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yk(S) = ()kCn{cs (Cs-- - ank) + Rk} r7r ~~a 

then for k sufficiently large Rk is uniformly small on the interval (-a, a). Now 
we may write 

Cn+ 1 k 1(n + 1)7rs Rk= ? (1)COS( +ls an?lk) cn nr + IJ a nl 

Cn,+2 
k 

x (nt + 2),7rs\ 
+ 

Cn (n )((n + 2 ) n - ?+2k) 
+ 

Since the Fourier series (1) is convergent, the C's have a maximum absolute 
value C, and hence throughout the interval (-a, a) 

Cnk 
IRk< _ j T 

Cn 
where 

1 1 rX dx 1 
T= +1 + 

(n+ 1)k (n + 2)k JO (n + x) k (k - )nk-1 

It follows that uniformly on the interval (-a, a) 
Cn 

lim I Rk I _ lim = 0, 
kn R k? oo I Cn (k - 1) 

and our theorem is a consequence. 

FRACTIONS* 

L. R. FORD, Armour Institute of Technology 

Perhaps the author owes an apology to the reader for asking him to lend his 
attention to so elementary a subject, for the fractions to be discussed in this 
paper are, for the most part, the halves, quarters, and thirds of arithmetic. But 
the fact is that the writer has, for some years, been looking on these entities in a 
somewhat new way. Here will be found a geometric picturization which will be 
novel to the reader and which will supply a visual representation of arithmetical 
results of diverse kinds. 

The idea of representing a fraction by a circle is one at which the author ar- 
rived by an exceedingly circuitous journey. It began with the Group of Picard. 
In the geometric treatment of this group as carried out by Bianchi in accordance 
with the general ideas of Poincare certain invariant families of spheres appear. 
These spheres, which are found at the complex rational fractions, are mentioned 
later in this paper. They suggest analogous known invariant families of circles 
at real rational points in the theory of the Elliptic Modular Group in the com- 

* Some of the material of this article was presented in an address before the American Mathe- 
matical Society at Lawrence, Kansas, November 28, 1936. Other parts have been given in lectures 
at the Rice Institute, the University of Texas, Northwestern University, and the Armour Insti- 
tute. 
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plex plane. Finally, it became apparent that this intricate scaffolding of group 
theory could be dispensed with and the whole subject be built up in a com- 
pletely elementary fashion. It is this treatment that is undertaken here. 

1. The geometric representation. We begin with real fractions. These are 
usually represented, along with real irrationals, by points on a line. Let this line 
be the x-axis in an xy-plane of rectangular co6rdinates. 

Through each rational point x = p/q, where p and q are integers and the frac- 
tion is in its lowest terms, we construct a circle of radius 1/(2q2) tangent to the 
x-axis and lying in the upper half-plane. It is this circle, which touches the x-axis 
at the point usually taken to represent the fraction, which will be the geometric 
picture of the fraction. The integers are represented by circles of radius 1/2; the 
fractions 1/3, 2/3, 4/3, etc., by circles of radius 1/18; and so on. Every small 
interval of the x-axis contains points of tangency of infinitely many of these 
circles. * 

A ~~~E 
D ) 

P P 
q Q' 

FIG. 1 

Let p/q and P/Q be two different fractions in their lowest terms. Consider 
the distance between the centers of their representative circles. In the figure the 
horizontal distance A C is I (P/Q) - (p/q) and the vertical distance CB is the 
difference of the radii, I (1/2Q2) - ( /2q2) . We have 

AB 2 (P P+( ) AB-Q q- 
+ 2Q2- 2--21) 

- 1 ( 2 $2 (Pq- pQ)2- 
\2Q2 2q28 IQ2q2 

(Pq - pQ)2-1 

(AD+ EB) 2 + 
Q2q2 

* Families of circles tangent to the real axis at the rational points are intimately involved in 
the geometry of the modular group and in the theory of quadratic forms. In these connections 
they have been used for some time. Circles defined as in the text except for the more general radius 
1/(2hq2) were used, with various values of h, by the present author in papers in the Proceedings 
of the Edinburgh Mathematical Society in 1917. They were probably used earlier by others. 

