COMBINATORIAL NOVIKOV-MORSE THEORY

ROBIN FORMAN

0. INTRODUCTION

In classical Morse theory [23], one begins with a smooth manifold M and a smooth
function on M. The main point is a very precise relationship between the critical
points of the function and the topology of M. In [24, 25], Novikov introduced a
generalization of this theory. Novikov’s theory begins with a closed 1-form w on M.
Locally we can write w = df for some function f which is well-defined up to the
addition of a constant. In particular the critical points of f, and their indexes, are
well-defined. Classical Morse theory appears as the case when w is exact, that is when
w = df globally. In the generalized setting, Novikov found the appropriate topological
data so that the corresponding Morse theorems remain true. We will say more about
this later. The investigation of this theory has continued in a variety of directions
(e-g [2] [5][6][18] [26][27][28][29][36][37][38])-

In [7, 8, 9] we presented a combinatorial Morse theory which can be applied to any
to any CW complex, in particular the underlying topological space need not be a
manifold. See [1], [3],[31], [11] for some applications of this theory. In this paper we
extend the theory to include a combinatorial analog of Novikov’s theory.

We begin in §1 by defining, and beginning the investigation of, the appropriate
notion of a combinatorial differential form. In §2 we restrict attention to those com-
binatorial 1-forms which play a role in the combinatorial Novikov-Morse theory. We

then show in §3 that the Novikov-Morse inequalities are true in this setting.

This work was partially supported by the National Science Foundation and the National Security
Agency.
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Another facet of Morse’s theory is the Morse complex, a differential complex, which
we denote by M, which is constructed from the critical points and has the same
homology as the underlying manifold. In the case of classical Morse theory, Milnor

showed in [20] that
(0.1) Tor (M) = Tor (M)

where Tor (M) denotes the Reidemeister torsion of M, and Tor (M) denotes the
corresponding torsion of the Morse complex. Actually, both sides of 0.1 depend on
the choice of a representation of 71 (M), but we will be much more precise about all
this shortly.

In [15] formula 0.1 was investigated for closed 1-forms with integral periods (or
equivalently, for w = df where f is a S'-valued function). They found that in this

case there is a correction term. Namely,
(0.2) Tor (M) = Tor (M) ((1,w)

where ((z,w) is a zeta-function built from the closed orbits of the flow along the
vector field dual to w. See [30] for more recent work in this direction.

It should be noted that formula 0.2 had previously been established for many vector
fields with no zeros in [13, 14]. In the case of an S'-valued function with no critical
points, (0.2) is contained implicitly in [21] (as was pointed out by Fried). In fact, it
seems likely that formula (0.2) holds for a generic vector field on M. Such a formula
cannot hold for all vector fields since every manifold of dimension > 3 with Euler
characteristic 0 has a vector field with no zeroes and no closed orbits([17, 40]). The
determination of the precise set of vector fields for which (0.2) holds remains an
important question.

In §4 of this paper we present a proof of this formula in the combinatorial setting.
Actually, we only outline the proof, as the major steps have already appeared in
[9] and [10]. In [15], formula (0.2) is conjectured to be the value of a Seiberg-Witten
invariant if dim(M) = 3. The idea is that closed orbits of w on a 3-manifold correspond

to pseudo-holomorphic curves on a symplectic 4-manifold. Taubes has shown in
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[35] that the Seiberg-Witten invariant counts such curves. We hope that this paper
may ultimately play a role in a combinatorial understanding of the Seiberg-Witten
invariants.

Now let us describe the contents of this paper in more detail. Let M be a finite
regular CW complex. Let K denote the set of open cells of M > We write a® if «
is a cell of dimension p, and o < § (or § > «) if « lies in the boundary of 4 (and
we say « is a face of ). In [7, 8, 9] we introduced the idea of a combinatorial Morse
function. Let us quickly review this notion.

Let Q°(M) denote the set of functions
f: K —R.

We emphasize that f € Q°(M) assigns a single real number to each cell of M. Say f

is a Morse function if for each p-cell «

#{67D > a | f(B) < fa)} <1,
and

#{ D <al f(y) = fla)} <L
Say a'?) is critical (of index p) if

#{6P) > o | f(B) < fl@)} =0,
and

#{ D <al f(y) < fla)} =0.

Let m,(f) denote the number of critical cells of dimension p. Let b, = dim H,(M,R)
denote the p** Betti number of M.

Theorem 0.1. (Corollaries 3.6 and 3.7 of (8], Theorem 2.1 of [9])
(i) The Strong Morse Inequalities
For each k =0,1,2,

mi(f) —mp1(f) +---E£mo(f) > bp — b1 +--- £ by.

(i) The Weak Morse Inequalities
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For all k=0,1,2
Moreover,
mo(f) —mi(f) + -+ (=1)"mn(f) = bo — by + - -+ + (=1)0"b,

where n = dim M.

In fact the weak Morse Inequalities easily follow from the strong Morse inequalities.
See [7, 8, 9] for a more complete development of this combinatorial Morse theory.

In order to present a combinatorial version of Novikov-Morse theory, we need the
idea of a combinatorial 1-form. Let F denote the set of all pairs {31 > (P} as p

ranges from 0 to dim M. A combinatorial 1-form is a function
w:F—=-R

Let Q'(M) denote the set of all combinatorial 1-forms on M. There is a natural
differential
D : QM) — QY (M).
Namely, if f : K — R is a function, define Df € Q'(M) by
Df(BPH) > o) = f£(8) - f(a).
Note that Df = 0 if and only if f is constant on each connected component of M.
Let w be a combinatorial 1-form. Suppose we have a pair of cells a® > ~F=2),
Then there are exactly 2 (p — 1)-cells 4, and [ such that
a>B>y i=1,2.

Say w is closed if for all such o > 7,

(0.3) wla>p)+w(f > =wla>F)+w(B>7).
In §1 of this paper we show that there is a natural combinatorial deRham complex

for which Q°(M) and Q'(M) are the 0— and 1—cochains. That is, for each p we

define a space QP(M) of combinatorial p-forms, and a differential

D : QP(M) — QPFL(M)
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such that D? = 0. If w is a combinatorial 1-form, then Dw = 0 if and only if w
satisfies (0.3). Lastly, we show that the cohomology of this complex is isomorphic to

the cohomology of M
H*(Q2*,D) =2 H*(M).
Let w be a combinatorial 1-form. We say w is a Morse 1-form if w is closed and if

for all p-cells «

£{BPD) > o |w(f > a) <0} < 1,
and

#{7P N <alwla>q) <0} <L
We begin our investigation of such forms in §2. The main point is that there is a
well-defined notion of a critical cell. Let w be a Morse 1-form. Say a(® is critical (of
index p) if

#{BP) > a|w(B > a) <0} =0,
and

#{1" Y <alw(y>a) <0} =0

Let my(w) denote the number of critical p-cells of w. From our work in §1, we
know that w represents a class [w] € H'(M,R). We show in §3 that one can define
invariants B, ([w]), which depend on the pair (M, [w]) only up to homotopy, such that

the Morse inequalities are true.

Theorem 0.2. (i) The Strong Novikov-Morse Inequalities: For all k =0,1,2,. ..
my(w) — mp—1(w) + - - £ mo(w) > By([w]) = Be—1([w]) + -+ - & Bo([w])-
(ii) The Weak Novikov-Morse Inequalities: For each k =0,1,2,...
my(w) = By([w]).
Moreover,

mo(w) —ma(w) + -+ (=1)"mp(w) = Bo([w]) = Bi([w]) + -+ + (=1)" Bu([w]).
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If w is exact, then By ([w]) = by as defined earlier, so these inequalities are, in fact,
a generalization of the classical Morse inequalities. The topological invariants By ([w])
are the same as these introduced in [24, 25] and [26]. They show, in some cases, how
to define these invariants in terms of ingredients from classical algebraic topology.

