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ON TOPOLOGICAL MANIFOLDS.!

By WiLLiam W. FLEXNER.

A topological manifold M, is a compact separable space which has
a complete set of neighborhoods each of which is a combinatorial n-cell.
A combinatorial n-cell is a generalization due to Alexander of the ordinary
n-simplex, and has the connectivity numbers and torsion coefficients of
the n-simplex. Special cases of topological manifolds have been studied
before in analysis situs. The manifolds (variétés) investigated by Poincaré
in his first paper® are topological manifolds which have a certain restricted
parametric representation. Wilson® and Hopf* have investigated the singular
images upon each other of manifolds whose defining neighborhoods are
n-cells, but have not considered the questions here dealt with. In this
and a subsequent paper it is proposed to extend, using the methods of
Veblen’s Colloguium Lectures on Analysis Situs and Lefschetz’s Colloguium
Lectures on Topology, to topological manifolds the classical duality and
homology theorems. This involves defining Betti numbers and torsion
coefficients, proving their topological invariance, defining Kronecker Indices
and proving the duality theorems.

Vietoris® has introduced the homology and group invariants of a general
compact metric space. To define bounding and non-bounding cycles he
uses infinite sequences of chains made up of ideal cells whose diameter
decreases towards zero. Section 1 of this paper defines the homology
characters in another way: in terms of a complex on M, composed of
singular chains which play the role of cells. By means of a deformation
theorem modeled on that due to Alexander® it is proved that any singular
chain on M, can be deformed onto the singular complex. Therefore the
incidence matrices of the singular complex give topologically invariant
homology characters. This method shows that the homology theory of
M, can be derived from a finite singular complex, while for an arbitrary
compact metric space the complex must be infinite.
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394 W. W. FLEXNER.

Section 2 begins by specifying when a manifold is orientable with respect
to a particular set of defining neighborhoods E.. Then the Kronecker
Index (yp-7n—p) of two singular cycles y, and yn—p on M, is defined.
The object of this and the next section is to serve as a basis for a proof
of the Poincaré duality theorem for M,. Since M, cannot be cut up into
cells the relations between p- and (n-—p)-cycles cannot be obtained from
a dual complex. The connectivity properties in the large are in this case
brought in by considering M, as immersed in a Euclidean space S, of
a sufficient number of dimensions,” », and considering the intersection
of M, with chains C;—, of S, bounded by the cycles I'y—p—1 in S, which
according to P. Alexandroff® link each non-bounding cycle 7, on M, . This
intersection can be proved to be a cycle, 7, ,, and to intersect 7}, with
a Kronecker Index 1, so the duality theorem of Poincaré follows from
section 2. The work just outlined has been completed by Lefschetz and
Flexner® since this paper was first written.

Section 3 contains a proof, suggested to the writer by Professor Alexander,
that M, is homeomorphic to a subspace of Euclidean r-space.

It follows as a corollary of the duality theorem that the connectivity
numbers of order higher than n are zero, a result proved in another way
by Vietoris.

My thanks are due to Professor Alexander for suggesting the problem
here treated to me and to both him and Professor Lefschetz for their very
generous help during the course of this work.

1. Definitions; Invariance of the Betti numbers and torsion
coefficients. Throughout this paper technical terms are used as in
Lefschetz’s Topology*°.

The manifold M, here dealt with is a space satisfying two conditions.

1. M, is a compact separable space. This condition implies that A/, is
metric !,

2. It is further required that there exist a complete set of neigh-
borhoods {E,',} for M, each of which is a normal combinatorial =n-cell.
(L. T., p. 113, see also p. 106).

A normal combinatorial n-cell is an open simplicial complex whose
boundary is a circuit with the Betti and torsion numbers of the (n—1)-
sphere and which is itself the join (L.T., p. 111) of this boundary and

" Menger, K., Dimensionstheorie. Berlin (1929).

8 Alexandroff, P. Annals of Math. (2) 30 (1928), pp. 101-187.
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a point. A property of the cells E; often used is that every cycle on
E, bounds. In the sequel the normal combinatorial n-cell will be called
simply the n-cell and the simplicial n-cell will be referred to with the
prefix simplicial. The simplicial #n-cell is a special case of the n-cell so
that the class of manifolds M, includes the type originally called “topo-
logical” made up of those compact separable spaces which can be covered
by a finite number of overlapping simplicial n-cells.

