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Introduction

Chern, Hirzebruch and Serre [6] proved that the signature of the total space of a fibre

bundle F −→ E
p−→ B in which the fundamental group π1(B) acts trivially on H∗(F ; R) is

the product of the signatures of the fibre and base

sign(E) = sign(F ) sign(B) ∈ Z ,

with sign = 0 for manifolds of dimension 6≡ 0(mod 4). Kodaira [13], Atiyah [3] and Hirze-
bruch [12] constructed various examples of fibre bundles in which π1(B) acts non-trivially
on H∗(F ; R) and the signature is not multiplicative. Moreover, in the case where both B
and F are even-dimensional the Hirzebruch signature theorem

sign(E) = 〈L(E), [E]〉 ∈ Z

and the Atiyah-Singer index theorem were used by Atiyah [3] to obtain a characteristic class
formula for the signature of E involving a contribution from the action of π1(B) on H∗(F ; R).
The flat (−1)k-symmetric bundle Γ over B with fibres Hk(Fx; R) (x ∈ B, k = dim(F )/2), has
a real (resp. complex) K-theory signature [Γ]K ∈ KO(B) for k ≡ 0(mod 2) (resp. KU(B)
for k ≡ 1(mod 2)) and the twisted signature theorem is

sign(E) = 〈ch([Γ]K) ∪ L̃(B), [B]〉 ∈ Z .

Lusztig [19] and Meyer [20] extended this expression to the Γ-twisted signature sign(B,Γ) ∈
Z for any sheaf Γ of (−1)k-symmetric forms over an even-dimensional manifold B.

In this paper we apply the algebraic surgery transfer of Lück and Ranicki [18] for a

fibration F −→ E
p−→ B with the fibre F a d-dimensional Poincaré complex

p∗ : Ln(Zπ1(B)) −→ Ln+d(Zπ1(E))

to a further investigation of the behaviour of the Wall surgery obstruction and the Mish-
chenko symmetric signature in fibrations. These invariants are generalizations of the equiv-
ariant signature, and the characteristic classes have to be replaced by more general L-theory

1This paper was published in the Journal of Pure and Applied Algebra 81, 139–189 (1992)
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invariants. Instead of dealing with the action of π1(B) on H∗(F ; R) we consider the chain
homotopy action of π1(B) on the chain complex C(F ) induced by the homotopy action of
π1(B) on F given by the fibre transport ω : π1(B) −→ [F, F ].

Generalizing the work of Dress [8] and Yoshida [39] for finite groups we study the equiv-
ariant L-groups Ld(π,Z) of a group π. For d = 2k (resp. 2k+1) Ld(π,Z) is the Witt group of
nonsingular π-equivariant (−1)k-symmetric forms (resp. linking forms) on finitely generated
free (resp. finite) abelian groups. The equivariant Witt groups L2k(π,Z) are well-known, and
their applications to group actions, knot theory and the surgery obstruction groups of finite
groups have motivated extensive computations, both for finite groups (Alexander, Conner
and Hamrick [1]) and infinite groups (Neumann [25]). In the main body of the text we shall
take full account of the various orientations: in the introduction we suppose for simplicity
that all manifolds and Poincaré complexes are orientable.

The tensor product over Z with the diagonal π-action induces a pairing

⊗ : Ld(π,Z)⊗ Ln(Zπ) −→ Ln+d(Zπ) .

A fibration F −→ E
p−→ B with d-dimensional Poincaré fibre F has a π1(B)-equivariant

symmetric signature invariant

σ∗(F, ω) ∈ Ld(π1(B),Z) ,

given for d = 2k (resp. 2k + 1) by the Witt class of the nonsingular π1(B)-equivariant
intersection form on Hk(F ) (resp. linking form on the torsion subgroup of Hk+1(F )). It
depends only on the fibre F and the fibre transport ω : π1(B) −→ [F, F ]. Our main result
expresses the composition

p∗ ◦ p∗ : Ln(Zπ1(B))
p∗−→ Ln+d(Zπ1(E))

p∗−→ Ln+d(Zπ1(B))

as product with σ∗(F, ω).

Theorem 2.7 (up-down formula) For a fibration F −→ E
p−→ B with F a d-dimensional

geometric Poincaré complex we have:

p∗ ◦ p∗ = σ∗(F, ω)⊗− : Ln(Zπ1(B)) −→ Ln+d(Zπ1(B)) .

In the appendix to this paper the algebraic L-theory assembly map of Ranicki [32] is
used to relate this expression for p∗ ◦ p∗ to the characteristic class formula for the signature
of the total space of a fibre bundle.
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Although we shall be mainly concerned with fibrations of connected spaces, it should be
noted that the up-down formula 2.7 also applies to finite covers, with the fibre F a genuinely
finite 0-dimensional Poincaré complex and π1(E) → π1(B) the inclusion of a subgroup of
finite index. As in the general case, the element σ∗(F, ω) ∈ L0(π1(B),Z) is represented by
the π1(B)-action on the nonsingular symmetric form (H0(F ),⊕1) of the fibre. In fact, the
up-down formula in this case has already been obtained in Hambleton, Ranicki and Taylor
[11].

The up-down formula simplifies considerably for fibrations which are orientable, i.e.
with trivial fibre transport ω : π1(B) −→ [F, F ] , generalizing the multiplicativity of the sig-
nature in this case. Namely, the {1}-equivariant Witt group Ld({1},Z) is just the simply-
connected symmetric L-group Ld(Z) of Ranicki [29]

Ld({1},Z) = Ld(Z) =


Z (signature) if d ≡ 0(mod 4)
Z2 (deRham invariant) if d ≡ 1(mod 4)
0 otherwise .

For an orientable fibration σ∗(F, ω) ∈ Ld(π1(B),Z) is the image of the simply-connected
symmetric signature σ∗(F ) ∈ Ld(Z). Combining 2.7 with the factorization

⊗ : Ld(Z)⊗ Ln(Zπ) −→ Ld(π,Z)⊗ Ln(Zπ) −→ Ln+d(Zπ)

gives:

Corollary 2.10 For an orientable fibration F −→ E
p−→ B with F a d-dimensional geo-

metric Poincaré complex

p∗ ◦ p∗ = σ∗(F )⊗− : Ln(Zπ1(B)) −→ Ln+d(Zπ1(B))

is multiplication by the simply-connected symmetric signature σ∗(F ) ∈ Ld(Z).

The significance of the algebraic surgery transfer is due to the fact that it does describe
the geometric surgery transfer which is defined as follows. Let F −→ E

p−→ B be a smooth
fibre bundle of connected smooth compact manifolds such that F is closed. Let d and n be
the dimensions of F and B. An element λ in Ln(Zπ1(B)) is represented by a normal map
f : M −→ N together with a reference map g : N −→ B such that f induces a homotopy
equivalence on the boundaries. (We suppress bundle data). The pull back construction
yields a surgery problem f : M −→ N with a reference map g : N −→ E. Its class in
Ld+n(Zπ1(E)) is defined to be the image of λ under the geometric surgery transfer of Quinn
[27]

p! : Ln(Zπ1(B)) −→ Ln+d(Zπ1(E))
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The significance of the geometric surgery transfer is obvious from its definition. It
gives the possibility of proving the vanishing of surgery obstructions. The strategy consists
of two steps. Firstly, show that the target of a given surgery problem is the total space of an
appropriate fibre bundle such that the given surgery problem is the pull back of a surgery
problem for the base space. Secondly, show that the surgery transfer vanishes. Hence
vanishing theorems are of particular importance. We derive from the up-down formula:

Corollary 6.1 Let G be a compact connected d-dimensional Lie group which is not a torus.
Let G −→ E

p−→ B be a G-principal bundle. Then

p∗ = p! : Ln(Zπ1(B)) −→ Ln+d(Zπ1(E))

is trivial.

Surgery transfers appear naturally in the study of group actions, namely, as surgery
transfers of the normal sphere bundles of the fixed point sets. In Lück-Madsen [16] and [17]
a spectral sequence is constructed which converges to the equivariant surgery obstruction
group and whose E2-term consists of algebraic L-groups. Its differentials are given by surgery
transfers of the normal sphere bundles of the fixed point sets. For transformation groups of
odd order the spectral sequence collapses. This is not true in the even order case, as already
shown by explicit computations for Z/2. Similar spectral sequences occur in the isovariant
transverse linear setting of Browder and Quinn [5]. Using these spectral sequences and
periodicity results Dovermann and Schultz compare the equivariant and isovariant transverse
linear setting in [7].

We shall also give some computations for rational coefficients Q instead of integer
coefficients Z in section 4. The corresponding L-theory change of ring homomorphism is an
isomorphism if one inverts 2, so that rational computations still give good information about
integral ones.

A fibration is called untwisted if the pointed fibre transport ω+ : π1(E) −→ [F, F ]+

is trivial. We give further vanishing results for this class of fibrations in section 5. This
includes orientable fibrations with H-spaces as fibre. The class of untwisted fibrations seems
to be the largest class of fibrations where little information about the fibre suffices to prove
vanishing results for the surgery transfer.

We are mainly dealing with L-groups of finitely generated free modules, or in other
words, with Lh. In section 7 we briefly state the necessary modifications which have to be
made when dealing with “decorated” L-groups like Lp or Ls.

We have tried to postpone the main technical parts to the last four sections. In
particular it is not necessary to know the construction of the algebraic surgery transfer
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before section 8, as it only appears in the rather technical proof of the up-down formula 2.7
in sections 9 and 10. We recall which algebraic data are needed to define the algebraic surgery
transfer and how the pointed fibre transport provides these data in section 1. Commencing
with section 8 we assume that the reader is somewhat familiar with the approach toL-theory
using Poincaré chain complexes as developed in Ranicki [30].

We make some comments on the proof of the up-down formula. The proof presented
here is fairly straightforward. This has the advantage that one does avoid some machinery
and has not to introduce new notions and the disadvantage that the conceptual ideas are
somewhat hidden. In the special case of a fibre bundle the up-down formula can be proved
using the algebraic L-theory assembly of Ranicki [32], as indicated in the appendix. The
proof in the general case is an L-theory development of the methods used by Lück [15] to
prove the K-theory up-down formula. The relevant products fit together in the following
commutative diagram for i = 0, 1:

Kc
0(Zπ1(B)− Zπ1(E)) ⊗ Ki(Zπ1(B))

⊗
−→ Ki(Zπ1(E))

i⊗ id ↑ ↑ id

Kc
0(∆− π1(E),Z) ⊗ Ki(Zπ1(B))

⊗t
−→ Ki(Zπ1(E))

p∗ ⊗ id ↓ ↓ p∗

Kc
0({1} − π1(B),Z)⊗Ki(Zπ1(B))

⊗t
−→ Ki(Zπ1(B))

e⊗ id ↓ ↓ id

Sw(π1(B),Z)⊗Ki(Zπ1(B))
⊗Z

−→ Ki(Zπ1(B))

such that up to isomorphism

Kc
0(Zπ1(B)− Zπ1(B)) = Kc

0({1} − π1(B),Z) = Sw(π1(B),Z) .

The group Kc
0(Zπ1(B)− Zπ1(E)) is the Grothendieck group of chain homotopy representa-

tions of Zπ1(B) in Zπ1(E) and Kc
0(∆−π1(E),Z) is the Grothendieck group of Z∆-chain com-

plexes with a π1(E)-twist, where ∆ is the kernel of π1(p) : π1(E) −→ π1(B). Sw(π1(B),Z)
is the Grothendieck-Swan group of Zπ1(B)-modules which are finitely generated and free
as abelian groups. The pairing ⊗Z is given by the tensor product over Z together with
the diagonal action. Now the fibre together with the fibre transport define an element
[F, ω]1 in Kc

0(Zπ1(B) − Zπ1(E)), and the K-theory transfer p∗ is given by the evalua-
tion of the top pairing on [F, ω]1. It turns out that [F, ω]1 is the image of an element
[F, ω]2 ∈ Kc

0(∆− π1(E),Z) under the canonical map i. Let [F, ω] ∈ Kc
0({1} − π1(B),Z) be

the image of [F, ω]2 under the map p∗ induced by π1(p). As the diagram above commutes
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p∗ ◦ p∗ agrees with [F, ω]⊗t?. An element in Kc
0({1} − π1(B),Z) is given by a chain com-

plex C of finitely generated free Z-modules, with a homotopy π1(B)-action. The homology
groups Hi(C) are Zπ1(B)-modules which are finitely generated as abelian groups. Using
finitely generated free Z-resolutions one obtains elements [Hi(C)] in Sw(π1(B),Z). The
isomorphism e : Kc

0({1} − π1(B),Z) −→ Sw(π1(B),Z) sends the class of C to the K-theory
Euler characteristic

∑
i(−1)i · [Hi(C)]. Hence p∗ ◦p∗ is given by the evaluation of the bottom

pairing ⊗Z on the element
∑
i(−1)i · [Hi(F )] in Sw(π1(B),Z). The up-down formula 2.7 is

just the L-theory version of this K-theory formula. The equivariant Witt group Ld(π1(B),Z)
plays the role of Sw(π1(B),Z), and the π1(B)-equivariant signature σ∗(F, ω) corresponds to∑
i(−1)i · [Hi(F )].

We shall construct the L-theory analogue of this diagram in a subsequent paper, ob-
taining a Witt group for the transfer p∗ rather than just p∗◦p∗. This is not a trivial problem,
since it involves higher coherences of the homotopy action of π1(B) on the fibre. One does
not see this difficulty in homology, since any homotopy action on a space induces an honest
action in homology. By sticking to the middle dimensions our proof of the up-down formula
is essentially on the homology level, and so avoids higher coherences.

After this paper was written we received the preprint Yan [38], which obtains the
up-down formula 2.7 in the special case π1(F ) = {1}, d = 2k.

The paper is organized as follows :

0. Introduction
1. Algebraic Surgery Transfer
2. The up-down Formula for p∗ ◦ p∗
3. Symmetric Signature
4. Rational Computations
5. Untwisted Fibrations
6. G-Principal Bundles
7. Change of K-theory
8. Review of the Construction of Algebraic Surgery Transfer
9. Proof of the up-down Formula in Even Base Dimensions
10. Proof of the up-down Formula in Odd Base Dimensions
11. The Pairing 2.4 is Well-Defined

Appendix: Characteristic Class Formulae
References

1. Algebraic Surgery Transfer
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We explain which algebraic data are needed to define the algebraic surgery transfer
and how these data can be obtained from the pointed fibre transport.

A ring with involution is an associative ring R with unit 1 together with a function
¯ : R −→ R satisfying a = a, a+ b = a+ b, ab = ba and 1 = 1 for a, b ∈ R. Given a
group π together with a homomorphism w : π −→ {±1}, the w-twisted involution on Zπ is
given by g = w(g) · g−1. Let R and S be rings with involution. Let C be a d-dimensional
finitely generated free S-chain complex. Let Cd−∗ be the S-chain complex homS(Cd−∗, S),
where the involution on S is used to define a left S-structure on homS(Cd−∗, S). We shall

identify
(
Cd−∗

)d−∗
and C. Consider an S-chain equivalence α : Cd−∗ −→ C such that αd−∗

and α are chain homotopy equivalent. Then the set [C,C]S of chain homotopy classes of
self chain maps of C becomes a ring with involution [f ] 7→ [α ◦ fd−∗α−1]. Denote by [C,C]opS
the opposite ring. Let Dd(S) be the additive category with involution having d-dimensional
finitely generated free S-chain complexes as objects and homotopy classes of chain maps
as morphisms. If U : R −→ [C,C]opS is a homomorphism of rings with involution, we call
(C, α, U) a symmetric representation of R into Dd(S). The surgery transfer

1.1 (C, α, U)∗ : Ln(R) −→ Ln+d(S)

associated to (C, α, U) is defined in Lück-Ranicki [18] and will be reviewed in section 8.

