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A STABLE CONVERSE TO THE VIETORIS-SMALE THEOREM 
WITH APPLICATIONS TO SHAPE THEORY' 

BY 

STEVE FERRY 

ABSTRACT. Our main result says that if f: X -- Y is a map between finite polyhedra 
which has k-connected homotopy fiber, then there is an n such that f x id: 
X x I' - Y is homotopic to a map with k-connected point-inverses. This result is 
applied to give an algebraic characterization of compacta shape equivalent to 
locally n-connected compacta. We also show that a UV' compactum can be 
"improved" within its shape class until its homotopy theory and strong shape 
theory are the same with respect to finite dimensional polyhedra. 

1. Introduction. In this paper we study the problem of when a map f: X Y 
between nice topological spaces is homotopic to a map with some form of the 
homotopy lifting property. If f is a map between finite polyhedra, a necessary 
condition for f to be homotopic to a Hurewicz fibration is that the homotopy fiber 
of f be homotopy equivalent to a finite polyhedron. Thus, in order to achieve 
general results, we are forced to study much weaker lifting properties. We first 
prove that if the homotopy fiber of f is k-connected, then f is (stably) homotopic to 
a PL map with k-connected point-inverses. We use this result to prove that if the 
homotopy fiber of f has finite skeleta (i.e. is homotopy equivalent to a CW complex 
with finite n-skeleton for each n) then f is (stably) homotopic to a map with the 
approximate lifting property for m-dimensional spaces. Here m is fixed but as large 
as we desire. 

In the sections on shape theory, we apply the results of the preceding sections to 
show that for many compact spaces X it is possible to 'improve' X within its shape 
class to obtain a compactum X' whose homotopy theory and (strong) shape theory 
are closely related. 

We will now introduce some terminology and give more precise statements of 
our results. If X is a compactum imbedded in an ANR M, X is said to have 
property UVk, 0 < k < x, if for each neighborhood U of X there is a neighbor- 
hood V c U of X such that the inclusion-induced map T,( V) --* ( U) is zero for 
O < 1 < k. For k = x we require that V contract to a point in U. It is known (see, 
for example, [L]) that this property is a shape property of X and is independent of 
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the particular imbedding. For CW complexes, property UVk reduces to the usual 
notion of k-connectedness. A map f: X -* Y between compact ANR's is called a 
UVk-map if for each y E Y, f `(y) is nonempty and has property UVk. A UVW 
compactum is called cell-like (CE) and a UV"-map is called a CE map. We now 
state a version of the Vietoris-Smale theorem of the title. 

THEOREM [Sm]. If X and Y are compact ANR 's andf: X -* Y is a UVk_map then 

f*: '7T(X) --* 7T,(Y) is an isomorphism for 1 < k and an epimorphism for 1 = k + 1 
(i.e., f is (k + 1)-connected). 

Recall that the Hilbert cube Q is the countable product of copies of the unit 
interval. A Hilbert cube manifold (Q-manifold) is a separable metric space in 
which each point has an open neighborhood homeomorphic to an open subset of 
Q. Here is our stable converse to Smale's theorem. 

THEOREM 1. If M and N are compact Q-manifolds and f: M -* N is (k + 1)- 
connected, 0 < k < x, then f is homotopic to a UVk_map. 

We remark that this theorem is false for k = x. If f: M -* N is a nonsimple 
homotopy equivalence, then f is not homotopic to a CE map [Ch]. We will now 
state a PL theorem which implies Theorem 1. 

THEOREM 1'. If K and L are finite polyhedra andf: K -* L is a (k + l)-connected 
map, 0 < k < x, then there exist a polyhedron K', a CE-PL map c: K' -* K, and a 
UVk_PL map f': K' -* L such that f o c - f'. 

In view of Chapman's proof that CE maps between polyhedra are simple 
homotopy equivalences it is natural, though perhaps naive, to ask whether a 
nonsimple homotopy equivalence can have highly connected point-inverses. Theo- 
rem 1' shows that this is indeed possible. 

If X and Y are compact metric ANR's, a map p: X -* Y is said to have the 
approximate homotopy lifting property (AHLP) with respect to a compact space Z 
if for every homotopyf: Z x I -* Y, map FO: Z -- X, such thatp o Fo = fIZ X 0, 
and e > O there is a map F: Z x I- X such that Fo = FIZ x {)0 and 
d(p o F(z, t), f(z, t)) < e for each (z, t) E Z x I. f is called an approximate fibra- 
tion if f has the AHLP for all compacta. We will call f an AFn-map if f has the 
AHLP for n-dimensional compacta. Compare with [M-R]. If f: X -* Y is a map, X, 
Y ANR's and Y connected, then the homotopy fiber of f is the fiber of the mapping 
path fibration [S, p. 99] of f. 

THEOREM 2. If M and N are compact Q-manifolds and the homotopy fiber of f: 
M -* N has finite skeleta, then for any n f is homotopic to an AFn-map. 

This theorem also has a stronger PL version: 

THEOREM 2'. If K and L are polyhedra and the homotopy fiber of f has finite 
skeleta, then for each n there exist a polyhedron K', a CE-PL map c: K' -* K, and a 
PL AFn-map f': K' -* L such that f o c f'. 
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As an application of Theorem 2, we show that a large class of compacta can be 
'improved' within their shape classes. 

THEOREM 3. If X is a UV1 compactum then X is shape equivalent to a compactum 
X' such that for every finite-dimensional compactum Z: 

(i) Every strong shape morphism f: Z -* X' contains a map. 
(ii) Iff, g: Z -*X' are maps which are equivalent as strong shape morphisms, then f 

and g are homotopic as maps. 

A Theorem 3', whose statement is similar to that of Theorem 3, holds for 
compacta which are inverse limits of ANR's with progressively more highly 
connected bonding maps. We should mention that our construction unavoidably 
yields infinite-dimensional spaces X', so we have not imbedded the strong shape 
category in the homotopy category. We do not know if this is possible. 