A finite set of n-cell neighborhoods {E} covering 3, is called the
covering set { En}. Because of the Borel property, finite covering sets exist.
All the m-cells of the same covering set which have a point in common
with a given n-cell, E,, of the set will be called a nest of cells with E,
as center. Kach n-cell of the covering of M, is itself an open simplicial
manifold. This follows from the fact that each point of Ej, has a neigh-
borhood of arbitrarily small diameter which is an n-cell. Thus M, can
be covered by open sets which are simplicial manifolds. This is the
essential property in the proof of the duality theorems.

THEOREM 1. Given a manifold covered by a finite set U of overlapping
n-cells, the manifold can be covered by another finite set U’ of m-cells each
so small that every mest of cells of U’ is covered by a cell of U.

Let {Ez} be the complete set of neighborhoods of M,. Each point is
covered by an E, of diameter less than . Therefore after removal of
all neighborhoods of diameter greater than & there remains a fundamental
system of neighborhoods for M, of which, because M, is closed and
compact, a finite subset will cover M,. So for every ¢ there is a finite
covering {E':} of cells whose diameter is less than &. Given the finite
covering U= {Eyr}, the distance from any point of M, to the boundary

of some KD P has a lower bound, 4 >0. If then s<%¢;, (B 5} is

a covering of the sort required in the theorem where U’ = {E”;} Remove
from any covering U any =n-cells entirely covered by other cells of U.

Now cover M, with n+2 covering sets UL, U° UY ---, U” such
that:

i. U! is an original set covering M,.

ii. The members of U/ are so small that theorem 1 applies and every
nest of cells of UV is completely covered by one n-cell of U1,

Take arbitrarily a single point af in each n-cell E;' of the covering
U”. Each such point is called an elemental zero-cell of M,. The de-
finition of an elemental k-cell is by induction. If E.°, E, ---, E,:‘k_are
k+ 1 n-cells of the covering U” all contained in the same n-cell Ey ™% of
the covering U”* and such that any j of them (j = 0, 1, ---, k) are
covered by an n-cell of the covering U"~*! the k-1 points ai, where
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afC E%  are the vertices of an oriented (L.T. p.4) singular k-complex
(L. T. p. 13), ax, on M,, with the properties:

1. If the n-cell Ei *t™% of the covering U™ *+1 covers ai» , then
ar is contained in an n-cell w7 of the covering U"~*. Such an
Ey I exists because each EF 7% covers all but one of the cells
EY, -+, Ex* and hence these cells form a nest: and are covered by a
cell of U k. ‘ _

2. ai is bounded by the elemental (k—1)-cells a,° ,, ---, a;*, deter-
mined by E.°, -, EM* taken k at a time. Because the definition is in-
ductive, properties one and two are assumed for “;f— IR a.,’g‘_ ;- There-

fore the sum of these cells properly oriented is a cycle. Since the (k—1)st

Betti number, Ri_1 (En~"%) of Ey ™/ is zero, this cycle bounds a singular
complex not necessarily an n-cell, on n—kJ which can be taken to be
ax. This proves the existence of an a; satisfying conditions one and two.

The boundary of an elemental k-cell is the sum of the oriented ele-
mental (k—1)-cells that are obtained by omitting one at a time the

"k -+ 1 vertices defining the elemental %-cell. In the sum each oriented ele-
mental (k—1)-cell is affected with a sign as in L. T. (p. 14).

The definitions of elemental chain, elemental cycle, elemental homology are
the same as those of chain, cycle and homology in L. T. (p. 16 et seq. and
p. 21) with “elemental cell” written everywhere instead of “cell”.

An elemental complex, &, on M, is the set of all oriented elemental
cells on M, that can be constructed using as vertices a set of elemental
zero-cells, one and only one in each n-cell E;* of the covering U”. The
incidence relations (L. T. p. 16) of these cells with their oriented bound-
aries give a set of incidence matrices (L. T. p. 34) for M, just as simplicial
cells do for manifolds that can be cut up into simplicial cells. From these
matrices Betti numbers and torsion coefficients (L. T. p. 34) can be cal-
culated. In the sequel these will be referred to as the elemental Bett:
and torsion mumbers calculated from elemental homologies. Because £ is
made up of a finite number of elemental cells these numbers are finite.