These circles are called "Speiser circles" by some writers. This name appears to be due to a 
note of a dozen lines by A. Speiser in the Actes de la Socifte Helvetique des Sciences Naturelles in 
1923. Mention should also be made of a very interesting ninety-page booklet by Ziillig, Geo- 
metrische Deutung unendlicher Kettenbruache (1928). 
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If lPq-pQl >1, then AB>AD+EB, and the two circles are wholly ex- 
ternal to one another. 

If lPq-PQ| =1, then AB=AD+EB, and the two circles are tangent. 
If lPq-PQI <1 we have, since Pq-pQ is an integer, that Pq-pQ=O. 

From this P/Q = p/q, which is contrary to the assumption that the fractions are 
different. So this last inequality is not possible. We may state the following re- 
sult: 

THEOREM 1. The representative circles of two distinct fractions are either tangent 
or wholly external to one another. 

2. Adjacent fractions. We shall call two fractions p/q and P/Q adjacent if 
their representative circles are tangent. The condition for this is that Pq - pQ 
= 1. (We assume here and henceforth that fractions appear in their lowest 
terms.) We shall prove 

THEOREM 2. Each fraction p/q possesses an adjacent fraction. 

That integers P and Q exist satisfying the equation IPq - PQ =1 (or, ar- 
ranging signs suitably, satisfying Pq -pQ = 1) is a fundamental proposition of 
the theory of numbers. A great many proofs have been given. For the sake of 
completeness we prove the theorem here. The proof given is so arranged as to 
cover the case of complex fractions which will appear subsequently in this paper. 

The proof is by induction. Clearly the theorem holds for IqI = 1, since p/I 
then has the adjacent fraction (p+1)/1. To prove the theorem in general we 
assume that all fractions whose denominators are less in absolute value than 
qI possess adjacent fractions and prove it for the fraction p/q. 

Let n be the integer nearest to p/q, whence we can write, with m integral, 

p _n m nq-+m = n +- = yO< Iml <Iq 
q q q 

Since j m j < I q ,then q/m has an adjacent fraction r/s, so I sq - rm 1-1. Then 
the fraction 

P s nr+s 
= n + -= 

Q r r 
is adjacent to p/q; for 

IPq - PQ = (nr + s)q - (nq + m)r| = sq - rm = 1. 
This establishes the theorem. 

We can now give a formula for all fractions adjacent to p/q. 

THEOREM 3. If P/Q is adjacent to p/q then all fractions adjacent to p/q are 

P?z P + np 

Qn Q + nq 
where n takes on all integral values. 
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We find readily that the fractions given are adjacent to p/q, for 

I (P + np)q - p(Q + nq) I = Pq - pQ = 1. 

We find that Pn,/Qn and P?+1/Qn+1 are adjacent to one another, since 

[P +np][Q+(n+1)q]- [P+(n+1)p][Q+nq] I = IPq-PQI = 1. 

The circles corresponding to these fractions form a ring around the circle of 
p/q, all tangent to the circle of p/q, and each tangent to the circles which pre- 
cede and follow it in the sequence (Figure 2). That this ring completely sur- 

p 

FIG. 2 

rounds the circle of p/q we see from 

(a) = Pq-pQ =p + 1 
Qn q q(Q + nq) q q2(n + Q/q) 

When n-->+ oo, Pn/Qn approaches p/q from one side; when n-o>- c, Pn/Qn ap- 
proaches p/q from the other side. 

It is obvious from the geometric picture that it is not possible to draw a 
cilcle lying in the upper half-plane, touching the x-axis, and tangent to the 
circle of p/q but not intersecting the circles of the ring surrounding the circle 
of p/q. It follows that there are no further fractions adjacent to p/q. 

THEOREM 4. Of the fractions adjacent to p/q (1 q I > 1) exactly two have denom- 
inators numerically smaller than q. 

That two circles of the preceding ring about the circle of p/q are larger than 
that circle is fairly evident from the geometrical picture. We see also that 

I Q + nq| < I ql, or I n + Q/q| < 1 

for exactly two values of n; namely, those integers between which -Q/q lies. 
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For one of these two values of n, n+Q/q is positive, for the other, negative. 
We see then from (a) that one of the fractions of Theorem 4 is greater than p/q, 
the other is less. 