We show in ?5 that our improved compacta are nearly as nice locally as 
algebraic considerations allow. In particular, we show that the strange compacta of 
Edwards and Geoghegan are shape equivalent to compacta which are LCk for all 
k. We also prove: 

THEOREM 4. A continuum X is shape equivalent to an LCn continuum if and only if 
pro-7?T(X) is stable for 0 < 1 < n and Mittag-Leffler for 1 = n + 1. 

The case n = 0 of this theorem is due to Krasinkiewicz [K]. 
We would like to thank John Walsh for suggesting that we attempt to prove the 

converse Vietoris-Smale theorem for Q-manifolds. The analogous finite-dimen- 
sional problem has been attacked by Walsh and Wilson, [Wal], [Wa2], [Wi1], [Wi2]. 
The full converse is not true for maps between spheres. We would like to thank 
Gerard Venema for helpful conversations and we would particularly like to thank 
Ross Geoghegan for sharing his knowledge of shape theory. 

2. The proofs of Theorems 1 and 1'. Before proving Theorem 1', we will show that 
this theorem implies Theorem 1. Let f: M -* N be a (k + 1)-connected map 
between Q-manifolds. By the triangulation theorem for Q-manifolds, there are 
polyhedra K and L such that K x Q _ M and L x Q _ N. The map 

xO0 f proj 
K K X Q- L x Q -L 

f 

is (k + 1)-connected, so Theorem 1' produces a finite polyhedron K', a CE map c: 
K'--* K, and a UVk-map f': K' -* L such that f o c z f'. Crossing with Q, we can 
approximate c x id by a homeomorphism, so we obtain a homotopy commuting 
diagram where (f' x id) o h1 is the required UVk-map from M to N. 

f 
K X Q L x Q 

= Th UVk f'x id 
K' x Q 

We now proceed with the proof of Theorem 1'. We will isolate an important 
special case of Theorem 1' as Lemma 2.1. 
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LEMMA 2.1. Let K be a finite polyhedron and let i: K--K Uf Dr+2 be the 
inclusion, where Dr+2 is a PL (r + 2)-cell and f: aDr+2 --* K is a PL map. There 
exist a finite polyhedron K', a CE-PL map c: K' -* K, and a UVr_map i': K'--* K 
such that i o c - i'. 

K A KU~~Dr+2 K K uf D 

K' 

PROOF. Let K' = M(f), the mapping cylinder of f. c: K'--* K is the mapping 
cylinder collapse, and i': K'--* K Uf D r+2 is a PL map which collapses the top of 

the mapping cylinder to a point. i' is UVr because the only noncontractible 
point-inverse of i' is a copy of Sr+I. E1 

In proving Theorem 1' we will work with finite CW complexes built up using PL 
cells and PL attaching maps. Thus, all of our spaces will be polyhedra. By 
construction, our maps will be PL. We will use the following well-known lemma 
frequently. 

LEMMA 2.2. Iff: K1 -* L and g: K2 -* L are PL maps, then the pullback P off and 

g is a polyhedron. The induced maps g': P -* K1 and f': P -* K2 are PL. Iff is UVk, 
then so is f'. 

PROOF. Let G1 = {(x,y, z) E K1 x K2 X Llf(x) = z) and let G2 = {(x,y, z) E 

K1 x K2 x LI g(y) = z). G1 and G2 are polyhedra, since the graphs of f and g are 

polyhedra. G1 n G2 = {(x, y, z)lf(x) = g(y) = z) is therefore a polyhedron and is 
homeomorphic to the desired pullback. The induced maps are restrictions of PL 
projection maps and are therefore PL. Each point-inverse of f' is homeomorphic to 
some point-inverse of f, so the last statement follows. O 

PROOF (THEOREM 1'). If f: K -* L is (k + 1)-connected, then ?T,(M(j), K) = 0 for 

O < 1 S k + 1, where M(f) is the simplicial mapping cylinder of f. By Whitehead's 
cell-trading lemma ([Wh, p. 246] or [Co, 7.3]) there exist a polyhedron Z and 
CE-PL maps cl: Z * M(f), c2: Z -* M where M is a finite PL cell complex 

obtained from K by attaching PL cells of dimension > k + 2. 
We write K = Ko c K1 c ... c Kn = M where each Ki+I is obtained from Ki 

by attaching a PL r-cell, r > k + 2. We will first use induction on n to construct a 
finite polyhedron K", a CE-PL map c": K" -* K, and a PL UVk_map i": K" M 

such that i o c" - i", where i: K -* M is the inclusion. 
The case n = 0 is trivial. We assume that there exist CE-PL maps c"': K"' K 

and UVk-PL i"': K"' - Kn-I such that the composition of c"' with the inclusion 

in- 1 K -Kn 1K - is homotopic to i"'. By Lemma 2.1, there exist a polyhedron K"", a 

CE-PL map c"": K"" .* Kn 1, and a UVk_PL map i"": K"" -* M such that the 

appropriate diagram homotopy commutes. The desired polyhedron K" is the 
pullback of i"' and c"". c" is the composition of c"' with the induced CE-PL map 
K" -* K"' and i" is the composition of the induced UVk-PL map K" -* K"" with 

i"". Note that the Vietoris-Smale theorem implies that the composition of UVk_PL 
maps is UVk-PL. 
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We now have a homotopy commuting diagram. 

f 

c Pr CE ~ ~ ~ ~ C 

c"{CE Uvk { EC 
K" Z 

CE uvr 

K' 

We complete the proof of Theorem 1 by letting K' be the pullback of i" and c2. 
c' is the composition of c" with the induced CE map K' -* K" and i' is the 
composition of the induced UVk-map with cl and the mapping cylinder collapse. 

