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Abstract. Let X. be a simplicial set. A cohomoiogical system of coefficients F. on X. with values
in an abelian category .4 is given by an object Fp € A for every ¢ € X, and by a compatible set of
morphisms Faey — Fy for every map of ordered sets a :m —+ a,m,n =0, ... and ¢ € Xn. We
denote by SH(X.) the category of cohomological systems F. of coeflicients on X, such that the maps
Fare — Fy are isomorphisms if o is surjective. This category is equivalent to a certain subcategory
of the category of sheaves SH{X} en the geometric realization X = :X.| of the simplicial set X..

The present paper gives a construction of a duality theory for SH{X.) which is analogue to the
wopological Verdier duality for SH{X). 1{ consists of a construction of a right adjoint to the coho-
mology with compact support functor and a resulting duality theory given by a dualizing complex.
These constructions are much more explicit than in the topological case. We compare the simplicial
and topological constructions via the embedding SH(X.} — SH(X]. In particular, we get an explicit
description of the dualizing sheaf complex for tdpologica! spaces X =X

1. Introduction

Let X. = {X }n=0,.. be a simplical set. Ha:m— ris a map of odered sets we
denote by a* : X, = Xm the induced map. & cohomological system of coefficients F.
on X. with values in an abelian category A is given by the following data:

1. An object F, € Aforeveryo € X..

2. A morphism Faep — Fr forevery a:m =+ . mon =0 and 7 € X,. These
morphisms are assumed to be functorial in . ' _

We are mainly interested in the following examples of cohomological systems of
coefficients:

(i) Let X = |X.| be the geometric realization of the simplicial set X.. Let SH{X)
be the category of sheaves on X with values in the category of modules over some
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noetherian ring and let F € SH{X). For every & € X,, we denote by [¢] the canonical
map from the topological » - dimensional standard simplex A, to X, Assume that
for all & € X. the sheaf {o]*F is constant on the subset of inner points inn{A,) of
Ay for all ¢ € X.. Denote the stalk at such a point by F,. Then F. carries a natural
structure of a cohomological system of coefficients on X..

(ii} Let X be a noetherian scheme. Denote by SH{X) the category of quasicoherent
sheaves on X and let F € SH{X). Let X. = 5{X) be the simplicial set of flags of
irreducible closed subschemes. Given ¢ € X., the local adeles F, = A{{z},F) as
defined by BEILINSO~ [1] carry the structure of a cohomological system of coefficients.

(iit) Let X be a reductive algebraic group over a finite field Fy. We denote by SH({X)
the category of finite dimensional representations of the finite group X(F,;) and let
M€ SH{X). Let X. = A{X) be the combinatorial building of X. Associated o a
simplex @ € X. we have a parabolic subgroup P € X. We denote by R,(P)}(F;) the
group of rational points of the unipotent radical of P. Then a cohomological system
of coefficients F is given by F, = M (P} € M with inclusion maps for different .

These examples have two properties in commeon:

Firstly, the considered cohomological systems of coefficients F. have the additional
property that the maps Fa-, — F, are isomorphisms if ¢ is surjective. Let us call
such a system of coefficients a sheaf and denote the category of sheaves by SH{X.).

Secondly, under some additional assumptions, there are duality theories on the de-
rived categories D8(X) of the abelian categories SH (X} with a certain finiteness con-
dition on cohomology (see {16! for (i), [11} for (il), the duality for (iii) is induced
by the duality on the irreducible representations given in {5]). They consist of an
antiselfduality

(1.1 DX) — DMX)

wiiith is given in the first two cases by the inner homomorphisms with values in a
dualizing sheaf complex Dy € DX}

A A Brwnson (2] first conjectured the existence of a duality theory for coho-
mological systems of coefficients on simplicial sets which is related to the duality on
topological spaces and schemes via the constructions in (i) and (ii).

The present paper provides a construction of a such a duality theory on the derived
category D% X} of SH{X.] and a discussion of its relation to the topclogical duality.
The relationship between this duality and the duality of representations on algebraic
groups via (ili} is considered in [7), where the results and methods of this paper are
needed. But we hope that the more foundational material presented here will be
useful.

The relation to {i) is not well understood, we refer to [8] for further discussions.

Here are more details:

In Section 3 we study the structure of the category SH{X.) and construct the
geumetric realization functor which is the inverse of the functor in Example {i). This
allows the identification of SH([X.) with the full subcategory of SH{[X.[} consisting
of sheaves that satisfy the condition of Example (i) (see Corollary 3.18).

We consider the usual homological algebra, i.e., functors of global sections, global
sections with compact support and their relative variants, direct image, direct image
with compact support, and mverse image, tensor product and inner homomorphism for
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sheaves and cohomological systems of coefficients in Sections 4 — 7. For every functor
we check its relation to the corresponding topological functor.

Section 8 contains the construction of the dualizing sheaf complex Dy . More gen-
erally, we show the existence of a right adjoint of the functor of giobal sections with
compact support, see Theorem 8.8. The main Theorem 8.9 of this paper states the
analogue of (1.1) under a minor assumption on the simplicial set X.. In Proposition
8.20 we show that the geometric realization of Dy _is a dualizing sheaf complex for the
topological space | X.|. This gives an explicit description of the dualizing sheaf complex
for topological spaces X, which are given as geometric realizations of simplicial sets.

2. Notations

Let n be the ordered set {0 < 1 < --- < n} for every n = —-1,0,1,.... By &
{resp. !:\) we denote the category consisting of the ordered sets » for no = 0,1,...
{resp. n = —1,0,...) and morphisms of ordered sets. As usually 8; :n — n+1, for
i=0,...,n+ 1, denotes the injective map, s.t. i & Im(A), and 85 :n+1 — n, for
§ =0,...,n, the surjective map with s;{j} = s;(j + 1). In general we will use the
letters a, 3, ... for arbitrary maps of ordered sets 8, @ lor injective maps and s, ¢ for
surjective maps.

For a simplicial (resp. cosimplicial) object in some category ¢ we will write o {resp.
a,) for the morphism in C corresponding to a. _

By A.[n] we denote the simplicial n— dimensional standard simplex and by Ap the
geometric realization, the topological n - dimensional standard simplex. As functors in
n they form cosimplicial objects in the category of simplicial sets (topological spaces).
By inn{A,)} we denote the open subset of inner points of A, and by @A, the boundary.

For & simplicial set X. and a simplex ¢ € X, for some n we define the map of
simplicial sets '

¢] - A[n)] — X
ig} n — a'c. _
By the same letter we also denote its geometric realization [7) : &p = | X4 Iu this
case we will write A.[g], resp. A,, for A [n], resp. An.
Let f: X — ¥ be a funcior between small categories aud let .4 be some categor
with arbitrary projective limits. Then it is well known (see for example [13] or [14
Ch. X, §3, Th. 1 and Cor. 2) that the morphism of the categories of functors

Func{¥. A} — Func(X', A)
¢: ¥4 = fG) = Gof
has a right adjoint functor (the so called right Kan extension)
Func{X.4) — Func(y. A)
FX oA v feardF)

(21) f:m‘ :

{22) fcm‘.,- .

which can be given by

def.,t(}-)(Y) = Ié_}fopr.

¥,

(el
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pr being the projection from the left homotopy fiber ¥\ f to A'. Remember that the
ohjects of the left homotopy fiber ¥\ f are given by pairs (X,a : ¥ = f(X)) and
morphisms

(X,a:¥Y = f(X)) — (X', a": Y = fF(X'))

are given by morphisms ¢ : X — X’ with o' = f(p)a. The induced map for ¥ — ¥
15 the natural one.

3. Sheaves on simplicial sets

Let X. be a simplicial set. We define the corresponding category & as follows:

objects @ arbitrary o € X.

. g3 ¢ isamorphisma:n—n in A
morphisms
for which o € X, ¢' € X,v and a¢*¢’ =0 .

We call 2 morphism a : ¢ = o' of X injective, resp. surjective, if the underlying map
of ordered sets n —+ ' is injective, resp. surjective.

If /.: X. — ¥ is a morphism of simplictal sets we have the induced functor between
the associated categories X = ) given by 6 — f{o) with ¢ € X. = Ob{X].

In the introduction we had defined the notion of a cohomological system of coef-
ficients. In torms of the category X a cohomological system of coefficients F. is a
covariant funetor Foo A — A .

Our Arst aim will be the construction of a functor from the category of cohomological
svstems of coefficients on X to the category of sheaves over the geometric realization
of X .. This construction will be inverse to the construction in the introduction.

3.1. The geometric realization functor
We consider the following category X -

(0.1} with & € Ob(X),0 € Xn,n 2 0, and U C A,

objects
an open (non empty) connected subset.

. (o, 4} 3 {o' U} is a morphism e : 0 = ¢ in X
morphisms

for which a, * A, — A, maps i to U’ .

For every open subset &7 C |X | we consider the full subcategory Xy of ¥ consisting
of all ohjects {o, 4] for which ¥ C [¢]" (L")

Let pr - X — X be the natural projection and pry; its restriction to XAU . We define

(3.1) _ FIL) = Lm(Fopro),
By
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For an open subset ¥V C U we have the full subcategory A of fu and therefore a
morphism

pmfF opry) — dm(Fopry)

Zu Xy

I [
|FA(T) — |F.| (V.

This morphism is in an obvious way functorial if we consider W C V C U7 and so we
have defined a presheaf {F.| on |X\[.

Proposition 3.1. Let . be s cohomelogical system of coefficients on a simplicial
set X. with coefficients in the abelian cotegory A.

(i) The presheaf |F.] is o sheaf.

(i} | 7] defines a left ezact functor from Func{ X, A} to SH(|X.{).

Proof. Property (i) follows immediateley from the left exactness of the {im - functor.
To prove property (i) let U = [JU: and s € VEJD,) be a family of compati-
ble sections. By definition it is given as a family spy € Fo forall ¢ & X,
and all connected U C [o]~ (T} for some 7 with the compatibility property that
@ (5(5.t0y) = S(ov 1) Whenmever @ 0 = &’ is such that a.(U) G 4 (this condi-
tion implies ¥ € [o] MU NULY). If {o.U) € X,; there exists some i such that
Un[o]~ (T} #£ ® and we can take some open connected non empty U' S UN[o] TG
and define 8¢, 1y := S(o.zry. This definition does uot depend on the choice of 2" be-
cause U = ;U N fo)~1(L7;) is connected. This gives a compatible systemn of elements
Sizan € Fo and hence a uniquely defined section s € |F.J{L7) which restricts to the
5 € |F(Uy). C

3.2. The categbry of sheaves on X.

Let F. be some cohomological system of coefficients on a simplicial set X h
general the étalk of |F| at some point » € io](inn{A,)) s not F,. This can be sea
easily if we take X. = A.[Q] the simplical point. Then & = A and the category o
cohomological systems of coefficients s the category of costmplical objects of A, Wi
have |X.| = {x} one point and

|Fle = lmF. = limkF.
i
which in general does not equal Fgo.
Thus it is natural to consider the following subcategory:

Definition 3.2. A cohomological system of coefficlents F. on a simplicial set Y.
called a sheaf if for all surjective s 1 o — 7 the correspouding map F, — Fr s
isomorphism. We denote the full subcategory of Fune{ ¥, A} consisting of all sheave
by SH{X.}.

Example 3.3. If X. = A[0Q] is the simplicial point, by taking the stalk in th
unique nondegencrate simplex 0 — 0, we obvicusly have SH{X.) =~ A.

1

1

1

.

)

L
——
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Lemma 3.4. The category of sheaves SH(X) has the following properties:
1. Let Sur be the class of surjective morphisms in X and denote by Sur ' X the
corresponding localized category. Then we have g noturel equivalence

SH(X.) ~ Func(Sur 'X,A).

In particular, SH{X.) is an abelian category.
2. Ezactness, kernel and cokernel coincide in SH{X.) and Func(X, 4).

3. If F. = G. is monomorphism of cohomological systems of coefficients and G. is a
sheaf, then F. is also o sheaf.

4. If we denote the notural map X — Sur ~'X by px, then the adjunction map
id — px.opy : SH(X) — SH{(X))
s an isomorphism of functors.
FProof. Properties 1. and 2. are obvious, for property 3. use that for a surjective

g . g - v the map F, — F, is automatically an epimorphism since s has a right
inverse. Property 4. follows from the Yoneda lemma. O

In the following we give a more explicit description of the category Sur ~'.X.

Let .7 € X. be two simplices. Consider & relation ~ on the set Homg{o, 7). We
define

3.2} acd, ~ pods

if there is a diagram
(3.3) sl

with surjective s and 4§, d; two sections of s.

Lemma 3.5, The relation ~ has the following properties:
1. g~y forevery oo — 1.
2. If vy ~ 2, then g ~ o for every 1,09 10 = T.

.o LT N .
3. Letd o =% 75T be morphisms and vy ~ 2. Then

Aepror ~ Aoympog .

4, Let @), ¢ 1 0 -+ T be two equivaient maps and o nondegenerate. Then there
exists a dingram (3.3) with injective o and two sections 81,42 of s such thai

iy = @od, @ = aod;.
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Proof. Properties 1. and 2. are obvious. Property 3. follows easily from the
following fact: Every diagram

! X & X o'
l cs has an extension to
4 ur . . H
a commutative diagram J."ES“’ J”
- A " 3
o —* C F —— .

This continuation is constructed by the underlying fibre product diagram in A A
section & of s induces a unique section 8 of & such that A e d = Ao d.

To show property 4. we first consider a diagram of type (3.3) and sections d;.d;
realizing the equivalence of y; and 2. Then we decompose « in a surjective and
injective map & = ¢’ ot. Let o = @*(r) and s' : 0" — o be the unique surjective
map. Then 8] = tod; and 65 = tod, are sections of s and 1 = a’0d] and p; = a’0d).

a

Denote also by ~ the minimal equivalence relation generated by ~ and by X'/ ~ the
category with the same objects as X' and morphisms

HOmX/.-\.(J‘T) = Homx(ﬂ',?')'f ~ L

Proposition 3.6. The natural functor X — Sur “1Y induces an equivalence of
categories:
X/~ Surlx.

Proof. Let F - X = T be some functor which maps surjective maps to isomor-
phisms. Take some diagram 3.3 and &,,4z two sections of 5. Then we have in the
category T:

F(s)o F(6;) = id, hence F(&)=F(s)7! for i = 1,2.

We get F(d,) = F(d2) and Fla e d1) = Flo o ds). This implies by Lemma 3.5 &
factorisation of F
X~ — T,

Furthermore, the image of a surjective morphism s : ¢ -+ 7 in X/ ~ is an isomorphism.
To verify this we can assume that s = s; is a standard surjective map. We will show
that the image of 8,41 is an inverse map. We have to check that d;41 e 5; ~ id. Lt

!

o = sio = 8%

Mo an e o
I85T = $ja8T = 50

We consider the diagram
£
o = 0
di+1 4
I

and the two sections 8;41, P42 of 5501, Then we have

id = 850041 ~ 80042 = aj+108j,
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Thus &/ ~ has the universal property of the localized category Sur "' X, hence they
are eguivalent. : o

Definition 3.7. Denote by X; the full subcategory of X consisting of all nondegen-
erate simplices and denote by iy the inclusion.

Corollary 3.8. Assume that the boundory of nondegenerate simplices in X. is
nondegenerate. Then the composition

i -
a,ox:«l’a——ﬁ—>k'p—x>5urlrl’
s an equivalence of categories.

Proof. Obviously every object ¢ of Sur ' is isomorphic to some object gp from
Xr, with 7 the uniquely defined nondegenerate simplex for which there exists a (also
uniquely defined) surjective map s, : @ — 7 in &'

It remains to check that the functor is bijective on the sets of morphisms. By
Proposition 3.6 we have to prove that the map

Homy{o,7) — Homx(a.7)} ~
is an isomorphism for all nondegenerate o, 7 € X.. But this follows easily from Lemma
3.5, 4. : a
Corollary 3.9. Let 0 € X. be an arbitrary simpler. Then
Homsw—w(mo} = {1d} .
Proof. We can restrict to the case that ¢ is nondegenerate. Let a1 0 = 5 be a
morphism in X. Then & has to be injective and hence it is the identity. 0
Corollary 3.10. The cotegory SH{X) is a full subcategory of the category of

functors Func{ Ay, A}

Proof. Every ¢ of X/ ~ is isumorphic to a nondegenerate simplex 7o. Hence the
full subcategory Xo/ ~ of X'/ ~ is equivalent to X/ ~. The corollary is an immediate
consequence of the proposition. O

Corollary 3.11. Let X. be a simplicial set, such that an arbitrery boundary of a
nondegenerate sirnplex is nondegenerate. Then we have an isomorphism
P = la.ogk.

in particular, py maps injective sheaves to injective eohomologicel systems of coeffi-
cients.

