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I Definitions 

Let 2; be a complete d-dimensional fan, i.e. a complex of closed convex poly- 
hedral cones in R d with apex 0, generated by primitive lattice points Vl . . . . .  v, ~ Z d, 
such that ~ ) ~ a  = R d. Denote  the q-skeleton of 2; by S ~ = { a ~ X l d i m a  = q}. 
The polyhedral  cells obtained by intersecting each cone a ~ X, a 4: {0}, with the 
unit sphere S d - l c  R d form a spherical complex C. Let S(C) be the bary- 
centric subdivision of C and for a e Z, a 4: {0}, let # be the union of all simplices 
of S(C) whose vertices are barycenters of cells of C which contain a n S d-1 
For  a = {0} we set # = B d, the unit ball of  R d, and call 2~ = { # l a s S }  the dual 
complex of 2;. 

Let T d denote the d-dimensional torus Rd/Z  d. Each k-dimensional cone 
a EZ spans a k-dimensional subspace of R d which, since it has a rational 
basis, maps under the projection R a ~  T d to a k-dimensional subtorus 
T,~ ~ T d. The toric variety X z  is defined to be the. quotient Bax  Td/ 
where (x, t ) ~  (x', t ') if and only if x = x ' e i n t #  and t and t' belong to the same 
orbit of the natural action of T~ on T d. Note  that the torus T d over a point 
x e int # is collapsed by the relation ~ to the quotient 7~, = Td/T,, which is a 
torus of dimension d - dim a = dim ~. 

We denote by p the obvious projection of X~ onto B d and will identify 
p -  1 (int ~) with int ~ x 7~. 

The proofs of the following properties can be found e.g. in I-2]. 

(i) The toric variety Xz is compact  and simply-connected (since 2; is complete). 
(ii) The toric variety Xz  is a smooth  manifold if and only if Z is a simplicial fan and 
Idet(v~ . . . . .  vd)l = 1 whenever Vl . . . .  , vd~Z d are the primitive spanning vectors 
of a d-dimensional cone in Z. 
(iii) If  Z and S '  are two d-dimensional fans, and if there exists a unimodular  
t ransformation of  R d which maps the generating vectors of 2; onto  the generating 
vectors of Z '  and which induces a combinatorial  isomorphism between Z and Z', 
then the associated toric varieties Xz and Xz, are homeomorphic  in general, and 
diffeomorphic when either (hence the other) is smooth.  
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Fig. 1. A 2-dimensional fan and its dual complex 

2 CW-cell decomposition and cellular homology 

In the following we restrict our  attention to a 4-dimensional toric variety X = Xs.  
Since the underlying fan Z is 2-dimensional, its dual complex 2~ may be represented 
as the face complex of a polygon P with 0 e int  P and such that each edge of P is 
perpendicular to its dual 1-cone (see Fig. 1). 

We first describe a CW-cell decomposition of X which arises from the 
face structure of P and the standard CW-cell decomposition of the 2-dimen- 
sional torus T 2. The latter is given by the cells Zo, zt, 272 and "c12 which are 
represented, respectively, by the subsets {(0,0)}, ]0 ,1 Ix{0} ,  {0}x ]0 ,1 [  
and ]0, 1[ x ]0, 1[ of R E. By suitably embedding the tori T o and T 1 into T 2, 
the subcomplexes {%} and {Zo, zl} can be regarded as cell decompositions of 
T O and T ~, respectively. Note that the closures of these cells represent cycles in 
the cellular homology of the corresponding tori. 

In order to obtain a cell decomposition of the torus 7~ which lies over each of 
the interior points of the face # of P, we use an explicit homeomorphism 
h~ :T~ ~ T 2 - d i m  tr. For  a 1-dimensional cone a e Z generated by the vector v~ ~ Z ~, 
h, is induced by the projection #,: R 2 ~  R which maps x e R  2 to det(v,, x). For 
a 2-dimensional cone tr we set h, = 0 and for tr = {0}, h, = idr~. 

