DISCRETE MORSE THEORY AND THE COHOMOLOGY RING

ROBIN FORMAN

0. INTRODUCTION

In [5] we introduced a discrete version of Morse theory, which could be applied to
very general cell complexes. The reader can also see [4],[7] for introductory surveys,
[6],[8] and [15] for extensions of the theory, and [9],[3],[1],[13], [14] and [16] for appli-
cations of the theory. In this paper we show how the ring structure of the cohomology
of a simplicial complex can be seen from the point of view of discrete Morse theory.
Betz and Cohen [2], and, independently, Fukaya [11][12], showed how one can see
the ring structure of the cohomology of a smooth manifold from the point of view
of standard Morse theory. Although we follow a slightly different point of view, the
main ideas in this paper find their roots in these references. In particular, the idea of
describing the relevant cochain maps in terms of graphs (see Figures 0.1-0.7 below)
first appeared in these papers.

Let us quickly review the basics of discrete Morse theory. The reader should consult
[5] for a more complete presentation. Let M be a finite simplicial complex. For any
simplex a of M, we will sometimes write a® to indicate that a has dimension p. For
simplices a and b of M, we will write a < b or b > a to indicate that a is a face of b.

A function
[ {simplices of M} - R

is a (discrete) Morse function if for each p-simplex a

#{OP > alf(b) < fla)} <1
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and
APV < a|f(b) > fla)} < 1.

We say that a is a critical simplex of f if

#{ > al f(b) < f(a)} =0

and
#{7Y < alf(b) > f(a)} = 0.
The main theorem of this Morse theory is the following.

Theorem 0.1. M is homotopy equivalent to a CW complex with exactly one cell of

dimension p for each critical simplex of dimension p.

It is worthwhile to point out that on every simplicial complex M there is a triv-
ial Morse function f which assigns to each simplex its dimension (that is, f(a) =
dimension(a) for every simplex a). For this Morse function, every simplex of M is
critical.

Let MP C CP(M,Z) denote the integer cochains which are supported on the critical
simplices of f (we will write MP(f) when we wish to emphasize the function f). By
Theorem 0.1, there is a differential 4, so that

M0 — M M 2

has the same cohomology as that of M. In section 3, we derive an explicit formula for

such a differential in terms of gradient paths of f. Let us now be a bit more explicit.

A gradient path v of f is a finite sequence of distinct simplices

v iad b a0 e,

such that for each pair of consecutive simplices, one is a maximal face of the other.

Moreover, we require that f(ag) > f(by) > f(a1) > f(b1) > .... (We present a

slightly different, but equivalent, definition in section 1.) If the final simplex in the
gradient path v above is /), then we say that v has length r. If it ends with bP*"
then we say that v has length ri. For any simplices a and b, let I'(a, b) denote the

set of gradient paths from a to b (of any length), i.e. such that the first simplex in
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the sequence is a and the last simplex in the sequence is b. If we wish to indicate the
Morse function f, we will write I'f(a, b). If a is an oriented simplex of M, we will let
a* denote the dual cosimplex. That is, if b is an oriented simplex of M, then

1 ifa=0b
(0.1) a*(b)=4¢ -1 ifa=-b

0 otherwise
We are now ready to present a formula for the differential 6. In Theorem 0.2 we
introduce a convention we will follow for the rest of this paper. General simplices
of M will be labelled with the lower case Roman letters a and b, occasionally with
subscripts. Simplices which are critical for the Morse function under discussion will

be labelled with the capital Roman letters A and B.

Theorem 0.2. Choose an orientation for each critical simplex of f, and write, for a
critical p-simplex A,
0(A)= Y DapB".
critical Be+v
Then

Dap= Z m(7)
Y€ET(B,A)
where m(y) = +1 is determined by whether or not the orientations of A and B agree

relative to . (This is all made precise in section 1.)

That is, the differential ¢ is determined by simply counting the gradient paths from
one critical simplex to another. It is not hard to see that if A and B are critical and
if dimension(B) # dimension(A)+ 1, then there are no gradient paths from B to A.

We can express this differential pictorially by the following figure (Figure 0.1). The
line segment labelled with f represents a gradient path of the function f. Open dots
will represent critical simplices, so the open dots at the endpoints of the segment
indicate that we only consider gradient paths from one critical simplex to another.
The differential 0 is constructed by counting all configurations of gradient paths in

M which match that of the figure.
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f

O - O
Figure 0.1. The differential.

We can now go further. Let f and g be two Morse functions, and M*(f) and M*(g)
the corresponding Morse cocomplexes. Using the same ideas, we can construct a map

from M*(f) to M*(g) that induces the identity map on cohomology.

Theorem 0.3. Choose an orientation for each simplex of M. For any two Morse

functions f and g on M, define a map

I:M(f) = M*(g)
as follows. For any f-critical p-simplex A set
I(A) = > IipB,
g—critical B(P)

where

L= S S mGmin),

a v1€lg(B,a)v2€lf(a,A)
where the first sum is over all simplices a of M. Then the map I induces the identity

map on cohomology.

The corresponding diagram for this map is shown in Figure 0.2. Here we count all
sequences of simplices in M which can be described as a g-gradient path beginning
at a critical simplex of ¢ and ending at a simplex a, followed by an f-gradient path
beginning at a and ending at a critical simplex of f. The simplex a is permitted to

be any simplex of M (indicated by the solid dot).

O - o - O
Figure 0.2. The identity map.
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g hl,rl hz,rz hk,rk f
O > @ > [ ) - e ... © - [ ] > O

Figure 0.3. Another cochain map that induces the identity map.

The same ideas can be used to construct a number of different Morse cochain maps
which induce the identity map on cohomology, with the map described in Theorem
0.3 being the simplest. Consider the diagram shown in Figure 0.3. In this case,
rather than having a single solid dot in the line segment, we have a number of solid
dots. Each subinterval bounded by two solid dots is labeled by a Morse function
h;, and a number r; € Z>o U {oo}. This diagram indicates that we should count all
sequences of simplices in M which can be described as a g-gradient path beginning
at a critical simplex of g, followed by an h;-gradient path of ¢ — length r; (this is
explained below), followed by an ho-gradient path of ¢ — length ro, ..., followed by
an hg-gradient path of ¢ — length ry, followed by an f-gradient path that ends at an
f-critical simplex. Each transition can occur at any simplex of M. A gradient path
is said to have ¢ — length r if either it has length r, or it contains a critical simplex
and has integer length < r.

