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Abstract. Let M be a closed topological n–manifold, and let S(M) be the moduli
space of closed topological manifolds equipped with a homotopy equivalence to M .
We give an algebraic description of S(M) in the h-cobordism stable range, assuming
n ≥ 5. (That is, we produce a highly connected map from S(M) to another space
having an algebraic description.) The algebraic description is in terms of L–theory,
Waldhausen’s algebraic K–theory of spaces, and a natural transformation Ξ (con-
structed in our paper [WW2]) from L–theory to the Tate cohomology of Z2 acting
on K–theory.

We develop a parallel theory for the moduli space S(τ) of Rn–bundles on M
equipped with an ”equivalence” to the tangent bundle τ of M . (The equivalence
is a stable fiber homotopy equivalence of the corresponding spherical fibrations.)
Results about moduli spaces of smooth manifolds can be obtained by combining the
calculations of S(M) and S(τ).

We have attempted to make this paper as self–contained as possible by summa-
rizing results from the earlier papers in the series where necessary.

0.Introduction

Let Mn be a compact topological manifold. By a structure on M , we mean a pair
(N, f) consisting of another topological manifold Nn and a homotopy equivalence

f : (N, ∂N) −→ (M, ∂M)

which restricts to a homeomorphism of the boundaries. One of our goals is to study
and compute S(M), the space of structures on M . We refer to §1 for a precise
definition; note however that we distinguish between S(M) and S̃(M), the space
of block structures on M . The goal of classical surgery theory is the calculation of
S̃(M), not S(M).

By a structure on τM , the tangent microbundle of M , we mean a pair (η, g) con-
sisting of another n–dimensional microbundle η on M and a stable fiber homotopy
equivalence g : η → τM (over M) of the associated spherical fibrations. Our second
goal is to study S(τM ), the space of structures on τ . Our third goal is to study and
compute a certain map

∇ : S(M) −→ S(τM ).
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This is defined as follows. By Spivak’s result ([Spi], [Bro1], [Bro2]), a structure
f : N

'−→ M on M has a differential df which is a stable fiber homotopy equivalence
between the spherical fibrations made from τN and f∗τM , respectively. Use this
to push the identity structure on τN forward to τM , and call the result ∇(N, f).

Summarizing the above, and writing τ for τM , we have:

0.1. Program. Compute ∇ : S(M) −→ S(τ).

0.2 Remark. When ∂M = ∅, an informal definition of S(M) is as follows:

S(M) =
∐

β

G(Nβ)/TOP (Nβ)

where the coproduct is over the homeomorphism classes of closed manifolds homo-
topy equivalent to M , and Nβ is a representative for the class β. We have written
G(N) for the space of homotopy automorphisms of N , and TOP (N) for the space of
homeomorphisms N → N . Thus program 0.1 yields results about automorphisms
of manifolds.

0.3. Remark. When M is a smooth manifold, we can similarly define spaces of
smooth structures on M and τ (and we use a superscript D for the smoothness).
In a relative sense, this makes no difference: the square

SD(M) ∇−−−−→ SD(τ)
y

y
S(M) ∇−−−−→ S(τ)

with forgetful vertical arrows is homotopy cartesian (is a homotopy pullback square)
if dim(M) 6= 4. This follows from Morlet’s sliced smoothing theory [Mor1], [Mor2],
[Mor3], [KiSi], [BuLa1].

Program 0.1 refines the standard program of surgery theory, which we now recall.
For greater uniformity we work with “decoration” h; then the n–th homotopy group
of the block structure space S̃(M) is the set of structures on M × Dn modulo h–
cobordism over M × Dn. (For details on S̃(M), see §2.) Let S̃(τ) be the space of
stable structures on τ ; a point in this space is a pair (η, g) consisting of a stable
microbundle η on M and a stable fiber homotopy equivalence g : η → τ of the
associated spherical fibrations. A map ∇ from S̃(M) to S̃(τ) can be defined as
before, and the surgery program is:

0.4. Program. Compute the map ∇ : S̃(M) −→ S̃(τ).

This was done by Sullivan for simply connected M , and by Wall in the general
case. To state their result, we need to say a few words about assembly.

0.5. Info. Let F be a functor from finite CW–spaces to spectra. Call F ho-
motopy invariant if it respects homotopy equivalences, and call F excisive if it
respects homotopy pushout squares (= homotopy cocartesian squares) and if F (∅)
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is contractible. (Excisive implies homotopy invariant.) Given a homotopy invariant
F , there exists an excisive F % and a natural transformation α : F %(Y ) → F (Y )
(variable Y ) which is a homotopy equivalence if Y is a point. Together, F % and
α are characterized by these properties up to natural homotopy equivalence. This
existence and uniqueness statement presumably goes back to Quinn, [Qui1], [Qui2],
[Qui3], who calls α the assembly. Note: F %(Y ) is homotopy equivalent to Y+∧F (∗),
for all Y .

We shall also need assembly in the more general situation where F is a functor
on the category of finite CW–spaces Y equipped with stable spherical fibrations γ.
(The morphisms in this category are maps between spaces covered by stable maps
between spherical fibrations.) Such an F , with values in the category of spectra,
may or may not be homotopy invariant, or excisive; the definitions are literally the
same as before. If F is homotopy invariant, then it is the target of an essentially
unique natural transformation α : F %(Y, γ) → F (Y, γ), with excisive F %, which is
a homotopy equivalence if Y is a point. Notation: Often F is a functor with a long
name, and then it is convenient to write the % superscript after the argument, as
in F (Y )%. We write

F (Y )% := homotopy fiber of α : F (Y )% −→ F (Y ),

F (Y, γ)% := homotopy fiber of α : F (Y, γ)% −→ F (Y, γ),

as appropriate. We use “unbold” symbols for the corresponding (zero–th) infinite
loop spaces, as in

F (Y )%, F (Y, γ)%, F (Y )%, F (Y, γ)%.

0.6. Info. For a space Y with spherical fibration γ, let L(Y, γ,−k) be the k–fold
loops on the connected L–theory spectrum, with decoration h, of the group ring
Z[π1(Y )] with the w–twisted involution (w = w1(γ)). See [Ra1], [Ra2] or [WW2].
This may seem to depend on a choice of base point in Y , but it does not. See §4
for details. We are interested in the case Y = M , k = n, and γ = ν (the Spivak
normal fibration of M). The Sullivan–Wall result, as formulated by Quinn [Qui1],
[Qui2] and Ranicki[Ra1], is a commutative square

S̃(M) ∇−−−−→ S̃(τ)
yι̃

yι̃

L(M, ν,−n)%
forget−−−−→ L(M, ν,−n)%

where the vertical arrows ι̃ are homotopy equivalences if dim(M) ≥ 5.

We now return to program 0.1. Below we describe homotopy invariant functors

(Y, γ) 7→ LA(Y, γ,−k)

(one for each k ≥ 0) from spaces Y with spherical fibration γ to spectra. Our main
result is that the map

∇ : S(M) −→ S(τ)

can be identified in a certain range with the forgetful map

LA(M,ν,−n)% −→ LA(M,ν,−n)%.
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0.7. Theorem. There is a commutative square

S(M) ∇−−−−→ S(τ)
yι

yι

LA(M, ν,−n)%
forget−−−−→ LA(M, ν,−n)%

in which the vertical arrows ι are highly connected (details follow) if n ≥ 5.

0.8. Details. An integer j is in the topological h–cobordism stable range for a
compact manifold Nn if the (upper) stabilization maps

H(N) → H(N × D1) → H(N × D2) → · · ·
of topological h–cobordism spaces are all j–connected. See [Wald2], [Ig]. By [Ig],
this is the case when j < n/3 approximately, provided N is homeomorphic to a
smooth manifold. Then j is also in the smooth h–cobordism stable range (defined
using spaces of smooth concordances).

The right-hand vertical arrow in 0.7 is (j +1)–connected if j is in the smooth h–
cobordism stable range for the disk Dn and j ≤ n−2. The left–hand vertical arrow
induces a bijection on π0. Each component of S(M) determines a homeomorphism
class of manifolds M ′ homotopy equivalent to M . If j is in the topological h-
cobordism stable range for M ′, then the left–hand vertical arrow in 0.7 restricted
to the component (and the corresponding image component) will be j–connected.

0.9. Description. Here we describe LA(Y, γ,−k). Denote by A(Y ) the Wald-
hausen A–theory spectrum of Y , with (the usual) decoration h. The methods of
[WW2] yield a map of spectra

Ξ : L(Y, γ,−k) −→ ĤH(Z2;A(Y ))

where ĤH denotes a Tate cohomology spectrum, and the Z2–action on A(Y ) de-
pends on γ and k. (It is the γ–twisted Spanier–Whitehead k–duality action, [Vo1].)
Originally, one of the points of this construction was that it explained and strength-
ened the connection between L–theory and algebraic K–theory given by the long
exact Rothenberg sequences; in fact, it leads to higher Rothenberg sequences involv-
ing higher K–groups. See the Outline of [WW2].

Recall that the Tate cohomology spectrum is the mapping cone of the norm map

HH(Z2 ; . . . ) −→ HH(Z2 ; . . . )

from homotopy orbit spectrum to homotopy fixed point spectrum. (See [AdCoDw]
or [GreMa] for a lucid and very general account.) We define LA(Y, γ,−k) as the
homotopy pullback of

L(Y, γ,−k) Ξ−→ ĤH(Z2;A(Y )) ←↩ HH(Z2; A(Y )).

The main theorem 0.7. has a relative version which we want to mention briefly
because it explains the A in LA–theory. Let Mn be a compact topological manifold
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as before, and suppose that ∂+M is a compact codimension zero submanifold of
∂M . Write ∂−M = ∂M r int(∂+M). A structure on (M,∂+M) is a homotopy
equivalence of “triads”

f : (N, ∂+N, ∂−N) −→ (M, ∂+M,∂−M)

where Nn is another compact topological manifold with a compact codimension
zero submanifold ∂+N of ∂N , and f restricts to a homeomorphism from ∂−N to
∂−M . Write S(M, ∂+M) for the space of such structures. As in the absolute case,
there is a map

∇ : S(M, ∂+M) −→ S(τ, τ+)
where τ is (still) the tangent bundle of M and τ+ is the tangent bundle of ∂+M .
The relative version of our main theorem “computes”this in a certain range, using
a relative version of LA–theory. The result is complicated, and here we just focus
on an “extreme”case:

0.10. Example. Take M = P×[0, 1] and ∂+M = P×{1}. This is extreme for two
reasons:

(1) the block structure spaces S̃(M,∂+M) and S̃(τ, τ+) are contractible;
(2) after much cancellation, the appropriate relative LA–theory turns out to be

just the A–theory of P .
Thus our main theorem takes the form of a commutative square

S(P×[0, 1] , P×{1}) ∇−−−−→ S(τ, τ+)
y

y
A(P )%

forget−−−−−→ A(P )% .

with highly connected vertical arrows. Notice, gentle reader: this is really the main
result of Waldhausen’s work relating h-cobordisms to A–theory. In particular, the
space in the upper left–hand corner of the diagram is the space of h–cobordisms on
P . (Actually, Waldhausen’s theorems state that the vertical arrows in the diagram
turn into homotopy equivalences under stabilization, [Wald1], [Wald2], [Wald3],
[Wald4], [Wald5] and [Ig] shows that they are highly connected without stabilization
provided P has a smooth structure.)

0.11. Remark. Theorem 0.7 refines the Sullivan–Wall–Quinn–Ranicki result,
which means that the cube

S̃(M) //

²²

S̃(τ)

²²

S(M)

66
⊂

mmmmmmmmmmmmmm
//

²²

S(τ)

66
⊂

mmmmmmmmmmmmmmm

²²

L(M, ν,−n)% // L(M,ν,−n)%

LA(M, ν,−n)% //

66

forget

mmmmmmmmmmmmm
LA(M, ν,−n)%

66

forget

mmmmmmmmmmmm
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is commutative. Actually, for strict commutativity, some care has to be exercised
in the construction of the upper face of the cube—make it cofibrant. A square of
simplicial sets is cofibrant if it is isomorphic to a square of the form

Y1 ∩ Y2
⊂−−−−→ Y1

⊂
y ⊂

y
Y2

⊂−−−−→ Y .

0.12. Credits. Localized at odd primes, LA(M,ν,−n) splits:

LA(M, ν,−n)% ' L(M, ν,−n)% ×A(M)(±)
%

where A(M)(±)
% is the (−1)n–eigenspace of the Spanier–Whitehead 0–duality invo-

lution [Vo1] on A(M)% (equivalently, the (+1)–eigenspace of the n–duality involu-
tion). At odd primes therefore, the left–hand column of the square in Theorem 0.7
is a highly connected map

S(M) −→ L(M, ν,−n)% ×A(M)(±)
% .

The existence of the loop of such a map is well known (see [BuLa2, Cor.D] and [HJ,
Thm.2.5]). Thus working at odd primes avoids the question of how L–theory and
A–theory must be combined to get an ”algebraic” description of S(M). Rationally,
Burghelea and Fiedorowicz ([BuFie]) have given a highly connected map from S(M)
to a version of hermitian A–theory. We understand that Fiedorowicz, Vogt and
Schwänzl are also able to construct such a map at odd primes [FieSchwVo]. It
would be interesting to directly compare their version of hermitian A–theory with
our LA theory. See also [Gif] and [HS].

0.13. Remark. We have found it necessary to omit proofs of several techni-
cal statements in order to make this paper readable. Without exception, these
statements are either variations on results in the literature, or straightforward cal-
culations. They are labelled with a ♣ sign. We promise to deliver the proofs in due
course.

Acknowledgment. We would like to thank Dan Burghelea, and especially Bill
Dwyer for conversations that have helped to shape this project. We are also in-
debted to Frank Quinn and Erik Pedersen for conversations about LK–theory (the
version of LA–theory for discrete rings).

1. Structure Spaces

We begin by recalling the notion of manifold modelled on Rn × ∆k. This is a
Hausdorff space N equipped with a (maximal) atlas with charts in Rn×∆k, where
the changes of charts take points in Rn × di∆k to ditto points. The dimension of
such an N is n + k. Let s be a nonempty face of ∆k; denote by N(s) the subspace
of N consisting of all points taken to Rn × s by some (hence any) chart. We see
that

s 7→ N(s)
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is a functor from po[k], the poset of nonempty faces of ∆k, to spaces.
We define similarly manifolds N modelled on Rn

f×∆k, where Rn
f is closed upper

half space. (Changes of charts take points in Rn
f×∆k to points in Rn

f×∆k.) Denote
by ∂N the subspace of N consisting of all points taken by some (hence any) chart
to Rn−1 ×∆k. Then ∂N is modelled on Rn−1 ×∆k. Further, the rule

(s, i) 7→
{

∂N(s) if i = 0

N(s) if i = 1

is a functor from the product poset po[k]× {0, 1} to spaces.

Now, in order to define structure spaces, we need certain topological categories
[Ad, p.70] associated with a fixed compact manifold Mn. (We pay no attention to
the size of these categories, but the reader is encouraged to do so.) For simplicity,
assume ∂M = ∅. Denote by str(M) the following topological category. Objects
are homotopy equivalences f : M ′ → M , where M ′ is another closed manifold. A
morphism from f : M ′ → M to g : M ′′ → M is a homeomorphism M ′ → M ′′

making the appropriate triangle commute (strictly). We want to allow continuous
variation (in the compact–open topology) of all continuous maps in sight ; this puts
a topology on the class of objects of str(M), and a compatible topology on the class
of morphisms.

To construct the classifying space of str(M), make it into a simplicial category:
replace object class and morphism class by their singular simplicial classes.

1.1. Definition. The structure space S(M) is the classifying space of the topo-
logical category str(M).

Generalizing this slightly, we have the structure space Sy(N) of a manifold N
modelled on Rn

f ×∆k (assume ∂N = ∅).
1.1. Definition [bis]. The block structure space is the geometric realization of
the simplicial space without degeneracies (alias ∆–space)

[k] 7→ Sy(M ×∆k) .

If ∂M is nonempty, which we want to allow from now on, define str(M,∂M) to
have objects f : (M ′, ∂M ′) → (M, ∂M), where f is a homotopy equivalence of pairs.
The classifying space is denoted by S(M, ∂M). Those objects f restricting to a
homeomorphism of the boundaries, say ∂M ′ ∼= ∂M , form a full subcategory str(M),
with classifying space S(M). Proceed similarly to define the block structure spaces
S̃(M, ∂M) and S̃(M).

As in [WW1] let TOP (M) be the topological group of homeomorphisms M → M
which agree with the identity near ∂M . A difficult theorem due to [McD] (see also
[Seg3], [Math], [Thu]) asserts that the inclusion of BTOP δ(M) in BTOP (M) is a
homology equivalence, where TOP δ(M) is the underlying discrete group. (A map
f : X → Y of connected spaces is a homology equivalence if it induces isomorphisms
f∗ : H∗(X; J) → H∗(Y ; J) for any π1(Y )–module J .) In the same spirit, we
can make str(M) more discrete (if not entirely discrete) and see what happens.
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Specifically, we want to keep the old topology on the class of objects, but we
disallow continuous variation of the horizontal arrows in morphisms

M ′ ∼=−→ M ′′

↘ ↙
M

and we write Sδ(M) for the classifying space. If ∂M is empty, for example, then
Sδ(M) classifies manifold fiber bundles with a flat connection (equivalently, discrete
structure group in the sense of Steenrod) and with a fiber homotopy equivalence to
a trivial bundle with fiber M . In general, the McDuff theorem implies:

1.2. Theorem. The inclusion Sδ(M) ↪→ S(M) is a homology equivalence.

Note in passing that the inclusion of geometric realizations

∣∣[k] 7→ Sδ
y(M ×∆k)

∣∣ ⊂ ∣∣[k] 7→ Sy(M ×∆k)
∣∣ = S̃(M)

is a homotopy equivalence. This is not a deep theorem.

Following [AnCoFePe] we introduce certain notions: A control space is a pair
consisting of a locally compact Hausdorff space Ē and an open dense subset E of
Ē. Let p : X → E and q : Y → E be proper spaces over E (which means that X,Y
are locally compact, and p, q are proper). A continuous proper map f : X → Y
is a controlled map if it satisfies the following condition: Given z ∈ Ē r E, and
a neighborhood U of z in Ē, there exists a smaller neighborhood U0 of z in Ē
such that p(x) ∈ U0 implies q(f(x)) ∈ U , for all x ∈ X. It is straightforward to
define controlled (proper) homotopies between controlled maps, and then controlled
(proper) homotopy equivalences between proper spaces over E. Higher up in the
hierarchy are the morphisms between control spaces. Such a morphism, say from
(E1 ⊂ Ē1) to (E2 ⊂ Ē2), is a map f : Ē1 → Ē2 such that f−1(E2) = E1. The
morphism f is a homotopy equivalence if there exists another morphism g, from
(E2 ⊂ Ē2) to (E1 ⊂ Ē1), such that

(gf)|E1 : E1 −→ E1 , (fg)|E2 : E2 −→ E2

are controlled homotopy equivalences (between proper spaces over E1 and E2, re-
spectively). Note: If f is a homotopy equivalence between control spaces, then f
restricts to a homeomorphism from Ē1 r E1 to Ē2 r E2.