Our presentation follows that of [26], modified for our setting, which in turn is
based on the ideas of [40]. That is, we begin with the standard cellular chain complex

of M
0= Co(M,R) > Cp 1 (M,R) S - .

Given a combinatorial 1-form w satisfying Dw = 0, we define a 1-parameter family of

differentials 9, be setting, for any oriented cells 3@+ > o)
(08, ) = <08, ).

where (,) denotes the canonical inner product on C,(M,R) with respect to which the
cells form an orthonormal basis. One can check directly that 9? = 0 if and only if w
is closed in the sense of (0.3). In the case that w = Df for some f € Q°(M), this

differential can equivalently be defined as
8t = €_tf 0 etf.

This is the form in which it appeared in [9].

The analysis of this differential is much easier if w is flat, that is,
w(f>a)>0

for every # < . This idea was introduced in [9]. We also show in §2 that every Morse
1-form is equivalent to a flat Morse 1-form, in the sense that they have identical critical
cells and gradient paths (we will define these shortly). Therefore, when proving the
Novikov-Morse inequalities, it is sufficient to assume w is flat.

We now consider the operator

A, (t) = 8,0; — 019, : C,(M,R) — C,(M,R).
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We prove that as ¢ — —oo this operator has a limits A,(—oo) (the flatness of w is

required for this). Moreover,
dim Ker A,(—00) = my,(w).

It is easy to see that dim Ker A, (¢) has a generic dimension for ¢ € R. That is, there
is a countable set S C R such that dim Ker A,(¢) is constant on R — S. Standard
theory implies that this generic dimension is a homotopy invariant of (M, [w]). We
denote this invariant by B,([w]). The Novikov-Morse inequalities easily follow.

In §4 we investigate the Reidemeister torsion of M. Let
O :m (M) — O(k)

be an orthogonal representation. Let M denote the universal cover of M, endowed

with the cell structure induced from that of M, and let
Cy(M,0) C C,(M,R)

denote those chains on M which transform under 7 (M) via ©. (This is all done more
explicitly in §4).

The differential 0 preserves these spaces, and we let H,(M, ©) denote the homology
of the resulting complex. We assume that © is acyclic, that is, H,(M,©) = 0. The

spaces C,(M, ©) inherit natural inner products, so we can consider
A,(O©) =00"+ 00 : Cy(M,0) — C,(M, 0).
If © is acyclic, then each A,(©) is invertible. Define the Reidemeister torsion of
(M, ©) by
Tor (M, 0) = II'_o( Det A,(0))% 1"
This is a topological invariant of the pair (M, ©) [12]. This formula for torsion first
appeared in [32]. The same formula can be used to define the torsion of any exact

sequence endowed with an inner product.

Let
M,(w,0) C C,(M,0) < C,(M,RF)
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denote those chains which transform via © and are supported on the lifts of the

critical cells of w. The next step is to define a differential

0: My(w,0) > M, (v, O).

This requires the notion of a gradient path for w (or w-path, for short).
Say a sequence of cells of M

- a(()p) _ ﬁ(()p)’,y(()p+1),5£p),,y£p+l), . ,%(ffrll), I(Cp) _ agp)

is a w-path from «ag to a; (or index p and length k) if for each i =0,1,... ,k — 1
1) Bi < %, Biz1 < vi and f3; # Biqa
and
2) w(yi > Bi) <0.
Note that it follows from the definitions that w(vy; > f;41) > 0.
Similarly, define an w-path on M to be a sequence of cells of M satisfying the same
conditions, except that condition 2) should now read
2') w(m(yi) > m(6:)) < 0.

We now define an operator
9 : Cpyr (M, RF) — C,(M,R")
by setting, for any oriented cells 3#*t1) and a® of M,

@8,0) = > (08,v) > o)

¥ <B c€lu (7,0)

(where we have assigned orientations arbitrarily to the v < (). In this formula
[, (7, @) is the set of w-paths from 7 to a, and pu(c) = £1 is the algebraic multiplicity of
c. The orientation on v combined with an w-path ¢ from v to «, induces an orientation
on «a. Set p(c) = 1 if this orientation agrees with the given orientation on «, and
p(e) = —1 otherwise. Note that if we reverse the orientation on +, the signs of
(08,7) and u(c) both switch, so the operator d depends only on the orientations of
a and f.

The operator @ maps M,(w,O) to M,_1(w, ), and, restricted to these Morse

spaces, satisfies 9 = 0. (This was established in [9]). Thus we can consider the
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Morse complex
M(O): 0 = My(w,0) 3 My_1(w,0) S ...

For any representation ©
H.(M(©)) = H,(M,0)

(see [9]). Therefore, if O is acyclic, M(O) is exact, and we can consider Tor (M(O)).

Theorem 0.3. If there are no closed (= periodic) w-paths on M, then

Tor (M,0) = Tor (M(©)).

This is essentially Theorem 9.3 of [8] combined with Theorem 6.1 of [9].
We now define the correction factor if periodic w-paths do exist. Define a zeta
function

(@) = exp | S Z S 1F ST sle) wl)]

r=1 cEPL ()
where PJ(w) denotes the periodic w-paths on M of length r and index k.

In [10] we studied the dynamics of such paths, and showed that one could recreate
much of the theory of smooth dynamical systems. In particular, one can define the
notion of a basic set. Suppose « is contained in a closed w-path. Let A be the set of
all cells 8 for which there is a closed w-path continuing both a and 5. We call A a

non-trivial basic set. We proved in [10].

Theorem 0.4. 1) If, for each non-trivial basic set A, H,(A,A,©) = 0 (where A =
A —A), then ((z,w,©) is regular at z = 1.
2) If , for each non-trivial basic set A, H,(A, A, ©) =0, and w has no critical cells,

then © is acyclic and

Tor (M,0) = ((1,w, 0).

It is somewhat to our embarrassment that we did not earlier put Theorem 0.3 and

Theorem 0.4 together to get the general statement. This is the main result of §4.
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Theorem 0.5. If © : w (M) — O(k) is acyclic and H,(A, A,©) = 0 for each non-

trivial basic set A\, then

Tor (M,0) = Tor (M(©)) ¢((1,w,O).

The proof involves finding a Lyapunov function for the w-paths, and using this
function to deform the boundary operator 0. We see that this separates the torsion
into 2 terms, one involving the non-trivial basic sets, and the other involving the
critical cells. The theorem then follows by applying the earlier theorems separately
to the two terms.

It is interesting to note that in §4 we prove this formula for the flow along any
combinatorial vector field (as defined in [10]), not just for the gradient paths of a
Morse form.

The author would like to thank M. Hutchings for some very interesting conver-

staions on this these topics.
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1. COMBINATORIAL DIFFERENTIAL FORMS
In this section, we present a differential complex which seems to provide the ap-
propriate context for our work on this subject. There is nothing really new here, but

his complex does not seem to have been explicitly studied earlier.