E 

3. The proof of Theorem 2'. The proof of Theorem 2' will rely on the following 
characterization of AF'-maps which is a specialized version of a theorem [D-T, 
Satz 2.7] of Dold and Thom. See [C-D] for a Cech version. 

THEOREM. Let f: K -* L be a PL map between finite polyhedra. f is an AF -map if 
the following condition holds: For each x E L there are arbitrarily small contractible 
neighborhoods U of x such that for each y E U the inclusion f 1(y) ->f I(U) 
induces isomorphisms on homotopy groups through dimension n. OI 

Our strategy in proving Theorem 2' will be to construct a homotopy commuting 
diagram below with p" a PL AF N_map and s N-connected for N large. We will 
then apply Theorem 1' to the map s. We begin with the following lemma. 

K K" 
f kX p, 

L 

LEMMA 3.1. Let B be a connected finite PL cell complex and let '9P: &; - B be a 
Hurewicz fibration from an ANR to B with fiber C5Y. If IF has finite skeleta then for 
each n there exist a finite polyhedron K, a PL AF -map p: K -* B, and an 
n-connected map h: K-- & such that '9P o h = p. 

PROOF. The lemma is trivial if B is a point. We will proceed by induction on PL 
cells. Assume that B = B' U Dr, that B' is connected (since B is connected we can 
assume that there is only one zero cell-an easy pullback construction shows that if 
Lemma 3.1 is true for B then it is true for any space homotopy equivalent to B), 

and that we have the commutative diagram below in which p' is an AFn-map and 
the restriction of h' to any fiber is n-connected. 

K' + &IB' 
X\i' t@I 

B' 



374 STEVE FERRY 

Write D' = Sr-I x [0, 1] U D'. By pullingp' back over the collapse Sr-I x [0, 1] 
U B' X B', we reduce to the case in which aDr is imbedded in B'. Let F1 be a CW 
complex with finite skeleta which is homotopy equivalent to C5Y. Since &;IaD' 
extends over Dr, there is a map t: &; aDr F which restricts to a homotopy 
equivalence on each fiber. The map t o h'I(p') l(aDr): (p')- l(aDr) -* F1 is homo- 
topic to a cellular map and therefore is homotopic to a map whose image lies in the 
N-skeleton FI(N) of F1 for some large N. Let F be a polyhedron homotopy 
equivalent to FIN). There is a PL map (coming from the trivialization t) T: 
(p')- 1(aD ) -* F whose restriction to each point-inverse of p' is n-connected. The 
desired polyhedron K is K' U M(T) which projects onto B by the map which 
comes from considering D nto be the cone on aD n. That h' extends to h: K - &; is 
clear from the construction, since the trivialization of &; IDr was used to construct 
T. That p is an AFn-map is clear from the criterion at the beginning of this section. 
That h is highly connected follows from the fact that a PL AFn-map satisfies the 
homotopy sequence of a fibration through degree n. E] 

We will now proceed with the proof of Theorem 2'. Let f: K -* L be a map 
between finite polyhedra as in the statement of Theorem 2'. Let P: &; - L be the 
mapping path fibration of f. Let N > dim K. According to Lemma 3.1, there exist 

a finite polyhedron K", an AF -map p": K" -* L, and a map h": K" - &; such 
that IP o h" = p" and such that h" is N-connected. We therefore have a homotopy 
commuting diagram. d 

K-- -K" 

f X y kI SP, 

L 

The map d from K" to K is a homotopy domination since the obstructions to 
finding a homotopy section of d lie in groups H'(K, g_ (64'Y)), where 6F1 is the 
homotopy fiber of d. IF1 is N - 1 connected, so these groups are all zero. If s: 
K -- K" is a map such that d o s - id, then s is (N - 1)-connected, so Theorem 1' 
produces a polyhedron K', a CE-PL map c: K'--* K, and a UVN-2PL map s': 
K' -> K" such that s o c - s'. The desired polyhedron and CE map are K' and c. 
The desired map f' is p" - s', which is an AFN-2-map. [ 

LEMMA 3.2.2 If K and L are finite polyhedra with r, K = 0 = 7rT L and f: K L is 
a map, then the homotopy fiber of 'J has finite skeleta. 

PROOF. According to Wall [W, p. 61] it suffices to show that the group ring A of 

'w(ff) is Noetherian and that Hj(9) is a finitely generated A-module for each n. 
The homology groups of K and L are finitely generated. By the Hurewicz 

theorem modulo Serre classes of Abelian groups [S, p. 509], the homotopy groups 
of K and L are finitely generated Abelian groups in each dimension. It follows 
from the homotopy sequence of the mapping path fibration that 7w,(5j) is a finitely 
generated Abelian group and that n(jF) = vjnfl is a finitely generated Abelian 

2This also holds forfinite fundamental groups. 
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group for each n. A second application of the mod-e Hurewicz theorem shows that 

HJ(5) is a finitely generated Abelian group for each n. According to Wall [W, p. 
61] the group ring of a finitely generated Abelian group is Noetherian. This 
completes the proof. [1 

Theorem 2 follows from Theorem 2' as Theorem 1 follows from Theorem 1'. 

COROLLARY 3.3.3 If M and N are compact simply connected Q-manifolds and f: 
M -- N is a map then for each n f is homotopic to an AF -map. El 

There is, of course, an analogous PL Corollary 3.3' whose statement we leave to 
the reader. 

4. A lemma concerning inverse limits. In order to apply Theorems 1 and 2 to the 
study of compacta, we will need the following easy lemma. 

f2 f3 f4 
LEMMA 4.1. Let Xl X2 X3 .X . . be an inverse sequence of compact metric 

spaces and let X = lim (Xi, fi). There is a sequence { ei}7I of positive real numbers 
such that for any N and any space Z a sequence of maps aj: Z -> Xi such that 

d(fi ? a,i ,i- 1) < ei- 1 for all i > N determines a map a: Z-> X. 