1.3. Example. Let V be a k–dimensional real vector space, k < ∞. Denote by
S(V ) the orbit space of the action of Rf on V r{0}. The union V̄ := V ∪S(V ) has
a canonical topology such that there exists a homeomorphism from V̄ to the cone
on S(V ) extending the identity on S(V ). (The homeomorphism is not unique.)

Any compact manifold Mn (as above) and vector space V give rise to a control
space M × V ⊂ M ∗ S(V ), where ∗ means a join.
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We will need a space of structures on the control space M × V ⊂ M ∗ S(V ).
Somewhat inconsistently, it will be denoted by cS(M × V ). For simplicity, assume
∂M = ∅. Define c str(M × V ) as the topological category with objects

f : (M ′ × V ⊂ M ′ ∗ S(V )) −→ (M × V ⊂ M ∗ S(V ))

where f is a homotopy equivalence of control spaces restricting to the identity on
S(V ). Morphisms are homeomorphisms of control spaces, over (M×V ⊂ M∗S(V )),
and the topology comes from allowing continuous variation of all control space
morphisms in sight. Let cS(M × V ) be the classifying space.

1.4. Remark. To be really consistent with [WW1], we should equip V with an
inner product and define a space of bounded structures on M × V , say bS(M ×
V ). But the controlled notions are equally useful (bS(M × V ) ' cS(M × V ), see
[HuTaWi]) and easier to handle.

Define cSδ(M × V ) by analogy with Sδ(M), as the classifying space of a more
discrete variant of c str(M × V ). (Keep the old topology on the class of objects.)
We do not know whether the inclusion of cSδ(M ×V ) in cS(M ×V ) is a homology
equivalence. But a slightly weaker statement can be proved. Let κ = TOP δ(S(V ))
and λ = TOP (S(V )).

1.5. Theorem♣. The inclusion of homotopy orbit spaces
(
cSδ(M × V )

)
hκ

↪→ (
cS(M × V )

)
hλ

is a homology equivalence.

(Reason: we can prove a McDuff type theorem for the automorphism group
of the control space (M × V ⊂ M ∗ S(V )), but not for the subgroup of those
automorphisms restricting to the identity on S(V ). Note that the inclusion of
classifying spaces Bκ ↪→ Bλ is a homology equivalence, again by [McD]. But note
also that in a commutative square of pointed spaces where the vertical arrows are
homology equivalences, the induced map of horizontal homotopy fibers need not be
a homology equivalence. See [Ber].)

The block structure space S̃(M) comes with a filtration which is not easy to
understand, and yet crucial. Our way to understand it is to trade block structures
for controlled structures. The idea goes back to [WW1, §4], where it is applied to
block automorphisms.

1.6. Reminder. Let X be a space with a filtration

Filt0(X) ⊂ Filt1(X) ⊂ Filt2(X) ⊂ · · ·
so that X equals the union of the Filti(X). Call a singular k–simplex y : ∆k → X
positive if it maps the i–skeleton of ∆k to Filti(X) for all i. The positive simplices
form a simplicial subset

posX ⊂ sing(X)

where sing(X) is the singular simplicial set. Note that posX is still filtered:

Filti(posX) := posX ∩ sing(Filti(X)) .
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1.7. Example. Let cS(M × R∞) be the union of the spaces cS(M × Ri) for
i ≥ 0. (Take products with the identity structure on R1 to include cS(M × Ri) in
cS(M ×Ri+1).) Then cS(M ×R∞) is of course filtered by subspaces cS(M ×Ri).
We claim that

poscS(M × R∞) ' S̃(M) .

For a more precise statement, we need simplicial machinery. Let Z and Y be the
∆–spaces (simplicial spaces without degeneracies) given by

Z[k] = poscSy(M ×∆k × R∞),

Y[k] = Sy(M ×∆k).

Remember that |Y| is S̃(M).

1.8. Lemma♣. The inclusions

|Y| ↪→ |Z| ←↩ Z[0]

are homotopy equivalences.

1.9. Remark. A quick and consistent way to introduce simple structures is to
use the Hilbert cube Q. For example, a homotopy equivalence f : X → Y between
compact ANR’s is known to be simple if f × id is homotopic to a homeomorphism
from X × Q to Y × Q. A controlled homotopy equivalence f : X → Y between
proper ANR’s over E (where E ⊂ Ē is some control space) is simple, by definition,
if f × id is controlled homotopic to a controlled homeomorphism from X × Q to
Y ×Q. Thus there are “simple” versions of S(M), S̃(M) and cS(M × V ).

2. Assembly

In this section, all spaces are homotopy equivalent to CW–spaces, all pairs of
spaces are homotopy equivalent to CW–pairs, and all spectra are CW–spectra.

A functor F from spaces to spectra is homotopy invariant if it takes homo-
topy equivalences to homotopy equivalences. A homotopy invariant F is excisive if
F (∅) is contractible and if F preserves homotopy pushout squares (alias homotopy
cocartesian squares, see [Go1], [Go2]). The excision condition implies that F pre-
serves finite coproducts, up to homotopy equivalence. Call F strongly excisive if it
preserves arbitrary coproducts, up to homotopy equivalence.

2.1 Lemma. For any homotopy invariant F from spaces to spectra, there exist a
strongly excisive (and homotopy invariant) F % from spaces to spectra and a natural
transformation

α = αF : F % −→ F

such that α : F %(∗) → F (∗) is a homotopy equivalence. Moreover, F % and αF

can be made to depend functorially on F .

Proof. For a space X, let simp(X) be the category whose objects are maps ∆n → X
where n ≥ 0, and whose morphisms are commutative triangles

∆m f∗−→ ∆n

↘ ↙
X
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where f∗ is the linear map induced by an monotone map f from {0, 1, . . . ,m} to
{0, 1, . . . , n}. Then

FX : simp(X) −→ spectra ;
(
∆n g−→ X

) 7→ F (∆n)

is a covariant functor, and we let F %(X) := hocolim FX . The natural transforma-
tion

FX

(
∆n g−→ X

)
= F (∆n)

g∗−→ F (X)

induces α : F %(X) → F (X). Clearly α is a homotopy equivalence when X is a
point. For arbitrary X, we can understand the homotopy type of F %(X) by using
the natural transformation

FX

(
∆n g−→ X

)
= F (∆n)

(const.)∗−−−−−→ F (∗)

of functors on simp(X). It induces a homotopy equivalence of the homotopy direct
limits, and since the right–hand functor is constant, its homotopy direct limit is

| simp(X)|+ ∧ F (∗) .

It is an exercise to show that | simp(X)| ' X. Thus F %(X) is related to X+∧F (∗)
by a chain of natural homotopy equivalences. ¤
2.2. Observation. If F is already excisive, then

α : F %(Y ) −→ F (Y )

is a homotopy equivalence for all finite Y , and if F is strongly excisive, then α is a
homotopy equivalence for all Y .

Proof. By arguments going back to Eilenberg and Steenrod it is sufficient to verify
that α is a homotopy equivalence for Y = point. ¤

We want to show that α = αF is the “universal” approximation (from the left)
of F by a strongly excisive homotopy invariant functor. Suppose therefore that

β : E −→ F

is another natural transformation with strongly excisive and homotopy invariant
E. The commutative square

E% αE−−−−→ E
yβ%

yβ

F % αF−−−−→ F

in which the upper horizontal arrow is a homotopy equivalence by 2.2, shows that
β essentially factors through αF .

There is a variant of assembly which applies to functors defined on pairs of
spaces. Let F be such a functor, from pairs (X, Y ) to spectra. We call F homotopy
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invariant if it takes homotopy equivalences of pairs to homotopy equivalences. We
call F excisive if it takes homotopy pushout squares of pairs to homotopy pushout
squares. (A square of pairs

(X1, Y1) −−−−→ (X2, Y2)y
y

(X3, Y3) −−−−→ (X4, Y4)

is a homotopy pushout square if the two squares made from the Xi and the Yi,
respectively, are homotopy pushout squares.) Finally F is strongly excisive if it is
excisive and respects arbitrary coproducts, up to homotopy equivalence.

2.3 Lemma♣. For any homotopy invariant F from pairs of spaces to spectra,
there exist a strongly excisive (and homotopy invariant) F % from pairs of spaces
to spectra and a natural transformation

α = αF : F % −→ F

such that

α : F %(∅ ⊂ ∗) → F (∅ ⊂ ∗) , α : F %(∗ ⊂ ∗) −→ F (∗ ⊂ ∗)
are homotopy equivalences. Moreover, F % and αF can be made to depend functo-
rially on F .

2.4. Observation. If F is already excisive, then

α : F %(X, Y ) −→ F (X, Y )

is a homotopy equivalence for all homotopy finite (X, Y ), and if F is strongly
excisive, then α is a homotopy equivalence for all (X,Y ).

2.5. Remark. Let T be a spectrum; then the functor

X 7→ X+ ∧ T

is strongly excisive. Any strongly excisive functor F from spaces to spectra has
this form, up to a chain of natural homotopy equivalences. We have verified this in
the proof of 2.1 (see also 2.2). The appropriate T is of course F (∗).

Let f : T1 → T2 be a map of spectra. Then the functor

(X,Y ) 7→ homotopy pushout of
(
Y+ ∧ T2

f∗←− Y+ ∧ T1 ↪→ X+ ∧ T1

)

is strongly excisive. Any strongly excisive functor F from pairs of spaces to spectra
has this form, up to a chain of natural homotopy equivalences. The appropriate T1

is F (∅ ⊂ ∗), the appropriate T2 is F (∗ ⊂ ∗), and the appropriate f is induced by
the inclusion of (∅, ∗) in (∗, ∗).

It follows that a strongly excisive F defined on pairs need not take any collapse
map (X, Y ) → (X/Y, ∗) to a homotopy equivalence. It does, however, if T2 =
F (∗ ⊂ ∗) is contractible; then F has the form

(X,Y ) 7→ (X/Y ) ∧ T1

up to a chain of natural homotopy equivalences.
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2.6. Variation♣. We can still do assembly when the functor F is defined on the
category of spaces over a reference space Z. (For example, Z could be BG, the
classifying space for stable spherical fibrations.) By abuse of notation, a map be-
tween spaces over Z is a homotopy equivalence if it becomes a homotopy equivalence
when the reference maps to Z are omitted. A square of spaces over Z is a homotopy
pushout square if it becomes a homotopy pushout square when the reference maps
are omitted. For any homotopy invariant F defined on spaces over Z we have

α : F % −→ F ,

natural in F , where F % is strongly excisive and

α : F %(∗ → Z) −→ F (∗ → Z)

is a homotopy equivalence for any point ∗ in Z.
Further, we can still do assembly when the functor F is defined on the category

of pairs of spaces over a reference space Z (assuming that F is homotopy invariant).

2.7. Example. Let G be a topological group with classifying space BG, and
suppose that G acts on a spectrum T . For a space over BG, say f : X → BG, let
Xf be the pullback of

X
f−→ BG ← EG.

The functor from spaces over BG to spectra given by

(f : X → BG) 7→ Xf
+ ∧G T

is strongly excisive. (The example is “typical”, but we shall not go into details.)

2.8. Variation. Suppose that F is a functor from the category of control spaces to
spectra (see sequel of 1.2). Say that F is homotopy invariant if it takes homotopy
equivalences of control spaces (sequel of 1.2) to homotopy equivalences of spectra.
A homotopy invariant F is homotopy additive if the following holds: For any control
space (Y ⊂ Ȳ ) in which Y is a coproduct Y1 q Y2, the map

F (Y1 ⊂ Ȳ1) ∨ F (Y2 ⊂ Ȳ2) −→ F (Y ⊂ Ȳ )

induced by the inclusions of the summands is a homotopy equivalence. Of course,
Ȳi is the closure of Yi in Ȳ , for i = 1, 2.

A commutative square of control spaces and morphisms

(Y1 ⊂ Ȳ1) −−−−→ (Y2 ⊂ Ȳ2)y
y

(Y3 ⊂ Ȳ3) −−−−→ (Y4 ⊂ Ȳ4)

is a homotopy pushout square of control spaces if the induced map from the ho-
motopy colimit of (Y3 ← Y1 → Y2) to Y4 is a controlled homotopy equivalence of
spaces over Y4, and the induced maps (Ȳi r Yi) → (Ȳj r Yj) are injections (i < j,
but not i = 2 and j = 3). A homotopy invariant F (from control spaces to spectra)
is excisive if it takes homotopy pushout squares to homotopy pushout squares.
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2.8. [bis]♣. For any homotopy invariant and homotopy additive F from control
spaces to spectra, there exists

α : F % −→ F ,

natural in F , where F % is excisive and α : F %(Y ⊂ Ȳ ) −→ F (Y ⊂ Ȳ ) is a
homotopy equivalence whenever Y is discrete.

This is not directly useful unless we know what F does to control spaces (Y ⊂ Ȳ )
with discrete Y . But sometimes we do. Suppose for example that there exists a
chain of natural homotopy equivalences giving

F (Y ⊂ Ȳ ) '
∏

y∈Y

T

(for discrete Y only), where T is some spectrum. Then the same is true for F %

(same T ). Since F % is also excisive, it follows (by Eilenberg–Steenrod arguments)
that

F %(Y ⊂ Ȳ ) ' holim
compact C⊂Y

(
Y/(Y r C)

)∧T

for any (Y ⊂ Ȳ ). In this case π∗(F %(Y ⊂ Ȳ )) is the locally finite homology of Y
with coefficients in T .

2.9. Preview. Let Mn be a compact manifold with Spivak normal bundle ν, as
in the introduction. Recall that LA(M, ν,−n) is defined as a certain homotopy
pullback. Since the %–construction respects (natural) homotopy pullbacks, we find
that the infinite loop space LA(M, ν,−n)% is the homotopy pullback of

L(M, ν,−n)%
Ξ−→ ĤH(Z2; A(M))% ←↩ HH(Z2; A(M))% .

We can therefore construct the map ι : S(M) −→ LA(M, ν,−n)% from theorem
0.7 by lifting the composite map

(2.i) S(M) ↪→ S̃(M) ι̃−→ L(M, ν,−n)%
Ξ−→ ĤH(Z2;A(M))%

to HH(Z2;A(M))%. This is what we will do in the next sections. (In §3, we
construct a map from S(M) to A(M)%; in §4 and §5, we refine this to a map from
S(M) to HH(Z2;A(M))%, and in §6 we check compatibility with (2.i).)

3. Euler Characteristics

Let Y be a compact ENR. Think of A(Y ) as the K–theory of the category of
retractive compact ENR’s over Y (where the cofibrations are the injections). A
small effort is required to make A(Y ) into a functor of the variable Y . We leave this
to the reader. Any retractive compact ENR over Y determines a point in A(Y );
specifically, the retractive space

S0 × Y
r−→←−
s

Y

where r is the projection and s identifies Y with {1} × Y , determines a point

〈Y 〉 ∈ A(Y ).
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3.1. Definition. We call 〈Y 〉 the Euler characteristic of Y . (Note that we are
interested in the point 〈Y 〉, not just in its connected component.)

A homotopy equivalence f : X −→ Y between compact ENR’s induces another
homotopy equivalence f∗ : A(X) −→ A(Y ). It also determines a path 〈f〉 in A(Y )
from f∗〈X〉 to 〈Y 〉. Namely, f∗〈X〉 is the point in A(Y ) corresponding to the
retractive space

{−1} ×X ∪ {1} × Y À Y

where the retraction is equal to f on {−1} ×X. Now f gives a weak equivalence
from this retractive space to

S0 × Y À Y.

The weak equivalence determines a path in A(Y ).

We could continue in this manner, looking e.g. at composable sequences of ho-
motopy equivalences. Perhaps the best way to express the naturality properties of
Euler characteristics is the following. Let C be a small category whose objects are
compact ENR’s and whose morphisms are homotopy equivalences (composition of
morphisms being composition of maps). Form the homotopy inverse limit

A(C) := holim
Y

A(Y )

where Y runs over the objects of C. Euler characteristics define a point 〈C〉 ∈ A(C).
(Use the very explicit description of homotopy inverse limits in [BK, XI.3.4].)

We refer to this type of naturality as lax naturality. The Euler characteristic 〈Y 〉
is lax natural with respect to homotopy equivalences. To apply this concept, we
need to know more about the space A(C) above. Hence the following definition:

3.2. Definition. A quasifibration on a simplicial set X is a covariant functor

q : simplices of X −→ spaces

taking all morphisms between simplices to homotopy equivalences. (A morphism
from an m–simplex x to an n–simplex y is a monotone map f from {0, 1, . . . , m} to
{0, 1, . . . , n} such that f∗(y) = x.) A quasisection of q is a natural transformation
from the functor

x 7→ ∆|x|

to q. The space of quasisections is denoted by Γ(q). Quasifibrations and quasisec-
tions can be pulled back under simplicial maps, just like fibrations and sections.

3.3. Example. Any fibration p : E → |X| over the geometric realization of X
gives rise to a quasifibration q over X, by

q(x) = pullback of
(
E → |X| cx←− ∆|x|

)

where cx is the characteristic map for x. Conversely, let q be a quasifibration over
X as in 3.2; let E be the homotopy direct limit of q. Then E, which we call the total
space of q, comes with a canonical projection map to |X|. This is not a fibration in
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general, but it is a quasifibration in the sense of Dold–Thom, [DoTho]. It follows
that the space of quasisections of q is homotopy equivalent to the space of sections
of the associated fibration.

Suppose that q1 and q2 are quasifibrations on X, and that t : q1 → q2 is a
natural transformation such that tx : q1(x) → q2(x) is a homotopy equivalence
for all simplices x in X. Then t induces a map over X between the total spaces
of q1, q2 which is a homotopy equivalence and induces a fiber homotopy equiv-
alence of the associated fibrations. We sometimes use this in order to “trivial-
ize” a quasifibration. Thus if q2 above is a constant functor with value Y , then
Γ(q1) ' Γ(q2) ' map(|X|, Y ).