Let M be a regular cell complex of dimension n, and

0= Co(M) 2 Cosy (M) S - 2 Co(M) = 0

the real cellular chain complex of M, with respect to any coefficient field. Let
C.(M) = @,C,(M).
A linear map
w:C (M) = C.(M)
is said to be of degree d if forallp=1,2,... ,n
w(Cp(M)) < Cpra(M)

(if p < 0 or p > n we interpret C,(M) to mean {0}).

We will be primarily interested in maps of nonpositive degree. Say a linear map
w of degree —d < 0 is local if, for each p and each oriented p-cell a, w(«) is a linear
combination of oriented (p — d)-cells which lie in the closure of a.

We are now ready for the main definition for this section.
Definition 1. For d > 0, we define the space of combinatorial differential d-forms
QM) by

QM) = {local linear maps w : C..(M) — C,(M) of degree — d}.

We pause here to make a few remarks.

1) In the following sections in which we must work with real coefficients. However,
the definitions and the main theorem of this section hold for any coefficient ring.

2) For each d > 0, Q¢(M) is a module over the coefficient ring.
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3) The definitions lead to the (perhaps unsettling) result that the boundary opera-
tor 0 is a combinatorial differential 1-form (we will have more to say about this
later).
4) Composition induces a map
QB (M) x Q= (M) — QUuFe (M),
The next step is to define a differential
D : QYM) — QT (M).
We do this via Leibniz’s rule. That is, for any w € Q4(M) and any p-chain ¢, define
(D)(€) € Cypeasny (M)
by
(Dw)(c) = 0(w(c)) — (—1)"w(dc)
i.e., Dw = 0ow— (—1)% o d]. This formula is perhaps more suggestively written as
O(w(c)) = (Dw)(c) + (—1)"w(e).

In Lemma 1.1, we summarize some relevant facts about D, which follow immediately

from the definitions.

Lemma 1.1. 1) D(Q4(M)) C Q**+Y(M).
2) D* = 0.

This leads us to consider the differential complex
Q (M) : 0 QM) B o' () B .- Baron) —o.
Theorem 1.2. The cohomology of this complex is precisely the cohomology of M.
That 1is,
H*(QY(M)) = H*(M).

Proof. One way to prove this theorem is to observe that Q*(M) is the cellular cochain
complex associated to a subdivision of M. Namely, place a vertex in each cell of M.

Draw an edge between the vertices corresponding to each pair of cells of the form
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alP) < B+ For any pair of cells a?) < 4(P*2) there are precisely two (p + 1)-cells
B and [ with o < f; < . Draw a 2-cell in v bounded by the 4 edges corresponding
to the pairs a < 1, < (35, /1 < v and 5 < 7, etc. See Figure 1.1.

Figure 1

Instead, we will provide a direct algebraic proof which will also serve to illuminate
some of the structure of the objects we have introduced. Let Q%°(M) be the set of local
linear maps from C,(M) to Cy(M). Extending such a map to be 0 on C,(M), p # a,
we can think of Q%°(M) as a subspace of Q°=¢(M). In this way we have

n

Qd — @ Qa,a—d.

a=d

For any d-form w, we can write

D(w) = Dy (w) + (=1 Dy (w)
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where
Di(w) = Jdow
Dy(w) = woo.
It follows that

D1 (Qa,b) Qa,b—l

D2 (Qa,b) S Qa+1,b.

IN

We can piece all of this together in a double complex.
Q2a2 N

D,
D
lel —2> Q2a1 % o s

lDl D,

D D
0 —— Q0,0 2 s QI,O 2 s Q2’0 S e

|

0 0
To calculate the cohomology of the total complex (Q*, D) we apply the general

method of spectral sequences (see [19]). We first calculate the cohomology of the

columns, that is, the D; cohomology. It follows immediately from the definitions that
Ker(Dy : Q% — Qb1
is the space of linear maps
w:C,— Cy
which maps each a-cell a to a closed b-chain in &. Similarly,
Im(D; : Qebtl Q“’b)

is the space of linear maps

w:C’a—>C’b
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which maps each a-cell « to an exact b-chain in a. If we define

Ker (D, : Q®b — Qab-1)

H =
Im(Dy : Q@b+l — Qab)

then we see that H%® is isomorphic to the space of functions which assigns to each
a-cell « an element of Hy(@). Since, for each «, @ is contractible, we see that
b o 0 ifb=#£0
c (M) ifb=0
Therefore, the D-cohomology of the original complex is isomorphic to the coho-

mology of the complex

D D
0 — H —5 HYO 25 H20 5 ...

H | |
(M) Ct(M) C*(M)

where D; is the differential induced by the Dy operator. To prove that the cohomology
of this complex is isomorphic to the usual simplicial cohomology, we will show that,
under the association of HP? with C?(M,R), the operator D, corresponds to the
usual coboundary operator 9.

Let « be an oriented p-cell of M, and o* € C?(M,R) the element which maps « to
1, and all other p-cells to 0. Choose a vertex v € a. The p-form w which maps « to v

and all other cells to 0 is a representative of the element [w] € HP? which is identified

with o* € C?(M). For any (p + 1)-cell 3,

(Dow) 8 = (08, a)v.

We can see that (Dow)8 € HP™0 is identified with the element of C?™' (M, R) which
maps each (p + 1)-cell 5 to (073, ). This element is precisely da*. O

We end this section by presenting some examples of the ingredients we have just

introduced.

1.1. Combinatorial Differential 0-forms: A combinatorial differential 0-form w

must map each oriented cell a to ¢, for some constant ¢,. In this way we can identify
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w with a function F': K — R, where R is the coefficient ring, by setting
F(a) = cq.

Every function from K to R arises in this fashion. We will identify w with the function
F', and use the 2 notions interchangeably.
Given a O-form w corresponding to a function F, we can express its differential as

follows. For any p-cell o

(Dw)(a) = 3(w(a))—w(3a)

= a(Fa Z F 604,7
= > (F(a) = F()(9a,7)7.
yP-D<a

From this we see

Theorem 1.3. Let F be a combinatorial differential 0-form. Then DF = 0 if and
only if for each pair of cells v?~Y < a®)

It easily follows that DF = 0 if and only if F' is constant on each connected
component of M (that is, I’ takes on the same value on all cells in a connected

component of M).

1.2. Combinatorial Differential 1-forms: Choose an orientation for each cell of
M. A combinatorial 1-form w must map each oriented p-cell a® to a linear combi-

nation of the form ) CanyY- We can write this as

'y(P_l) <o

wa) =Y Cay(00,7) ({0, 7)7).

fy(l’*l)<o¢

We note that

CiO‘a’Y = Caszy = _Ca77
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where —a and —+ refer to the cells a and v endowed with the opposite orientation.

It follows that for each a(® > ®~1  the quantity

Ca,7<aa7 7>

is independent of the chosen orientations on o and 7. Let F denote the set of pairs
{a(”) > 7(”_1)} as p ranges from 0 to dim M. We can identify w canonically with a

map
G:F—R

where
G(a®) A7) = ¢q (00, 7)

Every such function arises from a combinatorial 1-form. From now on, for each pair
of cells a® > v~ we will write w(a > ) for G(a, ). We hope this will not cause
undue confusion.

For example, from (1.1) it follows that for ant F' € Q°(M), and any SP+Y > aP,
DF(B®*) > a?) = F(3) — F(a).