A d-dimensional finite Poincaré complex F = (F, [F ], w(F )) consists of a finite CW
complex F , an orientation homomorphism w(F ) : π1(F ) −→ {±1} and a fundamental class
[F ] ∈ Hd(F,w(F ) Z) such that ∩[F ] : Cd−∗(F̃ ) −→ C∗(F̃ ) is a Zπ1(F )-chain homotopy equiva-
lence. Here we use the w(F )-twisted involution to define a left Zπ1(F )-structure on Cd−∗(F̃ )
and w(F )Z is the Zπ1(F )-module given by Z and the homomorphism w(F ). Any closed man-

ifold is a Poincaré complex. Let F −→ E
p−→ B be a fibration of (well-pointed) connected

spaces such that F is a d-dimensional Poincaré complex. We do not assume that B and
E are manifolds. Let F̂ −→ F be the pull back of the universal covering of E with the
inclusion of the fibre. Denote by [F, F ] (resp. [F, F ]+) the monoid of (pointed) homotopy
classes of (pointed) self-maps of F . Let [F̂ , F̂ ]π1(E) be the monoid of π1(E)-homotopy classes

of π1(E)-self-maps of F̂ . The elementary construction of the monoid homomorphisms

1.2 τ : π1(F ) −→ [F, F ]+ (operation of the fundamental group)
ω+ : π1(E) −→ [F, F ]+ (pointed fibre transport)
ω : π1(B) −→ [F, F ] (fibre transport)

ω̂ : π1(B) −→ [F̂ , F̂ ]π1(E) (equivariant fibre transport)

based on the homotopy lifting property can be found in Lück [14], section 6.
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LetHd(F̃ ) beH0(homZπ1(F )(Cd−∗(F̃ ),Zπ1(F ))) where homZπ1(F )(Cd−∗(F̃ ),Zπ1(F )) has
the untwisted Zπ1(F )-structure (wφ)(x) = φ(x)w−1. Consider a self-map f : F −→ F . Choose
a lift f̃ : F̃ −→ F̃ . LetHd(f̃) : Hd(F̃ ) −→ Hd(F̃ ) be given by the Zπ1(f)−1-equivariant chain
map homZπ1(F )(C(f̃),Zπ1(f)−1). By Poincaré duality Hd(F̃ ) is isomorphic to w(F )Z. Hence
w(F ) depends only on the homotopy type of F and we have w(F ) ◦ π1(f) = w(F ). The
homotopy orientation homomorphism v(F ) : [F, F ]+ −→ {±1} of F sends [f ] to the degree
of Hd(f̃). Define

1.3 v̂ = v(F ) ◦ ω+ : π1(E) −→ {±1}
ŵ = w ◦ π1(p) : π1(E) −→ {±1}

Lemma 1.4 1. The following diagram commutes

π1(F )
π1(i)−→ π1(E)

π1(p)−→ π1(B) −→ {1}

↓ id ↓ ω+ ↓ ω

π1(F )
τ−→ [F, F ]+

pr−→ [F, F ] −→ {1}

The upper row is an exact sequence of groups. The lower row is exact in the sense
that pr is surjective and pr(f0) = pr(f1) holds for f0, f1 ∈ [F, F ]+, if and only there is
g ∈ π1(F ) satisfying f0 = τ(g)f1.

2. The π1(E)-space F̂ can be identified with π1(E)×π1(F ) F̃ . Let g ∈ π1(B) and ĝ ∈ π1(E)
be any lift of g. Then ω̂(g) is given by r(ĝ)×π1(F ) ω

+(ĝ−1) where r(ĝ) : π1(E)→ π1(E)
is right multiplication with ĝ.

3. The composition of v̂ with π1(i) : π1(F ) −→ π1(E) is the first Stiefel-Whitney class

w(F ). If F −→ E
p−→ B is a smooth fibre bundle of compact manifolds and w is

w(B), then ŵv̂ is w(E).

We get from ω̂ a ring homomorphism U : Zπ −→ [C∗(F̂ ), C∗(F̂ )]opZπ1(E). The Poincaré

duality chain equivalence for C∗(F̃ ) induces a Zπ1(E)-chain equivalence α : Cd−∗(F̂ ) −→
C∗(F̂ ). If we equip Zπ1(B) resp. Zπ1(E) with the w-twisted resp. v̂ŵ-twisted involu-
tion, (C(F̂ ), α, U) is a symmetric representation of Zπ1(B) in Dd(Zπ1(E)). The transfer
(C(F̂ ), α, U)∗ introduced in 1.1 is the algebraic surgery transfer of the fibration

1.5 p∗ : Ln(Zπ1(B), w(B)) −→ Ln+d(Zπ1(E), w(E))
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2. The up-down Formula for p∗ ◦ p∗

In this section we want to analyse the composition p∗ ◦ p∗ in L-theory. Beforehand we
review the computation of p∗ ◦ p∗ for the K-theory transfer p∗ : Kn(Zπ1(B))→ Kn(Zπ1(E))

for n = 0, 1 of a fibration F −→ E
p−→ B of connected spaces with finitely dominated fibre

F in order to motivate the following constructions. Recall that F is finitely dominated, if
F is up to homotopy the retract of a finite CW complex. For π = π1(B) let Sw(π,Z) be
the Grothendieck group of Zπ-modules which are finitely generated and free as Z-modules.
This is the abelian group having isomorphism classes of such modules as generators and any
short exact (not necessarily split exact) sequence of such modules 0→ L→M → N → 0
gives a relation [L]− [M ] + [N ] = 0. The tensor product over Z with the diagonal π-action
induces a pairing

2.1 ⊗ : Sw(π,Z)⊗Kn(Zπ) −→ Kn(Zπ)

This pairing was defined and analysed in Swan [34]. Consider a Zπ-module M which is
finitely generated as Z-module. Let {0} −→ G1 −→ G0 −→M −→ {0} be a 1-dimensional
Zπ-resolution such that G0 and G1 are finitely generated and free as Z-module. Define a
class [M ] ∈ Sw(π,Z) depending only on the isomorphism type of M by [G0]− [G1]. The
homotopy action of π on the fibre F given by the fibre transport ω : π1(B) −→ [F, F ] defines
a Zπ-structure on Hi(F,Z). We obtain a class

2.2 [F ] =
∑
i≥0(−1)i · [Hi(F,Z)] ∈ Sw(π,Z)

Then p∗ ◦ p∗ coincides with [F ]⊗? (see Lück [15], Munkholm [21], Munkholm-Pedersen
[22]). The construction in L-theory is similar, but – as is nearly always the case – harder
and the odd-dimensional case is more difficult than the even-dimensional.

We first explain the algebraic setup in even dimensions. Let π be a group and
v, w : π −→ {±1} be group homomorphisms. For an integer k a nonsingular (−1)k-
symmetric form over Z is a finitely generated free Z-module M together with an isomorphism
ψ : M −→ homZ(M,Z) such that (−1)k · homZ(ψ, id) : M −→ homZ(M,Z) agrees with ψ.
Here and elsewhere we identify M with homZ(homZ(M,Z),Z) using the natural isomor-
phism sending m to f 7→ f(m). Note that ψ is the same as a nonsingular (−1)k-symmetric
bilinear pairing ψ : M ⊗M −→ Z. If M additionally carries a left Zπ-structure such that
ψ(gx, gy) = v(g) · ψ(x, y) holds for all x, y ∈ M and g ∈ π, we call (M,ψ) a nonsingular
(π, v)-equivariant (−1)k-symmetric form over Z. The last condition about ψ is equivalent
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to the assumption that ψ : M −→ homZ(M,Z) is a Zπ-map, if π acts on homZ(M,Z) from
the left by (gf)(x) = v(g) · f(g−1x) for f : M −→ Z, g ∈ π and x ∈M .

Let (M,ψ) be a nonsingular (π, v)-equivariant (−1)k-symmetric form over Z. It is
hyperbolic if there is a Zπ-module L ⊂ M such that M −→ homZ(L,Z) sending m to
l 7→ ψ(m)(l) is an epimorphism with L as kernel. Note that L is finitely generated and
free as a Z-module. We call two (π, v)-equivariant (−1)k-symmetric forms over Z stably
isomorphic if they become isomorphic after adding hyperbolic ones. Let L2k(π,Z, v) be the
Witt group of stable isomorphism classes of (π, v)-equivariant (−1)k-symmetric forms over
Z. Addition is given by direct sums and the inverse of (M,ψ) is represented by (M,−ψ).
The tensor product over Z together with the diagonal π-action defines a pairing

2.3 ⊗ : L2k(π,Z, v)⊗ Ln(Zπ, w) −→ Ln+2k(Zπ, vw)

This is essentially the pairing of Fröhlich and McEvett [9], Thomas [35] and Dress [8].
It plays as important a role in induction theory for L-theory as Swan’s pairing 2.1 does for
K-theory.

Next we deal with the odd-dimensional case. A nonsingular (−1)k+1-symmetric linking
form over Z consists of a finitely generated torsion Z-module M together with an isomor-
phism ψ : M −→ homZ(M,Q/Z) such that hom(ψ, id) : M −→ homZ(M,Q/Z) is (−1)k+1 ·
ψ, where we identify M with homZ(homZ(M,Q/Z),Q/Z). One may interpret ψ as a non-
singular (−1)k+1-symmetric bilinear pairing ψ : M ⊗M −→ Q/Z. If M additionally carries
a left Zπ-structure such that ψ(gx, gy) = v(g) · ψ(x, y) holds for all x, y ∈ M and g ∈ π,
we call (M,ψ) a nonsingular (π, v)-equivariant (−1)k+1-symmetric linking form over Z. The
last condition about ψ is equivalent to the assumption that ψ : M −→ homZ(M,Q/Z) is a
Zπ-map, if π acts on homZ(M,Q/Z) from the left by (gf)(x) = v(g) · f(g−1x) for g ∈ π
and x ∈ M . A nonsingular (π, v)-equivariant (−1)k+1-symmetric linking form over Z is hy-
perbolic if there is a Zπ-submodule L ⊂ M such that M −→ homZ(L,Q/Z) sending m to
l 7→ ψ(m)(l) is an epimorphism with L as kernel. Note that L is a finitely generated torsion
Z-module. Let (M,ψ) be a Q-nonsingular (π, v)-equivariant (−1)k+1-symmetric form over
Z, where Q-nonsingular means that ψ : M −→ homZ(M,Z) is rationally an isomorphism or,
equivalently, has finitely generated torsion Z-modules as kernel and cokernel. Its boundary
(∂M, ∂ψ) is the nonsingular (π, v)-equivariant (−1)k+1-symmetric linking form over Z given
by ∂M = cok(ψ) and

∂ψ : cok(ψ) −→ homZ(cok(ψ),Q/Z) x 7→
(
y 7→ x(z)

s

)
where x, y ∈ homZ(M,Z), z ∈ M and s ∈ Z\{0} satisfying sy = ψ(z). Two (π, v)-
equivariant (−1)k+1-symmetric linking forms over Z are called equivalent if they become iso-
morphic after adding hyperbolic ones and boundaries. Let L2k+1(π,Z, v) be the Witt group
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of equivalence classes of nonsingular (π, v)-equivariant (−1)k+1-symmetric linking forms over
Z. Addition is given by direct sums and the inverse of (M,ψ) is represented by (M,−ψ).
Next we define a pairing

2.4 ⊗ : L2k+1(π,Z, v)⊗ Ln(Zπ, w) −→ Ln+2k+1(Zπ, vw)

Let (M,ψ) be a nonsingular (π, v)-equivariant (−1)k+1-symmetric linking form over Z.

Choose a finitely generated free Z-resolution {0} −→ F1
f1−→ F0

ε−→M −→ {0}. We use
the following isomorphism as an identification

ε̂ : H0(F 1−∗,Z) −→ homZ(M,Q/Z) g 7→
(
m 7→ g(sx)

s

)

where g ∈ homZ(F1,Z), x ∈ F0, s ∈ Z satisfying ε(x) = m and sx ∈ F1. As homZ(F1−∗,Z)
and F are free Z-resolutions, there is a Z-chain equivalence α : homZ(F1−∗,Z) −→ F∗ satisfy-
ingH(α) = ψ and α ' (−1)k · homZ(φ, id). Let id⊗ α : Zπ ⊗Z homZ(F1−∗,Z) −→ Zπ ⊗Z F∗
be the induced Zπ-chain equivalence. The Zπ-structure on M yields a homomorphism
V : π −→ [F∗, F∗]

op
Z . This gives a homomorphism U : Zπ → [Zπ ⊗Z F∗,Zπ ⊗Z F∗]

op
Zπ where

U(g) sends h ⊗ x to hg ⊗ u(g−1)(x) for g ∈ π ,h ∈ π and x ∈ F∗. These data fit together
giving a symmetric chain representation (Zπ⊗ZF∗, α, U) of Zπ with the w-twisted involution
into D1(Zπ) with the (−1)k · vw-twisted involution. We have introduced in 1.1 the associ-
ated transfer homomorphism from Ln(Zπ, w) to Ln+1(Zπ, (−1)k · vw) = Ln+2k+1(Zπ, vw).
We shall show in section 11 that this transfer depends only on the class of (M,ψ) in
L2k+1(π,Z, v). This finishes the definition of the pairing 2.4.

The groups Ld(π,Z, v) fit into a localization exact sequence of the type studied in
Chapter 3 of Ranicki [30]

. . . → Ld(π,Z, v) → Ld(π,Q, v) → Ld(π,Z,Q, v) → Ld−1(π,Z, v) → . . . ,

with Ld(π,Z,Q, v) the Witt groups of (π, v)-equivariant linking forms\formations on finite
abelian groups, L2k(π,Q, v) the Witt group of nonsingular (π, v)-equivariant (−)k-symmetric
forms on finite-dimensional vector spaces over Q, and L2k+1(π,Q, v) = 0.

We consider a fibration F −→ E
p−→ B and assume that F is an orientable finite

Poincaré complex . Then v̂ factorizes over π1(p) by lemma 1.4. The induced homomorphism
v : π = π1(B) −→ {±1} maps g to the degree of the automorphism Hd(ω(g)) of Hd(F ) ∼= Z.
Suppose that the fibre dimension d is 2k. The intersection form on F

Hk(F,Z)/tors (Hk(F,Z))⊗Hk(F,Z)/tors (Hk(F,Z)) −→ Z (x, y) 7→ 〈x ∪ y, [F ]〉
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is a nonsingular (−1)k-symmetric form over Z. The fibre transport ω : π1(B) −→ [F, F ]
induces a left Zπ-module structure on it. Thus the intersection form becomes actually a
nonsingular (π, v)-equivariant (−1)k-symmetric form over Z and defines an element σ∗(F, ω)
in L2k(π,Z, v). Now suppose that the fibre dimension is 2k + 1. The universal coefficient
theorem yields an isomorphism

φ : torsHk(F,Z) −→ homZ(torsHk+1(F,Z),Q/Z) x 7→
(
f 7→ f(y)

s

)

where x ∈ Ck(F,Z), y ∈ Ck+1(F,Z), s ∈ Z\{0}, f ∈ Ck+1(F,Z) and sx = d(y). Poincaré
duality gives an isomorphism [F ] ∩ − : torsHk+1(F,Z) −→ torsHk(F,Z). The nonsingular
(−1)k+1-symmetric linking form over Z on F

ψ : torsHk(F,Z) −→ homZ(torsHk(F,Z),Q/Z)

is given by homZ([F ]∩−, id)◦φ. The fibre transport ω : π1(B) −→ [F, F ] induces a left Zπ-
module structure on torsHk(F,Z). Thus the linking form becomes actually a nonsingular
(π, v)-equivariant (−1)k+1-symmetric linking form over Z and defines an element σ∗(F, ω) in
L2k+1(π,Z, v). All in all we have defined an element

2.5 σ∗(F, ω) ∈ Ld(π,Z, v)

depending on the fibre F and the operation of π1(B) on its homology and a pairing

2.6 ⊗ : Ld(π,Z, v)⊗ Ln(Zπ, w) −→ Ln+d(Zπ, vw)

Theorem 2.7 (up-down formula) Let F −→ E
p−→ B be a fibration of connected spaces

such that F is an orientable finite d-dimensional Poincaré complex. Let w : π −→ {±1} be
any homomorphism and v : π −→ {±1} be defined as above. Then the composition

p∗ ◦ p∗ : Ln(Zπ, w) −→ Ln+d(Zπ, vw)

is given by σ∗(F, ω)⊗?

The proof of the up-down formula 2.7 is deferred to sections 9 and 10. We consider
the special case of an orientable fibration. Recall that the L-groups are 4-periodic, i.e.
Ln(Zπ, w) = Ln+4(Zπ, w). Consider the Witt group Ld({1},Z, 1) of the trivial group {1}.
There is a pairing
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2.8 ⊗ : Ld({1},Z, 1)⊗ Ln(Zπ, w) −→ Ln+d(Zπ, w)

which is given by the tensor product over Z for d even and by the tensor product over Z of
a resolution of the linking form for d odd. The pairings 2.8 and 2.6 are compatible with the
canonical homomorphism

res : Ld({1},Z, 1) −→ Ld(π,Z, v)

induced by restriction with the trivial map π −→ {1}. If d is 2 or 3 modulo 4, Ld({1},Z, 1)
is trivial. A nonsingular symmetric form (M,ψ) over Z induces a nonsingular symmetric
form over R which can be written as a sum of p copies of (R, 1) and q copies of (R,−1).
The signature of (M,ψ) is defined to be p − q. If d is divisible by 4, the signature induces
an isomorphism from Ld({1},Z, 1) to Z. The pairing 2.8 is given by multiplication with the
signature. The deRham invariant of a nonsingular skew-symmetric linking form (M,ψ) over
Z is the reduction mod 2 of the number of summands in the decomposition of the finite
abelian group M as a direct sum of cyclic subgroups of type Z/ps for p prime and s ≥ 1.
Suppose that d is 1 modulo 4. Then the deRham invariant defines an isomorphism from
Ld({1},Z, 1) to Z/2 (see Ranicki [30], section 4.3 for more details, but ignore the first of the
two definitions on p.418). Define the homomorphism

2.9 ν : Ln(Zπ, w) −→ Ln+d(Zπ, w)

by product with the generator in Ld({1},Z, 1) ∼= Z/2 for d ≡ 1(mod 4).