We shall add one further circle to our collection. The fraction 1/0 is formally 
adjacent to the integers p/1, since 1 1-p - O = 1. We take as its circle the line 
y 1, which touches the circles of all the integers. We consider as the interior 
of the circle that part of the plane above the line. 

3. The mesh triangles. The parts of the upper half plane exterior to all the 
circles of the system consist of an infinite number of circular arc triangles to 
which the name of "mesh triangles" will be given. Any two sides of a mesh tri- 
angle lie on circles belonging to adjacent fractions. Its angles are zero. 

A further study of the mesh triangle will be made in a later section, where it,, 
properties will be used in the theory of approximation. 

4. Farey's series. Let a curve be drawn across the set of circles that we have 
just defined. We start with a point Ao of the upper half-plane and trace a con- 
tinuous curve L which remains in the upper half plane except that its terminal 
point, if any, may possibly lie on the x-axis. We consider the fractions whose 
circles are passed through in succession by L. Each circle K is surrounded by 
mesh triangles. If L issues from K into one of these triangles and if it does not 
return to K it will on leaving the triangle pass in general into a circle tangent to 
K. We agree that K shall not be counted twice if L passes out of K and then re- 
turns to K again without entering another circle. We also make the convention 
that if L touches two circles at their point of tangency without entering either 
then one or the other shall be considered as crossed by L (the larger circle, say, 
or the one on the left, or the one whose fraction is the greater). We can then state 
as an established proposition the following: 

PRINCIPLE. If two circles of the system are penetrated in succsssion by L then the 
corresponding two fractions are adjacent. 

As a first illustration let L be a line, y = k, parallel to the x-axis, starting say 
at a point on the positive y-axis and stopping at x= 1. The points of tangency 
with the x-axis of the circles through which L passes are arranged in order from 
left to right; that is, the corresponding fractions are arranged in numerical 
order. If 1/(n+1)2<k<1/n2, L intersects the circles of all fractions in the 
interval O<x<1 whose denominators do not exceed n and the circles of no 
other fractions. These fractions arranged in numerical order constitute what is 
known as a Farey's series of order n for the interval. 

Certain theorems concerning Farey's series are now readily established.* 
Let p/q <p'/q' be successive fractions of the series, all the numbers being posi- 
tive. 

* See, for example, Landau, Vorlesungen iuber Zahlentheorie, 1927, Band 1, pp. 98-100. 
Farey discussed these fractions more than a century ago. 
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(1) P'q-pq'= 1. This results from the Principle stated earlier in this section. 
(2) q+q'_n+l. For (p+p')/(q+q') is a fraction between p/q and p'/q'; 

since it does not belong to the series its denominator is greater than n. 
(3) For any number co of the interval there is a fraction p/q of Farey's 

series of order n such that 
p 1 
q |(n + l)q 

The number co lies in an interval formed by a Farey's fraction p/q and an 
adjacent fraction (p+pl)/(q+ql) not of the series (pi/qi being the Farey's frac- 
tion preceding or following p/q). The length of this interval is t/(q+qi)q, where 
q+ql_n+lt. 

If we take other simple forms for the curve L we get series analogous to 
Farey's. Thus if we take a line with a positive slope starting above y = 1 and 
terminating at the origin we have all non-negative fractions such that 

pq < n, 

where n is suitably chosen. If these be arranged in order of numerical magnitude 
then successive fractions satisfy (1) above; (2) is replaced by (p+p')(q+q') 
>n?l . 

The series such that 0 <p ? n may be got by taking for L the arc of a suitable 
circle tangent to the x-axis at the origin. 

5. The problem of approximation. Dirichlet showed by elementary means 
that if co is a real irrational number then the inequality 

p k 
(1) |q C <- 

qq 

is satisfied by infinitely many fractions p/q if k = 1. If, however, co = r/s, a ra- 
tional, then the inequality is satisfied by only a finite number of rationals p/q 
however large k be chosen. For 

q 
r p rq-ps 1 s k 

s q sq sql q2 q2 

except for a finite number of values of q for which I q I ks|; also for each q 
there is clearly only a finite number of fractions satisfying the inequality. 