Let w be a combinatorial differential 1-form. We now derive an explicit represen-

tation of Dw. For each p-cell o

(Dw)(e) = d(w(a))+ w(0a)
= 0 Z w(a > B)(0a, 3)3)

ﬁ(P_l) <

+ w( Y (90,8)8)

ﬂ(P_1)<fy

= > wla>B) {0, BY0B, 1)

7(?*2) </6<a

+ Z w(f > v)(0a, BY(OB,v)y

7(1"2) <ﬂ<a

= ) (wla>pB)+w(B>a)(da, B)(08.7)y.

y<f<L
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Fix a pair of cells y?=2) < o(P). Then there are precisely two (p—1)-cells ﬁfp_l), ﬂé‘”_l)
with
Yy<bh<ar y<[h<a.
The coefficient of v in (Dw)(«) is
£ [(wla>f1) +w(Br > 7)) — (wla > F2) +w(Bz > 7))].

From this we see

Theorem 1.4. Let w be a combinatorial differential 1-form. Then Dw = 0 if and
only if for all cells

fy(p,z) < mp—l) < a(”),’y < 55’“ <a Bi# B

we have
(1.1) wla> ) +w(f > =wla>F)+w(B>7).

Let w be a closed 1-form, and F' a 0-form. Then w = DF' if and only if for each
pair of cells 3@+ > o)

w(f>a)=F(f) - F(a).

We can try to find F' by “integrating” w. This is, fix a cell a?) and assign F(a)
arbitrarily. For any 371 > «, define F(3) by

F(B) = Fla) + w(8 > a).
Similarly, if v?'Y) < o, define F(v) by
F(3) = Fla) - w(a > 7).

continuing in this fashion, the identity (1.1) implies that the function F' so constructed
is well-defined on any simply-connected subcomplex of M which contains a.

Before leaving this section, we return to our earlier remark that for any regular
cell complex M, the coboundary operator ¢ is a combinatorial differential 1-form. In

fact, ¢ is closed. Therefore, from Theorem 1.2, § represents a cohomology class of M.
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This leads to the possibly surprising conclusion that for every regular cell complex

M there is a canonical cohomology class
(6] = H'(M,R).

In fact, this cohomology class is trivial. Namely, define a O-form F' by setting, for any
cell a
F(«) = dimension (a).

Then DF = 6.
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2. MORSE ONE-FORMS

In this section we define, and investigate, the class of combinatorial one-forms to
which our theory will apply. Let M be a compact regular CW complex, and w €
QY M,R) a 1-form satisfying Dw = 0. Then, restricted to a contractible subcomplex
N of M, we can write w = Df for some f € Q°(N,R). We say that w is Morse, if f
is a Morse function on N (as defined in [7, 8]) for all such N and f. We can define

this notion in a more direct fashion as follows.

Definition 2. Say a closed 1-form w on M is a Morse form if for all p, and all
p-cells o of M

(1) #{6%) > o |w(f > a) <0} <1
and

2) #{7P ) <a|wla>v) <0} <1

This concept can also be defined via “multi-valued functions.” Let M - M be any
cover of M satisfying H'(M,R) = 0. Let w be a closed 1-form on M. Then & = 7*w
is an exact 1-form on M so & = Df for some f € Q°(M,R). Then w is a Morse form
on M if and only if f is a Morse function on M (as defined in [7, 8]). We can think

of f as a multi-valued function on M.

Definition 3. Let w be a Morse form on M. Say o) is a critical cell if

(1) #{pP) > a |w(B>a) <0} =0

and

(2) #{7¥"™) <a|wl@>1) <0} =0.
To be consistent with the standard terminology, if a is critical, we define the index

of a to be the dimension of c.
In fact, Morse 1-forms have a bit more structure than may at first be apparent.

Theorem 2.1. Let w be a Morse 1-form on M, and o a p-cell, then either

#{ﬂ(”H) >alw(@>a)<0}=0
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or

#{7"V <alwl@>y) <0} =0
This is Theorem 1.1 of [7].

Corollary 2.2. The cells of M can be partitioned into the critical cells, and pairs
{BP*) > aP} where w(B > a) < 0.

We pause here to note the simple fact that every cohomology class can be repre-

sented by a Morse form.

Theorem 2.3. Let h € H'(M,R). Then there is a Morse 1-form w with
[w] = h.

Proof. Let w; be any closed 1-form with [wy] = h. Choose ¢ > 0 so that for all p and
all ﬁ(p+1) > a(p)

w(f>a) > —c.

Now define a function F' € w°(M,R) by setting for each cell a/?)
F(a) = pe.

Let w = wy + DF. Then clearly w is closed and

Wl = [wn] = h
For any g®+D > o)

w(f>a) = wi(f>a)+DF(B>a)
= wi(f>a)+ F(B) - Fla)

= wi(f>a)+(@+1)c—pc
0

V

which implies that w is a Morse form. O
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Observe that the form w constructed in this proof is trivial, in the sense that every
cell is critical.
In our proofs, it will be convenient to restrict attention to Morse forms which satisfy

an additional hypothesis.

Definition 4. Let w € Q'(M,R) be a Morse 1-form. Say w is flat if for all p and all
pairs /8(17‘1‘1) > a(p)

w(f>a)>0.

The main goal of this section is to prove that nothing is lost by restricting attention
to flat Morse 1-forms, as any Morse 1-form is equivalent, in a precise sense, to a flat

Morse form.

Definition 5. Say two closed 1-forms wy, and wy are equivalent if
1) lwi] = [wo]

where [w;] € H'(M,R) is the cohomology class represented by w;.
2) For all p, and all pairs 3PV > o)

wi(B>a)>0 w(f>a)>0
Note that if wi and wy are equivalent, then
wy 18 a Morse form < wo is a Morse form.

We are now ready to state and prove the main theorem of this section.
Theorem 2.4. Every Morse 1-form is equivalent to a flat Morse 1-form.
Proof. Let w be a Morse 1-form. Choose ¢ > 0 so that for every p and every 3@+ >
a®

w(f>a)>—c.

Recall that the cells of M can be partitioned into those that are critical, and the

disjoint pairs {3®+1) o)} where

0>«
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and
w(f>a)<0.
Define a function ' € Q°(M) as follows. For each critical cell a?) set
F(a) = pe.
For each non-critical pair {3®+1 a(P)} set
F(a) = pc
F(B) = pc—w(3>a).
Note that for any o)
(p—1)e < F(a) <pc
which implies, in particular, that for any 3®*+Y and o)
F(B) = F(a) = 0.
Let
w"=w+ DF.

We will see that w* is flat and equivalent to w. We first observe that w* is clearly

closed, and
[w*] = [w] € H(M,R).
For each 1) > o(P) we have
w(f>a) = w(B>a)+DF(B>a)
= w(@>a)+ F(B) - F(a)
> w(f>a).
Therefore,
w(f>a)>0=w"(f>a) >0.

Conversely, suppose Pt > o) satisfy

w(f>a)<0.
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Then

w(B>a) = w(f>a)+F(B)—F(a)

It follows that for all gP+Y) > /()
w(f>a)>0

and
wf>a)>0 w(B>a)>0

as desired.
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3. THE MORSE INEQUALITIES

Let w be a Morse 1-form, and
h=[w] € H'(M,R).

Let my(w) denote the number of critical cells of w of dimension p. In [7, 8, 9] we
considered the case h = 0, the setting for classical Morse theory. We proved the

Strong Morse Inequalities
my(w) —mp—1(w) + -+~ £mo(w) > by, —bpy +-+-Eby, Vp=0,1,2,...
where
b, = dim H,(M,R).
These inequalities imply the Weak Morse Inequalities
my(w) >b, Vp=0,1,2,...

mo(w) — my(w)+ -+ (=1)"my(w) =by — by + - -+ + (—1)"by.