Corollary 2.10 Let F −→ E
p−→ B be a fibration of connected spaces such that F is an

orientable finite Poincaré complex. Assume that π acts trivially on Hk(F,Z)/torsHk(F,Z),
if the fibre dimension is d = 2k, and trivially on torsHk(F,Z), if d = 2k + 1. Then :

1. If d is 2 or 3 modulo 4, then p∗ ◦ p∗ vanishes.

2. If d is divisible by 4, p∗ ◦ p∗ is multiplication by the signature of F .

3. Suppose d is 1 modulo 4. Then p∗ ◦ p∗ is given by the map ν defined above, if the
deRham invariant of F is non-trivial, and is zero otherwise. In particular 2 · p∗ ◦ p∗ is
zero.

Proof : Under the assumptions above F defines element σ∗(F ) ∈ Ld({1},Z, 1) whose image
under res is just σ∗(F, ω). Now the claim follows from the remarks above and naturality.
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Example 2.11 Let F −→ E
p−→ B be a fibration of connected spaces with the d-dimen-

sional sphere Sd as fibre. Suppose d ≥ 2. Then p is the boundary of a Dd+1-fibration with
π1(Sd) = π1(Dd+1), and the surgery transfer is always zero. This is not true for the K-theory
transfer on K0 and K1 (see Anderson [2]). On the other hand, if the fibration p is a product
bundle with S1 as fibre, the K-theory transfer on both K0 and K1 is trivial because of the
product formulas for the finiteness obstruction and Whitehead torsion, whereas the surgery
transfer is injective modulo 2-torsion by the splitting theorems and Rothenberg sequences
of Shaneson [33] and Ranicki [28]. See the appendix to Munkholm and Ranicki [24] for the
connection between the S1-bundle transfer in L-theory and the duality in K-theory.

Remark 2.12 For finite π the pairing 2.4 is already defined in Yoshida [39]. Yoshida needs
the finiteness of π as he has to deal with Zπ-resolutions instead of Z-resolutions with a
homotopy π-action. Let N be a closed manifold with π-action. Consider the fibre bundle
p : B ×π N −→ B with fibre N if π = π1(B). The application of the up-down formula to p
gives the main result in Yoshida [39] without the assumption that π is finite.

3. Symmetric Signature

If one is willing to invert 2, one can compute surgery obstructions as the difference of
symmetric signatures. Let B be a finite n-dimensional Poincaré complex. In Ranicki [30],
section 1.2 the symmetric L-group Ln(Zπ1(B), w(B)) and the symmetric signature of B

3.1 σ∗(B) ∈ Ln(Zπ1(B), w(B))

are defined. The symmetrization map (1 + T ) : Ln(Zπ1(B), w(B)) −→ Ln(Zπ1(B), w(B))
is an isomorphism modulo 8-torsion and sends the surgery obstruction of a normal map
f : M −→ B with B as target to the difference σ∗(M)− σ∗(B) of the symmetric signa-
tures, if B and M are closed. Product with the generator E8 ∈ L0(Z) = Z defines a
map E8 : Ln(Zπ1(B), w(B)) −→ Ln(Zπ1(B), w(B)) such that E8 ◦ (1 + T ) = 8 · id :
Ln(Zπ1(B), w(B)) −→ Ln(Zπ1(B), w(B)). Note that our construction of a transfer map
on the quadratic L-groups need not extend to the symmetric L-groups (see Lück-Ranicki
[18], appendix 2). In even dimensions there is also a pairing on the symmetric L-groups
given by the tensor product over Z and the diagonal operation which is compatible with the
symmetrization map :
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3.2 ⊗ : L2k(π,Z, v)⊗ Ln(Zπ, w) −→ Ln+2k(Zπ, vw)

The details of this pairing are just as in the quadratic case, and are therefore omitted.

Theorem 3.3 Let F −→ E
p−→ B be a smooth fibre bundle of connected closed manifolds.

If the fibre dimension d is odd we have:

128 · p∗σ∗(E) = 0 ∈ Ln+d(Zπ, vw) .

If d is even we have:

8 · p∗σ∗(E) = 8 · σ∗(F, ω)⊗ σ∗(B) ∈ Ln+d(Zπ, vw)

Proof : Suppose that d is even. Let f : M −→ N be a surgery problem of simply-connected
4l-dimensional manifolds whose surgery obstruction is the generator in L4l(Z) ∼= Z. Consider
the fibre bundle p× idN : E ×N −→ B ×N . The following diagram commutes by the up-
down formula 2.7, where π = π1(B), Γ = π1(E) and w = w(B).

Ln+4l(Zπ1(B ×N), w(B ×N)) −→ Ln(Zπ, w) −→ Ln(Zπ, w)

↓ (p× idN)∗ ↓ p∗

Ln+4l+d(Zπ1(E ×N), w(E ×N)) −→ Lm+d(ZΓ, ŵv̂) ↓ σ∗(F, ω)⊗?

↓ (p× idN)∗ ↓ p∗
Ln+4l+d(Zπ1(B ×N), w(B ×N)) −→ Ln+d(Zπ, w) −→ Ln+d(Zπ, vw)

The left horizontal arrows are given by induction with the projection to the first factor and
the two right horizontal maps are symmetrization homomorphisms. The surgery obstruction
of the normal map idB × f : B ×M −→ B ×N lies in the left upper corner. Its image
under the clockwise composition in the right lower corner is 8 · σ∗(F, ω)⊗ σ∗(B) because the
product formula for surgery obstructions (see Ranicki [30], section 1.9) and the fact that
the symmetrization map from L4(Z, 1) to L4(Z, 1) sends the generator to the symmetric
form of signature 8. For the same reason its image under the anti-clockwise composition is
8 · p∗σ∗(E).

If d is odd, p∗ ◦ p∗ : Ln(Qπ, w) −→ Ln+d(Qπ, vw) is zero. This follows from theorem
2.7, since a nonsingular linking form vanishes rationally or from the proof of theorem 4.3.
Now a similar argument as above shows that the image of 8 · σ∗(E) under the change of
coefficients homomorphism Ln+d(Zπ, vw) −→ Ln+d(Qπ, vw) is zero. The kernel of this map
is 16-torsion.
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The signature of a nonsingular symmetric form over Z induces an isomorphism from
L4k(Z, 1) to Z. Its composition with the induction homomorphism associated to the trivial
map pr : π1(B) −→ {1} sends σ∗(B) to the signature sign(B). Note for the trivial group
that symmetric L-group Ld(Z, 1) can be identified with Witt group Ld({1},Z, 1) and the
corresponding pairings 2.6 and 3.2 agree. We get from an argument similar to the one used
in the proof of theorem 3.3 and corollary 2.10

Corollary 3.4 Let F −→ E
p−→ B be an smooth fibre bundle of connected closed manifolds.

Suppose that p is orientable, i.e. ω : π1(B) −→ [F, F ] is trivial. Then :

1. If the dimension d ≡ 1(mod 4), then :

16 · p∗σ∗(E) = 0 ∈ Ln+d(Zπ, vw) .

If the dimension d ≡ 2, 3(mod 4), then :

8 · p∗σ∗(E) = 0 ∈ Ln+d(Zπ, vw) .

2. If the dimension of d is divisible by 4, then :

8 · p∗σ∗(E) = 8 · sign(F ) · σ∗(B) ∈ Ln+d(Zπ, vw)

3. Suppose that F , B and E are orientable. If their dimensions are all divisible by 4, then
:

sign(E) = sign(F ) · sign(B) ∈ Z .

Otherwise sign(E) = 0 .

The last statement in corollary 3.4 is a result due to Chern, Hirzebruch and Serre
[6]. The examples of Kodaira [13], Atiyah [3], Hirzebruch [12] of fibre bundles in which the
signature is not multiplicative show that some condition such as orientability is necessary
for the signature to be multiplicative.

Let d be 2k and π be π1(B) and assume that n + d is divisible by 4. The structure
ψ : Hk(F,Q) −→ homQ(Hk(F,Q),Q) of a nonsingular (π, 1)-equivariant (−1)k-symmetric
form over Q on Hk(F,Q) is induced by the fibre transport, Poincaré duality and the univer-
sal coefficient theorem. Let σ∗(B)∩? : homQπ(Cn−∗(B̃,Q),Qπ) −→ C∗(B̃) be the Poincaré
Qπ-chain equivalence. The following composition is a Qπ-chain equivalence

homQ(Cn−∗(B̃,Q)⊗Qπ Hk(F,Q),Q)
hom(id⊗ψ,id)−→
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homQ(Cn−∗(B̃,Q)⊗Qπ homQ(Hk(F,Q),Q),Q)

ρ−→ homQπ(Cn−∗(B̃,Q),Qπ)⊗Qπ Hk(F,Q)
σ∗(B)⊗id∩?−→ C∗(B̃,Q)⊗Qπ Hk(F,Q)

where ρ is the canonical isomorphism. The composition of the inverse of the isomor-
phism on Hn/2 induced by the chain map above with the canonical isomorphism from

homQ(Hn/2(C∗(B̃)⊗Qπ Hk(F,Q),Q) to homQ(Hn/2(B,Hk(F,Q)),Q) determines the struc-
ture φ : Hn/2(B,H(F,Q)) −→ homQ(Hn/2(B,Hk(F,Q)),Q) of a nonsingular symmetric form
over Q. We derive from theorem 3.3:

Corollary 3.5 Let F −→ E
p−→ B be a smooth fibration of connected closed manifolds such

that d+ n is divisible by 4. Then the signature sign(E) is zero if d is odd. Suppose that d is
2k. Then we have :

sign(E) = sign ◦ pr∗(σ∗(F, ω)⊗ σ∗(B)) = sign(Hn/2(B,Hk(F,Q)), φ)

where pr : π −→ {1} is the trivial map.

Corollary 3.5 was first proved by Meyer [20], Satz I 2.2.

See the appendix for a discussion of the relation between our results and the char-
acteristic class formulae relating the non-multiplicativity of the signature in a fibre bundle
F −→ E

p−→ B to the action of π1(B) on H∗(F ; R).

4. Rational Computations

If one allows rational coefficients instead of integral ones, computations simplify. The
algebraic transfer of a fibration is also defined for rational coefficients and is compati-
ble with the change of coefficients homomorphisms. The change of coefficients homomor-
phism Ln(Zπ, w) −→ Ln(Qπ, w) is an isomorphism if one inverts 2 (see Ranicki [30], page
376). Also the difference between symmetric and quadratic L-theory and the difference
between any type of decorated L-groups like Lh, Ls and Lp vanishes, when inverting 2.
Hence we obtain a vanishing result for the integral surgery transfer (for any decoration),
when 2 is inverted, if we prove the vanishing of the rational algebraic surgery transfer
p∗ : Lpn(Qπ1(B), w) −→ Lpn+d(Qπ1(E), v̂ŵ) for the projective L-groups. Recall that Lp means
that we allow finitely generated projective modules instead of finitely generated free ones.

Let F −→ E
p−→ B be a fibration of connected spaces such that F is a finitely

dominated Poincaré complex. Finitely dominated means that F is up to homotopy a retract
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of a finite CW complex. We abbreviate π = π1(B), Γ = π1(E), and write the kernel of
π1(p) : Γ −→ π by ∆. Let w : π −→ {±1} be any homomorphism. Associated with these
data is the rational surgery transfer p∗ : Lpn(Qπ, w) −→ Lpn+d(QΓ, v̂ŵ). Now suppose that
∆ is finite. Then restriction with the epimorphism π1(p) defines a homomorphism

4.1 res : Lpn(Qπ, w) −→ Lpn(QΓ, ŵ)

where ŵ was defined to be w ◦ π1(p) in 1.3. Let L2k(Γ,Q, v) be the Witt group of sta-
ble isomorphism classes of (Γ, v)-equivariant (−1)k-symmetric forms over Q, where v̂ was
introduced in 1.3. The tensor product over Q with the diagonal Γ-action gives a pairing

4.2 ⊗ : L2k(Γ,Q, v)⊗ Ln(QΓ, w) −→ Ln+2k(QΓ, vw)

Let F be the covering of F associated to π1(F ) −→ ∆. The pointed fibre transport and the
intersection pairing induce the structure of a nonsingular (Γ, v̂)-equivariant (−1)k-symmetric
form over Q on Hk(F,Q), We get a class σ∗(F , ω+) in L2k(Γ,Q, v).

Theorem 4.3 Let F −→ E
p−→ B be a fibration of connected spaces such that F is a finitely

dominated Poincaré complex and the kernel ∆ of π1(p) is finite. Then

p∗ : Lpn(Qπ, w) −→ Lpn+d(QΓ, v̂ŵ)

is zero if the fibre dimension d is odd, and is the composition
(
σ∗(F, ω+)⊗?

)
◦ res, if d is

2k.

Proof : The rational surgery transfer is given by a symmetric representation of Qπ in
Dd(QΓ) (see 1.5 and lemma 1.4)

U : Qπ −→ [QΓ⊗Q∆ C(F ,Q),QΓ⊗Q∆ C(F ,Q)]opQΓ

Regard the rational homology QΓ⊗Q∆H(F ,Q) as a d-dimensional QΓ-chain complex using
the trivial differential. There is a Q∆-chain equivalence i : QΓ⊗Q∆ H(F,Q) −→ C(F,Q)
uniquely determined up to homotopy by the property that it induces the identity on homol-
ogy. The Q∆-chain isomorphism α : homQ(Hd−∗(F,Q),Q) −→ QΓ⊗Q∆ H(F,Q) is given
by Poincaré duality and the natural isomorphism homQ(Hd−∗(F ,Q),Q) −→ Hd−∗(F ,Q).
The pointed fibre transport induces a QΓ-structure on QΓ⊗Q∆ H(F,Q). We put the diag-
onal QΓ-structure on QΓ⊗Q∆ H(F,Q). Because α extends to a QΓ-chain isomorphism β
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from homQΓ(QΓ⊗Q∆ H(F,Q),QΓ) to QΓ⊗Q∆ H(F ,Q), we obtain a symmetric represen-
tation of Qπ in Dd(QΓ)

V : Qπ −→ [QΓ⊗Q∆ H(F,Q),QΓ⊗Q∆ H(F,Q)]opQΓ

where V (g) sends h ⊗ x to hg ⊗ x. Define a QΓ-chain map from Qπ ⊗Q H∗(F,Q) to
QΓ⊗Q∆ H(F,Q) by mapping g⊗x to g̃ ⊗ g̃−1x for any lift g̃ ∈ Γ of g ∈ π. Composing this
with QΓ⊗Q∆ i defines a QΓ-chain equivalence

j : QΓ⊗Q∆ H(F,Q) −→ QΓ⊗Q∆ C(F ,Q)

One easily checks that j is an isomorphism of symmetric representations of Qπ in Dd(QΓ).
Hence the surgery transfer associated with (QΓ⊗Q∆ H(F,Q), β, V ) is the rational surgery
transfer p∗. We get from the definitions that p∗ is the composition

Ln(Qπ, w)
res
−→ Ln(QΓ, ŵ)

⊗[H(F ,Q), α]
−→ Ln+d(QΓ, v̂ŵ)

where the last map is given by the tensor product over Q and the diagonal Γ-action. It
remains to show that the second map is zero, if d is odd, and σ∗(F , ω+)⊗? if d is even.

Let D be the (k − 1)- resp. k-dimensional QΓ-chain complex obtained by truncat-
ing H(F,Q) if d is 2k resp. 2k + 1. Let p : H(F,Q) −→ D be the canonical projec-
tion. Choose for λ ∈ Ln(QΓ, ŵ) a n-dimensional quadratic Poincaré QΓ-chain complex
(C, {ψs}) representing λ. The image of λ under [H(F ,Q), α]⊗? is represented by a (n+ d)-
dimensional quadratic Poincaré QΓ-chain complex whose underlying QΓ-chain complex is
C ⊗Q H(F,Q). Now we can do algebraic surgery on id⊗ p : C ⊗Q H(F,Q) −→ C ⊗D.
The result is contractible if d is odd, and homotopy equivalent to the obvious representative
of σ∗(F, ω+)⊗ λ if d is even.

Remark 4.4 For finite Γ there is a natural identification

L2k(Γ,Q, v) = L2k
p (QΓ, v)

with L2k
p (QΓ, v) the Witt group of nonsingular (−)k-symmetric forms on f.g. projective mod-

ules over QΓ with the v-twisted involution. See Lück [15] for the corresponding identification
of K-groups.