This notion of ¢ — length may seem strange, but in fact is a natural combinatorial
analogue of an phenomenon that arises in smooth Morse theory. Suppose one flows
down the gradient of a smooth Morse function for time r. The issue is the relationship
between the time r and the length of the corresponding flowline. If the flowline does
not go near a critical point, then its length is at most a bounded (multiplicative)
factor away from r. On the other hand, if the flowline goes near a critical point, then
its length is bounded above by a multiplicative factor of r, but it may be as small as
we like.

We now give a precise description of the map indicated by Figure 0.3 in the following

theorem.
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Theorem 0.4. Choose an orientation for every simplex of M. For any Morse func-
tions f,g, hi,he,. .. kg, and any ri,ra, ..., 1, € Lo U {00}, define a map
T: M (f) = M(g)
as follows. For any f-critical simplex A set
I(A) = > IapB,
g—critical B(P)

where

= ), 2. X 2. ). 2

a1,02,03;..,01,0k+1 Y0 E g (B,a1) 71€F£:11)(111,112) v EF;LT;)(UQ,G?)) ’YkGFE:kk)(ak’ak+1) Ye+1€L f(ar41,4)

m(y)m(y2) - - m(ye)m(Yet1),
where the first sum is over all (k + 1)-tuples ay,as, ..., ax, axi1, of simplices of M,
and Fg)(a, b) denotes the set of h-gradient paths from a to b of ¢ — length r. Then

the map T induces the identity map on cohomology.

Now let fi,fs, and g be Morse functions on M. Our next goal is to describe a

cochain map
U M*(f1) @ M(f2) = M(g)
that induces the cup product on cohomology. Choose an ordering of the vertices of

M. This ordering allows one to define a map
U:C"(M,Z)® C*(M,Z) — C*(M,Z)
on cochains that induces the cup product on cohomology (see section 5 for details).

Theorem 0.5. Choose an orientation for every simplex of M. For any Morse func-

tions f1,f2, and g, define a map
U: M*(fi) @ M*(f2) = M*(g)
as follows. For any fi critical p-simplex Ay, any fo -critical q-simplex Ao, set

U(47 ® 43) = > OasansB,

g—critical B(P+a)
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f, O

.?\Q

Figure 0.4. The cup product.

where

O141®z42,B = Z < 0; U a;: bt > Z m(Vl)m(VZ)m(fY)
ajUas==b* mely (a1,A1) 72 €l'y, (a2,A2) €T 4(B,b)

where the first sum is over all triples ay, as, b of simplices in M such that aiUal = £b*.

Then the map U induces the cup product map on cohomology.

In this case, the appropriate diagram is shown in Figure 0.4. Here, we are counting
triples consisting of a gradient path + from a critical simplex of g to a simplex b, a
gradient path v, from a simplex a; to a critical simplex of critical simplex of f;, and a
gradient path v from a simplex ay to a critical simplex of fy, such that ajUa} = £b*.
In particular, in such a diagram, when we see one line segment coming into a solid
dot and two lines coming out, that means that the two outgoing gradient paths begin
at simplices which have the property that the cup product of their duals is + the
dual of the endpoint of the incoming gradient path. If we have chosen a cup product
on cochains which is not commutative, then we must also indicate an ordering for the
two outgoing lines.

Just as in the case of the identity map, we can construct other maps between the
Morse cochain complexes that induce the cup product by subdividing the edges of
the diagram in Figure 0.4 using solid dots. Just as before, to each edge bounded
by two solid dots we must assign a choice of a Morse function and a nonnegative
integer. For example, the graph shown in Figure 0.5 corresponds to the cochain map

P M*(f) @ M*(f3) — M(g) defined as follows. For any f; critical p-simplex Aj,
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[
f O
2
Figure 0.5. Another cochain map that induces the cup product.

any fo -critical g-simplex A,, set
P(AT ® A;) = Z PA1®A2,BB*7
g—critical B(P+a)
where

Pyioa,,B = Z < apUag, b> Z

al,a2’b a37a47a57b1
s.t.aj Uaj = b

>y Yy ¥y ¥y ¥ ¥ [T,

0 G (Bb1) 51 D7) (b1,b) 712 €72 (01,03) 13 €T (a3,04) 1ETS (a2,5) 15ET 71 (44:41) 16E€L s, (05,42) =0
where the first sum is over all triples ay, as, b of simplices in M such that a]Ua} = £b*,
and the second sum is over all 4-tuples of simplices as, a4, a5, by in M. Then this map
P induces the cup product map on cohomology.

Two more examples are presented in section 5. Here we simply present the appro-
priate diagrams. One can use such ideas to calculate the Euler characteristic. One
possible diagram is shown in Figure 0.6(i). As we describe in section 5, this diagram
represents, for each p = 0,1,2,...,dim(M) a map from MP(g) to itself, and the

alternating sum of the traces of these maps of this map is the Euler characteristic of
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h,,r,

e e O

0] (i)
Figure 0.6. The Euler Characteristic.

M. In Figure 0.6(i) we have not drawn the simplest such diagram. We could have left
out the edge labelled with the Morse function A, and drawn a loop comprised only
of the two edges labelled with f. However, in that case the formula would tell us to
look for all gradient paths of f which form a loop. The only such paths are those of
length 0. The resulting formula for the Euler characteristic is simply the alternating
sum of the number of critical simplices of f of dimension p. The diagram with the
additional yields a more complicated formula.

