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ON RELATED PERIODIC MAPS.*

By E. E. Froyp.

1. Introduction. Consider a class of periodic maps defined on a topo-
logical space X. We are concerned with special cases of the following problem.
Suppose the maps of the class are all related in some specified fashion. Are
there, then, any implied relationships between the fixed point sets of the maps
of the class?

A notable example of a problem of this sort has been solved recently
by S. D. Liao [5]. If X is a finite dimensional compact Hausdorff space
which has the homology groups of an n-sphere over the group I, of integers
mod p with p prime, and if T is periodic of period p on X, then, as P. A. Smith
has proved ([8], p. 366), the fixed point set L has the homology groups of a
r-sphere for some — 1 =r =n. Liao settled a problem proposed by Smith
by proving that if X also has finitely generated integral cohomology groups,
then n — r is even or odd according as T is orientation preserving or orientation
reversing.

In section 1, we generalize Liao’s result by proving that if X is a finite
dimensional compact Hausdorff space with finitely generated integral co-
homology groups, and if T is periodic of prime power period p on X, then
the Lefschetz fixed point number of T is equal to the BEuler characteristic of
L (defined using I, as coefficient group). We also extend a result of Smith
([9], p. 162) concerning the non-existence of certain types of periodic maps
of arbitrarily large period on n-manifolds with negative Euler characteristic.
The methods of this section depend heavily on recent results of Liao [5] and
of the author [4] which in turn are based on the special homology groups of
Smith [8].

In section 2, we consider a periodic map T of prime power period ¢¢
and then consider the class of all periodic maps 7', of the same period which
are “sufficiently close” to 7. Under these circumstances, we prove that the
fixed point set L, of T, is close to L in the sense of Begle’s metric [1]
induced by the regular convergence introduced by Whyburn [11].

The author has read a pre-publication copy of Mr. Liao’s paper [5], and
wishes to thank Mr. Liao for that privilege.

* Received August 24, 1951; revised October 25, 1951.
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548 E. E. FLOYD.

2. The Lefschetz fixed point number of T. A periodic map on a space
X generates a periodic linear isomorphism on the rational homology groups
of X. We require later in the section an analysis of the latter. We dispose
of this first, using a procedure similar to one used by Smith ([9], pp. 161-
162) for a similar purpose.

Suppose V is a finite dimensional vector space over the rationals R.
If W is a subspace of V, let dW denote the dimension of W. Let T be a
linear transformation on V with 7? — identity. There are associated with T'
the linear transformations o =1+ 7 4 - -4 T and r=1-—7T. Clearly
or =10 = 0. We use the following preliminary remark (cf. [5], 4. 11).

(R.1) Image o = kernel .

If m is a matrix presentation of 7', then we call its characteristic equation
f(t) the characteristic equation of 7. The characteristic roots of T are
p-th roots of unity, for if | m — AT | =0, then 0 = | m? — £2I | = (1 — )%,
Moreover, if no 7% 0 <4< p, has non-zero fixed points, then every
characteristic root A is a primitive p-th root of unity. For if A?=1, then
| I —m!| = | A —m!| =0. Hence there exists z ¢ V, z 5% 0, with Tz —==z.
But then I =1yp, so A is a primitive p-th root.

Since f(?) has rational coefficients and all its roots are p-th roots of unity,
then f(#) =7fs,(¢) -+ - fo(?) where f (¢) is the cyclotomic equation of
degree ¢ (s;), and ¢ is Euler’s ¢-function, whose roots are the primitive s;-th
roots of unity. Moreover it may be seen that s; divides p. In the following,
we use V(8S) to represent the fixed point set of the linear transformation S.

(R.2) Let T be a linear transformation on the finite-dimensional rational
vector space V with T? = identity. Then

(a) f p1s prime, there exisls a non-negative integer k with dV = dV (T')
+ k(p—1); moreover, trace T = dV (T) —k;

(b) of p=q® where q is prime and a > 1, then trace T = trace
T|V(Te™).

Proof. To prove (a), decompose V into V(T')@ V,, where T'(V,) =V,
(ct. the proof of (2.1)). The characteristic equation of 7' | V; has as roots
only primitive p-th roots of unity. Hence its characteristic equation is of the
form (fp(¢))*. Since the degree of f(¢) is p—1,dV =4dV(T) + k(p—1).
The trace of T |V, is then k(ay 4 - - -+ @), where the a’s are the
primitive p-th roots of unity. Hence the trace of T'| V, is — k. So (a)
follows.
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To prove (b), decompose V into V(T¢")&® V,, where T(V,) =7V..
Then the characteristic equation of 7'| V, is of the form (f,(%))*, and the
trace of 7| V, is k(@ -+ - - 4 ap(p)), Where the as are the primitive p-th
roots of unity. It may then be seen that the trace of T'| V; is 0. So (b)
follows.

