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§0. INTRODUCTION 

The purpose of this paper is to develop Wall's finiteness obstruction ([Wal], 

[Wa2] ) from an extremely geometrical point of view. There is an analogy, which will 

be made precise, to the situation regarding the theory of Whitehead torsion where there 

are two treatments in somewhat differing styles. The first treatment is that of 

Whitehead [W] which quickly reduces statements in PL topology to statements above 

chain complexes and proceeds on this basis. The second treatment is that of M. Cohen 

[COl] in which the Whitehead group is defined geometrically. All of the ~oz~nal pro- 

perties of the theory (functoriality, sum theorem, product theorem, etc.) are easily 

derivable from this geometric definition. Of course, the same reduction to chain com- 

plexes is necessary in order to calculate Whitehead groups and show that the theory is 

non-vacuous. 

Cohen's approach has proven to be very influential. Siebenmann's infinite simple 

homotopy theory [S] and Hatchet's higher simple homotopy theory [H] are developed along 

these geometric lines. It is also possible to develop a controlled simple homotopy 

theory (in the sense of Chapman-Connell-Hollingswoth-Quinn) along these lines. These 

last two cases are noteworthy because the corresponding reduction to algebra is either 

difficult to carry out or reduces to heretofore unknown algebraic territory. 

The approach of Wall's original papers on the finiteness obstruction [Wal,Wa2] is 

philisophically very similar to that of Whitehead. We will redevelop this theory 

along Cohen's more geometrical lines. 

One payoff is that there is a well-understood procedure for passing from the 

study of Wall's finiteness obstruction to the study of stable PL or Q-manifold missing- 

boundary problems. See [Ch-S] or the section entitled "Splitting Theorem" in almost 

any paper by Chapman. Thus, a geometric version of the Chapman-Connell-Hollingsworth- 

Quinn controlled simple homotopy theory should be usable to develop a Q-manifold ver- 

sion of Quinn's controlled end theory [Q]. 

The techniques used in this paper are derived from Mather's influential [Ma] and 

from "Siebenmann's variation on West's proof that compact ANR's have finite type," an 

unpublished manuscript of R.D. Edwards. These techniques have been exploited relent- 

lessly during the past few years by T.A. Chapman and the author ([Chl],[Ch2],[F]). 

The present paper is, to the author's knowledge, the first time that this approach has 

been used to set up a nontrivial obstruction theory. As stated above, the main value 

of this approach is that it is extremely formal and therefore is adaptable to a variety 

of situations. 

* Partially supported by NSF grants and the A.P. Sloan Foundation. 
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§I. SIMPLE HOMOTOPY PRELIMINARIES 

We will assume that the reader is completely familiar with §4-6 of [COl]. For 

our purposes, we will need to develop this geometric theory in slightly greater gen- 

erality. 

DEFINITION I.,I. Let X be a topological space. A finite relative cell complex (over X) 

= . z L = X and is obtained from L i by at- is a pair (L,X) where L = L n Ln_ 1 .. o Li+l 

taching a cell of some dimension. Note that cells are attached in no particular order 

and with possibly noncellular attaching maps. 

DEFINITION 1.2. If (KI,X) and (K2,X) are finite relative cell complexes, we say that 

K 1 collapses to K 2 by an elementary collapse if K 1 = K 2 u e n-I u e n and the attaching 

map for e n is a homeomorphism over (when restricted to the inverse image of) the in- 

terior of e n-l. A finite sequence of operations each of which is an elementary expan- 

sion or elementary collapse is called a formal deformation. 

DEFINITION 1.3. Wh(X) = {(K,X) IKc.~X is a homotopy equivalence and (K,X) is a finite 

relative cell complex}/~ where (KI,X) ~ (K2,X) iff K 1 formally deforms to K 2 rel X. 

We will denote the equivalence class of (KI,X) by [KI,X ] or T(KI,X). 