Proof. This is an easy direct calculation using the specific description of ¢wx. O

Let us consider an example which shows that Ay and Sur~lX are in general not
eqguivalent. '
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Example 3.12.

)
—
Al By A2
X = 1 ) _3: & two dimensional standard simplex
= bm ' - with a boundary contracted to a point.
50
A0
Then X, consists of two objects gp and o7 with morphisms
Homu,(go,02) = {d:0—=2}

= {50!51152} -

This implies that objects in Fune{Ay, A) are pairs (Ao, 42) of objects of A4 together
with three morphisms &g., 814, §2. : Ao — Ap. But the image of SH(X ) in the
category of functors Func{Ay, .4) are the objects for which 8y, = 8s = 82,. Thisis
easily seen considering the morphisms in A

38,8} 1 a0 — sy00, 6(1,,311,.65 D 8oy — o9
which satisfy the relations
a% o a) 8 edf,
Jlod = odY,
Aodd = 80l

spodf = id,

500810 = id.

But for a sheaf sg. is an isomorphism. This implies that 85, = &%, is an isomorphism.
So we get 81, = 8}, = 8}, and it follows immediately dp, = d1u = 2.

Definition 3.13. Let X. be a simplicial set. A system (o,z,V) of a simplex
¢ € X. apoint z € inn(A,) and an open subset V C |X | is called a compatible duta
if [e){x) € V. A morphism

(0,2,V) — (o2, V)

of compatible data is given by the condition V € V' and a map o : ¢' - oin Sur 71X
such that

Go(@'), z € o] (V) C A,
Iye in the same connected component. Here & denotes some lift of @ to &X. {In the
following lemma we will see that the condition does not depend on the choice of .}
Composition of morphisms being the obvious one, this defines a category Date{X.).

Lemma 3.14. Let X. be a simplicial set and {7,z, V) € Data{X.). Letv € X. be u
sinplez and denote by V. the preimage of V' under the map [r]. Now we consider the
map

Homyx{o,r) —  me{l7)

@4 « = e,
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Proof. The proof consists of several steps.

where [y] denotes the connected component corresponding to the point y. The left and ; :
Consider the topological standard simplices

the right —hand side obviously are functors with respect to 7 € A and this map defines
a morphism of functors.
1. This map factorises io a mop

Ay = {y: (¥o, - .- ,yx) € R, where Zy, =1ly>0foralli=0,... %k

(o2, VY @ Bomgy—1x(on7) — mo(Vr), =0

if IThe morphism aof functors Mo, z,V) depends only on [¢}(z} and not on the choice with metric d induced by R with diy,2) = 12 ly: — zi|. An easy calcul:
3. In a natural way the left and the right - hand side can be congsidered as junctors 5 shows that for a map of ordered sets o : & — k' the corresponding a. : Ap = A
Hom and 75 on Data(X.) x Sur~' X given by F contracting:
) . - (i) d(y, z) > dlon(y), aafz)) for all y,z € D¢
Hom : ({(o,z,V},7) +— Homg, —x{0,7} For a subset T € A, and ¢ > 0 we denote by U (T} the open set of points s
m o {{o.z V), T} — ma{Vr). with diy,T) < e.

. . From now on we fix some n, = € inn{A,) and some &' > 0, such that
Then A : Hom — mg s 6 morphisn of functors. (

T
Proof. First we show that the natural functor on X which maps T to wo(V:) is well {3.5) ¢ < minwz; = dlz, dAg).
defined on Sur —1X. We consider some surjective 7 — 7', The relation V; = 87 (V) _
and the fact that the fibres of 5. : A, — A, are connected imply that the natural The following properties are satisfied:
map (ii) Consider some diagram
Se JTQ(Vf) — ?T[;(V,-f} & (5_ E
is an isomorphism. ' Lt
Now we prove property 1. By Proposition 3.6 we have to check that equivalent n

morphisms have the same images. Let a ~ a’ given by the diagram

, B with injective § and surjective t. Then

¢ — T
51 t
o U (8. (t7Hz))) = (V€ D with Z ¥ + Z z, — z vap| < €
mi{d Jot{ 7=t
and sections &, 8. Then we have Jgtmid) itta)
a.(z) = B.(6.(z)) € Bu(s] Ya)} 2 B.(8,(z) = o\ (z) . The proof is an easy calculati‘on using the triangle unequality.
(iii) Suppose to be given a diagram of the form
But 8. (s7}{z)) C [r]}{z) C V; is connected and hence [a.(z )] = [o{z)]- :
Property 3. follows easily from the correspending commutative diagram with respect 1 L k
to a lifting & : o' = ¢ in X and the maps (3.4) instead of A. _ fb d
- 5 08 + et
To show property 2. we consider the map s: g » o' toa nondegenerate &', Denocte 8 ’} B J:r such that ?zﬁsleifﬁin a Bore prod
by ' the image of T under s.. Then z' is the uniquely defined point in énn{A,) such £ & n ' s Léf ]iniéctil'e
that 1 ' AT
[2)(z") = [o](=) n

We apply property 3. to the morphism (', ', V) =+ (0,2, V) given by ¢ and get the . . ) o o
assertion. m| where we allow E to be —1, i.e., £ = @ Then the following relation is satisfied:
‘ image i 87 U (L @) = U (5.{(t0B) ] @) -

Lemma 3.15. Fiz some o € X. and 7 € inn{A,). Denote also by = the image in « AHe £ -
|X.| of = under the map o). Then there exists a basis of neighbourhoods Vofzre|X)

such that the morphism of functors Mg, z, V) of Lemma 3.14 is en isomorphism. If £ o 3 is not surjective these sets are empty.
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To see this we use (ii). The left —hand side of the equaticn is given by the set of
points y € Ay satisfying the relation

(3.6) Y owmedlm- Y oy <e

FE(FEImid ) =0 irex j’ with
Bay=8' {3} ¢{5 =i

and the right —hand side by

@7 DR DICIRID SR G

i€Im{ay i=0 3 tB =i

(If to 3 is not surjective we cannot apply (iii) to the right - hand side, but in this case-

{te _B):l{r} = @, since z is an inner point of A, and inequality (3.7) yields z; < &
fori ¢ Im(ta 3) which contradicts the condition (3‘5}‘}_ Using the universal property
of the fibre product is is easily seen that the conditions {3.6) and (3.7} are equivalent.
Now we pass to the data given in the lemma.

According to Lemma 3.14 we can restrict ourself to the case that ¢ is nondegenerate.
Furthermore, we fix £ > 0 satisfying the stronger inequality

(3.8) % < mfigxé = d{z,8A,).

For an arbitrary 7 € X. let
Ur o= Ue([r] M=) ..

Then we have:

fiv) The following equation holds:

e = | aEt@),
&g
1t

a

T

where the union is taken over all diagrams of this kind with injective § and surjective
i

The relation 2" follows easily from the commutative diagram
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b :
Fi v - A.,*-

[7]

X 8o

The relation "C" is an easy consequence of the following two facts
a} [r]"Hx) Ninn{A ;) # O iff there exists 7 — &
b} A, = | inr(As).
4 -
{v) Let 8: 7 — 7' be some morphism of A" Then
BIMU) = Us.

Using property (i) and the fact that 8.([7]7'(z)) € [7']”'(z) one can see that

P8 -
T o~ T

Hence we have to show that for ali such diagrams
BIHUL(8. (7)) € Ur

"This follows from property (iii) taking the fibre preduct of &' and 3 and from prope

{v).
We denote by U the image of [] U; under the natural map
reX.
H A, — X
e X,

(vi} The set U 3 z is open and {r] 7' (U} = Us.

This is a consequence of property (v) and the definition of [X.| and its topology.
{vii) If ¥ = U the morphism e, T, V') is an isomorphism.

First we remark that by property {vi) our notations for Ur are congistent.
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We construct a morphism in the other direction. Using property (v} we have a
description of Uy as a union of open connected subsets:

v, = U U, (ét (t:l(z))) 4
&7
it

o
We now map Ue (8. (t74x))) to 8o s-! & Homgy,-1(7, 7). We have to check that if
UL (s (e @) n UL (3 ((z,)‘l(x))) £ 0,
then dot~! = & o f-!. From this unequality we get

(8.) e (8.t =) # 0.

Now we can apply property (iii) to the following diagram first without the upper left
corner and then without the right lower corner

T o4 &'

g — & &— 7
&L L&

4 '

T — F
Lt

J!

I

where 7 is the fibre product of 4 and & and where &' = 2¢. It follows that fod and
t o & are suriective. But ¢ is nondegenerate, therefore f o 8 = t o §'. Furthermore, we
see that &' 15 an isomorphism in Sur—' X and we get the following equalities
3i-1 = 3§l = SETMTE = 8t

It is easy to check that these two maps are inverse to each other,

Now fix an arbitrary V 3 2. We will construct an open subset ¥V C V' containing
such that Ao, z. V) is an isornorphism.

Without loss of generality we can assume that VCeus :

Let 1 € X, 7a 2 0, be a simplex. Let W, he the union of all open connected com-

ponents of ¥, which lie in the image of Hom(s, 7) with respect to the map Az, o, V)
For an arbitrary map a : # —+ 7 one obviously has

o (W) € W, and if o = s is surjective then sTHW,) = Wy

by Lemma 3.14. The last equation is in general not true if s is not surjective. To
achieve equality we have to modify the definition of Wy, a little bit.
By induction on m we define

Vo= (W ninn(A)T U | 85V -
_ Pt

In the followi /o show that ~
ollowing we show a__}(VT) -7,
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for every o : i —+ 7. Tirst we consider the case @ = s; and by induction we assut
that the assertion is true for all ar e Xn-1. Using the standard relations betwe
the maps of ordered sets sj and d we get

tn

|

—

—

-

o

e
il

(s71(Ws) N sp (inn{As))) U |) 552 (85,0 Vo e)
. 4=0
= (Wyninn@d v |J Ge (s71W,) Ninn(A;)
g=ii+1
U [ 85 (s (T 1) U U B (552 (V) U B (B (Vo arn.
J<i I
= Wyninn(@) 0 L 8. ninn(ds)
j=iitl
iJ U 63-‘*(?3;”) Uag_,(ag‘.(i:b;ai-n)}
PR .
= (Wyninn(A) U | 8. (W ninn(Br)) U U 8.0 (Vor)
=i+ ) FEIRE S
U U 8. (178;. arn) Uiz ({:'a;a;_lq))
j<t )
U U 3;,-(@,:{‘?6;63;1) U Bi 1 (ﬂ'a;agﬂq}) U 8u(Bhs (Var00))
Fmail
e+l ~
= (W, ninn(8,)) U 1 854(Varn)
j=1

= V.

Now we consider the case e = ;. By induction we may assume that the asser
is true for all 0} 7. We get

ot (%) = \J o (8Verr)

F=0
Ua-"( i_—ll‘tl:}a;-r) J i:'ﬂ 1J Uaj._l‘,(a‘.-.‘li;a’;r}

< Fmi
i~ m_.l -
= V"l ¥} U a."{va;f})
=0
-7,

Let us now check that the ", are open. Suppose this to be true for all 7 € Xi
k < m. Using these compatibilities we see that

8:Vorr N 0j.da:r & O5:Vors




66 Math. Nachr. 1890 (1998)

for arbitrary ¢,j. Hence

m ~—
U 6}',:1‘!,‘.1' g ‘3&1'
=0

is an open subset of the boundary of A,. By induction we get V, C W,. It follows
that

m
{;} = W, n i'ﬂ”ﬂ(ﬁfj J U 3},‘i}3;1-
=0
and V, is an open subset of Ar.
Hence we get an open subset V C V with [r]7(V} = V; and containing . The
map A, (0.2, V)

Homgy—14(a, 7} — Tl'g(f’;;) = (W)

is surjective by the construction of W,. Now we consider the commutative diagram of
Lemma 3.14, 3. with respect to the data (o,2.U) and (a,z,V) and we see by Step
{vii) that A{o,2, V) has to be injective. m|

Denote by Sur the set of morphisms (r, ¥} = (=, V') of Yy such that the corre-
sponding map 7 — 7' I8 surjective.

Lemma 3.16. Let f : X. — Y. be a morphism of simplical sets and (o,y, V) be o
compatible data on Y. Then the functor

e — 1~

o\Sur~tf  — Swr Xig-rv
(ro 3 f(r) —  (nlewl,

where la.(y)] denotes the open comnected component of a.(y) in (|A~V),, s well

defined. It defines an equinalence of categories for V = vV as in Lemma 3.15. The
RGPS

{3.9)

oy, V) a\Sur~lf
— ]
(G’,y,‘v'y) —s  Sur X|f|—1v
are in o noturel way functors an Datal(Y.) and the functor given in (3.9) commutes
with this structure.

Proof. By Lemma 3.14 the funcior is well defined on objects.

Let a;. a2 be two liftings of a1 7 = 7" € Sur—1X to X. Using the definition of the
relation ~ one easily gets that ay and o have the same image. Hence the functor is
well defined. The compatibility with respect to maps in Data(Y.) is obvious.

It remains to show that the functor (3.9) is an equivalence of categories if V = V oas
in Lemma 3.15.

By Lemma 3.14 we have a compatible family of maps

Moy, ¥) ¢ Homgeiylo, f(r)) == mo{(fI7V):) -
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We define an inverse functor of (3.9) by
(r,V}) — Aoy, VITHIVIE

Then the composition is the identity functor on oy Sur~ !X by the definition of A. The

composition on g\;‘_lfv is given by
(r. V) — (V]

and the natural map
(r,V} — (.[V])

given by the inclusion V. & [V] defines an isomorphism from the identity functor. D

The following proposition shows, that the geometric realization functor {3.1) satisfies
nice properties if we restrict it to sheaves. .

Proposition 3.17. Let X. be o simplicial set X.. Consider the functors | | anc
stalk on Data{ X }°P* x SH(X.} with values in A given by

I (o V), Py — IRIV)
stalk : (f{o,z, V), F) — F, .

Then there exists o morphism of functors
|| — stalk

which is en isomorphism for atl {o.x,V) € Data{X ) withV = V as in Lemme 3.11
In particulor,

|Fl(nzy = F,;.

Proof. Let {o,z,V) € Data(X.) and F. be a sheaf on X..
Analogously to Lemma 3.4, praperty 4, one casily checks that the natural functor

- . =1~
XV E—} Sur ;1)1,’
satisfies
U T [N R,
Py.opy = id:Func (sur X‘:,A) — Func (Sur XV,A) ,

Denote by 0 the category with one object and one morphism and identify the catego
of functors Func(0, A) with A. Consider the commutative diagram:
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1

el - Sur-
Sur IXV U PV Sur tx
v px‘
fv X
0 A

We get .
IF[(V) = hmg Foepxopry
Oy. (F. o Sur~lpry o pv)

It

(Sur='0v}, o pv,. o B} (F. o Sur~ipry)
X fmeig F.oSurlpry.
Now we use the functor in (3.9) and get a morphism

|F|(V) — lim Fopry ~ Fr.
ahSur— 1Y

It is not difficult to see that this map is given by the projection of the projective limit
over Xy to the component over (¢,[z]). Then an easy calculation shows that it defines
a morphism of contravariant functors on Data{X )

|| — stalk.

The functoriality with respect to F. is obvious.
The last part of the proposition follows from Lemma 3.15. mi

Co.rollary 3.18. The functor |7|: SH{X.) — SH{|X.]) is a full exact embedding.
The image is given by the sheaves F on |X.| satisfying the condition that [0]"F is o
constant sheaf on inn(A,} for every simplez o € X..

