} be a map from M
to U which is B,-close to the inclusion, and extend g to M X[0,,] using the
¥,-homotopy promised by our choice of ;.

In general, if g is defined on M X[0,], choose v, so that vy, , refines v;,
(St*v;,1)|M refines «,, ;, and no element of Sty,,; meets both M and g(M X
[0,¢,]). Choose B;,; so that maps f;,,-close to inclusion are ¥, ,-homotopic,
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and let g|M X {#,,} be a map B, -close to inclusion. Use the y,-homotopy
guaranteed by our choice of §; to extend g over M X[¢,, t;, ,].

Our choice of {v;} implies that every point inverse g ~g(x,¢) is contained
in MX[t;,t,,] for some i. Moreover, if (x,t)EM X[t,,t,,,], then g(x,¢) is
y,-close to g(x,t), whlch is B;-close to x. Thus, g(x,t) is Sty,-close to x. Thus, if
g 'g(x,t) C M X[t,1,,], then g(x,t)=g(«’,¢’) implies that x is (St?v,)| M-close to
2’ and therefore that g~ 'g(x,t)C U X[t,¢,,], where U€E(St’y,)|M. Since
(St3v;)|M refines ;, g is an a-map.

It is clear that the covers §; may be chosen so that g extends by the
identity to M X [0, 1]. This guarantees that g is proper. Q.E.D.

The proof of Theorem 5 is now an easy exercise. Let a be an open cover of
M X[0,1) such that (x,¢) € U €« implies diam U< (1—t)/2. Let 8 be an open
cover of M X[0,1) such that if g:M X[0,1)->U is a proper S-map, then
g|M X[3,1) is g(St*a)-homotopic to a homeomorphism

into

h:M x[§,1)—>U.

Since g extends by the identity to M X[0, 1], for each & >0 there is a T<1 such
that d(g(x,t),g(x’,t')) <d(x,x')+e¢ for t,¢' >T. This means that if (x,t)EUE
St?a and t is large, then diamg(U) is small. h therefore extends by the identity
to a homeomorphism

. 1

h:M x[3,1] —X.
h(M %(},1]) is both open and closed in X—h(M X 1), so the image of M X
[3,1] under A is a collar neighborhood of M, and X is a manifold. Q.E.D.

J- W. Cannon has pointed out that this argument can be used to prove a
taming theorem which does not appear to be accessible by the techniques of
Seebeck’s proof of the Cernavskii-Seebeck theorem. Let M"~! (n>5) be a
space such that M X R! is an n-dimensional manifold, and let X D M be a space
such that X — M consists of two components U, and U,, each of which is an
n-manifold. If M is (n—1)-LCC in U, and in U,, then X is a manifold.

Every point in X — M already has a Euclidean neighborhood. By repeating
our proof of the Cernavskii-Seebeck theorem in U, and again in U,, we obtain a
bicollar of M in X. This provides the required Euclidean neighborhoods of
points in M. If X is a homology manifold, then the (n—1)-LCC condition is
automatic (by Alexander duality and Proposition 3.1) if M is known to be
1-LCC in U, and U,. Q.ED.
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6. The Proof of Theorem 6. Theorem 6 is due to R. D. Edwards. For
simplicity, we consider only the case where M is unbounded.
(i) Only if: Let f: M— X be a near-homeomorphism. Then for each open

onto

cover 8 of X there is a homeomorphism h: M —> X such that h is B-close to f.
Letting p=h and g =h ! satisfies the conditions of the theorem.

(ii) If: We wish to apply Bing’s shrinking criterion [4, p. 45], which states
that f is a near-homeomorphism if and only if for each pair of open covers U of
M and V of X there is a homeomorphism h: M— M such that fh is V-close to f
and such that each hf ~'(y) lies in an element of U.

Choose an open cover 8 of X so that St’| B refines V. Choose an open
cover ay of M so that Sta, refines U and so that a, refines f ~'8. Choose an
open cover a; of M so that every a;-domination from M to itself is a,-homo-
topic to a homeomorphism. Choose a; so that a; refines f ~'8. Now choose p
and g so that p is 8-homotopic to f and g op is a;-homotopic to the identity.

Consider the map g f: M—M. According to Lacher [13], for each open
cover y of X there is a map p: X— M such that

fopdid and pof~"id

If p is such a map, we see that (gof)e(pop)=~qgeop=~id. If y is chosen
sufficiently fine, this is an a;-homotopy and (g °f) is an a;-domination. Thus
q°f is ag-homotopic to a homeomorphism h: M—M.

If f(m,) = f(my), then h(m,) is a2-close to g o f(m,)= q < f(m,), and q  f(m,)
is ay-close to h(m,). This implies that hf ~*(x) is contained in an element of Sta,
(which refines Gll,) for each x€ X. We need only show that foh is ‘V—close to f.

Now, foh >~ £ f q°f. We complete the proof by showing that fo q ~ 1d

Note that fo q o (p(x)) é flx) £ p(x). Thus, it will suffice to show that p is onto.
This is true for homological reasons. .
Recall from [13] that for each UC X, f:f " Y(U)-U is a a proper homotopy
equivalence. If V. C M™ is a connected open set such that V is compact, then
H"M,M—V;Zy,)=Z, and H*M—m, M—V; Z,)=0 for each mEYV. Let
p:M— X be a map which is 8-homotopic to f such that p(M) C X — {x,}. If B is
a locally finite cover by relatively compact open sets, then we can use the
homotopy extension theorem to construct a map p: M—X such that p| f (X —
)=flf %X~ U), where U is a relatively compact connected open subset of
X such that p(M)C X —xy, and such that p is homotopic to f relf (X — U).
It follows from Corollary 4 of [11] that f induces an isomorphism from
H"(X,X~U;Z,) to H"(M,M — f ~(U ); Z,). Thus, both groups are isomorphic
to Z,. On the other hand, p*:H"(X,X— U)—>H"(M,M — f~}(U)) factors
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through H™(X —x, X — U;Z,). f induces an isomorphism of this latter group
with H"(M — f~*(xo),M — f ~}(U ); Z,), which is zero. Since f is homotopic to
p relM — f ~}(U), this is a contradiction, which completes the proof of Theorem
6. Q.ED.
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