DEFINITION 1.4. If f : X + Y we define f, : Wh(X) ÷Wh(Y) by f,([K,X]) = [KufY,Y]. 

One easily checks that Wh(X) is an abelian group. The only alteration of the 

proof on p. 21 of [Co] is to use reduced mapping cylinders M D in which the copy of 

X x I has been collapsed to a single copy of X. 

If f : (K,X) ÷ (L,X) is a homotopy equivalence of finite relative cell complexes 

which is the identity on X, we define T(f) = f,([Mx(f),K]) ~ Wh(L) where Mx(f ) is the 

reduced mapping cylinder. 

If K = L are finite simplicial complexes with L a strong deformation retract of 

K, then [K,L] = 0 in Wh(L) if and only if there exist a finite simplicial complex 

and PL maps c : K ÷ K, d : K ÷ L with contractible point-inverses such that the 

diagram 

homotopy commutes. "Only if" follows from the fact that K and L have PL homeomorphic 

regular neighborhoods in high-dimensional Euclidean spaces. "IP' is a result of 

M. Cohen [Co2]. The reader is urged to attempt to prove this result for himself using 

the Sum Theorem (Prop. 1.6) for Whitehead torsion. The "if" implication is not used 

in this paper. 
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PROPOSITION 1.6. ([Coi,P.76]). Suppose that K = K 1 u K2, K 0 = K 1 n K2, L = L 1 u L2, 

L 0 = L 1 n L 2 and that f : K + L is a map which restricts to homotopy equivalences 

L , j~ ÷ L and i : K ÷ K be the inclusions. Then f f : K a ÷ ~ = 0,1,2. Let : L ~ a 

is a homotopy equivalence and T(f) = jl,T(f I) + j2,T(f2) - j0,T(fo). If f is an in- 

clusion, z(L,K) = iI,T(LI,KI) + i2,%(L2,K2) - i0,T(L0,K0). 

PROOF. We prove the second statement. The first follows easily. Let r t : L 0 ÷ L O 

be a homotopy rel K 0 from id to a retraction r I : L 0 + K 0. By the simple homotopy 

extension theorem, L 1 deforms rel K 0 to L 1 url L O. Similarly, L 2 and L deform rel K O 

to L 2 url L 0 and L url L O. But one easily sees that 

(L url L0) K0U L 0 = (L 1 url L0) KoU (L 2 url L 0) . 

This completes the proof of Proposition 1.6. | 

REMARK: Proposition 1.6 could be proven for finite relative complexes, but this re- 

sult is not needed in the sequel, so we omit it. We will need the following formula 

for the torsion of a composition. 

PROPOSITION 1.7. If f : K ÷ L and g : L + M are homotopy equivalences between finite 

simplicial complexes, then T(gof) = T(g) + g,T(f). 

PROOF. This follows immediately from Fact 2 on p. 22 of [COll. Again, a version for 

finite relative complexes is possible but unnecessary. 

We will need several easy lemmas about mapping cylinders in the sequel. 

LEMMA MCI. If f : X + Y is a map, then the mapping cylinder M(f) is homotopy equiva- 

lent to Y. | 

LEMMA MC2. If f : X + Y and g : Y ÷ Z are maps then the mapping cylinder M(gof) is 

homotopy equivalent to the union along Y of M(f) and M(g). Tnis homotopy equivalence 

is t h e  identity on X u Z. 

LEMMA MC3. If f,g : X ÷ Y are homotopic maps, then M(f) is homotopy equivalent to 

M(g) via a homotopy equivalence which is the identity on X u Y. | 

See [Coi,§5 ] or [F] for proofs. 

§2. WALL'S FINITENESS OBSTRUCTION 

Let X be a topological space and let d : K n ÷ X be a domination with right in- 

verse u. Here, K n is a finite n-dimensional CW-complex. 