Just as in the earlier examples, the edges of this figure can be subdivided, with a
Morse function and a nonnegative integer asigned to each edge, and the chain map
corresponding the new diagram will still result in a chain map with the property that
the alternating sum of the traces is the Euler characteristic. For example, one can
take f to be the trivial Morse function, with respect to which all simplices are critical.
If one then subdivides the edge corresponding to the Morse function h (otherwise the
resulting formula for Euler characteristic would be the familiar alternating sum of
the number of simplices of dimension p), one learns that for any Morse functions h,
and hy, and any r1,ry € ZsoU {oo}, the Euler characteristic can be calculated by
counting configurations of gradient paths as in Figure 0.6 (ii).

If M is a connected simplicial complex, then one can consider the fundamental
class in H°(M,Z). A 0-cochain representing this class can be constructed by count-

ing gradient paths in M corresponding to the diagram shown in Figure 0.7(i), with
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f f

® > O O > ®

(i) (i)

Figure 0.7. The fundamental class.

the extra condition that the endpoint be a critical simplex of dimension 0 (i.e. a
vertex). In the case that the simplicial complex has additional structure, one can
take the dual point of view. For example, if M is an orientable peudo-manifold of
dimension n, then one can choose a generator of H,,(M,Z). An n-chain in the Morse
complex which represents this class can be constructed by counting gradient paths
in M corresponding to the diagram shown in Figure 0.7(ii), with the extra condition
that the source be a critical n-simplex. If M is not orientable, then the same holds
true, but one must work with coefficients in Z,. This is explained in section 5.

Other examples of the Morse theory approach to cohomology operations can be
found in the references [2] and [11, 12]. In particular, the authors show how one can
view the Massey product, and the Steenrod square operation from this point of view.

It is interesting to note that in the classical setting of smooth Morse theory, one
often restricts attention to a generic Morse function, i.e. a Morse-Smale function, or
a generic set of Morse functions, so that the set of gradient paths, or configurations
of gradient paths, that one is to count will be finite and nondegenerate (i.e. have
a well-defined multiplicity). In the discrete setting there are no such concerns. In
the examples shown in this introduction, any set of discrete Morse functions may
be chosen in order to construct the appropriate maps. The Morse functions need
not be distinct. In particular, one may set each Morse function to be the trivial
Morse function with respect to which all simplices are critical. In this case the maps
constructed are the usual maps on cochains.

It is interesting to compare the discrete Morse theory constructions we will present

here with the analogous constructions in smooth Morse theory. The gradient paths
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we consider here are the discrete analogues of the downward flowlines of the gradient
of a smooth Morse function on a smooth Riemannian manifold. In section 1 we will
introduce a gradient flow map ®, by which, loosely speaking, a simplex flows along
the gradient paths. This leads to a map ®°°, the result of flowing for infinite time,
which takes a critical simplex A to a chain ®>°(A) which is invariant under the flow.
This chain ®>*°(A) plays the role of the unstable (or descending) cell associated to a
critical point of a smooth Morse function. In section 3 we examine the dual picture,
and we will introduce the coflow map ®* which flows cochains up the Morse function.
If Ais a critical simplex, then (®*)*°(A*) is a cochain which is invariant under the
coflow, and plays the role of the stable (or ascending) cell associated to a critical
point of a smooth Morse function.

This paper is organized as follows. In sections 1 and 2, we review the construction
of the Morse complex in this discrete setting. This is a differential complex built from
the critical points of a Morse function which has the same homology as the underlying
complex M. The differential of this complex is defined in terms of the gradient paths
from one critical point to another. Our presentation here is largely self-contained,
but a more detailed presentation appears in [5]. We begin in section 1 with a precise
description of the gradient paths, the gradient vector field, and the gradient flow
operator associated to a discrete Morse function. In section 2 we piece these together
to construct the Morse complex. In section 3 we show how one can define a dual
complex, which we call the Morse cocomplex, to calculate the cohomology of M.
We also show how, given a cohomology class, one can find a cochain in the Morse
cocomplex which represents this cohomology class. In section 4 we show that for any
map L on cohomology, induced by a map £ on cochains, there is a map on Morse
cochains, that is cochains in the Morse cocomplex, which induces L. Moreover, we
give an explicit formula for the map. Lastly, in section 5, we apply the formulas found
in section 4 to derive the explicit maps described in the introduction and illustrated

in Figures 0.1-0.7.
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1. GRADIENT VECTOR FIELDS AND THE CORRESPONDING FLOW

In this section we review the definitions and basic properties of the gradient vector
field, gradient paths, and the flow along the gradient. Most of the results in this
section appeared in [5]. The presentation here is slightly different than that in [5] to
allow for more general applications.

Let M be a finite simplicial complex, along with a Morse function f. Let V denote
the set of pairs {a® < bP+D} of simplices of M which satisfy f(a) > f(b). These
pairs are pairwise disjoint. We call V' the gradient vector field of f. In fact, there is
no need to introduce f at all, as all of the relevant information is contained in V.
Note that the critical simplices of f are precisely the simplices of M which are not
contained in any pair in V.

It is useful to consider the gradient vector field as a map of chains,
V:C.(M,Z)— C.(M,Z)

rather than a collection of pairs. If {a® < bP*+D} satisfy f(a) > f(b) then set
V(a) = +b with the sign chosen so that < a,0V'(b) >= —1. We define V'(a) to be 0
if a for all simplices a for which there is no such b. We now extend V' linearly to a
map
V:Cy(M,Z) — Cpir(M,Z)

for each p.

Any such map V that arises from a Morse function will be called a gradient vector
field. Thinking of V' as a collection of pairs {a® < bP*11 we see that every simplex

a of M satisfies exactly one of the following:

(i) a is the smaller simplex in one such pair

(ii) @ is the larger simplex in one such pair

(iii) a is critical

Thinking of V' as a map on chains, this fact translates into the following statement.
Lemma 1.1. If V : C.(M,Z) — C.(M,Z) is a gradient vector field, then

(i) V=0,
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and

(ii) For each p, V induces a partition of the p-simplices of M
{p — simplices of M}

= {a"®) such that V(a) # 0}U{a") such that a € Tmage(V)}U{a"®) such that a is critical}.