Suppose now that X is a compact Hausdorff space, and let 7' be a map
of X into X. Let H,(X;F) denote the Cech homology group of X over
the field 7, and Ty, the induced linear transformation on H,(X ; F'). Define
x(X;F)=3(—1)"dH;(X; F), in case the right hand side is defined and
finite, and call x(X; #') the Euler characteristic of X over F. Also define
a(T; F) =3(—1)" trace Ty, in case x(X; F) exists, and call a(T; F) the
Lefschetz fixed point number of T over F ([6], p. 319).

We suppose now that X is a finite dimensional compact Hausdorff space
with finitely generated integral Cech cohomology groups. Let T denote a
periodic map on X of prime period p. Let L denote the fixed point set of T,
and Y the orbit decomposition space of 7. We have occasion to use the
following recent results. Of these, (2.3), (2.4), and (R.5) are due to Liao
[5], and (R.86) to the author [4].

(2.3) (Liao). Y has finitely generated cohomology groups.

Liao ([5], Theorem 5.5) has given a proof for this in case X has the
-groups of an n-sphere over I,. The proof used the extra assumption only to
insure that L has finitely generated groups over I,. Since this is true in
the general case ([4], Theorem 4.2), the proof then holds.

(.4) (Liao). x(X;1I,) =x(X; R), x(Y'; Ip) = x(¥'; B) ([5], Theorem 2. 8).

(2.5) If n: X — Y denotes the orbit decomposition map, then 5, maps
[z|ze Hy(X; R), Tyw =] isomorphically onto H,(Y ; R).

This result is more or less implicit in the work of Liao (cf. [5], 4.3,
4.11, 4.13). Because of its importance here, we outline, using the notation
of [5; §4], a direct argument. For each b e Cs(0(Kx Th); RB), let
ag € Cs(Ky, B) be such that 7 (as) = ban.  Define & (b)) = ongsn. It may
be verified that & is uniquely defined, that 84 = &0, and that =&, = &mroun.
Moreover, &y =0y, and mé(ba) = pbs.  Hence there is induced
§H (0(X,T); R) > H,(X;R) with =zé(z)=pz,2eH(0(X,T);R),
&n(z) =o(x),ze Hy(X; R). Since 3¢ is an isomorphism onto, 5 maps
image ¢ isomorphically onto H(0(X,T); R). Since » is onto and &) =g,
we have image £ = image o. But by (2. 1) image ¢ = kernel r. The assertion
follows.
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(2.6) x(X;51p) + (p—Dx(L;5 L) = px (Y5 1p).  [4]
We are now in a position to prove the main theorem of this section.

(2.7) TurorEM. Let X be a finite dimensional compact Hausdorff
space with finitely gemerated integral Cech cohomology groups. Let T be a
periodic map on X of period q% q prime. Let L be the fized point set of T.
Then (T3 B) =x(L;1,).

Proof. We prove the theorem first for a = 1. Consider Tyn: Ho(X 5 B)
— H,(X; R). According to (2.5), the fixed point set of T, is isomorphic
to Hy(Y ; R). Hence by (2.5),

dH,(X; B) = dH. (Y ; R) + [dHn(Y ; B) —trace Tyn] (p —1)

so that dH,(X; R) + (p—1) trace Ty = pdH,(Y ; B). Taking the alter-
nating sum, we get x(X; R) 4+ (p—1)a(T; R) = px(¥Y; R). Using (R.4)
and comparing with (2.6), we get a(T; R) = x(L; I,).

Suppose @ > 1 and suppose the theorem has been proven for ¢ —1.
Consider T, — T9". Let Y, denote the orbit space of the map T, on X,
and f: X — ¥, the natural decomposition map. Define a map §:Y;— Y,
by Sf = fT. Then § is of period ¢** on Y;. Also, by (2.3), ¥, has finitely
generated integral cohomology groups. Hence, by the induction hypothesis,
a(S;R) =x(L';1,), where L’ is the fixed point set of S.