Proof. From the Proposition 3.17 it follows immediately that the functor | | is exact
and injective on morphisms. To see that it is surjective on morphisms consider some
morphism of sheaves |F.| - 1G.]. For every compatible data (o, =, '.7) with V as in
Lemma 3.15 we define a map F, — (¢, by the commutative diagram

~

|Fi{V) —=— F,

| |

G|V} —— G,.
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Let us check that this map does not depend on the choice of z € inn(A,) and ¥
Take another compatible data {o,z',V'). Choose a way

41 [0,1] — nn{l,), with +0) = T, (1) = 2.

We can find a finite set of points 0 = tg < --- < tx = 1 such that there exisis a set «
compatible data

V. as in Lemma 3.15,

LI
~ Vi 2 Im(7},
o T} = 0rves b with 450 2

(o111 o] o Nin(a,) £ 0.

%=V, o=V,

By induction on k we restrict to the case that f#]~1V M {e]” V' contains some poil
y € inn{A,). By Lemma 3.15 and Corollary 3.9 one sees that V, = [#]7'V
to be connected. Let W C ¥ NV’ be some open subset as in Lemma 315 wit
[o]{y) € W. Then we use the compatibility property of the proposition with respe
to the morphisms
(0.2,V) e— (o3, W)} — (0,2, V')

in Data(X.) given by inclusions and get the independence.

For a map between simplices o : 7 = o' we take a compatible data (0,2, V) firs
then we choose a compatible data (0’,x’ﬁ”}, such that z' can be connected wi
a.{z) inside Vv, and Vic V. We consider the morphism

(o', 2, f”) - (o, f'})

of compatible data induced by a. By the praposition the cormutative diagram

FI(V) —— IFI(V) F, —— Fo
l l induces a commutative diagram l J'
GAWV) —— 161(7) Ge —2 G

Hence we get a well defined morphism of sheaves F. — G.. It is not difficuit to :
that this map induces the given map |[F\| = |[G.|.

Let us now check that the sheaves [o)”|F| are constant on inn{d,) for every o € .
Fix ac € X.. Let U C inn(A,) be a connected non —empty subset. We can fine
base of open subsets V 2 {o](U) consisting of umons of open sets V; for z € {o]l
s in Lemma 3.15. We can assume that V' is connected. From Proposition 3.17
get an isomorphism [F.HV) = £, compatible with respect to inclusion. Therefore 1
isomorphism [o]**|F.{(U7) = Fi is compatible with respect to inclusions U € U, whe
[71** denotes the preimage as a presheaf. It follows that the sheafification [o]"|F.
constant with fiber Fj,.

Ou the other hand, let F be a sheaf on |X.| such that {g]"F is constant for
o € X. Then we define a sheaf F. as follows: Let T, = sTUinn(A ) € A, W

e
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s ¢ = gy the surjective map to a nondegenerate simplex op. The sheaf [o]*F is
constant on T, 2 tnnld,) and we define

F, = T(T,.[o]"F).

Let  : ¢ — 7 be a map in Sur—* X. Take some compatible data (¢, z, V). We consider
the map

FWV) B (AT = POz V@) N T & (7 F)T) = Fr

where A, (g, x, V') is defined in Lemma 3.14. The lemma implies that this morphism is
compatible with respect to maps of compatible data (¢,z, V) — (o, 2", V'). Therefore
we get 4 well defined morphism

F, = NI, 0o F) <5 (o' Fle = lim F(V) — F,

: V3[s](z)
which is independend of the choice of z. It is not difficult to see that this construction
is compatible with respect to compasitions of &. We define a morphism of sheaves
F = |F| by giving a compatible family of morphisms F(V') — |F.|{(V] for all
compatible data [o,x,f:’} with ¥ as in Lemma 3.15. Remark that [a]‘lf; C T,
Otherwise one would have a boundary 7 = 8¢ so that {r]~!V # @ and there exist

no surjections from o and r to the same nondegenerated simplex. By Lemma 3.15
this implies Hom({r, ) # § what gives a contradiction. Therefore we can give the map

FlV}— F|{ V') by the composition

F(V) 25 (o} F(0]7) & (o} F)T) = Fo & [FI(P).

This map is compatible with morphisms of compatible data by Proposition 3.17 and
therefore defines a map of sheaves 7 —+ {F.I. It is an isomorphism, because it induces
an isomorphism on the stalks. _ |

Let us now return to the question in the beginning of the subsection, namely, how to
describe the stalks of |F.] for a cohomological system of coefficients F. on a simplicial
set X The answer is given in the next lemma in combination with Proposition 3.17.

Remember that we denoted by px the natural projection from X to Sur™!X’, see
Lemma 3.4. The natural inclusion

px  SH(X) — Func{X,A)
has a right adjoint functor
px. ¢ Func(X A} — SH{X),

which is given by the right Kan - extension.

Lemma 3.19. The following dicgram is commutative:
Func{ A, A)
PX,ed Sy

?

SH(X) <% SH{XD.
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Proof. Let F. be some cchomological systemn of coefficients. By the definition «
the geometric realization we have to verify that for an arbitrary open U C | X ] t!
morphism

@F. opry —% Mp,Y,t{F.) o pru
Ky X

is an isomorphism. By the definition of px .(F.} we have

PIX,n(-F)g = m F.oopr

ehpx

and the adjunction map is the map to the component (g,d,) € g\px. This map is
monomorphism, because every morphism ¢ — 7 in Sur~ !X has a preimage o — 7
X by Proposition 3.6. We bave to prove that the projection

A @F. opry — (Fooprul{eU) = F;
Hrs
has its image in @d\px F.opr for all {¢,l4) in X

Let o % + be an arbitrary morphism in Sur=1X and 1,z two liftings of w.to .
All we have to verify is that ;.. o A = w2 . 0 A. We can assume that

pr = aod ~ ooy = ¥

asin {3.3) and (3.2). Let &' = s, 'U and U” be some open connected subset of [r]™!
containing a.id’. Then we consider the diagram

(F. o pro)o, U) = F,
%_’LEF o pry < 8. -LL d2.. =AY ‘l—l w2,
X (Foopro)o U =5 (Foprp)(n.U¥) = F.

with commutative triangles and commutative squares with respect to the index 1 a
9. The assertion follows immediately from this diagram.

Let us give a more explicit description of the functor px .. Fix a nondegerate sim}‘)'
¢ € X,, and a cohomological system of coeflicients F.. We want to calculate (p,p,ﬁr..
Let (X /&) sur, be the full subcategory of the category X' /o given by the objects T —
with a = § a surjective map. We have a functor

(ng}surj — {7\]},\'
=1
rae — oo
trivially on morphisms, which is an embedding. Applying Proposition 3.6 it 14 :
difficult to see that {X'/¢)eur, is a cofinite subcategory of o\px.
Denote by T the subcategory of (/0 }sur; given by the objects o € X, and all -
with ¢ = 0,... ,n. The sets of morphisms we define by

Homr(s,s;0) = Homx/a,.., (@ 5i0) = {8,001}
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and all she other to be trivial. Let us check that 7 is & cofinal subcategory of (X /0) sur;.
Let 7 — & be some object of (X' /¢)eur;. Consider some injective morphism from
d: stg — 7. We call the morphisms 44; and dd;4, elementary equivalent. Consider the
minimal distributive relation generated by it. Comparing the images of the morphisms
& g -» t it is not difficult to see that all morphisms are equivalent. The cofinality
follows immediately.
Combining these considerations we get a description of (px . F.); for nondegenerate
o € X, by the following exact sequence ’
ﬁ L e
(3.10) 0 — (px.Fly — F, =— [[Fus-
i=0

The first arrow is induced by the adjunction map p%px,.F. = F. at the simplex o,

4. The inverse image
Let f.: X. = Y. be a morphism of simplicial sets. Consider the natural diagram

A’_—f—> ¥

[4.1} J‘px J.pY
Sur—tx 2L gty
where px ., resp. py, is the structure morphism of the localized category Sur~!X, resp.
Sur~!'y, :
Define
o (Sur=ifys, SH{Y)Y —  SH(X)

o= fr : Func{y,A) — Func(A,.4)

as the inverse image functor. These definitions obviously agree if we consider a sheaf
as a cohomological system of coefficients.

Lemma 4.1. The following disgram is commutative:
sHy) I sH(X)
17 L7
P
sV Y5 sHOY).
Proof. Let F. be some sheaf on ¥. We will construct a morphism of sheaves
R — IR

compatible with respect to the morphism of sheaves F. — G.. It is sufficient to give a
compatible family with respect to inclusion of maps

FFIENVY — [FFITV)
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for all compatible data (@, T, V) on X..
We define this map by the following commutative diagram

If11FI (V) — [FFI(V)
1 _LI
(|f|‘iFl)$ = |F-1f{z) = F][cr) = {.f‘F)cr = 1f‘F|:c
with the usual morphisms. Now let (a',a:ﬂc”) be another such data with V' C V.

By Lemma 3.15 there exists a unique map @ : ¢ — o' in Sur~1.X such that a.(s)
and ' can be connected inside [#'] 7} (V). This gives us a map of compatible data

By definition, bearing in mind Propesition 3.17, the compatibility with respect tc
the inclusion V' C V will be assured if we verify the commutativity of the following
diagram:

GFPIEDe — PIEIT) — (PR D

I H
|F]£2) FRPES
(4.2) 2 2
Fiia) ' Fiion
i li
(f*Fle = (f*F.)o .

Obviously we can change | f*||F.| to the presheaf

Vi himp |F|(W), with V C |X.| open.
WIF(V) :

Hence it is sufficient to prove the commutativity of the diagram with [F.|{W) instead
of ifl'1F.|(_f’] for all open W 2 |f|( V). The relations [f{c']] = |f| o [¢'] vield

(L1 W) 2 LIV ) = )7 (V).

Thus e. {7} and &' can be connected inside {f{¢’}]7* (W) and we can apply once mor
Propasition 3.17 with respect to the morphism of compatible data

(flo"y '\ W} — (flo),z. W)

on ¥.. This shows the commutativity of diagram (4.2).
Hence we have a well defined morphism of sheaves

[FNEL — R
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This is an isomorphism because it induces an isomorphism of the stalks. a
Lemma 4.2. Let X. Ly % 2 be morphisms of simplicial sets. Then we have a
natural functorial isomorphism f*og* ~{go f)* .

Proof. Obvious. m|

5. The direct image

Similar to the definition of the inverse image, we define the direct image functor f,
using the diagram {4.1):

foo= (Swr'fle. @ SH(X) —  SH(Y)
f‘ = fcal.- : FUDC(X,A) — Ful'lC(y,A}-

Lemma 5.1. The functor f* is left adjoint to the functor f..
Proof. Obvious. o

Let r € Y. be a simplex. For every object {o,7 > f{o)} of the category 7\ fear there
exists a unique o' {= a”{7)} such that f(c’} = 7 and such that there exists a unique
map (= o)

(o id) = (0.7 = fo)) -
Hence we can give the following alternative definition of f.F. for a cohomological
system of coefficients F.:

(5.1) {f.F), = H F, .

gEf=l{r)
If 3:7 — 7' is a map in J we obviously have a map

g - fUPY — fYN7) inducing a map 8. : (fuF)r — (A F)-

Lemma 5.2. Let f: X. =Y. be a morphism of simplicial sets. Then the following
diagrams are commutative:

SH(X.) 5 SH(Y) Func(¥,4) <5 Punc(Y,.A)
It Ll ik L]
saoxy s sH(YD) sax) 25 sE(Y).

Proof. Let F. be & sheaf on X.. It is sufficient to construct an isomorphism

QAFDTVY — (FLEN(VY = IFIIAH(V)),
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compatible with respect to maps of compatible data, for all compatible data {7,y,1
on Y. with ¥ as in Lemma 3.15. By Lemma 3.16 we have an equivalence of categor

e

Sur &) poy iy = a\Swrtf
compatible with respect to maps in Data(Y.). We get an isomorphism

VFIV) = R = U g, Foomr
T g = F,Opf‘

Sur X -y

12

Il

IELAH (V)

which is compatible with respect to morphisms of compatible data. Lemma 3.19 a

the commutativity of the first diagram assure that the second diagram commutcs.
Lemma 5.3. Let X. Ky 5 7 be morphisms of simplicisl sets. Then we have

naiural isomarphism of functors g. o fo = {go f}.

Proof. Obvious.

5.1. Global sections

Let F. be a cohomological system of coefficients or a sheaf on the simplicial set .
We define the global sections of F. as follows:

(5.2) T(X.F) := [imF..
A

Obviously ' defines a left exact functor from the category of cohomological syste
of coefficients to .A4.

Example 5.4. (i} Let X. = A.[0] be the simplicial point and F. a cohomolog
system of coefficients on X.. We get ¥ = A and it is well knowti that the subcateg
of A given by the objects @ and 1 and injective maps between them is cofinal. There

T{X. . F) = ker(fo,. —h1.) : Fg — F1.

(ii) Let F. be a sheaf on a simplicial set X. and denote by f the map from X.
AJ0]. Then
N{X.Fy ~ f.F

with respect to the identification in Example 3.3.

Lemma 5.5, Let F. be a cohomological system of coefficients on the simplicial
X.. Then the adjunction map pypx.F. — F. induces an isomorphism

T(X..pxpx.F) — T{X,F).

R ]
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Proof. It can be easily proved by definition or using Example 5.4 (ii) that

D(X.,pxpx.F} =~ fepx o F. = imF.. O
x

Lemma 5.6. Let X. be a simpliciul set. Then the following diagram of functors 1s
commulafive

Func(¥, A) —b SH{X.)

(5.3) rx. N\ ! T(X17)
A

Proof. This is an immediate consequence of the definition of the geometric realiza-
tion 3.1 or of Lemma 5.2 with Y. = A.[0] in combination with Lemma 5.5 and Lemma
3.19. m]

5.2. Cohomology

Let F. be a cohomological system of coefficients on a simplicial set X.. Remernber
{see for example [9]) that the cohomology of F. denoted by H *(X.,F.) is defined as
follows:

Let f: X. = A[0) be the map to the point. Then we denote by C*(X.,F.) the
cosimplicial abject f.F.in A. According to (5.1) it is given by

n— C*X.,F) = H F,
cEXa

the morphisms being the usual ones if n — n' is a map of odered sets. By C*{X., F\)
we also denote the associated cohomology complex of F.

i=n

RUC § (R HF,”E“—*J I RS withd =) (-6

rEX. 1 cEXn fEX a1 i=0

and by H*(X., F.) its cohomology. If F. is a sheaf the cohomelogy is defined analo-
gously.

Obviously the correspondence F. — H*(X.,F.) defines a § - functor on the category
of cohomological systems of coefficients (resp. the category of sheaves}.

Proposition 5.7, Let X. be a simplicial set. Then there exists an isororphism of
d - functors
HY(X.,7) = RT(X..7)
on the category of cohomological systems of coefficients. A sufficiently large class of
acyclic objects is given by the following construction:
Let Xt be the subcategory of X consisting of the same objects and only identify

. morphisms and let i be the inclusion. Let N X1 5 A be an arbitrary functor, i. €.,

u family of objects N{a} € A for eacha € X. . Then the functor

icgg__.."v A — A
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is ecyelic.

Proof. By Example 5.4 (1) we have T{X, 7} =~ HYX..7)- The homology of homo-
logical systems of coefficients on a simplicial set isa derived functor by [8], Appendix 2,
§3 and §4. This is verified by constructing a sufficiently large class of acyclic objects.
Changing the abelian category of coefficients to the dual category we can change ho-
mological systems to echomological, homology to cohomology and the assertion follows
immediately.

We can prove it also easily directly using the isomorphisms

C'(X,,im;‘,N] ~ fiicatalN = (foi)ear.N = H C* (Ao}, Nig))
scX. .

bearing in mind that [A.[n]] = An 1 contractible for all n. (Here N{a) denotes the
constant cohomological system of coefficients with fibre N{o).}) mi

The exact functor
C*(X.,7) : Func(X,A) — K20%(A)
extends to a functor
C(X, ) DF{Func(X, 4)) — Dr(A4)
via double complexes. Proposition 5.7 gives us immediately
RD ~ CY{X.,7).
The following example shows that Proposi.tion 5.7 is in general not true for the

category of sheaves.