Various suites of fractions approximating to co satisfy (1) with suitable k. 
The convergents in the ordinary continued fraction for co satisfy the inequality 
with k = 1. A suite of Hermite admits the smaller value k = 1 /V/3. 

The determination of the best value of k is due to Hurwitz,* who proved the 
following theorem. 

* Mathematische Annalen, vol. 39, 1891, pp. 279-284. See also Borel, Journal de Mathe- 
matiques, 5th ser., vol. 9, 1903, pp. 329 ff; L. R. Ford, Proceedings of the Edinburgh Mathemati- 
cal Society, vol. 35, 1917. 
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THEOREM 5. If k = 1/V\, then for each irrational X there are infinitely many, 
fractions p/q satisfying the inequality (1). 

If k < 1 /V, then there are irrationals co such that only a finite number of frac- 
tions p/q satisfy (1). 

Let the curve L of the previous section be a vertical line which terminates at 
the irrational co. Then L intersects infinitely many circles of the system we are 
considering and is tangent to none. If L cuts the circle of p/q then the distance 
from co to p/q is less than the radius: 

p_ 1 

q 2q2 

The curve L thus provides us with an infinite suite of all those fractions satisfy- 
ing (1) when k= 1/2. If p/q and p'/q' are successive fractions of this suite then, 
from the Principle of the preceding section, we have P'q-pq'= + 1. Also, we 
see geometrically that I q'| > I qf . The convergence of the suite to X is then im- 
mediately proved. 

We propose now to prove Hurwitz' theorem by a study of the circles of out 
system. This elementary proof will be free of continued fractions on the one 
hand and of the theory of the Modular Group on the other. 

The line L cuts across infinitely many mesh triangles. The first part of the 
theorem of Hurwitz is a consequence of the following result which will now be 
proved: 

THEOREM 6. Of the three fractions whose circles form the boundary of a mesh tri- 
angle which L crosses, at least one satisfies (1) with k= =/d5. 

We consider the mesh triangle in some detail. Let P/Q, p/q, pl/ql be the 
fractions whose circles bound the area, where 

O < Q < q < qi = q+Q, Pl=P+P. 

We suppose, to fix the picture, that the largest of the three circles is on the 
right; that is, P/Q > p/q, whence Pq-pQ = + 1. If not, we could make suitable 
changes of sign in the following; or, more simply, we could reflect the entire 
figure in the y-axis by changing the signs of the numerators and of X and at the 
conclusion of our analysis we could reflect again. 

The vertex A (see Figure 3) is the point of contact of the circles of p/q and 
P/Q. It divides the line of centers of these circles in the ratio of their radii, 
1/2q2: 1/2Q2, or Q2:q2. The abscissa of this point is found by an early formula 
of analytic geometry, or by the methods of high school plane geometry, to be 

P P 
q2 . + Q2-. _ 

q Q _ q+PQ 
a= - 

q2 + Q2 q2 _+ Q2 
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The abscissas of B and C, the other vertices, may be written down by an inter- 
change of letters, 

pq + piql PQ + piqi 

q2 + q 2 Q2 + q?2 

In order that L cross the mesh triangle under consideration it is necessary 
and sufficient that co lie in the interval whose right end is c and whose left end 

A 

a b Pl c , b c 

cafe I Cse Xf 
FIG. 3 

is the lesser of the two quantities a and b. We find 

p Q P q_ 
a--- b-=- 

q q(q2+Q2) q q(q2+qq2) 

whence subtracting and remembering that qi = q + Q, we have 

b-a= q2 - qQ - Q2 

(q2 + Q2)(q2 + q?2) 

We put q/Q = s > 1 The sign of b - a is (dividing the preceding numerator 
by Q2) the same as the sign of s2- s -1. Now, factoring, 

s2 - s- 1 = + ) (s - 21), 

and the square root of 5 first enters the picture. Here the first factor is positive 
and the sign is determined by the second factor. We have two cases to consider. 