A complex, chain, or cycle on M, is the single valued continuous image
on M, of a simplicial complex chain or cycle. If a p-cell of a chain on
M, is mapped on an s-cell, s<<p, of &, the p-cell will be given a zero
coefficient in the chain, as in L. T. (p. 74). This is what Lefschetz calls
a singular complex, chain or cycle. (L.T.p.72). Here the word “sin-
gular” will be omitted.

THEOREM 2. If yi is any k-chain onm M, it can be cut up into sub-
divisions so small that each can be covered by an n-cell of the covering U™.

This is apparent from the definition of yx.
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THEOREM 3. If yx is a k-cycle on M, and yk is a subdivision of yx and yx
is the image of Gy, then yx~ yi on M,. (Notation: L. T., p. 21).

A k-cycle is a special case of a k-chain. If G is the subdivision of Gy
producing % then Gx— Gy bounds a degenerate (L. T., p. 74) (k- 1)-complex
on Gr. Hence its image yx— 7k bounds- a (k- 1)-chain on yx and hence
on M,.

THEOREM 4. Fundamental Deformation Theorem: Given an r-cycle y, on M,
such that each cell of yr is in an n-cell of U™, and an elemental complex & on
M, then:

Part 1. Given any k-cell p}, of 7, such that pi— Zt’ pi_, (notation: L. T.,
p. 15) where t; is an integer, there can be associated wzth i an elemental k-cell
& of & for which the following relations hold:

i af—> 'tia] | where af_, is associated with pj_,.

ii. There exists a (k- 1)-chain g, on M, satisfying qi,, — o —pi—Q}
where QL — ,2 tJ’.' pi_l——;_,' thaj_,.

Part 2. If p;, p}, -, 0§ arek-cells of v, and are all in E™ then al, a3, -, ag
lie in the same n-cell En """ containing E".

Part 3. If y, is a k-cycle on M, such that y, = 2;&, DL, then Z,uJ 9.~

v— I where I, = ;,ui at is a cycle.

The proof is made by induction.

Step 0. Part 1. If a zero-cell p} is in the n-cell E™ associate with it the
elemental zero-cell af of K in E. If E"—'! covers E* then ¢i—p}—al
where ¢¢ is a segment in E™ 1! which, because the zeroth Betti number,
Ry (Er—1), of En~%1 is one, is bounded by pi and af.

Part 2. This follows immediately from the construction of ai.

Part 3. Given that 7, = Xu,pé is a cycle, let I, = >u,ai. Since

2 (]
@i —>pi—a} it follows that Y u,¢i >y, —TI,. Since the boundary of y,
(]
vanishes and the boundary of I, corresponds to it cell for cell, the boundary
of Iy vanishes.

Step k. Imagine steps 0, 1, 2, ..., k—1 to have been taken for each
of the (0, 1, 2, -.., k—1)-cells of y,.

Part 1. Given pi— ,2 t:pj_,. Consider ,2 t:aj_, where aj_, is associated
by step k—1, part 1 with p/ . tha,{_l is a cycle by step k— 1,

. J
part 3 and is in an n-cell E*** containing E™ by step k—1, part 2.
So because R, , (E»%i) = 0, Zt' aj_, bounds ai in E*%% Associate a}

with pi. By step k—1, part 3



398 W. W. FLEXNER.
AJZ tj qlJr: 9}2 tjﬁi-f' JZ t} “;{_1 .

Therefore pfc——a;'c—lz tjﬁ gj is a cycle since its boundary vanishes. g is
contained in an n-cell E)'~%% covering pj_,. Hence the set of cells { E»—%a;}

(j=0,1, .-+, k) all have points in common with E» %" and so form a nest
of cells. Therefore pi—ai — Ztiq is in an n-cell En—k-11 of Un—Fk-1

and bemg a cycle, bounds in that n-cell a (k4 1)-complex ¢f , because
G = D54, _2 t qf.

Let Zj:tj ¢} = Q. This completes the proof of step % part 1.

Part 2. If pi, pi,---, py are in E™ then af associated with pi lies
in E,™* which contains E° by step %, part 1. Hence the set { B k1)
i=1,2,...,s), since each of its members contains E,°, forms a nest
of cells and 1s covered by E, “"“' of the covering U™ * and con-
taining E;°.