PROOF. For each n, consider the sequence of maps 

{f+1o . of koa kZ 0X}1 {fn + ? fn +k ??n+k: Z -->Xn}ok== 

The distance between the kth and (k + I)st maps in this sequence is 

d(fn +I o ... ofn+k o (fn+k+1 ? afn+k+l),fn+l1 ? . . . of +k o (an+k)). 

If en+k is small enough, depending on the modulus of continuity of 

fn +1 ?. * **ofn+k, this distance will be very small. Thus, for a suitable choice of 

{ei}, the sequence of maps described above will be Cauchy for each n and each 

sequence will converge to a map a': Z--A Xn. It is easy to verify that fn o a' = 

aKn, so the sequence ca<'} induces a map a: Z -> X defined by a(z) = 

(a?(z), a2(z) ... ) for all z. El 
This lemma is a version 'for maps' of a well-known theorem of Morton Brown 

[B]. Our first proof of this result used Brown's theorem. The next corollary will be 
superceded by the results of ?5. It is included here because it exhibits the main idea 
of ?5 without getting the reader bogged down in the technicalities associated with 
strong shape theory. 

COROLLARY. 4.2. If X = lim (Ki, fi), Ki a finite polyhedron, and 

(i) each f, is an approximate fibration, then for every compact Z each shape 
morphism Z -*> X is represented by a map; 

(ii) each fi is an AF'-map, then for each conWact finite-dimensional Z each shape 
morphism Z X is represented by a map. 

3Again, this holds for finite fundamental groups. 



376 STEVE FERRY 

PROOF. A shape morphism Z -> X is represented by maps ai: Z -* K1 such that 

fi ? ai ai--. Altering each ai by a homotopy does not change the shape mor- 
phism. In either case, given a sequence {ei } of positive numbers, we will construct 
maps {fai'} as in Lemma 4.1. 

Consider case (ii). Let N = dim Z. Let ai' = ai for i < N. Using the AFN 
property of fN, we can 'cover' the homotopy from aN_ I = aX_ , to fN o aN by a 
homotopy from aN to a new map a' such that fN o a42 is eN - -close to a? v- We 
construct a'y+ in a similar fashion, using the AFN+ '-property of fN+l and 
continue. By Lemma 4.1 or, better, by its proof, we are done. El 

The proof above will not generalize to show that maps into X which are 
equivalent as shape maps are homotopic as maps. The interested reader is urged to 
work out the case of maps of a point into the dyadic solenoid as an exercise. 

If X is a UV' compactum, then X can be written as an inverse limit X 
= lim (Ki, fi) with I (K,) = 0 for each i. By Corollary 3.3, fi x id: Ki x Q -*Ki 

x Q is homotopic to an AF'-map gi for each i. X' = lim(Ki X Q, gi) has the shape 
of X and condition (ii) of Corollary 4.2 applies. Thus, every UV' compactum X 
can be 'improved' within its shape class to a compactum X' for which shape maps 
Z -> X', Z compact and finite dimensional, are represented by maps. 

There is an interpretation of Lemma 4.1 which will be useful in the sequel. If 
((Xi,, f1)I- is an inverse sequence of compacta, we can form a new inverse 
sequence {(Xi, j')}i?? of compacta by letting Xk, be the disjoint union HIk 1 Xi and 
letting f': Xi' -> Xi'>I be the map induced by identity maps and fi. lim (Xi', fi') is a 
compactification of UI Xi' obtained by adding on a copy of lim (Xi, fi). The 
condition that a sequence of maps ai: Z -> Xi converge to a map a: Z -* lim (Xi, f) 
is precisely the condition which appears in the proof of Lemma 4.1. 

5. Approaching maps and strong shape. The reader who has worked out the 
suggested exercise involving the dyadic solenoid has discovered that it is not 
sufficient for our purposes to call sequences of maps { ai } and { j3A}, ai, A3k: Z -*Xi 
homotopic if there are independent level-preserving homotopies hi: ai /3A. The 
idea of strong shape theory is to require some form of coherence between the 
various homotopies. Several equivalent notions of strong shape theory have been 
defined ([E-H], [D-S], [K-O], [Q]). We will use a slight modification of the 
construction of [Q], where strong shape theory is defined based on a modification 
of Borsuk's definition of fundamental sequence. Quigley's theory is further devel- 
oped in [K-O]. 

DEFINITION 5.1. If X and Y are compact metric spaces and i: Y -* W is an 
imbedding, W an absolute retract (AR), then an approaching map f: X -* Y is a 
pair (f, i) where f is a map f: X x [0, oo) -* W such that for each neighborhood U 
of i( Y) in W there is an N such that f(X x [N, oo)) c U. Two approaching maps f, 
g: X -> Y (f = (f, i), g = (g, i)) are homotopic if there is an approaching map H: 
X x I-- Y(H = (H, i)) such thatHIXx (0} =fandHIX x {1} = g. 

If i': Y -- W' is a second imbedding of Y in an AR, then there are maps t: 
W-- W' and t': W' -- W extending i' o i - l 1 i( Y) and i o (i') 

- 1 i'( Y). Composing 



STABLE CONVERSE TO THE VIETORIS-SMALE THEOREM 377 

an approaching map f: X x [0, xc) -- W with t yields an approaching map f': 
t o f: X x [0, xo)-- W'. Since W' is an AR, the space of maps t: W-- W' 
extending i' o i I i( Y) is contractible, so the association of t o f to f is independent 
of the choice of t up to homotopy. If [f] and [f'] are homotopy classes of 
approaching maps X -- Y in AR's W and W', we will say that [f] and [f'] are 
equivalent if [tf] = [f'] for some t as above. A strong shape morphism s: X -> Y is 
an equivalence class of homotopy classes of approaching maps from X to Y. In 
practice, then, a strong shape morphism will be a homotopy class of approaching 
maps where i: Y -- W is an imbedding of Y into some convenient AR. 