Case I. a<b, and * s> (V/5+1). We shall show that P/Q satisfies the 
inequality (1) with k= 1/\/5. We have 

P P q s 1 
-co <--a = - 

Q Q Q(q2 + Q2) s2 + 1 Q2 
* Here and in many subsequent relations the sign of equality is not possible, for one member is 

rational and the other is irrational. 
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If now 
s 1 

s2+ 1 V5 
we have 

s2 - s + l< (5 - ?) ( I vX) < 

which is impossible since both factors in the first member are positive. It follows 
that s/(s2+ 1) < 1/\/5, and the inequality is satisfied. 

Case II. b<a, and s< 2(\5+ 1). We shall show that pl/ql satisfies the in- 
equality (1) with k = 1/A/5. It is clear that c is nearer pil/ql than b is, since C 
is higher on the circle than B. Then 

Pi Pi q s(s+ 1) 1 
--wc <- b = 
q, qi ql(q2+ q2) s2 + (s + 1)2 q?2 

If 
s(s+1) 1 

s2 + (S + 1)2 
then 

(V5- 2)s2? (/5-2>-1 > 0, 
or, dividing, 

s2 + s -V5-2 > 0. 

Factoring, 

(s ? d ) (s + v ?) > O 

which is impossible since the first factor is negative and the second is positive. 
We have proved that one, at least, of the three fractions whose circles bound 

the mesh triangle satisfies (1) with k = 1/\/S. Since L passes through infinitely 
many mesh triangles it follows that infinitely many rational fractions satisfy the 
inequality with k = 1/ 5. 

It remains to exhibit an irrational co for which (1) holds for only a finite 
number of fractions for k<l/v5. We take, in fact, co==(\5+1) and any 
h < 1 and show that there is a finite number of fractions for which 

(2) < _ S+1 
q 2 <\Vq2 

For a fraction satisfying this we may write 

p _\v5 +t1 0 
q 2 \1,5q22 



1938] FRACTIONS 595 

where I 0 | < h < 1. Writing this 

p 1 VH5 0 
__ = ? 
q 2 2 \V5q2 

squaring, and rearranging, we get 

5q2[(p2 - pq - q2) - ] = 2 

The expression in square brackets must be positive, whence the integer p2-pq 

-q 2, which cannot be zero (since then p/q would turn out irrational) must equal 
or exceed 1. We have 

ft2 h2 

5[(p2_ pq - q2) - ] 5(1-h) 

This limits q to a finite number of values. For each q, the inequality (2) then 
limits p; and the number of fractions is finite. 

Other irrationals might have been used here; for example, co= (rV\5?s)/t, 
where r, s, t are integers. These last irrational numbers are found in every in- 
terval of the x-axis. 

6. Continued fractions. One of the most successful interpretations supplied 
by our system of circles is the geometric picture of the continued fraction 

(3) ao + 

a, + 1 

a2 4 
a3 +... 

or, as often written, 

1 1 1 
aO + 

a, + a2? a3 + * * 

Here the quantities a,,, are integers. If all the integers are positive, except pos- 
sibly a0, the continued fraction is simple.* 

The nth convergent, pI/qn, is the quantity that remains when all that part 
of the expression following a,,,.-, is erased. We have 

Pi aO P2 1 aoa +1 
qi 1 a2 a, a, 

p3 1 (aoa, + 1)a2 + aO a2p2 + pI 
- =a+ =. = 

q3 1 a1a2 +1 a2q2 + ql 
a, + a 

a2 

* So called by Chrystal in whose Algebra, Part II, pp. 396ff, will be found one of the best 
elementary treatments of continued fractions in English. 
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Here and in the following we are using the p's and q's to represent the actual 
numerators and denominators of the fractions in the second members and not 
merely numbers proportional thereto. 

The last equation exhibits for n=2 the recurrence formula from which we 
calculate the convergents step by step, 

(4) Pn+1 anpn + pn-1 

qn+1 anqn + qn-i 

This formula is readily established by induction. It holds, we have just seen, 
for n = 2; assuming it up to any later n we prove it for n +1. We get Pn+2/qn+2 

from Pn+l/qn+i by replacing an by an+l/an+l; 

Pn+2 (an + 1/an+l)pn + Pn-1 anl+(anPn + Pn-1) + pn an+lPn+l + pn 
qn+2 (an + 1/an+i)qn + qn-1 an+l(anqn + qn-1) + qn an+lqn+l + qn 

This is the required formula with n replaced by n+1 and (4) holds for n >2. It 
holds also for n = 1 if we take po/qo = 1/0. 