Part 3. 7, 2 m;pi is a cycle. Let I, == 2;»1 ai. T, is a cycle
because its boundary cells correspond to those of y; which vanish. From
the result of step %, part 1 follows

o %l . o .
—?—7 M Qeir = % ;DY _er‘ u; ag, “'; it ay,

But since 7, is a cycle Y u, =0 for every ;. Hence ¢, a2 e — 2, Al
1 1 (2
and therefore X u, ¢  —y,—I,. This completes the induction and the
(2

proof of Theorem 4.

THEOREM 5.  To every k-cycle yx on M, there is an elemental k-cycle Iy
on M, such that yr—Ix~0.

By Theorems 2 and 3 yx—yx~0 where y; is a subdivision of yx satis-
fying the conditions put on y in the statement of Theorem 4. By Theorem 4
7k—I't~0 and therefore yr— I'y~0.

THEOREM 6. If yx is any k-cycle on M, and Ty is the elemental k-cycle
associated with ¢t and yr~0, then I'y~0.

By Theorem 5 yx— I'v~0, so yx~0 implies I}~ 0.

THEOREM 7. If an elemental k-cycle Iy bounds a (k+1)-chain gi+1 on M,
then Ty bounds an elemental (k+1)-chain Gyi1 on M,.

Cut g1 up into cells so small that each of them is contained in an
n-cell of U". Then apply the process of Theorem 4 to the i-cells of gxi1
¢=0,1,2,..., k+1) associating with each of them an elemental s-cell.
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For the elemental i-cells associated with the i-elements of the boundary
use the i-elements of Iy themselves. All the k-cells of the boundaries
vanish except those making up the boundary I'y. Hence I bounds the
chain Gy of elemental é-cells associated with the cells of gx:. Theorems 5
and 7 are analogous to theorems proved by Veblen in his Colloquium
Lectures Chapters 3 and 4 to obtain the topological invariance of the
homology characters of a simplicial complex.

Instead of using the elemental cycles and homologies to calculate the
Betti and torsion numbers of M, it is possible to use the set of all cycles
on M, and their homologies (L.T. p.75). These cycles and homologies
will be called “topological” and the numbers topological Betti and torsion
numbers. It will now be proved that the topological numbers are the
same as the elemental numbers which were shown on page 396 to be
finite. This implies that the topological numbers are finite. By Theorem 5
every cycle of M, is homologous to an elemental cycle, so the elemental
cycles form a basis for the cycles of M,. Every relation of bounding
among elemental cycles automatically implies a topological relation of
bounding. Moreover any topological bounding relation among the elemental
cycles, by Theorem 7, implies an elemental bounding relation. Therefore
the homology group for any cycles on M, is isomorphic to the homology
group of the elemental complex which proves Theorem .

THEOREM 8.  The Betti numbers and torsion coefficients calculated from
elemental homologies are finite and topologically invariant.

Corollary. The connectivity and torsion numbers modulo m (L.T. p. 18
and p.35) as obtained from the incidence relations of the elemental cells
are topologically invariant. The proof is the same as that of Theorem 8
except that in adding the boundaries of the chains the coefficients of the
individual cells of the boundary are reduced modulo m. This changes
none of the details of the proof.

2. Orientation; Kronecker Index. It is now necessary to draw the
distinction between manifolds orientable and non-orientable with respect to
a covering set {E'n} of n-cells. Suppose two n-cells of the set, £, and E,’,
overlap in a number of open sets of which R is one. Orient each n-cell
by means of a complex on it. Cover each region R with an infinite
complex, K’, by the method described in Lefschetz’s “Topology” (L.T., p.311)
using the complex on E, to give K*.- K'is connected and only two n-cells
abut on each (n—1)-cell of K¢so K?is an orientable simple circuit modulo
an ideal element, .7, its boundaly (L.T., p.47 and p. 295). Hence it
has a basic orlented n-cycle I, mod A (L T., p. 46 and p. 300). Because
the Betti numbers of K" are topologlcally invariant, I‘n, the basic oriented
n-cycle mod 7 obtained using, to cover R, an infine complex K’ derived
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from a complex on Ej, satisfies the relation I'i~é'I'J mod 4, where
¢ =41. If p+1 n-cells of {E]} cover R we have relations

The~et Tt mod A,

F,fN&jPI‘;’;P mod 4.
If the orientation of the cells Ej can be so chosen that for all ¢ and J
and all regions R, all the ¢'s corresponding to a given R are of the same
sign, M, is orientable with respect to the covering {E,}, otherwise not,

It is now possible to define the Kronetker Index of two chains which
do not intersect one another’s boundaries and are on an orientable M,. If
M, is not orientable the chains can be taken modulo 2 and the Kronecker
Index computed modulo 2. Before defining the Index it is necessary to
prove some theorems.