5. Untwisted Fibrations
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A fibration F −→ E
p−→ B is called untwisted, if the pointed fibre transport ω+ :

π1(E) −→ [F, F, ]+ is trivial, and orientable if the fibre transport ω : π1(B) −→ [F, F ] is
trivial. Let G1(F ) be the kernel of τ : π1(F ) −→ [F, F ]+ as defined by Gottlieb [10]. A
fibration is untwisted if and only if it is orientable and G1(F ) = π1(F ) (see lemma 1.4).
Because G1(F ) = π1(F ) holds for H-spaces, an orientable fibration with H-space as fibre is
untwisted. Untwisted fibrations seem to be the largest class of fibrations where one can hope
to prove the vanishing of the surgery transfer when one has only little information about the
fibre.

Let F −→ E
p−→ B be an untwisted fibration of connected spaces such that the fibre

F is a d-dimensional finite Poincaré complex. We abbreviate π = π1(B) and Γ = π1(E) and
write ∆ for the kernel of π1(p). Consider a homomorphism w : π = π1(B) −→ {±}. Put ŵ
to be w ◦ π1(p). Since p is untwisted, ∆ is central. The tensor product over Z∆ induces a
pairing

5.1 ⊗Z∆ : Ld(Z∆, 1)⊗ Ln(ZΓ, ŵ) −→ Ld+n(ZΓ, ŵ)

If ∆ is trivial, the pairing 5.1 above reduces to the pairing 2.8. Let σ∗(F ) ∈ Ld(Z∆, 1)
be the symmetric signature of the covering F of F associated with π1(F ) −→ ∆. The
following theorem is proven for the K-theory transfer in Lück [15] page 165. The L-theoretic
version is proven similarly.

Theorem 5.2 (down-up formula for untwisted fibrations) If the conditions above are
satisfied, the composition

p∗ ◦ p∗ : Ln(ZΓ, ŵ) −→ Ln+d(ZΓ, ŵ)

is given by σ∗(F )⊗Z∆?.

Let F be a connected CW complex such that π1(F ) = Z × G and Z ⊂ G1(F ). Let
q : F ′ −→ F be the infinite cyclic covering associated with the projection π1(F ) −→ G.
Choose a representative i : S1 −→ F of the generator of Z. Then q ∨ i extends to a ho-
motopy equivalence f : F ′ × S1 −→ F by Lück [15] page 154. We identify F and F ′×S1. If
F is a d-dimensional finitely dominated Poincaré complex, then F ′ is a (d− 1)-dimensional
finitely dominated Poincaré complex.

Let F −→ E
p−→ B be an untwisted fibration of connected spaces such that F is a

d-dimensional finitely dominated Poincaré complex. We have the central extension with a
free abelian kernel ∆′ −→ Γ′ −→ π if ∆′ is ∆/tors (∆) and Γ′ is Γ/tors (∆). Let r be the
rank of ∆′. Associated to any such extension is a surgery transfer
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5.3 trf : Lεn(Rπ,w) −→ Lεn+r(RΓ′, ŵ)

where ε is one of the decorations p, h or s and Z ⊂ R ⊂ Q. It is the surgery transfer associated
to the following symmetric representation of Rπ in Dr(RΓ′). Choose an identification ∆′ =
Zr. Let C be the symmetric Poincaré Z∆′-chain complex of the universal covering of the
r-dimensional torus T r. The symmetric representation is given by

5.4 id⊗Z∆′ α : RΓ′ ⊗Z∆′ C
d−∗ −→ RΓ′ ⊗Z∆′ C ,

U : Rπ −→ [RΓ⊗Z∆′ C,RΓ⊗Z∆′ C]opZΓ′

where we have identified homRΓ′(RΓ′ ⊗Z∆′ C,RΓ′) with RΓ′ ⊗Z∆′ C
d−∗ and U sends g ∈ π

to h⊗ x 7→ hg̃ ⊗ x for any lift g̃ ∈ Γ′ of g. Let trf be the associated surgery transfer 1.1.
Assume that |tors (∆)| is invertible in R. Then restriction with the epimorphism Γ −→ Γ′

induces a homomorphism res : Ln+r(RΓ′) −→ Ln+r(RΓ). Let sign(F ) ∈ Z be the signature
of the covering F of F associated with π1(F ) −→ ∆. This is well-defined since F̂ is a finitely
dominated Poincaré complex. Let ν : Ln(Rπ,w) −→ Ln+1(Rπ,w) be the homomorphism
defined in 2.9, but now with coefficients in R.

Theorem 5.5 We get for the surgery transfer

p∗ : Lpn(Rπ,w) −→ Lpn+d(RΓ, v̂ŵ)

with coefficients in R under the conditions and in the notation above :

1. p∗ is zero if one of the following conditions is satisfied:

(a) The kernel of π1(F ) −→ π1(E) is infinite

(b) d− r ≡ 2, 3 (4)

(c) d− r ≡ 1 (4) and 1/2 ∈ R
(d) d− r ≡ 1 (4) and the deRham invariant of F is zero.

2. If π1(F ) −→ π1(E) has finite kernel and d− r ≡ 0 (4) then p∗ is sign(F ) · res ◦ trf.

3. Suppose that π1(F ) −→ π1(E) has finite kernel, 1/2 6∈ R and d− r ≡ 1 (4) and the
deRham invariant of F is not zero. Then p∗ is ν ◦ res ◦ trf.

4. If tors ∆ is trivial the items above hold also for p∗ : Lεn(Zπ, w) −→ Lεn+d(ZΓ, v̂ŵ) if ε
is h,p or s and res is the identity.
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Proof : Consider the symmetric representation of π in Dd(RΓ) which is obtained by view-
ing the symmetric representation of π in Dr(ZΓ′) in 5.4 as a symmetric representation
from π into Dr(ZΓ) by restriction with Γ −→ Γ′ and tensoring it with C(F ,R). Because(
RΓ′ ⊗R∆′ C(T̃ r, R)

)
⊗R C(F ,R) and RΓ⊗

Rπ1(F̃ )
C(F̃ , R) are RΓ-chain equivalent, one ob-

tains an isomorphism from this symmetric representation to the one describing p∗. This
implies that the algebraic transfer p∗ : Lpn(Rπ,w) −→ Lpn+d(RΓ, v̂ŵ) is the composition

Lpn(Rπ,w)
trf−→ Lpn+r(RΓ′, ŵ)

res−→ Lpn+r(RΓ, ŵ)
σ∗(F )⊗R?−→ Ln+d

p (RΓ, ŵ)

where σ∗(F ) ∈ Ld−r(R, 1) is the symmetric signature of F and ⊗R is the analogue of the
pairing 2.8.

If d− r ≡ 2, 3 (4), then Ld−r(Z, 1) is trivial. The class σ∗(F ) ∈ Ld−r(Z, 1) is detected
by the signature if d− r ≡ 0 (4), and by the deRham invariant if d− r ≡ 1 (4). Suppose
that the kernel of π1(F ) −→ π1(E) is infinite. As G1(F ) = π1(F ) and the rank of π1(F )
and the kernel above agree, F is homotopy equivalent to S1 × Y for some Y . As S1 × Y
bounds D2 × Y , the class σ∗(F ) ∈ Ld−r(Z, 1) is trivial. If d − r ≡ 1 (4) and 1/2 ∈ R,
σ∗(F ) ∈ Ld−r(R, 1) is trivial. This shows item 1.), 2.) and 3.). One obtains 4.) similarly,
using the fact that F is a finite simple Poincaré complex, as finiteness obstructions and
Whitehead torsions are always trivial over the principal domain Z.

Recall from example 2.11 that the surgery transfer of the product bundle with a torus
as fibre is injective modulo 2-torsion so that the vanishing results above are the best we can
expect.

6. G-Principal Bundles

Corollary 6.1 Let G be a compact connected Lie group and G −→ E
p−→ B be a G-principal

bundle.

1. If G is not a torus, then

p∗ : Ln(Zπ, w) −→ Ln+d(ZΓ, v̂ŵ)

is trivial.

2. Suppose that G is not a torus or that π1(G) −→ π1(E) is not injective. Then

p∗ : Lpn(Qπ1(B), w) −→ Lpn+d(Qπ1(E), v̂ŵ)

is trivial.
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Proof : 1.) Since G is non-abelian, G contains a non-abelian 3-dimensional Lie subgroup
H. Let S1 be the maximal torus in H. We can write the given G-principal bundle as the
composition

p : E
p1−→ E/S1 p2−→ E/H

p3−→ B

It is obvious from the definition of the geometric transfer that p∗ is the composition p∗1◦p∗2◦p∗3.
Hence it suffices to show that p∗2 is zero. As the fibre of p2 is S2, the claim follows from the
up-down formula 2.7, or else by 2.11.

2.) follows from theorem 5.5

Recall from example 2.11 that the transfer of the trivial bundles with fibre S1 is non-
trivial so that the vanishing results above are optimal.

7. Change of K-theory

So far we have mainly dealt with Lh in the integral and Lp in the rational case.
We make some comments what happens for arbitrary decorations. Consider a fibration
F −→ E

p−→ B of connected spaces such that F is a finitely dominated d-dimensional
Poincaré complex. Let w : π = π1(B) −→ {±1} be a homomorphism. Let X resp. Y be a
subgroup of Ki(Zπ1(B)) resp. Ki(Zπ1(E)) containing the image of Ki(Z) and closed under
the w-twisted resp. v̂ŵ-twisted involution (given by taking dual modules and maps) for
i = 0, 1. Then we have the decorated L-group LXn (Zπ1(B), w) resp. LYn (Zπ1(E), v̂ŵ). In
order to get a symmetric chain representation from the fibration and hence a well-defined
algebraic transfer, we have to specify a base point b ∈ B, a CW complex G and a homotopy
equivalence f : G −→ Fb. If i is 0, we assume that the image of the finiteness obstruction
o(G) of G under (j ◦ f)∗ : K0(Zπ1(G)) −→ K0(Zπ1(E)) for the inclusion j : Fb −→ E lies in
Y . If i is 1, we assume that G is a finite Poincaré complex and the image of the White-
head torsion τ([G] ∩ −) of the Poincaré chain equivalence [G] ∩ − : C(G̃)d−∗ −→ C(G̃) un-
der (j ◦ f)∗ : Wh(π1(G)) −→Wh(π1(E)) lies in Y . Moreover, we assume that the K-theory
transfer p∗ : Ki(Zπ1(B)) −→ Ki(Zπ1(E)) maps X to Y . Under these assumptions there is
is an algebraic surgery transfer

p∗ : LXn (Zπ1(B), w(B)) −→ LYn+d(Zπ1(E), v̂ŵ) .

It is easy to check in the case i = 0 that (j ◦ f)∗(o(G)) and the surgery transfer p∗ do not
depend on the choice of b, G and f . This is also true for Lh. In the simple case this choice
can matter. If p is a smooth bundle of compact manifolds and f : G −→ Fb is given by a
triangulation, then these choices do not matter and o(G) and τ([G] ∩ −) are trivial.
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Let Y ′ be the image of Y under p∗ : Ki(Zπ1(E)) −→ Ki(Zπ) for π = π1(B). Then the
composition

p∗ ◦ p∗ : LXn (Zπ, w) −→ LY
′

n+d(Zπ, vw)

is defined. Let Z be an abelian subgroup of Sw(π,Z) closed under the v-twisted involution.
Suppose that the pairing 2.1 sends X ⊗ Z to Y ′. Let LdZ(π,Z, v) be the decorated analogue
of Ld(π,Z, v), in which it is demanded additionally that the classes of all the Zπ-modules
lie in Z ⊆ Sw(π,Z). We make the following assumption :

7.1∑k−1
i=0 (−1)i · [Hi(F )] and

∑d
i=0 (−1)i · [Hi(F )] lie in Z ⊂ Sw(π,Z) if d = 2k

[Hk(F )/torsHk(F )] +
∑k−1
i=0 (−1)i · [Hi(F )] and

∑d
i=0 (−1)i · [Hi(F )]

lie in Z ⊂ Sw(π,Z) if d = 2k + 1

We shall explain at the end of section 10 that the definitions of 2.5 and 2.6 carry over so
that one gets a class

σ∗(F, ω) ∈ LdZ(π,Z, v)

and a pairing
⊗ : LdZ(π,Z, v)⊗ LXn (Zπ, w) −→ LY

′
n+d(Zπ, vw)

and the up-down formula 2.7 is verified, i.e. p∗ ◦ p∗ is given by σ∗(F, ω)⊗?.

Let G be a connected compact Lie group and G −→ E
p−→ B be a G-principal bundle.

Suppose that G is not a torus. Let p1 ◦ p2 ◦ p3 be the decomposition of p appearing in the
proof of theorem 6.1. Then theK-theory transfer p∗ is 2 · p∗1 ◦ p∗3 since the fibre S2 of p2 is sim-
ply connected and has Euler characteristic 2. Suppose that Y contains not only the image of
X under the K-theory transfer p∗, but also the image of X under p∗1 ◦ p∗3. Then the argument
in theorem 6.1 shows that the surgery transfer p∗ : LXn (Zπ1(B), w(B)) −→ LYn+d(Zπ1(E), v̂ŵ)
vanishes.

8. Review of Construction of Algebraic Surgery Transfer

Let R and S be rings with involution and (C, α, U) be a symmetric representation of
R into Dd(S) as introduced in section 2. In this section we recall the construction of the
algebraic surgery transfer (C, α, U)∗ : Ln(R) −→ Ln+d(S) as defined in Lück-Ranicki [18].

An involution on an additive category A is a contravariant functor ∗ : A −→ A together
with a natural equivalence e : idA −→ ∗ ◦ ∗ such that e(M)∗ and (e(M)−1)

∗
agree for all
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objects M in A. An example is the additive category B(R) of finitely generated based free R-
modules with the involution sending a based R-module M to the dual R-module homR(M,R)
with the dual base. The additive category Dd(S) of finitely generated free d-dimensional S-
chain complexes with homotopy classes of chain maps as morphisms possesses the involution
sending C to the dual chain complex Cd−∗. A symmetric representation (C, α, U) of R in
Dd(S) extends in a unique way to a functor of additive categories with involutions, also
denoted by (C, α, U) : B(R) −→ Dd(S).

The definition of the quadratic L-groups in terms of forms and formations as well
in terms of quadratic Poincaré complexes for modules over a ring with involution carries
over directly to additive categories with involution (see Ranicki [31]). In even dimensions
an element in L2m(Dd(S)) is represented by a nonsingular (−1)m-quadratic form (C, [ψ]),
i.e., an object C together with a homotopy class [ψ] of chain maps ψ : Cd−∗ −→ C such
that ψ + (−1)m · ψd−∗ is a chain homotopy equivalence Cd−∗ −→ C. In odd dimensions
an element in L2m+1(Dd(S)) is represented by a nonsingular (−1)m-quadratic formation
(C,D, [µ], [γ]), i.e. objects C and D in Dd(S) and homotopy classes of chain maps [µ] and [γ]
for µ : C −→ D and γ : Dd−∗ −→ C such that there exists a chain map θ : Dd−∗ −→ D and a
chain homotopy χ : θ − (−1)m · θ ' µ ◦ γ with the property that cone(−µd−∗) −→ cone(µ)∗
given by (

0 γ
(−1)mγd−∗ χ+ (−1)m · χd−∗

)
: Cd−r ⊕Dd+1−r −→ Cr−1 ⊕Dr

is a chain equivalence. Note that χ and θ are required to exist but are not part of the
structure. This definition of form resp. formation corresponds the notion of a 0- resp. 1-
dimensional (−1)m-quadratic Poincaré complex in the category Dd(S). We put Ln+4l(Dd(S))
to be Ln(Dd(S)) for 0 ≤ n ≤ 3 and l ≥ 0.

The symmetric representation (C, α, U) extends uniquely to a functor of additive cat-
egories with involution, also denoted by (C, α, U) : B(R) −→ Dd(S). A functor of additive
categories with involutions induces a map on the (quadratic) L-groups. Hence we obtain a
homomorphism :

8.1 (C, α, U)⊗? : Ln(R) −→ Ln(Dd(S))

The main ingredient in the construction of the surgery transfer is the generalized Morita
homomorphism

8.2 µ : Ln(Dd(S)) −→ Ld+n(S)
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defined as follows. We begin with the case where n is even, n = 2m. Represent the element
λ ∈ Ln(Dd(S)) by a nonsingular (−1)m-quadratic form (C, [ψ]). Choose a representative ψ
of [ψ]. Define a d-dimensional (−1)m-quadratic structure {ψs} on C by ψ0 = ψ and ψs = 0
for s ≥ 1. Then (C, {ψs}) is a d-dimensional (−1)m-quadratic Poincaré complex in the sense
of Ranicki [30], section 1.2. Its class in Ln+d(S) = Ld(S, (−1)m) is defined to be µ(λ).