Our goal in this section is to find analogous inequalities when A # 0. More precisely,
for h € H'(M,R) we wish to find topological invariants B,(h) so that if [w] = h
the corresponding Morse inequalities are true. In this section we will essentially be
following the ideas of [26], see also [9] and [40].

We begin with a little of the standard theory of covering spaces, expressed in the
language of this paper. Let

M — M
denote the universal cover of M, with M given the cell structure induced from M.
Let @ = m*w. Then @ is exact, so we can find a function F' € Q°(M,R) satisfying
DF = &. (F is defined up to an additive constant).

The first step is to observe that for any covering transformation
g: M — M
(i.e., so that m = 7 o g) the function F o g — F is constant, That is,

F(g(a)) - F(a)
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is independent of the cell o. This can be seen as follows

D(Fog—F) = D(¢°F) — DF
= ¢*DF — DF

Let p,(g) € R denote this constant. If g; and g, are any 2 covering transformations

pu(g192) = (9192)'F — F
= g3giF — F
= g(iF—F)+ (3F - F)

Since gi‘ﬁ' — F is constant, it is left invariant by g5. Therefore,

po(giogs) = (giF — F)+ (g3F — F)

= pulg1) + pu(ge)
Therefore, in this way w defines a representation
po:m (M) = (R, +).

In fact, it can easily be seen that p, depends only on h = |[w]. Namely, if w; is another

1-form with |[w;] = h then

wi=w+Df



COMBINATORIAL NOVIKOV-MORSE THEORY 27
for some f € Q°(M,R). Thus
O =1'w; = Tw+nTDf
= w0+ Drn*f
= DF + Dr*f
= D(F +7*f)
and for g € m (M)
Poi(9) = " (F +7°f) = (F + 7" f).
Since
grf=n"f
we have
poi(9) = ¢'F = F = p,(9).
We now denote the representation p, by pj,. For every ¢ € R we can define a multi-

plicative representation

n:m (M) — R*
by

m(g) = e,
For any representation

n:m(M)—R"

we denote by
Cy(M. 1) C Cy(M,R)

the p-chains of M which transforms via 7. That is,

Cy(M,n) = {c € C,(M,R) | g.c = n(g)c Vg € m (M)}

We note that for each g € m (M), the boundary operator 0 commutes with ¢, and
multiplication by 7(g). This implies that

9(Cyp (M, 1)) € Cpa (M, 7).
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We can now consider the differential complex
Cu(M,n) : 0 = Co(M, 1) > Cp_y (M, 1) 3 - 5 (Co(M, ) — 0.

Let H,(M,n) denote the homology of this complex. Observe that if 1 denotes the
trivial representation (so that 1(g) = 1 for all g € m;(M)) then we have a canonical

isomorphism
Cy(M,1) = C,(M,R)
which is consistent with the boundary operators, so
H,(M,1) = H,(M,R).

Let
by(n) = dim H, (M, n).

We will later prove

Theorem 3.1. There is a set S C R, at most countably infinite, such that by(n,) is
constant on R — S. Denote this constant by By(h). Fort € S

by (77t) > Bp(h)'

In the statement of Theorem 3.1 we have defined the desired topological invariants

B,(h). We are now ready to state the main theorem of this section.

Theorem 3.2. Let w be a Morse 1-form with h = [w] € H'(M,R). Then with all
notation as above we have

(i) Strong Morse Inequalities:
my(w)—my_1(w)+---E£mg(w) > By(h)—By_1(h)+---£By(h) forallp=0,1,2,...
(1i) Weak More Inequalities:
my(w) > By(h) forallp=0,1,2,...

mo(w) — my(w) + -+ (=1)"my,(w) = Bo(h) — By(h) + -+ + (=1)"B,(h).
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The rest of this section is devoted to proving Theorem 3.2. Along the way we will
prove Theorem 3.1.

Out goal is to investigate the homology of the sequences
d d d
C*(Ma 77t) 10— Cn(Ma 77t) - Cn—l(Ma 77t) o CO(Ma 77t) — 0.

Rather than considering these varying spaces of chains, it is convenient to change
variables so that the spaces remain constant, but the differential varies. Recall that
C,(M, 1) is canonically isomorphic to C,(M,R). Namely, if « is an oriented p-cell in
M, choose a lift & of o (that is, a p-cell & of M with (@) = a). Define a p-chain
Ca € CP(M,R) by

Co = Z gla).

gem (M)
It is easy to see that ¢, is independent of the choice of &, and that ¢, € C,(M, 1).

The map o — ¢, extends linearly to an isomorphism
i Cp(M,R) = Cp(M, 1),

and the {c,} form a convenient basis for C,(M, 1).

For each t € R, define a function
e’ € Q°(M,R)

by setting, for each cell o of M

The key point is that etF maps C, (M, 1) isomorphically onto C, (M, n;). For example,
for each ¢, € C,(M, 1) and g € 7, (M)

g*(etha) — g*(etF)g*ca
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so that
efe, € Cp(M, ).

Now consider the complexes

0— Co(M,R) % Co s (MR) S -+ 2 Co(M,R) — 0

where
Oy =it e tF 9etf i,
For each t € R the homology of this complex is isomorphic to H,(M,n,). To proceed

further, we will find a more explicit representation of the operator 0.

Lemma 3.3. For any p-cell o of M
o= Y e (0a, B)p
/B(Pfl)<a
(where <,> denotes the canonical inner product with respect to which the cells are

orthonormal).

Proof. Let o be a p-cell of M and choose a lift &® in M. For each 3®=1) < «, choose
the lift 3 such that § < & Then

v = (i’le’tﬁae”} i)

= (o) Y (@)
gem (M)

_ (i_l e—tﬁ 8) Z 6tF(g(d))g(&)

g€7r1(M)

= (i) YD TU®a(g(a)
g€7T1(M)
— (ifleftﬁ‘) Z etﬁ‘(g(&))g(a&)
g€7T1(M)
= (i e ™) S N U@ 96, Bg(B)

geEm (M) lr-1) <q

(3.1) _ 1 Z e F@@)-FaN)(9a, 3)g(B)
oy

gem (M) f<a
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We now observe that
(0, B) = (0o, B)

and

Substituting, we see that (3.1) is equal to

i e @D @0, 8) 3 ()

B<a gEﬂ'l(M)

= 7! Z et“’(a>ﬂ)(8a, B)es

f<a

= > 90, 8)p

fB<a

Using the canonical inner product <, >, we can define
0; : Cp(M,R) = Cpy1(M,R)
to be the adjoint of the operator 0;, so that

9 o) = Z B> (98 o) p.

B+ >q

Now define the Laplace operator

A;E)t) - ata: + a;(at : Cp(Ma R) — CP(M’ R)

31
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More explicitly, for each p-cell oy

Aoy = Y { > et(“(ﬂ>“l)+w(’3>“2”<3ﬁ,a1><8ﬁ,a2>}

alP) BETD>aq,8>a0

(3.2) + Z elw(a>)+w(az>7)) (Oa, v) (D, ) Qs

7(1’*1)<a1,’7<o¢2

The key point is that simple linear algebra implies that for each t € R
Ker Ay(t) = H,(M,n,).