THEOREM 9. Two cycles I'y and I'y—p are e-deformable where ¢ >0 is
arbitrarily small, into I'y and I'n—, which intersect in a finite number of
solated points.

Throughout the proof F(E) means the boundary of £ and E means
E+ F(E), the closure of E. Suppose that {E,} is a finite set of cells
covering M,. On E} take a complex K* of mesh so small that if J ‘s
the sum of the closed cells of K* with no points on F(Ey), J* covers Mn.
Let 27 be the maximum mesh of the complexes K-

Now make a subdivision of I', and I',—, into cells of mesh z/4 and
call these subdivisions I', and I,—,. If the following assumptions about
the reduction of the parts of I, and I',—, in (¢—1) of the domains
{J%} be made, it can be proved that the reduction can be extended to
another domain J and so, by induction, to all these domains. It is

assumed that if
G = Ji4 g2 ,,,+Ji~1

then I'y and I',—, are z/4-deformable into cycles I‘;, "' and T w_p With mesh
7/4 and such that the following three conditions are satisfied:

1. it = ot it = i 46,
where 7;',—1 and ;ffb:lp are the sets of all closed cells of I‘;;—l and I‘;;:;)
respectively that have points in common with G¢1,

2. yi intersects ;/j;_lp in a finite number of isolated points.

3. There exist neighborhoods N1 and N**~1 such that N*! contains

the sum of closed cells of r;—l that meet F'(G~'), and N*~! contains the
similar sum for y%- p, and such that

LNt =90, i, -N'=o0, NT.N'"T'"=o.
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In view of (3) the intersections of the y’s are interior to G%—1, that is
not on its boundary, and 7"1 does not intersect di—! nmor does 7;“

—P
intersect 6"1. Furthermore

F@y ) N7, F5L) c N

Let G = J'4-J*+ ... 4+ Ji. It will now be proved that conditions
one, two and three can be satisfied for the index i.

A. Consider the following quantities:

1. The distance from F(d; ") (which is on N°™%) to F(N*"!) and that
from F (3,2 to F(N*). .

2. The distances from d;, ' and 9,7, to ¢*7V.

3. The distance from I, ' to N*™" and from I):"5 to N* ™.

4. The distance from F(E',.) to F(JY).

The distances just mentioned are all positive and so is their lower bound.
Choose a ¢ less than a quarter of that lower bound and also less than z/4.

B. Subdivide Iy ' and I} »—p into subchains whose mesh & is to be at
all events less than (/2. Denote by 7, and y,—, the set of all closed cells

of 9, and d57% on Ej. . .

C. Let K be a complex on E, which has J* as a subcomplex and K*
be its dual such that the mesh of both complexes is &. The mesh of the
subdivisions of 7' and I‘n_,, is small enough to assure that F(yp) and
F(yn—p) lie entlrely in E;—J*+ N and Ei—J'+ N* respectively.

D. By &-deformations y, and y,—, can be reduced to subchains of K
and K* respectively. Add the deformation chains of F'(y,) and F(rn_p) and
call the new chains 7, and y,—, and the new cycles I, and I—p,. In
addition if y, (p <) has p-cells on F(J?), 7, can be modlﬁed by another
&-deformation as in the similar case, L. T., p. 153, so as to remove them
from F(J?). The process is as follows. Because of D, J? is a subchain
of K. If p<<n it can be arranged that y, has no p-cell on F(J?) for if
the cell o, of y, is on F(J?), o, can be replaced by the p other p-faces
not on F(J%) of a (p- 1)-simplex of which o, is one edge. If p — n no
n-cell can be on F(J? because F(J?) is (n —1)-dimensional. Now call
7p the sum of the cells of y, whose closure meets Ji. Also yp—p is the
similar sum of cells of y,—,.