Example 5.8. Let X. be the two dimensional sphere as in Example 3.12. Denot
by og the nondegenerate 0 - simplex and by oz the nondegenerate 2 —simplex. Assun
that 4 has sufficiently many injeciive objects. Let I be an injective object and defin
N as in Proposition 5.7 by '

J'V(o’) _ I, fo=oa,
10, otherwise.

Then N is injective and the sheaf px .icar N 15 also injective. Using the explic
description of the sheaf category i 312 it is not difficult to check that p x whent,od¥
the constant sheaf on X. with stalk N and hence not acyclic for [' (see Propositic
5.12).

Definition 5.9. We denote the extension of C*{X,7) from the category of sheav
to the derived category using the total product complex of 2 double complex by

BRI : D7 (X)) — DT{A).

—_—
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Lemma 5.10._ Let X. have the property that an arbitrary boundary of an erbitrary
nondegenerate simpler is nondegeneraie and let A have sufficienity many injective
objects. Then the natural morphism

RI' — RT
is an isomorphism of functors on DT(X.).
Proof. The proof follows immediately from Proposition 5.7 and Lemma 3.11. O
Further we want to give another description of the cohomelogy in the case that F.

is a sheaf:
We define a “reduced” complex:

myX Fy = J] F.and dig = pro(F)oedein(F),
v X,

nondegerseats

where i, (F.) is the inclusion to and pr,(F.) the projection of C*{X., F.}.

Lemma 5.11. Let F. be a sheaf on X. . Then
(i} Cr (X, F.) is a complez and a functor in F. .
(i} i(F.) end pr(F) are morphisms of complezes depending on F. in a functorial
tay.
Ceay, N . 2
(iii) The morphisms of functors (X T = O (X, 7) are inverse to each other

rr
up to hematopy.

E(quv) The extension of Uf,4(X,7) to D7(X.) vie the maps i and pr is isomorphic to

Proof. Let CF, (X, F.} == ker(pra(F.)) . One can see that the map
S C*MX,F) — CHXLF), i =0,...,n-1,
is an epimorphism and that it factors through the projection 11 F,, which
cEal{Xn_1)

induces an isomorphism because s} : Xnr —+ $7(Xn_1) C X, is bijective, and F. is a
sheaf. Hence we get another description

=1
Cry(X. F) = [|ker(si.) € CHX., F).
=0

Thc prt_)perties (i} - (iii} are consequences of general facts about {co)simplical ohjects
in abelian categories. {See for instance [6], Section 3, in particular equation (3.21),
Sarz 3.22. and its proof.) Property (iv) follows from (iii}. m]

Proposition 5.12. The geometric reglization functor |?| induces an isomorphism
of @ funclors
HYX.7) = HYX||)
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on the category of sheaves.

Proof. We prove in detail the similar statement about the cohomology with comy
support, Proposition 6.12. The proofs have the samc structure, here we mention
the main points, using the notations of the proof of 6.12. We consider the diagr
of excision sequences with respect to the decompositions X; = Ay U{X; 4 X,
i=1,2,..., and the usual cohcmology. Furthermore,

B F) = T H*Geis®) = I1 HMolde) 5000 %)

e X; aEX;
nondeg. nondeg.
= [T HHinn(A,).557).
TeX;
nondeg.

where j : Xi\ Xio1 = Xi. jo :inn(d,) = X; and 5 [o](inn(A)) — [ol(As)
the open inclusions.
The analogous statement to Lemma 6.13 is the well known fact that the restrnict

HYMXY — HM(Xope) — H'(Xng1), for Kk > 1,
are isomorphisms and that
H™tRX,) =0 for k& > 1.

The analogous statement to Lemma 6.14 is proved by the same method.

6. The direct image with compact support

In this section we assume the abelian category A = R-Mod to be the catego
modules over a ring R.

Remember that a simplicial set X. is called locally finite, if for every o € X. th
of all nondegenerate simplices 7 € X. for which there exists a map o — ris f
This amounts to say that |X.) is locally compact.

A morphism f : X. = Y. between simplicial sets is called locally finite if the simpe
set X. ;< Anl is locally finite for every map Aln] = Y. with arbitrary . T

equivalent to say that all fibres of [.X.] = 1¥"] are locally fiuite.

One of the conditions of the topological Verdier duality is that the spaces X a
are locally compact or at least that f : X — Y has locally compact fibres. S
sufficient for our purposes to construct the direct image with compact support
for locally finite morphisms f.

Let f: X. — Y. be a locally finite morphism between simplicial sets and et &
cohomological system of coefficients on X.. We define the direct image with con
support fiF. to be the cahomological system of coefficients on Y. given by

(6.1) (hF) = @ Foc ]I Fo = (F); with red.

rEX, s X,
Filok=r flel=T

R
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“The structure map for 7 — 7 is induced by the corresponding map (f. F.)r = {(f.F.);.

This make sence because for every morphism a : 7 — 7' of simplices in Y. and every

o € X. such that f(g) = 7 the set of ¢’ € X. with f{¢') = 7 and " (¢') = & is finite.
This defines an exact functor

fi ¢ Func(X, A) — Func(¥, A}

To define fi on the category of sheaves we need the following lemma.

Lemma 6.1, The adjunction map defines an isomorphism

py.fi — Py.fpxPx.-

Proof. Let F. be a cohomological system of coefficients and let 7 € ¥, be a nonde-
generate simplex. By the relation (3.10) we get a commutative diagram

0 G
ad énéi %+t
- ¥ * 1= -
0—— (pv..fipxpx . Fl)r B pxpx.Fle ——— B Pxpx.Flo
cEX. a'eX.
Hely=r : g<ign
fle")=a]r

adx | ady \ adxi

e -
p @ Biwdip1
0——  (py.fiF), — G F — & F
aeX. o EX,
Ilei=r 0gizn
FloN=sT
lé‘a 8;—dis P
=) /
@ Fs‘a’

gEX.
<i<n
fley=r

with exact rows and columns, where adx. resp. ady, denotes the morphims given
by adjunction and p is the natural projection. Diagram chase shows that the left
downarrow is an isomorphism. jm]

Now we are able to define fi on the category of sheaves by
Fo= pyafipx € profopx =S
Lemma 6.2. For the composition X. —!> Y. & Z. we have the isomorphism of
functors g o f = (g o f), induced by the isomorphism g. o f. > {go fl..

Proof. For cohomological systems of coefficients this property can be seen directly
from the definition of the direct image with compact support. On the category of
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sheaves this follows easily from Lemma 6.1.

Lemma 6.3. Let f.: X. —+ Y. be o morphism of locally finite simplicial sets. T
the following diagram is commutaiive
sH(x) b SH(X))
(6.2} VA LISl

SH(Y) <h sH(YY).

Proof. We have proved the analogous assertion for the f, - functor in Lemma
We compare |f[i(|F.|) and |f.(F.)] as subobjects of |f1.{|F.]) = |f.+(F)].

Let (T, v, V) be some compatible data on Y. with ¥ as in Lemma 3.15 and 7 1
degenerate. By Lemma 3.17 we have to compare

{s € |F|(f~'V) | supp(s) — V proper} c e )
F V3= F..
(f!F-)r = (PY,:f!P*xF-), : B | ](f ) 7\5:.%1‘{

Denote by s¢.r— (s the image of s under the map from the projective limit to
component F, given by the object (0,7 = f(5)) € r\Sur~!f. By Lemma 3.17 we
that the map supp(s) = V is proper, iff for all 7 3 7' in Sur~!) the set of 6" 1
fo'y = 7" and s, o) # O is finite. So every s gives an element

_ Sa € @ Fa’ = (f!pt‘(FJT’
s EX.
flei=7"
for every T % + Tt can be seen easily that this set of elements for the differer
determines an element in (py,.fipk F.)_ and every such element gives an s.

6.1. Global sections with compact support

Let F. be a cohomological systern of coefficients or a sheaf on a simplicial set
We define the global sections with compact support of F. by

T(X. F) = GmF n lim I < IIE.

e X TCX #cT. geX.
where the direct limit is taken over the finite simplicial subsets T. of X"
Tt is easily seen that T.(X.,7) is left exact.

Example 6.4, For an arbitrary locally finite X. consider the map f.: X, - 2
to the simplicial point. Then we have, for an arbitrary sheaf F., an isomorphism

fF =~ T.(X.F)

with respect to the identification SH(A.[Q]) =~ A. This follows immediately fron
analogous statement for global sections Example 5.4 {ii}.

I T
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Lemma 6.5, For o cohomological system of coefficients F. on a simplicial set X.
the adjunction map pXpx..F. — F. defines an isomorphism '

T (X.pxpxF}) = TAX. F).

Proof. The proof follows from the definition and Lemma 5.5 by some standard
categorial considerations. |

Lemma 6.6. Let F. be o cohomological system of coefficients on the simplicial set
X.. Then the isomorphism of Lemma 5.6 induces an isomorphism of the subobjects

To(X, F) = TAX L[],

Proof. By Lemma 6.5 and Lemma 3.19 we can restrict to the case that F. is a sheaf.
The assertion now follows from Proposition 3.17 using the fact that a subset K € |X|
is compact iff it is closed and a subset of |T'| for a finite simplicial subset 7. € X.. O

6.2. Cohomology with compact support

We define the cohomology with compact support of a cohomaological system of coef-
ficlents F. on a locally finite simplicial set X. similarly to ordinary cohomolegy defined
in Subsection 5.2.:

If f - X. = A.[0] is the map to the point, we consider the cosimplicial abelian group

G2 X. F) = fiF. given by
(6.3) n — CMX,F) = (iF)y = & F
. aEXn

By C*(X. F.) we also denote the corresponding complex in .4, the cohomology of
which we call cohomology with compact support H; (X, F.).

Ohviously the correspondence F. — H7 (X, F') defines a & —functor on the category
of cohomological systems of coefficients (resp. the category of sheaves).

The exact functor

CHX.,7) : Func(X, A) — KZ%A)
extends to a functor

C*X..7) : DH(Punc(¥, 4)) — D*¥(A4)
D*(X.) — Dt

via double complexes and the direct sum total complex.

Definition 8.7. We denote the extension of C*(X,7) from the category of sheaves
10 the derived category using the total sum complex of a double complex by

I, : D*(X) — D+(A4).
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Proposition 6.8. Let X. be a locally finite simplicial set and assume that the
boundary of ¢ nondegenerate simpler is nondegenerate. Then the natural morphism
RI. — RI.
is an isomerphism on DT (X.).
Proof. We have T.(X., ) =~ HXX., ) by Example 6.4. It remains to construct a '
sufficiently large class of acyclic objects for the cohomology with compact support.

Let F. be a sheaf on X.. Let I{F.) be the sheaf on X. given by the following equation
{we use Corollary 3.8)

for every nondegenerate ¢ € X., the structure map for ¢ — ¢’ given in the obviou:
way. We have 2 monomorphism F. — I{F.) given by the maps F, 23 F.. Let us verify
that T(F.} is acyclic for the cohomology with compact support. Obvicusly

IF)y = @ Hr), with I(r), = I F.
TEAD . G'E‘TEXU
But C?(X., I{r)) = C*{A.[r], F; } and the assertion follows easily. C
Remark 6.9. The boundary condition in Proposition 6.8 is necessary as the Ex

ample 5.8 shows.

Furthermore, we want to give a "reduced” definition of the cohomology with compac
support in the case that F. is a sheaf

realXoF) == @ F and dig = pra(F)oedoin(F)
TEX
nondegenerate

where i,(F.) is the canonical inclusien and pra{F.} the canonical projection fron
CHMX., Fy.

Lemma 6.10. Let F. be o cohomological system of coefficients on X.. Then

(i) C7 g X, F.) is a complez and a functor in F..

(ii} i(F) end pr(F.) are morphisms of complezes depending of F. in o functoric
way. )

(iii} The functormerphisms C), (X.,7) = Cr(X.,7) ave homotopically inverse.

: e .

(iv) The eztension of CZ{X.,7) teo Dt(X.) vie the maps i and pr is isororphic |

RT.. .

Proof. The proof is the same as for Lemma 5.11.

Lemma 6.11. Let X. be a locally finite simp.ﬁcm! set of finite dimension. Then th
natural extension of C.(X.,7) to K=(X.) factors to the derived calegory and gives
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functor D~ (X} — D~ {A) which is isomorphic (via the natural maps) to the contin-
uation of C, q(X.. 7).

Proof. Obvicus. a
Proposition 6.12. Let X. be o locally finite simplicial set. On the category of
sheaves SH(X.) there exists an isomorphism of @ - functors
HIX.,F) = HX].|F]).

Proof. The proof will be similar to the constructions in {{15], p. 1, Ch. 3). Let
X:='X]and X°C X' € ---C X" C - - C X be the filtration by the n—skeletons
X% = sk; X. Let F. be asheaf on X.. Let U™ := X \ X™ be the open complement
and F := iF]. The idea is to consider the excision - sequences for the following sets:

X = Xoqu, UO — (X}\)&’D)UU]', L.'ﬂ-l = (Xn\Xn—l)uUn‘

We get the following commutative diagram with exact columns (we omit the sheaf F
as sheaf of coefficients): :

+ 1

HrOe ey ER e ERGoWE ey
! L L
Ce HMYUMY « HMYUMY e HPPUMH el
+ I il '
L HRRHUMTY) + HPNURY « HPP(UM) D e
! + i
fﬁ.4] H:"'I(X" \ X"_]‘) H;‘+!{X“+l \X”) H?+1(XH+2 \ X"'H}
i -l 1
Lo HMUT) e HMUMY) e HIP(UME) e
! 1 1
e H?*i{U"'l) — H:‘”(U“} - H:+2(Un+1) —. ..
! 4 4
H;""z{X” \ X"_l) H:+2(X"+l \Xn} H§+2(X"+2 \ Xn+1)
1 4 1

On the other hand we get

Xty Xt = H  leltinn(as)).
ceX,
nondegenerate
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Each summand is homeomorphic to the n - dimensional euclidean space IR™. The sheaf
F = |F| is constant on inn{A,) with stalk F,, by Lemma 3.17. Hence we get

HYX™"\ XL F) = B Hinn(d,), F,)
TEXn
nondegenerate

(6.5) 0 for i # n,

o D F, for ¢ =n,
ceXa
nondegengrate
{see for example [12), II[.8. in the case F, = R is a ring, the same proof can he
extended without changes to the case of a module over a ring.)
Writing the zeros to the diagram (6.4) we have the following sequences of isomor-
phisms with arrows "extension by zero™:

(6.6) LS BHEUMY) S 0 S HRUMT) S HTUT)
and
(6.7) HMUY D 0 5 HXUY) & HNHX).

Further we need:

Lemma 6.13. Let X be a locally compact CW —complex, X* the k- skeleton of X
and U* the open complement, F a sheaf on X constant on the inner of each cell. Then
imwnH:(U",'f} = 0, where the Lim is taken by the ectension by zero maps

HMUMY F) = HFNU*uFF) — HIMUS 7).
where uf : U1 — IJ* denotes the inclusion.

Proof. Let I be the set of k—cells of X and BF with i € [y the inner of this k- cell.
As topological space we have BF = IR¥. Let

a=( .. ... 00 € Gm H{U* F) with ax € HMU* Fyand a # 0.
k>n
We fix some k& with ey # 0. We can write
Uk = H B
Ipkich
Let us consider the following set _
1. MNB! =@orBlforall{>kandi€
M= { M CU* with )
2. 0Aare HINM,F)

M is not empty because U e M . If Z, € Misa downward directed family and
Z :=(1Z; then Z satisfies property 1. and from [12], 3.9.3 we get :

H™(2,F) = lim H"(Z:. F).
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Hence Z has property 2. and so Z € M. By Zorn's lemma M has a minimal element
Z.

Further let z € ZM X° C X and B! C Z be a cell of maximal dimension with
z € 8B € X Such a Bl exists because X is locally compact.  Then BiC Zisan
open subset and we consider a part of the excision sequence:

HFB.F} — HMNZ,F) — HI(Z\B,F).

The set Z\ B! satisfies property 2. and hence 0 = oy € H(Z\BLF) by the minimality
of Z. Thus a € im(H?(B!, F} = H}Z,F)). But F is constant on B} and therefore
we get i = nsince a #£0in HY(Z, F).

