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SHAPE EQUIVALENCE DOES NOT IMPLY CE EQUIVALENCE!
STEVE FERRY

ABSTRACT. We give an example of shape equivalent compacta X and Y such that
there is no compactum Z with cell-like maps Z —> X and Z —> Y.

A space X is said to be cell-like if for some imbedding of X in an ANR, X has
the property that for each neighborhood U of X, X contracts to a point in U. This
is an intrinsic property of X and is independent of the choice of ANR and
embedding. A continuous map f: Z — Y between compacta is said to be cell-like
(CE) if f is surjective and f~!(y) is cell-like for each y € Y. If X and Y are
compacta, we say that X and Y are CE equivalent if there exist compacta
X =Xy Xy,..., Xy, =Yand CEmaps f,;: Xp;,, > Xy, and £, 1 Xpi 01 > Xpiin
fori=0,1,...,k— 1.

In [F,] it is shown that two compacta which are homotopy equivalent must be
CE equivalent. In fact, more is shown. The maps constructed have sections and
contractible point-inverses. It is natural to seek a Cech analog of this theorem for
general compacta. Thus, we are led to study the question: “If X and Y are shape
equivalent compacta, must X and Y be CE equivalent?”

In this note we will exhibit a simple example which shows that this is not the
case. Let X be a plane compactum which is the union of a circle C and a ray R
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which spirals into C. See Figure 1. X is shape equivalent to S'!. We will show that X
is not CE equivalent to S''.

DErFINITION 1. We will say that a compactum Z is an acyclic image if there exist a
compactum W with H*(W) = H*(pt) and a continuous surjection f: W — Z.

LemMMA 1. Let P and Q be CE equivalent compacta. Then P is an acyclic image if
and only if Q is an acyclic image.

ProoF. It suffices to consider the case in which thereisa CEmap r: P —» Q. Itis
clear that Q is an acyclic image if P is an acyclic image. Suppose, then, that Q is an
acyclic image. Let f: W — Q be a surjection as in Definition 1 and let E be the
pullback in the diagram below.

e L p

FCE Lr CE
f

w - (0]

E is compact, f is surjective, and 7 is CE. A cell-like set has the Cech cohomology
of a point, so the Vietoris-Begle theorem [S] implies that 7 induces an isomorphism
of Cech cohomology. Thus, E has the Cech cohomology of a point and P is an
acyclic image. []

LEMMA 2.2 The space X of Figure 1 is not an acyclic image.

PRrROOF. Suppose not. Let f: W — X be a surjection as in Definition 1. Let r:
X — C be a radial retraction and let e: E' — C be the universal cover. Since
ﬁl( W) = [W, C] = 0, the composition r o f: W — C lifts to E' and there is a map
fi W E'suchthateo f=rof.

Let W’ = f~!(R). Choose a map 7: R — E' so that e o 7 = r|R and so that
F o f= ffor some pointw, € W'.Let W” = {w € W'|F o f(w) = f(w)}. The usual
argument shows that W” is open in W’ and therefore in W. W” cannot be closed
in W since W is connected and W” is neither empty nor all of W.

There is therefore a sequence {w;} € W” converging to a point w* € W — W".
Thus, lim f(w;) € C and {7 ° f(w,)} is unbounded in E'. On the other hand,
{Fofiw)}={ f(wi)} C fiw), which is compact. This is the desired contradiction.
O

This completes the proof of our main result, since there is a continuous map of
[0, 1] onto S

2 Lemma 2 is essentially Theorem 1 of M. K. Fort [F0].
It would be interesting to find shape equivalent UV! compacta which are not CE equivalent. Parts of
[F,] are relevant to this problem.
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