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Finiteness conditions for CW complexes. IIT

By C.T. C. WaLL
Department of Mathematics, The University, Liverpool 3

(Communicated by J. A. Todd, F.R.S.—Received 28 March 1966)

A CW complex is a topological space which is built up in an inductive way by a process of
attaching cells. Spaces homotopy equivalent to CW complexes play a fundamental role in
topology. In the previous paper with the same title we gave criteria (in terms of more-or-
less standard invariants of the space) for a CW complex to be homotopy equivalent to one of
finite dimension, or to one with a finite number of cells in each dimension, or to a finite
complex. This paper contains some simplification of these results. In addition, algebraic
machinery is developed which provides a rough classification of CW complexes homotopy
equivalent to a given one (the existence clause of the classification is the interesting one).
The results would take a particularly simple form if a certain (rather implausible) conjecture
could be established.

It has been pointed out by several people that many of the arguments of my
previous paper (I)} can be presented more clearly by using a more algebraic setting.
In this paper, I shall give such a reformulation, and then go on to some minor
improvements of the original results. These improvements were all motivated by
a study of the Poincaré duality theorem, and of so-called ‘Poincaré complexes’
which provide a homotopy framework for the theorem. This study will appear in
a subsequent paper.

We shall begin by discussing how to associate a chain complex to a topological
space, noting in particular that for a CW complex, singular and cellular chains give
equivalent results. For this we need a brief summary of useful facts about chain
complexes, and we introduce the ‘derived category’. A version of the theorems of I
will then be given in our new framework; for this we use a mild improvement of our
old theorem G, which thus now assumes a central role. The improvement also gives
this result a much wider applicability. Then we give a simplified form of the finite-
dimensionality criterion D(n). We conclude by discussing the relativization of our
finiteness obstruction.

Let X be a path-connected topological space, % a base point in it, 7 = 7 (X, %)
and A = Z[n] the integral group ring of 7. We suppose that X has a universal
covering space X (in fact we are only interested in the case when X has the homotopy
type of a O W complex, when this is certainly the case). Then X is simply connected,
7 acts freely on X with orbit space X, and the projection X - X is a covering
map.

Consider the singular complex of X: this is the chain complex, in which the group
of n-chains is the free abelian group on the set of singular n-simplices (i.e. maps from
the standard n-simplex to X) for each n > 0, with the boundary defined by the

1 Part I appeared in Ann. Math. 81, 56-69 (1965).
[ 129 ]



130 C.T.C. Wall

usual formula. Since 7 acts on X, it acts also on the set of singular n-simplices, and
this action is free since the first is. Thus the group of n-chains has a natural A-module
structure, and is a free module. We shall write Cy(X) for the chain complex, con-
sidered as a complex of A-modules. We often refer to the chains determined by the
simplices as basis elements.

We will be studying positive chain complexes of projective A-modules. We form
these into a category—the so-called derived category—by defining morphisms to
be chain homotopy classes of chain maps. Since our complexes are positive and
projective, chain maps are chain-homotopic if and only if they induce the same
homology map. The derived categoryisused extensively in thestudy by Grothendieck
& Verdier (unpublished) of duality theorems for Grothendieck cohomology of
schemes. We shall not use it extensively, but will need the notion of equivalence
of chain complexes in the derived category.

Any continuous map f: X - Y of path-connected spaces, which induces an
isomorphism of fundamental groups, induces in the obvious way a chain map of
O (X) to Cx(Y). A homotopy of maps f givesrise to a chain homotopy of the induced
chain maps. Thus a homotopy class of maps X — Y induces a morphism of C(X)
to Cy(Y): Cy is a functor on the category of spaces X with a universal covering and
isomorphism of the fundamental group to 77, and homotopy classes of maps inducing
the identity on fundamental groups. In particular, if X and Y are homotopy
equivalent, C,(X) and C,(Y) are equivalent.

Now let X be a CW complex, with skeletons X?. Then we filter Oy X, defining
FrCy(X) as the subgroup generated by singular simplices of X which project to
X? < X. It is well known that the homology modules of F2C,(X)/FP~10,(X) vanish
except in dimension p, where we have a free module C%(X) with basis determined
(up to operation by elements of 7: also (except in dimension 0) up to sign) by the
p-cells of X. We define d: 05(X) - C%_,(X) as the boundary operator in the exact
homology sequence of the triple (F'7C,(X), F*~1C,(X), F?-2C,(X)). We have thus
defined the cellular chain complex of X, C%(X), which is another object of the derived
category.