A gradient path is a sequence of simplices (satisfying certain properties that we will
describe shortly) along which the function f is decreasing. Such a sequence should be
thought of as the combinatorial analogue of a flowline of the negative of the gradient
of a smooth Morse function on a smooth manifold. Our definition here is slightly
different than that presented in the introduction. In particular, a gradient path as
we have defined the notion here corresponds to a gradient path of integer length as
defined in the introduction.

The building blocks of gradient paths are gradient steps. An upper gradient step s
is a sequence of simplices

s a(()p), b(()p+1), agp),

where ay and a; are faces of by, and f(ag) > f(by) > f(a1). Equivalently, we require
that ay and a; be distinct faces of by, and V' (ay) = £by. If ap and a; are oriented
simplices, then we define the (algebraic) multiplicity of s, denoted by m(s), to be
+1 depending on whether or not the chosen orientation on @y induces the chosen

orientation on a;. More explicitly, choose an orientation for by and set
m(s) = — < ap, Obg >< by, a; > .

Note that m(s) is independent of the chosen orientation for by. A lower gradient step
s is a sequence of simplices

(p) b(p—l) (p)

Siag, 0 N

where by is a face of both ay and a;, and f(ag) > f(by) > f(a;). Equivalently, we
require that by is a face of both ay and ay, ag # a;, and V(by) = +a;. If ap and a4

are oriented simplices, then we define the multiplicity of s to be

m(s) = — < dag, by >< by, a; > .
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A sequence of simplices s = a(()p ), b(()p £ agp )

is called a gradient step if it is either an
upper or lower gradient step.

A gradient path ~ from a p-simplex a to a p-simplex a’ is a sequence of gradient

steps v = $1,89,...,5,, such that s; begins with a, s, ends with a/, and, for each
1=1,2,...,7r — 1, s;;y1 begins where s; ends. That is, v has the form

yia=af b, a0 a0 ) =
where, for each ¢+ = 1,2,...,r,, s; = a;_1,b;_1,a; is a gradient step. We define the

length of v to be r. If each of the steps s; is an upper (resp. lower) gradient step,
then we say that 7 is an upper (resp. lower) gradient path. If a and o’ are oriented

simplices, we define the multiplicity of v to be
m(y) =[] mis.
i=1

The following lemma follows immediately from the definitions.

Lemma 1.2. Let v = s1,89,...,5 and v = §\,s,,...,sl, be gradient paths, and

) Opl

suppose that the last simplex in v is equal to the first simplex in . Then yo~' =

1,52,y Sp, 81,85, ..., sh is a gradient path, and m(y o) = m(y)m(vy).

For convenience, we say that for any simplex a, the sequence consisting of just the
single simplex « is a gradient path from a to itself, having length 0 and multiplicity 1.
By a nontrivial gradient path we will mean any gradient path with length > 1.

We pause here to introduce some notation that will play a prominent role in the
rest of the paper. For any p-simplices a and o, we let I'(a,a’) denote the set of all
gradient paths from a to a’. On occasion, it will be important to examine some subsets
of I'(a,a’). Let T'(a,a’) C T'(a,d') (resp. L(a,a’) C I'(a,a’)) denote the set of all upper
(resp. lower) gradient paths. For any nonnegative integer r, we let I'"(a, o) C I'(a, a’)
(resp. I'S"(a,a’) C I'(a,a’) ) denote the gradient paths of length r (resp. < r) from
a to a'. Lastly, we let c['(a,a’) C T'(a,a’) denote the gradient paths which include

at least one critical simplex, and nl'(a,a’) C I'(a,a’) those that do not contain any
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gradient paths. We will occasionally combine these notations, such as CFT(G, a') and
we hope that the meaning will be clear.

We will now describe the basic properties of gradient paths.

Lemma 1.3. (i) Let v = so, $1,82,...5-—1 be a gradient path, where each s; is a
gradient step. If, for some k, sy is a lower gradient step, then for each ¢ >k, sy is a

lower gradient step.

(i1) If V(a) = 0 then every nontrivial gradient path beginning at a is a lower gradient

path.

(iii) If o’ is not in the image of V', then every gradient path ending at o’ is an upper

gradient path.

(iv) If a # a' are critical simplices then there are no gradient paths from a to a'.

Proof: (i) A lower gradient step always ends at a simplex a in the image of V. An

upper gradient step must begin at a simplex a satisfying V'(a) # 0. From Lemma 1.1

we see that there are no simplices a which satisfy both conditions.

(i) If V(a) = 0, then any gradient step beginning at a must be a lower gradient step.

Now apply (i).

(iii) If ¢’ is not in the image of V', then any gradient step which ends at o’ must be

an upper gradient step. Now apply (i).

(iv) A simplex a is critical if and only if V(a) = 0, and a is not in the image of V.

Now apply (ii) and (iii). O
We now define the (discrete time) gradient flow map. The gradient flow

¢:C,(M,Z)— C.(M,Z)
is defined by the formula
d=14+00V+Vood.

Note that for each p, ® restricts to a map ® : C,(M,Z) — C,(M,Z). Our goal now

is to give an explicit description of the map ® in terms of gradient paths.
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Choose an orientation for each simplex of M. We can then express ® in coordinates

by setting, for any p-simplex a,

O(a) =Y F(a,b)b.

p(»)

More generally, for any non-negative integer r, we set

O (a) =Y F(a,b)b.

b»)
Note that F"(a,b) # (F(a,b))".
The following theorem is straighforward to verify, and follows from Theorem 6.6 in
[5].
Theorem 1.4. If a is not a critical simplex, then for any simplex b
F(a,b)= Y m(y).
Y€T1(a,b)
If a is a critical simplex, then for any simplex b
Fla,b)= Y m(7).
yeT<1(a,b)
Combining this theorem with Lemma 1.2 allows us to give a similar expression for
F(a,b).
Theorem 1.5. For any p-simplices a and b,
Fra,b)= > m(+ Y. m().
venl'"(a,b) y€Ecl'S"(a,b)

The notation I'") was presented in the introduction. The relation to our current

notation is
I (a,b) = nl'"(a,b) U <" (a,b)

so that

YEN (M (a,b)
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Corollary 1.6. There is an N such that ®V = Nt = ... = &, [If we write
> (a) = > F>(a,b)b,
b(»)

then for any p-simplices a and b,

F¥(a,b)= Y m(y).

v€Ecl'(a,b)

Of particular significance is the case when one of the endpoints is a critical simplex.