This construction we can repeat for all z € ZN X% C X. So Z is the union of cells
of dimension less than or equal to n. This means £ C X" N Uk = JF\Um. Hence
n > k and we get a contradiction between the excision sequence

HrUn F) — HFUFF) — HUS\U™F)

259 —F Qg — 0

and 0 # a € H*Z, F). Therefore ag = 0 for all k > n, hence a = 0. m]

Let us continue the proof of the proposition. By equation (6.6} and this lemma we
get HI™* (U™, F) = 0foralln and & .

Combining cur results diagram (6.4) yields the following diagram with exact columns:

o
TEXn
nondeg,
L
H;1+1(Un) 0
LW
H?+1(X) Héa—_l(Un)
+ &
0 D F.
a€Xn
nondeg.

B
Hgl+2 (Un-rl)

0
4 W
H:‘+2(X]l H?+2(U"M)
+ {
0 P F.
TEXna2

nondeg.
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From this diagram we get

Hél+1 (U"”)

1

ker| @ F, — HIPE(U™)
TEX 41
noudeg.

~ kerl & F, — & F.
TEX g1 cEXni2
nondeg. nondeg.

and

H'P(X) = coket | €p Fo — HITHU™)

aeX.
nondeg,

This combines to

an gt Jnt2 "':-i-s
T Ted rea e
HR(X,F) = H )T @ RS PR D F ™ ..
rEXn rEXas FEXn+z
nondeg, nendeg. nondeg.

The proposition follows from Lemma 6.10 if we show that d%, = dl,. This is t
assertion of the following lemma:

Lemma 6.14. Let F. be o sheaf on the simplicial set X.. Then the follownng diagr.
is commutative:

gntl
red
@ F N o F
TeX, TEXn 41
nondeg, nandeg.
1 Ik

HrXAXPLR) <D BN IRD — Hot (X1 X E)

Proof. Let o € X, be a nondegenerate simplex, f.: Afn+1)—= X the assc
ated morphism and f : Apsy 2 [ X=X its geometric realization. Since f is proj
we can apply the functoriality of the excision sequences for f* (see [12}, Ch. 3.7
and get the following commutative diagram: ’

o F £
rfecXn
nondeg.

H:(BA“H V2 (Xn_l)} 2 H YA VOAn) = _ HF (A VA
s EA t s
H?(X” \ X"_l) Ly H:‘H{U") - H;L+1{xn+l \ Xu) )

-—#
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For simplicity we do not write |F.| and f*IF| = {f*F| (by Lemma 4.1) as coefficients.
The left and right f* are the projections of direct sums. So all we have to prove is that
the induced horizontal map is d:‘:&l . On the standard simplicial set Afk] we have
for every sheaf F. a morphism into the constant sheaf Fyg with fiber Fia (id € Aglk]
denotes the identical map), induced by '

an
Fa:g—»ﬁ —_— Fl?d-s

{see also Corollary 7.7}, Because of the functoriality of our maps in F. we can restrict
to the case that the sheaf of coefficients is constant. But in this case the topological
cohomology with compact support can be defined for instance in terms of the Alexan-
der — Spanier cochains and the lemma follows from [15], p. 1, Ch. §, in particular [15],
Lemma 5.3 and Theorem 5.11 with a5 ; = (—1}* if e; = Bgey. a

7. Tensor product and inner homomorphisms

In this section we assume our abelian category of coefficients A to be the category
of moduled aver a noetherian commutative ring R. Then all the abelian groups of
morphisms of modules, systems of coefficients and functors have a R - mod siructure.
We will write Hom instead of Hom if we consider this additional structure.

» 1. The construction of the tensor product and the inner Homm — functor

We want to continue the inner Hom structure Hom(M, N) = Hom(M N) en
R- Vod to the category of cohomological systems of coefficients and sheaves over a sim-
plicial set X, Remember that both categories are functor categories Func{X, R - Mod)
and Fune{Sur~'X, R-Mod }. The main constructions can be done for arbitrary cat-
egories of functors Func(7, R - Mod), but we restrict ourself to these cases and write
X for X and Sur'X, respectively.

The "inner” temsor product on R-Maod can be extended to the cohomological sys-
tems of coefficients (sheaves) by

(7.1) (F&Gle = F®G,

with the obvious induced morphisms for o : o — a'. Tt is easily seen that this
construction is functorial in F. and G..

Remark 7.1. If £ and G. are sheaves, then F. % G {as cohomological systems of
coefficients) is a sheaf too.

Definition 7.2. Let F. and G. be two cohomological systems of coefficients {sheaves)
on X.. We define a third cohomological system (sheaf), the inner hemomorphisms
between F. and G. as follows:

Hom(F., Gy = ?{ommnc(a\\f.A]{F,opr,,G.opr,,}

i7.2] . .
HomFunc[o\)?.A](maF'JpraG')

N
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where pro is the natural map from o\X to X . For a morphism o : ¢ — o' we get a
commutative diagram

AX Func(o\ X, 4)
\“p‘ra . \pfr;
(7.3) a* X which induces (q*)* Func(/f’,A)
e /lp?"a' 5 ‘/p‘f‘;.
a\X Func{o’\ X, A)

Hence we get a morphism of R -modules
(7.4)  HoMpyngs\#,4) (proFapryG) =% Homgy,oon%.a) (pro Fapry G-

One can see that (@ 8). = s o B, for a morphism §: ¢’ — "', Hence Hom{F.,G.}
is defined by a cohomological system of coefficients {sheaf).

Proposition 7.3. Suppose F., G. and H. ave cohomological systems of cbeﬂicients
{sheaves). There exist isemorphisms functorial in oll arguments

Hom(F.® G H) = Hom(F.,Hom{G..H}},
Hom(F. @ ., H.} Hom(F.,Hom(G., H.)).

12

Proof.Let @: F.@G. - H.bea morphism. This is nothing but a family of maps
of B~ modules
gl Fo®G,. - He

for every o € X making the diagram

FeG, %4 H
(7.5) ) )
Fo8Gy 9% H,

commutative for every a: g = o'
On the other hand let ¥ @ F. — Hom{& ., H.) be a morphism. This is a family of
maps of R—modules

o) - Fe — 'HornFum__[a\_g,_A)(G. opre, H. o prs)
for every ¢ € X making the diagram

F, elo) ?{omFum(a\r,}.‘A}[G. o pra, H. 0 pry)
4 !

wie'} ,
Fy — ?{omFum[g.\}lm(G. apro, H.oprer)

——



an Math. Nachr. 190 {1998)

comrmutative for every o : ¢ — ¢'. By (7.4) this condition is equivalent to the
following two facts:

a) For every o : o — & and (¢’ EA 7} € '\ X the diagram
| & ¢ B
F, ®G. wigilesa 7} H.
{7.6) 4 [
- -
Feeg, S0 g
is commutative,

b} (o] is really 2 morphism into the homorphisms in the functor category, which
signifies that for all commutative diagrams

a
L Foac, 22U g
(7.7} | L+ the diagram id®~. | 4%
a U
o 5 £ . F, &G, W) (8 H.

15 commutative.

For a given & we define for all o 5.
{7.8) wloH8) = wir)o(f.2id) : F,2G, — H..
Then the property (7.6} follows trivially by construction and (7.7) follows easily from
(7.3). The corresponding ¢ ~+ 4 is linear,

In the other direction let 4 be given. We define by the equation
{7.9) plo) = wioMid) : F, @G, —+ H,.
The condition (7.5} can be derived from (7.6) with 3 = id and (7.7) with 8 =1d, 5’ =
~+ = a. The map ¢ — 1 is linear too. :

The correspondences (7.8) and (7.9) are inverse to each other {to see this use condi-
tion (7.6 in one direction) and define the asserted first isomorphism of the proposition.

The second isomorphism follows from the first and from Yoneda lemma by applying
Hom{£..7} to the left and the right —hand side. ]

Corcllary 7.4. Let F. and G. be sheaves on X.. Then
Hom({F.G) ~ pi.Hom (p%F.,p%G.).

Proof. Standard abstract nonsense using Proposition 7.3, both versions, and Re-
mark 7.1, . : O

Using the adjunction morphism on every component one easily gets a generalization

of Proposition 7.3 to complexes:

Corollary 7.5. Let F', G, H be complexes of cohomological systems of coefficients
(sheaves). Then there exists ¢ canonical isomorphism

Hom(F £ G, H) ~ Hom(F ,Hom (G .H}).
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This isomorphism is compatible with the homotopy relation.
By adjunction we associate to
Hom' (F',¢'} % Hom (F,,G))
a canonical morphisrﬁ, the value map
(7.10) ‘Hom (F,G)&F — Gl.

Obviously this is a combination of the value maps on the components. On a component
this map can be given more explicitly, )

Using the proof of Propesition 7.3, in particular equation 7.8, the following lemma
is easily seen:

Lemma 7.6. The value map
Fo®Hom(F.G) — G.
is given on every ¢ by the diagram

F, @ Hom(F., G}, —— ’ Gy

l T can.

al ai‘»o'Ea'\A?

F, ®H0mpunc(g\i‘A)(F- oprs,G.oprs) F, @ Hom(F,,Gq}.

Furthermore, we will give an important example where it is possible to calculate the
inner Hom explicitly:

Corollary 7,7. Let X. = A.[n] be a standerd simplex and M be some R —module.
Let F. be an arbitrary cohomeological system of coefficients (sheaf) on An] and M
be the constant sheaf with stalk M. Then there exisis a functovial isomorphism

Hom(F., M) ~ Hom{F, M),
where id € An[n] is the identical map.
Proof. For an arbitrary sheaf G. the canonical map
HO‘-“R(GM) — HO‘!R(ng,M)
w7 Pidy
is an isomorphista because id is a final object in the category associated to A.[n]
Now let H. be an arbitrary cohomological system of coefficients {sheaf). We get
Hom({H. Hom(F. M}) ~ Hom{H.® F., M}

~ Hom{{H. ® F.}is, M)

~ Hom(H4, Hom{ Fia. M})

~ Hom(H., Hom(Fiq, M)}
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The corollary follows from Yoneda lemma. _ 0

Corollary 7.8. Let F: and G. be cokomological systems of coej}'iczents {sheaves) on
a simplicial set X.. Then the map

(F56) — (... )€ |] Hom(F,G.),

e X

defines a functorial isomorphism Hom(F. G} ~ F(X.,Hom(F.,G.}),

S I

Proof. Let F. := R. be the constant cohomological system (sheaf) of coefficients
with stalk R and §.:= F., H. := G.. Then by Proposition 7.3 applied to F .G ,H.
and by the universal property of lim we get

Hom(F.,G.) =~ Hom(R.%F.,G)
~ Hom({R,Hom{F. G.}}
(=~ Hom(pyR,ryx Hom(F,G}) in the case of sheaves)
~ limHom({F.G.)
X
~ T(X.Hom(F.G.).

This construction is functerial and with the help of the calculations in the proof of
Proposition 7.3 it is easily seen that this is the same morphism as in the assertion. O

Corollary 7.9. Let f : Y. = X. be o morphism of simplicial sets. For cohomological
systems (sheaves) F., G. on X. and H. on Y. there ecist functorial isomorphisms

&G ffrRe G,
Hom(G.. f.H.) foHom(f*G., H).

N

14

Proof. The first isomorphism is obvious. To get the second we apply Hom(F.,7) to
both sides and use Proposition 7.3, Lemma 5.1 and the first isomorphism:

Hom(F., Hom(G., f.H.)) =~ Hom(F.®G. f.H)
Hom(f*(F.® G.},H.)
(
(F.

12

i?

Hom({f*F.,Hom(f*G., H.))

~ How{F., f.Hom(f*G..H)). D

Lemma 7.10. Let F., G. be sheaves on X.. Then there exist functorial isomor-
phisms
|[F.2G| =

| Hom(F..G.)|

!

|F| @G|,
Hom(|F.|,|G.]) .

11

Proof. Let {0, 2.7 } be a compatible data with V asin Lemma 3.15. Let us calculate

{
{IF|&|G]) V. By deﬁmtlon Lemma 3.15 and Proposition 3.17 a section s is given
g

T T

T
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by a compatible family of

S‘elF!(f}‘)®|G|(‘2) = Fai®GU; = tFCgGl(f}‘)

for a system of compatible data (o, @i, ‘ff,) and with respect to inclusions v, C Vi
Hence we get an isomorphism

FeG|(V) = (Fl2|G)H(V).

The analogous statement for the inner Hom follows from similar considerations. It is
not difficuit to see that these isomorphisms are compatible with respect to maps of
compatible data and hence induce isomorphisms of sheaves. O

7.2. Flai resolutions

Let P. be a cohomological system of coefficients (resp. a sheaf) on the simplicial set
X.. Obviously P. is flat (i.e., the functor 7@ P. is exact ) iff P, is a flat R-module for
all ¢ € X.. In this subsection we construct flat resolutions and give another description
of D7(X.). . _

Leti: (SurlX }trw — Sur~'X be the inclusion of the subcategory with the same
objects and identity morphisms only. Dencte by .1 the left. Kan - extension of 1 with
values in R — Mod. Let F. be asheafon X.. For every ¢ € X we choose an epimorphism
Pl¢) - F, with P{c) a free R—module. This can be considered as an cpimorphism

P — K

where P is given by ¢ — P{g). Obviously .i P is a projective sheaf with fibres
tl P @ P

Therefore the map
AP - LiP'F. - F

shows that SH(X.) has enough projective and ftat objects.
Denote by P~{X.] the full subcategory of D~ (X} of flat complexes. Then we have

Lemma 7.11. The embedding P~(X.) = D™ (X.} is an equivalence of categories.

Let F-, G be two complexes of sheaves on X .. Let us consider the value map
Hom (F.G)& F — G

defined in {7.10}. Assume that F' is a complex with bounded to the right cohomelogy
and G is a complex with bounded to the left cohomology. Changing if necessary
G’ to a quasiisomorphic bounded to the left complex of injective sheaves and F
to a quasiisomorphic bounded to the right complex of flat sheaves one easily gets a
extension of the value map to the derived category

(7.11) RHom'(F,G)&F — G
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with F' € D~ (X.} and F' € D¥(X.). : )
Taking analogous resolutions and using that Hom({P., I.} is injective if P. is flat and

. is injective (follows from Proposition 7.3}, we get the adjunction formula on the
derived category from Corollary 7.5

Lemma 7.12. Let F',G: € D (X)) and H. € DT (X.}). There exists an isomor-
phism

L -
Hom (F @ G.,H:) =~ Hom (F,,RHom (G, )
functoriel in afl arguments.
Lemma 7.13. Let F',G € D~(X.). Then there exists a functorial isomorphism
L L
Fec| = IFISICI.
Proof. By Lemma 7.11 we can assume that F is a bounded to the right complex of
flat sheaves. By Lemma 3.17 |F'} is also a bounded to the left complex of flat sheaves

and the isomorphism follows from Lemma 7.10. |

7.3. Constructible sheaves

Definition 7.14. A sheaf F. of R-modules on a simplicial set X. is called a.

constructible sheaf if all stalks £, with ¢ € X are finite R -modules.

Obvicusly constructible sheaves define a full abelian subcategory of SH(X.}. (Re-
member that & is noetherian.)

Lemma 7.15. Let F. and G. be constructible sheaves. Then
{i}) F. 2 G s constructible.
() If X. s locally finite, then Hom[F.,G.) is constructibie.

Proof. (i) is obvious.
Let ¢ be a nondegenerate simplex. By the definition of the inner Hom 7.2 we have

Hom(F.,,G.); = HoMpynep\Sur-' & R-Mad}[F 0 BT, G0 B, ) .

Using the natural functor Ay — Sur™' X we get a homomeorphism

HomFunc[a\Sur“l‘.R— Mod)(F' oy, G.o prﬂ)
(7.12) i

HOMPunc(e xo,R - Mod) { F- 0 Py, G o prip)

where pr! denotes the natural map ¢\Xp — Sur~!X. By Lemma 3.6 we see that
the homomorphism (7.12) is injective. It remains to prove that the lower term is a
finite R - module. But this follows trivially from the fact that the category o\ Ap is fi -
nite. a0

by

e
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8. Verdier duality

Let f: X. — Y. be 2 map of locally finite simplicial sets with fibers of bounc
finite dimension. The general problem is to construct a functor

£ DHX) — DY}

which has the same properties as the topological f' —functor. In particular, we w:
it to satisfy a duality of Verdier type. We will restrict to-the case of absolute Verc
duality, i.e., ¥. = A.[0]. One should also add the condition, that a boundary of
arbitrary nondegenerate simplex in X. is nondegenerate. Actually we only need i
condidition only from paragraph 8.3. on, but our construction of f* is not the ri
one if we omit this assumption. .