The following is well known, but a careful treatment seems not out of place
here.

LemmA 1. Let X be a connected CW complex. Then Cy(X) is equivalent to 0%(X).
It is, of course, standard that both have isomorphic homology modules: here we
must find a chain map inducing the isomorphism.

Proof. Let D,(X) be the kernel of
d: FrCy(X) — F?C,_y(X)[FP-1C,_y(X).

Then dD,(X) = D,_,(X), so we have a subcomplex D, (X) of C,(X), and we observe
that Cf(X) is a quotient complex of D, (X).

Since F?Cy(X)/F?~1C4(X) only has homology in dimension p, a simple argument
using induction and exact sequences shows that (for ¢ < p) FrC,(X)/FC,(X) has
no homology in dimensions < g or > p. Also these are positive complexes, and if B,,
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is a positive complex with no homology below dimension p, we see by induction on
7 < p that the sequence

0->B,;nd=10 > B, dB; = B; ;nd=0 >0

splits, so has all terms projective.
Thus if K, is the module of p-cycles of F?C,(X)/F?~Cy(X), K, is projective; the

exact sequence 0> Fp_lop( X) > Dp N Kp >0

now shows that D, also is projective. Hence it remains to prove that the inclusion
D, = C,(X) and the projection D, — C%(X) both induce homology isomorphisms,
or equivalently, that the cokernel and kernel are homologically trivial.

A cycle of C,.(X)/Dy isrepresented by ¢ € 0, (X) such that dce D,,_; = F»-1C,_;(X).
Since X is a CW complex, any singular simplex lies in a finite subcomplex, so
ce FeC,(X) for some integer ¢ > p. The class of ¢ in FC, (X ) FPCy(X) is a p-cycle,
hence a p-boundary, so for some be FC, ,(X) we have ¢’ = c—dbe F?C,(X). As
de’ = dce F*—1C,_,(X), we have ¢’ € D,,. So ¢ bounds b modulo Dy, as required.

Now let B, be the kernel of the projection D, — C5(X). Then

B, = Fr=10, +dF?C, .

Thus a p-cycle of B, has the form z; +2,, where 2, dF?C,; = dE, . But the pth
homology of F»-1C, vanishes, so z; bounds an element of F?-C,,, < K, also.
This completes the proof of the lemma.

We thus see that the equivalence class of C,(X) can be calculated from a cell
structure on X. Our main interest, however, is to go in the opposite direction. We
will use a modified form of theorem G of I. In order to state this, we need extra
conditions in low dimensions. Let A = Z[7], and let 4 be a positive chain complex
of free A-modules (with bases chosen). We call 4 admissible if there exists a con-
nected CW complex K of dimension 2, an isomorphism of 77,(K) on 7, and a compa-
tible isomorphism of C%(K) on the subcomplex

Ay > A, > Ay~ 0.

Admissibility is not a void condition; since K is connected and simply connected
it implies, for example, that Hy(4,) ~ Z and that I;(4,) = 0. Also we see, by
considering the boundary of a 1-cell, that for each basis element « of 4, we have
do = g, P,—g, P, where Py and P, are basis elements of A4,, and g,, g, 7. This
condition (unlike the first) fails to be invariant under equivalence. I do not know
any examples of complexes satisfying these conditions which fail to be admissible,
although I think it more likely than not that such exist. It would be of considerable
interest to have this problem resolved, particularly if the following were true.

CoNJECTURE. Every complex satisfying the above conditions is admissible. We shall
discuss this further after theorem 4 and shall see, in particular, that it reduces to a
problem about relations between generators of a finitely presentable group. At
present the author has only established it for the trivial group: the proof uses the
fact that the group ring is a principal ideal ring, so is of no use in considering the
conjecture in general.

9 Vol. 2g5. A.
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A chain map of admissible chain complexes is 0-admissible if it carries each basis
element in dimension 0 to another basis element.
The following is our main construction technique.