PROPOSITION 2.1. (Mather [M]). X is homotopyequivalent to an (n+l)-dimensional 

CW-complex. 
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PROOF. Let ~ = uod : K + K and let T(~) be the space obtained from the mapping cylin- 

der M(~) by identifying the top and the bottom of M(~) using the identity map. Follow- 

ing Mather, we show that X is homotopy equivalent to a cyclic cover of T(~). 

The argument is most easily understood via a picture (Figure i). T(~) is seen to 

be homotopy equivalent to the intermediate space Y. This uses MC2 and the fact that 

= uod. Y is then seen to be homotopy equivalent to X × S' using MC2 and the fact 

that dou = id. 

k 

Figure 1 

X is homotopy equivalent to the infinite cyclic cover of X × S' obtained by un- 

wrapping the S 1 factor. X is therefore homotopy equivalent to the covering space I(~) 

of T(~) illustrated in Figure 2. 

K K K ~ K K 

Figure 2 

This completes the proof of Proposition 2.1. | 

DEFINITION 2.2. Let T : X × S 1 ÷ X x S 1 be the homeomorphism (X,@) ÷ (X,~). Let 

: T(~) ÷ X x S 1 be the homotopy equivalence defined in Proposition 2.1. Then we 

define a(X) = qS,T(~-IT(~) c Wh(Xx SI), where ~-I is a homotopy inverse to ~. 

Let X be a finitely dominated topological space. Then 

THEOREM 2.3. o(X) is well-defined and o(X) = 0 if and only if X is homotopy equiva- 

lent to some finite CW-complex. 
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PROOF. Let d I : K 1 ÷ X and d 2 : K 2 ÷ X be finite dominations with right inverses 

u I and u2, respectively. 

STEP I. We wish to show that the elements of Wh(X × S I) obtained by the process 

of Proposition 2.1 are the same. 

Case I. Suppose that K 1 ~ K2, d 2 = dllK2, and u I = u 2. 

In this case there is a collapse Let ~l = Ul°dl and let ~2 = u2°d2" 

g : T(~I) ÷ T(~2) and the diagram 

commutes up to homotopy. Then 

g 

T(0~ 1 ) ~-T (c~ 2 ) 

Xx S' 

~I.~[($11T~I ) = ~2.g.T(g-l~21T@2 g) 

= ~2,T[~21T~2 ] . 

This calculation uses the fact that T(g) = 0 and the composition formula 

Proposition 1.7. This completes the proof of Case I. 

Case If. The general case. 

Given d I : K 1 ÷ X and d 2 : K 2 ~ X form K 3 = H(u2Odl). Define d 3 : K 3 ÷ X by 

d 3 = d2oc , where c : H(u2Odl) ÷ K 2 is the mapping cylinder collapse. Define 

u 3 : X + K 3 to be the composition of u 2 with the inclusion map. Now, 

d31K 1 ~ d2ou2odl ~ d I and the composition of u I with the inclusion map is homotopic to 

u2OdlOUl = u 2 = u 3. Thus we are reduced to Case I and a(X) is well-defined. 

STEP 2. o(X) = O:~X is homotopy equivalent to some finite complex. 

If o(X) = 0, then ~(~-IT$) = 0 and there exist a finite polyhedron Z and CE-PL 

maps c I : Z ÷ T(~) and c 2 : Z ÷ T(~) so that c 2 ~ $-IT~c I. Passing to infinite cyclic 

covers, we have a diagram: 

K-~ k-i Ko ~E kt k~ 
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where the map c2o(ci) : I(~) ÷ I(e) reverses the ends. We refer to this reversed 

copy of I(e) as D(~). If we choose N large enough, the region of Z trapped between 

(~I)-I(KN) (KI,K2,... are all copies of K) and (~2)-I(K N ) is a strong deformation re- 

tract of Z and therefore has the homotopy type of Z, that is to say, the homotopy type 

of X. 

STEP III. If X is homotopy equivalent to a finite complex, then o(X) = O. 

In this case, let d : K + X be a homotopy equivalence and let u : X ÷ K be d -I. 