8.1. The functor f' for a map to a point

Let X. be a locally finite simplicial set of finite dimension and frX. = AJD)
map to the point. For every natural number n we have a morphism of simplicial ¢

1 ORIy
&0 (0.8 D n) — a(0).

— X.

First we construct a functor
(8.2) o ShALOD) = A — K (X).
Let A be an object in A. We define

(8.3) A = ml4) = ][ el

gEX,

S

where A denotes the constant sheaf with stalk 4. For a morphism 3:¢ — 7in A
have a commutative diagram

Als] N
(8.4) la X. inducing [7].4 24 [TleB.3"A
Afr]l A N i
f7l.4

where Ad denotes the adjunction worphisim given in Lemma 5.1 F‘urt.herm_om we |
used Lemma 5.3 and the obvious relation 3*4 = 4. This censtruction is obvio
functorial in 4 and 3.

Lemma 8.1. If 8 = s is ¢ surjective map the induced 5™ in {8.4) is an isomorph

Proof. It is sufficient to check that s.4 = 4. One way to see this is to pass tc
geometric realization, but here we give a simplicial proof. Let 7 € Xm and o1 k-
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be g simplex in A.[r]. Then we get

(5od)ny = dm 4= [ 4

ESm’8a mo(kSmis.) -

The objects of the category k % m\s. are given by commutative diagrams

i ¢k
81 la
S om

where 3 is a map of ordered sets and 7152 motphism in Sur—!Y with ¥ = A.fr] =
A[m). The morphisms are morphisms 3 —+ 5 in Sur™' X with X. = Alo] = Aln]
making all these diagrams commutative. Let us consider the object given by j = n,
4 =id and v = s"1eo. It is not difficult to see that every object has a morphism
1o this object, which is given by 3. Hence the category k 3 m\s, is non empty and
connected and therefore s.(A), o = A. By definition it is easily seen that the maps

between the stalks are the identical. O

For a fixed map of ordered sets §:m = and ¢ € X, the set {r € Xp} 31 = o}
i« finite, since X. is locally finite. Hence the following definition makes sense:
For 3:m — n let 3% be defined by the diagram

Fl)a 2o f(An

(8.5) FEXa cEXom
1 i:
M4 = o4
55

The construction is functorial in A and 3 and therefore f'(A). is a cosimplicial object
in A. If we consider the associated (homological} complex we get a functer

oA = SHIA[Q) — KX
“This functor is exact, since the direct image functor is exact on constant sheaves and
the product functor on sheaves is exact, With the help of the total product complex
we extend f'to

(8.6) K+(A) = KT(A0) — K(X).

Let us now consider the reduced complex:
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Lemma 8.2. The surjective map s; : m — m — 1 induces the fellowtng isemorphis

@

Flma = PlAm

I i

‘A

76Xm”["']_ — agm[o]*&

~7 U

[o]+ 4
a€im(s} 16 Xm

Proof. By Definition 8.4 we see that the map  exists. For afixedo € Im(s}) € X.

there is exactly one 7 € Xm_1 with s}(r) = o, since 8]s} = id. The assertion follow
from Lemmas 8.1. :

This lemma allows us to specify the reduced complex associated to the cosimplick
abject f'{A).

1l

F (AN DIm(s; : F(Any — F(4)n)

(8.7) e

nondeg.

G lol.A
e X,
nondeg.

i

With_l the induced differential, The canonical projection from f'(A4) to fi.4(A) defines
functorial homotopy equivalence by a theorem of Eilenberg - MacLane (see [6], Secti
3.). X. has finite dimension and so we get an exact additive functor to the catego:
of bounded complexes

(8.8) flea + A = SH(A[0]) — K'(X).
This functor can be extended to an exact functor
Flog @ KA = KH(A[0Q)) — KH(X)
and to the derived categories
flea 1 DY(A) — DX
Lemma 8.3. The functors
Pl flea + KT(A) — K(X)

are homotopic. ( The maps are the notural incluston and projection.}

Hence their extensions to the homotopy category K+ (A} are isomorphic and we ¢
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Lemma 8.4. f' : Kt(A) - K({X) preserﬁes quasiisomorphismms. The natural
projection and inclusion maps induce an isomorphism of functors

Fo flg o DYAY — DH(X).
Lemma 8.5. for all F' € D™{X.) there ezists ¢ natural isomorphism
1 . r L .
FF) = F(RgF.
Froof. By Lemma 7.11 we can assume that F' is a complex of flat sheaves. The

assertion follows immediately from the definition of f',; given in (8.7}. w]

8.2. Absolute Verdier duality

Proposition 8.8, Let X. be a locally finate simplicial set of finite dimension and f be
the canonical map to the simplicial point A [0]. Let A be the category of modules over
some noethertan ring R as category of coefficents and Hom the inner homomorphisms
in .A. Then the following properties hold:

(Y Let F' € KT (X.) and M € Kt(A). There is ¢ funclorial isomorphism in K{.A4)

Hom (RT (X, F), M} = Hom (F,f(M)).
(i} Let £ € K=(X.} and M' € Kt{A). There is a functorial isomorphism in K[ A)

' Hom {C.(X.. F'),M) ~ Hom (F f(M)}.

Proof. The proofs of {i) and (ii) are exactly the same. We will consider them
simultaniously.
Let us calculate the left and the right complex in a fixed degree n.

I-b—mn(ﬁrf()('sf‘.-)sﬁ'{.) = H @(EFC(X'SF‘)_TR!‘M‘}
mt=n

with the differential D™{¢) = dy 00— (—I)“:pod'ﬁr . By the definition of RT(X., F)
wi get

(8.9} Hom"(RIL(X. F). M) = ] Hom| € F7M°
i+ ftk=n cEX i

with differential D
D)

dy o =~ (-1 pode, +(-1)*gody)

(8.10) _ . L
B = dy o + (~1Feo (-1P7dg) + (-1)Fpo ((-1)*H1dg ).

Therefore this is Just the total (product) complex of the triple complex

(&11) (i,7.k) — ’Hom( b F;i,M*)

oeX_y
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where we consider j — F~7and k= () F7=* 35 the dual homological camplexes
L

(The sign convention is the standard one ([4), §1 .1) with the order of indices i < j
On the right - hand side we get pelee << k)

Hom™F. (M) = T[] #Hom(F~2, i ym)
Jtm=n
with the differential Dn(p) = Qpiaey © 9 ~ (~1)"p o d.. By definition of f' we
furthermore have

Hom™ (F", f(M"))

fl

j+m=n i+k=m ocX_,

I Hom(F_j, 1 1l [:;],M)
(8.12)

il

i1 'Hom(F.“j, 1T {G]H}L")

i+ytk=n TEX_
and the differential has the following form
(313) DM} = (=DMdp ep + (~1Fdy o — (~1)"pody
= ((=D"p o + (-1)dp o + (~1)*hp0 ((—1y+dg) .

We need the following

Lemma 8.7. Let F. be o sheaf of R —modules on X. and M be some B - module,
For every m > 0 let Ay be the (functorial) composite of the morphisms

Hom(F,,, 11 [GJ*M) 24 ] Homi[o]' F., M)

=X, #ENX

1 stalk in id € A [m)

'Horn( o] FU?M) <  II Hom({[¢]*F.)iu, M).

X ae X

Then A is an isomorphism of R - modules and for every « . m — n the following
diagram is commutative

’Hom(F., 1;[( [o]*ﬁ) N Hom( & F,,,M)

seX

TQ{-!:)Q? 'T?O(.):Cc',

'Hom(F., r)[c [a]*ﬂ) SN ?{om( & F,,M),
=X, X,

In offher words A = {Ap,} defines an isomorphism of cosimplicial B modules and in
particuler an isomorphism of the associated complezes.
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Proof. For the first part we verify that the stalk map in the definition of A, i3 an
isomorphism. But this follows easily from the same considerations as in the proof of
Corollary 7.7.

For the second part let us take some map

o B () = ] el M
TEX,

For the components of i we will write (@) = i o pry © i, where i, and pr, are the
inclusion and the projection map between FL(MY} and [o]. M. We have to prove that

Aot 0w} = Aap)oa, 1 CPX,F) = @ F — M.
TEXm

It is sufficient to verify this on every Fr, C C7(X., F.). By the construction of a. on
the cohomology with compact support, a* on FH{AM) and A we see that

a(Fr) € @ Fo
7EXn
a*oe=rn

(et oolle, = Am(le” e )(rollr,
(a” o )(ra) Y. a*oplo).

gEXn
a“g=Tp

Therefore it is sufficiently to consider the case

p = [[ ey = I el

fEXn aeX,

ato="Ts
But the set of such o is finite, since X is locally finite. Using the fact that the assertion
is additive in @ we may assume that ¢ = p{gg) for some g € X, with a*op = 7o.
Passing from [] [o].M to [og]. M and from €D F to Foy, all we have to prove is

aEXn X,
the following:
Let ¢ := aq. 7 = Ty and # = pry o2 Then the commutative diagram
F N (o3 M 3 Ad(ﬂ'lij}:n—-n M
) induces a commu-

[ La”  tarive diagram o T I

F M F, ey

This can be seen using the following commutative diagram. Bearing in mind that
[7] = [o] 0 &. with the natural e : A[m] = An], we have

F-r = ] [T]*(Fjid:m—)m = ((a‘}‘[U}.F‘}gd
1 i Adla” o wjid:mﬂm (%} i (O:..)' Ad(ar)ia
M = Mad:m—-ﬂ-m = ((a-}‘i{)id
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23

= el (Fla [} (F.)iq = F,
1 Ad(d)a 1 Ad{d)ia 1
- Ma aﬂd M;‘ d -
The square {(+) is commutative by the definition of &* given in (8.4). This proves the
lemma. O

Let us continue the proof of the theorem.
By (8.12), (8.13) and this lemma we see that

Hom"(F', f(M)} = 11 ‘H.om( &b F;J’,M")

i+jt+hk=n FEX _»
with the differential
D) = po ((=DFldp ) + (—1)*dy 0p + (~1)"Fpo (17 *dy) .

This is just the total product complex of the triple complex

gEX

(k,i,5) +— ’Hom( D FM

where we consider j = F~? and k = @ Ffted a5 dual homological complexer -
gEX ok

the order of indexes being k < i < j. This differs from the left —hand side (see (8.9
(.10} and {8.11) } only in the order of the indices i, j, k- But between them we hav
a natural isomorphism (using Deligne’s sign convention, see [4], 1.1.4.2 ) of the tot:
(product) complexes of triple complexes

Hom™ (RT(X,F).M)  —— Hom™(F, f1{M))
I i

1 ’Hom( fas) F;J‘,M*) — 1 Hom( <3 F;f’,M")

i+jek=n cCEX g itjt+k=n a€X_»

st

e

with order i < j < &k with order k <1< J
{wige} — (-1 %0 54)) -

{This can also be proved directly by showing that this sign convention defines :
isomorphism of complexes.) The constructed isomorphism is obviously functorial
F' and M. This proves the proposition. ’

Theorem 8.8. Let X. be a locally finite simplicial set of finite dimension and
the canonical map to the simplicial point A.[Q). Let F7 € D¥X.) and M € D*(/
Then we have a functorial isomorphism in D(A}

R Hom (RT.(X. F),M) ~ RT{X RHom (F.f{M)).

R
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Proof. Without loss of generaiity' we can suppose that F' is bounded and M isa
bounded to the left complex. Let us prove the theorem in several steps

Step 1. M can be changed to a quasiisomorphic bounded to the left complex I of
injective R -modules,

Step 2. F7 can be changed to a bounded to the right quasiisomorphic complex of
flat sheaves P € D"(X.).

Proof. See Lemma 7.11. m}

Step 3. The complex f'(I'} is a complex of injective sheaves on X.. It i3 homotopic
to fi.,(I') which is injective and bounded to the lefs.

Proof. By definition of f' (see 8.3), of f_; {see 8.7) and their extension to complexes
we have to prove that the sheaf [¢], I™ is injective for all simplices o € X, and m € Z.
But the direct image functor has an exact right adjoint by 5.1. Hence it maps injective
¢cheaves 1o injective ones. It remains to verify that the constant sheaf I is injective
on the simplicial set Ajn] But the corresponding category Sur~'Y to Y = A.[n]
has the final object id : n — 1 and for an arbitrary sheaf F! on ¥ we get the functorial
isormorphism

Hom'é.fg:!(F-?E.} — Homu{Fig, I";y) = Homa{F,I™).

Hence this functor is exact in F.. The second part follows frorn Lemma 8.3 g

Step 4. The sheaves Hom (P™, f'(I')") and Hom {P™, fl.4(I'}") are injective for
arbitrary m, n € IN. (P’ and ' as in Step 1. and 2.)

Proof. From Step 3. we see that it suffices the injectivity of the sheaf Hom(P, I}
for an injective sheaf I. and a flat sheaf P. This follows from 7.3. m|

Step 5. The complex Hom (P, f'(f7)) is a complex of injective sheaves, the homo-
topic complex Hom (P, fl.4{I")} is a bounded to the left complex of injective sheaves.

Proof. By definition we have
Hom™ (P, f{I)) = H Hom (P*, f(I')"*),

and similarly for f},; which is zero for = << 0. We get the assertion from Step 4. and
from the fact that the product of injective objects is injective. _ a

Now we can prove the theorem. Let us consider the left - hand side

RHom (RT.(X..F). M} =RHom (C.(X..F}, M) by definiticn of RT,
~RHom (CAX.,P),I') byStep 1. and 2., Lemma §.11
~Hom {C.(X.. P).I). '
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For the right —hand side we get
RF(X.,RHom'(F,',f"(M'))]

12

RT{X.,RHom (P, f{I}})) by Step 1. and
~ RI(X..Hom{P.f'{I)}) by Step 3.
~ T{X.,Hom (P, f{IN}) by Step 5.
~ Hom' (P, F(I'))

by Corollary 7

Combining these calculations and applying Propositicn 8.6 {ii) changing F’ to P .
M to I', the theorem follows.

8.3. The dualizing functor

Let X. be a locally finite simplicial set of finite dimension. Let f be the map to
simplicial point A [0] and .4 = R - Mod the category of modules over the ring R.
In this paragraph we study the properties of the dualizing sheaf {complex}

Dy = f(R)
and the associated dualizing map:
Dy : DMX) — DYX)
F = RHom (F,Dy).

Moreover, let 38 X.) be the full subcategory consisting of complexes with construet
cohomology. We will see that Dx preserves this subcategory {see 8.18). This is
main theorem:

Theorem 8.9. [Verdier- duality] Let X. be o locally finite simplicial set of |
dimension and suppose that the boundary of @ nondegeneraie simplez is nondegene:
Let DE{X.] be the subcategory of DP(X.) of complezes with constructible cohomo
Then the contraveriant functor Dx maps DL(X.) to DI(X ) and defines an antis
uality of DE(X.).

The proof will be given later in §8.6..

Remark 8.10. The Example 8.17 shows that Theorem 8.9 is not true if woe
the condition that the boundary of a nondegenerate simplex is nondegencratc.
problem is that the given definition of £ in § 8.1 works well only under this assump
It seems possible to give a definition in general, but the constructions get more
more complicated. The idea is the following:

One has to construct a functor

Ryg. : DY) — DY(X)

for an arbitrary morphism g : Y. = X. which is compatible with R|g|. with ro
to the geometric realization. This functor should come from an explicitly given ¢
functor

SHY.) — KY(X)
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as it was the case in §5.2 for X. = A [Q].

The “right” definition of f' {f the map from X. to the point) seems to be as follows:
Take the old Definition 8.3 and change [n], to R[n].. It is easily seen that [n] is exact
under the nondegeneracy assumption. {The fibres of the geometric realization of [n]
are finite unions of points.) Then one should have an isomorphism

RHom (RT.(X.,F),M) ~ RT{X.,R¥om (F, f{(M)))

analogous to Theorem 8.8. By Lemma 5.10 the two formulations agree, if X. has the
nondegeneracy property. Theorem 8.9 should be satisfled. The difficulty is to find a
manageable definition of R g..