Suppose n is odd, n = 2m+1. Represent λ ∈ Ln(S) by a nonsingular (−1)m-quadratic
formation (C,D, [µ], [γ]). Then µ(λ) ∈ Ld+1(S, (−1)m) is represented by the following (d+1)-
dimensional (−1)m-quadratic Poincaré complex. The underlying (d+1)-dimensional S-chain
complex is the mapping cone of µ : C −→ D given by:

8.3

(
−c 0
µ d

)
: cone(µ)r = Cr−1 ⊕Dr −→ cone(µ)−1 = Cr−2 ⊕Dr−1

The (−1)m-quadratic structure is defined by:

8.4

ψ0 =

(
0 γ
0 χ

)
: cone(−µd−∗)r = Cd−r ⊕Dd+1−r −→ cone(µ)r = Cr−1 ⊕Dr

ψ1 =

(
0 0
0 θ

)
: cone(−µd−∗)r = Cd−r ⊕Dd+1−r −→ cone(µ)r−1 = Cr−2 ⊕Dr−1

ψs = 0 for s ≥ 2

Define the algebraic surgery transfer associated with the symmetric representation
(C, α, U) of R into Dd(S)

(C, α, U)∗ : Ln(R) −→ Ln+d(S)

to be the composition µ ◦ ((C, α, U)⊗?) of the homomorphisms defined in 8.2 and 8.1.

We make some remarks on sign conventions as they differ from those used in Lück-
Ranicki [18]. The mapping cone of a chain map was defined in 8.3. This convention has the
property that the cellular chain complex of the (geometric) mapping cone of a cellular map
is the (algebraic) mapping cone of the induced chain map. Define the suspension of a chain
map C to be the mapping cone of C −→ {0}. If the following square

C
u
−→ C ′

f ↓ ↓ f ′

D
v
−→ D′
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commutes up to the homotopy h : v ◦ f ' f ′ ◦ u we obtain a chain map

8.5

(
u 0
h v

)
: cone(f) −→ cone(f ′)

The suspension ΣC is the mapping cone of C −→ {0}. Let C−∗ be the chain complex
given by (C−∗)r = (C−r)

∗ and (c−∗)r = (c−r+1)∗. Let Cd−∗ be ΣdC−∗. Define the dual chain
map fd−∗ : Cd−∗ −→ Dd−∗ by (fd−∗)r = (fd−r)

∗. One easily checks that with these sign
conventions cone(f)d−∗ = cone((−1)d+1 · fd−∗).

Note that the (−1)m-quadratic structure 8.4 is not directly a (−1)m-quadratic structure
in the sense of Ranicki [30], section 1.2. It is a (−1)m-quadratic structure in the following
sense. A (−1)m-quadratic structure on the mapping cone of µ is a collection {ψs} of maps
ψs : cone(−µd−∗) −→ cone(µ) of graded modules of degree −s such that the following rela-
tions hold for s ≥ 0

cψs − (−1)s · ψscd−∗ = ψs+1 − (−1)m · ψd−∗s+1

where c is the differential of cone(µ) and cd−∗ the differential of cone(−µd−∗). It is a Poincaré
structure if the chain map ψ0 + (−1)mψd−∗ : cone(−µd−∗) −→ cone(µ) is a chain homotopy
equivalence. Using the identification cone(f)d−∗ = cone((−1)d+1 · fd−∗) and the right signs
one can associate

9. Proof of the up-down Formula in Even Base Dimensions

This section prepares the proof of the up-down formula 2.7, and completes it for even
base dimensions n = 2m.

Let C be a finitely generated free Z-chain complex. A π-twist on C is a choice of
Z-chain maps C(g) : C −→ C for g ∈ π such that C(1) = id and C(g) ◦ C(h) ' C(gh) holds
for g, h ∈ π. In particular, we obtain a homomorphism π −→ [C,C]Z by sending g to [C(g)]
and a Zπ-structure on the homology H(C). A map f : (C, {C(g)}) −→ (D, {D(g)}) of chain
complexes with a π-twist is a chain map f : C −→ D satisfying f ◦ C(g) ' D(g) ◦ f for all
g ∈ π. Let µ : Zπa −→ Zπb be a Zπ-homomorphism where Zπa is the direct sum of a copies
of Zπ. Equip Zπ ⊗ C with the Zπ-structure given by u · (v ⊗ x) = uv ⊗ x. In this and in
the next section all tensor products are understood to be over the integers Z. We define a
Zπ-chain map

9.1 µ⊗t C : Zπa ⊗ C −→ Zπb ⊗ C
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as follows. As µ can be viewed as a matrix of homomorphism Zπ −→ Zπ, it suffices to
specify µ ⊗t C in the case a = b = 1. Let µ(1) ∈ Zπ be

∑
g∈π λg · g. Then µ⊗t C sends

u⊗ x to
∑
g∈π λg · ug ⊗ C(g−1)(x). One should not confuse µ⊗t C with µ⊗ C which sends

g ⊗ x to µ(g)⊗ x. Let ρ2 : Zπa ⊗H(C) −→ H(Zπa ⊗ C) be the canonical map. This is an
isomorphism as Zπ is Z-free. Define ρ1 : Zπa ⊗H(C) −→ Zπa ⊗H(C) by sending g ⊗ x to
g ⊗ g−1x. We obtain a Zπ-isomorphism

9.2 ρ = ρ2 ◦ ρ1 : Zπa ⊗H(C) −→ H(Zπa ⊗ C)

if π acts diagonally on the source. We shall use ρ as an identification. One easily checks:

Lemma 9.3 Let µ1 : Zπa −→ Zπb and µ2 : Zπb −→ Zπc be Zπ-homomorphisms. Consider
a map of chain complexes with a π-twist f : (C, {C(g)}) −→ (D, {D(g)}). Then :

1. (µ2 ⊗t C) ◦ (µ1 ⊗t C) 'Zπ (µ2 ◦ µ1)⊗t C

2. (µ1 ⊗t D) ◦ (Zπa ⊗ f) 'Zπ (Zπb ⊗ f) ◦ (µ1 ⊗t C)

3. H(µ1 ⊗t C) ◦ ρ = ρ ◦ (µ⊗H(C))

4. H(Zπa ⊗ f) ◦ ρ = ρ ◦ (Zπa ⊗H(f))

Our main example is the cellular Z-chain complex C = C(F ) of the fibre together
with a choice C(g) of representatives of the chain homotopy class of chain maps C −→ C
induced by the fibre transport ω(g). Let α : Cd−∗ −→ C be a representative of the homotopy
class of chain maps given by the Poincaré chain equivalence ∩[F ] : Cd−∗ −→ C. Recall that
the homomorphism v : π −→ {±1} sends g to the degree of the automorphism H(ω(g)) of
Hd(F ) ∼= Z. Equip Cd−∗ with the π-twist Cd−∗(g) = v(g) · C(g)d−∗. Then α is a map of
chain complexes with a twist.

Recall that Zπ∗ = homZπ(Zπ,Zπ) carries the Zπ-structure with respect to the w-
twisted involution ¯ : Zπ −→ Zπ. We shall use the following Zπ-isomorphism as an iden-
tification

9.4 ev : Zπ∗ −→ Zπ f 7→ f(1)

Recall that (Zπ ⊗ C)d−∗ is equipped with the Zπ-structure with respect to the vw-twisted
involution ¯ : Zπ −→ Zπ. We shall use the following Zπ-isomorphism as an identification
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9.5 Zπ ⊗ Cd−∗ −→ (Zπ ⊗ C)d−∗

sending u⊗f to v ⊗ x 7→ vf(x)u. Given a Zπ-map µ : Zπ −→ Zπ, let µ : Zπ −→ Zπ be the
Zπ-map satisfying µ(1) = µ(1) if ¯ is the w-twisted involution. We have µ = µ∗ under the
identification 9.4. This extends obviously to Zπ-maps µ : Zπa −→ Zπb. One easily checks
that the following data define a symmetric representation (Zπ ⊗ C,Zπ ⊗ α, U) of Zπ with
the w-twisted involution into Dd(Zπ) with the vw-twisted involution:

9.6 Zπ ⊗ α : Zπ ⊗ Cd−∗ −→ Zπ ⊗ C
U : Zπ −→ [Zπ ⊗ C,Zπ ⊗ C]opZπ g 7→ [r(g)⊗t C]

where r(g) : Zπ −→ Zπ maps u to ug. One derives directly from lemma 1.4 and the
definitions that the homomorphisms p∗ ◦ p∗ and (Zπ ⊗ C,Zπ ⊗ α, U)∗ from Ln(Zπ, w) to
Ln+d(Zπ, vw) agree.

The strategy of the proof of the up-down formula is described as follows. Given
λ ∈ Ln(Zπ, w), choose an appropriate (−1)m-quadratic Poincaré Zπ-chain complex of di-
mension d resp. d+ 1 representing p∗ ◦ p∗(λ) ∈ Ld+n(Zπ, w) if n = 2m resp n = 2m+ 1. Do
algebraic surgery on this chain complex and show that the result is homotopy equivalent to
a (−1)m-quadratic Poincaré Zπ-chain complex which represents σ∗(F, ω)⊗ λ. As algebraic
surgery and homotopy equivalence do not change the class of a (−1)m-quadratic Poincaré
Zπ-chain complex in the L-group, the up-down formula follows. To do the algebraic surgery
and find the right homotopy equivalence, we need some preliminaries. Namely, we are going
to construct the following data if d = 2k respectively d = 2k + 1:

9.7 1. A finitely generated free Z-chain complex D of dimension k. If d is 2k, the
differential dk is injective.

2. A chain epimorphism p : C −→ D which is k-connected. If d is 2k+ 1, then Hk(p) has
torsHk(C) as kernel.

3. Chain maps D(g) : D −→ D for g ∈ π such that p ◦ C(g) and D(g) ◦ p agree. Let
cone(p)(g) : cone(p) −→ cone(p) be the chain map given by C(g)∗−1 ⊕D(g)∗. Then
{D(g)} and {cone(p)(g)} define π-twists.

4. A finitely generated free chain complex E. If d is 2k, then E is concentrated in
dimension k and Ek is Hk(C)/torsHk(C). If d is 2k + 1, then E is concentrated
in dimensions k + 1 and k, the differential ek+1 is injective and E is a resolution of
torsHk(C).
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5. A chain map q : C −→ E such that Hk(q) : Hk(C) −→ Hk(E) = Hk(C)/torsHk(C) is
the canonical projection if d = 2k and Hk(q) : Hk(C) −→ Hk(E) = torsHk(C) induces
the identity on torsHk(C) if d = 2k + 1.

6. A π-twist E(g) on E. Let η : Σ−1cone(p) −→ E be the composition of q : C −→ D
with the canonical projection Σ−1cone(p) −→ C. Then η is a map of chain complexes
with π-twist.

7. We get chain maps ξ : Dd−∗ −→ Σ−1cone(p) by (αpd−∗, 0) and ν : cone(ξ) −→ E by
(0, η)tr.

8. There is for all i a short exact sequence

0 −→ Hi(D
d−∗)

Hi(ξ)
−→ Hi(Σ

−1cone(p))
Hi(η)
−→ Hi(E) −→ 0

.

This implies that ν is a homotopy equivalence.

Roughly speaking, the data about D and p will be used for the algebraic surgery and
the data about E and q for the homotopy equivalence of quadratic Poincaré complexes. We
construct this data in the case d = 2k first.

Let D be

. . . −→ {0} −→ im(ck) ↪→ Ck−1 −→ Ck−2 −→ . . . −→ C0

Define p : C −→ D by pi = 0 for i > k, pk = ck and pi = id for i < k. For g, h ∈ π
choose a homotopy H(g, h) : C(g) ◦C(h) ' C(gh). There are maps of graded modules
D(g) : D∗ −→ D∗ of degree zero and K(g, h) : D∗ −→ D∗+1 of degree with the property that
p ◦ C(g) = D(g) ◦ p and K(g, h) ◦ p = p ◦H(g, h) hold. As p is surjective, D(g) is a chain
map and K(g, h) a homotopy between D(g) ◦D(h) and D(gh). Obviously D(1) and C(1)
are the identity. Now one easily checks that items 1.), 2.) and 3.) in the list 9.7 are satisfied.

Define E as required in item 4.) of 9.7. Since im(ck) ⊂ Ck−1 is free and the sequence
0 −→ ker(ck) −→ Ck −→ im(ck) −→ 0 is exact, there is a Z-map r : Ck −→ ker(ck) whose
restriction to ker(ck) is the identity. Let pr : ker(ck) −→ Hk(C)/torsHk(C) be the canonical
projection. Define a chain map q : C −→ E by qk = pr ◦ r. Obviously item 5.) in 9.7 holds.
Define the π-twist on E by the Zπ structure on Ek = Hk(C)/torsHk(C). Then q : C −→ E
is a map of chain complexes with π-twist, as it induces a Zπ-map on homology. This proves
item 6.) of 9.7.

The compositions p ◦ α ◦ pd−∗ is zero because of item 1.) in 9.7 since Dd−∗
i = {0}

for i < k, Di = {0} for i > k and dk is injective. Hence ξ : Dd−∗ −→ cone(p) given by
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(α ◦ pd−∗, 0)tr is a chain map. Items 1.) and 2.) of 9.7 imply that Hi(Σ
−1cone(p)) is {0}

for i ≤ k − 1 and the canonical map Hk(cone(p)) −→ Hk(C) is injective with torsHk(C) as
image. Therefore Hk(η ◦ ξ) is zero. Since E is concentrated in one dimension η ◦ ξ is zero
and ν : cone(ξ) −→ E given by (0, η)tr is a chain map. This proves item 7.)

Next we prove the exactness of the sequence in item 8.). Note that this together
with the long homology sequence of ξ implies that ν is a homology equivalence, and hence a
homotopy equivalence. Since Σ−1cone(p) is (k−1)-connected, we can choose a chain complex
X homotopy equivalent to Σ−1cone(p) such that Xi = {0} for i ≤ k− 1. The mapping cone

of pd−∗ : Dd−∗ −→ Cd−∗ is
(
Σ−1cone((−1)d+1 · p)

)d−∗
' Xd−∗. Obviously Hi(X

d−∗) = {0}
for i ≥ k + 1 and Hk(X

d−∗) ⊂ (Xd−∗)k is free. We derive from the long homology sequence
of pd−∗ that Hi(p

d−∗) is bijective for i ≥ k + 1 and the following sequence is exact

0 −→ Hk(D
d−∗)

Hk(p
d−∗)
−→ Hk(C

d−∗) −→ Hk(X
d−∗) −→ 0

Since Hk(D
d−∗) ⊗ Q is isomorphic to Hk(D) ⊗ Q and Hk(D) = {0} by item 2.) in 9.7,

the module Hk(D
d−∗) is torsion. This implies that Hk(p

d−∗) : Hk(D
d−∗) −→ Hk(C

d−∗) is
injective and has torsHk(C

d−∗) as image. Since Hi(α) : Hi(C
d−∗) −→ Hi(C) is bijective,

Hi(ξ) : Hi(D
d−∗) −→ Hi(cone(p)) is bijective for i ≥ k. Now item 8.) in 9.7 follows. This

finishes the verification and construction of the data 9.7 in the even-dimensional case d = 2k.

Next we treat the case d = 2k + 1. Let K be the kernel of the canonical projection
ker(ck) −→ Hk(C)/torsHk(C). As its image is free K is a direct summand in ker(ck) and
hence in Ck. In particular K and Ck/K are free and we can choose a retraction r : Ck −→ K.
Let D be

. . . −→ {0} −→ Ck/K
ck−→ Ck−1 −→ Ck−2 −→ . . . −→ C0

and p : C −→ D be the obvious projection. One verifies items 1.) 2.) and 3.) of 9.7 as done
in the case d = 2k above.

Choose E as required in item 4.) of 9.7. Let ε : Ek −→ Hk(E) = torsHk(C) be the
canonical projection. Let pr : K −→ torsHk(C) be the canonical epimorphism. Choose
pr : K −→ Ek satisfying ε ◦ pr = pr. Put qk : Ck −→ Ek to be pr ◦ r where r : Ck −→ K is
a retraction. Because ε ◦ qk ◦ ck+1 vanishes, we can choose qk+1 : Ck+1 −→ Ek+1 such that
ek+1 ◦ qk+1 = qk ◦ ck+1 holds. Hence we obtain a chain map q : C −→ E satisfying item 5.)
of 9.7.

Since E is a resolution of the Zπ-module torsHk(C), we may choose chain maps
E(g) : E −→ E inducing multiplication with g on homology for each g ∈ π. As Σ−1cone(p)
is (k − 1)-connected and Hk(η) : Hk(Σ

−1cone(p)) −→ Hk(E) is a Zπ-homomorphism, η is a
map of chain complexes with a π-twist. This proves item 6.) of 9.7.
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The compositions p ◦ α ◦ pd−∗ and q ◦ α ◦ pd−∗ are zero for dimension reasons. Hence
item 7.) of 9.7 is true.