3.4. Example. Let C be a small category, and let u be a covariant functor from
C to spaces taking all morphisms to homotopy equivalences. This determines a
quasifibration qu on the nerve of C:

(C0 → C1 → · · · → Cn) 7−→ u(Cn) .

In this case we have
Γ(qu) ∼= holimu

by inspection.

3.5. Sub–example. Let C be the category of all compact ENR’s homotopy
equivalent to Y (a compact ENR); as morphisms allow homotopy equivalences
only. Let u be the functor sending X in C to A(X). As in 3.4, this leads to a
quasifibration on the nerve of C with fibers homotopy equivalent to A(Y ). Euler
characteristics define a quasisection 〈C〉 of the quasifibration. Observe that the
(geometric realization of) the nerve of C is a classifying space for the topological
monoid of homotopy automorphisms of Y . See [Fie], [DwKa].

Next we want to lift the Euler characteristic 〈Y 〉 ∈ A(Y ) to A(Y )%, the domain
of the assembly map. To do so, we need some facts from controlled A–theory.
Suppose that E ⊂ Ē is a control space, and also that E is an ENR. We form
the category of proper retractive ENR’s over E, where the morphisms are maps
over E and relative to E. Such a morphism is a cofibration if it is injective, and a
controlled h–equivalence if it is a controlled homotopy equivalence (when regarded
as a controlled map between spaces over E). Taking controlled h–equivalences as
weak equivalences, let A(E ⊂ Ē) be the K–theory spectrum of this category with
cofibrations and weak equivalences. The following is a reformulation of a special case
of the main theorem of [Vo2]; see also [PeWei], [AnCoFePe], [Vo3] [Vo4]. Notation:
Y is a compact ENR which we sometimes identify with Y × {0}.
3.6. Theorem. The functor sending Y to the homotopy fiber of the inclusion
map

A(Y ) ↪→ A
(
Y × [0,∞) ⊂ Y × [0,∞]

)

is homotopy invariant and excisive. Moreover, A
(
Y × [0,∞)⊂ Y × [0,∞]

)
is con-

tractible if Y is a point.

The contractibility statement in 3.6 can be proved and generalized as follows.
The category of proper retractive spaces over Y × [0,∞) has an endomorphism t
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induced by the shift map

Y × [0,∞) → Y × [0,∞) ; (y, s) 7→ (y, s + 1) .

It has another endomorphism

u := tq t2 q t3 q · · · .

Call a morphism f in the category a microequivalence if u(f) is a controlled h–
equivalence. (For example, an isomorphism is a microequivalence.) Form the K–
theory of the category, allowing only microequivalences as weak equivalences; call
it P (Y ). Since microequivalences are controlled h-equivalences, we have

P (Y ) ⊂ A
(
Y × [0,∞) ⊂ Y × [0,∞]

)
;

the inclusion is an equality if Y is a point.

3.7. Lemma. The spectrum P (Y ) is contractible.

Proof by Eilenberg–swindle: Note that t and u define self–maps of P (Y ). Write
[t] and [u] for their homotopy classes. Then

[id] = [t] = [u]− [tu] = [u]− [t][u] = [u]− [u] = [∗]. ¤

We now decree that A(Y )% is the homotopy pullback of

A(Y ) ↪→ A
(
Y × [0,∞) ⊂ Y × [0,∞]

) ←↩ P (Y ) .

To justify this, we note that
(1) the spectrum A(Y )% so defined comes with a forgetful map to A(Y );
(2) this forgetful map is a homotopy equivalence when Y is a point;
(3) the functor Y 7→ A(Y )% so defined is indeed homotopy invariant and exci-

sive, by 3.7 and 3.6.

Returning to the Euler characteristic 〈Y 〉, we note that

〈Y 〉 ∈ A(Y ) ∩ P (Y ) ⊂ A
(
Y × [0,∞) ⊂ Y × [0,∞]

)
.

It follows that 〈Y 〉 has a canonical lift 〈〈Y 〉〉 to A(Y )%, which we call the mi-
crocharacteristic of Y . More remarkable is the following: Let f : X → Y be a
homeomorphism between compact ENR’s. Then the entire path 〈f〉 from f∗〈X〉
to 〈Y 〉 is contained in A(Y )∩ P (Y ). It follows that 〈f〉 has a canonical lift 〈〈f〉〉 to
a path from f∗〈〈X〉〉 to 〈〈Y 〉〉. In other words:

3.8. Proposition. The microcharacteristic 〈〈Y 〉〉 ∈ A(Y )% is lax natural with
respect to homeomorphisms.

Actually, the same argument shows that the microcharacteristic is lax natural
with respect to cell–like maps [Lac1], [Lac2], [Lac3]. We will not use this fact.
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Back to structure spaces: Let M be a manifold, closed until further notice. Here
is some general nonsense related to our definition of structure spaces. Let C be a
simplicial category. Form the ordinary category C[ with objects (j, C) where C is
an object in C[j] ; a morphism in C[, from (j, C) to (k, D), is a pair (e, g) where e
is a monotone map from [j] = {0, 1, . . . , j} to [k] and g is a morphism in C[j] from
C to e∗D. Then the classifying space of C is homotopy equivalent to that of C[ (by
a chain of natural homotopy equivalences). This is a special case of the homotopy
colimit theorem [Tho].

Using this, we may think of Sδ(M) (see 1.2) as the classifying space |I| of the
following discrete category I. Objects are of the form f : M ′ × ∆j → M × ∆j

where f is a map over ∆j and a homotopy equivalence. A morphism
(
f1 : M ′ ×∆j → M ×∆j

) −→ (
f2 : M ′′ ×∆k → M ×∆k

)

is a pair (e, g) where e : [j] → [k] is monotone (inducing e∗ : ∆j → ∆k) and
g : M ′ → M ′′ is a homeomorphism making the appropriate triangle commute.

Define a diagram of functors from I to spaces

F%
1 ←−−−− F%

2 −−−−→ F%
3y

y
y

F1 ←−−−− F2 −−−−→ F3

as follows. The functors send an object f : M ′ ×∆j → M ×∆j to

A(M ′)% (F%
1 )

A(M ′ ×∆j)% (F%
2 )

A(M)% (F%
3 )

A(M ′) (F1)

A(M ′ ×∆j) (F2)

A(M) (F3)

and the natural transformations are obvious. The upper row of the diagram trivial-
izes the quasifibration q% on |I| determined by F%

1 , showing that the quasisection
s% of q% determined by the microcharacteristics of the various M ′ is a map u%

from |I| to A(M)%. The lower row trivializes the quasifibration q on |I| determined
by F1, showing that the quasisection s of q determined by the Euler characteristics
of the various M ′ is a map u from |I| to A(M). Lax naturality of the Euler charac-
teristic for homotopy equivalences shows also that u is homotopic to the constant
map with value 〈M〉. Together, u% and the nullhomotopy of u = αu% determine a
map from |I| ' Sδ(M) to the homotopy fiber of the assembly

α : A(M)% −→ A(M)

over the point 〈M〉. A translation argument (using the infinite loop space struc-
tures) identifies this homotopy fiber with A(M)%, so we have

(3.i) Sδ(M) −→ A(M)%.
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Since A(M)% is an infinite loop space, its fundamental group is abelian. Now
theorem 1.2 and an obstruction theory argument show that the map (3.i) factors
(uniquely, and up to a preferred homotopy) through a map

(3.ii) S(M) −→ A(M)%.

Better perhaps, we can say that the homotopy pushout of

S(M) ←↩ Sδ(M) ↪→ A(M)%

is still an acceptable model of A(M)% (it is homotopy equivalent to the previous
model), and contains S(M).

Next topic: Euler characteristics and microcharacteristics for control spaces.
(See §1, sequel of 1.2.)

3.9. Observation. The functor

(Y ⊂ Ȳ ) 7→ A(Y ⊂ Ȳ )

takes homotopy equivalences of control spaces to homotopy equivalences of spectra.

Let 〈Y 〉 be the point in A(Y ⊂ Ȳ ) determined by the proper retractive space

S0 × Y
r−→←−
s

Y .

3.10. Definition. We call 〈Y 〉 the controlled Euler characteristic of Y . It is lax
natural with respect to homotopy equivalences of control spaces.

For microcharacteristics, we need versions of A–theory with excision properties.

3.11. Theorem♣. The functor sending (Y ⊂ Ȳ ) to the homotopy fiber of the
inclusion

A(Y ⊂ Ȳ ) ↪→ A
(
Y × [0,∞) ⊂ Ȳ × [0,∞]

)

is homotopy invariant and excisive (see 2.8). Moreover, A
(
Y ×[0,∞) ⊂ Ȳ ×[0,∞]

)
is contractible if Y is discrete.

3.12. Notation. It is only a mild abuse of notation to write A(Y ⊂ Ȳ )% for the
homotopy fiber in 3.11, and A(Y ⊂ Ȳ )% for the homotopy fiber of the forgetful
map from A(Y ⊂ Ȳ )% to A(Y ⊂ Ȳ ). Indeed, the last sentence of 3.11 states
that A(Y ⊂ Ȳ )% maps by a homotopy equivalence to A(Y ⊂ Ȳ ) if Y is discrete ;
further, a surprisingly difficult theorem of Carlsson [Car] shows that A(Y ⊂ Ȳ )
maps by a homotopy equivalence to Πy∈Y A(∗), still for discrete Y . Compare 2.8
and sequel.

We abbreviate

cA(M × V ) := A(M × V ⊂ M ∗ S(V ))

(also with decorations %). At this point we must worry a little about ambiguous
notation: cA(M × V )% may be regarded as a functor in the variable M alone, and
then the superscript % has a meaning defined in §2 which might conflict with the
“mild abuse” introduced just above. To see that there is no conflict, we have to
check agreement only in the case where M is a point, which amounts to proving:
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3.13. Lemma♣. A
(
V × [0,∞) ⊂ V̄ × [0,∞]

)
is contractible.

Proceeding as in 3.7, 3.8, we obtain a microcharacteristic

〈〈Y 〉〉 ∈ A(Y ⊂ Ȳ )%

which is lax natural for homeomorphisms of control spaces. As in the no–control
setting, this leads to a map

(3.iii) cSδ(M × V ) −→ cA(M × V )% .

The map is equivariant for the actions of κ = TOP δ(S(V )). Nevertheless, it appears
to fall short of expectations in two respects. For one thing, we really want a map
from cS(M×V ) to cA(M×V )%. Theorem 1.5 seems too weak to bridge the gap. For
another thing, we would really like to have a map from cS(M×V ) to cA(M × V )%
which is natural in the variable V . Still more: We would like to think of the map as
a natural transformation between continuous functors in the variable V . Continuity
is important because the hyperplane test uses it [WW1, §3]. A digression on the
meaning of continuity is in order.

3.14. Digression. Let J be the category of finite dimensional vector spaces V
with a positive definite inner product (as in [WW1, Def.1.11]. Morphisms are injec-
tive linear maps respecting the inner product. Each morphism set has a topology
making it homeomorphic to a Stiefel manifold. We call a covariant functor F from
J to pointed spaces continuous if the evaluation maps

mor(V, W )× F (V ) −→ F (W ) ; (f, x) 7→ f∗(x)

are continuous for arbitrary V, W in J . (For the purposes of this digression, a
pointed space is understood to be a well–pointed space homotopy equivalent to a
CW–space.)

A natural transformation t : F → G between continuous covariant functors from
J to pointed spaces is an equivalence if tV from F (V ) to G(V ) is a homotopy
equivalence for every V . In practice, when an equivalence from F to G exists and
has been specified, then we make no further attempt to distinguish between F and
G. Keeping this in mind, we can approach the classification of continuous functors
from J to pointed spaces as follows. We replace J by an equivalent subcategory,
namely, the full subcategory with objects Ri for i ≥ 0. A continuous functor F
from this subcategory to pointed spaces is nothing but a diagram of pointed spaces
and pointed maps

(3.iv) X0
ι0−→ X1

ι1−→ X2
ι2−→ X3 −→ · · ·

where each Xn comes with a continuous action of the orthogonal group O(n), and
each ιn is an O(n)–map. Note: O(n) ⊂ O(n + 1). (Let Xn = F (Rn) and let ιn be
the map induced by the standard inclusion of Rn in Rn+1.) Now write

Yn := (Xn)hO(n) = EO(n)×O(n)Xn .
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Then we have a commutative diagram

(3.v)

Y0 −−−−→ Y1 −−−−→ Y2 −−−−→ Y3 −−−−→ · · ·
p0

y p1

y p2

y p3

y
BO(0) ⊂−−−−→ BO(1) ⊂−−−−→ BO(2) ⊂−−−−→ BO(3) −−−−→ · · ·

where the arrows in the upper row are induced by the maps ιn, and the vertical
arrows pn are the projection maps, each with a distinguished section. From (3.v),
we can recover (3.iv) up to equivalence. In fact, Xn is contained in the homotopy
pullback of

E(n) → BO(n)
pn←− Yn

as an O(n)–subspace, and the inclusion is a homotopy equivalence. The conclusion
is that we may think of a continuous functor F from J to pointed spaces as a
diagram like (3.v). Remember that Yn is determined by F as the homotopy orbit
space of O(n) acting on F (Rn).

Sometimes it is more appropriate to work with TOP (Sn−1) instead of O(n). In
this connection, note the following. A commutative diagram of the form

(3.vi)

Z0 −−−−→ Z1 −−−−→ Z2 −−−−→ · · ·
q0

y q1

y q2

y
BTOP (S−1) ⊂−−−−→ BTOP (S0) ⊂−−−−→ BTOP (S1) −−−−→ · · ·

(where the maps qn are equipped with compatible sections) gives rise to one of the
form (3.v): let Yn be the homotopy pullback of

BO(n) ↪→ BTOP (Sn−1)
qn←− Zn

and so on. Furthermore, a commutative diagram of the form

(3.vii)

Z]
0 −−−−→ Z]

1 −−−−→ Z]
2 −−−−→ · · ·

r0

y r1

y r2

y
BTOP δ(S−1) ⊂−−−−→ BTOP δ(S0) ⊂−−−−→ BTOP δ(S1) ⊂−−−−→ · · ·

(where the maps rn are equipped with compatible sections) gives rise to one of the
form (3.vi): let Zn be the homotopy pushout of

BTOP (Sn−1) ⊃←− BTOP δ(Sn−1) section−−−−→ Z]
n

where “section” refers to the distinguished section of rn. The inclusion of Zn in Z]
n

is a homology equivalence.
First example: Let Z]

n := (cSδ(M×Rn))hκ as in theorem 1.5, where κ = κ(n) is
TOP δ(Sn−1). Let rn be the projection. Then, as a consequence of 1.5, we find that
Zn is homotopy equivalent to (cS(M×Rn))hλ, again as in 1.5, where λ = λ(n) is
TOP (Sn−1). Therefore Yn is homotopy equivalent to (cS(M×Rn))hO(n), and finally
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Xn is homotopy equivalent to cS(M×Rn). Thus the continuous functor F on J
constructed (ultimately) from the spaces Z]

n and the maps rn is V 7→ cS(M × V ).
Details are left to the reader.

Second example: Let Z]
n := (cA(M×V )%)hκ, where κ = κ(n) is TOP δ(Sn−1).

Let rn be the projection. It is a fact that elements of TOP (Sn−1) isotopic to
the identity act on cA(M × V )% by automorphisms homotopic to the identity.
(See the last sentence of this section for an explanation.) It follows (using the
McDuff theorem for Sn−1 and a spectral sequence argument) that Zn has the form
(cA(M×V )%)hλ, for a suitable continuous action of λ = λ(n) = TOP (Sn−1) on
(cA(M×V ))%. Then Yn must be homotopy equivalent to (cA(M×V )%)hO(n), and
Xn must be homotopy equivalent to cA(M×V )%. Thus the continuous functor F on
J constructed (ultimately) from the spaces Z]

n and the maps rn is V 7→ cA(M×V ).
Third example: What prompted the digression was a “morphism” from “first

example” to “second example” (display (3.iii), sequel of 3.13) and our inability
to deal with it. Concluding the digression, we can say that the (3.iii) induces a
natural transformation of continuous functors, from

(
V 7→ cS(M×V )

)
to

(
V 7→

cA(M×V )%
)
. ¤

So far relative Euler characteristics have not been mentioned. The relative Euler
characteristic of a pair (X, Y ) of compact ENR’s is an element 〈X, Y 〉 in A(X,Y ).
Here A(X,Y ) is defined as the K–theory of retractive pairs of compact ENR’s over
the pair (X,Y ). The microcharacteristic 〈〈X, Y 〉〉 is an element of A(X, Y )%, and
the superscript % must be interpreted as in 2.3. The additivity theorem [Wald3]
shows that the “obvious” map

A(X, Y ) −→ A(X)×A(Y ) ' A(X) ∨A(Y )

is a homotopy equivalence. With superscripts % added, or with subscripts % added,
it is still a homotopy equivalence.

By a straightforward generalization of the absolute case, we have an Euler char-
acteristic type map

S(M,∂M) −→ A(M, ∂M)%

for any compact manifold M with boundary. This fits into a commutative diagram

(3.viii)

S(M,∂M) −−−−→ A(M, ∂M)%yforget

yforget

S(∂M) −−−−→ A(∂M)% .

Now the easiest way to define an Euler characteristic type map for S(M) (when
∂M 6= ∅) is to define it as the induced map between vertical homotopy fibers in
diagram (3.viii):

S(M) −→ A(M)% .

(Again, the additivity theorem shows that the inclusion of A(M)% in the right–hand
vertical homotopy fiber in (3.viii) is a homotopy equivalence.)
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In an even more relative spirit we now assume that ∂M is the union of two
codimension zero compact submanifolds ∂0M and ∂1M with intersection equal to
∂∂0M = ∂∂1M . Allowing structures of the form

f : (N, ∂0N, ∂1N) −→ (M, ∂0M, ∂1M)

where f is a homotopy equivalence of triads restricting to a homeomorphism from
∂1N to ∂1M , we obtain a relative structure space S(M, ∂0M). Relative Euler
characteristics give rise, with the trick just explained, to a map

S(M, ∂0M) −→ A(M, ∂0M)%

Applying this insight to S(M × [0, 1],M × {1}), which is the h–cobordism space
H(M), we get

(3.ix) H(M) −→ A(M × [0, 1])% ' A(M)%

by discarding the boundary component of the relative Euler characteristic. This is
the Waldhausen map, mentioned at the end of the introduction. Waldhausen’s own
description of it [Wald1] is quite similar to ours, except that he uses the technology
of simple maps where we use the McDuff theorem (via 1.2). We think it is much
the same thing. There is another construction of the Waldhausen map which we
shall need in §6. It requires some preparation. In the commutative square

A(M)% −−−−→ cA(M × [0,∞))%y
y

cA(M × (−∞, 0])% −−−−→ cA(M × R)%

(all maps induced by inclusions of control spaces), the upper right–hand and lower
left–hand corner are contractible by the Eilenberg swindle. Controlled A–theory as
in [Vo2] yields:

3.15. Lemma♣. The resulting map from A(M)% to Ω(cA(M×R)%) is a homotopy
equivalence.

Notice that there are two “obvious” maps from A(M)% to cA(M × R)%. One
of these is induced by the inclusion of control spaces, and we have just seen that
it is nullhomotopic. The other, denoted ×〈〈R〉〉, is given by external smash product
with the retractive space

S0 × R
r−→←−
s
R .