If the continued fraction terminates, its value is the last convergent. If there 
are infinitely many a's the value to be assigned to the fraction is lim pn/qn if 
this limit exists. 

We investigate the suite of convergents 

Po 1 P ao p2 p3 

qo Oi q,1\ 1 q2 q3 

THEOREM 7. Successive convergents, pn/qn and Pn+l/qn+l, are adjacentfractions. 

From (4) 

pr+lqn - qn+lPn = (anPn + pn-i)qn - (anqn + qn-l)pn = - (pnqn-1 - qnpn-1). 

Since piqo-poqi= ao O-1 = -1 we have that 

Pn+lqn - qnFlPn = (- 1)n+l, 

which establishes the theorem. 
Given the tangent circles of pn_1/qn_i and pn/qn and the integer an, how do 

we find the circle of Pn+l/qn+l? For all integral an we get from (4) (see Theorem 3, 
Section 2) the ring of tangent circles around the circle of pn/qn. For an = 0 we get 
the circle of Pn_l/qn-1; for an = 1 we get a circle next to this; for an = 2 we get the 
next around the ring; and so on. For an -1, -2, etc. we pass around in the op- 
posite direction. 

To determine the direction consider 

pn+1 Pn q1) n+q (nq ? q+l qn ( 1)+ 

qn+1 qn qn+lqn (anqn + qn-l)qn 2n (an+ 1 
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For a. large and positive the last denominator is positive. If n+1 is even then 
Pn+l/qn+l is to the right of pn/qn and we have counted around the circle of 
Pn/q2 in a clockwise direction; if n +1 is odd pn+1/qn+1 is less than pn/qn and we 
have counted in a counter-clockwise direction. 

2 

ao P3P2 
q3 q2 

FIG. 4 

We may liken the circle of pn/qn to the face of a clock (Figure 4). Set the 
hand to point toward the center of the circle of Pn_i/qn_. It is now in the zero 
position. If we seek an even convergent turn clockwise to the anth point of 
tangency; if we seek an odd convergent turn counter-clockwise to the anth 
point of tangency. If an is negative the turning is in the opposite direction in 
each case. The hand now points to the center of Pn+l/qn+li 

Initially (n = 1) we set the hand to point vertically upward to the point of 
tangency of y= 1 with the circle of ao/1, as in the figure. The positive direction 
is clockwise. On the next clock the positive direction is counter-clockwise; on 
the next, clockwise; and so on. In the figure a,=2, a2=2, and if ao0=O the first 
four convergents, starting with po/qo, are 

1 0 1 2 

0 1 2 5 

We see then that the circles of the convergents, in order, of a continued fraction 
form a sequence, or chain, of circles. The chain begins with the circle y = 1 and each 
circle is tangent to the circles preceding and following it in the sequence. 

Conversely, any such chain has a unique corresponding continued fraction. 
We determine ao as the integer whose circle touches the first circle, y = 1, in 
the chain; and a2, a3, etc., are got uniquely by counting points of tangency, as 
already explained. 

A chain can be defined in many ways and with much arbitrariness. A simple 
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way is to use a curve L, starting above y= 1, as explained in Section 4. We shall 
not object to an =0, which gives Pn+l/qn+l = Pn-i/qn_-i nor to qn= 0, which means 
that y = 1 reappears as a circle of the chain. 

The preceding picture answers various questions about convergence. We 
see that it is possible so to choose the chain that pn/qn approaches a prescribed 
rational or irrational limit in a great variety of ways, or so that pn/qn becomes 
positively or negatively infinite, or so that Pn/qn wanders more or less arbitrarily 
over the x-axis. We may even choose the chain so that each interval of the x- 
axis contains infinitely many convergents. Such a chain is the set of circles 
passed over by the broken line L formed by joining in succession the points 
A1, A2, * * where An has the coordinates [(-1)8n, 1/n]. In this example each 
real rational number appears infinitely often among the convergents. 