It remains to verify item 8.). Because of item 1.) and 2.) of 9.7 it suffices to show
that Hi(p

d−∗) : Hi(D
d−∗) −→ Hi(C

d−∗) is bijective for i ≥ k + 1. The mapping cone of pd−∗

is
(
Σ−1cone((−1)d+1 · p)

)d−∗
). Since Hi(Σ

−1cone(p)) is zero for i ≤ k − 1 and is torsion for

i = k, the universal coefficient theorem shows that Hi(Σ
−1cone(p)d−∗) = {0} for i ≥ k + 1.

One may derive this also by an argument as in the case d = 2k above using a chain complex
X which is homotopy equivalent to Σ−1cone(p) and satisfies Xi = {0} for i ≤ k − 1. This
finishes the construction and verification of the data 9.7.

Now we are ready to prove the up-down formula 2.7 in even base dimensions n =
2m. Represent λ ∈ Ln(Zπ, w) by a nonsingular (−1)m-quadratic form µ : Zπa −→ Zπa over
Zπ with respect to the w-twisted involution, i.e. a Zπ-map µ such that µ+ (−1)mµ is
an isomorphism. We obtain a (−1)m-quadratic structure {ψs} on Zπa ⊗ C if we define
ψ0 = (µ⊗t C) ◦ (Zπa ⊗ α) : Zπa ⊗ Cd−∗ −→ Zπa ⊗ C and ψs = 0 for s ≥ 1. The class of the
d-dimensional (−1)m-quadratic Poincaré Zπ-chain complex (Zπa ⊗ C, {ψs}) in Ld+n(Zπ, vw)
is p∗ ◦ p∗(λ).

The composition (Zπa ⊗ p) ◦ (ψ + (−1)m · ψd−∗) ◦ (Zπa ⊗ pd−∗) is zero by item 1.) of
9.7. Hence {ψs} ∈ Qd(Zπ

a ⊗ C) can be extended to {(∂ψ, ψ)s} ∈ Qd+1(Zπa ⊗ p) by ∂ψ = 0.
Denote by (C, {ψ}) the result under surgery on (Zπa ⊗ p, {(∂ψ, ψ)s}) as defined in Ranicki
[30], section 1.5. We obtain a chain map

ξ̃ : Zπa ⊗Dd−∗ −→ Σ−1cone(Zπa ⊗ p) = Zπa ⊗ Σ−1cone(p)

by
(
(ψ0 + (−1)m · ψd−∗0 ) ◦ (Zπa ⊗ pd−∗), 0

)tr
. By definition C is the mapping cone of ξ̃. Let

η̃ : Zπa ⊗ Σ−1cone(p) −→ Zπa ⊗ E

be Zπa ⊗ η. One computes Hk(η̃ ◦ ξ̃) = Zπa ⊗Hk(η ◦ ξ). using the identification 9.2 and
lemma 9.3. Since Hk(η ◦ ξ) vanishes by item 8.) of 9.7 and E is concentrated in one
dimension by item 4.) of 9.7, η̃ ◦ ξ̃ is zero. Hence we obtain a chain map

ν̃ : C −→ Zπa ⊗E

by (0, η̃). If we choose a Z-base for C and D, we get an induced Zπ-base for the source and
target of ν̃ and the Whitehead torsion τ(ν̃) ∈ K̃1(Zπ) of ν̃ is defined. It is independent of
the choice of the Z-base above, since we work in the reduced K1-group. Recall from Lück
[15], section 5 that associated to the chain complex with π-twist (Dd−∗, {Dd−∗(g)}) there is
a K-theory transfer (Dd−∗, {Dd−∗(g)})∗ : K̃1(Zπ) −→ K̃1(Zπ) (and also for K0(Zπ)).
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Lemma 9.8 ν̃ : C −→ Zπa ⊗ E is a homotopy equivalence. Its Whitehead torsion is the
image under (Dd−∗, {Dd−∗(g)})∗ of the class in K̃1(Zπ) represented by µ+ (−1)m · µ.

Proof : There is a homotopy H from ξ̃ to (Zπa ⊗ ξ) ◦ (µ⊗t Dd−∗ + (−1)m · µ⊗t Dd−∗)
because of lemma 9.3. We obtain a chain map

ν′ =

(
µ⊗t Dd−∗ + (−1)m · µ⊗t Dd−∗ 0

H id

)
: C = cone(ξ̃) −→ cone(Zπa ⊗ ξ)

As µ⊗t Dd−∗ + (−1)m · µ⊗t Dd−∗ is a homotopy equivalence, ν′ is a homotopy equivalence.
The Whitehead torsion of ν′ is the Whitehead torsion of µ⊗t Dd−∗ + (−1)m · µ⊗t Dd−∗

which is by definition the image under (Dd−∗, {Dd−∗(g)})∗ of the class in K̃1(Zπ) represented
by µ+ (−1)m · µ. One can identify the target of ν′ with Zπa ⊗ cone(ξ). As ν is by item 8.)
of 9.7 a homotopy equivalence Zπa ⊗ ν : Zπa ⊗ cone(ξ) −→ Zπa ⊗ E is a simple homotopy
equivalence. Its composition with ν′ is ν̃ and the claim follows.

Let {φs} be the quadratic structure on Zπa⊗E obtained by pulling back the quadratic
structure {ψs} by ν̃, i.e., φs = ν̃ ◦ ψs ◦ ν̃d−∗. As ν̃ is (0, q, 0) : Dd−∗−1 ⊕ C∗ ⊕D∗+1 −→ E∗
one easily checks from the definition of ψ in Ranicki [30], section 1.5 that φs is zero for s ≥ 1
and φ0 is q ◦ (µ⊗t C) ◦ (Zπa ⊗ α) ◦ Zπa ⊗ qd−∗. Hence

Hi(φ0) : Hi(Zπ
a ⊗ Ed−∗) −→ Hi(Zπ

a ⊗E)

can be identified using 9.2, lemma 9.3 and item 4.) of 9.7 with

µ⊗ φF : Zπa ⊗ homZ(Hk(F )/torsHk(F ),Z) −→ Zπa ⊗Hk(F )/torsHk(F )

if d = 2k and φF is the intersection form on F and with

µ⊗ φF : Zπa ⊗ homZ(torsHk(F ),Q/Z) −→ Zπa ⊗ torsHk(F )

if d = 2k + 1 and φF is the linking form. The class of the d-dimensional (−1)m-quadratic
Poincaré Zπ-chain complex (Zπa ⊗E, {φs}) in Ln+d(Zπ, vw) = Ld(Zπ, (−1)m · vw) has been
shown to be σ∗(F, ω)⊗ λ. This finishes the proof of the up-down formula 2.7 in the case of
even base dimension n = 2m for Lh.

Finally, we make some remarks how this extends to the intermediate L-groups in
case of K1-decorations. The case K0 is completely analogous. Given a finitely gener-
ated free Z-chain complex with a π-twist D, {D(g)}, let s(D) ∈ Sw(π,Z) be the class∑
i≥0 (−1)i · [Hi(D)]. The assumptions 7.1 just say that s(D) and s(C) lie in Z ⊂ Sw(π,Z)

where C and D are the chain complexes with a π-twist defined in 9.7. The long homology
sequence of ξ becomes an exact Zπ-sequence if one identifies Hi(cone(ξ)) with Hi(E) by
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Hi(ν). The long exact sequence of p is also compatible with the Zπ-structures. This implies
s(E) = s(C)− s(D) + s(Dd−∗). By the universal coefficient theorem (−1)d · s(Dd−∗) is the
image of s(D) under the v-twisted involution. Thus s(Dd−∗) and [torsHk(F )] = (−1)k · s(E)
lie in Z ⊂ Sw(π,Z) and σ∗(F, ω) defines an element in LdZ(π,Z, v). The K-theoretic transfer
homomorphism (Dd−∗, {Dd−∗(g)})∗ : K̃1(Zπ) −→ K̃1(Zπ) sends X to Y ′ since it is given by
the pairing 2.1 and s(D) ∈ Sw(π,Z). Now one easily checks that the proof above for the
up-down formula for Lh goes through for the intermediate L-groups.

10. Proof of the up-down Formula in Odd Base Dimensions

Next, we finish the proof of the up-down formula 2.7 in the case where the base di-
mension is odd, n = 2m + 1. We give two different proofs. The first one is based on the
Shaneson splitting and is comparatively short but does not carry over to the intermediate
L-groups. The second one is a blown up version of the proof in the even-dimensional case
and holds also for the intermediate L-groups. We restrict ourselves to the proof for Lh.

Let i : Lhn(Zπ, w) −→ Lsn+1(Z[Z× π], w) be the homomorphism given by the tensor
product with the symmetric Z[Z]-chain complex of the universal covering of S1. Since the
Euler characteristic of S1 is zero the image lies in the Ls-groups. This map is a split injection
by the results of Shaneson [33] and Ranicki [28]. Let (Zπ ⊗ C,Zπ ⊗ α, U) be the symmetric
representation 9.6 whose surgery transfer (Zπ⊗C,Zπ⊗α, U)∗ is just p∗ ◦ p∗. The Whitehead
torsion of Zπa ⊗ α : Zπa ⊗ Cd−∗ −→ Zπa ⊗ C is zero. Hence (Zπ ⊗ C,Zπ ⊗ α, U) induces
transfer maps on both Lh and Ls. One easily verifies that the following square commutes

Lhn(Zπ, w)
i
−→ Lsn+1(Z[π × Z], w)

(Zπ ⊗ C,Zπ ⊗ α, U)∗ ↓ ↓ (Zπ ⊗ C,Zπ ⊗ α, U)∗

Lhn+d(Zπ, vw)
i
−→ Lsn+d+1(Z[π × Z], vw)

One also checks easily that this square remains comutative if we substitute the vertical
arrows by σ∗(F, ω)⊗?. The up-down formula for Lh in the odd-dimensional case n = 2m+ 1
now follows from the up-down formula for Ls in the even case n = 2m+ 2 and injectivity of
i. A similar argument applies to Lp instead of Lh.

Next we give a different proof which is much more complicated but carries over to
the intermediate L-groups as well. Recall that a nonsingular (−1)m-quadratic formation
(Zπa,Zπb, µ, γ) consists of Zπ-homomorphisms µ : Zπa −→ Zπb and γ : Zπb −→ Zπa such
that there is a Zπ-map θ : Zπb −→ Zπb with the properties that θ − (−1)m · θ = µ ◦ γ holds
and the following square is cartesian:
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10.1

Zπb
γ
−→ Zπa

−µ ↓ ↓ µ

Zπa
γ
−→ Zπb

Consider an element λ ∈ L2m+1(Zπ, vw). Represent λ by a nonsingular (−1)m-quadratic
formation (Zπa,Zπb, µ, γ). Choose a Zπ-chain map θ : Dd−∗ −→ D and a Zπ-homotopy χ
from θ ⊗t C − (−1)m · θ ⊗t C to (µ⊗t C) ◦ (γ ⊗t C) ◦ (Zπb ⊗ α). Equip cone(µ⊗t C) with
the (−1)m-quadratic structure {ψs} defined accordingly to 8.4 as follows

10.2

ψ0 =

(
0 γ ⊗t C ◦ Zπb ⊗ α
0 χ

)
: cone(µ⊗t C)d+1−∗ −→ cone(µ⊗t C)∗

ψ1 =

(
0 0
0 θ ⊗t C ◦ Zπb ⊗ α

)
: cone(µ⊗t C)d+1−∗ −→ cone(µ⊗t C)∗−1

ψs = 0 for s ≥ 2

Then the class of the (−1)m-quadratic Poincaré Zπ-chain complex (cone(µ⊗t C), {ψs}) of
dimension d+ 1 in Ln+d(Zπ, vw) = Ld+1(S, (−1)m · vw) is p∗ ◦ p∗(λ).

The following square commutes (strictly, not only up to homotopy) by item 3.) in 9.7

10.3

Zπa ⊗ C
Zπa ⊗ p

−→ Zπa ⊗D

µ⊗t C
↓ ↓

µ⊗t D

Zπb ⊗ C
Zπb ⊗ p

−→ Zπb ⊗D

We get a chain map p̂ : cone(µ⊗t C) −→ cone(µ⊗t D) by(
Zπa ⊗ p∗−1 0

0 Zπb ⊗ p∗

)
: Zπa ⊗ C∗−1 ⊕ Zπb ⊗ C∗ −→ Zπa ⊗D∗−1 ⊕ Zπb ⊗D∗
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By item 1.) in 9.7 p̂ ◦ ψs ◦ p̂d−∗ is zero for all s ≥ 0. Hence {ψs} ∈ Qd+1(cone(µ⊗t C))
extends to {(∂ψ, ψ)s} ∈ Qd+2(p̂) if we put ∂ψ to be zero. Let (C,C, {ψs}) be the result of
algebraic surgery on (p̂, {(∂ψ, ψ)s}). Because p̂ ◦ (ψ0 + (−1)mψd−∗0 ) ◦ p̂d+1−∗ is zero by item
1.) in 9.7, we obtain a chain map

ξ̃ : cone(µ⊗t Dd−∗) −→ Σ−1cone(p̂)

by
(
(ψ0 + (−1)mψd−∗0 ) ◦ p̂d+1−∗, 0

)tr
. By definition cone(ξ̃) is C. The following diagram

commutes up to homotopy by item 6.) in 9.7 and lemma 9.3.

Zπa ⊗ Σ−1cone(p)
Zπa ⊗ η

−→ Zπa ⊗E

µ⊗t Σ−1cone(p)

↓ ↓
µ⊗t E

Zπb ⊗ Σ−1cone(p)
Zπb ⊗ η

−→ Zπb ⊗ E

Choose a corresponding homotopy H. We get a Zπ-chain map

η̃ =

(
Zπa ⊗ η 0
H Zπb ⊗ η

)
: Σ−1cone(p̂) = cone(µ⊗t Σ−1cone(p)) −→ cone(µ⊗t E)

We derive from item 1.) of 9.7 that η̃ ◦ ξ̃ is zero. Hence we obtain a chain map

ν̃ : C = cone(ξ̃) −→ cone(µ⊗t E)

by (η̃, 0)tr.

Lemma 10.4 ν̃ : C −→ cone(µ⊗t E) is a homotopy equivalence. Its Whitehead torsion is
the image under the K-theory transfer (Dd−∗, {Dd−∗(g)})∗ of the Whitehead torsion of the
nonsingular (−1)m-quadratic formation (Zπa,Zπb, µ, γ).

Proof : We use the following abbreviations :

f1 = (γ ⊗t C) ◦ (Zπb ⊗ α) ◦ (Zπb ⊗ pd−∗) : Zπb ⊗Dd−∗ −→ Zπa ⊗ C
f2 = (−1)m · (Zπb ⊗ αd−∗) ◦ (γ ⊗t Cd−∗) ◦ (Zπa ⊗ pd−∗) : Zπa ⊗Dd−∗ −→ Zπb ⊗ C
g1 = (Zπa ⊗ α) ◦ (Zπa ⊗ pd−∗) : Zπa ⊗Dd−∗ −→ Zπa ⊗ C
g2 = (−1)m · (Zπb ⊗ α) ◦ (Zπb ⊗ pd−∗) : Zπb ⊗Dd−∗ −→ Zπb ⊗ C
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Then ξ̃ : cone(µ⊗t Dd−∗) −→ Σ−1cone(p̂) is given by f1 0
∗ f2

0 0

 : (Zπb⊗Dd−(∗−1))⊕(Zπb⊗Dd−∗)→ (Zπa⊗C∗−1)⊕(Zπb⊗C∗)⊕Σ−1cone(µ⊗tD)∗

As the square 10.1 is cartesian, we can find a cartesian square

10.5

Zπa
δ
−→ Zπb

µ ↓ ↓−µ

Zπb
ε
−→ Zπa

and a Zπ-map Ω : Zπb −→ Zπa satisfying

10.6 µ ◦Ω = id− γ ◦ ε
Ω ◦ µ = id− γ ◦ δ

If one regards the square 10.1 as a chain homotopy equivalence from the first to the second
column, the square 10.5 describes a chain homotopy inverse and Ω a chain homotopy. Define
a chain map κ : cone(µ⊗t Dd−∗) −→ cone(µ⊗t Dd−∗) by(

δ ⊗t Dd−(∗−1) 0
∗ ε⊗t Dd−∗

)
: (Zπa ⊗Dd−(∗−1))⊕ (Zπb ⊗Dd−∗) −→

(Zπb ⊗Dd−(∗−1))⊕ (Zπa ⊗Dd−∗)

where ∗ denotes any homotopy from (µ⊗t Dd−∗) ◦ (δ ⊗t Dd−∗) to (ε⊗t Dd−∗) ◦ (µ⊗t Dd−∗).
Such a homotopy ∗ exists as the square 10.5 is commutative. Because of the relations 10.6
and lemma 9.3 we can choose homotopies

h1 : f1 ◦ (δ ⊗t Dd−∗) + g1 ◦ (Ω⊗t Dd−∗) ◦ (µ⊗t Dd−∗) ' g1

h2 : f2 ◦ (ε⊗t Dd−∗) + g2 ◦ (µ⊗t Dd−∗) ◦ (Ω⊗t Dd−∗) ' g2

Define a map of degree one H : cone(µ⊗t Dd−∗) −→ Σ−1cone(p̂) by h1 g1 ◦ (Ω⊗t Dd−∗)
0 −h2

0 0

 : (Zπa ⊗Dd−(∗−1))⊕ (Zπb ⊗Dd−∗) −→
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(Zπa ⊗ C∗−1)⊕ (Zπb ⊗ C∗)⊕ (Σ−1cone(µ⊗t C)∗)

One checks using item 1.) and 2.) of 9.7 that the compositions of Zπa⊗ p and Zπa⊗ q with
h1 and H as well as the compositions of Zπb ⊗ p and Zπb ⊗ q with h2 are zero. Now one
easily verifies that H is a homotopy between ξ̃ ◦ κ̃ and a chain map g̃ : cone(µ⊗t Dd−∗) −→
Σ−1cone(p̂) of the following shape g1 0

∗ g2

0 0

 : (Zπa ⊗Dd−(∗−1))⊕ (Zπb ⊗Dd−∗)

−→ (Zπa ⊗ C∗−1)⊕ (Zπb ⊗ C∗)⊕ (Σ−1cone(µ⊗t D)∗) .