TaEOREM 2. Let X be a connected CW complex. Write m = m(X), A = Z[7], and
X for the universal covering of X. Suppose given an admissible positive chain complex:
A, of free A-modules, and a 0-admissible chain map f: A, — C4(X) defining an
equivalence. Then we can construct a CW complex Y, and cellular homotopy equivalence
g: Y - X, such that C3,(Y) = Ay, and f is the chain map induced by g.

Note that the assumed conditions of admissibility are evidently necessary for
the conclusion to hold.

Proof. We construct ¥ and % by induction on skeletons. Since 4 is admissible,
there is a 2-complex K with 7 = 7;(K) and with C%(K) equal to the part of 4 in
dimensions < 2: we choose Y2 = K to start the induction. (A special argument is
needed at this point to get the fundamental group right: the fundamental group of Y*
is necessarily distinct from 77, unless 7 is free.) Since f is 0-admissible, it maps each
0-cell of ¥ (=Dhasis element of 4,) to a 0-cell of X (=basis element of C§(X)): we thus
define § by f on ¥° to start the inductive construction of g.

The rest of the proof follows that of (I, theorem G): we repeat it here for the
reader’s convenience, and also to set out the extra points arising in defining g on Y2.

Suppose inductively Y7 and g,: Y™ - X"+ constructed, g, cellular, r-connected,
and lifted to §,: ¥7— X1 (where ¥ is the covering of ¥” induced by g, from X);
and that C4(Y7)is the part of 4 in dimensions < r,and in these dimensions §, induces
the chain map f. Our first step is to compute H, ,(g,) which is, by definition, the
homology group of the algebraic mapping cone, and hence the kernel of

Cra(X) @ 4, ———> O3(X) @ 4,44

d —
(&)
But fis an equivalence, so its mapping cone gives an exact sequence
d(— 7=+ 1. a(—Y;
(1) ),

Ceo(X) @ Ay ——25 02 (X) @ 4,5 CYX) D 4,y

Thus ((—)™+Yf) gives a map 4,,, - H,1(F,)-

For each basis element x of 4,, dz is an r-cycle of 4, = C%(Y7), which we claim
is spherical. For r < 1, this is clear, since Y2 is provided by the admissibility
hypothesis (and in fact if r = 1, every cycle is spherical). But if » > 2, the Hurewicz
theorem gives an isomorphism 7, ,(g,) = 7,,1(§,) = H,,4(§,) since g, is then r-con-
nected, and induces an isomorphism of fundamental groups. Then dz is in the image
of 1(Y) - H,(Y), so is spherical, as claimed. For each element x of our free basis of
A,., we choose a map 8" — ¥ with image cycle dz. These maps are necessarily
cellular, and we attach corresponding (r + 1)-cells to Y7 to form Y7+, with covering
Y+, (For » = 0, 1 this is consistent with the definition of Y2 already given.)

Now if  determines an element of 7,.(§,), the component map Dr+1 — Xr+1 tells
us how to map the attached cell, and thus extend g, over Y7+L. The extension g,
has chain map f (this follows from our choices). And g,,, is (r+ 1)-connected: if
r = 0, since (Y1) maps onto 7,(Y?) = 7 = m;(X?); if r > 1, since
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my (Y1) = m = 7y (X"+2) (here is the point where we make full use of admissibility
of 4,)and H,(§,,,) = 0fori < r+1,asg,,, induces f. The induction is thus complete.

Now for r > 2, we have already checked that an element of 4,,, induces an
element of 1, ;(§,) = m,,1(J,). For r = 1 we use the commutative and exact diagram

mo(X2) = my(§y) > m(T1) > my(X2) = 0
1(2
0 = Hy(T1) > Hy(X?) —H,(,) — H(T?)

(the coverings are those induced from X), and note that each basis element  of 4,
determines not only an element y, of Hy(§,) but also the attaching map of the
corresponding cell of Y2, an element ¥, of 7,( 1), and both have the same image in
H, (Y1) since C%(Y?) is essentially 4,.. A short diagram chase now shows that there is
a unique element yemy(§;) inducing y; and y,. The same argument (except for
uniqueness of y) works for » = 0 using the diagram

m(X1) > my(§) > 7o T0) = my( 1) = 0
Epi
ffl(Xl) = H (o) — Ho( YO)

and using the action of 77,(X*) on 7,(j,). (Note that the choices here are made in X,
so do not affect the ultimate map of fundamental groups.)