Then a~id : K ÷ K and T(~)~ K x S'. In this case the torsion of ~-IT~ is clearly 

zero. | 

We will need the following proposition later. 

a 

PROPOSITION 2.3. If K ~ X  is a finite domination and o(X) = 0, then there exist a 
U 

finite complex K ~ K and an extension d : K ÷ X of d such that uod~ id. 

PROOF. This follows easily from the proof that o(X) is well-defined. | 

(Sum Theorem) 

PROPOSITION 2.4. If X = X 1 u X 2 with X 0 = X 1 n X 2 and each X i is a finitely dominated 

CW-complex (ANR), then o(X) = il,O(Xl) + i2,o(X2) - io,O(Xo). 

PROOF. An ANR X is finitely dominated if and only if there is a homotopy h t : X ÷ X 

with h O = id and hl(X ) compact. Using the homotopy extension theorem and the finite 

domination of Xi, i = 0,1,2, one easily constructs such an h t which respects Xi, 

i = 0,1,2. The result then follows immediately from the Sum Theorem for Whitehead 

torsion. | 

The following naturality result also follows easily from this approach. 

PROPOSITION 2.5. If X and Y are finitely dominated spaces and f : X + Y is a homotopy 

equivalence, then f,~(X) = o(Y). 

d. rod 
PROOF. If K ~  X is a domination, then so is K ~ Y. Then eX = uod and ~y = 

u uof 
uof-lofod ~ uod. #y : ~y + y x S 1 is simply ~X : ~X = my ÷ X x S 1 composed with 

f x id. Thus, ~X = ~xITx~x and ~X = ~yITy~y are equal. The result follows, m 

COROLLARY 2.6. If X is finitely dominated and f : X + X is a homotopy equivalence, 

then f,o(X) = ~(X). 

§3. REALIZATION 

It is not true that for each % e Wh(KxS I) there is an X with ~(X) = T. 

identify the appropriate "obstruction subgroup" of Wh(K × SI). 

We will 
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DEFINITION 3. i. Let Pl : S1 ÷ S1 be a finite covering map. This induces a finite 

covering p = PlXid : X x S1 ÷ X × S I. If [L,X×S I] ~ Wh(X×SI), let L be the covering 

of L induced by p using the pullback diagram below: 

- ~ L 

! 
X S 1 ~ X x S 1 

pxid 

The strong deformation retraction L ~ X x S 1 lifts to a strong deformation re- 

traction L~ X x S 1 and we obtain an element [L,X×S I] c Wh(X×SI). We call this ele- 

ment p*[L,X x SI]. The map p* : Wh(X x S I) ÷ Wh(X x S I) is a homomorphism called the 

transfel ~. Let ~0(Xx S I) be the subgroup of Wh(Xx S I) consisting of elements invariant 

under such transfer maps. 

THEOREM 3.2. (a) If X is finitely dominated then o(X) c Who(X x SI). 

(b) If T e Who(KXS I) and z ¢ O, then there is a finitely dominated X with o(X) ~ 0. 

PROOF. (a) Consider the double cover of ~ pictured below: 

T(~) = 

K 

K 

-> ( 
K 

= T(a) 

We have drawn the second picture of T(~) backwards to emphasize the fact that ~ re- 

verses orientation over S I. Using the fact that ~o~N~, we can use MC2 to define a 

simple homotopy equivalence S : T~) + T(~) such that the diagram below commutes: 

T(~) ~- T ( ~ ) ~  

I s  ~s X × S  1 

T(c0 Y T(~) 

p*(o(X)) = $.T(~) = ~.%(s-l~s) = ~.s.T(s-l~s) 

= (~.s,[T(s -1) + s~clT(~) + s~I~.T(s)] 

-1 
= ¢ . s . s .  T ( ~ )  = ¢.~[~) 
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This completes the proof of part (a). 