For further considerations we fix an injective resolution

F=0—p %9

of tﬁe ring f.

8.4. The dualizing sheaf

Let us analyze the main object of duality, the dualizing sheaf
- Dy = fUR) = freg(R) € DA(X).

Let 3 € Xm be a nondegenerate sunplex We want to specify the complex of R-
modules Dy . By the definitions of f' {see §8.1) and the direct i image (see Section 5)

we get
o = I (ohB = [ Rrebnsse)

TEX n cEXn
nondeg. nandeg.

Obviuosly, the sheaf structure map D% n = D%, for an arbitrary 7 — 5’ s given by
the induced map
: #\Sur~ o] — n\Sur~![o].

" The differential comes from the cosimplicial structure defined by:
H3:—m— —nand 3:0 — 7 we have a functor

mSurg] — 7\Sur”![r]

defined in the obvious way by 8, : A{-m] = A[-~n]. Taking these maps together
we get DY | = DY (see (8.5)).

Lemma 8.11. Let g, 7 be simplices on ¢ simplicial set X.. Then the map

T (n\Sur_l [«])
na — (ide Afo],n D o = [o](id)}

Homgur-1x(n0) —

is an isomorphism.
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Proof. Let ¢ € X,. An object of 5\Sur~![o] is given by a pair
( ifn,n3 ﬂ*ﬂ)

with v € Sur~'.%" and 8 a map of ordered sets. 3 gives a morphism 8*¢ — o and we
get a morphism

(8.9} ~— (id,Boy).
This shows that the map in the lemma is surjective. For an arbitrary morphism

(87} — (89 given by ¢ : 8 —

.we have a commutative diagram

ol 2, o
n [
gt L o,
and hence the map is an isomorphism. Wl

For a locally finite set X. the set of morphisms Hom(n, a) is finite for all & and not,
empty ouly for a finite number of nondegenerate o. Hence we get

Lemma 8.12. The complex fed E}n is a bounded from —dim{X.} to - dim(n)
complex of finitely generated free R - modules for every i € X.. Hence Dy € DYX).
Lemma 8.13. There exists a functorial isomorphism
FIF) = DygF
for F- e DH{X}.

Proof. From the definition of !, (see equation (8.7); where we can obvmuqu change
the product to a direct sum) we get immediately

f:e(l( ) — frod( }R

and we can pass to the derived category since fia(R) is a bounded complex of Hat
sheaves by Lemma 8.12. _ O

8.5. An explicit description of the dual of a sheaf complex

By the definition of f' and £, (see §8.1) we have the following explicit description
of the dualizing sheaf complex: Dy is quasiisomorphic to the total product cornplex
of the double complex

{8.14) 1_; — H frl. 2

cEX_,
hondeg.
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The differential of the total complex on the (4, § }— component is given by
D = ((-0"d) + (-1)'d;,
where d' denotes the (homological) differential coming from the cosimplicial structure

defined i (8.5).

Lemma B.14. Let [ be an injective module and ¢ € X,‘ some simplez. Then the
sheaf {o]. L is Hom ocyelic, i. e, the functor Hom(?,[0].1) is ezact.

Proof. From Corollary 7. and Corollary 7.7 we get for an arbitrary sheaf F. on X.

12

Hom(F., [o}. 1) [¢]. Hom({o]"F., I}

[el.Hom(F, . I).

12

This proves the assertion since all the components on the right - hand side are exacmt
funetors {{o], for constant sheaves only}.

By this Jemma we can give an explicit description of Dx(F) for a sheaf complex
F* with differential dr. The explicit description of the dualizing sheaf complex 8.14
consists of inner Hom acyclic sheaves, since Hom commutes with products. Hence we
cal write

Dx(F) = Hom (F',Dy)

and we get the total (product) complex of the triple complex

. i, j, k — Homl F7%, H o).
oEX_;
nondeg,
with differential on this component
i gl i gf itj k-
D = ((-1fd) + (<D + (=) (1))
Using the Corollaries 7.9 and 7.7 we get for the components

Hom | 7%, [] (e}

12

[T Hom (F~*,{o).1;)
oEX - sEX -
nondey. nondeg. ([ 1 7 . ‘T)
~ o)« Hom {[o]"F~", I;
{815) aEI}(_;[ 1 -
nondeg.
T foj.Hom (F7F, L) .
-1=p g
nondeg.

12

We have to understand what happens to the differentials under these isomc.)rphisn?s;
The differentials coming from F* and I° still act in the natural way. The differential
coming from &' is described in the following
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Lemma 8.15. Let F. be a sheef of R —modules on X. and M some R - module
Then the isomorphism

A

Hom| F, [] le].2| = 11 (el Hom(F,, M)
FEXn e X,
nondeg. nondeg.

constructed in 8.15 defines s commutative dicgram

Hom | F, ] {rl.M LN IT [r].Hom{F., M)
TEXN, TEX .
nondeg. nondeg.

. s )
I“{ﬂ)”‘ Ta

Hom| F., T[] [olM| -2 T[] [o].Hom(F,,M)
TEX, 2EXn T
nondag. . nondeg.

foralia:m —n. The map o is induced by the maps
[sl.Hom(F,, M) — [rl.Hom(F,, M)
foralir 3o, ie, a'0c=r, coming from the adjunction morphism

Hom(F,, M) — o, Hom(F,, M)
—  a.Hom{F., M)

after applying lo].. (Here o, denotes the natural map Alm]— Alnl])

In other words A = {A,} defines an isomorphism of cosimplicial sheaves and in
perticulor an isomorphism of the associated complezes.

Proof. This is essentially the inner Hom analog of Lemma 8.7. The proof can be

- done using the same reduction process.

An alternative proof of the assertion is to apply the functor Hom(G.,?} with an
arbitrary sheaf G. to the diagram 8.15 and to show that we get a commutative diagram
of functors in .. Bearing in mind the construction of A, via Corollaries 7.9 and 7.7
one can easily get a reduction to Lemma 8.7 with &. & F. instead of £.. We omit the

4

details.

Accumulating all our information we now get the following explicit description of

b the dual of F:

Lemma 8.16. Let K;(X.) C K(X.} be the full subcategory of complezes with
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bounded cohomology. We consider the functor

Dx : KiX) — K(K(K(X) _ I8 K(X)

Fo— |i§,k— T] lelsHom (F7*%, 1}
o X-l' - -
naendeg,

where:
(i) The differential in i is given in Lemma 8.15,
(i1} The differential in j is induced by the differential on I
(iii) The differential in k is induced by the differenticl on F".
(iv] The order on the set of indices is given by i < j < k. Tot denotes functor
mapping o triple complex to its associated total complex with respect to this order.
Then Dy is exact and has image in K;(X.}. It induces a commutative diagrom

Ki(X) 224 Ky (X))

! !

DHX) —X5 DHX).

Proof. We remark that RHom{F",Z) with T € D¥{X.) is a bounded to the left
complex of inner Hom acyclic sheaves and that F* € D(X.) (not necessary bounded
to the right) is isomorphic to Hom(F", I'}. This follows from the convergence of the
spectral sequence of the associated double complex.

Hence the diagram of the lemma is commutative and Dx has image in K;{X.). The
exartness of Dy is obvious. jul

Example 8.17. Let X. be the 2 -dimensional standard simplex with boundary
contracted to a point. Suppose R is an injective R~module and the injective reso-
lution is given by R. Let % be the 0- dimensional simplex and r the nondegenerate
2 - dimensional simplex. In Example 3.12 it was shown that Sur™!X is equivalent to
the category consisting of the two objects 77 and v and one morphism (8 = 41 = &)
from i to 7. Let F. be a constructible sheaf given by a map ¢p : Fy = F.. By Lemma
.16 we get the following explicit description of Dy (F.):

Dx(F)* = I1 Il leluHom{E;* I%)
it+itk=n oeX_; T
nondeg.
[n].Hom{F,, R} if n = 0,
= [rl.Hom(F, R} if n = -2,
0 otherwise.

Therefore
Dx(F) = Ipl.Hom(F, . R) & [r]. Hom{F., R)[2].
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We see that the dual sheaf complex has "forgotten” the structure map ¢r. Hence the
double dual of F. cannot give F.. It can be verified that the double dual of F is the
complex

Dx(Dx(F)) = InlFy @ [nlFel2) & [l Fx4].

Lemma 8.18. The functor Dx : K;(X.) =+ K(X.) preserves the full subcategory
K LC&X -} of complezes with constructible cohomology. In particular, Dx maps DY X.)
to DE(X.). :

Proof. The functor Dx is exact, hence it is sufficient to prove that Dy (F.) has
constructible cohomology for a constructible sheaf F..
Dx(F.\) is the total product complex of the double complex

i,j — ][ lelHom(F,.1;).
eEX_;
nondag,

We must verify that the stalk complex in every %
ij— I Hom(F,,imeinsei)
FEX .
nandeg.
has finitely generated cohomology. Let us consider the associated spectral sequence
for the cohomology of the total complex. We have

B = [ xR, RS

ocX_;
nondeg,

Taking a free finitely generated resolution of F,, one easily sees that Ext/(F, R} is
finitely generated. By Lemma 8.11 we see that E;” are finitely generated E—modules.
The spectral sequence is concentrated in — dim(X.) < i < 0, hence is convergent. It
follows that the cohomology is also finitely generated. m|

8.6. Proof of the duality theorem

Let us now give the proof of the duality Theorem 8.9.
Let F' € D*{X.). We ccnsider the value map

L
F &@RHom (F,Dy) — Dy
defined in 7.11. By adjunction, see Lerma 7.12, this defines a functorial morphism
F — RBom (RHom {F'.Dx),Dx) .

An alternative definition of this morphism would be the execution of this construction
on the complex level, thus getting ’

F — Hom (Hom'(F',Dy). Dy}
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and to pass to the derived category by taking an injective resolution of Dy. This
construction has the advantage that we do not need an flat resolution of F! to pass to
complexes.

This map defines a functor morphism id — Dx o Dx. We will show that this
morphism is an isomorphism on DI(X.). o

First we lift the problem from the derived category to the category of complexes.

Lei F/ € Ky(X.). Applying Lemma 8.16 all we need to prove is that the value
morphism of complexes

F — Dx(Dx(F7)

is a quasiisomorphism. But the left and the right - hand side are exact functors in F,
hence it is sufficient to consider the case that F- = F. is a constructible sheaf.
Let us calculate the right —hand side with the help of Lemma 8.16:

Dx{Dx(F)"
T 11 lolHom{Hom "(F,Dx)s &)

ikjtr=n g2 X,
nondeg.

itjtr=n g2X_, {—D+(—k)=—r TEX:

= I1 I [g].?{om( I1 13 [T].?{om(}«“hf-k] I

nondeg. nondeg.
-1 .
_ H I_I [g],?{om H 1_[ 'HOIII(FT, I—k)’"‘ (G\Sur [r]) , 1i
1rj+r=n g€ X (=)= (=k]=—r TEX,
nondeg. nondeg.

-1
T e ).
ipytkeiz=n sEXL TEX,
nohdeg. nondeg.

with a differential induced on a fixed i, j, k, { - component by
D = (-1pd, + (~1)id} + (=1 (=1 it
— (_Uid!_i + (_nid,; + (_1)i+j {__1)k+1+1 ({_l}l—ldé_H + (_1}-—£d1—k-1)
(—1}‘d!_‘- + (—l)idf, + (__l}i+j(_1)k+ld;k—l + (_1]i+j+kdi+l X

"

Hence we get the total complex of the quadruple complex

i, g ko b H H [GI.HO{H('HOm(Ff,I_k),fj)”(”\s‘"_l[’]) .

gEX_; reEX,
nondeg. nondeg.

The morphism F. = D{D{F.})® is induced by the maps for i = —{, k= —j:

Fo— H H [Ul.Hom(HDm(FT,Ij),fj)ﬂo(v\sur—l[r]),

gEX, TEX:
nondeg. nondeg.
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which goes to the components of the product with g = 7. It is associated to the map

e]’F. — F, —+ Hom(?{om(Fo,Ij),Ij].

{Remark that o\Sur~![o] is connected by Lemma 8.11 and Corollary 3.9.)
_ Tix now i and {; the double complex

j. k +— Hom{Hom(F,, I7%), ')
is just the double dual for the finite R-module F;. The natural map
F, — Hom (Hom (Fr,I'), T’}

gives a quasiisomorphism. Therefore the associated map of constant sheaves is a
quasiisomorphism too. Applying the exact on constant sheaves functor o). and taking
the product over the ¢ and 7 we get a quasiisomorphism

H 1_[ [U] Ffrg(o\Sur“[f])
el A —

cseX_: reX)

nondeg. nondeg.

i

FEX i TEX;
nondeg. nondeg.

Tot} j, k — 1 I [cr}.'Hom(Hom(Ffo(a\'Sur-][T])'[—k) ,p')

{where the first complex is concentrated in the zero component.} We have a natural
map from F. to the first sheaf (i = —L... .} which is compatible with the map to the
second. Using the specific description of the differentials in i and [ we see that this
map induces a map of double complexes. Passing to the total complexes we get by
some standard spectral sequence arguments a quasiisomerphism too.

It remains to caleulate the cohomology of the first double complex

i,f — H H [O_].F:ro(o'\sm”l[r]) .

ceX_., T&X
nandeg. nondeg.

It is sufficient to verify that for all nondegenerate simplices 7 the natural map from
F, into the total complex of the double complex

(8.16) wi— 1 I 7 sl ) eno(msurie)
seX i TEX:
nondeg. nondeg.
is & quasiisomorphism. Let us fix some 7 € X, _
Remember that the differentials in i and { are induced by the cosimplicial structure:
If o : —i = —¢ is the map of ordered sets and &2 7 ¢ the various maps with the
same underlying map of ordered sets, then the natural functors

o'\Sur 7] LN o\Sur™'[r]

PSur~lle] =% n\Sw[o]
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induce the cosimplicial structure map in the { - direction.
For 3 :1 = I with maps 8: 7 — 7' the cosimplicial structure map is induced by the
functor
a\Sur~r] 2oy p\Sur ]

and the map Fr — Fy.
By Lemma 8.11 we can replace 7o by a specific set:

(8.17) i — H H F,.{"—W""}.

sEX_; TEX:
nondeg. nondeg.

The cosimplicial structures in ¢ and { are induced by composition, since the diagrams

o'y Sur ! [ 27 s\Suri[r| MSur~[o] —=— 7\Sur'[o’]

I P [

{¢' =7} —— {o =7} oo} —— {n—d'}
and their analog for = and 3 are commmutative.

Let us now fix [, Consider the complex 8.17 as complex in 7. It is the product of
complexes for the various 7 € X;. Let us fix some nondegenerate 7 € X; and consider
the complex with this i
i— [ Fleth

aEX i
nendeg.

Looking at the cosimplicial structure maps which are given by commutative diagrams

n — g — T
[ 1 Bl
n — o — T
we see that this complex is the product of complexes with a fixed composition map
NSO =T
So let us fx some v - 9 — 7, we get the complex

(8.18) C(F) = |-+ — H F. — H Fp — -
ST qﬂw—"n'
with c£X_, with e X _;.y
and boa=+ and boa=-y

with differential given by the cosimplicial structure.

Lemma 8.19. The complez given in 8.18 is exact for « #£ id. For v = id the
complez 15 Fy[s] {n € Xy).

R
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Let us first prove the duality theorem with the help of this lemma.

Returning to the double complex 8.16 we have for every [ # s that the complex
{ is exact and for [ = s it has cohomology at i = —s given by the natural morphis
from F;, to the component with I = 5, { = —s. Hence the total complex has coh
mology only in the zero - component and the map from F, to the zero component is
guasiisomorphism. This proves the Verdier duality theorem.

It remains to prove the lemma.