CoroLLARY 2-1. Let X be a path connected space with fundamental group m and a
universal covering X. Let A, be an admissible positive chain complex of free A-modules,
[ 4. —Cy(X) a 0-admissible chain map defining an equivalence. Then there exist a CW -
complex Y with A = C%(Y), and a weak homotopy equivalence h: Y — X inducing the
same morphism A, — O (X) as does f.

For let SX be the (unnormalized) singular complex of X, geometrically realized.
Then SX is a CW complex, and C4(8X) = C,.(X); also the natural projection
p: SX - X is a weak homotopy equivalence. Apply the theorem to obtain
g: Y —>8X,andset h = pogy.

CoroLLARY 2.2. Let X have the homotopy type of a connected CW complex, and
suppose f: Ay = Cu(X) a 0-admissible chain map defining an equivalence of the
admissible A-free complex A, with Cy(X). Suppose that A, satisfies any combination

of the conditions (1) A; s finitely generated for © < my;

(ii) A; s countably generated for i < my;
(iii) 4; = 0 for i > ms.
Then X is homotopy equivalent to @ CW complex Y satisfying the corresponding
conditions (i) Y™ is finite, (i) Y™ is countable, (iii) dim ¥ < ms.
This is now immediate. However, the algebraic conditions are more natural

algebraically if the admissibility restrictions are omitted. We thus need to be able
to replace a complex by an admissible one with as little alteration as possible.

Levma 3A. Let Gy, D, (with differentials ¢, d) be free positive chain complexes, and
f: Dy —C, a chain homotopy equivalence. Then there is another equivalent free positive
9-2
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chain complex Dy, with D; = D, d; =d; for © > 4, D; = Dy ® E;, Dy = C, @ E,,

0
D; =0, Dy = Cyand dy By = 0, d3|C, = ¢y, dj = ¢;.
Proof. The idea of the proofis to use J. H. C. Whitehead’s ‘folding’ process, which
goes roughly as follows. First add C, to D, and D,, then manipulate till

Jo: Dy @ Cy— G,
is the projection. Next add the old D, to D; and D, and manipulate again; finally
cancel the old D, from D, and D;. We will just give the complex obtained by this
process.
Letg: Cy — D, behomotopyinversetof,ands: fg ~ 1,¢: gf ~ 1 chain homotopies.
Maps o and £ of chain complexes are defined by:

a a a a
..D,3Dy, = D, —> D ——=D,

PO PR ) | |

da dz
D ’->D (__)) _D2@_D (0 fo) Dl @0 (fodys 0130)00

A ll ll l(l,O) l(l +todastego) igo

d a. d d
.D%p, % p, % p,  %.Dp,

We have o: foe ~ 1 and 7: aff ~ 1, where the only non-zero components of o and 7
are oy =1¢ T=(0)and'r=(0 0

0= to, To 1 1 —~dy, —g,
the constructed complex with C; this induces f; g, in dimension 0, but if we subject
it to the chain homotopy whose only non-zero component is s, in dimension 0 this
changes the chain map in dimension 0 to the identity.

The resulting chain homotopy equivalence, since it induces the identity map
(on C,) in dimension 0, remains a homotopy equivalence if the terms in dimension
0 are deleted. We can thus iterate the argument. and then put C, back again. We
need only one iteration, giving a chain homotopy equivalence:

(%)

...D4—(-O)—>D3®D1@OogDz@Do@Oli;ngo

Lf; ¢S=J/(f3’0’0) lﬁéz ’(1 ll

C. C: C [
L0 %, %040,

) . Also, ff§ is a homotopy equivalence of

We also perform the first part of the next step: add C, in dimensions 2 and 3. Setting
E,=D,®C,, B, =D, ® Dy ® C,, all is as required except for d;.
Since the above gives a homology isomorphism in dimension 2, the map (¢,, ¢3)

is onto; since O, is free, it has a right inverse (u) . We replace the above complex by

adding a trivial complex 02 i C,, so making the boundary in dimension 3 the direct
sum of 03 and 1: D, ® E, il C; @ E,, and the two corresponding chain maps (¢, v)

and (c;v, @,). Then subject C, @ E, to the automorphisms ((1) 1¢2) and (u (1)) .
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Since ¢, u+c;v = 1, we have

(c5v, @) (1 {1)) ((1) —1¢2) = (030 + o U, —C3 0Py + Py — Py Uh)

u
= (1,0)

0 the chain map in dimension 2 has become C, @ E, & C,. Commutativity shows
that the boundary map is (c,, 0), which completes the proof of the lemma.
We also need a variant of this result.