For future reference, we state this case separately.

Corollary 1.7. If either a or b is critical, then
F*(a,b) = ) m(y).
v€l(a,b)
If a is critical, then we can also write this as
F¥(a,b)= > m(y).
Y€ (a,b)
If b is critical, then

Fab)= 3 m(y).

v€T(a,b)

Corollary 1.8. Let a be a p-simplex, and r a positive integer.
(1) If a is not critical, then ®"(a) is supported on p-simplices b that satisfy f(b) < f(a).
(i1) If a is critical, then ®" (a) = a + ¢ where the p-chain ¢ is supported on simplices

b that are in the image of V' and that satisfy f(b) < f(a).

2. MorseE HoMoLOGY

Let M be a finite simplicial complex of dimension n, and V' a gradient vector field
on M. In this section we review how to construct a differential complex from the
critical points and the gradient paths of V' which has the same homology as M. The

details appear in section 7 of [5].
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Our main goal here is to understand the homology of M, or equivalently, the

homology of the simplicial chain complex
C,: 0 — Co(M,Z) -2 Co (M, Z) 25 Ca(M,Z) 25 - -+
Let C’;,I’ C Cy(M,Z) denote the ®-invariant p-chains, i.e., those p-chains ¢ such that
®(c) = c. Since
dod =00,

the ®-invariant chains form a subcomplex

c®:0—c® Lo, Lot 2
The crucial fact is the following theorem.
Theorem 2.1. H,(C®) = H,.(M,Z).

That is, this complex, the discrete Morse complex, has the same homology as the
underlying manifold. The proof of this theorem is not difficult. To prove that the
stabilization map ®* : C,(M,Z) — C? induces an isomorphism on homology (with
the inverse isomorphism induced by the natural injection), it is sufficient to find an
algebraic homotopy operator, i.e. an operator K : C\,(M,Z) — C.11(M,Z) such that
P>® —1 =00 K + K o9. From Corollary 1.6, we know that ®>* = ®" for some N.
If N =1, then K =V works. The general case is not much harder.

Our next goal is to describe this Morse complex in terms of critical simplices. For
each p, let M, C C,(M,Z) denote the span of the critical p-simplices. We then have
a natural map

o M, — C;]I’ .
There is also a natural projection

T Cp(M,Z) — M,,
defined by simply restricting to the critical simplices. That is, if ¢ = > c,a is a
chain, where the sum is over oriented simplices a, set

Tm(c) = Z Cod.

critical a



DISCRETE MORSE THEORY AND THE COHOMOLOGY RING 19
Theorem 2.2. For each p, the map ®* : M, — C’;)I’ 15 an tsomorphism. The inverse
is given by the map waq : Cy — M,
Proof: It follows from Corollary 1.7 and Lemma 1.3 (iv) that
Tmo®¥ : M, = M,

is the identity map, and hence 7y, : C;f — M, is surjective. To see that this map
is injective it is sufficient to see that if ¢ € Cy satisfies mpq(c) = 0, then ¢ = 0. This
follows from Corollary 1.8(i). O

Thus, the Morse complex can be defined equivalently as the complex
M:0— M, M, | M, , 2

where 0 = T 0 0o @ is the differential induced by the above isomorphism. This
differential can be described more explicitly in terms of gradient paths from one

critical simplex to another.

Theorem 2.3. Choose an orientation for each critical simplex. Then for any critical

simplex B®+1)

B > Y <0B,a>F®(a,A)| A

critical A®» | a®<B

Proof: Let B! be a critical simplex. To determine 0B we use the formula 9 =
Tam 00 0P>® =7y 0dP>®o00, so that
OB= >  <®(0B),A>A

critical A®

= > Y <0B,a><d%(a),A>| A

critical A® |a®<B

= > Y <0B,a>F>(a,A)| A

critical A® |a®<B
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Note that this description of the differential is slightly different from the description
in the introduction that was illustrated in Figure 0.1. However, these definitions are
equivalent. Theorem 2.3 tells us to count all sequences beginning at B®+Y  and
followed by an integer length gradient path v from a to A, for some a® < B. Such
a sequence is precisely the sort of half-integer length gradient path described in the
introduction. Conversely, any half-integer length gradient path from B to A, as
defined in the introduction, is of the form B followed by an integer length gradient
path from a to A, for some o) < B.

3. MORSE COHOMOLOGY

To create a presentation of cohomology from the point of view of discrete Morse
theory, one need only take the presentation of homology in the previous section and
reverse all of the arrows, taking the duals of all of the appropriate spaces and opera-
tors. This is essentially what we will do in this section.

As in the previous sections, we let M denote a finite simplicial complex. By a
cosimplex, we mean an element of the basis of C*(M,Z) which is dual to the basis of
Cy(M,Z) consisting of the oriented simplices. That is, if a is an oriented p-simplex,
then the dual cosimplex a* is defined as in (0.1).

Suppose that M is endowed with a gradient vector field V. We say that a cosimplex

a* is a critical cosimplex of V', if and only if a is a critical simplex of V. Let
V¥ C"(M,Z) — C* (M, Z)
to be the dual of the operator V. More explicitly, for any cochain ¢* and any chain ¢,

[VH(e)(e) = e (V(e)).