E. Set

vy = V5t 0 =TIi—p,
and similarly for »n -— p.

It is now necessary to construct non-overlapping neighborhoods Niand N*
such that the sum of the closed p-cells of a suitable 7 that meet F(GY)
is contained in N? and such that no points of 1“,Z meet N, A similar
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neighborhood N*: must be constructed for the (n — p)-chain. The first
step in this construction is to create neighborhoods M? and M*i of the
intersection of y, and yn—, with F(J%) such that

(a) ME. N*i—1 — O, M*i. Ni—-1 — 0;

(b) Mi.M* = 0,
(€0 Mi-Ti, =0, M*.Ii=0.

(a) It follows from A1 and B that y, does not enter N*~1 and similarly
for yn—p and N1, so (a) can be satisfied.

(b) rp was so constructed (D) that it does not meet y,—p, on F(J?. There-
fore (b) can be satisfied.

(c) To prove that (c) can be fulfilled it suffices to show that

lr, - FUI]-Ii ,= 0,
and this will follow if , ]
CL [y, FU9 -7zt = 0,

CL [rp- F(UIH] - rn—p = 0,
OW. [y, F(J)]-8_, — 0

n—p ’

because
) L , ;
T, = by o,

CL yp is outside G“1 or in N*1, 7;';_11, has no points in either of these
sets so C! holds.

CH, For the same reason as in case (b) equation CI is true.

CUL Any closed cell of d,_, is either in N** ™! where there are no points
of yp or else does not meet J? which verifies C™I,

It has been shown that a sufficiently small neighborhood M? of y; - F(J?)
will have the properties (a), (b), (c). Exactly the same proof holds for M *:
and the (n—p)-chains.

Suppose now y, and y»—p to be subjected to a sufficiently small sub-
division and yp and yn—p to be defined as the sums of the closed cells of
this new sub-division meeting J¢. Then because the old y, and yy—p did
not intersect on F'(J?), the sums of the closed cells of the new ones
meeting F'(J?) do not intersect one another. New i, 8¢, yi  and 6}
are now of course constructed from the new y, and yn—p, as before from
the old.

If the subdivisions have been chosen sufficiently small the M’s will
contain the sums of the closed cells of the respective chains y; and yn—p
which meet F'(J9).

F. Now let Mi++ Ni-! = Nt M* 4 N*—1= N*! and verify that
condition three holds for N¢ and N*:.
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But
F(@) = F(G14-J) = F(G) - (Mpy—J?) + F ) - (M, — @),

Cells of r;—l meeting F'(G¥) all meet F (G“') and then they are in Ni—1C N,
Also the closed cells of 7, not on N1 are exterior to G by A1 and A 4,
hence if they meet F'(G?) they meet it in F'(J?) and so lie in M:. It
follows since ;ﬂ = y’“l—{-y that the sum of the closed cells of y meeting
F(GY is on N and hkew1se for y;,_, and N*.

It remains to prove that N°. N*=0 and that Ii_,. N'=rI}. N* =0.
The first statement follows from E(a) and E(b). Due to A3 and A4, T,,_p
does not meet N©—! and by condition (c) it does not meet M¢. Therefore

Ihp-N'=0. Similarly T}i. N* = 0.

Now it has been shown that the conditions assumed for :—1 can all
be realized for ¢, so the induction is complete.

The ﬁrst step of the induction is possible since G° can be taken to be
zero and yp = yp—p =0, 0y = I, and 85_, = I',_,. Then the induction
is started. It also comes to an end. Because {J¢} covers M,, a finite
number s of steps will reduce d, and J,—, to zero and I, and I'n—, will
result which intersect in a ﬁmte number of points, each point interior
to an n-cell of {En} The deformations applied to I, and I',—p in order
to produce I'y and I,_, are finite in number so the total deformation is
arbitrarily smal]

THEOREM 10. If Iy and I,_p are two chains on M, which do mot inter-
sect each other’s boundaries, then Theorem 9 applies to them.

The proof is the same as that of Theorem 9 provided that F (y) and F (d)
be everywhere replaced by the part of the boundaries of the partial
chains y and 0 which are not on F(I').