PROOF. (b) Let z 6 Who(K× S'), z ~ O. Let (L,K×S') be a representative for T and 

let r : L ÷ K x S' be a PL retraction. Lifting to the cyclic cover, we have a PL re- 

traction } : L ÷ K × R'. Let W = ~-I(K× [0,~)). W is a polyhedron. We need: 

LEMMA 3.3. W is finitely dominated. 

PROOF. Let rt" 0 ~ t ~ I, be a homotopy from ~ to id tel K x R I. This homotopy is 

proper. Thus, there is a compact set C c W such that ~t(W - C) c W for all t, 

0 ~ t ~ i. Let ~ : W + [0,i] be a function with ¢(c) = 0 such that ~-i[0,I) is com- 

pact. Then ht(x) = ?t.~(X)(X ) deforms W into the union of K x [0,~) with a finite 

complex. It is easy to modify h t to ht which deforms W into a finite subcomplex L of 

W relative to a neighborhood of ~-I[K×O]. Setting d = i : L4-~W and u = hl : W ÷ L, 

we see that W is finitely dominated. 

The next step in the proof is the following lemma: 

L£MMA 3.4. If o(W) = 0 there exist an n and a finite bicollared polyhedron 

P c L × I n which separates the ends such that P~-~L is a homotopy equivalence. 

PROOF. Let W 0 c W be the subcomplex ~-I(K × 0). We may assume that r was chosen to 

make W 0 bicollared in L. If o(W) = O, then there exist W ~ W and ~ extending hl so 

that h : W + W is a homotopy equivalence. If n is large, we may assume that h is a 

PL imbedding ~ : W ÷ W × I n x {I} c W x I n x I. Let N be a regular neighborhood of 
= in o o 

~(W) in W x I n x {i} and let P0 (W 0x x I uN) - N, where N is the interior of N in 

W x I n . P0~-~W - N is a homotopy equivalence since the inclusions W - N~-~W and 

P0:-~W are homotopy equivalences. 

Let V = (Lx I nx I) - (W-N) and repeat this process on the other side of PO" ob- 

taining a PL inclusion ~ : V--+V × I m x {I} c V x I m x I so that ~(V) ~ P0 x I m × I. 

Now, let M be a regular neighborhood of ~(V--) in V and let P = (P0x I mx I uM) - M. 

As before, P is a strong deformation retract of the other side, 

(WxI n+m+l xI-VxI m×I) u M, since P u M has already been shown to be a strong defor- 

mation retract of this space and P is a strong deformation retract of P u M since M 

is a regular neighborhood of a set in V x I m x {i}. I 

We continue with the proof of Theorem 3.2. Since T is invar/ant under transfer, 

we may assume that the projection L × I n+m + L x I n+m imbeds a bicollar neighborhood 

Px IofP. 

, K ~ S L  
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in+m The complement of P×I in L × is homeomorphic to the space between two trans- 

lated copies of P in L x I n+m. It is therefore homotopy equivalent to K and we can 

construct a strong deformation retraction r t : L × In+m~K x S' which takes P × I 

into itself and (L × I n+m - P × I) into itself. The sum theorem for Whitehead torsion 

[Coi,P.76 ] shows that T c im(wh(K) ÷ Wh(K× SI)). But it is geometrically clear that 

if p : S 1 ÷ S 1 is a double cover, then p*T = 2T. The invariance of T under transfer 

then shows that T = 0. | 

COROLLARY ( o f  the p r o o f ) .  I f  T ~ Wh(K × S I )  and p : S I ÷ S I i s  the double cover ,  then 

p*T = T implies that o(W) = 0, where W is defined as in the theorem above. Thus, if 

there is a nonzero element T ~ Wh(K × S I) which is invariant under passage to the double 

cover, then there is a nonzero element T ~ Wh(K× S I) which is invariant under passage 

to all finite covers. | 

REMARK: This corollary is also clear from the Bass-Heller-Swann decomposition of 

~(K x sl). 
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