We are now ready to prove the main results of this section.
PROOF OF THEOREM 3.1 As the above formula makes clear, the self-adjoint opera-
tors

A,(t) : Cp(M,R) — C,(M,R)
depend analytically on t. It follows from Rellich’s Theorem [33] that the eigenvalues
of A,(t) depend analytically on ¢. More precisely, for each t* € R there is an interval

I containing t*, and d, analytic functions
NiI—R i=1,2,...,d,
(where d, is the number of p-cells in M) such that for each ¢ € I

spectrum (A,(t)) = {Ai(t), A2(t), ..., Mg, (1)}

Let By,(h) denote the number of A;’s which are equal to 0 on all of I. Each of these
eigenvalues must be 0 on all of R. Each of the other \;’s is 0 for at most finitely many
values of ¢ € I. This implies the theorem.
PROOF OF THEOREM 3.2. Let w be a Morse 1-form. By Theorem 2.3 w is equivalent
to a flat Morse 1-form, so we will now assume that w is flat. Our main idea is to
investigate the behavior of A,(t) as t — —oo. We think of A,(t) as a matrix with
respect to the basis of C,(M,R) consisting of the p-cells, so that the matrix elements
are given by (3.2).

Suppose a; # s are two p-cells of m, and 3+ satisfies 3 > oy and 3 > . Since

w is a flat Morse form, w(3 > «;) and w(f > ay) are both non-negative, and at least
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one is positive. Thus
w(f > ar) +w(B>ay) >0.

Similarly, if 7~ satisfies v < oy and v < @y then
w(ay > 7v) +w(ae >7) > 0.

This implies that the off-diagonal terms of A, (¢) vanish exponentially fast as t — —oo.
Now we consider the diagonal entries
<A,,(t)oz,a> _ Z thw(ﬁ>a) + Z e2tw(a>7)_
B+ >q AP-D<q
If o is critical, then for each B®*Y) > a, w(B > a) > 0, and for each 7P~1) <
a, w(a > ) > 0, so the corresponding diagonal entry vanishes exponentially fast
as t — —oo. If a is not critical then either there is precisely one 3®*) > o with
w(B > a) = 0 or there is precisely one v?~1) > o with w(a > 7) = 0, but not both,
and all other exponents are positive. This implies that the corresponding diagonal

entry approaches 1 exponentially fast as ¢ — —oo. Summarizing

A (1) TR <8 2) +0(e)

where the 222 black matrix is with respect to the slitting
Cp(M,R) = M, & M,

Where M,, denotes the span of the critical p-cells.

This implies that as ¢ — —oo, m,(w) eigenvalues of A,(t) approach 0, and all
of the remaining eigenvalues approach 1. Choose a T" > 0 so that for all p and all
t < =T, 3 is not an eigenvalue of A,(t). For t < —T let W,(¢) C C,(M,R) denote
the span of the eigenvectors corresponding to eigenvalues less that % Then

O (W (1)) < Wpa(t)
so we can form the Witten complex

W) 10 = Wat) B W, 1) L B wyt) — 0.
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It is easy to see that
H.(W(t)) = H.(M, ).
Choose a t > T so that
dim Hy,(M,n,) = B,(h).
Consider the complex W(t) for this ¢. The equalities
dimW,(t) = my(w)
dim H,0M(t) = B,(h)

along with some simple linear algebra, imply the desired Morse inequalities.
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4. REIDEMEISTER TORSION

In this section we use the techniques of [9] and [10] to prove a formula for Rei-
demeister torsion in terms of the dynamics of the gradient vector field of a Morse
1-form. In the case of the differential of a smooth S'-valued function on a smooth
manifold, this formula recently appeared in [15]. Earlier, special cases appeared in
[20] and [13, 14].

To explain the desired formula, we begin with a review of Reidemeister torsion.

(See [12], [32], [9] for more details). Let
©:m(M)— O(k)

be a representation (where O(k) denotes the space of n x n real orthogonal matrices).

Consider the complex of R¥-valued chains on M.
0— C,(M,R*) S C, (M, R¥) % ...
Define
C,(M, ©) C Cy(I1, BY)
to be the chains which transform via ©. More precisely, choose an orientation for each
cell of M such that for each cell a of M and each g € m(&), the map ¢ : o — g(a)

is orientation preserving. Then every R*-valued p-chain ¢ of M can be expressed as

c =3, Cac for some c, € R*. Then ¢ € C,(M,©) if for each g € m; (M)

That is, if
Y cagla) = {[O(9)](ca) e,

a(P) a(P)

or, equivalently, if for each p-cell & of M and each g € m (M)

C-1(a) = [O(9)](ca)-
Note that
dim C,(M,©) = k - #{p-cells of M}.
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The boundary operator 0 maps Cy(M,©) to C,_1(M,0), so we can consider the

complex
0= Cu(M,0) % Coy (M, 0) S -
Denote the homology of this complex by H,(M,©). We assume that the represen-
tation is acyclic, that is, H,(M,0) = 0.
We now observe that there is a standard L? inner product on C,(M,©). Namely,
for each cell a of M choose a lift @. Then, for every ¢, ¢o € C,(M, ©), set

(c1,c2) = Z (c1(@), c2(@)),

aeCp(M)

where (, ) denotes the standard inner product on R¥. Because © is an orthogonal
representation, the inner product ( , ) is independent of the chosen lifts.
Let 0* : Cp(M,0) — Cpi1(M, ©) denote the adjoint of O with respect to this inner

product, and
Ap(©) = 00"+ 070 : C,(M,0) = Cy(M,0)
the corresponding Laplace operator. For every representation ©

Ker A,(0) = H,(M,©).

In particular, if © is acyclic then for each p, A,(©) is a strictly positive operator.
With these definitions in hand, we are now ready to define the Reidemeister Torsion
of M with respect to the representation ©, T'(M,©), by

dim M
Tor(M,0) = [ (Det A,(©)) V",

p=1
This formula for Tor(M, ©) first appeared in [32].

Let w be a Morse 1-form. The goal of this section is to prove a formula for T'(M, ©)
in terms of the dynamics of w. This formula will have two types of contributions. One
from the Morse complex of w which is built from the critical points. The other is
a zeta function built from the periodic orbits. We now describe these ingredients

more precisely. Our presentation will be very brief. For a complete treatment of the
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combinatorial Morse complex see [9]. For a complete treatment of the combinatorial
zeta functions see [10].

Let & denote the lift of w to M, and f a function M such that Df = &. For each
p, let

Mp(wv 6) g Cp(Mv 6)

denote those chains which are supported on the critical simplices of @, and transform

via ©. We will now define a differential

d: My(w,0) = M,_1(w,0).
This requires the introduction of the notion of a gradient path of f For p-cells oy, a; of
M, a gradient path of f (of dimension p and length k ) from «q to ay , or equivalently

an @-path from ag to oy, is a sequence of cells of M

C:Qp = ﬁ(()p)7 ,Yéerl), 5?))7 nyerl)a e 7fyl(cp_+11)7 I(cp) =0

such that for every : =0,1,... ,k —1

1) Bi <iand Biv1 <

2) f(B8:) = f(v) > F(Bir1) [& @(vi > B;) <0 and &(v; > Bi1) > 0]

Let ¢ be such a gradient path, and suppose ay and «; have been endowed with an
orientation. Choose an orientation for each of the other 3;’s and v;’s. We define the
(algebraic) multiplicity of ¢ by

k-1

p(e) = H —(07i, B1)(0Vis Bit1)-

i=1
Note that p(c) is independent of the chosen orientations on the 7;’s, and the 3;’s other
than Gy = ag and (G, = aq,.