When chains have the following properties: their boundaries do not
intersect one another, the chains intersect in a finite number of isolated
points, about each intersection their cells are on a complex and its dual
respectively; they are said to constitute a regular pair.

The Kronecker Index, (Cp - C,,_,,), for a regular pair of chains Cp and C,—p
is defined as follows. If 4!, 42, , A" are the isolated intersections then
there exist for A° subchams Cp and Cn_p of Cp and Cp,—, which include
all their cells through 4%, do not intersect elsewhere and are on an n-cell
E, of M,. Then (Cp Cn_p) is defined as in L.T., p. 194. (Cp- Cu—p) is
defined as Z(C’p Crn—p). It follows immediately that for regular pairs
the Kronecker Index is additive and obeys the same permutation laws as
for simplicial manifolds.

THEOREM 11. Let Cy and Ch—p be a regular pair and let there exist
Cpt1—> Cp such that Cpiy does not meet F(Cp—p). Then (Cp- Con-p) = 0.
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a. If Cpyq is on an n-cell B, of M, then the theorem follows from
L.T., p. 170.

ko .
b. Cpt1 can be written Cpr1 = ) Cpira where all the cells Cpyy that
i=1

have a point in common are on a single n-cell, E,f, of the covering and
no (p —1)-cell of Cpy1 contains a point of Cp- Ch—p. It will be shown
that without changing (C)- Ch—p) the situation can be so modified as to
replace k by r<<k.

Let A be one of the intersections of €, and Cn,—p and call D the sum
of the chains F(Cp+1) meeting A. D = D'+ D" where D' is on C, and D"
has no p-cells on Cp,. F(D"”) does not meet Cp- Ch—p. Deform D" and
Ch—p into a regular pair according to Theorem 10 by a deformation acting
on a subchain of C,—p, not containing 4 and so small that no new inter-
sections with C, are brought about. Add the deformation chain of the
p-cells of the old D” to the (p+1)-cells to whose boundary it belongs if
the (p-+1)-cell is one of the sum whose boundary is D. If the (p-+1)-
cell is not in D subtract the deformation chain. Now replace Cp by Cp—
Since D'+ D" bounds a sub-chain of Cpyq in an n-cell of M,, and that
subchain does not meet F(Cr—p), and D and C,—, are a regular pair, it
follows from part a. that (Cp-Cuh—p) = ((Cp— D) :Cr—p). Because D”
and Cn,—p are a regular pair, D”.Cp—p is on a p-cell of D" so no (p —1)-

cell of the new ZC,,+1 r<k meets D".Cn_p. Thus the situation is

as before with k replaced by r. Repeating this process will ultimately
reduce ZC,,+1 to a sum of cells on a single n-cell of M, which is case a.
(]

Kronecker Index of arbitrary chains. If C, and C,—p are arbitrary chains
neither of which meets the boundary of the other, then by Theorem 10
they can be deformed by a deformation 7 onto a regular pair, Cp and Cp—p.
(Cp- Cn—p) is then defined as (Cp- Cr—p).

THEOREM 12. The definition of (Cp- Cu—p) just given is unique provided
the deformation T s small enough.

Let Cj, Cn—p and C, Ca—p be two regular pairs approximating C, and Cy—p.
Let A be a generic point of the intersection of Cp and C,—, and B the
same for Cp and Cr—,. There are three possibilities.

a. There is no 4 point on C7—, and no B point on Cj.

In this case deform, using Theorem 10, a subchain of Cp that is away
from A and C,—p, and deform a subchain of C,—, away from B and Cs,
by a deformation 7" so small that no intersections with the other pairs
are changed and a regular pair, again called Cp and Cr—p, results. If T
and 7" are small enough the deformation chain D, of dimensionality p 41,
connecting Cp and O,?, obtained in getting C; and Cf, from Cp, is very
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near Cp, so F(Cn—p) does not meet it. Its boundary is Cy— C; plus a de-
formation chain which does not meet the (n — p)-chains. Hence by
Theorem 11,

(G- CLy) = (C2- Gy

If p=0 (or n—p = 0), Cp, Crp and Cp, Cn—p are regular pairs so
(Cp- Cn—p) = (Cp- Cn—yp) follows for all such cases from the argument
made at the end of the last paragraph.

b. p$+ 0, no A point is a B point. This includes the three cases:
1) Points of type 4 are on C,“:._p but none of type B are on Cp; 2) There
is no A point on Ca—, but there are some B points on Cp; 3) A has points
on Cr—p and B has points on C, but no A point is a B point.