LeMMA 83B. Let Ay be a positive free chain complex, By another, of dimension 2,
and g: By — Ay induce isomorphisms of Hyand H,. Then A, is equivalent to a complex

of the form .
A, (—";) A4, ®E,~B,® 8, B, % B, 0,
where By = B, ® A, ® By, By, = A, ® B; @ 4A,.
Proof. As in lemma 3A, we find a complex equivalent to 4, exactly as above
except for the shape of the second differential, which has the form (0, e,). Since the

1-dimensional homology groups are isomorphic, by(B,) = e,(H,). But B, and K, are
free, so there are homomorphisms

x: By—>Hy, y:Hy,—> B,,

with e;02 = b, and b,0y = ¢,. Now we have

o, 1) 77) =00

so the differential can be adjusted by subjecting B, ® E, to the automorphisms
indicated.

THEOREM 4. Let X be a connected CW complex, A, a positive free chain complex
equivalent to C4(X), K? another connected CW-complex with fundamental group .
Then there exist a CW complex Y and a homotopy equivalence h: Y — X, such that Y is
constructed from K2 by adding 2-cells (at the base point) and 3-cells to obtain a complex
Y, satisfying D2, and then further cells so that C5(Y ,Xy) is the part of Ay in dimensions
> 3.

If the symbol o, denotes number of i-cells, or of generators in dimension 1,

ay(Yo— K?) = ay(A) + oy (K) +ae(A4),
og(Yy— K2) = ap(K) + a4 (4) + ao( K).

The condition D 2 is defined on [, p. 62] and will be further discussed below.

Proof. Write B, = C%(K). We can define a map from K to X inducing the identity
of m by mapping all vertices of K to the base point of X, the 1-cells of K to loops
representing appropriate elements of 77: easiest is first to collapse a maximal tree in
K to a point, then each remaining 1-cell represents an element of 77. The 2-cells of
K are then attached by maps whose images in X are nullhomotopic, so we can extend
the mayp over them.
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Apply lemma 3B to construct a complex: the result is admissible since we can
realize the part of dimension < 2 as the chain complex of K2, with 2-cells attached
trivially corresponding to generators of E,. Also, by construction, the equivalence
with C%(X) can be supposed 0-admissible. Now by theorem 2 we can construct ¥
and A: the assertions about the chain complex of Y are verified by looking at the
complex of lemma 3B. Finally, T, satisfies D2 since its chain complex is

0—->E;,—>B,®E,—>B,—>B,—>0,
which the proof of lemma 3B shows to be equivalent to
0>4,> A, A4,—0.

By using theorem 4 in place of theorem 2, we can improve corollary 2-2 as follows.
All admissibility hypotheses can be deleted: in place of them use

m = 1: 7 is finitely generated,
my > 2: 7 is finitely presented,
my = 1: 7 is countable,

Z

mg = 3: no condition on .

However, no theorem is obtained for m, < 2. Note that this result is very closely
related to theorems A, C and E of I: it does not seem worth while here pursuing the
analogy more deeply (we leave to the reader as exercises—if he so wishes—to give
an algebraic analogue of Fn, and to show that a chain complex dominated by one
of finite type is equivalent to one of finite type). We will, however, give an improve-
ment of Dn below (theorem 5).

Theorem 4 gives the best method known to the author of making complexes
admissible. It is thus clear that all hinges on the construction of the complex K with
fundamental group 7. We may suppose that K only has one 0-cell (otherwise, as
above, collapse a maximal tree—thereby decreasing numbers of cells throughout).
Then the 1-cells of K represent generators of 77, and any set of generators can so
appear. Similarly, the 2-cells give relations between the chosen set of generators,
and any set of defining relations can be used.