For  each cone tr an.d each cell z in T 2- dim ~ we define the cell 

c~,~ = in t#  x h ~ l ( z ) .  

Note that dim c,. ~ = codim a + dim z. The cells c~, ~ form a CW-decomposition of 
X, and if we provide them with appropriate orientations, then the boundaries of the 
corresponding cellular chains are given by 

0 " • • 2 :  (~0Ccr, ro : 0 

aeX~:  ~ l C a ,  to = C a , , ~  o - -  C a , , , r  o 

~2C~, tl : 0 

= { 0 ) :  ~2C~,~o  ~ ~Co,~o 

~3 C . . . .  = 2 ( -  1)2)C0,~:1 
1 

~3Co, z2 : 2DoC0,~1 

~4c.,~12 = 0 (1) 
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where a', a" are the unique 2-dimensional cones which contain a ~ Z 1, 0 ranges 
2 over 2;1 in all the sums, and vo x, vQ are the coordinates of the primitive vector 

v 0 which generates the cone O. The multiplicities of %,,,  in the boundaries of the 
two 3-dimensional chains are the images of the vectors (1, 0) and (0, 1) under the 
projection go: R2 ~ R described above. 

Thus we obtain the following homology  groups of X:  

Z q = 0 , 4  
H q ( X )  _~ z n / ( Z v ~  + Zv~)  ~ Z n-2  (~ Z / m Z  q = 2 

0 otherwise 

where n = c a r d ?  1, v* (resp. v*)~Z"  is the vector whose components  are the first 
(resp. second) coordinates of the vectors v,, a e 2;1, and m is the greatest c o m m o n  
divisor of the determinants det(v~, v~,), a, tr '~2;  1. In particular Hz(X ) -----Z n-2  if 
X is smooth.  

3 The intersection form 

In this section we calculate the intersection form of a smooth  4-dimensional toric 
variety X = X z .  1 Let al  . . . . .  a,  be the 1-dimensional cones of Z, numbered 
counterclockwise, and for each i let vl = (v],  v 2 ) e Z  2 be the primitive vector 
generating ai. We will assume from here on that the indexing from 1 to n is cyclic so 
that any index which falls below 1 (resp. above n) has n added to it (resp. subtracted 
from it). By property (ii) we have 

det(vi, vi+l) = 1 (i = 1 . . . . .  n ) ,  (2) 

and in view of property (iii) we may assume in addition that  v, 1 = (1, 0) and 
~, = (0, 1). 

By (1) the group of 2-cycles of X is generated by the chains c . . . . . .  i = 1 . . . . .  n, 
and the corresponding homology  classes zle Hz(X) satisfy the following relations 
induced by the boundaries of the two 3-chains: 

1)~Z 1 + " " " + U1-2Zn_2 + Zn_ 1 = 0 

v2zl + . . .  + v2,_2z,_2 + z ,  = 0 .  (3) 

In order to determine the intersection numbers  z~.zj, we first observe that the 
spheres p - l ( # i )  and p -  l(#j), which represent the classes zi and zj respectively, do 
not intersect in X if the cones a~ and trj are not  adjacent in 2;. Therefore 

z i ' z j = O  ( l < l i - j l < n - 1 ) .  

Second, the spheres p - 1 ( ~ )  and p-1(#~+ 1) intersect in the unique point  which lies 
over the vertex # im#~+l  of P. Since det(v~,v~+~)= 1, it can be seen that this 
intersection is transversal and hence 

z i ' z i + a =  +- 1 ( i =  1 . . . .  n) 

1 This could be done by using the algebraic description of the cohomology ring of X given by 
Danilov (see [2, Theorem 10.8]). However, we compute the actual intersection numbers of the 
generating 2-cycles using our cell decomposition of X 
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where the signs are all equal and only depend on the orientation of X. In the 
following we fix them to be + 1. 