We point out that L and L’ are homeomorphic. Clearly, f(L) C L" and
fis 1-1 on L. We prove that f(L) = L’. Let y e L’, where y = f(z), ze X.
Then f(z) = Sf(z) =fT(z) so T(x) =T (x) for some k. But then
kgt —1 is a period for =, so kg**—1 divides g% Hence k=0, so that
Tz ==, and ze L. So x(L’; 1) =x(L;1,).

Finally, a(S; R) = a(T;R). Let Fpn=[z;0ve Hy(X; R), Towr —z].
Then, by (2.3), f, maps ¥, isomorphically onto H,(Y,; R). Moreover, since
Sufs = fsTs we have trace (Syn; Hn(¥1;R)) =trace(Ty, Fy). But by
(2. 2), trace(Ty, FF,) — trace(Ty, Ho(X ; R)). Tt follows that «(S; R)=a(T"; R)
and the theorem follows.

We now turn to some results concerned with properties of periodic maps
of large period.

(2.8) (Smith). Let V be a finite dimensional rational vector space.
There exists a positive integer r associated with V so that if T is any linear
transformation on V with T? = identity where p >, then there exists
1 =7 < p with T7 = identity.
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Proof. We shall outline the proof ([9], pp. 161-162). Suppose
P = pi1Ups%- - - ple, where the p’s are primes with p; < p. <+ - < pe.
Define

®(p) =12¢(p¢‘”) if py=%=2 or a,5~1; ®(p) =§q§(p¢‘“) otherwise.

Then & (p) = as p—>w. We point out that if ® (p) > dV, then there exists
1= < r with 77 = identity. For suppose this is not the case. Using the
notation preceding (2.2), we have f(t) =/fs(f) - * *fo(t), where s|p.
Now each pg¢ divides some s; For if not, each s; divides p/p; = g, so that
T4 — identity. But if each pg¢ divides some s;, it may be checked that
dV =3 ¢(s)=®(p). Hence &(p) = dV, and the assertion follows.

(R.9) As a consequence of (2.8), let X be a compact Hausdorff space
with each H,(X ; R) of finite dimension and = 0 for all but a finite number
of n’s. There exists a positive integer r so that of T is any periodic map on
X, then TyW:Hy(X;R)— Hu(X; R) 1s, for some 1=j=r, the identity
for all n.

We denote the least such r by r(X).

(R.10) TuEOREM. Let X be a finite dimensional compact Hausdorff
space with finitely generated integral cohomology groups. Let T be a periodic
map on X of period p > r(X). There exists 1 =1 < p such that p/i—=gq
is a prime, and such that if L; denotes the fixzed point set of T? then
x(X; R) = x(Lu, Io).

Proof. There exists, by (2.9), 1 = j = r with T,/ = identity for all .
Suppose p =7 k- ¢, where k and ¢ are positive integers with ¢ prime. Let
t=7j-k Then T,,*=identity for all n. Hence by (R.7), «(T%;R)
=x(X; B) = x(Li, Io)-

The following is an extension of a result of Smith [9; 162]. It also
generalizes the well-known theorem [11] that the periodic maps on a compact
2-manifold with negative Euler characteristic have uniformly bounded periods.
It does not, however, provide the upper bound known for that case.

(R.11) TurorEM. Let X be a compact manifold with x(X;R) < 0.
Suppose T is a periodic map on X of period p, and such that if 1<j <.p,
then the dimension of the fixed point set of T7 is =1. Then p = r(X).

Proof. Suppose p > r(X). Let 1 be the number given by (2.10).
Then x(X;R) =x(Li;I;) < 0. But dim L; =1, so that by a result of
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Smith ([10], p. 704), L; is the union of a disjoint collection of points and
simple closed curves. Hence x(L;; I4) = 0, which is a contradiction.

(R.12)  The above theorem is not true if the restriction on the dimension
of the fized point set of T is removed.

As an example, let X be a 2-sphere, and let ¥ be a 2-manifold with
x(¥Y) < 0. Then x(X X Y) =x(X)x(Y) < 0. But since X admits trans-
formations of arbitrary period, so does X X Y.

3. Convergence properties. We begin section 3 by stating an important
result due to Smith [7] which is the basis for the work of this section. The
result is stated and proved in the proof of Theorems I, IT in [7].

(8.1) (Smith). Let X be a locally compact n-dimensional Hausdorff
space, n < oo, and let T be a pertodic map on X of prime period p. Denote
by L the fized point set of T. Suppose 0= A,C A;C - - - C Ay, m = pn + p,
is a sequence of compact subsets of X, with T (A:) = Ai, and with every Cech
cycle in A; over I, bounding in Asy. Then LN A, =0 and every cycle in
L N A, over I, bounds in L N Ap.