(See [Vo1, §1] for the definition of external smash products.) It is also nullhomo-
topic. Informal explanation: The class of 〈〈R〉〉 in π0(A(R ⊂ R̄)%) is zero, because
the whole group is zero. See §6 (before 6.1) for more details and a specific nullho-
motopy of ×〈〈R〉〉, which we need in the following. (End of preparation.)
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Euler characteristics give us the vertical arrows in a commutative diagram

(3.x)

S(M) ×R−−−−→ cS(M × R)
y

y

A(M)%
×〈〈R〉〉−−−−→ cA(M × R)% .

The upper horizontal homotopy fiber in (3.x) is homotopy equivalent to H(M)
(details left to the reader ; see [WW1, §1, §5] for similar statements). But ×〈〈R〉〉
is nullhomotopic, so that the map between horizontal homotopy fibers in (3.x)
becomes

H(M) −→ A(M)% × Ω(cA(M × R)%)

and projecting to the second coordinate we have

(3.xi) H(M) −→ Ω(cA(M × R)%) ' A(M)% .

3.16. Proposition♣. The maps (3.ix) and (3.xi) are homotopic.

We can play the same game with control. The space of controlled h–cobordisms
on M ×Ri is cH(M ×Ri) := cS(M × [0, 1]×Ri,M ×{0}×Ri). Using relative Euler
characteristics (and discarding certain components) we obtain directly a “Wald-
hausen” map from cH(M × Ri) to cA(M × Ri)% . The fibration sequence up to
homotopy

cH(M × Ri) −→ cS(M × Ri) −→ cS(M × Ri+1)

gives us a way to construct a homotopic map using absolute Euler characteristics
only.

Note that the Waldhausen map from cH(M ×Ri) to cA(M ×Ri)% is a (usually
nonconnected) delooping of another Waldhausen map, from cH(M ×D1×Ri−1) to
cA(M × D1 × Ri−1)%, if i > 0. To see that ΩcH(M × Ri) is homotopy equivalent
to cH(M × D1 × Ri−1), for example, use the commutative square

cH(M × D1 × Ri−1) −−−−→ cH(M × [−1,+∞)× Ri−1)
y

y
cH(M × (−∞, 1]× Ri−1) −−−−→ cH(M × R× Ri−1)

and the observation that upper right–hand and lower left–hand corner are con-
tractible. This method is superior to “pushing methods” used in [WW1, §1, §5],
because it has a counterpart in controlled A–theory. Granting that the square

cH(M × Ri)
upper stabilization−−−−−−−−−−−−→ cH(M × D1 × Ri)

Waldhausen

y Waldhausen

y
cA(M × Ri)%

'−−−−→ cA(M × D1 × Ri)%
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commutes up to a preferred homotopy (implicit in ??? below) we conclude that

(3.xii)
{
cH(M × Ri) Waldhausen−−−−−−−−→ cA(M × Ri)%

∣∣ i ≥ 0
}

is a map of spectra. The induced map of (−1)–connected covers is a homotopy
equivalence

ΩWh(M) −→ A(M)%

(Waldhausen’s theorem ; Wh is short for WhTOP ). It is however known that it
is not necessary to pass to (−1)–connected covers ; the map of spectra (3.xii) is a
homotopy equivalence. We shall not use this fact.

4. Spanier–Whitehead Duality and Poincaré Duality

Our goal in this section is to get a good understanding of Spanier–Whitehead
duality and Poincaré duality in a controlled setting. We start with an axiomatic
description of Spanier–Whitehead duality.

Let C be a category with cofibrations and weak equivalences. Suppose that the
weak equivalences in C satisfy the saturation and extension axioms. Suppose further
that the category Y of compact pointed CW–spaces and pointed cellular maps acts
on C. The action consists of a bi–exact functor [Wald3, p.342]

∧ : Y × C −→ C

and natural isomorphisms with suitable coherence properties (details below),

S0 ∧ C ∼= C (unit)

(X ∧ Y ) ∧ C ∼= X ∧ (Y ∧ C) (associativity).

Think of Y as just another category with cofibrations and weak equivalences: the
cofibrations are the cellular injections, and the weak equivalences are the homology
equivalences. The action functor from Y × C to C is required to be exact: it must
take cofibrations to ditto and weak equivalences to ditto. Furthermore, we require

X ∧ ∗ ∼= ∗ , ∗ ∧ C ∼= ∗

for X in Y and C in C.
4.1. Example. Let R be a ring (associative, with unit). Let C be the category of
finitely generated chain complexes of projective left R–modules. Define the action
by

X ∧ C := W (X)⊗Z C

where W (X) is the reduced cellular chain complex of X.

4.2. Example. Take C = Y and let X ∧ Y have the usual meaning.
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4.3. Details. When an action of Y on C with the above properties is given, we
have two canonical isomorphisms between (X ∧ Y ∧Z)∧C and X ∧ (Y ∧ (Z ∧C)).
They are required to be the same. Next, there are two canonical isomorphisms
between X ∧ (S0 ∧C) and X ∧C. They are also required to be the same. Finally,
there are two canonical isomorphisms between S0 ∧ (X ∧C) and X ∧C, which we
require to be the same.

Note that C has a cylinder functor (see [Wald3]). The mapping cylinder of a
morphism f : C → D in C is the pushout of

[0, 1]+ ∧ C ←↩ C
f−→ D

(For the left–hand arrow, which is a cofibration, identify C with {1}+ ∧C and use
the inclusion {1} ⊂ [0, 1].) Strictly speaking, the cylinder of f is only determined
up to unique isomorphism. The associated suspension functor Σ can be defined
directly by ΣX = S1 ∧X.

By a weak morphism from an object C in C to another object D in C, we mean
a diagram

C −→ D1
e←− D

where e is a weak equivalence. The weak morphisms from C to D are the objects
of a category M(C,D); a morphism in M(C, D), from

C −→ D1
e←− D to C −→ D2

f←− D ,

is a morphism D1 → D2 in C making the appropriate diagram commute. We denote
by [C, D] the set of connected components of the nerve of M(C, D), and we write

[[C, D]] := lim
n

[ΣnC, ΣnD] .

4.4. Definition. A Spanier–Whitehead product (SW–product) on C is a covariant
functor

(C, D) 7→ C ¯D

from C × C to pointed spaces which takes pairs of weak equivalences to homotopy
equivalences, and which is symmetric, bilinear, and nondegenerate (explanations
follow).

(1) Symmetry means that the functor comes with a natural homeomorphism

C ¯D ∼= D ¯ C

(natural in both variables) whose square is the identity on C ¯D.
(2) Bilinearity means (in the presence of symmetry) that, for fixed but arbitrary

D, the functor
C 7→ C ¯D
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takes any pushout square in C where the horizontal arrows are cofibrations
to a homotopy pullback square of spaces. (We assume for convenience that
all pointed spaces in sight are homotopy equivalent to pointed CW–spaces.)
Bilinearity also means that ∗ ¯D is contractible.

(3) The functor in 4.4 is nondegenerate if, for every C in C, there exist n ≥ 0
and B and a class [η] ∈ πn(B ¯C) such that a certain map (slant product)

\[η] : [[C, D]] −→ πn(B ¯D)

is a bijection for arbitrary D. (We call such an [η] an n–duality.)
The map \[η] takes the class of a weak morphism

C
g−→ D′ e←− D

(where e is a weak equivalence) to e−1
∗ (g∗[η]). This defines \[η] on [C, D] only;

extend to [[C, D]] using the natural isomorphisms (which are a consequence of
bilinearity)

πn+k(B ¯ Σk(—)) ∼= πn(B ¯ (—)) .

4.5. Example. Let R be a ring with involution (involutory antiautomorphism).
Let C be the category of finitely generated chain complexes of projective left R-
modules, graded over the integers. As cofibrations take injective chain maps which
split in each dimension, and as weak equivalences take the chain homotopy equiva-
lences. For C and D in C, let C¯D be the simplicial abelian group made from the
chain complex of abelian groups Ct ⊗R D by the Dold–Kan method. See [Cur].

4.6 Example. Let C = Y as in 4.2. Let C ¯D := Q(C ∧D), where Q = Ω∞Σ∞.

When C is equipped with an SW product, the following are defined:
(1) a duality involution on K(C) (more precisely, on something homotopy equiv-

alent to K(C));
(2) a quadratic L–theory spectrum L(C);
(3) a symmetric L–theory spectrum LH(C);
(4) maps of spectra

(1 + T ) : L(C) → LH(C) ,

Ξ : LH(C) −→ ĤH(Z2;K(C)) .

We begin with the description of (1), which is technically (not conceptually) the
most demanding item. To simplify, let us throw in a hypothesis:

4.7. Hypothesis. The suspension map [C, D] → [ΣC, ΣD] is a bijection for all
C, D in C.

Then one finds [C, D] ∼= [[C,D]] for all C,D in C, and the “nondegenerate”
property of ¯ simplifies to the following:

∀C, ∃B, ∃η ∈ B ¯ C : \[η] from [C,D] to π0(B ¯D) is a bijection, ∀D.
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Moreover, we can add a uniqueness statement to the existence statement. For
this, let wC be the category of weak equivalences. Let w!C be the topological cate-
gory whose objects are triples (B,C, η) with B, C in C, and η ∈ B ¯ C such that
slant product with the class of η is a natural bijection. (Note that η can vary
continuously—this is where the topology comes from.) A morphism from (B, C, η)
to (B′, C ′, ζ) consists of f : B → B′ and g : C → C ′ such that ζ = (f ¯ g)η.

4.8. Lemma. The forgetful functor w!C → wC sending (B, C, η) to C induces a
homotopy equivalence of the classifying spaces.

Now recall Waldhausen’s simplicial category S•C constructed from C. Each SmC
is a category with cofibrations and weak equivalences whose objects are certain
diagrams C in C, indexed by the poset of pairs (i, j) (where 0 ≤ i ≤ j ≤ m) to C.
Up to isomorphism, such a diagram is determined by its top row which can be an
arbitrary string of cofibrations

∗ = C(0, 0) → C(0, 1) → C(0, 2) → C(0, 3) → · · · → C(0,m) .

The rest of the diagram consists of chosen subquotients, i.e.

C(i, j) ∼= C(0, j)/C(0, i) .

For two objects C, D in SmC, we define

C¯D := holim
i+q≥m
j+p≥m

C(i, j)¯D(p, q) .

4.9. Lemma♣. The functor ¯ on SmC × SmC is an SW–product.

The best way to understand the SW product in 4.9 is to ask how it depends on
m. We abbreviate [m] := {0, 1, . . . , m}. Note that the category with objects [m]
for m ≥ 0 and monotone maps as morphisms has an automorphism (conjugation)
of order two which takes f : [k] → [m] to f̄ = rmfrk where rk and rm are the order
reversing bijections of [k] and [m], respectively. Recall also that [m] 7→ SmC is a
simplicial category. Then, for C and D in SmC, and a monotone f : [k] → [m], we
have f∗C and f̄∗D in SkC. For example,

(f∗C)(i, j) = C(f(i), f(j)) , (f̄∗D)(p, q) = D(f̄(p), f̄(q)) ,

and if i + q ≥ k and j + p ≥ k, then f(i) + f̄(q) ≥ m and f(j) + f̄(p) ≥ m. It
follows that we have a forgetful map

C¯D −→ f∗C¯ f̄∗D .

4.9. Lemma [bis]♣. The forgetful map ? : C¯D → f∗C¯ f̄∗D takes n–dualities
to n–dualities, for all n.

In particular, if [η] ∈ πn(C ¯ D) is an n–duality, then C(i, j) is n–dual in C to
D(m − j, m − i) for 0 ≤ i ≤ j ≤ m. (Proof: take k = 1, and note that S1C is
isomorphic to C.)

Now for involutions: w!C is a category with an involution sending (B, C, η) to
(C,B, η′), where η′ is the image of η under the flip B ¯ C ∼= C ¯ B. Exactly the
same thing can be said of w!SmC for m ≥ 0, but we need to say more.
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4.10. Observation. The rule [m] 7→ w!SmC defines a simplicial category with
antisimplicial involution ι.

Explanation: For monotone f : [k] → [m], we define f∗ from w!SmC to w!SkC
by the formula

(C, D, η) 7→ (f∗C, f̄∗D, ?(η)) .

Then ι, defined as above in each degree, commutes with the simplicial operators
up to conjugation. ¤

Conclusion: the space Ω
∣∣k 7→ w!SkC

∣∣ is an infinite loop space with involution
(e.g. by [Se2]), and it maps forgetfully to K(C) = Ω

∣∣k 7→ wSkC
∣∣ . The forgetful

map is a homotopy equivalence and (e.g. by [Se2]) an infinite loop space map.

This leaves the question: what if C does not satisfy hypothesis 4.7 ? We then
force it by creating a suitable stable category Cω. The objects of Cω are the same
as those of C, and a morphism from C to D in Cω is an element of

colim
n

morC(ΣnC, ΣnD) .

Such a morphism is a cofibration {weak equivalence} if it can be represented by a
cofibration {weak equivalence} f : ΣnC → ΣnD, for some n. The next lemma is
an easy consequence of [Wald3, 1.6.2].

4.11. Lemma. The inclusion C ⊂ Cω induces a homotopy equivalence from K(C)
to K(Cω).

It is not difficult to extend the action of Y on C to one of Y on Cω. By contrast, it
is a little hairy to extend or lift the ¯ product from C to Cω. (For better distinction,
write ¯ω for the new product.) Let I be the category generated by the diagram of
inclusion maps

S0 −−−−→ E1
uy

y
E1

` −−−−→ S1 −−−−→ E2
uy

y
E2

` −−−−→ S2 −−−−→ E3
uy

y
E3

` −−−−→ S3 −−−−→ . . .
y
. . .

where En
u and En

` are the upper and lower hemispheres of Sn, respectively. Let
C ¯ω D be the space of almost natural transformations from the identity on I × I
to the functor

(X, Y ) 7→ (X ∧ C)¯ (Y ∧D) .
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Here an almost natural transformation need only be defined for X and Y in I
whose (naive) dimension is sufficiently large. Thanks to this little precaution, the
rule (C,D) 7→ C ¯ω D is a functor on Cω × Cω.

4.12. Lemma♣. The functor (C,D) 7→ C ¯ω D is an SW–product on Cω. Fur-
thermore, Cω satisfies hypothesis 4.7.

We turn to the construction of LH(C) and L(C). Assume for convenience that
hypothesis 4.7 holds—if it does not, apply the procedure sketched in 4.11 and
sequel.

By a symmetric Poincaré object in C, we mean an object C together with a Z2–
map φ from EZ2 to a nondegenerate component of C¯C. The symmetric Poincaré
objects form a set (or class) sp(C).

Let C[m] be the category of covariant functors from the poset po[m] (set of
nonempty faces of ∆m) to C. A morphism f : C → D in C[m] is a cofibration /
weak equivalence if fs : C(s) → D(s) is a cofibration / weak equivalence for every
face s of ∆m.

4.13. Lemma♣. The formula

C ¯D := holim
s∈po[m]

C(s)¯D(s)

defines an SW product on C[m]. For a monotone f : [k] → [m], the (obvious)
forgetful map from C ¯D to f∗C ¯ f∗D takes n–dualities to n–dualities, for all n.

4.14. Definition. LH(C) is the realization of the incomplete simplicial set

[m] 7→ sp(C[m]) .

(Incomplete means: without degeneracy operators.) Using the coproduct in C,
we can define a structure of infinite loop space on LH(C). That is, LH(C) is the
underlying space of a Γ–space [Se2]. The associated (−1)–connected spectrum is
LH(C).

A symmetric Poincaré object in sp(C) determines a homotopy fixed point in
the involutive model of K(C) (one might say, the self–dual Euler characteristic ;
compare §5 below, sequel of 5.4). The homotopy fixed point is an element in
HH(Z2; K(C)). Now replace C by C[m], arbitrary m, to obtain a simplicial map
from an incomplete simplicial set to a simplicial space,

(
[m] 7→ sp(C[m])

)
−→

(
[m] 7→ HH(Z2;K(C[m]))

)
.

Taking realizations on both sides gives

Ξ : LH(C) −→ ĤH(Z2;K(C))
because the simplicial spectrum

(
m 7→ K(C[m]) is an augmented Z2–resolution

of K(C) (see [WW2, §2]). In fact, the additivity theorem of algebraic K–theory
implies that

K(C[m]) '
∨

s∈po[m]

K(C)



MANIFOLDS AND ALGEBRAIC K–THEORY 31

and the involution can be unravelled as in [WW2, 4.6]. The map Ξ is a map of
infinite loop spaces, so it could be written in the form

Ξ : LH(C) −→ ĤH(Z2; K(C)) .

Now for quadratic L–theory: A quadratic Poincaré object in C is a symmetric
Poincaré object (C, φ) together with a Z2–nullhomotopy of the composition

EZ2
φ−−−−→ C ¯ C ↪→ hocolim

p
(Sp ∧ C)¯ (Sp ∧ C) .

(Note that C ∼= S0 ∧ C, and we use the standard inclusions Sp ↪→ Sp+1.) This
definition will be justified in a moment. Construct a space L(C) like LH(C), replacing
symmetric Poincaré objects by quadratic ones. L(C) is an infinite loop space, with
spectrum L(C). Tradition forces us to write

(1 + T ) : L(C) −→ LH(C)
for the forgetful map. Occasionally we write Ξ instead of Ξ · (1 + T ).

Justification. Bilinearity of the ¯ product shows that C ¯ C is an infinite loop
space: loosely speaking, it is the (0, 0)–space of an Ω–bispectrum

C ¯∞ C := {(Si ∧ C)¯ (Sj ∧ C)} .