DEFINITION 5.2. If ((Xi, fi)} is a finite or infinite inverse system, we will define 
Map{(Xi, fi)} to be the union of the mapping cylinders M(f,) with the base of 
M(f, +l ) identified with the top of M(f,). There is a natural map p: Map t(Xi, fi)} -> 

R which sends each Xi to i and interpolates linearly between the various Xi's. If 

((Xi,,if)}7I is an infinite inverse system, we can define a new inverse system 

{(Xi, f')},=0 by setting Xk, = Map(pt 2*- *- X .. *- Xk) and letting fk: Xk, 
-Xk- 1 be induced from collapsing the last mapping cylinder to its base. 
lim (Xi', fi') is a compactification of Map(pt X- X1 X2 *.. .) obtained by 
adding on a copy of lim (Xi, fi). We will call this space (the completed contract- 
ible mapping cylinder) CMap+((Xi, fi)). If the spaces Xi are ANR's, then 
CMap +((Xi, fi)) is an AR since it is e-dominated by the open mapping telescope for 
each e > 0. Compare with [Ch-S, p. 181]. This is often a convenient AR containing 
the inverse limit: 

DEFINITION 5.3. If f: X -- Y is an approaching map and A c X is a closed set, 
we say thatfiA represents a map,ft: A -- Y, onA if fIA X [0, cc): A x [0, oo) 
W extends to a continuous function f+: A x [0, oo] -- W by defining f+(a, oo) = 

ft(a) for all a E A. 
The following lemma is the main technical result of this section. 

LEMMA 5.4. Let X be a compactum and let A c X be a closed set. Let Y 
= lim ( Yi, fi) where each Yi is an ANR and each fi is an approximate fibration for X. 
If a: X -> Y is an approaching map (with respect to Y c-* C Map+( Yi, fi)) which 
represents a map on A, then a is homotopic through approaching maps representing the 
same map on A to an approaching map /3: X -- Y which represents a map on X. 

PROOF. Let p: CMap+(Yi, fi) -> [0, oo] be the natural map and let pg: 

CMap+(Yi,,i) -> CMap+(Yi,,i) be the map which retracts CMap+(Yi,,i) onto 
p - ([0, t]) via the projection of Y to the Yi's and mapping cylinder collapses. 

Since a is an approaching map, a: X x [0, xc) -- CMap+( Yi, fi) has the property 
that for each k there exists Nk such that a(X X [Nk, oo)) c p - ([k + 1, oo]). We 
may clearly assume that Nk < Nk+l for all k and that limk, Nk = oo. Let p: 
[0, oo) -- [0, x) be a homeomorphism into with p(k) = Nk for all k. a: X x [0, cc) 
-- CMap+( Yi, fi) is homotopic to a' where a'(x, t) = a(x, p(t)). a' has the property 
that p o a'(x, t) > t for all t. a', in turn, is homotopic to a" defined by a"(x, t) = 
zto a'(x, t). Both homotopies preserve the map represented by a on A. We may 
drop the primes and assume that p o a(x, t) = t for all t. 
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The map a: X x [O, x )Map(* -Y Y2 <-- is proper. If a*: A Yis 
the map represented by alA, then there is a proper homotopy from alA X [0, oo) to 
the map 

a**: A X [0, oo) Map(* Y1 Y2 *- * .) 

given by a**(a, t) = mto a*(a). The restriction of the homotopy to A x {t} is 
obtained from qpt o (alA x [t, xc]) by reparameterizing from [t, oo] to [0, 1]. We 
may use the proper homotopy extension theorem to alter a so that qP, o a(a, t) = 
(a *(a), t) for all t. We may repeat the initial types of homotopies to regain the 
condition p o a(x, t) = t for all t. 

We now define a homotopy A of approaching maps by 

AAx, t) q=t o a (x n -2 + 2 - [ - ) ] 

forte [n--,n+ 1-s 

= to a(x, n +2) for t [ n + 5, n + -. 

Again, we write a(x, t) = A (x, t). a now has the property that a(x, t) = 

% o a(x, n + 1) for t E [n, n + 4 We can think of a as being constructed from 
maps an: X --> Yn (here identified with p -(n-2)) and homotopies hn: X x I 

n from fn o an to an1 The formulas are an(x) = a(x, n- ) and hn(x, t) = 

Tn- 1/2 o a(x, n - t/2). By construction, hn(a, t) = n - 1/2 o a*(a) for all a E A 
and for all t e [0, 1]. 

Let ({i' } be a sequence of real numbers as in Lemma 4.1. Now choose ei < Ei so 
small that maps into Yi which are ei-close are canonically e<-homotopic. We start 
our construction by considering the diagram below. 

Xa 2 

X x tO)}-- Y2 

H2 o' If2 

h2 

X x I _> Yi 

h2(x, 0) = f2 2, so there is a homotopy H2: X x I -- Y2 so that H2(x, 0) = 

a2(x) and d(f2 o H2, h2) < el. Let H2(x, 1) = a'(x). Since h2l(A x I) is a constant 
homotopy, the usual regularizing trick for Hurewicz fibrations [D] allows us to 
assume that H2(a, t) = a2(a) for all a E A and t C [0, 1]. Set a' = I and let h': 
X x I - l> I be a small canonical homotopy from f2 o a' to a' = a. Note that 
there is a canonical homotopy G2 fromf2 o H2 to h2 which extends h. 

We have a homotopy K2 from f3 o a3 to a2 given by 

K(x, t) ={h3(x, 2t), O < t <?, 

A 2x, 2t -1), < t < I. 