Alternately, just as in the case of our definition of V', we can begin by defining V*
as a map on cosimplices. For any cosimplices a* and b*, V*(a*) = b* if and only if
V(b) = a. We then extend V* linearly to all of C*(M,Z). It is easy to check that

these definitions of V* are equivalent.
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We define the coflow
. C*(M,Z) — C*(M,Z)

as the dual of the flow operator ®. That is, for any cochain ¢* and any chain

o

[D*(c*)](c) = ¢*(P(c)). Equivalently, the operator ®* is given by the formula ®* =
14+00V* +V*04.
In this section we study the cohomology of M, or equivalently, the cohomology of

the simplicial cocomplex
C*: C"(M,Z) < C" (M, Z) <~ C"2(M,Z) < - --
We let C% C CP(M,Z) denote the p-cochains which are invariant under the coflow
®*. The Morse cochain complex is the complex
Co:Ch Ot cn2t ..
We have the corresponding theorem.
Theorem 3.1. H*(Cs) = H*(M,Z).

The proof easily adapted from the proof of Theorem 2.1.
Let MP C CP(M, Z) denote the span of the critical cosimplices, and 7p : CP(M,Z) —

MP the natural projection. The following result corresponds to Theorem 2.2.

Theorem 3.2. The map (D*)® : MP — C% is an isomorphism. The inverse map is

given by maq 2 CP(M,Z) — MP.
Thus, the Morse cochain complex can be defined equivalently as the complex
M0 — M M

where 0 =y 06 0 (®*) is the differential induced by the above isomorphism. This

differential is described explicitly in the following theorem.

Theorem 3.3. For any oriented critical p-cosimpler A*

oA = > Y <0B,a>F*(a,A)| B.

critical B(P+1) | a(P)<B
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This theorem follows from simply taking the dual of the operator d that appears
in Theorem 2.3. Alternately, one can deduce the formula from Theorem 3.4, which

follows from the fact that ®* is the dual of the operator ®.

Theorem 3.4. Choose an orientation for each simplexr of M, and write, for any
stmplex a, and nonnegative integer r,
(@) (") = Y _(F")"(a*,b").
b*
Then

(F*) (a*,b*) = F" (b, ).

The next two corollaries follow from the analogous results about the operator ®.

Corollary 3.5. There is an N such that (®*)N = (®*)NF! = ... = (®*)®. If we
write
((13*)00(@*) — Z(F*)oo(a*a b*)b*,
b®)
then for any p-simplices a and b,

(F*)®(a",b*) = F*(b, a).

Corollary 3.6. Let a be a p-simplex, and r a positive integer.
(1) If a is not critical, then (®*)"(a*) is supported on p-cosimplices b* such that f(b) >
f(a).
(ii) If a is critical, then (®*)"(a*) = a* + ¢* where the p-cochain ¢* is supported on
cosimplices b* that are in the image of V* and that satisfy f(b) > f(a).

Our next goal is to learn how to find Morse cochains which represent given coho-

mology classes.

Corollary 3.7. Let A and B be critical p-simplices. Then
1 ifA=B
[(@7)*(A)|(®*(B)) =4 -1 fA=-B

0 otherwise
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Proof: By Corollary 3.6 (i), (®*)>°(A*) is the sum of A* and p-cosimplices in the
image of V*. By Corollary 1.8, ®>*°(B) is the sum of B and p-simplices in the image
of V. From the partition
{p — simplices of M} = Image(V"*) + Image(V') + {critical p — simplices}
we see that
[(@7)(A7)](@=(B)) = A*(B). U
Theorem 3.8. Suppose that ¢* € C*(M,Z) is a coclosed cochain. Let m* = mp(P*)>c*.

More explcitly, choose an orientation for each simplex of M. If ¢* =) . cqo-a*, then

m* = Z ZFOO(B,a)ca*

critical B*

Then m* € M* s coclosed in the Morse cocomplex, and represents the same coho-

B*.

mology class as c*.

Proof: The map (®*)> maps ¢* to a ®*-invariant coclosed cochain which represents
the same cohomology class as c¢*. The map 7 is an isomorphism from Cj to M*, and
hence takes (®*)>c* to a coclosed cochain in the Morse cocomplex which represents
the same cohomology class. Thus
m= Y (@) B) B
critical B*

We now observe that for any critical simplex B,

[(©)())(B) = ¢"(@%(B)) = ) ¢cea”(27(B)) = ) ¢ F*(B, a).

a* a*

O
Let h be any Morse function on M, and let » be in Z>, U {oo}. Then for any
coclosed cochain ¢* € C*(M,Z), (®;)"(c*) is a coclosed cochain which represents
the same cohomology class as ¢*. Therefore, in the previous theorem, the cochain
m* € M*(f) defined by
m* = mam(P)7(P})" "
also satisfies the conclusion of the theorem. More generally, we have the following

theorem.
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Theorem 3.9. Let f,hy, ho, ..., hy be Morse functions on M, and r; € Z>oU {oo}
i=1,2,...,k. Suppose that ¢* € C*(M,Z) is a coclosed cochain. Let

m* = ) (PF) (P, )" (P,)"7 - (P, )"

More explicitly, choose an orientation for each simplex of M, write ¢* =) . cqo-a*,

and let

m* = Z Z F;)O(B, Cl())F;;ll (Cl(), Cll)F,:;(al, CLQ) Ce Ff:: (ak,l, ak)ca; B*,

critical B* | ag,a7,a3,...,0;,
where the second sum is over all (k+ 1)-tuples of simplices in M. Then m* € M*(f)

18 coclosed in the Morse cocomplex, and represents the same cohomology class as c*.

4. COHOMOLOGY OPERATIONS

We begin with some general definitions and notation. Suppose that for each ¢ =

1,2,...,r we have a differential cocomplex
Vit VIie— Ve V2 e —

with cohomology H*(V;). For each i and j, let Zij - V;-j denote the coclosed elements.
For each z; € ZF we let [z;] denote the cohomology class in H*();) represented by
z;. More generally, given an element z € ®;c;Z, we let [z] represent the class in
®ier H*(V;) represented by z.