For any oriented critical cells 5®) and a®=Y of M, set

(08,0) =Y (9B,a1) Y ule)

agp—l)<ﬁ cel(ar,a)
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where I'(ay, @) denotes the set of all gradient paths from a; to a. This operator 9

extends linearly to a map
d: My(M,R*) = M, (M, RF),
and, in fact, preserves those chains which transform via ©. Thus we can consider
M(w0,0): 0 = My(w,0) > My 1(w,0) 5 ...

It is not at all obvious, but true nonetheless, that 8> = 0, so M(w,©) forms a
differential complex which we call the Morse complex (see [9] for the basic properties

of the operator d). The crucial fact is that
H(M(w,0)) = H,(M,0).

We have assumed that © is acyclic so M(w, ©) is exact. Note that each M, (w,©)
inherits an inner product from C,(M, ©). We can now define the adjoint operator o*,
the corresponding Laplace operators A, and thus, using the formula (4), the torsion
T(M(w,©)) of this complex.

In [9] we proved that if w is exact, then
Tor(M,0) =Tor(M(w, ©)).

Our goal now is to find the appropriate correction factor if [w] € H'(M,R) is not 0.
It is now better to work on M rather than M. Define a w-path of dimension p and

length k to be a sequence of cells of M

VB A B AP, A,

such that forall: =0,1,... k-1
1) Bi < i and Biv1 <
2) w(v; > B;) <0 and w(y; > Fiv1) > 0.
Say v is closed (or periodic) if By = k.
The dynamics of such paths was studied extensively in [10]. Define the chain

recurrent set R of w to be the set of cells which are either critical cells of w, or
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which are contained in some non-trivial closed path. The chain recurrent set can be

decomposed into a disjoint union of basic sets

R=[JA
where two cells @ and # in R belong to the same basic set if and only if there is a
closed w-path which contains « and f.

The next step is to introduce a zeta function which keeps track of the closed w-
paths. First note that if ¢ = Bép), 7((]‘”“), .. ,ﬁ((]p) is a closed w-path then we can define
the multiplicity of ¢, u(c), as in (4.2). For a closed path, u(c) is independent of all
choices of orientations. Let 3y be a p-cell of M which is a lift . Then we can lift ¢
to an @-path ¢ of f beginning with (y. Then ¢ need not be closed, but must end at
9(fBo) for some g € m;(M). The element g is not quite well-defined, because replacing
By by another lift of 8, has the effect of conjugating ¢ by some element of m; (M).
Associating ¢ with this conjugacy class in 71 (M) we can define trace[O(c)], which we

denote by trO©(c). With these definitions in mind, we define the desired zeta function
by

(2w, 0) =eap | YD (=17 Y ule) wO(e)
k=1 =0 CEP,EP)

where P,Ep ) denotes the closed w-paths of dimension p and length k. From Theorem

5.12 of [10] we learn the following theorem.

Theorem 4.1. The power series ((z,w,©) has a positive radius of convergence.
Moreover, ((z,w, ) can be analytically continued to a meromorphic function on the

entire complex plane.

Say a basic set A is non-trivial if A contains a non-trivial closed path (otherwise
A consists of a critical cell of w). The following theorem is proved in §6 of [10]. (See
Theorem 6.1 of [10]. There it is required that w has no critical points, but that

hypothesis is unnecessary if all we care about is the following theorem.)
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Theorem 4.2. Suppose H*(/_\,A, ©) = 0 for each non-trivial basic set A. Then the

zeta function ((z,w, ) is analytic at z = 1.
We can now state the main theorem of this section.

Theorem 4.3. Suppose H,(A,A,0) = 0 for each non-trivial basic set A. Then

Tor(M,0)= Tor (M(w,0))((1,w,0).

Before, beginning the proof, we will rewrite this theorem in the language of com-
binatorial vector fields, as introduced in [8, 10] (see also [4][34]).

A combinatorial vector field V on M is simply a disjoint collection of pairs { 3P+ >
o)} of cells of M. This is equivalent to the definition which we used in [7] and [9],
but is closer to the notion as it appeared earlier, in another language in [4] and [34].

Let V be a combinatorial vector field on M. A rest point of V' is a cell which is not

contained in any pair in V. A V-path of index p and length % is any sequence of cells

such that for each i =0,1,... Jk —1
1) a; < B and oy < f3;
2) a; # iy
NA{Gi >}t eV
A Morse 1-form w gives rise to a vector field V, which we call the dual vector field,

by declaring
{BP*D > o) eV o w(l@>a)<0

Then V-paths, as defined above, are precisely the same as w-paths as defined earlier.
The rest points of V' correspond to the critical points of w. For any combinatorial
vector field V, one can define the chain recurrent set, basic sets, and, given a repre-
sentation © of 71 (M), the corresponding Morse complex M(V, ©) and zeta function

((2z,V,0). Theorem 4.3 can now be stated in terms of combinatorial vector fields.
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Theorem 4.4. Let V be a combinatorial vector field on M, and © : (M) — O(k)
a representation. Suppose H, (A, A, ©) = 0 for each non-trivial basic set A. Then

T(M,0) = Tor (M(V,0))¢(1,V,0).

Theorem 4.4 clearly implies Theorem 4.3. It is not yet clear to the author, how-
ever, if Theorem 4.4 is more general than the previous theorem. That is, if V is a
combinatorial vector field such that H,(A, A, ©) = 0 for each non-trivial basic set A
(so that, in particular, V' has no homotopically trivial closed paths). Then is there a
Morse 1-form w such that V' is dual to w?

The remainder of this section is devoted to a proof of Theorem 4.4. Our presen-
tation will be rather sketchy, as the main steps have already been proved in [9] and
[10].

The first step is the introduction of a Lyapunov function for V. A Lyapunov function

is function g € Q°(M) such that for all P+Y > o)

1) 9(8) = g(a).
2) g(B) = g(a) if and only if {# > a} € V or a and [ are elements of the same

basic set.

The existence of such a function is established in Theorem 2.4 of [10].

Note that for any representation © and any g € Q°(M), there is a natural action
of g on C,.(M,©). Namely, g acts on C,(M,R*) by multiplying any cell o of M by
g(m(a)). It is easy to see that this preserves C. (M, ©).

We now fix an acyclic representation © : 7 (M) — O(k), a combinatorial vec-
tor field V, and a Lyapunov function g for V. Consider the one-parameter family of

differential complexes
0— Cp(M,0) % Cry (M, 0) % ...

where

0, = e90e 1,
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(e' € Q°(M) is the function which maps a cell a to €%(®)(a)). The homology of these

complexes is constant in t. Let

A(t,0) = 80, + 08, : C,(M, ©) — C, (M, 0)

denote the corresponding Laplace operator. For every ¢ € R we have

Ker A,(t,0) = H,(M, 0).

These operators were introduced (in the smooth setting) in [40], and previously stud-

ied in the combinatorial setting in [9] and [10].

The main idea of the proof is to consider the torsion of the 0;-complexes, and to

let t — oo. That is, define

n

T(t) =Y (Det A,(t,0))F 1",

p=0
Then

T(0) = Tor (M,0O).
We showed in Lemma 6.2 of [9] (see also (6.7) of [9]) that
d n
%logT(t) = kZ Z g(a)

P=0 critical a(®

so that e **T(t) is constant, where

K:kz Z g(a).