Z/2 acts on this because ¯ is symmetric, but the action interchanges vertical and
horizontal suspension. We note that

C¯∞C → (S1∧C)¯∞(S1∧C) → (S2∧C)¯∞(S2∧C) → (S3∧C)¯∞(S3∧C) → · · ·
is an augmented Z2–resolution (as a filtered bispectrum ; convert all maps to cofi-
brations). Therefore symmetric Poincaré structures φ on C live in HH(Z2 : C¯∞C),
and quadratic Poincaré structures live in the homotopy fiber of

HH(Z2 : C ¯∞ C) −→ ĤH(Z2 : C ¯∞ C)

which is the infinite loop space HH(Z2;C ¯∞ C) of the homotopy orbit spectrum
of Z/2 acting on C ¯∞ C. See 0.9. Quadratic structures are symmetric structures
that have been lifted across the norm map. This is in agreement with [Wa1] and
[Ran2].

Enough of the general theory; here are some examples, essentially variations on
4.2. Notation: Recall that the external smash product of retractive spaces

Y
r−→←−
s

A , Z
r′−→←−
s′

B

is the retractive space YA ∧B Z over A×B given by

YA ∧B Z = pushout of
(
Y × Z

⊃←− Y ×B ∪ Z ×A −→ A×B
)
.
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4.15. Example/Proposition♣. Fix B, an ENR. Let C be the category of
compact retractive ENR’s over B. Y acts on C by (Y, X) 7→ Y∗ ∧B X for Y ∈ Y
and X ∈ C. Let P (X, Y ) be the homotopy pullback of

XB ∧B Y
retraction−−−−−−−→ B ×B

diagonal←−−−−−− B ,

so that P (X, Y ) is a retractive space over B. Let

X ¯ Y := Q(P (X, Y )/B) .

This defines a Spanier–Whitehead product on C. The proof is given, in a somewhat
different language, in [WW2]. (This description of duality in C is unfortunately
dual to the one in [Vo1].)

4.15. Example [bis]. The construction P (X,Y ) does not generalize well to con-
trolled situations, so here is a way to avoid it. Given

X
r−→←−
s

B , Y
r′−→←−
s′

B

in C, let P(X,Y ) be the category whose objects are finite retractive spaces

Z

q−→←−
t

B

together with a map f : Z → XB ∧B Y extending the diagonal ∆ : B → B×B and
a homotopy {ht : Z → B ×B} rel B from (r ∧ r′)f to ∆q. Morphisms in P(X, Y )
are retractive maps over B respecting the extra structure. Now let

X ¯ Y := hocolim
Z in P(X,Y )

Q(Z/B) .

To compare this with the previous definition, note that an object in P(X, Y ) is
the same as a retractive space over B together with a retractive map to P (X,Y ).
Morally speaking, P (X,Y ) is the terminal object of P(X,Y ), but technically speak-
ing, it does not belong to P(X,Y ) because of its size.

4.16. Example/Proposition♣. Let B ⊂ B̄ be a control space (cf. sequel of 1.2).
The category C of proper retractive ENR′s over B is a category with cofibrations
and weak equivalences (cf. sequel of 3.5). Given X, Y in C, define P(X, Y ) much
as before, substituting controlled homotopies for homotopies where possible. Let

X ¯ Y := hocolim
Z in P(X,Y )

Q(Z̄/B̄)

where Z̄ is the strict pullback of

Z ∪ {∞} retraction−−−−−−−→ B ∪ {∞} collapse−−−−−−→ B̄ .

(In general, Z̄/B̄ is not homotopy equivalent to a CW–space, but we can define
Q(Z̄/B̄) as the simplicial set of stable maps from S0 to Z̄/B̄.) Then ¯ is an
SW–product on C.



MANIFOLDS AND ALGEBRAIC K–THEORY 33

4.17. Example. With B and C as in 4.15, suppose that γ : E → B is a spherical
fibration on B with a preferred section (and with fibers homotopy equivalent to
Sk). We may vary 4.15 by letting

X ¯γ Y := hocolim
Z in P(X,Y )

ΩkQ(Z×B E
/
E)

(noting that E is B×B E). Again, this is an SW–product on C, and the proof (in
a different language) can be found in [WW2].

4.18. Example/Proposition♣. With B ⊂ B̄ and C as in 4.16, suppose that
γ : E → B is a spherical fibration with preferred section (fibers homotopy equivalent
to Sk). Vary 4.16 by letting

X ¯γ Y := hocolim
Z in P(X,Y )

ΩkQ(Z̄×B̄ Ē
/
Ē)

(where the meaning of the closure bars should be clear although γ : E → B is not
assumed to be proper). This is an SW–product.

The SW–products in 4.15–4.18 behave well under pushforward. Suppose for
example that f : B → B′ is a map between CW–spaces. The pushforward f∗ is a
functor from the category of retractive spaces over B to the category of retractive
spaces over B′, given by f∗X = X qB B′. Pushforward also defines a map from
X ¯ Y to f∗X ¯ f∗Y where we assume that X, Y are retractive CW–spaces over
B, and the ¯ products are defined as in 4.15.

4.19. Proposition♣. The pushforward map takes n–dualities to n–dualities, for
all n.

For the twisted version of this statement, we would assume that B′ comes with
a spherical fibration γ as in 4.17. We would use this as in 4.17 to define an SW–
product on the category of finite retractive CW–spaces over B′, and we would use
f∗γ to define an SW–product on the category of finite retractive CW–spaces over
B.

For the twisted and controlled version of the statement, we would assume that
B ⊂ B̄ and B′ ⊂ B̄′ are control spaces, that f : B̄ → B̄′ is a morphism of control
spaces (continuous map such that f−1(B′) = B), and again that B′ comes equipped
with γ as in 4.18, so that B is equipped with f∗γ.

5. Poincaré Duality

We are now ready to discuss Poincaré duality, and the point of view we shall take
is that it is some form of Spanier–Whitehead self duality. In the setting without
control, this looks as follows.

5.1. Definitions. We say that a compact CW–space Y (or a compact ENR) is a
Poincaré space of formal dimension n if there exist a spherical fibration ν : E → Y
with section Y → E (and fibers ' Sk), and a map ρ : Sn+k → E/Y such that the
composition

Sn −→ Ωk(E/Y )
diagonal−−−−−−→ (S0 × Y )¯ν (S0 × Y )
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(left–hand arrow adjoint to ρ) is an n–duality.
Explanation: We think of Z := S0×Y as an object in the category C of retractive

spaces over Y , and we define an SW–product ¯ν on C as in 4.17, taking γ := ν.
Then the diagonal map Z → ZY ∧Y Z makes Z into an object of P(Z, Z), so that
Ωk(Z ×Y E

/
E) ∼= E/Y is contained in Z ¯ Z.

Suppose next that Y ⊂ Ȳ is a control space. We call it a Poincaré control space
of formal dimension n if there exists a spherical fibration ν : E → Y with section
Y → E (and fibers ' Sk), and a map ρ : Sn+k → Ē/Ȳ such that the composition

Sn −→ Ωk(Ē/Ȳ )
diagonal−−−−−−→ (S0 × Y )¯ν (S0 × Y )

(left–hand arrow adjoint to ρ) is nondegenerate.

To make these definitions really satisfactory, we have to show that the fibration
ν and reduction ρ are unique up to contractible choice. It is enough to consider
the controlled case. Suppose therefore that Y ⊂ Ȳ is a Poincaré control space of
formal dimension n, and that

ν : E → Y , ρ : Sn+k → Ē/Ȳ

γ : F → Y , θ : Sn+k → F̄ /Ȳ

are two pairs having the properties spelled out in 5.1. Assume that ν and γ behave
well under iterated fiberwise suspension, in the sense that they remain spherical
fibrations. Let W be the space of pairs (f, h) where f is a stable fiber homo-
topy equivalence from ν to γ, respecting the preferred sections, and h is a stable
homotopy from f∗(ρ) to θ.

5.2.Proposition. W is contractible.

Sketch proof. Write smap(ν, γ) for the space of fiber preserving and section pre-
serving stable maps, not necessarily of degree one in each fiber, from ν to γ (where
stable means: defined after many fiberwise suspensions). We will show that

(5.i) smap(ν, γ) −→ Ωn+kQ(F̄ /Ȳ ) ; f 7→ f∗(ρ)

is a homotopy equivalence. (Then 5.2 follows with very little extra work.) To show
this, we examine domain and codomain in (5.i) separately.

Domain: Let C be the category of proper retractive ENR′s over Y . We are
going to pretend that ν : E → Y and γ : F → Y (with the preferred sections)
belong to C. In general this cannot be arranged, so the honest solution would be to
replace C by a slightly larger category containing all retractive spaces over Y which
are controlled h-equivalent to retractive spaces in C. Pretending this, we have

πi(smap(ν, γ)) ∼= [[Σi
Y E,F ]]

for all i (notation explained just before 4.4). The proof is in two steps. The first
step consists in showing that, for any two objects

C
r−→←−
s

Y , D
r′−→←−
s′

Y
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in C, the set [C, D] can be identified with the set of controlled homotopy classes of
pairs (g, w) where g : C → D is a controlled map relative to Y , and w is a controlled
homotopy from r to r′f . This is not really difficult. In the second step, assume
that r′ : D → Y is a fibration, and use this to show that [C,D] can be identified
with the set of homotopy classes of retractive maps from C to D. (This is not
difficult either, but the result is surprising. It shows that [C,D] does not depend
on the compactification Ȳ of Y (provided r′ : D → Y is a fibration).) Finish by
stabilizing.

Codomain: Let ¯ be the untwisted SW–product in C (use 4.16, not 4.18). Verify
that Ωn+kQ(F̄ /Ȳ ) is homotopy equivalent to Ωn

(
(S0 × Y )¯ F

)
.

To finish the proof, remember that we assumed that

Sn adjoint of ρ−−−−−−−→ Ωk(Ē/Ȳ )
diagonal−−−−−−→ (S0 × Y )¯ν (S0 × Y )

is nondegenerate. This is equivalent to assuming that

Sn+k ρ−→ Ē/Ȳ
ι−→ Q(Ē/Ȳ ) ' (S0 × Y )¯ E

(untwisted SW–product) is nondegenerate, where ι is the inclusion. Then in par-
ticular

\[ιρ] : [[E,F ]] −→ πn+k

(
(S0 × Y )¯ F

) ' πs
n+k(F̄ /Ȳ )

is a bijection, and more generally

\[Σi(ιρ)] : [[Σi
Y E,F ]] −→ πs

n+k+i(F̄ /Ȳ )

is a bijection for all i. Translating back, we conclude that (5.i) induces isomorphisms
on homotopy groups. Then the homotopy fiber of (5.i) over θ is contractible, giving
us a contractible choice of stable fiber preserving and section preserving maps from ν
to γ. We would like to know that this choice is a stable fiber homotopy equivalence.
It is, of course, because we can find a fiber homotopy inverse by interchanging ν
and γ. ¤

5.3. Observation. If the control spaces B ⊂ B̄ and B′ ⊂ B̄′ are homotopy
equivalent, and B ⊂ B′ is Poincaré of formal dimension n, then the same holds for
B′ ⊂ B̄′.

5.4. Proposition♣. Any control space of the form B ⊂ B̄, where B is an n–
manifold, is a Poincaré control space of formal dimension n. In fact, suppose that
ν : E → B is a spherical fibration with section (fibers ' Sk), and that ρ : Sn+k →
Ē/B̄ has degree 1. Then

Sn adjoint of ρ−−−−−−−→ Ωk(Ē/B̄)
diagonal−−−−−−→ (S0 ×B)¯ν (S0 ×B)

is nondegenerate.

In general, whether B ⊂ B̄ is a Poincaré control space depends on the size of
B̄ rB (big size, slim chance).
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Poincaré spaces and Poincaré control spaces have self–dual Euler characteristics.
Let Y be a Poincaré space (and a compact ENR) of formal dimension n, with
Spivak normal fibration ν : E → Y and reduction ρ : Sn+k → E/Y . (We assume
that ν has a preferred section and fibers ' Sk.) Then S0 × Y is a retractive space
over Y , and the composite map η given by

S0 −→ Ωn+k(E/Y )
diagonal−−−−−−→ Ωn((S0 × Y )¯ν (S0 × Y ))

(left–hand arrow adjoint to ρ, as in 5.1) is nondegenerate. The SW–product
(X,X ′) 7→ Ωn(X ¯ν X ′) on the category of retractive ENR’s over Y determines
an involution on a suitable model of A(Y ) ; notice that this depends on ν and on
n. The pair consisting of the retractive space S0× Y and η determines a point 〈Y 〉
in this model of A(Y ); by inspection, the point is fixed under the involution. Fixed
points are homotopy fixed points, so we may write

〈Y 〉 ∈ HH(Z2;A(Y )) .

More generally, if Y ⊂ Ȳ is a Poincaré control space of formal dimension n, still
equipped with normal fibration ν : E → Y and reduction ρ : Sn+k → Ē/Ȳ , then
we have the controlled self–dual Euler characteristic

〈Y 〉 ∈ HH(Z2;A(Y ⊂ Ȳ )) .

Returning to the no–control situation, suppose that Y is a closed n–manifold, with
Spivak normal fibration ν and reduction ρ as above. Then we have a self–dual
microcharacteristic

〈〈Y 〉〉 ∈ HH(Z2; A(Y )%)

for a suitable involution on A(Y )%. Here the only surprise is that Poincaré spaces
do not qualify in general. To understand why, recall (from around 3.8) that we con-
structed the microcharacteristic 〈〈Y 〉〉 in A(Y )% using an Eilenberg swindle which
involved the retractive space (Y × N) q (Y × [0,∞)) over Y × [0,∞). In order to
make the argument work “with self–duality”, we have to know that this retractive
space is controlled self-dual ; the control comes from the compactification

Y × [0,∞) ⊂ Y × [0,∞]

and duality refers to the SW–product (X, X ′) 7→ Ωn(X ¯ν X ′). (Feel free to think
of ν as a spherical fibration on Y × [0,∞).) Using 4.19, we see that it is enough to
show that Y ×N with compactification Y × (N ∪ {∞}) is a Poincaré control space
of formal dimension n and with Spivak normal fibration ν. By 5.4, this is indeed
the case if Y is a closed n–manifold, but it is not true for an arbitrary Poincaré
space Y .

Finally suppose that Y ⊂ Ȳ is a control space, and that Y is an n–manifold.
Assuming that Y is equipped with Spivak normal fibration ν : E → Y and reduction
ρ : Sn+k → E/Y as usual, and taking care to pick up the self–duality, we have (as
in 3.13 and sequel) the controlled self–dual microcharacteristic

〈〈Y 〉〉 ∈ HH(Z2; A%(Y ⊂ Ȳ )) .
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5.5. Remark. We will often encounter manifolds Y n equipped with a proper map
f : Y → V , where V is a real vector space. Then we define Ȳ as the closure of
the graph of f in (Y ∪ {∞}) × V̄ (and we identify Y with the graph of f , so that
Y ⊂ Ȳ .) In this situation it is more natural to define “reduction” as a map with
domain Sp ∧ V c (some large p), where V c is the one–point compactification. The
codomain is E/Y , where ν : E → Y plays the role of the normal bundle of Y in
Rp⊕V . The appropriate involution on A(Y ⊂ Ȳ ) and %–decorated relatives is the
one made from the SW–product (X, X ′) 7→ ΩV Ωn(X ¯ν X ′). The same remark
applies when a Poincare control space comes with a morphism of control spaces to
V ⊂ V̄ .

What are the naturality properties of these new Euler characteristics ? It seems
best to redefine e.g. Poincaré spaces as triples (Y, ν, ρ). A homotopy equivalence
from a Poincaré space (Y, ν, ρ) to another Poincare space (Y ′, ν′, ρ′) would then be
a pair f : Y

'−→ Y ′, φ : Σi
Y ν → f∗(ν′) such that (f, φ)∗(Σiρ) = ρ′. We assume that

ν and ν′ come with sections which are cofibrations, and that ν has fibers ' Sk,
whereas ν′ has fibers ' Sk+i. Similar conventions will be adopted for controlled
Poincaré spaces: everybody, manifolds not excepted, comes with Spivak normal
fibration and reduction. Then lax naturality of the new Euler characteristics is
obvious. In the summary which follows, and elsewhere, we write informally Y to
mean (Y, ν, ρ), and so on.

5.6. Summary.
(1) Self dual Euler characteristic 〈Y 〉 ∈ HH(Z2; A(Y )) : defined for Poincaré

spaces Y , lax natural for homotopy equivalences.
(2) Self dual microcharacteristic 〈〈Y 〉〉 ∈ HH(Z2; A(Y )%) : defined for closed

manifolds Y , lax natural for homeomorphisms.
(3) Controlled self dual Euler characteristic 〈Y ⊂ Ȳ 〉 ∈ HH(Z2; A(Y ⊂ Ȳ ))

: defined for Poincaré control spaces (Y ⊂ Ȳ ), lax natural for homotopy
equivalences between Poincaré control spaces.

(4) Controlled microcharacteristic 〈〈Y ⊂ Ȳ 〉〉 ∈ HH(Z2; A(Y ⊂ Ȳ )) : defined
for control spaces Y ⊂ Ȳ such that Y is a manifold, lax natural for homeo-
morphisms between such control spaces.

In all cases, the appropriate involution on the appropriate A–theory spectrum can
be described in terms of the Spivak normal fibration of Y and the (formal) dimension
of Y .

Remember now that we used Euler characteristics and microcharacteristics in
section 3 to construct maps from structure spaces to A–theory:

S(M) → A(M)% , cS(M × V ) → cA(M × V )%

where M is a compact manifold. Using self–dual Euler characteristics and mi-
crocharacteristics, we can refine these maps to get

χ : S(M) → HH(Z2; A(M)%) , χ : cS(M × V ) → HH(Z2; cA(M × V )%)

(with the conventions of remark 5.5). The details are omitted. What about natu-
rality in V ? Consider a direct sum of vector spaces, W = U ⊕V . Taking products
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with the identity structure on U gives a map cS(M × V ) → cS(M ×W ). We have
a compatible map

cA(M × V )% −→ cA(M ×W )%

given by external smash product with the retractive space S0 × U over U . Is it a
Z2–map ? More than a verification is required ; we have to relate the appropriate
SW–products. The SW–products are given by

(R,R′) 7→ ΩV Ωn(R¯ν R′) for retractive spaces R, R′ over M × V

(T, T ′) 7→ ΩW Ωn(T ¯ν T ′) for retractive spaces T , T ′ over M ×W .

We have to “relate” these in the case T = R×U , T ′ = R′×U . This is easily done:
take products with the diagonal map U → U × U . With these conventions, the
following commutes:

cS(M × V ) ×U−−−−→ cS(M ×W )
y

y

HH(Z2; cA(M × V )%)
×〈〈U〉〉−−−−→ HH(Z2; cA(M ×W )%) .