We have constructed a diagram which commutes up to the homotopy H.

cone(µ⊗t Dd−∗)
g̃
−→ Σ−1cone(p̂)

κ̃ ↓ ↓ id

cone(µ⊗t Dd−∗)
ξ̃
−→ Σ−1cone(p̂)

Let ν′ : cone(g̃) −→ cone(ξ̃) = C be the induced chain map (see 8.5). It is a homotopy
equivalence as the square 10.5 is cartesian and therefore κ̃ is a homotopy equivalence. The
Whitehead torsion of ν′ is the Whitehead torsion of κ̃ which can be identified with the neg-
ative of the image of the Whitehead torsion of the cartesian square 10.1 under the K-theory
transfer (Dd−∗, {Dd−∗(g)})∗. The mapping cone of g̃ can be identified with the mapping
cone of the following chain map ĝ : Zπa ⊗ cone(ξ) −→ Zπb ⊗ cone(ξ) given by µ⊗t Dd−∗ 0 0

∗ µ⊗t C 0
0 0 µ⊗t D

 : (Zπa ⊗Dd−(∗−1))⊕ (Zπa ⊗ C∗)⊕ (Zπa ⊗D∗+1)

−→ (Zπb ⊗Dd−(∗−1))⊕ (Zπb ⊗ C∗)⊕ Zπb ⊗D∗+1

The composition of ν̃ with ν′ is given by the following up to homotopy commutative square
together with an appropiate choice of homotopy (see 8.5).
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Zπa ⊗ cone(ξ)
Zπa ⊗ ν

−→ Zπa ⊗ E

ĝ

↓ ↓
µ⊗t E

Zπb ⊗ cone(ξ)
Zπb ⊗ ν

−→ Zπb ⊗ E

Since ν is a homotopy equivalence by item 8.) of 9.7 Zπa ⊗ ν and Zπb ⊗ ν and hence ν̃ ◦ ν′
are Zπ-homotopy equivalences with trivial Whitehead torsion. This finishes the proof of
lemma 10.4.

Equip cone(µ⊗t E) with the quadratic structure {φs} = {ν ◦ ψs ◦ νd+1−∗}. One com-
putes directly from 10.2 that φ is given by :

φ0 =

(
0 (Zπa ⊗ q) ◦ (γ ⊗t C) ◦ (Zπb ⊗ α) ◦ (Zπb ⊗ qd−∗)
0 (Zπb ⊗ q) ◦ χ ◦ (b⊗t qd−∗)

)

φ1 =

(
0 0
0 (Zπb ⊗ q) ◦ (Zπb ⊗ θ) ◦ (Zπb ⊗ α) ◦ (Zπb ⊗ qd−∗)

)

φs = 0 for s ≥ 2

We can identify

Hk((Zπ
a ⊗ q) ◦ (γ ⊗t C) ◦ (Zπb ⊗ α) ◦ (Zπb ⊗ pd−∗)) : Hk(Zπ

b ⊗ E) −→ Hk(Zπ
a ⊗ E)

using the identification 9.2, lemma 9.3 and and item 4.) of 9.7 with

γ ⊗ φF : Zπb ⊗ homZ(Hk(F )/torsHk(F ),Z) −→ Zπa ⊗Hk(F )/torsHk(F )

if d = 2k and φF is the intersection form on F , and with

γ ⊗ φF : Zπa ⊗ homZ(torsHk(F ),Q/Z) −→ Zπa ⊗ torsHk(F )

if d = 2k + 1 and φF is the linking form. Analogously we can identify

Hk(µ⊗t E) : Hk(Zπ
a ⊗ E) −→ Hk(Zπ

b ⊗ E)

with

µ⊗ id : Zπa ⊗ homZ(Hk(F )/torsHk(F ),Z) −→ Zπa ⊗Hk(F )/torsHk(F )

if d = 2k, and with

µ⊗ id : Zπa ⊗ homZ(torsHk(F ),Q/Z) −→ Zπa ⊗ torsHk(F )
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if d = 2k + 1. Now it follows from the definitions that (E, {φs}) represents σ∗(F, ω)⊗ λ in
Ld+n(Zπ, vw). This finishes the proof of the up-down formula 2.7.

11. The Pairing 2.4 is Well-Defined

This section is devoted to the proof that the pairing 2.4 is well-defined. We use the
notation of section 3. Let (M,ψ) be a nonsingular (π, v)-equivariant (−1)k+1-symmetric
linking form over Z. We have to show that the transfer (Zπ ⊗Z F∗, id⊗ α, U)∗ is trivial if
(M,ψ) is hyperbolic or a boundary. The strategy of the proof is in all cases the following.
We represent λ ∈ Ln(Zπ, w) by a nonsingular quadratic form or formation and look at a
Poincaré complex (C, {ψs}) representing the image of λ under (Zπ ⊗Z F∗, id⊗ α, U)∗. We
give a chain map p̂ : C −→ D. Recall that the Q-groups are homology groups of certain
chain complexes (see [30], section 1.1). We have the class p̂∗({ψs}) ∈ Qn+d(D) given by the
cycle {p̂ ◦ ψs ◦ p̂n+d−∗}. We shall specify a chain {∂ψs} whose image under the differential is
just {p̂ ◦ ψs ◦ p̂n+d−∗}. Hence p̂∗({ψs}) ∈ Qn+d(D) is zero. This guarantees that we can do
surgery on p̂. We leave to the reader the easy verification that the result under surgery is a
contractible Poincaré complex. Then the claim follows.

Assume that (M,ψ) is the boundary of (N, φ). Choose F to be N −→ homZ(N,Z) and
the π-twist to be the Zπ-structure. Moreover, the Poincaré duality map α : F 1−∗ −→ F can
be chosen to be the Zπ-chain map which is (−1)k · id in dimension 1 and id in dimension 0.
Let 1(N) be the chain complex concentrated in dimension 1 and having N as chain module
there. It inherits a π-twist from the Zπ-structure on N . Let p : F −→ 1(N) be given by
p1 = id.

If n = 2m and the nonsingular (−1)m-quadratic form µ : Zπa −→ Zπa represents λ, we
choose p̂ to be Zπa ⊗ p : C = Zπa ⊗ F −→ D = Zπa ⊗ 1(N). Then {p̂ ◦ ψs ◦ p̂n+d∗} is zero
for dimension reasons. So we can choose {∂ψs} to be zero.

If n = 2m + 1 and λ is represented by the nonsingular (−1)m-quadratic forma-
tion (Zπa,Zπb, µ, γ) we define the chain map p̂ : C = cone(µ⊗t F ) −→ cone(µ⊗t 1(N)) by
(Zπa ⊗ p)⊕ (Zπb ⊗ p). This is possible, as p is a Zπ-map and so (µ⊗t 1(N)) ◦ (Zπa ⊗ p)
agrees with (Zπb ⊗ p) ◦ (µ⊗t F ). Moreover, we can choose the homotopy χ appearing in
the definition 8.4 of ψ0 of C to be zero . Now one easily checks again that {p̂ ◦ ψs ◦ p̂n+d∗}
is zero.

Now assume that (M,ψ) is hyperbolic. Let

0 −→ L
i
−→ M

q
−→ homZ(L,Q/Z) −→ 0
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be the corresponding sequence. If F1 −→ F0
ε−→M is the Z-resolution of M , let G0 be

F0, ε′ : G0 −→ homZ(L,Q/Z) be the composition q ◦ ε and G1 be the kernel of ε′. There is
precisely one chain map p : F −→ G satisfying p0 = id. If {F (g)} is the π-twist on F , there
is precisely one π-twist on G such that G(g) ◦ p agrees with p ◦ F (g) for all g ∈ π.

If n = 2m and the nonsingular (−1)m-quadratic form µ : Zπa −→ Zπa represents λ, we
choose p̂ to be Zπa ⊗ p : C = Zπa ⊗ F −→ D = Zπa ⊗G. Then the chain map {p̂ ◦ ψ0 ◦ p̂d−∗}
induces (γ ⊗H(D)) ◦ (Zπa ⊗H(p ◦ α ◦ pd−∗)) on homology using the identification 9.2 by
lemma 9.3. Because Gd−∗ and G are resolutions and H(p ◦ α ◦ pd−∗) is zero, we can choose
a nullhomotopy ∂ψ0 for {p̂ ◦ ψ0 ◦ p̂d−∗}. Put ∂ψs to be zero for s ≥ 1.

If n = 2m + 1 and λ is represented by the nonsingular (−1)m-quadratic forma-
tion (Zπa,Zπb, µ, γ), we define the chain map p̂ : C = cone(µ⊗t F ) −→ cone(µ⊗t G) by
(Zπa ⊗ p)⊕ (Zπb ⊗ p). Choose nullhomotopies

H0 : (Zπa ⊗ p) ◦ (γ ⊗t F ) ◦ (Zπb ⊗ α) ◦ (Zπb ⊗ pd−∗) ' 0

H1 : (Zπb ⊗ p) ◦ (θ ⊗t F ) ◦ (Zπb ⊗ α) ◦ (Zπb ⊗ pd−∗) ' 0

Let ∂ψs be given by

∂ψ0 =

(
0 −H0

0 0

)
: Zπa ⊗G1−∗ ⊕ Zπb ⊗G1−(∗−1) −→ Zπa ⊗G∗ ⊕ Zπb ⊗G∗+1

∂ψ1 =

(
0 0
0 −H1

)
: Zπa ⊗G1−∗ ⊕ Zπb ⊗G1−(∗−1) −→ Zπa ⊗G∗−1 ⊕ Zπb ⊗G∗

∂ψs = 0 for s ≥ 2

If we alter the cycle {p̂ ◦ ψs ◦ p̂n+d−∗}. by the boundary given by {∂ψs}, we obtain a new
cycle {ψ′s} which represents the same element as {ψs} in the Q-group and is of the following
shape

ψ′0 =

(
0 0
0 x

)
: Zπa ⊗G1−∗ ⊕ Zπb ⊗G1−(∗−1) −→ Zπa ⊗G∗−1 ⊕ Zπb ⊗G∗

ψ′s = 0 for s ≥ 1

Since {ψ′s} is a cycle, x is actually a chain map x : Zπa ⊗G1−∗ −→ Σ−1Zπa ⊗G∗. As the
first differential of G is injective, x must be zero. Hence {ψ′s} is zero.

Appendix: Characteristic Class Formulae

We shall now use the algebraic L-theory assembly map of Ranicki [32] to relate the
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expression of 2.7

p∗ ◦ p∗ = σ∗(F, p)⊗− : Ln(Z[π1(B)]) −→ Ln+d(Z[π1(B)])

(where σ∗(F, p) ≡ σ∗(F, ω)) for a fibre bundle F −→ E
p−→ B of manifolds with the

characteristic class formulae for the signature of E.

In the first instance we recall the results of Atiyah [3], Lusztig [19] and Meyer [20]
expressing the twisted signature in terms of characteristic classes, by means of the Atiyah-
Singer index theorem.

Atiyah [3] considered a differentiable fibre bundle F −→ E
p−→ B of oriented manifolds

with dim(F ) = 2k. The action of π1(B) on Hk(F ; R) determines a flat vector bundle Γ
over B with the fibres Hk(Fx; R) (x ∈ B) nonsingular (−)k-symmetric forms over R. For
k ≡ 0(mod 2) the bundle splits as Γ = Γ+ ⊕ Γ− with the form positive/negative definite
on Γ±. For k ≡ 1(mod 2) the Hodge ∗-operator defines a complex structure on Γ, so that
there is defined a complex conjugate bundle Γ∗. The topological K-theory signature of Γ is
defined by

[Γ]K =

{
Γ+ − Γ− ∈ KO(B) if k ≡ 0(mod 2)

Γ∗ − Γ ∈ KU(B) if k ≡ 1(mod 2) .

The twisted signature formula of [3] in the case dim(B) = 2j, dim(E) = 2(j+k) ≡ 0(mod 4)
is

sign(E) = 〈ch([Γ]K) ∪ L̃(B), [B]Q〉 ∈ Z

with ch the Chern character, [B]Q ∈ H2j(B; Q) the fundamental class and L̃ the modification
of the Hirzebruch L-genus defined by

L̃(B) =
j∏
i=1

xi
tanh xi/2

∈ H4∗(B; Q)

with x1, x2, . . . , xj notional elements of degree 2 such that the ith Pontrjagin class pi(τB) ∈
H4i(B; Q) of the tangent bundle τB is the ith elementary symmetric function in x2

1, x
2
2, . . . ,

x2
j . The tangent bundle of E is the Whitney sum τE = i∗τF ⊕ p∗τB of the pushforward i∗τF

along the fibre inclusion i : F → E of τF and the pullback p∗τB along the projection p of τB,
with

p∗(L̃(i∗τF ) ∩ [E]Q) = ch([Γ]K) ∩ [B]Q ∈ H4∗(B; Q) .

Lusztig [19] considered a flat complex vector bundle Γ over an oriented differentiable
manifold B with dim(B) = 2j, such that the fibres Γx (x ∈ B) are nonsingular hermitian
forms over C. The twisted signature sign(B,Γ) ∈ Z is defined to be the signature of the
nonsingular hermitian form on Hk(B; Γ). The complex K-theory signature of Γ is defined
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by [Γ]K = Γ+ − Γ− ∈ KU(B) for any splitting Γ = Γ+ ⊕ Γ− with the hermitian form
positive/negative definite on Γ±. The twisted signature formula of [19] is

sign(B,Γ) = 〈ch([Γ]K) ∪ L̃(B), [B]Q〉 ∈ Z .

Meyer [20] considered a locally constant sheaf Γ over an oriented topological manifold
B with dim(B) = 2j, such that the stalks Γx (x ∈ B) are nonsingular (−)k-symmetric
forms over R. The twisted signature sign(B,Γ) ∈ Z is defined to be the signature of the
nonsingular symmetric form on Hk(B; Γ). The topological K-theory signature of Γ is the
topological K-theory signature in the sense of [3] of the flat vector bundle Γ̃ over B with
fibres Hk(Γx; R)

[Γ]K = [Γ̃]K ∈
{
KO(B) if k ≡ 0(mod 2)

KU(B) if k ≡ 1(mod 2) .

The twisted signature formula of [20] is

sign(B,Γ) = 〈c̃h([Γ]K) ∪ L(B), [B]Q〉 ∈ Z

with c̃h = ch ◦ ψ2 the modified Chern character obtained by composition with the second
Adams operation ψ2 and L the original Hirzebruch L-genus defined by

L(B) =
j∏
i=1

xi
tanh xi

∈ H4∗(B; Q) .

For any complex n-plane bundle α over B with total Chern class

c(α) =
n∏
i=1

(1 + yi) ∈ H2∗(B)

the Chern characters ch(α) =
n∑
i=1

eyi , c̃h(α) =
n∑
i=1

e2yi ∈ H2∗(B; Q) are such that

(c̃h(α) ∪ L(B))2j = (ch(α) ∪ L̃(B))2j ∈ H2j(B; Q) ,

since for any i ≥ 0

L(B)4i = 22i−jL̃(B)4i ∈ H4i(B; Q) ,

c̃h(α)2j−4i = 2j−2ich(α)2j−4i ∈ H2j−4i(B; Q) .

Thus the twisted signature can be expressed as

sign(B,Γ) = 〈c̃h([Γ]K) ∪ L(B), [B]Q〉 = 〈ch([Γ]K) ∪ L̃(B), [B]Q〉 ∈ Z .

(See ‘Mannigfaltigkeiten und Modulformen’, Bonn notes on lectures of Hirzebruch, pp. 83-4.
We are indebted to Michael Crabb for this reference.)
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Next, we describe the algebraic L-theory assembly map of Ranicki [32].