Let ¢, be the 0-cell of K, e} the 1-cells, corresponding to g, e, and e} the 2-cells.
Then de = g, e,— e, Since K is connected, Hy(By) = Hy(K) ~ Z. We claim that if
the chain complex with free generators e, e} as above has O0th homology group infinite
cyclic, then the g, must generate 7. For the augmentation ¢: A - Z (induced by
77— 1) must induce the isomorphism sinceimd < (kere) ¢,. Thusforgen,ge,— eyeimd,

hence for suitable A, e A
¢ g€o— €y = %Aigieo—'/\ieO'

We express A; as a sum of elements of 77 with signs attached: A; = X, + ¢,;. The
right-hand side becomes a sum of terms g;;g; eo—gy; € OF gy €0—gy;9; €o- All must
cancel out in pairs except ge, — ey, 50 we obtain a chain of terms gey— b, ey, hieo— hyey,
coes By 69— Py €4, By ey — €, 01 the right-hand side. Then each of gh7t, b, Ay} and &,
is one of the g, or their inverses, so ¢ is a product of them.
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Now H,(K) = 0, as K is simply connected. Conversely, suppose given a complex
By - B, — By,—>0

with B, generated by ey, By by {ei}, B, by {el}, dei = g,eo—e, and H,(B) =0,
Hy(B) ~ Z. We know that the g; generate 7: what is not clear is whether the dej arise
from a set of defining relations. But this last is necessary and sufficient for our
complex to be admissible.

Wenow consider Dn (I, p. 62): in the casen = 1, we no longer tolerate non-abelian
coefficients. By corollary 2-2, and the improvement given after theorem 4, X satisfies
Dn (n>3) if and only if C%(X) is equivalent to an n-dimensional complex.

THEOREM 5. Lei X be a connected CW complex satisfying Dn. Then X satisfies
D(n—1) if and only if for every free A-module F, H*X; F) = 0.

Proof. Certainly D(n—1) implies that H™(X; F) vanishes. Conversely, let X
satisfy D(n) and all H*(X; F') = 0. By theremark above,if n > 3 C%(X)isequivalent
to an n-dimensional complex A4,.. Applying the assumption with # = 4, shows that

hom, (4,,_;,4,) - hom, (4,,4,) 0

is exact, so that d,,: 4,, -~ 4, _; has aleft inverse s. But now 4, is equivalent to the
(n—1)-dimensional complex

O0—>kers—A4, >4, 5> ...,

and a fortior: X satisfies D(n —1).

This also shows that if X satisfies D2, C%(X) is equivalent to a 2-dimensional
complex: we can now repeat the argument with n = 2, and, in particular, deduce
that if X satisfies D1, C%(X) is equivalent to a 1-dimensional complex: finally
(though not usefully) the argument works again if n = 1.

CoRrROLLARY 5-1. If X is a finite connected CW complex (resp. finite dimenstonal and
dominated by a finite complex) and H* (X; A) = 0forallt > n > 3, then X is homotopy
equivalent to an n-dimensional complex which is finite (resp. dominated by a finite
complex).

The finiteness hypothesis shows that we can suppose 4, in the proof above finitely
generated. Then A4, is a direct summand of a finite direct sum of copies of A, so
H"(X; A) = 0 implies H"(X; A,) = 0. The theorem now shows that X satisfies Dn,
and the corollary follows from results of I, or equivalently, from ones above.

I had planned to prove theorem 5 with this simplified hypothesis, but my original
proof was in error. I do not know whether it is possible to replace H*(X; F) by
H™(X; A) in the theorem or not.

Having now algebraized Dn, we have the following:

THEOREM 6. A projective positive chain complex A, is equivalent to an n-dimensional
complex if and only if H,(Ay) = 0 for ¢ > n and the image of d: A, ., — A, is a direct
summand (hence projective).

Proof. If the conditions hold, and B, is a complement to d4,_,, then 4, is
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equivalent to 0 > B, > A4, ;> 4,_,.... Conversely, if 4, is equivalent to an
n-dimensional complex, it is clear that H,(4,) = 0 for ¢ > n. Also,

Hn+1(h0ml\ (A*: dAn+1)) =0,

andd: 4,,, > d4,,, gives an (n+ 1) cocycle (d2 = 0), which is thus a coboundary,
so factors through 4,, giving a retraction of 4, on d4, ;. (For this proof, cf. I,
lemma 2-1).