Let H3: X x I Y-> I3 be an e2-lifting of K2 starting at a3 and ending at a': X Y3. 
As before, let h' be a canonical homotopy from f3 o a' to a' and let G3 be a 
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canonical homotopy from f3 o H3 to K2. Continue in this fashion, letting Kn_ = 

hn * H- 1: X X I -* Y,n_, letting H,, be an n- l-lifting of K"1, and letting Gn be a 
canonical homotopy fromfn o Hn to Kn l extending a canonical homotopy hn from 
fn a to atn, where an = H,(x, 1) = Kn(x, 1). 

Use the maps a; and homotopies hn to define an approaching map a': X x 
[0, oc) -* C Map'(Xi, fi) by the formula 

t (h(x, 1 - 2(t - n +) t), tE[n -,n], 

(an+ Il(x), t), t E[n, n + 

This simply reverses the process by which the original an's and hn's were defined. 
By Lemma 4.1, a' represents a map which exends a*. 

It remains to show that a' is homotopic to a. We have appropriate maps Hn: 
X x I -- Yn. We need only produce homotopies Mn from fn o Hn to Hn -1 extend- 
ing hn and hn and use them to produce an approaching map as above. This 
amounts to extending a map from X x aI2 to X x 12, where the map on aI2 is 
given schematically by the following diagram which shows only the 12-coordinates. 

fo~~ f oH faa' 
fn ? Cen fn ? n fn ? ?n 

hn [ n 

?K-n - 1 n-1 /n -a1 

The extension is given by reparameterizing the homotopy Gn. 

faa f~ oH faa' 
fn ? ?/n fn ? n fn ? ?n 

f a 4 
fn ? a!n n 1 n 

f o -an an-1 O'n - 1 

The unpleasant formula is left to the reader. This completes the proof of Lemma 
5.4. El 

COROLLARY 5.5. Let Y = lim ( Yi, fi) with each Yi a compact ANR. 

(i) If each f is an approximate fibration, then for any compactum Z, homotopy 
classes of maps Z -* Y are in 1-1 correspondence with strong shape morphisms 
Z -> Y. 

(ii) If each fi is an AFP-map, then the same conclusion holds for compact finite-di- 
mensional Z. 

PROOF. We prove part (ii). If dim Z = N, then 
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so Lemma 5.4 applies to maps of Z or Z x I into Y. Maps in a strong shape class 
are obtained by applying the lemma to Z. Homotopies are obtained by applying 
the lemma to Z x I relative to Z x {o, 1}. OI 

REMARK. One can define simplicial sets of maps Z -* Y and approaching maps 
Z -> Y. The proof above shows that the inclusion is a homotopy equivalence. 

Theorem 3 now follows as in the discussion following Corollary 4.2. In fact, we 
can prove the slightly sharper result: 

THEOREM 3'. If Y = lim (Yi, f) with each Yi an ANR and the homotopy fiber of 
each map f has finite skeleta, then there is a conpactum Y' shape equivalent to Y 
which is improved in the sense of Theorem 3 and Corollary 5.5(ii). 

PROOF. Apply Theorem 2 tofi x id: Yi x Q- Yi I x Q. OI 
We can prove a result which does not follow from Theorem 3' by appealing to 

Theorem 1 rather than to Theorem 2. A compactum X is LCk if for each x E X 
and neighborhood U of x there is a neighborhood V of x so that every map 
S'-> V, 0 S I < k, is nullhomotopic in U. 

THEOREM 3". If Y = lim(Yi,fi) with each Yi an ANR and each fi (i + 1)- 
connected, then Y is shape equivalent to a compactum Y' which is improved in the 
sense of Theorem 3'. In addition, Y' is LCk for each k > 0. 

PROOF. Apply Theorem 1 to construct a homotopy from fi x id: Y x Qi -Yi- 
x Q to a UV'-map fi' and let Y' = lim (Y> x Q, f,'). This proves Theorem 3" 
modulo the last assertion, which follows from the next proposition. 

PROPOSITION 5.6. Let Y = lim ( Yi, fi) with each Yi an ANR. If all but finitely many 

fi s are UVk-maps, then Y is LCk 

PROOF. Lety = (Y1iY2, ... ) E Y. Let pi: Y-- Yi be the natural projection. The 
collection {pi- 1(U)I U is open in Yi, i > K} is a basis of Y for each K, so given a 
neighborhood U of y we may find a neighborhood UK of YK in YK so that 
Y EPK-1(UK) c U. K may be chosen so that fi is a UVk-map for each i > K. 
Choose VK C UK so that maps S' -> V are nullhomotopic in UK for 0 < I S k. VK 

exists because YK is LCk. Set V = pK- 1(VK). 

If a: S' > V, 0 < I < k, let an = Pn o a for each n. Since aK: S' > VK, there is 
an extension /8KID+' +- UK of aK. If a sequence { ei} of positive reals is chosen as 
in Lemma 4.1, we can find a map /3K+1: D'+1 -> YK+ 1 extending aK+l so that 
d(fK+ I ? /K+ 1 /K) < eK. This lifting is possible becausefK is Uyk. Continuing this 
process, we obtain a sequence { A3R: D'+1 ->Y}i=K of maps extending the maps aK 
such that d(f o /Ak, /A- 0) < ei for i > K + 1. As in Lemma 4.1, this defines a map 
,/ into Y extending a. C] 

REMARK. The condition that a space be LCk for all k is not as nice as it seems at 
first glance. The one-point compactification of V,??1 Si has this property and is, in 
fact, an 'improved' compactum. 

A compactum is strange if it has the shape of an infinite CW complex. Strange 
compacta were first constructed by Edwards and Geoghegan in [E-G]. (See [F1] for 
the analogous construction in homotopy theory.) 
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COROLLARY 5.7. If X is a strange compactum, then X is shape equivalent to an 
improved compactum which is LCk for each k > 0. 