Third, by multiplying both  relations (3) with zl and taking a suitable linear 
combinat ion of  the resulting equations, we obtain the self intersection numbers 

di := Z i ~  = - -  det(vi_l,  vi+l) (i = 1 . . . . .  n) 

where we have also used the smoothness condit ion (2). 

4 Characterisation of the intersection form 

Having calculated the intersection form of X, we now characterise it up to 
equivalence, i.e. up to a change of basis of H2(X). (For a treatment of symmetric 
bilinear forms in general see [8].) By (3) the classes zl . . . . .  z , -2  form a basis of 
H2(X), and since by Poincar6 duality the intersection form is always non-singular, 
its rank equals n - 2. 

In  order to determine the signature, we first calculate the principal minors 
Dk = det((zl �9 z j)l __< i, j z k) of the intersection matrix. (Henceforth we will not  distin- 
guish between the intersection form and its matrix.) By the results of the previous 
section we have DI = dl and 

Dk = dkDk-1 -- Dk -  2 (k = 2 . . . . .  n -- 2) , 

where we have set Do = 1. By induction one can easily prove, e.g. by using the 
Grassmann-Plf icker  relation in R E, that  

D R = ( - - 1 ) k + l d e t ( v k + l , V n )  ( k =  l , . . . , n - -  2 ) .  

From this equat ion we see that  if none of the vectors/-)k is equal to -- vn = (0, -- 1), 
then all the principal minors are non-zero and have alternating signs, except for the 
unique pair (D k_ 1, Dk) for which the vectors v k and Vk+ 1 lie on opposite sides of the 
y-axis. Hence by Jacobi 's  theorem the signature of  the intersection form equals 
4 -  n. By a rule of Gundenfinger  this still holds even if their exists a vector 
Vk = (0, -- 1) in which case Dk-1 = 0 (see [5, note 1 on p. 304]). 

If  n = 3 then there is only one possible vector v~ = ( - 1, - 1) and the intersec- 
tion form of X given by the matrix ( + 1) is positive definite. If  n > 3 then the 
absolute value of  the signature is less than the rank, hence the form is indefinite and 
can therefore be characterised by finally determining its type. 

The even type is only possible if n = 4. 2 Indeed, if the intersection form of X is 
even, then all of the self intersection numbers  di must  be even. Since the vectors 
vl are primitive, it follows that  each must  have one even and one odd coordinate, 
thus they are contained in the lattice F = (1, 0) + Z(1, 1) + Z( - 1, 1). Hence 
by Pick's formula (see e.g. [7]) the area A(S)  of the star-shaped polygon 
S = U~=I conv {0, /)i, Vi+l~ is given by 

A ( S )  
- card(F n i n t  S) + 1 card(F n ~S) - 1 

det F Z 

2 This also follows from a theorem of Donaldson (see [3, Theorem B]) which says that if the 
intersection form of a smooth simply-connected 4-manifold is indefinite and even and if the 
absolute value of its signature is 2 less than its rank, then its rank equals 2 
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Fig. 2. Representative fans with 3, 4 and n generators 
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where det F denotes the determinant  of a basis of F and in our  case is equal 
to 2. But by condit ion (2) the area A(S) equals n/2 and S does not  contain 
any points of F other than its vertices. Therefore the equality can hold only 
i fn = 4. 

In fact, if n = 4 and vl = ( - 1, 0), v2 = (0, - 1) the resulting form is even. On  
the other hand, every odd indefinite intersection form of rank n > 4 can also be 
realised, e.g. by setting vl = (i - 2, - 1), i = 1 . . . . .  n - 2. 

Thus we have completely characterised the possible intersection forms of 
X (Fig. 2 shows the corresponding fans), and we summarize the results in the 
following 

Theorem. A non-singular inteoral symmetric bilinear form B can be realised as the 
intersection form of an oriented smooth 4-dimensional toric variety X if and only if 
either 

(i) rank(B) = 1 and B = ( _+ 1), or 
(ii) rank(B) = 2 and B is even, or 

(iii) rank(B) > 2, [signature(B)l = rank(B) - 2 and B is of odd type. 