At this point we can specialize, taking V = Ri and W = Rj , say. Then we can
“unspecialize” again, to the tune of 3.14. Consequently we can say that

χ : cS(M × V ) → HH(Z2; cA(M × V )%)

is a natural transformation between continuous functors in the variable V .

6. Structures Vs. Block Structures

The goal is to sketch the construction of a highly connected map

ι : S(M) −→ LA(M, ν,−n)%

as advertised in Theorem 0.7.

Let D(V ) := cS(M×V ) and E(V ) := HH(Z2; cA(M×V )). We are interested in the
commutative square

D(0) ⊂−−−−→ D(R∞)

χ

y χ

y
E(0) ⊂−−−−→ E(R∞)

where D(R∞) := holimi D(Ri), E(R∞) := holimi E(Ri). Since D(R∞) and E(R∞)
are filtered by subspaces homotopy equivalent to D(Ri) and E(Ri), respectively,
we can write down an even more interesting commutative square

(6.i)

D(0) −−−−→ posD(R∞)

χ

y χ

y
E(0) −−−−→ posE(R∞)
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(notation as in 1.6). General nonsense, to be developed in this section, will allow
us to identify the bottom line of (6.i) with the standard inclusion

HH(Z2; A(M)%) −→ ĤH(Z2; A(M)%) .

(The appropriate involution on A(M)% is the one determined by the normal bundle
ν and the integer n, as in the sequel of 5.4. We ought to write A(M, ν,−n)% for
this spectrum, indicating that ν has “formal” fiber dimension −n, but of course we
will not.) Recall now that posD(R∞) is homotopy equivalent to the block structure
space of M by 1.7 and 1.8, and therefore also to L(M,ν,−n)% by Sullivan, Wall,
Quinn, Ranicki (if n ≥ 5). With these identifications, (6.i) takes the form

(6.ii)

S(M) ⊂−−−−→ L(M, ν,−n)%

χ

y χ

y
HH(Z2; A(M)%) ⊂−−−−→ ĤH(Z2; A(M)%) .

General nonsense will further enable us to show that (6.i), or for that matter (6.ii),
is a homotopy pullback square in a certain range ; i.e., the map determined by (6.i)
from D(0) to the homotopy pullback of

posD(R∞) −→ posE(R∞) ←− E(0)

is highly connected. Then our mission (for this section) will be accomplished if we
can show that the right–hand χ in (6.ii) is homotopic to

Ξ% : L(M,ν,−n)% −→ HH(Z2; A(M)%)

(see 0.9). This may appear to be too obvious, since both χ and Ξ% were constructed
using self dual Euler characteristics. But it turns out to be a difficult point.

We begin with the analysis of E. In fact, it is convenient to analyse the functor
F given by V 7→ cA(M × V ) first. F is a (continuous) functor from J to pointed
spaces with Z2–action, and we may write

E(V ) = mapZ2
(EZ2, F (V )) .

A remarkable property of F is that the map F (e) : F (V ) → F (V ⊕ R) induced by
the inclusion e : V ↪→ V ⊕R is nullhomotopic for arbitrary V . To give the idea, we
construct a nullhomotopy for

×〈R〉 : cA(M × V ) −→ cA(M × (V ⊕ R))

(note the missing subscripts %). The nullhomotopy does not respect the Z2–actions,
and to describe it we use unadulterated models of A–theory. Let

X(V ) ⊂ cA(M × (V ⊕ R))
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be the K–theory of a certain full subcategory of the category of proper retractive
ENR’s over M × (V ⊕ R). An object belongs to the subcategory if the retraction
map r is such that

r−1(M × V × [0,∞))

is an ENR. Additivity theorem and Eilenberg swindle show that X(V ) is con-
tractible. Clearly the map ×〈R〉 has image contained in X(V ). This gives the
required nullhomotopy, well defined up to contractible choice.

We leave it to the reader to refine the argument and to factorize F (e) : F (V ) →
F (V ⊕R) (non–equivariantly) through a contractible space F ](V ), depending nat-
urally on V . In more detail: F (e) should equal ji, where i and j are natural
transformations:

F (V ) i−→ F ](V )
j−→ F (V ⊕ R) .

(For the time being, a factorization through a functor with contractible values is
an acceptable substitute for a natural nullhomotopy.) We can ask whether the
nullhomotopy substitute respects the Z2–actions. It fails dramatically.

6.1. Proposition♣. The commutative square

F (V ) i−−−−→ F ](V )

iT

y j

y
F ](V )

Tj−−−−→ F (V ⊕ R)

(where T ∈ Z2 is the generator) is a homotopy pullback square.

Isolating these properties, let us suppose that G is a continuous functor from J
to pointed Z2–spaces, and that there exists another continuous functor G] from J
to pointed contractible spaces and a natural factorization

G(V ) i−→ G](V )
j−→ G(V ⊕ R)

of the map G(V ) → G(V ⊕ R) induced by inclusion, such that

G(V ) i−−−−→ G](V )

iT

y j

y
G](V )

Tj−−−−→ G(V ⊕ R)

is a homotopy pullback square.

6.2. Proposition. In this situation, there exists a spectrum Θ with action of Z2

such that G is equivalent (details below) to the functor

V 7→ Q(V c ∧Θ) .

Here T ∈ Z2 acts by v 7→ −v on V and on the one–point compactification V c, and
diagonally on V c ∧Θ.

Explanation. Two continuous functors from J to spaces are equivalent if they
are related by a chain of equivalences (see 3.14). Here Z2 acts on each of the two
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functors, so we require it to act on each of the functors in the chain, and require
the equivalences to commute with the actions.

Proof. We would like to say that G(V ) → G(V ⊕ R) is naturally nullhomotopic
(naturally in V , that is). Our assumptions do not imply this, except if G is cofibrant
[We]. We say that a continuous functor G1 from J to spaces is cofibrant if, for any
diagram of continuous functors

G1
f−→ G2

e←− G3

where e is an equivalence, there exists a natural transformation

f̂ : G1 −→ G3

and a natural homotopy h from e·f̂ to f . It is shown in [We] that for an arbitrary G1,
there exists a cofibrant G¦1 and an equivalence G¦1 → G1. The whole construction
is natural in G1, so if Z2 acts on G1, it acts compatibly on G¦1.

We may therefore assume that G is cofibrant. Then i : G(V ) → G](V ) is
naturally nullhomotopic (exercise), and composing such a nullhomotopy with j
from G](V ) to G(V ⊕R), we have a specific natural nullhomotopy {hs | s ∈ [0,∞]}
of the map G(V ) → G(V ⊕ R). Then

σ : (R)c ∧G(V ) −→ G(V ⊕ R) ; (s, x) 7→





hs(x) s ≥ 0

ThsT (x) s ≤ 0
∗ s = ∞

is a natural transformation. It respects the Z2 actions, where T ∈ Z2 acts on R and
(R)c by the flip, and diagonally on (R)c ∧ G(V ). Last not least, our assumptions
imply that the adjoint of σ is a homotopy equivalence from G(V ) to ΩG(V ⊕ R).

We can use this to “improve” G to a continuous functor G from J to Ω–spectra
with Z2–action. In detail, define the n–th term of G(V ) as

hocolim
i

Ωi(Sn ∧G(V ⊕ Ri))

where we use σ to define the maps in the direct system. Z2 acts on each of the terms
in the direct system via the given action on G and the sign change or flip action on
the functor Ωi = map((Ri)c,—). Then G(V ) is an Ω–spectrum with action of Z2,
depending naturally and continuously on V , and moreover the composition of G
with the zero–th term functor is equivalent to G, as a continuous functor from J
to Z2–spaces. Using σ once again, we find that we still have a natural equivariant
map

σ : (R)c ∧G(V ) −→ G(V ⊕ R)

which is a homotopy equivalence. We use it to define a natural equivariant homo-
topy equivalence

V c ∧G(0) −→ G(V )
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in such a way that for every orthogonal sum decomposition V = L ⊕ L⊥ where
dim(L) = 1, the following commutes:

Lc ∧G(0) −−−−→ Lc ∧G(L⊥)

⊂
y σ

y
V c ∧G(0) −−−−→ G(L⊕ L⊥0 = G(V ) .

Taking Θ = G(0) completes the proof. ¤

6.3. Remark. It follows from 6.2 and proof that each space G(V ) has a preferred
structure of infinite loop space, naturally in V . In our example, G(V ) = F (V ) =
cA(M ×V ), we have such a natural infinite loop space structure to begin with, and
one would hope that it is “the same”. Suppose therefore, inspired by the example,
that each G(V ) is (the underlying space of) a grouplike Γ–space in the sense of [Se2],
depending naturally on V . (Grouplike means that the abelian monoid π0(G(V )) is
a group for all V ). Impose the same condition on G], and suppose that

G(V ) i−→G](V )
j−→ G(V ⊕ R)

T : G(V ) −→ G(V )

are Γ–maps. Repeat the proof of 6.2, taking care not to lose the Γ–structures, and
conclude that Θ is a spectrum made from Γ–spaces, such that all the structure
maps Θn → ΩΘn+1 are Γ–maps. Taking zero–th spaces, we recover G as a functor
to Γ–spaces. Speaking loosely, the two natural infinite loop space structures to be
compared are encoded in what is now a “bispectrum” Θ with Z2–action, as the
vertical and horizontal suspension directions, respectively. In this sense they are
“the same”.

6.4. Corollary. There is a homotopy commutative diagram

E(0) ⊂−−−−→ posE(R∞)

=

y '
y

HH(Z2; A(M)%) ⊂−−−−→ ĤH(Z2;A(M)%)

(see diagram (6.i) earlier in this section).

Proof. Using the definitions and 6.2 we may pretend

E(V ) = HH(Z2; V c ∧Θ)

for some spectrum Θ with action of Z2. Note: Z2 acts diagonally on V c ∧Θ. By
6.3 we can further identify the (−1)–connected cover Θ[0] of Θ with A(M)%. So
we should prove

(6.iii) posE(R∞) ' HH(Z2; V c ∧Θ[0]) ,
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relative to E(0) = HH(Z2;Θ) ' HH(Z2;Θ[0]). To begin, observe that there is a
homotopy commutative diagram of filtration preserving maps

posE(R∞) −−−−→ ⋃
i HH(Z2; ((Ri)c ∧Θ[0]))

⊂
y

y
E(R∞) =−−−−→ ⋃

i HH(Z2; ((Ri)c ∧Θ))

where the top horizontal arrow is obtained by obstruction theory, and is a homotopy
equivalence by a check on homotopy groups. We now recall some easy results from
[WW2,§1,§2]. Let X be a spectrum with Z2–action, X = ∪iX(i) where the X(i)
are Z2–invariant subspectra, i ≥ 0, and X(i) ⊂ X(i + 1) (by a cofibration, say) for
i ≥ 0. The filtered spectrum X is an augmented resolution of X(0) if

(1) each inclusion X(i) ↪→ X(i+1) is nullhomotopic (no equivariance required
for the nullhomotopy) ;

(2) X(i+1)/X(i) is induced for i ≥ 0, which means there exists a spectrum Y (i)
(no action) and a homotopy equivalence from (Z2)+∧Y (i) to X(i+1)/X(i)
which is a Z2–map.

Then, by [WW2, 2.10, 1.9, 1.10 and sequel] we have
⋃

i

HH(Z2; X(i)) ' ĤH(Z2; X(0))

and therefore, for the corresponding infinite loop spaces,
⋃

i

HH(Z2;X(i)) ' ĤH(Z2; X(0)) .

This homotopy equivalence is relative to HH(Z2; X(i)). Now clearly X(i) = (Ri)c∧
Θ[0] defines an augmented resolution, which proves (6.iii). ¤

The next assignment is to prove that the square (6.i) (beginning of this section)
is highly–connected, i.e., that it is a homotopy pullback square in a certain range.
We begin with a slightly weaker statement. Terminology: A commutative square
of spaces

X1 −−−−→ X2y
y

X3 −−−−→ X4

is j–connected if it induces a j–connected map from X1 to the homotopy limit of
(X3 → X4 ← X2).

6.5. Proposition. The square

ΩD(0) ⊂−−−−→ Ω
(

posD(R∞)
)

Ωχ

y Ωχ

y
ΩE(0) ⊂−−−−→ Ω

(
posE(R∞)

)
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is (j−1)–connected if j is in the topological h–cobordism stable range for M .

Proof. Write Yk for the homotopy fiber of D(Rk) → D(Rk+1), and Zk for the
homotopy fiber of E(Rk) → E(Rk+1). Write also

Y
[k]
k := (k − 1)–connected cover of Yk

Z
[k]
k := (k − 1)–connected cover of Zk

and note that these can be identified with the homotopy fibers of
posD(Rk) −→ posD(Rk+1) ,

posE(Rk) −→ posE(Rk+1) ,

respectively. An induction argument shows that it is sufficient to prove

(6.iv) χ : Y
[k]
k −→ Z

[k]
k is j–connected, ∀k.

To prove this, we use the fact that D and E are continuous functors on J . Using
[WW1, 3.8] or, better, [We], we then have suspension maps ΣYk → Yk+1 and
ΣZk → Zk+1 for all i, making {Yk} and {Zk} into spectra and making {χ : Yk →
Zk} into a map of spectra. It is a consequence of 6.1 that {Zk} is an Ω–spectrum,
and it follows from 6.2 that it has A(M)% as a (−1)–connected cover. Recall from
the last part of §3 that

Yk ' cH(M × Rk) .

Therefore (6.iv) will follow if we can show that χ : Yk −→ Zk is the Waldhausen
map (end of §3). To this end we have the commutative diagram

Yk −−−−→ D(Rk) −−−−→ D(Rk+1)

χ

y χ

y χ

y
Zk −−−−→ E(Rk) −−−−→ E(Rk+1)

i·forget
y forget

y
F ](Rk)

j−−−−→ F (Rk+1)

where the upper and middle rows are fibration sequences up to homotopy, and F ,
F ], i and j are as in 6.1. The arrow from E(Rk) to F ](Rk) is the composition

HH(Z2; cA(M × Rk)%)
forget−−−−→ cA(M × Rk)% = F (Rk) i−→ F ](Rk) .

By 6.1 and 6.2, the lower square in the diagram is a homotopy pullback square.
Therefore χ : Yk → Zk is really the map between horizontal homotopy fibers in the
commutative square

D(Rk) −−−−→ D(Rk+1)
y

y
F ](Rk) −−−−→ F (Rk+1) .

By 3.16 and sequel, χ is the Waldhausen map. ¤
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6.6. Lemma♣. The map

S(M) = D(0) −→ holim
(

E(0) → posD(R∞) ←↩ posE(R∞)
)

determined by (6.i) induces a bijection on π0.

6.7. Lemma. The restriction of the map in 6.6 to the component of some structure
f : M ′ → M is j–connected if j is in the topological h–cobordism stable range for
M ′.

Proof. We proved this in the case of the identity structure id : M → M , and
we can deduce the general case by a translation argument. Replacing M by M ′

throughout, we obtain a commutative square

(6.v)

D′(0) −−−−→ posD′(R∞)

χ

y χ

y
E′(0) −−−−→ posE′(R∞)

where the primes ′ have nothing to do with derivatives. For example, D′(0) =
S(M ′), E′(0) = HH(Z2; A(M ′)%), and so on. There is a a translation morphism
from (6.v) to (6.i), as follows: Map D′(0) to D(0) by composing structures g :
M ′′ → M ′ with the given f : M ′ → M . Similarly, map posD′(R∞) to posD(R∞)
by composing structures on M ′ ×Ri with f × id, for the appropriate i. Map E′(0)
to E(0) by adding 〈〈M ′〉〉 − 〈〈M〉〉 (using the infinite loop space structure in E(0).
Map posE′(R∞) to posE(R∞) by adding 〈〈M ′ ×Ri〉〉 − 〈〈M ×Ri〉〉. Note that these
maps are homotopy equivalences, and the identity component of D′(0) is mapped
to the component of f : M ′ → M . The lemma now follows from 6.5, applied with
M ′ instead of M . ¤

It remains to identify the right–hand vertical arrow in diagram (6.i), beginning of
this section, with Ξ% constructed in [WW2]. For this we need a precise formulation
of a well–known principle. Briefly, it says that the image under (1+T ) of the surgery
obstruction of a surgery problem is the difference of two invariants extracted from
domain and codomain of the surgery problem, respectively. Put differently, a certain
diagram is homotopy commutative. For the diagram, fix B, an ENR, and a sphere
bundle γ on B with a distinguished section. Fix also n ≥ 0. Let C be the category
of retractive ENR’s over B, equipped with the SW product which takes X1, X2

in C to Ωn(X1 ¯γ X2) (notation of 4.17). Let N(B, γ, ) be the bordism space of
n–dimensional Poincaré spaces over (B, γ, ). “Points” in N(B, γ) are n-dimensional
Poincaré spaces with a map f to B and with Spivak normal bundle equal to f∗γ;
“paths” in N(B, γ) are bordisms between such objects, and so on. Details are given
below. Let NN(B, γ,−n) be the bordism space of n–dimensional Poincaré surgery
problems over (B, γ) ; again, details below. The diagram is

(6.vi)

NN(B, γ) difference−−−−−−−→ N(B, γ)

SWQR

y ⊂
y

ΩnLn(Zπ1(B)) ' L(C) (1+T )−−−−→ LH(C)
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where SWQR is the Sullivan–Wall–Quinn–Ranicki map (a homotopy equivalence if
n ≥ 5). The arrow labelled “difference” is defined below.

6.8. Theorem♣. Diagram (6.vi) commutes up to a preferred homotopy.

6.9. Details. NN(B, γ) is the classifying space of a simplicial category whose
objects in degree j are certain surgery problems

f : N −→ Y ,

where N is a compact manifold modelled on Rn
f ×∆j , and Y is a Poincaré space

modelled on Rn
f×∆j (which means: same corner structure as N). We assume that

f restricts to a homotopy equivalence from ∂N to ∂Y , and that the Spivak normal
bundles and reductions arise in the following way:

(1) Y comes with a map g : Y → B.
(2) The bundle f∗g∗(γ) with total space E, say, serves as normal bundle for N ,

so it comes with a reduction

ρ : (Dp,Sp−1) ∧∆j
+ → (E/N, ∂E/∂N)

(suitable p), respecting faces, which restricts to a homeomorphism from the
complement of ρ−1(∗) to E rN . We allow ρ to be “stable” (defined after
many suspensions).

(3) The bundle g∗(γ) serves as Spivak normal bundle for Y , with reduction
f∗(ρ).

These are the objects in degree j. The morphisms are isomorphisms, in the most
rigorous sense.