PROOF. Let K be a CW complex shape equivalent to X. K is finitely dominated in 
the sense of Wall [E-G], so for each i there exist a finite polyhedron Ki and 
(i + 1)-connected maps di: Ki -* K, ui: K -> Ki such that di o ui - id. See [WI for a 
proof of this. The inverse system {(Ki, ui o di-, )} satisfies the hypothesis of 
Theorem 3" and has inverse limit shape equivalent to X by [E-G]. Theorem 3" 
produces the desired compactum. El] 

We remark that the compacta generated by Theorem 3' do not have good local 
properties. The dyadic solenoid is already improved in the sense of Theorem 3'. 

Theorem 1 and Proposition 5.6 allow us to give a complete algebraic character- 
ization of metric continua which are shape equivalent to LC' continua. 

THEOREM 4. A continuum X is shape equivalent to an LC' continuum if and only if 
pro- ,(X) is stable for 0 < I < n and Mittag-Leffler for I = n + 1. 

PROOF. The argument of Kozlowski and Segal [K-S] shows that an LC' metric 
spaces have stable pro-T, for I < n. Borsuk [D-S, 5.2.8] has shown that LC' metric 
continua have Mittag-Leffler pro-7Jn+ . For completeness and variety we sketch a 
proof which does not explicitly use refinements of nerves. Let X = lim (Ki, f,) and 
form CMap+(K,f f). Triangulate the open telescope by finer and finer triangula- 
tions going out toward X. Use the LC' property to define a retraction of the 
(n + 1)-skeleton to X in some neighborhood of X. Since CMap+(Ki, f,) is an ANR, 
given any neighborhood U of X there is a neighborhood V of X so that rl(V n 
(n + 1)-skeleton) U X is homotopic to the identity by a homotopy which fixes X. 
We claim that im(7,(V) - 7T,(U)) is isomorphic to T,(X) for / < n and that 

+I (X) -> im(Qn,+( V) --> 7Tn (U)) is a surjection. If (S *)(V, *), then by 
simplicial approximation we may assume that a(S') c (V n (n + 1)-skeleton) U 
X for I < n + 1. r o a(S') c X and r o a - a rel * in U. This establishes the 
surjectivity of 7T,(X) -> im(QT( V) -- 7T1(U)). If a: (S, *) -> (X, *) is nullhomotopic 
as a map a: (S', *) -> (U, *), / < n, let /: (D+ 1, *) -> (U, *) be an extension of a. 
We assume as before that f8(D+ 1) c ((n + 1)-skeleton) n U, so r o /: DI+1 -> X 

is an extension of a. This proves injectivity. 
Thus, we need only prove the reverse implication. The idea is to show that a 

continuum X satisfying the stated conditions can be represented as an inverse limit 
of ANR's with (n + 1)-connected bonding maps.4 We will then cross with Q and 
apply Theorem 1 to construct an inverse sequence with UV' bonding maps and 
inverse limit shape equivalent to X. We proceed by induction on n. 

Case n = 0. We can represent X as an inverse limit lim (Ki, fi) of connected 
polyhedra where f* maps f+ I(TrI(Ki+ )) onto fi*(,gI(Ki)) for each i, the last part 
being essentially the Mittag-Leffler condition. For each i, let {Cgj}.1 be a finite 
generating set for ry(K,) and for each j choose 'hj E fj+ *(Trj(K>+j)) such that 

4Compare with [H-I]. 
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fi*('g1) = fi*(hj). Attach 2-cells to Ki to kill the elements 'gjhj)1 and call the 
resulting complex Ki'. 

Since f*(,g.'hf- 1) = 1 for each j, fJ extends to a map ki': K' -> Ki -1. Setting fi' 
equal to the composition of ki' with Ki_ -I Ki'- 1, we have a strictly commuting 
diagram of polyhedra. 

Ko <, -K1f < f2 f3 
K - K1 < K2 ~ . 

f2kf 3 
K' X - K < - KI < - 

One can check that each fJ'*: s7I(Ki') -7 I(Ki'> 1) is surjective. A word represented 
by a string of igjs is the same as the word represented by the same string of 'hj's in 

s7T(Ki'). Since the diagram strictly commutes, lim(Ki',fi') = X. This completes the 
case n = 0. Note that if pro-'g1 is stable (i.e. if imfi* maps isomorphically to 
im fi* o f + I* for large i), as in the succeeding cases, then all but finitely many of the 
maps fi' induce isomorphisms on 7Tj. 

Case n = 1. In this case we have (dropping primes) isomorphisms 

gI(K,) g I(Ki 1) for all i and a commuting diagram. 

ir2(KO) < ir2(Kl) < ir2(K2) < ... 

Go < <- G < G < 

We have an exact sequence T2(K,) -> T2(K,_ 1) -*- 7n(M(f,), K,) 0. Since we have 
71-isomorphisms, we can pass to universal covers and get: 

qJ2(M(fi), A;) = qJ2(M(fi), Ki) = H2(M(f), Ki). 
C*(M(f ), Kj) is a complex of finitely generated free ZiTn(K)-modules. The first 

nonvanishing homology group of such a complex is always finitely generated. See 
[W], [Si], or the proof of [Co, 13.1] for a proof of this. Choose a finite set of 
generators {a->} for T2(M(f,), K,) and for eachj let {a>'} be a representative for a-j in 

7T2(Kj -). Using the Mittag-Leffler condition, we see that for each j there is a 

8j ET 7T(KK) such that fi- 1* o fi*(/) = fi*(a>'). Let aj = - bt>. af maps to aj in 
the cokernel and fj -*(a) = 0 for each j. We can now attach finitely many 3-cells 
to Ki to kill { aj } and create a system {(Ki', fi')} with inverse limit shape equivalent 
to X and 2-connected bonding maps. 