P=0 critical a(®)

Now let us take a closer look at the operator d;. Let ey, ...

basis for R¥. For each p-cell o of M, and i € {1,..., k} let

Cai= 3 [0(g)](e)g ().

gETL (M)
Then

Ca,i € Cp(M, @)
For any cell o of M
Oy = Z et(9(8)—9(a)) (B, B)3

ﬂ(P_1)<a

, €, denote the standard
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where we have written g(«) for g(m(a)). It follows that for each i
ﬁ(l’*l)<o¢

Since g(8) — g(a) < 0 for each BP~Y) < aP, 9, converges exponentially fast to an
operator Js. The corresponding Laplace operator A; converges exponentially fast to
A(00), where

A(OO)COA,Z' = 8003; + a;oaooca,i

=31 Y 0B,a)0B,a0)+ > (Do, ) (00, V) ]ear

agp) B+ o, Bran 7P~ Drxayrar
For each p-cell o of M, choose a lift o in M. Then {ca~i}, as a ranges over the
p-cells of M and i ranges from 1 to k, forms a basis for C,(M, ©).
Suppose « is critical. Then for all 371 > o, ¢(3) > g(c) so that a % 3, and for
all v*=1) < o, g(v) < g(a), so that a % ~. This implies that for all i

[A(00)]eq i = 0.

Suppose a® is not in the chain recurrent set. Then either

i) There exists exactly one (p + 1)-cell 5 with § > « and « ~ . Moreover, for all
ol £ o with 8> o then g(8) > g(au), so that a; % 8.
or,

ii) There exists exactly one (p — 1)-cell v with v < « and « & . Moreover, for all

agp) # « with oy > 7 then g(«) > g(7y), so that oy % ~
but not both. Therefore, if « ¢ R then for all 4

[A(OO)]Ca*,i = Caxi

(see the proof of Lemma 6.3 in [10] for a more complete discussion).

Suppose a € A for some non-trivial basic set A. Then for any (p+ 1) or (p —1)-cell
B,

arx e feA
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This implies that for any p-cells a and «; of M, if the coefficient of c,x; in [A(00)]cqx
is non-zero, then a; € A. (see the paragraph following the proof of Lemma 6.3 in [10]
for a more complete discussion.)

Let Ay,...,A; denote the non-trivial basic sets. Let M,(©) C C,(M,O) denote
the span of the critical p-cells, N,(©) C C,(M,©) the span of the non-recurrent p-
cells, and C,(A;,©) C C,(M,O) the span of the p-cells in A;. Expressing A, (co) :
Cy(M,0) — Cy(M,©) as a block matrix with respect to the decomposition

Cyp(M,0) = M,(0) & N,(0) & &i_,Cy(A;, ),

we see that it has the block diagonal form
0

(4.1) A,
Ay
where
A, = 8y(00) |o,(as,0) -
We take a moment to consider the operator A;. Extend the cell structure of A; to
a cell structure on A; (this is not necessary if A; is a subcomplex of M). Then there
is a canonical isomorphism between C,(A;, A;, ©) and Cyp(A;, ©), where A, =A— A

Namely, ifc =3 4.
> arca, Cav. With this identification the operator

cox represents an element of Cj,(A;, A;, ©), then identify ¢ with

d:Cy(Ai, A, ©) = Cp_1(Ai, A, O)
corresponds to the operator
O : Cp(A;, ©) — Cp1 (N4, 0),
so that
Ker A} = H,(AA;, ©).
It follows that if, for each i, H,(A;, A, ©) =0, then for each ¢ and p

det Af, #0.
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Let
o ZT. n
=V 0) =exp | S D1 Y m()irl6(a)
I e
where P,gk)(/\z-) denotes the closed paths of index p and length r consisting of cells
in A;. (Recall that by the definition of a basic set, each closed path is a subset of a

single basic set.) Then (y,(z,V,©) can be analytically continued to a meromorphic

function on the entire complex plane. The following is Theorem 6.3 of [10].

Theorem 4.5. Suppose H,(A;, A;, ©) = 0. Then Ca,(z,©) is analytic at z =1, and
p+l

Tor (A;, Ay, ©) = H( Det A;’)pz (=17
P

= () (1,V,0).

Let Det 'A,(c0) denote the product of the non-zero eigenvalues of A,(co). Then

Theorem 4.5 has the following implication.

Corollary 4.6. Suppose that H,(A, A, ©) = 0 for each non-trivial basic set A. Then
((2,V,0) is analytic at z = 1, and

[T¢ Det ', (00)) 5 € = TTI[] Det Ai)"+ ¢V’
p 7

p

= [[a.v,0)=¢(1,v,0).

It remains to understand the behavior of the eigenvalues of A,(¢) which tend to 0

as t — oo. From (4.1) we see that the number of such eigenvalues is
k - #{critical p-cells}.

Since the eigenvalues vary continuously with ¢, there are 7", ¢ > 0 such that for all
t>1T"

#{eigenvalues of A,(t) < e} = k - #{critical p-cells}.
For t > T*, define the Witten space

W,(t,V,0) C C,(M, O)
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to be the span of the eigenfunctions corresponding to eigenvalues less than e.
The operator 0, commutes with A,(t), so 0; preserves W,(¢,V,0). Thus we can

consider the complex
W V,0):0 5 W, (¢, V,0) B W, 1 (t,V,0) % ... .
It follows that for all ¢
H.(W(t,V,0)) = H.(M,0).
Since O is acyclic, W(t, V, ©) is exact, and we can consider, for each ¢,

Tor (W(t,V,0)) = []( Det A,(1) I, aey)* .
p

Summarizing what we know so far, we see that for each ¢
(4.2) Tor (M,©) = e " T(t) = e Tor W(t,V,0))((1,V,0) + O(e™).
From (4.1) we learn that
(4.3) lim W,(1.V,0) = M, (V.0) € C,(M, )
where M, (V, ©) is the Morse space of p-chains supported on the rest points of V. Let
m(t) : Cp(M,0) - W(t,V,0)

be the orthogonal projection. For each critical p-cell a, and for each ¢ € {1,...,k},
let Wy i(t) = m(t)cq,i- Then for ¢t large enough {w,;(t)} forms a basis for W, (¢,V, O).

Let I(t) denote the square matrix with rows and columns indexed by pairs {c, i}
with a a critical p-cell and i € {1,... ,k}, and

I{al,il}{a2,i2}(t) = <wa1,i1 (t)v wa2,i2(t)>

T Sanin) (o)
Let
Waalt) = I7% (Hwiai(t).
Then {w}, ;(t)} forms an orthonormal basis of W,(t,V, ©).
The following is Theorem 4.1 of [9].
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Theorem 4.7. For any critical cells PtV and o), and any i,j € {1,
t— 00

(O s i) = O ((Deg g, o) +0(e7™))

*
Q,]

for some € > 0.

Let
G:W,(t,V,0) = W,(t,V,0)

denote the linear map which satisfies

G (wa,:) = g(a)w,

Let
5t = €_tGat€tG
Then Theorem 4.7 implies that

(4.4) lim 9, = 0
t—00

Denote by W(t,V,©) the complex
0= Wa(t,V,0) 5 Wy 1(£,V,0) By -
Of course,
H.(W(t,V,0)) =2 H,(W(t,V,0)) =0
so we can consider the torsion of W. From (4.4) and (4.3) we see that
lim Tor (W(t,V,0)) = Tor (M(V,0)).
It follows form Lemma 6.2 of [8] that
Tor (W(t,V,0)) = e Tor (W(t,V,0)).
Substituting into (4.1) we learn
Tor (M,0) = Tor (W(t,V,0))((1,V,0) + O(e™).
Letting ¢ — oo yields
Tor (M,0) = Tor (M(V,0))((1,V,0)

as desired.

47
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