The definition of N(B, γ) is simpler: it is the classifying space of a simplicial
category whose objects in degree j are certain Poincaré spaces Y modelled on
Rn ×∆j . We assume that Y comes with a map g : Y → B, and that g∗γ serves as
Spivak normal bundle for Y . Thus the reduction is a stable map

ρ : Sp ∧∆j
+ → E′/Y

respecting faces, where E′ is the total space of g∗γ.
For the map labelled “difference”, note that a surgery problem f : N → Y over

B (details as above, modelled on Rn
f ×∆j) determines a Poincaré space modelled

on Rn ×∆j as follows. Take
N q Y

/ ∼
where ∼ identifies x ∈ ∂N with f(x) ∈ ∂Y . Then fqg is still a map from NqY/ ∼
to B, and the pullback of γ under f q g can serve as Spivak normal bundle: the
appropriate reduction is ρq (f∗(ρ)), with domain

Dp qSp−1 Dp,

which we have to identify with Sp. Choose this identification in such a way that the
first disk (corresponding to N) is mapped in an orientation preserving way ; then
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the other disk (corresponding to Y ) will be mapped in an orientation–reversing
way.

About the arrow SWQR: The traditional target for SWQR is the quadratic L–
theory of the category of finitely generated free chain complexes of left modules
over the group ring Zπ1(B). But the π–π theorem [WW2, §6] states that L(C) has
the same homotopy type.

The map labelled ⊂ is in fact an inclusion, provided we interpret Poincaré spaces
Y over B modelled on Rn × ∆j as objects in C[j] (by taking disjoint union with
B). Poincaré duality implies SW self duality in the usual way (end of §4).

A word about theorem 6.8: It requires proof. Our present construction of the
arrow SWQR in the diagram, via Ranicki’s quadratic construction and backwards
through the π–π theorem, is too indirect to tell us much about (1 + T ) · SWQR.
The remedy is to lift Ranicki’s quadratic construction from the chain complex level
to the level of retractive spaces and spectra.

Let NNt(B, γ) be the subspace of NN(B, γ) consisting of the surgery problems
f : N → Y over (B, γ) where Y is a manifold and f|∂N is a homeomorphism to
∂Y . Like NN(B, γ) this is an infinite loop space, but unlike NN(B, γ) it behaves
“excisively” as a functor of (B, γ). (That is, it takes homotopy pushout squares
to homotopy pullback squares—thanks to transversality.) The difference construc-
tion takes NNt(B, γ) to closed manifold bordism, which results in a commutative
diagram

NNt(B, γ) ⊂−−−−→ NN(B, γ)
y Ξ

y
ĤH(Z2; A(B)%) −−−−→ ĤH(Z2; A(B)) .

Here Ξ is short for Ξ·(1+T )·SWQR, and by 6.8 this can be described as a difference
construction followed by an Euler characteristic type map. Noting that closed
manifolds have better Euler characteristics than Poincaré spaces, we have the left–
hand vertical arrow and the commutativity. Since all this is natural in B, and since
the lower left–hand corner of the diagram is the universal excisive approximation of
the lower right–hand corner, we see that the left–hand vertical arrow is sufficiently
determined and characterized by the rest of the diagram (including the excision
property of the left–hand corner), and we must denote it by Ξ%. Furthermore, if
B = M and γ = νM and n = dim(M), then S̃(M) comes with a canonical map to
the homotopy fiber of the upper row in the diagram, so the diagram extends:

S̃(M) −−−−→ NNt(M, γ) ⊂−−−−→ NN(B, γ)
y Ξ%

y Ξ

y
ĤH(Z2; A(B)%) −−−−→ ĤH(Z2; A(B)%) −−−−→ ĤH(Z2; A(B)) .

Again, we must denote the left–hand arrow by Ξ%. To show that this Ξ% is ho-
motopic to χ (right–hand vertical in diagram (6.i)), we repeat the game of 1.7 and



48 M. S. WEISS AND BRUCE WILLIAMS

1.8. This gives, in the notation of 1.8,

S̃(M) = |Y| Ξ%−−−−→
∣∣k 7→ HH(Z2; Ay(M ×∆k)%)

∣∣
y⊂

y⊂
|Z| −−−−→

∣∣k 7→ ⋃
j HH(Z2; cAy(M ×∆k × Rj)%)

∣∣
x⊂

x⊂
poscS(M × R∞) ' Z[0]

χ−−−−→ ⋃
j HH(Z2; cA(M × Rj)%)

where all the horizontal arrows are defined via Euler characteristics, the right–hand
column consists of homotopy equivalences by inspection, and the left–hand column
consists of homotopy equivalences by 1.8. ¤

7. Localization

Here we are concerned with the right–hand side of the diagram in Theorem 0.7.,
that is, with

ι : S(τ) −→ LA(M,ν,−n)%.

The idea is to “localize” the construction(s) which led to the left–hand side. We
localize near a closed subset C ⊂ M . Localization has a price: For instance, a
homotopy equivalence f : M ′ → M (alias structure) restricts to a map f−1(U) →
U for any neighborhood U of C, but usually this restriction is not a homotopy
equivalence. But it is still a degree one normal map. (In fact it is what we call an
unstable degree one normal map: the unstabilized tangent bundle of f−1(U) pulls
back from a bundle on U). We must try to make the best of that. In particular,
one would hope that the expression

f∗〈〈f−1(U)〉〉 − 〈〈U〉〉

can be given a meaning even though U is noncompact as a rule, and that it defines
a homotopy fixed point of the appropriate involution on

A(M@C)% := A(M)%/A(M r C)% .

If it can be done, in a way which is independent of the neighborhood U chosen,
then surely the diagram

(7.i)

S(M) restriction−−−−−−−→
{

germs of unstable degree 1
normal maps about C

}

χ

y χ

y
HH(Z2; A(M)%) −−−−→ HH(Z2;A(M@C)%)

commutes up to a preferred homotopy. The lower row is the composition

HH(Z2; A(M)%)
forget−−−−→ HH(Z2; A(M)%) ⊂−→ HH(Z2;A(M@C)%) .



MANIFOLDS AND ALGEBRAIC K–THEORY 49

Our definition of the space of germs of unstable degree one normal maps about
C is consistent with that of S(M). (It is not a “blockwise” definition.) This
is an important point. Namely, suppose from now on that C does not contain
any connected component of M . Then a miracle in the shape of Phillips–Gromov
submersion theory will tell us that the upper right–hand corner in (7.i) is homotopy
equivalent to S(τ@C), the space of structures on τ = τM defined in a neighborhood
of C.

Suppose further that C ′ ⊂ M is another closed set, not containing any connected
component of M , and that C ∪ C ′ = M . There are squares like (7.i) for C ′ and
C ∩ C ′. Collecting all this in one square, we have

(7.ii)

S(M) restriction−−−−−−−→ Λ1

χ

y χ

y
HH(Z2; A(M)%) −−−−→ Λ2

where Λ1 and Λ2 are the homotopy pullbacks of

S(τ@C) −→S(τ@(C ∩ C ′)) ←− S(τ@C ′) ,

HH(Z2; A(M@C)%) −→HH(Z2;A(M@(C ∩ C ′))%) ←− HH(Z2;A(M@C ′)%)

respectively. Then clearly Λ1 ' S(τ) and Λ2 ' HH(Z2; A(M)%). Clearly the
restriction map from S(M) to Λ1 is ∇ (defined in the introduction). Taking all this
into account, we may replace (7.ii) by a homotopy commutative diagram

(7.iii)

S(M) ∇−−−−→ S(τ)

χ

y χ

y
HH(Z2;A(M)%)

forget−−−−→ HH(Z2;A(M)%) .

Moreover, being optimistic, we expect to see similar commutative diagrams

(7.iv)

cS(M × V ) ∇−−−−→ S(τM×V )

χ

y χ

y
HH(Z2; cA(M × V )%)

forget−−−−→ HH(Z2; cA(M × V )%)

for vector spaces V in J . With these diagrams available, we are in a situation
which is similar to that in the beginning §6, and we finish in exactly the same way
(except that we need not go through the “pos” construction). That is, we let

Dτ (V ) := S(τM×V ) , Eτ (V ) := HH(Z2; cA(M × V )%)

and we show that

(7.v)

Dτ (0) −−−−→ Dτ (R∞)

χ

y χ

y
Eτ (0) −−−−→ Eτ (R∞)
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is a homotopy pullback square in a certain range. Then we verify
(1) Dτ (R∞) ' S̃(τ) ,

(2) Eτ (R∞) ' ĤH(Z2;A(M)%)
and we identify the right–hand vertical arrow in (7.v) with the composition

S̃(τ) −→ L(M, ν,−n)% Ξ%

−−→ HH(Z2; A(M)%) .

Eventually, we shall have to discuss how much the whole construction depends on
C and C ′ (not much).

7.1. Definitions—uncluttered. An unstable degree one normal map between
oriented manifolds N1, N2 of the same dimension n consists of

a proper degree one map f : N1 → N2,
an Rn–bundle ζ on N2,
and a (micro–)bundle isomorphism of f∗ζ with the tangent bundle of N1.

Returning to Mn (closed and oriented for simplicity) and the closed subset C ⊂ M ,
we define N (M@C), the space of germs of unstable degree one normal maps about
C. It is the classifying space of a topological category, say nor(M@C). An object
in the category consists of

(1) an oriented Nn without boundary, and a map f : N → M which is proper
and of degree one over C ;

(2) an Rn–bundle ζ defined on a neighborhood of C in M ;
(3) a bundle isomorphism  : f∗ζ → τN , defined over a neighborhood of f−1(C).

Such an object has “subobjects”, one for each open subset of N containing the
compact set f−1(C). A morphism is an isomorphism of one object with a subobject
of another. As regards the topology, we allow continuous variation of the f and
 in an object (N, f, ζ, ). We also allow continuous variation of the embedding
e : N ↪→ N ′ and the bundle isomorphism θ : ζ → ζ ′ in a morphism (e, θ) from
(N, f, ζ, ) to (N ′, f ′, ζ ′, ′).

There is a more discrete variant norδ(M@C) where continuous variation of the
embeddings e is no longer allowed (but f ,  in objects and θ in morphisms can still
vary continuously). The classifying space of this variant is N δ(M@C).

Again, it is a generally a good idea to replace topological categories by simplicial
ones before taking realizations, but in the following informal discussion it is not a
good idea—so please refrain.

7.2. Informal discussion. Define another category as follows: objects are ob-
jects (N, f, ζ, ) in nor(M@C) together with a choice of point z ∈ N . Morphisms
are morphisms in nor(M@C) sending the distinguished point to the distinguished
point. The classifying space B of this category comes with a forgetful map to
N (M@C). Each fiber of this map is a manifold N , equipped with an unstable
degree one normal map to a neighborhood of C in M . It follows that N (M@C)
parametrizes a giant family of unstable degree one normal maps to neighborhoods
of C, and we would like to think of this family as a universal family. To be more
explicit, suppose that X is a manifold with boundary and let g : X → N (M@C)
be a continuous map. The pullback g∗B of B → N (M@C) is then a manifold with
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boundary, and the projection g∗B → X is a submersion with n–dimensional fibers.
Each fiber is the domain of an unstable degree one normal map to a neighborhood
of C in M . When C = M , the fibers are compact and the submersion g∗B → X
is a fiber bundle. But in general, and especially when C does not contain any
closed component, there is much less rigidity, and submersion theory will help us
understand the homotopy type of N (M@C).

If g lifts to N δ(M@C), then g∗B acquires additional structure in the shape of
a foliation by leaves of codimension n, transverse to the fibers of the submersion
E → X. (Equivalently, but more vaguely, g∗B comes with a flat connection.)

7.3. Theorem♣. The inclusion N δ(M@C) ↪→ N (M@C) is a homology equiva-
lence.

Like 1.2, this is a Corollary to the McDuff–Segal–Mather theorems. It is valid
without any assumptions on C. In the next theorem, we do assume that C does
not contain a connected component of M .

7.4. Theorem. A certain map from N (M@C) to S(τ@C) is a homotopy equiva-
lence.

Definition and sketch proof. Defining the map amounts to showing that any un-
stable degree one normal map f : N → M about C, with bundle ζ, determines
a stable fiber homotopy trivialization t of the Whitney sum ζ ⊕ νU over a small
neighborhood U of C. In fact, for the purposes of this proof, S(τ@C) is the space
of such pairs (ζ, t).

To define this trivialization, informally, we can assume that f : N → U ⊂ M is
proper of degree one, and that ζ lives on U . Choose an Rk–bundle ζ⊥ on U and
a trivialization of ζ ⊕ ζ⊥. This trivializes f∗ζ ⊕ f∗(ζ⊥) and therefore τN ⊕ f∗(ζ⊥.
Then f∗(ζ⊥) is “the” normal bundle of N , which gives a canonical reduction ρ :
Sn+k → (T ∪{∞}), where T is the total space of f∗(ζ⊥). Pushing this forward, we
have a reduction f∗ρ of ζ⊥ which, by the characterization of Spivak normal bundles
(as in 5.2), determines a stable fiber homotopy equivalence of ζ⊥ with νU , hence a
stable fiber homotopy trivialization of ζ ⊕ νU .

For the proof of 7.4, we need the following facts from submersion theory.
(1) Suppose that g : P → Q is a map between manifolds without boundary, and

that P has no compact component. Suppose there exists a locally trivial
epimorphism e : τP → g∗(τQ) (details follow). Then the pair (g, e) is ho-
motopic (through similar pairs) to a a pair (g1, e1) where g1 is a submersion
with derivative e1.

(2) Suppose that g is already a submersion in a neighborhood of some closed
subset X ⊂ P , and that the locally trivial epimorphism from τP to g∗(τQ)
agrees near X with the derivative of g. Then the homotopy from (g, e) to
(g1, e1) in (1) can be constructed rel X, provided no component of P rX
is relatively compact.

(3) Suppose that P and Q have boundaries after all, let g : P → Q take bound-
ary to boundary, and assume that neither P nor ∂P has a compact com-
ponent. Suppose there exists a locally trivial epimorphism e : (τP , τ∂P ) →
g∗(τQ, τ∂Q). Then (g, e) is homotopic to (g1, e1), where g1 is a submersion
taking boundary to boundary, and e1 is its derivative.
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(4) Suppose further that g is already a submersion in a neighborhood of some
closed subset X ⊂ P , etc. .

(5) The conclusions of (1), (2), (3) and (4) remain valid if locally trivial epi-
morphisms are replaced by locally trivial stable epimorphisms (details just
below).

A map between microbundles on P is a locally trivial epimorphism if, in suitable
local bundle charts, it looks like a projection

U × Ri × Rj −→ U × Rj ; (x, v, w) 7→ (x,w)

(U open in P ). A stable map between microbundles on P , say ξ1 and ξ2, is a map
from ξ1⊕εj to ξ2⊕εj , where εj is a trivial microbundle. For proofs and details, see
[Gau]. The stable versions (5) follow from the unstable ones by obstruction theory.

We use all this to show that the relative homotopy groups of N (M@C) →
S(τ@C) are trivial, for any choice of base point in N (M@C). A typical represen-
tative for an element in one of these homotopy groups consists of the following:

(6) a neighborhood U of C in M ;
(7) a manifold Pn+k−1 with a map (g1, g2) : P → Sk−1 × U such that g1 is a

submersion, g2 is proper, and (g1, g2) has degree one ;
(8) a microbundle ζ on Sk−1 × U , and an isomorphism of (g1, g2)∗(ζ) with the

vertical tangent bundle of P (where vertical is the direction of the fibers of
g1) ;

(9) an extension of the unstable normal invariant Sk−1 → S(τ@C) determined
by (6), (7), (8) to a map from Dk to S(τ@C).

Using transversality, “realize” the information in (9) (making U smaller if necessary)
to obtain

(10) a manifold Wn+k with boundary ∂W = P , and a map (ḡ1, ḡ2) from W to
Dk × U , extending (g1, g2) in (7), such that ḡ2 is proper and (ḡ1, ḡ2) has
degree one ;

(11) a microbundle ζ̄ with n–dimensional fibers on Dk × U , extending ζ, and a
stable isomorphism of τW with (ḡ1, ḡ2)∗(ζ̄) ⊕ εk whose restriction over P
is the stable isomorphism resulting from the submersion g1 and the bundle
isomorphism in (8).

Finally note that the bundle isomorphism in (11) implies a stable locally trivial
epimorphism from τW to εk. According to (1), (2), (3), (4) and (5), we can realize
this by a submersion. In other words, we may assume that ḡ1 is a submersion and
that the stable isomorphism in (11) results from this and an isomorphism of the
vertical tangent bundle of W with (ḡ1, ḡ2)∗(ζ) extending the isomorphism in (8).
But then we are in the relative homotopy group of the identity map N (M@C) →
N (M@C). ¤

7.5. Definitions–cluttered. To be properly equipped for the construction of
Euler characteristic type maps out of N (M@C) we have to add the following to
(1), (2) and (3) in 7.1:

(4) a compact subset Z ⊂ N , call it conductor, containing f−1(C) ;
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(5) a stable fiber homotopy equivalence of f∗(νM ) withνN ,defined nearf−1(C),
together with all the data needed to make this into a contractible choice
(details follow).

Continuous variation of the conductor Z in (4), whatever that means, is not allowed.
However, replacement of the conductor by a smaller conductor is allowed, and
counts as a morphism. Thus any morphism in nor(M@C) (cluttered version) has
the form

isomorphism with a subobject & conductor shrinkage .

To understand (5), note that items (1), (2) and (3) in 7.1 do indeed determine,
up to contractible choice, a stable fiber homotopy equivalence as in (5) (see first
part of the proof of 7.4). It is left to you, gentle reader, to define the appropriate
contractible space of choices. Continuous variation of all the material in (5) is
allowed.

7.6. Definitions. Since we need Euler characteristics for the domains of germs of
normal maps, we should search for descriptions of A% involving germs of retractive
spaces. There are many definitions of this type in controlled A–theory. Suppose
that B ⊂ B̄ is a control space, and that Z ⊂ (B̄ r B) is compact. We consider
objects (U,X) where U is a neighborhood of Z in B̄ and

X =
(
X

r−→←−
s

U ∩B
)

is a proper retractive ENR. Two such objects (U,X) and (U ′, X ′) are regarded as
equal if there exists a smaller neighborhood U ′′ of Z such that the restrictions of
X and X ′ to U ′′ are equal. We speak of a germ near Z of proper retractive ENR’s
over B. Define germs of controlled maps between such objects, germs of controlled
homotopy equivalences, and germs of retractive maps. Let C be the category of
such germs, where the morphisms are map germs over B and relative to B ; a
morphism is a cofibration if it is the germ of an injection, and a weak equivalence
if it it is the germ of a controlled homotopy equivalence (compare the definitions
leading up to 3.6.) Write

A(B@Z ⊂ B̄)

for the K–theory of C. Note in passing that compactness of B̄ was not used in any
essential way, so we can allow B̄ to be just locally compact. But compactness of Z
is essential.