Because no points are of both type 4 and B, and because n—p <n,
a small deformation applied to Cp away from Cﬁ_p and to Cﬁ_p away
from C; will reduce Case b to Case a by removing Cy—, from 4, removing
Cp from B, and not changing A or B.

c. A and B points coincide, p F 0.

In this case deform Cj—, in such a way that: 1) Cp-Cr—p no longer
meets A points, 2) the set of points in which the new Cﬁ_p and the old
differ, can be covered by an n-cell E, of M,,. This deformation is possible
if it is taken small enough because »—p<n. But by Theorem 11, part a,
the deformation leaves (Cs-C.—,) unchanged and reduces Case ¢ to
Case b.

So now it is proved that in all cases

(Cs- Crp) = (Cp- Cry).

Similarly it can be shown that (Cp-Ca—p) = (Cp-Ca—p). Therefore
(Cp- Cap) = (Cp- Ci—p) Which was to be proved.

THEOREM 13. The Kronecker Index of two arbitrary chains on M, which
do not meet one another’s boundaries has the permutation properties of the
Index for chains on a simplicial manifold. If the chain yp is a cycle
and yp~0 then (yp-yn—p) = 0 for every yn—p.

The first part of the theorem follows from the definitions of the
Kronecker Index. If y,~0 and 73 and J’%_p are a regular pair constructed
homologous to y, and y, , according to Theorem 9, then 7£~0 and, by
Theorem 11, (73-712_17) = 0. Therefore (rp-rn_p) = 0 which proves
the second part.

3. Immersion of M, in §,.

THEOREM 14. A topological manifold M, can be homeomorphically mapped
upon a subset of an Euclidean space, S;.
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The idea of the proof is as follows. A topological manifold M, may
be covered by a finite number of simplicial n-complexes K? such that
each point of M, is interior to at least one complex Ki. Corresponding
to each complex K? can be determined a finite set of bounded, continuous
functions, 2%, i, - - -, «f,, defined at all points of K* and such that:

1) The functions x% all vanish on the boundary of K*.

2) At each interior point P of K* at least one of the functions zf does
not vanish.

3) If P and @ are two distinct interior points of K¢ at least one of
the functions a2 has a value at @ different from its value at P.

The domain of definition of the functions 2% is extended over the entire
manifold M, by putting them equal to zero at all points of M, not on
K. The combined functions 2% corresponding to all values of ¢ will have
the property that at two arbitrarily chosen distinct points P and @ of
the manifold at least one of them will have a value at @ different from
its value at P. They may .consequently be regarded as the coordinates
of a point P of M, in a Euclidean space of » = 2+ dimensions. The

problem then reduces to that of defining the functiorlls just described over
the complex K°.

Let L* be the boundary of K% It may always be assumed that no
two simplexes of K*? have the same vertices and that each n-simplex of
K* has at least one vertex not on the boundary of L:. For if K¢ does
not have this property initially it can be replaced by its first derived which
is a complex which does. Suppose K¢ has e« vertices and L has 8(8<<«)
vertices. Then K? is homeomorphic to a sub-complex z of an (e¢—1)-
simplex ¢ in Euclidean (« —1)-space S.—; obtained by associating each
vertex 4/ of o with one of K and drawing between the vertices A/ the
simplexes corresponding to those determined by the associated vertices of
Kt Moreover, the boundary L? of K¢ corresponds to a sub-complex of
a 8—1 face d of the simplex 6. Now, pass an (¢ —2)-dimensional hyper-
plane Py of Se—; through the vertices of d in such a manner that it
does not pass through any vertex of o other than those of J. Consider
Se—1 to be a projective space and P.—z to be the plane at infinity. Then
an inversion through a point O of S¢—; not on =z will transform the in-
terior of z into a homeomorphic image 7z and the boundary of 7 into the
point O. The point O may now be taken as the origin of « — 1 Cartesian
coordinates, i, x, ---, 2 .. The values of these coordinates at a point
of 7 will be by definition the values being sought of the functions z% at
the corresponding points of K% This completes the argument.