5 Topological classification 

In 1982 Freedman characterised topological 4-manifolds and showed that every 
non-singular integral symmetric bilinear form can be realised as the intersection 
form of an oriented closed simply-connected 4-manifold. Moreover  any two such 
manifolds realising the same form are homeomorph ic  if the form is even, whereas if 
the form is odd there are two homeomorph ism classes, one with trivial and the 
other with non-trivial Ki rby-Siebenmann obstruction (see [-4, Theorem 1.5]). 

In our  case it is easy to give representatives of 4-manifolds which realise the 
intersection forms described in the theorem of the previous section. Namely,  let us 
consider the oriented complex projective plane C P  2 which has intersection form 
( + 1). Then CP  2 with the opposite orientation, which we denote by - C P  2, has 
intersection form ( - 1). Furthermore,  if we take the connected sum of C P  z with 
a finite number  of copies of  - CP  2, we obtain a 4-manifold whose intersection 
form is the or thogonal  sum of ( + 1) with a finite number  of ( - 1) and hence 
satisfies condit ion (iii) of the theorem. Finally, the even indefinite form of rank 2 is 
the intersection form of the product  of spheres S 2 x  S 2. All these manifolds are 
differentiable and hence have trivial Ki rby-Siebenmann obstruction, and since the 
same is true for the toric varieties in question, we can state the following 

Corollary. The homeomorphism classes of smooth 4-dimensional toric varieties are 
represented by the complex projective plane C P  z, the product of spheres S a x S 2 and 
the connected sum of CP 2 with a finite number of copies of - C P  2. 
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6 C~-classifieation 

We now describe a handlebody decomposition of a smooth 4-dimensional toric 
variety X, and using elementary Kirby moves show that the smooth manifolds 
listed in the previous section in fact represent the different diffeomorphism classes 
of smooth 4-dimensional toric varieties (see [6] for a general reference on Kirby 
calculus). We use the same conventions on indices as in Sect. 3. 

For  any cone a e Z ,  set X ~ =  p - l ( a c ~ P )  (recall Fig. 1). When tr is the 0- 
dimensional cone, X~ = T z. For  each of the 1-cones ai, 1 < i < n, X~ is a solid 
torus. Because of our smoothness hypothesis, for adjacent 1-cones tri and 
a~ + 1, X, , ,  w X . . . .  is a 3-sphere with a canonical Heegaard splitting as two solid tori 
glued together along their bounding 2-tori. Denote by ai, i+ 1 the 2-cone bounded 
by ai and tri+l. X .... .  1 is a 4-ball D 4 bounded by the 3-sphere X , ,  w Xr 1 and 
centered at the point p -  1 (~, i + 1). It has a canonical product structure D 2 x D 2 such 
that X,, = ~ D  2 •  2 and Xr = D 2 X c~D 2. Thus for each i, X .... .  , can be con- 
sidered canonically as a 0-handle, 2-handle or 4-handle and by arbitrarily designat- 
ing a 0-handle and a 4-handle (in fact we choose X . . . . . .  as the 4-handle), we obtain 
a smooth handlebody decomposition of X with a unique 0-handle, a unique 
4-handle, n - 2 2-handles and no 1- or 3-handles. 

To obtain the correct Kirby calculus picture, note that the union of two 
adjacent handles X . . . . . .  w X . . . . . .  is a disk bundle over the 2-sphere p-x (~) (with 
Euler number d~), and two such adjacent disk bundles are glued together over 
a common D2•  D E by reversing the order of the coordinates. Thus when the 
interior of the 4-handle is removed, the punctured toric variety )~:= X \ i n t  D 4 is 
a plumbing on the graph with n - 2 vertices shown in Fig. 3(a). The corresponding 
Kirby calculus picture for X is shown in Fig. 3(b). As usual, the linking matrix is 
just the intersection matrix of X so that the framings are the self intersection 
numbers d~ . . . . .  d . _  2 calculated in Sect. 3. 