7. Simple continued fractions.* The situation is quite different if all an(n > 0) 
are positive integers. The first clock runs right (see Figure 4) and makes P2/q2 
greater than pl/ql; the next runs left and places p3/qa between pi/ql and P2/q2. 
Each convergent falls between the two immediately preceding it. Certain facts 
then appear: 

(a) The fraction converges to a value w. 
(b) The odd convergents increase monotonically to w, the even convergents 

decrease monotonically to co. 
(c) co lies between each pair of successive convergents. 

(d) qn+l > qn (> 1). 

O ltn_ 1< 1 1 c1 (e) - co <2 
qn qnqn+l anqn qn 

Here the second expression is the distance between the convergents Pn/qn and 
Pn+l/qn+i, and qn+l ? anqn +qn-1 > anqn (n> 1). 

-pn , an> 
qn qnqn+2 

for the second member is the distance between pn/qn and pn+2/qn+2. 
We see geometrically how to find the simple continued fraction for a given 

co. We select for ao the integer next below X (see Figure 4). We then turn the 
clock to the right until p2/q2 lies as far to the left as possible without passing 
co, thus finding a,. We turn the second clock to the left until p3/q3 is as far to the 
right as possible without passing w, whence we have a2; and so on. 

That the development is unique is apparent. The first an's that differ in two 
developments throw the values of the two continued fractions into different 
intervals thereafter. There is an unimportant exception in the case of a fraction 
which terminates. A last an > 1 may be written (an -1) + 1/1, thus inserting an 
additional convergent. 

* Zullig, loc. cit., has the chain of circles given here with figures for many numerical cases. 
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It is not difficult to identify this process of forming the continued fraction for 
co with the usual arithmetic process: (1) taking ao as the largest integer in W; 
(2) forming w1, the reciprocal of the remainder w - ao, and taking a, as the largest 
integer in wi; (3) taking a2 as the largest integer in (2, the reciprocal of wl-a1; 
and so on. 

We see geometrically that pn/qn is a good approximation to w if an is very 
large, for our clock has then turned far toward the bottom. This is clear, of 
course, from (e) above. Thus in the continued fraction 

1 1 1 1 1 1 
7r= 3 +- - -- - 

7 + 15 + I + 292 + I + I + * 

the second convergent 22/7 and the fourth 355/113 (here a4 = 292) are especially 
good and are, in fact, much used. 

Suppose we take an,= 1 for all n in order to avoid a good approximation as 
far as we can. We have 

1 1 1 
co=1?-- 1? -, 

I + I +- (A) 

or w2-w-1=0. From this, since w > 1, 

co = 21(5 + 1). 

This is the irrational quantity we used in the latter part of the proof of Hurwitz's 
theorem. 

8. Complex fractions.* Complex numbers x+iy, where x and y are real and 
i = -, are commonly represented by points (x, y) in an xy-plane using rec- 
tangular coordinates. The complex integers, n=n'+in", where n' and n" are 
real integers, form a square lattice in the plane. A fraction is the quotient of two 
integers 

p pi +?ip"l p?+ip"l l -iq" p'q' + p"lq" /t-pl 

q qI + iq" q' + iq" q' - iq" q2 -4- q/2 q'2 + q"12 

and is represented by the point with the co6rdinates shown in the last member. 
The complex fractions thus consist of the numbers x+iy, where x and y are real 
fractions. We think of the xy-plane as being horizontal, and we introduce a third 
or z-axis perpendicular to the x- and y-axes. 

The analogue of the circle of Section 1 is a sphere. Through the point in the 
plane which represents the fraction p/q (in its lowest terms) we construct a 
sphere touching the complex plane there, lying in the upper half-space, and 
having the radius 1/(2qq). Here q is the conjugate of q, q=q'-iq"; whence 

* For the matters treated in this section see L. R. Ford, Transactions of the American Mathe- 
matical Society, vol. 19, 1918, pp. 1-42. 
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qq=q 12 +q' 12=q| 2. This sphere will be the geometric representation of p/q. 
Every small area in the complex plane contains points of tangency of infinitely 
many of these spheres. 