7.7. Proposition♣. For Y , a compact ENR, the diagram

A(Y ) ⊂−→ A
(
Y ×[0,∞) ⊂ Y ×[0,∞]

) −→ A
(
Y ×[0,∞)@Y ×{∞} ⊂ Y ×[0,∞]

)

(first arrow induced by inclusion of Y ∼= Y ×{0}, second arrow by passage to
germs, composite arrow equal to zero) is a (co–)fibration sequence up to homotopy.
Consequently ΩA

(
Y×[0,∞)@Y×{∞} ⊂ Y×[0,∞]

)
is a model for A(Y )% (by 3.6).

This is almost a corollary of the fibration theorem and the approximation the-
orem in [Wald3]. Suppose now that Z is a compact subset of Y , and that X is
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another compact ENR with a map f : X → Y r Z. Then, using the models for
A% proposed in 7.7, we have maps

A(X)%
f∗−→ A(Y )%

forget−−−→ ΩA
(
Y ×[0,∞)@Z×{∞} ⊂ Y ×{∞}) ,

the second one by passage to smaller germs. The composition is zero by inspection.
Keeping Y and Z fixed and allowing X and f to be truly arbitrary gives

hocolim
f :X→YrZ

A(X)% −→ A(Y )% −→ ΩA
(
Y ×[0,∞)@Z×{∞} ⊂ Y ×{∞}).

and the composition is still zero. For the left–hand term we may write A(Y rZ)%.

7.8. Proposition♣. The diagram

A(Y r Z)% −→ A(Y )% −→ ΩA
(
Y ×[0,∞)@Z×{∞} ⊂ Y ×{∞})

is a (co–)fibration sequence up to homotopy. Hence ΩA
(
Y × [0,∞)@Z×{∞} ⊂

Y ×{∞}) is a model for A(Y )%/A(Y r Z)% = A(Y @Z)%.

We use 7.8 to construct local microcharacteristics. The local microcharacteristic
〈〈Y @Z〉〉 in A(Y @Z)% is defined whenever Y is an ENR with a compact subset Z.
It depends only on the germ of Y about Z. That is, for any neighborhood U of Z
in Y , the equation 〈〈Y @Z〉〉 = 〈〈U@Z〉〉 holds in A(Y @Z)% = A(U@Z)%. For this
construction, we decree that A(Y @Z) is the homotopy pullback of

∗ −→ A
(
Y ×[0,∞)@Z×{∞} ⊂ Y ×{∞}) ←↩ P ?(Y,Z)

where P ?(Y, Z) is defined much like P (Y ) in 3.7, except that microequivalences are
replaced by germs of microequivalences near Z×{∞}. Then we proceed exactly as
in 3.6 and sequel.

When Y = Z, we would like to say that 〈〈Y 〉〉 = 〈〈Y @Z〉〉. It is not quite true
since these elements live in different spaces. However, the two spaces are related
by a forgetful map (passage to germs) which is a homotopy equivalence and sends
〈〈Y 〉〉 to 〈〈Y @Z〉〉.

The local microcharacteristic is lax natural for homeomorphism germs in the
following sense: given (Y,Z) and (Y ′, Z ′) as above, and a map of pairs f : Y → Y ′

such that f−1(Z ′) ⊂ Z there is an induced map A(Y @Z) → A(Y ′@Z ′). If f
restricts to a homeomorphism from a neighborhood of f−1(Z ′) to a neighborhood
of Z ′, then f determines a path in A(Y ′@Z ′) from f∗〈〈Y @Z〉〉 to 〈〈Y ′@Z ′〉〉 . . . and
so on as in 3.1 and sequel.

Next we use local microcharacteristics to construct a map from N (M@C) to
A(M@C)%. We proceed exactly as in 3.8 and sequel, noting first of all that it is
sufficient to construct a map from N δ(M@C) to A(M@C)%. Then we think of
N δ(M@C) as the classifying space of a simplicial category (formerly topological
category) and replace it by a homotopy equivalent classifying space of an ordinary
category. What does this ordinary category look like ? At this stage we have to
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pay attention to items (1), (2), (3) in 7.1 and particularly to item (4) in 7.5, but
not to (5) in 7.5. So our ordinary category has objects (Nn, f, ζ, , Z, k) where

(1) f : ∆k ×N → ∆k ×M is a map over ∆k, proper and of degree one over a
neighborhood of C in M ;

(2) an Rn–bundle ζ defined on a neighborhood of C ;
(3) a bundle isomorphism  of f∗ζ with the vertical tangent bundle of ∆k×N ;
(4) a compact Z ⊂ N such that ∆k × Z contains f−1(∆k × C).

From such an object we extract the local microcharacteristic 〈〈N@Z〉〉 in A(N@Z)%,
and the diagram

(7.vi) A(N@Z)% '←− A(∆k×N@∆k×Z)%
p∗f∗−−−→ A(M@C)%

where p : ∆k × M → M is the projection. Then we play the quasifibration–
quasisection game. The functor F sending our object (Nn, f, ζ, , Z, k) to the ho-
motopy pushout of (7.vi) determines a quasifibration on the classifying space of
the category. The composition

A(M@C)%
+〈〈M@C〉〉−−−−−−−−−−→ A(M@C)% ⊂−→ F (Nn, f, ζ, , Z, k)

(where +〈〈M@C〉〉 is a translation map) is a homotopy equivalence, giving a (quasi)
trivialization of the quasifibration ; finally the local microcharacteristic in

A(N@Z)% ⊂ F (Nn, f, ζ, , Z, k)

determines a quasisection, which in view of the trivialization amounts to a map
from base to fiber (i.e. from N δ(M@C) to A(M@C)%). By 7.3, this determines
another map from N (M@C) to A(M@C)% (same discussion as in sequel of 3.8).
As usual, we leave it to the reader to make everything as functorial as possible.

There is a forgetful map from S(M) to N (M@C), given by passage to germs—
strictly speaking, we should redefine S(M) as a subspace of N (M@M) to have such
a map. If we do, then we have a commutative square

S(M)
forget−−−−→ N (M@C)

3.8 and sequel

y
yjust constructed

A(M)% −−−−→ A(M@C)%

The lower horizontal arrow is composition of the forgetful map A(M)% → A(M)%

with the localization A(M)% → A(M@C)%.

Practically no extra work is required to show that the map from N (M@C) to
A(M@C)% just constructed lifts to the homotopy fixed point space of a suitable
SW duality involution. This gives the right–hand column in a commutative square
predicted earlier in this section (diagram (7.i)). For this refinement, it is of course
important to remember and use item (5) in 7.5. Also, we must “declare” the
appropriate SW duality involution. Return therefore to the situation of 7.6, where
B is an ENR, open dense in a locally compact B̄, and Z ⊂ B̄ rB is closed. Let γ
be a spherical fibration with section, defined on U ∩B, where U is a neighborhood
of Z in B̄. For X and Y in C (notation of 7.6), define X¯γ Y by the formula of 4.18,
replacing proper retractive ENR’s over B by germs of such near Z throughout.
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7.9. Proposition♣. The rule (X, Y ) 7→ X ¯γ Y is an SW product on C.
In practice this needs to be “normalized”. For example, if B happens to be an

n–manifold, and γ is its normal bundle, then the appropriate SW product tends to
be (X, Y ) 7→ Ωn(X ¯γ Y ).

As explained earlier in this section, diagram (7.i) leads to diagram (7.ii) and
diagram (7.iii), and we leave it there while studying M × V , for a vector space V .
This is a manifold and, with the compactification (M×V ⊂ M ∗S(V )), a Poincaré
control space (5.4). Therefore it has a Spivak normal fibration (5.2), and therefore

∇ : cS(M × V ) −→ S(τM×V )

could be defined exactly as in §0, with M replaced by M × V . Alternatively, we
could define it using 7.4, which is what we really are going to do.

With C ⊂ M as before, we write N (M×V @C) and the like to mean N (M×
V @C×{0}) and the like. Treating M×V as a manifold like any other manifold, we
have

χ : N (M×V @C) → HH(Z2; A(M×V @C)%)

which is the right–hand column of a commutative square

(7.vii)

cS(M×V )
forget−−−−→ N (M×V @C)

χ

y χ

y
HH(Z2; cA(M×V )%) −−−−→ HH(Z2; A(M×V @C)%) .

The lower horizontal arrow is induced by the composition of the forgetful map from
cA(M×V )% to cA(M×V )% with the localization cA(M×V )% → A(M×V @C)%.
This localization can be understood in two ways: first of all we can describe it as
passage to germs, which gets us from the homotopy fiber of

A(M×V ⊂ M ∗ S(V )) ↪→ A
(
M×V ×[0,∞) ⊂ M ∗ S(V )× [0,∞]

)

(our model for cA(M×V )%) to

ΩA
(
(M×V ×[0,∞))@(C×{0}×{∞}) ⊂ (M×V ×[0,∞)

)

(our model for A(M×V @C)%, allowing for technical modifications). Using 2.8 and
3.12, however, we can describe it as the forgetful map

(7.viii) holim
compact Z⊂M×V

A(M×V @Z)% −→ A(M×V @C)% .

Supposing now that M = C ∪ C ′, where both C and C ′ are closed and neither
contains a component of M , we write ΛV

1 and ΛV
2 for the homotopy limits of

N (M×V @C) → N (M×V @(C ∩ C ′)) ← N (M×V @C ′) ,

HH(Z2; A(M×V @C)%)→HH(Z2; A(M×V @(C∩C ′))%)←HH(Z2;A(M×V @C ′)%)
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respectively. We see from 7.4 and from (7.viii) just above that

ΛV
1 ' S(τM×V ) , ΛV

2 ' HH(Z2; cA(M × V )%) .

Therefore, combining (7.vii) and the corresponding diagrams for C ′ and C ∩ C ′,
we obtain the commutative diagram (7.iv) predicted earlier in this section.

Now let Dτ (V ) := S(τM×V ) and Eτ (V ) := HH(Z2; cA(M × V )%) as planned,
and regard χ : Dτ (V ) −→ Eτ (V ) as a natural transformation between continuous
functors in the variable V , using 3.14. Clearly Dτ (R∞) is homotopy equivalent to
S̃(τ), the block version of S(τ), and Eτ (R∞) is a model for ĤH(Z2; A(M)%) by
resolution arguments as in §6. One of our tasks is to identify χ from Dτ (R∞) to
Eτ (R∞) with the composition

S̃(τ) −→ L(M, ν,−n)% Ξ%

−−→ ĤH(Z2; A(M)%) .

This is similar to what we saw in §6. Here is a sketch: First observe that S̃(τ) '
Ñ (M), and that Ñ (M) behaves well (in contrast to N (M)) in the sense that the
square of restriction maps

Ñ (M) −−−−→ Ñ (M@C)
y

y
Ñ (M@C ′) −−−−→ Ñ (M@(C ∩ C ′))

is a homotopy pullback square. Using this and bisimplicial arguments (as in end of
§6), identify χ from Dτ (R∞) to Eτ (R∞) as the composition

S̃(τ) '−→ Ñ (M) −→ ĤH(Z2; A(M)%)

where the second arrow is defined directly by taking the difference of the microchar-
acteristics of domain and codomain in a normal map. Then use 6.8 to identify this
second arrow with

Ñ (M) ' L(M, ν,−n)% Ξ%

−−→ ĤH(Z2; A(M)%) .

Finally we must show that the commutative diagram

Dτ (0) −−−−→ Dτ (R∞)

χ

y χ

y
Eτ (0) −−−−→ Eτ (R∞)

(labelled (7.v) earlier in this section) is highly connected. The proof of 6.5 can serve
as a model: there the essence was to show that a certain map between spectra is a
homotopy equivalence, or induces a homotopy equivalence of the (−1)–connected
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covers. We did this mostly by referring to Waldhausen’s work. Here we also have
a map between two spectra, which we must show is a homotopy equivalence. The
two spectra are made from the continuous functors Dτ and Eτ on J , and their
n–th terms are equal to

hofiber
(
Dτ (Rn) → Dτ (Rn+1)

)
,

hofiber
(
Eτ (Rn) → Eτ (Rn+1)

)

respectively. To understand the second of these better, we introduce another functor
F τ on J with F τ (V ) equal to cA(M ×V )% (compare 2.8). Then we analyse F τ as
in 6.1, 6.2 and 6.3, and conclude that the spectrum associated with Eτ is homotopy
equivalent to A(M)%. Write ΩWh(τM ) for the spectrum associated with Dτ . We
are trying to show that

χ : ΩWh(τM ) −→ A(M)%

is a homotopy equivalence. Rather than blame it directly on Waldhausen, let’s try
to simplify the task by exploiting excision properties.

7.10. Abstraction. Let COn be the following category. Objects are pairs (M, C)
where M is an n–manifold without boundary and C ⊂ M is a compact subset not
containing any connected component of M . A morphism from (M, C) to (M ′, C ′)
is an embedding f : M → M ′ such that f(C) ⊃ C ′. We call such a morphism an
pseudoisomorphism if f(C) = C ′. Let Ψ be a covariant functor from COn to spaces
which satisfies the following.

(1) Ψ takes pseudoisomorphisms to homotopy equivalences.
(2) For an object (M, C) where C is a union of two compact subsets C1 and

C2, the commutative square

Ψ(M,C) −−−−→ Ψ(M,C1)y
y

Ψ(M, C2) −−−−→ Ψ(M, C1 ∩ C2)

(arrows induced by obvious morphisms) is a homotopy pullback square.
(The example to keep in mind is: Ψ(M,C) = N (M@C) ' S(τM@C) as in 7.4.)
For a closed manifold M , we define

Ψ(M, ∀) := holim
C

Ψ(M, C)

where the homotopy limit is taken over all closed subsets C ⊂ M not containing
any connected component of M . (Note that idM is a morphism from (M,C) to
(M, C ′) provided C ′ ⊂ C.) Exercise: If M itself is the union of two closed subsets
C and C ′ neither of which contains a connected component, then the square

Ψ!(M, ∀) −−−−→ Ψ(M, C)
y

y
Ψ(M, C ′) −−−−→ Ψ(M, C ∩ C ′)
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is commutative up to a preferred homotopy, and as such it is a homotopy pullback
square. (In our example, Ψ(M, ∀) is homotopy equivalent to S(τM ), but usually
not to N (M).)

Next, suppose that Ψ is a covariant functor from COn to spectra. Make the
following assumptions: Ψ satisfies (1) and (2), and in addition

(1) 3 Isotopic morphisms in COn, say from (M,C) to (M ′, C ′), induce homo-
topic maps from Ψ(M, C) to Ψ(M ′, C ′).

(2) If C = ∩iCi where Ci ⊂ Ci−1 ⊂ M for all i > 0 and (M,C0) is in CO, then

hocolimΨ(M, Ci)
'−→ Ψ(M, C) .

Suppose that Θ from COn to spectra also satisfies the four conditions, and let
e : Ψ → Θ be a natural transformation. Then, using excision and handlebody
covers [KiSi] one can show: If e : Ψ(M, C) → Θ(M, C) is a homotopy equivalence
whenever C is a singleton, then e is a homotopy equivalence for all (M,C) in COn.
Consequently e : Ψ(M, ∀) → Θ(M, ∀) is a homotopy equivalence for arbitrary
closed M .

7.11. Example. Let Ψ(M, C) := ΩWh(τM@C),the spectrum made from the
continuous functor on J given by

V 7→ N (M×V @C)

(notation as in diagram (7.vii)). Let Θ(M, C) := A(M@C)%, and think of it as
the spectrum made from the continuous functor on J given by

V 7→ HH(Z2; cA(M×V @C)) .

Let e := χ : Ψ(M, C) → Θ(M,C) be the map of spectra induced by the natural
transformation of the same name χ (right–hand column of diagram (7.vii)). If
we can show that e is a homotopy equivalence whenever C is a singleton, then
according to 7.10 we have shown that

χ : Ψ(M, ∀) = ΩWh(τM ) −→ Θ(M, ∀) = A(M)%

is a homotopy equivalence for an arbitrary closed n–manifold M . After all, this is
still what we want to show. Clearly

(7.ix) χ : ΩWh(τM@{z}) → A(M@{z})%

is rather independent of M and z, up to isomorphism; only the dimension n seems
to matter. But a change in dimension only results in a shift, upwards or downwards.
Then it must be enough to show that (7.ix) is approximately 2n–connected (n =
dim(M)). We can prove this using the commutative diagram

ΩWh(M) λ∇−−−−→ ΩWh(τM@{z})
χ

y χ

y
A(M)%

λ·forget−−−−−→ A(M@{z})%
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where M = Sn and z is the north pole. The upper horizontal arrow is the compo-
sition of ∇ : ΩWh(M) −→ ΩWh(τM ) with localization near z, and the lower hori-
zontal arrow is the composition of the forgetful map A(M)% −→ A(M)% with local-
ization near z. It is a well known consequence of Morlet’s disjunction lemma [Mor3],
[BuLaRo] and the sliced smoothing theory of Morlet [Mor1], [Mor2], [BuLa2] that
there exists a map g from the stable sphere Sn to ΩWh(τM@{z}) making

λ∇∨ g : ΩWh(M) ∨ Sn −→ ΩWh(τM@{z}

approximately 2n–connected (always assuming M = Sn). See [Wald2] for expla-
nations. Similar things can be said about the lower row of the diagram, either as
a consequence of Waldhausen’s theorem or as an application of Goodwillie calcu-
lus. Since we already know that the left–hand χ in the diagram is a homotopy
equivalence, it is enough to prove that χ from ΩWh(τM@{z}) to A(M)% is an
isomorphism on πn. Equivalently, writing τ0 for the tangent bundle of a point:

7.12. Lemma♣. The map χ : ΩWh(τ0) → A(∗) induces an isomorphism on π0.

∗ ∗ ∗
Since this paper is the last part in a series, this may be the place to correct errors
in earlier parts.

(1) Proposition 2.2 in [WW1] is false. (The homotopy constructed in the so–
called proof is not defined everywhere.) This has no serious consequences
for [WW1], because the specific coordinate free spectra (e.g. [WW1, 1.11])
used to prove the main theorems are in fact sufficiently associative. Prove
this by hand, or use a superior construction, given in [We], which produces
strictly associative coordinate free spectra.

(2) The reference in the proof of [WW2, 2.10] should be to [42, Lemma 5.2],
not [4,2 Lemma 5.2].
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