Since the boundary of)~ is a 3-sphere, we could apply a theorem of Akbulut 
and Kirby [1, Corollary 4.2] to complete the proof  (the theorem of Akbulut 
and Kirby is more general and only requires that the boundary be a homotopy 
3-sphere), but in our setting we are able to give the following more direct 
argument. 

By Poincar6 duality, the intersection matrix B calculated in Sect. 3 is unimodu- 
lar. It follows by straightforward row reduction (over Q) that one of the diagonal 
entries di must satisfy Idol < 1. Thus with elementary Kirby moves, we can split off 
from the picture a manifold which is either C P  2 (if d~ -- 1), - C P  2 (if dg = - 1) or 
an S2-bundle over S 2 (if d~ = 0). Up to diffeomorphism there are only two such 
bundles, namely the trivial bundle S 2 • S 2 and C P  2 # ( - CPZ). If we have blown 
down a _+ C P  2, the remaining framed link diagram is obtained from the original 

dl d2 d3 d.-2 

--" _ -  T @ o o , I I  ~ ~ ~ 

(b) 

Fig. 3. a The plumbing diagram for )~. b The framed link picture for X 
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one by erasing the i th component ,  l inking the two adjacent  ones to each o ther  
(unless i -- 1 or  i = n - 2), and  subt rac t ing  di from the framings of each. W h e n  
dl -- 0, the i th componen t  is erased and the two adjacent  ones are merged to a single 
link componen t  with f raming di- 1 + di + 1 (unless i = 1 or  i = n - 2, in which case 
the i th componen t  and  its adjacent  componen t  are s imply erased from the diagram).  
In each of these cases, the f ramed link d i ag ram which remains,  if it is not  empty,  is 
of the same form as in Fig. 3(b) and  still represents  a closed manifold.  Thus  the 
linking mat r ix  of  the reduced d i ag ram is necessari ly un imodutar ,  has the same form 
as B and has lower rank.  

I t  follows by induct ion  that  X is d i f feomorphic  to a connected  sum of the form 
I m 

CP z # ( - C P  2) # S 2 x S ~. But by  the results of the previous  sect ion b2 + = 1 
whence either k or m must  equal  0 and the other  must  equal  1. Final ly ,  since 
S 2 x S  2 # ( -  C P  2)_-_ C P  2 # ( -  C P  2 ) # ( -  C P  2) we obta in  

Theorem. The diffeomorphism classes o f  smooth 4-dimensional toric varieties are 
represented by the complex projective plane C P  2, the product o f  spheres S 2 x S 2 and 
the connected sum of  CP  2 with a finite number o f  copies o f  - C P  2. 

Remarks. (i) If for some i, I det(a l ,  al + 1)l 4 = 1 then X , ,  w X . . . .  is a lens space which 
is not  a sphere. Thus in general  the sets X . . . . . .  are cones on lens spaces and  are 
a t tached to each other  just  as in the smoo th  case by gluing one solid torus  to 
another.  The au thors  do  not  know of  an ana logue  of K i rby  calculus which applies  
to such a space. 
(ii) In any d imens ion  d we can define the sets X~ = p -  1 (a c~ B d) for each a ~ Z. If 
o is a d-d imens iona l  cone, then X ,  is a cone ne ighbo rhood  of the po in t  p -  1 (#), and  
when X is smooth  it is a 2d-ball  with a canonica l  p roduc t  s t ructure  D 2 x .  �9 - x D 2. 
This again  gives rise to a hand l ebody  decompos i t ion  (with no odd-d imens iona l  
handles) when X is smooth.  

Acknowledgements. Special thanks to Bob Gompf. The analysis of the Kirby link in Sect. 6 is 
largely due to him. 
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