We now give a reformulation (due to Gersteni and Milnor) of our finiteness
obstruction. If X satisfies F, C%(X) is equivalent to a complex A4, of free finitely
generated modules. If also X satisfies Dn, we can truncate at 4,, replacing 4,, by
a direct summand as above.

Now if 4, and B, are equivalent n-dimensional chain complexes, it is easily seen
by an argument of J. H. C. Whitehead (cf. proof of lemma 3) that

@ Ag; @ Byiq ~ @By @ Ay
Denote by braces the class in Ky(A) of a finitely generated projective module: then
it follows that X(—1)}{4,} depends only on the chain homotopy class of 4,. Thus
for X satisfying F'n and Dn we have defined a homotopy typeinvariant o(X) € K((A).
The image of o(X) in the projective class group K,(A) differs in sign from the
obstruction 0(X) of I.

This definition has several advantages over our former one. First, it is defined
for chain complexes and not spaces, which gives more freedom in use. For we can
generalize to the case where 0%(X) is not equivalent to a complex of finite type, but
for some ring homomorphism A — R, the complex C%(X) ®, R of free E-modules
satisfies this condition. Probably more interesting, we also have a natural definition
of a relative invariant (X, Y), by considering the complex C%(X, Y').

LemMmA 7. Suppose 0 — A, 5 B, i C.. — 0 an exact sequence of positive free chain
complexes, two of which are equivalent to finitely generated projective complexes of
finite dimension. Then so is the third, and o(By) = 0(4y) +0(Cy).

Proof. Let M, N, be the mapping cylinder and mapping cone respectively of s.
Then we have a commutative exact diagram

0—>A*£>M*Z;N*—>O

Rk

O—>A*—i>B*—j>C*—>O.

The central vertical map is an equivalence: applying the Five lemma to the
induced map of homology sequences, we deduce that N, — O, also is. Now there is
another exact sequence i B
0—By>N,—>A, >0,
with p,0k = j and ¢ of degree — 1, so, apart from the dimension shift, 4, is equi-
valent to the mapping cone of &, or of j. Iterating the argument, we find B, equi-
valent to the mapping cone of ¢. Now given a chain map of finitely generated

+ Cersten, S. M. 1966. A product formula for Wall’s obstruction. Amer. J. Math. 88,
337-46.
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projective complexes, its mapping cone satisfies the same condition, which proves
the first assertion. We can now suppose that each of Ay, By and C, is finitely
generated and projective. Then B; ~ 4, @ C,, for as C;, is projective, the sequences
split. It follows that X(— ) {B;} = Z(— ) {4} +2(—)¢{C;}, as asserted.

The above lemma is closely related to a result of L. Siebenmann (Princeton thesis,
1965) giving a ‘sum theorem’ for the finiteness obstruction. Siebenmann obtains
also a ‘product theorem’ which we will not discuss here. A special case of the
following is also due to Siebenmann.

THEOREM 8. Let ¢: X — Y be a map of CW complexes, inducing an isomorphism of
Sfundamental groups m, and such that the induced map of universal covers ¢: X - ¥
has only one non-vanishing homology group P = H,(¢). Then

(¢) of P s finitely generated and projective, and one of X, Y is dominated by a finite
complex, so is the other and

o(Y) = o(X)+(—1) {P}.

(it) If each of X, Y has finite dimension, P has finite projective dimension; if also
7 18 finite and P torsion-free, P is projective.

(vie) If H¥1(@; M) = 0 for all coefficient modules M, then P is projective.

Proof. When P is projective, we may consider it as a complex, and can then find
A, equivalent to C%(X), and B, to 0%(Y) with an exact sequence

04, B,—P—0.

The result (i) now follows from lemma 7.

In (ii), we may suppose ¢ an inclusion; then C%(X, Y) gives a finite dimensional
free resolution of P (note that d, has a right inverse, and discard everything below
dimension k: cf. theorem 6). The last result is due to Nakayama: see J.-P. Serre,
Corps Locaux (Hermann 1962), p. 151.

The third part follows by the argument of I, lemma 2.1.

For this last result, see also the paper (which overlaps our own results): C. B.
de Lyra 1965. On a conjecture in homotopy. Anais Acad. Bras. Ciénc. 37, 167-84.