Say a multilinear map

L:HWV)QH V)@ - Q@ H* (Vi) — H' (V1) @ H* (Viyo) @ - @ H*(V,)
is induced by the multilinear map

E:‘/l*®‘/2*®"'®vk*—>Vk*+1®‘/]-€*+2®"'®v*

if the following two properties hold.
(1) L2 8258 ®Z) C (231 © 21 ® -+ © Z)

and



DISCRETE MORSE THEORY AND THE COHOMOLOGY RING 25
(2) for any z; € ZF,i=1,2,...,k
L£(21©20 @) =L([a]®[2] @ [z]).
Now we focus attention on the special case of interest. Let M be a finite simplicial
complex, and
L:@"H*(M,Z) — @"H*(M,Z)
a multilinear map. Suppose that L is induced by the multilinear map
L:e"C*(M,Z) — °C*(M,Z).
Choose an orientation for each simplex of M. Then we can express L in coordinates

by writing, for each a ® a3 ® --- ® a} € ®*C*(M, Z)

Lai®a;® - Qay) = Z Lo; 0030003 b obse-ob; 0] @by, ® - ® by

b7 b5 b
where the sum is over all ¢-tuples b7, b5, . .., b; of simplices in M.
Now let fi, fo,..., fr and g1, go, . - ., g¢ be (not necessarily distinct) Morse functions

on M. Our goal is to find a map
LM (f1) @ M*(f2) @ -+ @ M*(fi) — M*(91) @ M*(g2) ® - - © M*(gy)

which induces L.

All the information needed to find such a formula was provided in the previous sec-
tions. Let z; € M denote coclosed elements in the corresponding Morse cocomplexes.
Then z; corresponds to the coclosed cochain (@7 )% (2;) in C* (M, Z). We just need to
piece these maps together. For z = 21®2®- - -®@2, € @"C*(M, Z), we let ®%(z) denote
the element @, (21) @ Py, (22) @+ @ Py, (2x). Forz =202 -®2 € ®'C*(M,Z),
®?(2) is defined similarly.

The following theorem follows from our work in the previous sections.

Theorem 4.1. The map
L =mpo (@) 0 Lo (P})™ : M*(f1) @ M*(f2) ® - - @ M*(f)
— M*(91) @ M*(92) ® - - - ® M"(ge)

induces L.
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Expressing the map L in coordinates, we find the following corollary.

Corollary 4.2. Define a map
L:M(f)) @M (f) @ @ M (fr) — M*(g1) @ M*(g2) @ -+ - @ M*(gy)

by setting, for any critical Af € M*(f;),i=1,2,... k,

LAIRA®---® Af) =
Z Z Z Loz 0az0--@az biabyo-wob; Py (B, 01)Fyy (Ba, by) ... Fo° (B, be)
B} By Bl @5 ,0h @l bY b5 b
Fo(ay, A1) F (ag, Ag) .. Fo(ag, Ar) By @ By ® -+~ ® By
where the first sum is over all By, Bs, ..., By such that B} is a critical cosimplez of
gj, the second sum is over all k-tuples of cosimplices of M, and the third sum is over

all —tuples of cosimplices of M. Then
L:M(f))@M(f) @ @ M (fr) — M*(g1) @ M*(g2) @ -+ - @ M*(gy)
induces L.

We can use Theorem 3.9 to construct more general Morse cochain maps which
induce L. For each i = 1,2,...,k, let hi, kb, ... hi denote a sequence of Morse

functions, and 7}, 7%, ..., 7. a sequence of elements from Zsy U {co}. For each i =

pi
1,2,...,k, define a map @}, : C*(M,Z) — C*(M,Z), by

D = (py )71 - ()" (Py) "™
Now define a map

@ - @ C*(M,Z) — C*(M,7)

by

Or = Bl DL @ © Dy
Similarly, for each i = 1,2,...,¢, let ﬁ;,ﬁg,,ﬁ; denote a sequence of Morse
functions, and 7,7%,...,7 a sequence of elements from Zso U {oo}. For each

i =1,2,...,¢, define a map @7, : C*(M,Z) — C*(M,Z), and Pz RC*(M,Z) —
C*(M,Z), in the analogous way.
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Theorem 4.3. The map

£ =m0 (B)% 0 B 0 Lo (B7) 0 @ - M*(f1) © M () ® -+ ® M*(fi)

— M (91) @ M*(g2) @ - @ M*(g¢)

induces L.

5. EXAMPLES
Example 1. The Identity Map. Let
I:H*(M,Z)— H*(M,Z)
denote the identity map. This map is obviously induced by the identity map
I:C*"(M,Z)— C*(M,Z).
Let f and g be two Morse functions on M. Define the map
T: M (f) = M*(g)

by setting, for every critical simplex A of f,

where
iA,B = ZF;O(B,G,)F;O(CL,A),

where the sum is over all simplices a of M. Note that F°(B,a)F?°(a, A) = 0 unless
A, B and a all have the same dimension. This shows that Z maps MP?(f) to MP?(g).
Then 4.2 implies the following theorem.

Theorem 5.1. The map T : M*(f) — M*(g) induces the identity map on H*(M,Z).

This map Z was described in the introduction, and illustrated in Figure 0.2.
Note that if B # a, then F;°(B,a) = 0 unless Vy(a) # 0, and this is true if and only
if a is in the image of (V,)*. Similarly, if A # a then F?°(a, A) = 0 unless V{(a) # 0,

and this is true if and only if @ is in the image of V.



28 ROBIN FORMAN

An interesting special case is when f = g. Since the image of V; and (V})* are
disjoint, F°(B,a)F°(a,A) = 0 unless a = A or a = B. In either case, a is critical,
so is neither in the image of V; nor (V})*. Thus, we see that F}°(B,a)F°(a, A) =0
unless A = B = a, in which case F°(B, A)F¢°(a, A) = 1. This shows that if f = g,
then the map Z : M*(f) — M?*(g) is the identity map, just as one would expect.

Theorem 4.3 can be used to construct more general Morse cochain maps which
induce the identity map on cohomology. These maps are described in the introduction,
and illustrated in Figure 0.3.