We use also the concept of regular convergence introduced by Whyburn
[12]. We shall phrase the definition in terms of Cech theory instead of
Vietoris theory ; these are interchangeable, as follows from the full equivalence
of the two theories ([6], p. 277). Let X be a locally compact metric space,
and let @ be an abelian group. Let [A4;] be a sequence of closed subsets of X,
with A; converging to a closed subset A of X. If n is a non-negative integer,
then A; converges n-regularly to A over G if and only if given ze 4 and a
compact neighborhood U of z in X, there exists a closed neighborhood V of z
(in X) with V C U, and a positive integer I, so that every Cech cycle in
V N A; over G of dimension = n bounds in U N 4, for ¢ > I. It may be
seen that X is I¢* (i. e., homologically locally connected over G in the dimen-
sions from 0 to n), if and only if the sequence X, X,- - - converges n-regularly
to X.

Let X and Y be metric spaces. Let 4; be a sequence of closed subsets
of X which converges to a subset 4 of X. Let fi:4;— Y, f: A— Y be con-
tinuous. We shall say that f; converges continuously to f if and only if
whenever z; — z, z; € 4;, then fi(z;) = f(x). This specializes, in case 4; — A4,
to the notion of continuous convergence introduced by Carathéodory ([R],
p- 58).
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(3.2) THrEOREM. Let X be alocally compact n-dimensional metric space.
n <. Suppose [A;] is a sequence of closed subsels of X converging n-
regularly over I, p prime, to the subset A of X. Let T; be a continuous
periodic transformation of period p on A;, such that [T;] converges con-
tinuously to the continuous function T on A. Then the fized point set [F;]
of T'; converges n-regularly over I, to the fized point set F of T.

Proof. The reader may verify that if z e F and U is a neighborhood
of z (in X), then there exists a neighborhood V of # and a positive integer I
such that if ¢ > I, then |J;T/(V N 4;)C U.

Let e F and let U be a compact neighborhood of z. There exists a
sequence U == Ugpss D Uz D + - - D Uy, m = pn -+ p, of compact neighbor-
hoods of z (in X) and a positive integer I, such that U, N 4;54 0, for ¢ > I,
and (a) if ¢ > I, then ;T (Ux N Ai) C Ugyy for k=0, - -,2m, and (b)
for ¢ > I every cycle in U, N A; over I, bounds in U,y N 4.

TFor each 0=k =m and each ¢ > I, define Vi ;= ;T (U N A;).
Then Vi C Uspr N Ay and T (Vi) = Vi,i. Moreover, since Vii,i O Uszpsz
N 4, every cycle in Vy,; bounds in V... Hence we may apply (3.1) to the
sequence Vo; C V3 C -+ - C Vpyy and the transformation T, It follows
that V,.; N F; =40, and every cycle in Vo, N F; bounds in V,,; N F;. Hence,
for ¢ > I every cycle in U, N F; bounds in U N Fy, and U N F;5£0.

To finish the proof, the reader has only to note that if z,, € Fp,, and
Zm, —> @, then z e F. This follows easily from continuous convergence.

(3.3) CororLraRY. Let X be a locally compact n-dimensional metric
space, n < oo, which ts lc* over Ip, p prime. Let [T;] be a sequence of periodic
maps on X of common period p*, which converges continuously to the con-
tinuous map T. Then the fixed point set F; of T'; converges n-regularly over
I, to the fized point set F of T.

Proof. The proof is a straight-forward combination of (3.2) together
with a procedure used often by Smith for extending proofs from period p to
period p ([8], p. 367).

(3.4) CoroLLARY. Let the hypotheses be those of (3.3) and suppose in
addition that X is compact. Then there exists I such that for i > I, we have
Hi(Fi; 1) = H;(F; I,) for all j. In particular, suppose X an n-sphere.
Then there exists an integer r so that Fi;, i > I, and F are all homological
r-spheres over I,.

Proof. This follows from a theorem of Begle [1].
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(8.5) CoroLLARY. Let X be an n-dimensional compact metric space,
n < oo, which is lc* over I, p prime. Let T be a periodic map on X of
period p® with fized point set L. There is an € > 0 such that if Ty is periodic
on X of period p?, p(T(x), T1(2)) < € for all z e X, and L, denotes the fived
point set of Ty, then H;(L;I,) =~ Hj(Ly; I,) for all j.

UNIVERSITY OF VIRGINIA.
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