Let L
.

= {Ld|d ∈ Z}, L. = {Ld|d ∈ Z} be the algebraic L-spectra defined in §13 of [32].
Ld is the Kan ∆-set with n-simplexes the d-dimensional symmetric Poincaré n-simplexes over
Z, such that

ΩLd = Ld+1 , π∗(L
.
) = L∗(Z) ,

and similarly for Ld, L. in the quadratic case.

An ‘n-dimensional symmetric cycle’ over a simplicial complex B is an inverse system

(C, φ) = {(C[τ ], φ[τ ]) | τ ∈ B}

of (n + |τ | − k)-dimensional symmetric (k − |τ |)-simplexes over Z, with the support {τ ∈
B|C[τ ] 6= 0} contained in a finite subcomplex B0 ⊆ B with (k + 2) vertices (so that there
exists an embedding B0 ⊆ ∂∆k+1). The cycle is ‘locally Poincaré’ if each (C[τ ], φ[τ ]) (τ ∈ B)
is an (n + |τ | − k)-dimensional symmetric Poincaré (k − |τ |)-simplex over Z. The cycle is
‘globally Poincaré’ if the assembly n-dimensional symmetric complex over Z[π1(B)]

(C[B̃], φ[B̃]) =
⋃
τ̃∈B̃

(C[τ ], ψ[τ ])

is Poincaré, with B̃ the universal cover of B. The generalized homology group Hn(B; L
.
) is

identified in §13 of [32] with the cobordism group of locally Poincaré n-dimensional symmetric
cycles over B.

The visible symmetric L-group V Ln(B) of a simplicial complex B is the cobordism
group of globally Poincaré n-dimensional symmetric cycles over B. (For a classifying space
B = Bπ these are the original visible symmetric L-groups V L∗(Z[π]) of Weiss [37]). The
forgetful maps

Ln(Z[π1(B)]) −→ V Ln(B) ; (C,ψ) −→ (C, (1 + T )ψ) ,

V Ln(B) −→ Ln(Z[π1(B)]) ; (C, φ) −→ (C[B̃], φ[B̃])

are isomorphisms modulo 8-torsion. Passing from local to global Poincaré cycles defines
assembly maps

A : Hn(B; L
.
) −→ V Ln(B)

for any simplicial complex B. The visible symmetric signature of an n-dimensional geometric
Poincaré complex B is an element

σ∗(B) = (C, φ) ∈ V Ln(B)

with C[τ ] = Z (τ ∈ B). The visible symmetric signature of an n-dimensional PL manifold
B is the assembly

σ∗(B) = A([B]L) ∈ V Ln(B)
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of the canonical L
.
-orientation

[B]L = {(C[τ ], φ[τ ])|τ ∈ B} ∈ Hn(B; L
.
)

with C[τ ] = Z.

The generalized homology group Hn(B; L.) is the cobordism group of locally Poincaré
n-dimensional quadratic cycles over B. The surgery obstruction group Ln(Z[π1(B)]) is the
cobordism group of globally Poincaré n-dimensional quadratic cycles over B, as well as
the cobordism group of n-dimensional quadratic Poincaré complexes over Z[π1(B)]. The
quadratic L-theory assembly map

A : Hn(B; L.) −→ Ln(Z[π1(B)]) ; (C,ψ) −→ (C[B̃], ψ[B̃])

is defined in §9 of [32] by passing from local to global Poincaré duality. The surgery obstruc-
tion of a normal map (f, b) : M → B of closed n-dimensional manifolds is the assembly

σ∗(f, b) = A([f, b]L) ∈ Ln(Z[π1(B)])

of an L.-homology surgery invariant [f, b]L ∈ Hn(B; L.) with symmetrization

(1 + T )[f, b]L = f∗[M ]L − [B]L ∈ Hn(B; L
.
) .

A ‘d-dimensional symmetric Poincaré cocycle’ over a simplicial complex B is a directed
system {(C[τ ], φ[τ ]) | τ ∈ B} of (d+ |τ |)-dimensional symmetric |τ |-simplexes over Z, i.e. a
∆-map B → Ld. The generalized cohomology group H−d(B; L

.
) = [B,Ld] is the cobordism

group of d-dimensional symmetric Poincaré cocycles over B.

A d-dimensional symmetric Poincaré cocycle (C, φ) over a finite simplicial complex B
is homogeneous if the structure maps C[σ] → C[τ ] (σ ≤ τ ∈ B) are chain equivalences, in
which case for any 0-simplex ∗ ∈ B the fundamental group π1(B) acts on the chain homotopy
type of the ‘fibre’ d-dimensional symmetric Poincaré complex (C[∗], φ[∗]). Let Ld(B,Z) be
the cobordism group of homogeneous d-dimensional symmetric Poincaré cocycles over B,
and define an assembly map

A : Ld(B,Z) −→ Ld(π1(B),Z) ; (C, φ) −→ (C[∗], φ[∗]) .

Tensor product over Z makes L
.

into a ring spectrum, and L. is an L
.
-module spectrum.

The evaluation of the cap product pairing

∩ : Hr(B; L
.
)⊗Hn(B; L

.
) −→ Hn−r(B; L

.
)

on the canonical L
.
-coefficient orientation [B]L ∈ Hn(B; L

.
) of an n-dimensional PLmanifold

B defines L
.
-coefficient Poincaré duality isomorphisms

−∩ [B]L : H∗(B; L
.
) −→ Hn−∗(B; L

.
) .
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For any simplicial complex B use the cap product pairing

∩ : H−d(B; L
.
)⊗ V Ln(B) −→ V Ln+d(B)

and the forgetful map

Ld(B,Z) −→ H−d(B; L
.
) ; (C, φ) −→ (C, φ)

to define a product pairing

⊗ : Ld(B,Z)⊗ V Ln(B) −→ V Ln+d(B)

and define similarly the product pairings

⊗ : Ld(B,Z)⊗Hn(B; L
.
) −→ Hn+d(B; L

.
) ,

⊗ : Ld(B,Z)⊗Hn(B; L.) −→ Hn+d(B; L.) .

The products and assembly maps are related by commutative squares

Ld(B,Z)⊗ V Ln(B) −→ V Ln+d(B)

↓ ↓

Ld(π1(B),Z)⊗ V Ln(Z[π1(B)]) −→ V Ln+d(Z[π1(B)]) ,

Ld(B,Z)⊗Hn(B; L
.
) −→ Hn+d(B; L

.
)

↓ ↓

Ld(B,Z)⊗ V Ln(B) −→ V Ln+d(B) ,

H−d(B; L
.
)⊗Hn(B; L.) −→ Hn+d(B; L.)

↓ ↓

Ld(π1(B),Z)⊗ Ln(Z[π1(B)]) −→ Ln+d(Z[π1(B)]) ,

Ld(B,Z)⊗Hn(B; L.) −→ Hn+d(B; L.)

↓ ↓

H−d(B; L
.
)⊗ Ln(Z[π1(B)]) −→ Ln+d(Z[π1(B)]) .
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A fibration F −→ E
p−→ B with the fibre F a d-dimensional geometric Poincaré

complex induces transfer maps in the quadratic and visible symmetric L-groups

p∗ : Ln(Z[π1(B)]) −→ Ln+d(Z[π1(E)]) ; (C,ψ) −→ (C !, ψ!)

p∗ : V Ln(B) −→ V Ln+d(E) ; (C, φ) −→ (C !, φ!)

with C ![τ ] = C[pτ ] (τ ∈ B). In general, there is no transfer p∗ : Ln(Z[π1(B)])→ Ln+d(Z[π1(E)])
in the symmetric L-groups (cf. Appendix 2 of [18]).

A PL fibre bundle F −→ E
p−→ B with the fibre a d-dimensional PL manifold F

induces transfer maps in L
.
-homology

p∗ : Hn(B; L
.
) −→ Hn+d(E; L

.
) ,

p∗ : Hn(B; L.) −→ Hn+d(E; L.)

which commute with the assembly maps

Hn(B; L
.
)

A
−→ V Ln(B)

p∗ ↓ ↓ p∗

Hn+d(E; L
.
)

A
−→ V Ln+d(E) ,

Hn(B; L.)
A
−→ Ln(Z[π1(B)])

p∗ ↓ ↓ p∗

Hn+d(E; L.)
A
−→ Ln+d(Z[π1(E)]) .

The π1(B)-equivariant symmetric signature is the assembly

σ∗(F, p) = A([F, p]L) ∈ Ld(π1(B),Z)

of the L
.
-coefficient fibre transport

(F, p)L ∈ Ld(B,Z)

represented by the ∆-map

(F, p)L : B −→ Ld ; τ −→ (C(p−1(τ)), φτ ) .

(The proof is by a direct generalization of the expression in §16 of [32] of the visible symmetric
signature of F as the assembly of the canonical L-orientation). Let [F, p]L ∈ H−d(B; L

.
) be
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the image of (F, p)L ∈ Ld(B,Z), such that

p∗ ◦ p∗ = [F, p]L ⊗− : Hn(B; L
.
) −→ Hn+d(B; L

.
) ,

p∗ ◦ p∗ = [F, p]L ⊗− : V Ln(B) −→ V Ln+d(B) ,

p∗ ◦ p∗ = [F, p]L ⊗− : Ln(Z[π1(B)]) −→ Ln+d(Z[π1(B)]) ,

giving an alternative proof of 2.7.

For a PL fibre bundle F −→ E
p−→ B with base an n-dimensional PL manifold B and

fibre a d-dimensional PL manifold F the total space is an (n+ d)-dimensional PL manifold
E. The tangent bundle of E is a direct sum τE = i∗τF ⊕ p∗τB (as in the differentiable case).
Let (E(i∗τF ), S(i∗τF )) be the (n + 2d)-dimensional manifold with boundary defined by the
total space of the (Dd, Sd−1)-bundle of the d-plane bundle i∗τF over E. The L

.
-coefficient

Thom class of i∗τF is an element Ui∗τF ∈ Ḣd(T (i∗τf); L
.
), with Ḣ∗ reduced cohomology and

T (i∗τF ) = E(i∗τF )/S(i∗τF ) the Thom space. The Poincaré duality isomorphism

[E(i∗τF )]L ∩− : Ḣd(T (i∗τf ); L
.
) = Hd(E(i∗τf ), S(i∗τF ); L

.
)

−→ Hn+d(E(i∗τf ); L
.
) = Hn+d(E; L

.
)

is such that
[E(i∗τF )]L ∩ Ui∗τF = [E]L ∈ Hn+d(E; L

.
) .

The canonical L
.
-orientation [E]L of E is the transfer of [B]L ∈ Hn(B; L

.
)

[E]L = p∗[B]L ∈ Hn+d(E; L
.
) ,

and
p∗[E]L = p∗p

∗[B]L = [F, p]L ∩ [B]L ∈ Hn+d(B; L
.
)

is the Poincaré dual of the fibre transport [F, p]L ∈ H−d(B; L
.
). The transfer map in L

.
-

cohomology

p! : H0(E; L
.
) ∼= Hn+d(E; L

.
)

p∗−→ Hn+d(B; L
.
) ∼= H−d(B; L

.
)

is such that
p!(1) = [F, p]L ∈ H−d(B; L

.
) .

This is an L-theoretic analogue of the result of Becker and Schultz ([4], Section 6) that for a
differentiable fibre bundle the transfer map p! : KO(E)→ KO(B) in real K-theory is such
that

p!(1) =
∑
i

(−1)iB̃ ×π1(B) H
i(F ; R) ∈ KO(B)

with B̃ the universal cover of B.
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Rationally, L
.

has the homotopy type of a product of Eilenberg-MacLane spectra

L
. ⊗Q =

∞∏
i=0

K(Q, 4i) .

The canonical L
.
-orientation [B]L ∈ Hn(B; L

.
) of an oriented n-dimensional manifold B is

such that
[B]L ⊗ 1 = L(B) ∩ [B]Q ∈ Hn(B; L

.
)⊗Q = Hn−4∗(B; Q)

with [B]Q ∈ Hn(B; Q) the ordinary fundamental class.

A homogeneous 2k-dimensional symmetric Poincaré cocycle (C, φ) over a finite sim-
plicial complex B determines a representation of π1(B) on Hk(C[∗]; R) preserving the non-
singular (−)k-symmetric form over R. Working as in Meyer [20] define a flat vector bundle
over B with fibre Hk(C[∗]; R)

Γ = B̃ ×π1(B) H
k(C[∗]; R)

equipped with an automorphism A : Γ → Γ such that A2 = (−)kI. For k ≡ 0(mod 2)
the ±1-eigenspaces of A are the bundles Γ± = B̃ ×π1(B) H

k(C[∗]; R)± over B with fibres
complementary subspaces Hk(C[∗]; R)± ⊆ Hk(C[∗]; R) where the symmetric form is posi-
tive/negative definite, and the real K-theory signature of (C, φ) is defined by

[C, φ]K = [Γ+]− [Γ−] ∈ KO(B) .

For k ≡ 1(mod 2) A defines a complex structure on Γ, and the complex K-theory signature
of (C, φ) is defined by

[C, φ]K = [Γ∗]− [Γ] ∈ KU(B)

with Γ∗ the complex conjugate bundle. The topological K-theory signature defines mor-
phisms

L2k(B,Z) → K(B) ; (C, φ) −→ [C, φ]K

(where K = KO or KU) such that there is defined a commutative diagram

L2k(B,Z) −→ H−2k(B; L
.
)

↓ ↓

K(B)
c̃h
−→ H−2k+2∗(B; Q) .

Given a PL fibre bundle F −→ E
p−→ B with the fibre a F a 2k-dimensional manifold

let (C, φ) be the homogeneous 2k-dimensional symmetric Poincaré cocycle representing the
L

.
-coefficient fibre transport (F, p)L ∈ L2k(B,Z) with

C[τ ] = C(p−1(τ)) (τ ∈ B) , H∗(C[∗]; R) = H∗(F ; R) .
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The topological K-theory signature of the bundle Γ = B̃×π1(B) H
k(F ; R) over B is denoted

by
[F, p]K = [Γ]K ∈ K(B) .

By the above, the rationalization of [F, p]L ∈ H−2k(B; L
.
) is identified with the Chern

character of [F, p]K

[F, p]L ⊗ 1 = c̃h([F, p]K) ∈ H−2k(B; L
.
)⊗Q = H−2k+4∗(B; Q) ,

and so

p∗ ◦ p∗ = c̃h([F, p]K)⊗− : H∗(B; L
.
)⊗Q −→ H∗+2k(B; L

.
)⊗Q ,

p∗ ◦ p∗ = c̃h([F, p]K)⊗− : V L∗(B)⊗Q = L∗(Z[π1(B)])⊗Q

−→ V L∗+2k(B)⊗Q = L∗+2k(Z[π1(B)])⊗Q .

Let now F −→ E
p−→ B be a PL fibre bundle with the fibre F a 2k-dimensional

manifold and the base B an n-dimensional manifold, so that the total space E is an (n +
2k)-manifold. The canonical L

.
-orientation [E]L ∈ Hn+2k(E; L

.
) of E has image p∗[E]L ∈

Hn+2k(B; L
.
) with rationalization

p∗[E]L ⊗ 1 = ([F, p]L ∩ [B]L)⊗ 1

= p∗(L(E) ∩ [E]Q)

= c̃h([F, p]K) ∩ (L(B) ∩ [B]Q) ∈ Hn+2k−∗(B; Q) .

For n+ 2k ≡ 0(mod 4) the signature of E is given by

sign(E) = 〈L(E), [E]Q〉
= 〈L(E), p∗[B]Q〉
= 〈p∗L(E), [B]Q〉
= 〈c̃h([F, p]K) ∪ L(B), [B]Q〉
= 〈ch([F, p]K) ∪ L̃(B), [B]Q〉 ∈ Z

as in [3]. The degree 0 component of ch([F, p]K) ∈ H−2k+4∗(B; Q) is the rank of the virtual
bundle [F, p]K, which is sign(F ) ∈ Z ⊂ H0(B; Q) = Q (to be interpreted as 0 if k ≡
1(mod 2)). If all the other components are 0 then the signature is multiplicative

sign(E) = sign(F ) sign(B) ∈ Z ,

and more generally

p∗ ◦ p∗ = sign(F )⊗− : H∗(B; L
.
)⊗Q −→ H∗+2k(B; L

.
)⊗Q ,

p∗ ◦ p∗ = sign(F )⊗− : V L∗(B)⊗Q = L∗(Z[π1(B)])⊗Q

−→ V L∗+2k(B)⊗Q = L∗+2k(Z[π1(B)])⊗Q .

See Neumann [26] for a class of groups G such that ch([F, p]K) is concentrated in degree 0 if
the action of π1(B) on Hk(F ; C) factors as

ω : π1(B) −→ G −→ AutHk(F ; C) .
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