Example 2. The Cup Product. Let

U: H*(M,Z)® H*(M,Z) — H*(M,Z)

denote the cup product. There are many different cochain maps which induce the cup
product on cohomology. To define one such map, which we also denote by U, choose a
linear ordering of the vertices of M. Let ¢* be a p-cochain and ¢* a g-cochain. We will
define a p+g-cochain c¢*Uc* as follows. Suppose that the vertices z9 < 21 < -+ < 2,44

span a simplex. Then we set

U ([0, X1, -+ Tpig)) = ([To, 21y - 2 )E ([T Tpity - - -5 Tpig))-
We now extend the map U linearly to a map
U:C*(M,2)® C*(M,Z) — C*(M,Z)
and this map induces the map U on cohomology.
Let f1, fo» and g be Morse functions on M. We define a map
U M(fi) @ M(f2) = M(g)
as follows. For any critical cosimplices A; and A, of f; and f5, resp., we set

OA;@A3) =) Y FL(Bb)FL (a1, A)FL(ap, Ay).

B ai1Uas=b

Theorem 4.2 now implies the following theorem.

Theorem 5.2. The map U : M(f1) ® M(f2) = M(g) induces the cup product on

cohomology.
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This is the map described in the introduction, and illustrated in Figure 0.4.

We observe that the maps U and U are associative, but not commutative. We can
define a cup product map on cochains with values in QQ that is graded-commutative
but not associative by averaging the cochain map U over all orderings of the vertices
of M. Applying Corollary 3.2 shows that if f; = f5, then the result of averaging
U over all orderings of the vertices of M yields a graded-commutative map on the
rational Morse cochains which induces the cup product on cohomology.

Theorem 4.3 can be used to construct more general Morse cochain maps which
induce the cup product on cohomology. These maps are described in the introduction,
and illustrated in Figure 0.5.

Example 3. The Euler Characteristic. Let

I, : H*(M,R) — H*(M,R)

denote the identity map. Then the Euler characteristic is given by the alternating

sum of the traces
dim M

X(M) = Z (—1)Ptrace(I,).
p=0
It is a standard fact in this subject that if

yr oyt Loy O
is any cocomplex whose cohomology is isomorphic to H*(M,Z), and
Lp VP VP

is any collection of maps which induce the identity map on cohomology, then the
Euler characteristic is given by
X(M) = Z(—l)ptmce(Lp).
p=0
Now let f be a Morse function on M. We know from Example 1 how to construct
maps from M*(f) to itself which induce the identity map on cohomology. Namely,
in the maps illustrated in Figures 0.2 and 0.3 we found maps from M*(f) to M*(g)
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which induce the identity map on cohomology, so now we simply set f = g. More-
over, since we will be taking the trace of this map, we need only consider sequences
of gradient paths which go from an f-critical simplex to itself. The appropriate con-
figuration of gradient paths is illustrated in Figure 0.6. An explicit formula is given

in the following theorem.

Theorem 5.3. Let f, and hq, ho, ..., hy be Morse functions on M for some k > 0,
and, fori=1,2,...,k, r;, € Z>yU{oo}. Then

dim(M)
X(M)y= > (=17 > 3
p=0 f—critical A®) 30,01,02,....a%
F° (A, ao)Fy ) (ag, a1) Fy2 (a1, ag) . . Fy*(ag—1, ar) Ffo(ay, A).

Example 4. The Fundamental Class. Suppose that M is a connected simplicial
complex. Then one can consider the fundamental class o* € H°(M,Z). This class
assigns to every O-chain ) n,v, where the sum is over all vertices v of GG, the number
>, Mw. In order to place this discussion in the context of this paper, we consider the

linear map
C — H(M,Z),

which takes number 1 to a*. The class o is represented by the cochain ¢* =) v*.
Since C'is the tensor product of 0 copies of H*(M, Z), this map fits into the discussion
in the previous sections. Applying Theorem 4.2 to this simple example leads to the
conclusion that for any Morse function f, o* is represented by the cochain ), ny V™,

where the sum is over all critical vertices V', and
ny = ZFOO(’U, V).
v

Equivalently, the cochain is constructed by counting all gradient paths as illustrated
in Figure 0.7(i), with the endpoint being a critical vertex.

Suppose that M is an n-dimensional pseudo-manifold. That is, every (n — 1)-
simplex is a face of exactly two n-simplices. If M is orientable, then H, (M,Z) = Z

and one can choose a generator a. If we endow each n-simplex with the appropriate



DISCRETE MORSE THEORY AND THE COHOMOLOGY RING 31

orientation, then the class « is represented by the n-chain ¢ = ) ) a. If M is not
orientable, then one can do the same working with coefficients in Z,. For any n-
cochain ¢* =37 1) Ce=a”, ¢*(a) = 3 ) o= To place this discussion in the context of
this paper, we should view the fundamental class as a map on cohomology. We can

view the fundamental class o as a map

a:H"(M,Z)— C
which maps a degree n cohomology class to its evaluation on «, and a class of degree
m to 0 if m # n. Let f be a Morse function on M. Let us now construct a map & on
Morse cochains that induces this map. If m* is a Morse m-cochain, and m # n then
certainly &(m*) = 0 will do the job. If m* has degree n, then Theorem 4.2 implies
that one should map a critical n-cosimplex A* to

Y F®(a,A)a*(c) = > F®(a, A).

a(") a(”)

That is, we count all gradient paths from a general n-simplex to a critical n-simplex.
However, there are no non-trivial gradient paths to a critical n-simplex. Thus, the
only contribution to this sum is when a = A. That is, the map & maps each critical
n-cosimplex (endowed with the appropriate orientation ) to 1.

On the other hand, we may view the fundamental class « as a map
a:C — H.(M,Z),

which takes 1 to a. Although we only discussed operations on cohomology in the
previous section, the same ideas can be used to construct maps on homology. In this
case, the dual statement to Theorem 4.2 implies that the map a above is induced
by the map C' — M, which takes 1 to ) ,u) @4 A where the sum is over all critical
n-simplices A, and

) = ZFOO(A, a).
a(”)

That is, we construct the fundamental class in Morse homology by counting all gra-
dient paths from a critical n-simplex to an arbitrary n-simplex. This is precisely the

map that is illustrated in Figure 0.7(ii).
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