Interpreting Figure 1 as a pair of spheres at complex fractions, we have 

P p 2 1 1 \2 1 1 Pq -pQ121 A B2=++ 
Q q 2QQ 2qq/ 2QQ 2qq QQqq 

If I Pq-pQ I > 1, then AB >AD +EB, and the spheres are wholly external to 
one another. If I Pq -pQ = 1 the spheres are tangent. In no case do the spheres 
intersect. We call the fractions adjacent if the spheres are tangent. 

FIG. 5 

That p/q has an adjacent fraction P/Q we already know, for we have de- 
signed the proof of Theorem 2 to cover this case. Then the fraction 

Pn P + np 

Qn Q + nq 

of Theorem 3, where n is any complex integer, is adjacent to p/q. We note that 
the four fractions Pm/Qm, where m=rn+l, n-1, n+i, n-i, are adjacent to 
Pn/Qn; for I (P+?np)(Q+mq)-(P+mp)(Q+?nq)| = |m-rnl | *Pq-PQI =1. 
That is, each sphere tangent to a given sphere touches four other spheres 
tangent to the given sphere. It is not difficult to show that the fractions Pn/Qn 
constitute the complete set of fractions adjacent to p/q. 

How many of the spheres touching the sphere of p/q are larger than that 
sphere? We require the number of solutions of 

f Q+nql <Iql, or I n+Q/qI < 1. 
Now n + Q/q I is the distance from the integer n to the point -Q/q. The prob- 
lem takes the form: If a unit circle is drawn in the complex plane, how many 
complex integers does it contain? For various positions of the center (-Q/q) 
the answer is 2, 3, or 4, as is readily seen. We put aside the case I q = 1, which 
puts the center at an integer, when clearly there are no larger tangent spheres. 
We introduce the plane z= 1 to touch the spheres of the integers and be the 
sphere of their adjacent fraction 1/0. 
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The use of complex integers in the continued fraction (3) offers no difficulty. 
We are led to the geometric picture of the continued fraction as a chain of 
spheres, beginning with the plane z= 1, and proceeding thence from sphere to 
tangent sphere. We have here the same possibilities of convergence or diver- 
gence as before. At the worst we can set up continued fractions whose con- 
vergents are present in every small region of the complex plane. There is no 
immediate generalization of the simple continued fraction to the complex case. 
There are, however, schemes for developing a complex number in a continued 
fraction, the best processes being due to Hurwitz.* 

The analogue of Hurwitz's theorem on rational approximations to an irra- 
tional number was first discovered by the present author.t The inequality (1) is 
replaced by 

p _ k 
| co < -1 
q qq 

and the minimum k for which infinitely many fractions always satisfy the in- 
equality is k = 1/VX. The proof of this, however, is not elementary. 

MATHEMATICAL EDUCATION 
EDITED BY C. A. HUTCHINSON, University of Colorado 

This Department of the MONTHLY has been created as an experiment to afford a place for the 
discussion of the place of mathematics in education. With this topic will naturally be associated other 
matters emphasizing the educational interests of those who teach mathematics. It is not intended to 
take up minute details of teaching technique. The columns are open to those who have thoughtful critical 
comment to make, be it favorable or adverse to the cause of mathematics. The success of this department 
obviously will depend upon the cooperation of the readers of the MONTHLY. Address correspondence to 
Professor C. A. Hutchinson, University of Colorado, Boulder, Colorado. 

MATHEMATICAL EDUCATION IN GERMANY BEFORE 1933 

RICHARD COURANT, New York University 

At the suggestion of the editors I shall try to give a brief account of trends 
in the teaching of mathematics in Germany, particularly at German universi- 
ties, in the period from the World War until 1933. 

The situation of mathematics in Germany, since the early part of the 19th 
century, has been pivoted around a definite connection between university and 
high school. In a sweeping reform following the French Revolution, the institu- 
tion of the German "humanistisches Gymnasium" was established. Teachers at 
these institutions were required to undergo a very thorough academic prepara- 
tion, and the task of preparing them was entrusted to the philosophical faculties 
of the universities. The teachers' training was in no way of an elementary char- 

* Acta Mathematica, vol. 11, 1887, pp. 187-200. 
t L. R. Ford, Transactions of the American Mathematical Society, vol. 27, 1925, pp. 146- 

154. 
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