Proof: The complex C"(F;) is induced by a cosimplicial structure which gives
homological complex. Let us return to the associated homological complex . (F,
This will be easier for notation. '

Let us consider the index sets of the complex. Define

V. a b T
f P — G = T with o € X4 and boa =

= {§—°>s_+j+1—b>g} with boa =,

with i > —1. _
For further calculations we allow —1 as the empty set, i.e., we are working in t:
category of finite ordered sets with empty set A. We consider in the following on
injective maps of ordered sets.
Let 0 < (0} < v{(1) < --- < ¥(8) <! be the image of v: 8 = {. Let ¥{-1) := -
and ¥{s+ 1) := 1 + 1. We consider the maps
B k) —yk-1-2 —

1 — i+ vk~ 1}
fork=0,...,s+ 1
Let A™ 1= A[v(k) =k — 1} — 2} ( we consider augmented simplicial sets). R
mark that the category A has a fibre product and it makes sense to define maps

Pik Y; — AW
s=l(s-s+i+1-510) — il

i 25D k) - ak-1) -2
with l _3,,J' a fibre product .
s+i+1 s {

Gluing these maps for various k together we get a map of sets

v Yy — 11
oo ey
R
for k=0.....s+1
?{1k+1}=j-'~]

AD o A

a+1
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Tt can be seen that this map is bijective.

For an augmented simplicial set Z we denote by C.(Z,, M} the augmented homology
romplex with coefficients in a R-module M, i.e., we add the —1 —th component to
the standard homology complex:

= P — P M — 0.

dézo nedy .

If we consider the nondegenerate part we write Cred (Z M).
The maps ¢; for § = —1,... induce an isomorphism

241 )
i%.19) C(Fs+1] ~ FT®®CT“(5..(‘),R),
. =0

Let us verify that this gives an isomorphism of complexes:
First of ali we may assume that Fr = R. We consider the differentials on the j-th
components of the complexes.

Fix some R
s — s+i+1 — LEY;.
Let .
(o < 20 = 5(=1) =2, han ™3 3l 4 1) —1le) -2)
Le the image under ,, i.e., the fiberproduct with the A, k = 0,...,s+ 1. In

particular. we se¢ that
afk) —alk—1) = g +2 for all £ =0,....54+1

with e{—1) = =1, a(s + 1) =5+ j+2.

Let us calculate the image of the differential on these components in C [5+ 1], tesp.
(.‘ i} X ie+1]

A x o ox A .
Vo de PR ;

The commutative diagrams

s S s+l — L

1520 I a1 I

len

— s+j- — 1

with 0 < { < 5+ 7 + 1. determine a component of the differential, the identical
hemarphism

-— R

HI:Q—°¥3+j+1—bbf_) (g—'-’_‘ii—’i)

muitiplied by (1),
The differential on the right —hand side is a combination of the differentials on the
(e (3" R) multiplied by +1 or —1. For all ko with 0 < ko < 5 + 1 the diagrams

ey 2 wiko) =yl -1)-2 L B y(R)oylk o) -2
w2y gt I o [l for & # ko
h‘n -1 —= ‘;‘{ka) —T‘I:ka - 1}—-2 f_k b 'T(k)—‘)‘(k— 1}—2
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with @ < i < I, give a component of the differrential, the identical homomorphistm

(15O —r=1)=2, - by Frlol=1Cho=1)=2, . Jaws " s+ D =1is) 2)
!

15 597(0) ~v(=1)=3, - lag ~1=7{ke) =¥ (o =11 =2, .. haws Fp{e 4 1) —{e)—2 )

R

multipliied by (—1)‘°+'“+‘*-1+". :

For a given diagram {8.20) we can apply to it the fibreproduct with p for all
k=0,...,s+1. It can be seen that we get a system of diagrams of type {8.21}
where kg is given by the relation y(ko} > b(i} > v(ko — 1) {or the equivalent relation
alko) > i > alke — 1)) and ¢' is given by ' =i~ a{ko — 1) + 1.-

On the other hand for a given family of diagrams of type {8.21) we have a uniquely
defined diagram of type (8.20) given by ¢ =4 +af{kg — 1) — 1 mapped to this one.

This shows that both differentials map to the same components with respect to
@j—1. It remains to compare the signs, on the left we have {—1)¢ and on the right
(_]_)fu+ +£k0—1+‘51, but,

o+ -+ lpgos + = (a(0) —a{—1) = 2) + - + (alko = 1) — alko ~2) = 2) +
—1+&(k0—1)-—2k0+?:’
=1 — 2kg. '

This shows that the signs coincide, hence the relation {8.19) is satisfied,

The complex C3(A [m), R) is exact for m > 0. This follows from the analogous
result for the cohomology complex (which is a complex of finitely generated free R -
modules) by applying Hom(?, R). {The —1-th component cancels the {coJhomology
on the O-th component, if we consider the non-augmented case.} For m = -1
we get the complex R.[1]. C™I(A[m] R) is a finite complex of flat R-modules.
Furthermore all images of the differentials are flat F-modules, this follows from the
exactness of the complex for m > 0 {and is trivial for m = —1} by induction using the
argument that if

0 — P P P — 0

is an exact sequence of R- modules and P, P are flat, then P’ is also flat. This
gives us the possibility to apply successively the Kuenneth - formula to caleilate the

homology of a product of such complexes given by mp,...,m. We get that the
complex
¢ .
% Rls+1] if = .. =m; = -1,
®Cred[ﬁ-[mk113) = ls+1] o *
P —_ exact , otherwise .

It continues to be a finite complex of flat R- modules and by the same argumont
as before we see that all images of the differentials are flat R -modules. Applying
Kuenneth - formula we get for an arbitrary R - module M that

Mo RO (A m)R) =

{ﬁf[s+1] if mg = ... = My = -1,
k=0

exact, atherwise .
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Applying this result to the isomorphism (8.19) we see that C.(F;) is exact, except for
the case

vk —yk-1)—-2= -1 forall kK =0,...,8+1,
i.e., v = id. In the last case it is given by F;. This proves Lemma 8.19.

Concluding, the Verdier - duality theorem 8.9 is proved.

8.7. Comparison with the topological case

The main point of this paragraph is to show the following proposition:

Proposition 8.20. Let X. be a locally finite simplicial set of finite dimension and
f: X - A[Q] the map to the point. Assume that X. has the property that the
boundary of an arbitrary nondegenerate simplez is nondegenerate. Then the following
diagram is commutative:

prx) —4 prgx))

! T
R-Mod R-Mod .

In particuler, Dy | is o dualizing sheaf complex of the topelogical spece X..

Before we pass to the proof of the proposition, we need certain preparations.

We use the usual properties of the topological Verdier duality (see {12] and 110]).

For an arbitrary locally compact topological space of finite dimension ¥ we denote
by Dy a dualizing sheaf complex. The next lemma seems to be well known, but we
could not find a reference.

Lemma 8.21. Let X be o locally compact topological space of dirnension not greater
than n, Z C X a closed subset of dimension not greater thenn -1 and IV = X\ Z the
open complement. Denote byi:Z - X and j:U 2 X the inclusions. For G =Dy
we consider the morphism

Rj.DU — ttpz[l]

whick is induced from the distinguished triangle
— LRI'G — RLj*G — LR — .
Applying to this map H™" and considering the sections over an open set V C X we
get a map
Hom(HI(V NU,R). R) Hom{HF~Y{(V N Z R), R)
lh _ f
JH Dy iV) — WHH{Dz)(V).
Then this map i induced by the map
HrYVnZ R — HIVNUR)
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coming from the eccision sequence with respect to the decomposion V = (VNZYU(VNU)
by applying H;.
Proof. Let F',G' € D+{X) be two complexes. Let us first check that the following
diagram
Hom(F \Rj,j°G) — Hom{F ,iL.Ri{'G[1])
(8.22) ft M
Hom(jj*F,G) —+ Hom(i.i*F[~1],G)
given by the adjointness of functors and by the usual distinguished triangles is com-

mutative. To see this take a morphism ¢ : F* = R j. G and consider the diagram
with distinguished triangles as rows:

ppF — F — s it —— jiFIY
I
G —— RLG —— wLRIG[] —— Gl
We have a (urﬁque) morphism jij*F — (" making this diagram commutative and we
have also a (unique) morphism i,i"F" — 1. R#'G {1] making this diagram commutative
The images of i in the diagram (8.22) are obviously related to them. But
Hom(jj*F,i.R{'G’) = 0, since iji = 0.
Using some elementary calculations in triangulated categories (or see 13}, Prop. 1.1.9.
we get that ¢ has a unique extension to a morphism of triangles. The commutativit
of diagram (8.22) follows immediately. ‘
We apply this to G = Dx and F' = jveRn] where jv 1 V - X is the opal
inclusion. We get the following commutative diagram
JHHDL) (V) — i H LD HV)
R I
Hom(jv.Rln|, Rj.j" Dy} — Hom(jv Eln], i.Ri'Dx{1])
It I
?{Om(j!j'jv‘gﬂln],'p;,() ——F ?—.{om(i_a"jp‘,ﬂ[n — 11,9;)()
' i I
Hom (RT (X, 515" jv. B[R], R) — Hom (RLAX, iui*juafiin — 1)), R)
t k
Hom{HI(X,3j"iv,B),R) — Hom{H} (X, i.i" jraRt), R)

from which we easily get the assertion.

Lemma 8.22. Let X. be o locally finite simplicial set of dimension n. Let
U =Us:= |J lojtinn(ds))

oEXn
nondeg.

| —
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be the complement to the n— 1 - skeleton. Denote by jo @ inn(ds) — A, the inclusion.
For every o € Xn we consider the isomorphism Dinnga,) = Rln], which s given by
the fact that for open subsets V Cinn{A,) with V homeomorphic to IR"® we have

R = Hom({R,R) ~ Hom{H}V, E},R) ~ H ™{Dinna)) (V).

Then the composition of the morphisms

[z]. Rin j
ngn - ] —[ ] RJ&DU
nondeg.
! 1
ael_}[( [G]‘RJJ.‘E[n} — g[x [U]tRja.tDinn[A,} — I}( R([g“mn(ég)),pinn(&,}
nondeg. nc:mde'é n?)ﬁdeng‘

s an isomorphism.

Proof. Obvilously we have j, .R = R. So it is sufficient to check that R*j,.2=0
fork = 0. Let i, : 84, — A, be the inclusion of the boundary. From the distinguished
triangle

— i, .RiLR — R — Rj,.jtB — i,.Ri,Bll] —

we get an isomorphism
R¥j,.R —+ i R R,

From the exact sequence
0 — ja’.!E —_ E — ig’,tﬂ — 0

we get an isomorphism
Rk+l,i!ajlﬁ -~ Rk+1 iLE'

Bglt _the complex j,2RIN] = jotDinna,) is a dualizing complex on A, and therefore
Ri,j.1 B[n] has nonvanishing cohomology only in degree —n 4 1. O

Lemma 8.23. Let T be g triangulnted category and let

A5 B —— A
L L
U T SN, . SR

be'a commutative diagram with distinguished triangles as rows. Furthermore assume
that Hom(4, C’[—1]) = 0. Fiz some g : B — B making this diagram commutative.
Then the map

Hom{C, A')

A —a

—+ Hom({B,B’)
a’Ab + p
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induces a bijection between Hom(C, A'Y and the maps @ : B — B' making this diegram
corrmutative.

Proof. Easy diagram chase.

Now we pass to the proof of Proposition 8.20.
The proof will be done by induction over the dimension n of the simplicial set X..
Denotebyi: Z=1Z| =+ X = |.X.] the closed inclusion of the 1 — 1 —skeleton and by

j: U7 = X the open complement.
We will show that there exists an isomorphism

D%l ~ ‘f\ied(ﬂn — Dix.l,

such that the diagram

Dy — 3Dy
| ]
(8.23) : 1
: Dy —— 1] [eLER
ey

is commutative. Here the right arrow was defined in Lemma 8.22, the upper arrow i
given by adjunction and the lower arrow comes from the definition of fi.q-

The case n = 0 is obvious, Assume the assertion we have proved up ton — 1. W
consider the following diagram with distinguished triangles as rows

_— 4D, — Dx — RiDy i.Dz(1}

Dy — Dxf —— I LB —— i Dy I[1]

e X,
nondeg.

(8.24)

where the morphisms come from the induction assumption with respect to Z. ar
Lemma 8.22. The lower sequence is given by the exact sequence of complexes

i 0 — 0 — flaLB) = n le8 — 9
sonis
4 1 b

0 - i*f!Z..red,n—l(R:] = f:!‘ed,n—](R) — 0 —

L L L

(By fz. we denoted the map from Z. to the simplicial point.) Let us verify that 1

_-#
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diagram {8.24) is commutative. It is sufficient to check that the diagram
H(RjD;,) —— LH{Dy)
Ti . T?
M 6B —— i|H " {Dz)|

TEXn
nondeg.

i.s commutative. Denote by jz : Uz — Z the open inclusion from the complement of
the "= 2 - skeleton to Z. By the induction assumption (8.23) with respect to Z. it i3
sufficient to prove that the diagram

H(RADy) —— LH(Dy) ——> iz " (D)

agc“ (6B —— i |[H ™Dy} —— Eg [0]. B
nondeg. Zoné;;?

is commutative. Let ¥V € X be an open set. Using Lemma 8.21 we have to check the’
commutativity of the diagram

Hom(H(U NV.R),R) —— Hom(HZ Uz NV,R),R)

(8.25) | [ ' Ik

1 Brollel T v 3 Rrollel™ vy
X, cCXn1
nondeg. nondeg.

The upper arrow is induced by the composition of a extension by zero morphism and
the boundary morphism of the excision sequence

HYUNV,R) +— HFYZNV,R) « H}'(UznV,R).

By some elementary caleulations we see that this is just the boundary merphism of
the q;cmsmn sequence with respect to the decomposition X X" ? = Uulz, where
X"=? denotes the n — 2-skeleton of X. The lower arrow is dual to the morphism

& Rl (V) — & B{ﬁu{[f]—l{‘/))]
et Mg

o= 1rrd W) — W,
0<i€n
TEX
nendeg
a9y a=r

by the definition of fi_,. The left and right arrows are described in Lemma 8.22. The
commutativity of diagram {8.25) in the case V = X is obviously the statement of
Lemma 6.14 with n changed to n — 1. The case of general V can be handled by the
same procedure as the proof of Lemma 6.14. )

r € R, W C [r}~}{V)connected
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Therefore diagram (8.25) is commutative. Using the relations
Hom(i[Dz ), R7.Dul-1]) = 0, simce j'i. = 0,
Hom| [I o).Bn),iéPz[-1]

aEXa
nondeg.

0, since H_n{Dz{—ID = 0,

we get from Lemma 8.23 a unique, morphism
|I)X_| — I)x

making diagram {8.24) commutative. This morphism is an isomeorphism and satifies
trivially the inducrion property {8.23).
Proposition 8.20 follows now from the natural isomorphisms

)| = IDxIBIF| = Dx&F] = f(F]

given in Lemma 8.5 and Lemma 7.13.
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A Counterexample to Completeness P'mperties for Indefini
Sturm — Liouville Problems
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Abstract. In this note we construct an odd weight function w on {=1,1} with wi{z) > 0 forz
such that the eigenfunctions of the indefinite Sturm — Liouville problem —f% = Awf with bound
conditions f{~1} = f(1} = 0 do not formn a Riesz basis of L2 (-1,1)

[

1. Introduction

In the recent years a number of papers appeared dealing with completeness pr
erties of the eigenfunctions of indefinite Sturm- Liouville problems. The simp!
problems of this kind have the form

(1.1) —f" = Muf on (-1,1},
{1.2) fl-n = f) =0

where w ¢ L1(—1,1) is a real weight function. If w is positive on (1,1}, it -
classical result that the eigenfunctions form an orthonormal basis of the Hilbert sy
L2{—1,1}. However, if the function w changes its sign at some points in {—1. 1), wi
we will call “turning points”, then it is a nontrivial problem to decide whether
eigenfunctions form a Riesz basis of the Hilbert space L‘fwl(—l, 1) equipped with
scalar product

(f,¢) == | folwlds (f g€Lf,(-1,1).
-1

By the definition of “Riesz basis” (see e.g. [GK, Chapter V1, §2]) this means 1
the sigenfunctions form an orthonormal basis of lewl(—l, 1) with respect to s
scalar product equivalent to -, - ). Starting from a paper of BEALS |B] some autl
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