Case n > 2. We assume that we have produced a system with n-connected 
bonding maps. The system {(7Tn(Ki), f *)} is a system of surjections and is stable, so 
an easy argument shows that it is a sequence of isomorphisms beyond some point. 
We now proceed to the (n + I)st homotopy and kill the cokernels as in the case 
n = 1. O 
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The case n = 0 of Theorem 4 is a result of Krasinkiewicz [K]. Our proof of 
Theorem 1 is somewhat crude, so the LC' compacta we produce are infinite-di- 
mensional. In case n = 0, a theorem of John Walsh [Wa1] can be substituted to 
give finite-dimensional LC? continua when X is finite dimensional. 

For n = oo we see that Y has the shape of a continuum which is LCk for all 
k <; pro-7,( Y) is stable for all / =:the conditions of Theorem 3" are satisfied. Are 
these spaces shape equivalent to locally contractible spaces? 

6. An application to CE equivalence. 
DEFINITIoN 6.1. If X and Y are compacta, we say that X is CE equivalent to Y if 

CE 
there exist compacta X = X0, XI,. . X,, = Y and for each i either Xi+I X1 or 

CE 
Xi+ 1. (The sophisticate will want to use hereditary shape equivalences [D-S] in 

this definition. We will work with the simpler notion and point out that the 
problems discussed here are still interesting when all of the spaces involved are 
required to be finite dimensional, in which case CE maps are hereditary shape 
equivalences.) 

In [F1], the author showed that homotopy equivalent compacta are CE equiva- 
lent. Our attempt to prove that shape equivalent compacta are CE equivalent was 
blocked by a counterexample; in [F2] we showed that the spiral X is not CE 
equivalent to S1. 

Note that X is the 'mapping cylinder' of an approaching map * S'. Our 
interest in approaching maps was stimulated by an attempt to develop a calculus of 
mapping cylinders in the shape category and imitate the proof in [F1]. 

DEFINITIoN 6.2. If f: X -> Y is an approaching map, Y C WAR, such that 
f(X x [0, oo)) c W - Y and f: X x [0, so) -> W - Y is an imbedding, then the 
set f(X x [0, oo)) u Y is called the mapping cylinder of f and is denoted by M(f). If 
Y is imbedded as a Z-set [Ch] in Q, then every approaching map f: X -> Y can be 
perturbed slightly to one which admits a mapping cylinder. It is easy to extend this 
definition so that all approaching maps have well-defined mapping cylinders by 
using such perturbations, since mapping cylinders obtained by different perturba- 
tions are homeomorphic. 
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PROPOSITION 6.3. If K and L are finite polyhedra with rr L = 0 and f: K-> L is an 
approaching map which is homotopic to a constant map, then M(f) is CE equivalent 
to L. 

REMARK. No pair of shape equivalent CE-inequivalent UV' compacta is known. 
Proposition 6.3 shows that one cannot construct such an example by, for example, 
letting a ray spiral toward a copy of S2. Note that the spiral X shows that the 
condition 7,L = 0 is necessary. 

PROOF (PROPOSITION 6.3). Let dim K = k. By Theorem 2' there exist a contract- 
ible polyhedron P and a PL AFk-map P -> L. By taking a regular neighborhood of 
P in R N N large, we may assume that P is a disc. Let r: U -> L be a retraction of a 
neighborhood of L onto L. We may extend r to be defined on f(X x [0, oo)). We 
have a diagram. 

P 

F 7 }UVk 

Kx [,oo ) -L 

Since r o f lK x {0} is nullhomotopic, there is a lifting F: K x [0, oo) P such 
that lim,,O d(p o F(x, t), r o f(x, t)) = 0. 

Imbed P as a Z-set in Q and perturb the approaching map F: K-> P so that it 
admits a mapping cylinder. Now consider the space M(p) U p M(F). M(F) is 
cell-like, so there is a CE-map M(p) U p M(F) -> M(p)/ P M(p), since P is a 

CE 
disc. Since M(p) -> L, M(p) U p M(F) is CE equivalent to L. On the other hand, 
one can collapse the rays of M(p) without first contracting M(F). The resulting 
quotient space is homeomorphic to M(J). This completes the proof of Proposition 
6.3. ra 

If L is an (r + 1)-connected polyhedron then a map pt -- L is (r + 1)-connected 
and, by Theorem 2', L is the UVr_image of a contractible polyhedron. If Y is a 
compactum CE equivalent to L (using hereditary shape equivalences) then an 
argument using pullbacks [F2] shows that Y must be the UVr-image of a cell-like 
set. This property was used in [F2] to show that the spiral X is not CE equivalent to 
S 1. The next proposition shows that this invariant cannot distinguish a mapping 
cylinder from its base when the base is simply connected. 

PROPOSITION 6.4. If f: K -- L is an approaching map, and L is (s + 1)-connected, 
s > 0, then M(f) is the UVS-image of a cell-like set. 

PROOF. Let r: U -> L be a retraction as before. Since L is (s + 1)-connected, the 
restriction r o f IK(s+ 1) x (0) is nullhomotopic. The inclusion K(s+ 1) -> K is 

(s + 1)-connected, so there exist a polyhedron K and a UVs-map i: K-> K so that 
r o f o i is nullhomotopic. Letting P be as before, we have a diagram. 



STABLE CONVERSE TO THE VIETORIS-SMALE THEOREM 385 

I 
K x [0, oo) K x [0, oo) f >L 

i x id r o 

As before, we lift to F and form M(F). There is an obvious UVs-map from the 
cell-like set M(F) onto M(f). II 

The place where these arguments break down when L = S1 is that there is no 
AFn-map from a contractible polyhedron to L for n > 0. That is because the 
homotopy fiber of pt -- S1 is an infinite discrete set. This is exploited by the 
covering space argument in [F2]. This suggests (to the author, at least) that UV1, 
shape equivalent, CE inequivalent compacta may well exist but that to detect them 
one will need to exploit the fact that the homotopy fiber of pt -> L frequently has 
infinitely generated homology when 7r1L = 0. This will require much more delicate 
arguments than those of [F2]. 
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